
An Analysis of x86
Single-Instruction Compiling as

an Obfuscation Technique

Lasse Dessau (s142980)
Rasmus Bo Kajberg (s130168)

Kongens Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract

In this thesis we evaluate single instruction compiling as an obfuscation tech-
nique. We analyse the inner workings of M/o/Vfuscator2, and propose a tool
to aid analysis of programs obfuscated by M/o/Vfuscator2. We find that
M/o/Vfuscator2 is similar to Virtual Machine (VM) based obfuscation. How-
ever, while state of the art VM based obfuscators can construct a custom in-
struction set for each protected file, this is not the case for M/o/Vfuscator2.
This is a limitation of M/o/Vfuscator2, and not of single instruction compiling
in general. Based on this, we conclude that single instruction compiling can
be used as an effective alternative architecture in state of the art VM based
obfuscators.

Resumé

I denne afhandling evaluerer vi enkelt-instruktionsoversættelse som en obfu-
skeringsteknik. Vi analyserer de indre funktioner af M/o/Vfuscator2, og fo-
reslår et værktøj til at hjælpe med analyse af programmer som er obfuske-
ret af M/o/Vfuscator2. Vi kan se, at M/o/Vfuscator2 i høj grad minder om
Virtuel Maskine (VM) baseret obfuskering. Men mens moderne VM baserede
obfuskeringsværktøjer kan konstruere et unikt instruktionssæt for hver beskyt-
tet fil, er dette ikke tilfældet for M/o/Vfuscator2. Dette er en begrænsning af
M/o/Vfuscator2, og ikke af enkelt-instruktionsoversættelse i almindelighed. Ba-
seret på dette konkluderer vi, at enkelt-instruktion oversættelse kan bruges som
en effektiv alternativ arkitektur i moderne VM baserede obfuskeringsværktøjer.

Acknowledgements

We would like to thank Christian Damsgaard Jensen, who have been our su-
pervisor during this project, for both inspiring discussions and helpful feedback.

iv

Contents

Abstract i

Resumé ii

Acknowledgements iii

Introduction 3
1.1 The purpose of this report . 4
1.2 Method . 4
1.3 About this report . 5
1.4 Overview of the report . 6

Threat Landscape 7
2.1 State Sponsored Actors . 7
2.2 Criminel Networks . 8
2.3 Hacktivists . 8

Malware Attack Anatomy 9
3.1 Cyber Kill Chain . 9
3.2 Malware Analysis in the Cyber Kill Chain 12
3.3 Attribution . 13
3.4 Summary . 14

Malware Analysis 15
4.1 Malware Behaviour . 15
4.2 Defining Obfuscation . 16
4.3 Static and Dynamic Analysis . 17
4.4 Anti Analysis . 22

CONTENTS 2

Background in x86 25
5.1 The x86 Architecture . 25
5.2 Assembly in x86 . 25
5.3 Stack Frame and Call Convention 26
5.4 The ELF File Format . 27

Movfuscation 28
6.1 Single Instruction Compiling . 28
6.2 The Movfuscator . 29
6.3 A Backend for LCC . 30
6.4 Compiling C to MOV . 31
6.5 Control Flow . 33
6.6 Binary Operations . 39
6.7 Post-process Scripts . 42

Analysing Movfuscated Code 43
7.1 Example Programs . 43
7.2 Basic Static Analysis . 43
7.3 Basic Dynamic Analysis . 46
7.4 Advanced Static Analysis . 47
7.5 Advanced dynamic analysis . 49
7.6 Deobfuscation . 49

Obfuscation Techniques 58
8.1 Data Obfuscation . 59
8.2 Control Obfuscation . 60
8.3 Combined Obfuscation . 62

Evaluation 64

Conclusion 67
10.1 Future Work . 67

Example programs 68
A.1 Programs in C . 68

Bibliography 73

Introduction

In January 2016, CFCS1 published a risk analysis of the cyber threat against
Denmark in which it stated that the threat of espionage as well as cyber-crime
against Danish authorities and companies are very high[Cyb16]. It further
stated that both the amount of attempted attacks and the technical sophis-
tication of these have increased in recent years. It is a wide consensus that this
is a global trend[Sec15][Ver15].

In recent years malware have been used in cyber attacks against various sec-
tors. Malware being defined as executable code written with malicious in-
tentions[Mica][Bul][Kasa][Sym]. In particular, malware was employed in high-
profile thefts against financial institutions, such as the 2015 Carbanak campaign
which amounted to an estimated $1 billion in losses[Sec15], and an attack in 2016
against Bangladesh Bank (BB) intending to steal $951 million. Cyber espionage
campaigns such as Snake[Kasb] employs malware as a way to get persistent ac-
cess to targeted networks.

Attackers often need to make malware inconspicuous while infiltrating systems
and will therefore obscure it’s functionality so that, even if the malware is found,
it will delay analysis of the malware and thus development of effective counter
measures against it. Techniques to make malware analysis more difficult are
generally referred to as obfuscation techniques[Lai16, p. 22].

One such obfuscation technique was described by Christopher Domas at Der-
bycon 2015[Dom15a], Recon 2015[Dom15b], and DEF CON 23[Dom15c]. In
this technique, traditional assembly instructions are reformulated as memory

1Center for Cybersikkerhed

1.1 The purpose of this report 4

and register displacements (MOV instructions). Allegedly this makes programs
more difficult to reverse engineer as it is difficult to get a grasp of the programs
functionality. To exploit this technique, Domas has developed a mov-only C
Compiler, named M/o/Vfuscator2[Doma]. The obfuscation technique was in-
spired by Steven Dolan[Dol13], who originally showed the MOV x86-instruction
to be Turing complete in an article published in 2013.

Prior to this project it was unclear how effective this obfuscation technique is,
and which analysis techniques and countermeasures can be employed. Domas
have identified that decompilation may be a weakness as suggested by his im-
plementation of anti-decompilation post modules[Domb].

Concurrently, parallel with the preparation of this report, related work was
published by Kirsch and Jonischkeith that shows that control flow for pro-
grams compiled with M/o/Vfuscator2 can be restored in many cases, even when
the obfuscated code is further hardened by the anti-decompilation post mod-
ules[KJ16][Jon16].

1.1 The purpose of this report

The objective of this report is to evaluate single instruction compiling as an
obfuscation technique by:

1. Researching the purpose of malware analysis.

2. Researching how malware is analysed.

3. Analysing the functionality of M/o/Vfuscator2.

4. Determining the strength of M/o/Vfuscator2.

5. Researching obfuscation techniques related M/o/Vfuscator2.

6. Discussing single instruction compiling as an obfuscation technique based
on our findings.

1.2 Method

To examine the purpose of malware analysis we will first describe relevant threat
actors and their motivation. This will allows us to understand what the attackers

1.3 About this report 5

hope to achieve. Secondly, we will examine how an attack is carried out and
how malware analysis can be used in countering such an attack. This should
lead to an understanding of why obfuscation is employed by attackers to hinder
malware analysis.

We will then describe the process of analysing malware based on Michael Sikorski
and Andrew Honig’s four phases of malware analysis[SH12]. Having described
the four phases we will consider anti analysis techniques for each of these.

Next, we will analyse the functionality of M/o/Vfuscator2. We will look at how
control flow and binary operations are implemented using only MOV instructions.
In addition to the obfuscation done by M/o/Vfuscator2 we will give a brief
description of post-process modules that aims to harden the obfuscation in order
to prevent simple decompilation.

In order to determine the strength of M/o/Vfuscator2 we analyse how it affects
each of the malware analysis phases. Based on this, we will implement a proof of
concept tool that aims to allow analysis of a file obfuscated by M/o/Vfuscator2.

Based on our analyse of M/o/Vfuscator2 we will identify and describe obfusca-
tion techniques that share common traits.

Finally, we will classify M/o/Vfuscator2 based on the identified techniques in
order to discuss the strengths and weaknesses of single instruction compiling as
an obfuscation technique.

1.3 About this report

Our work on this report officially began in February 2016. In the course of
our analysis of single instruction compiling, we have analysed the inner work-
ings of M/o/Vfuscator2. In addition, we have implemented a proof of concept
decompiler that is able to reintroduce control flow, call conventions, the stack,
function layout, and instruction reduction in movfuscated programs. Finally, we
have evaluated the effectiveness of applying the single instruction compiling as
an obfuscation technique both relative to other techniques, and how it counters
the malware analysis process.

Concurrently, at Recon 2016 June 19, Kirsch and Jonischkeit from Technische
Universität München, presented their work on "Demovfuscator"[KJ16], a deob-
fuscator for M/o/Vfuscator2. This program is able to reintroduce control flow,
in many cases even if the program is hardened by the post-process modules

1.4 Overview of the report 6

Domas implemented. Shortly after the presentation they published Jonischkeit
bachelors thesis, that documents some of their work. This thesis was handed in
March 2016, and we learned about it when it was published online June 19.

Our work is complementary to work published by Kirsch and Jonischkeit. While
they show how post modules for M/o/Vfuscator2 can be defeated, we focus on
furthering the decompilation process.

1.4 Overview of the report

Threat landscape Describes the three categories of threat actors we have
identified in association with the use of malware: advanced persistent
threat (APT), criminal networks, and hacktivists.

Malware attack anatomy Analysis of how malware analysis can be used in
defense against malware based cyber attacks.

Malware Analysis Describes that the process of analysing malware can be
split into four phases: basic static analysis, basic dynamic analysis, ad-
vanced static analysis, and advanced static dynamic analysis.

Background in x86 Gives a brief refresher of relevant 32bit x86 assembly con-
cepts, the cdecl calling convention, and the ELF file format, which is used
in the following chapters.

Movfuscation Details our analysis of how the M/o/Vfuscator2 works based
on public documentation and the source code.

Analysing movfuscated code We look at how M/o/Vfuscator2 affects the
phases of malware analysis, and propose a proof of concept deobfuscator.

Obfuscation techniques Describes obfuscation techniques that have traits
similar to M/o/Vfuscator2.

Evaluation A discussion and evaluation of the classification and effectiveness
of M/o/Vfuscator2 and single instruction compiling in general.

Conclusion We conclude the evaluation of single instruction compiling as an
obfuscation technique and propose future work.

Example Programs and Bibliography A list of source code for the C-example
programs and the bibliography cited in the report.

Threat Landscape

The following chapter describes three categories of threat actors that are known
to use malware, including their motives and modus operandi.

2.1 State Sponsored Actors

State sponsored actors generally have access to huge amounts of resources as well
as cutting edge technologies. A prime example of this is the campaign labeled
Stuxnet, that targeted SCADA systems of Iranian nuclear facilities around 2010.
Not only did Stuxnet utilize four zero-day vulnerabilities[Mur10], but it was also
based on thorough knowledge about the complex systems located in a nuclear
facility[KM14, p. 121].

The motives behind state sponsored attacks are often of political nature, aiming
at strengthening a nation’s political agenda, typically by providing intelligence.
This, however, is not always the case as seen with the group labeled APT1 (later
PLA Unit 61398), which is said to have targeted large volumes of intellectual
property[Man13].

2.2 Criminel Networks 8

2.2 Criminel Networks

The primary objective of any Cybercrime ring is to earn money. They have the
resources to buy the best exploits and malware on the market, or to develop
these themselves. An example of such a group is "Carbanak" which has used
targeted persistent attacks to steal from around 100 different financial institu-
tions with total looses of close to $1 billion US dollars according to estimations
by Kaspersky Lab[Sec15].

Even criminals with limited means (e.g. script kiddies) can buy a malware
campaign online as a service[Cyb16]. To market the services at competitive
prices, most of the malware obtained by such services, often belong to an already
known family of malware.

2.3 Hacktivists

This group is comprised of non-state actors whose primary motivation are polit-
ical, religious or idealistic rather than monetary. A well known hacktivist groups
is Anonymous whose goals include combating censorship, promoting freedom of
speech, and fighting government control. Anonymous usually attempt to accom-
plish this through crashing web servers, website defacement and leaking hacked
confidential information[Gol][SAN][Pau].

While hacktivists may often be associated with denial of service or defacements,
the use malware has also been reported. For example, an attack in 2014 used a
fake slide show to deliver malware to ISIS critics with the aim of revealing their
IP address along with other information that ISIS could then use to establish
their identify [Lai16][SS14].

Malware Attack Anatomy

In this chapter the life cycle of a malware cyber attack is examined, as well as
how malware analysis can be an important part of the incident response process
used in countering attacks.

There are multiple models used to explain the life cycle of cyber attacks. State of
the art models include: The Cyber Kill Chain by Lockhead Martin[Eri11][Mar15a],
Attack Lifecycle Model by Mandiant[Man13], and Dell SecureWorks APT Life-
cycle[Sec12]. While these models may have been written with Advanced Persis-
tent Threats(APT) in mind, many of the steps are shared with malware attacks
by less advanced groups.

The Cyber Kill Chain is the most widely cited model and is as expressive as the
other models[Sig15, p 13]. In the following sections we describe the Cyber Kill
Chain, and how malware analysis relates to this model.

3.1 Cyber Kill Chain

According to the Cyber Kill Chain a cyber attack consists of seven phases as
illustrated in Figure 3.1.

3.1 Cyber Kill Chain 10

Figure 3.1: Source: Lockheed Martin, Cyber Kill Chain [Mar15b].

Reconnaissance In this phase, attackers research the target[Mar15b] using
both passive and active techniques. Passive reconnaissance, e.g. using
information publicly available, does not directly interact with the target
systems and are therefore especially difficult to disrupt. Active recon-
naissance interacts with the victim system and is therefore comparatively
easier to detect[J V15].

Information gathered may include which systems are vulnerable to infec-
tion, how they are protected, and a selection of possible attack vectors that
can be used in the intrusion phase, such as picking potential targets for
phishing mails. When the reconnaissance phase is completed, the attacker
starts to prepare the actual attack[J V15].

The more information the attacker is able to gather the more likely the
attacker is of successfully infecting the target with the prepared malware[J
V15].

Weaponization In this phase the attackers prepare for the operation by creat-
ing the malware and combining it with an exploit so that it has a greater
chance to successfully infect the victim. [Mar15b].

Delivery In this phase the attacker will attempt to get their malware to exe-
cute in the target’s system. This can be done using a variety of methods

3.1 Cyber Kill Chain 11

such as email, usb-sticks, social media interactions, or a watering hole
attack[Mar15b].

This phase is an important opportunity for the defenders to to block an
attack. This can be done by leveraging weaponizer artifacts to detect new
malicious payloads at the point of Delivery. Logs should be recording
the attack even if the malware remains undetected so that a forensics
investigation can later unravel the vector and time of attack[Mar15b].

Exploitation In this phase, the attackers attempts to exploit the system us-
ing social engineering or by abusing an unpatched vulnerability[Mar15b].
Typically a successful exploitation will allow the attacker to take control
of the victim’s infected machine.

The duration of the exploitation phase depends on the chosen attack vec-
tor[J V15]. Verizon states that approximately half of the users that are
tricked into opening a phishing e-mail and clicking on a malicious link, do
so within the first hour[Ver15]. Exploiting a software vulnerability on the
other hand, can be almost instant.

Installation In this phase the attacker will attempt to install a backdoor to
maintain access, persist the malware by e.g. making it run on boot, and
hide the presence by installing rootkits etc.[Mar15b][J V15].

Command and control (C2) In this phase, malware is being connected to
the C2 infrastructure of the attacker. For remotely controlled malware
this phase is crucial as it allows the attacker to issue commands to the
infected hosts.

Actions on objectives In this phase, the attackers attempts to accomplish
their mission as they are now ready to start gathering data[Mar15b]. This
involves identifying relevant machines and information stores in order to
extract data, which can be send out of the victim network, e.g. in small
quantities in order to avoid detection[J V15].

This phase may also involve escalating privileges, installing rootkits, tools,
backdoors, and compromising laterally [J V15]. Attackers may attempt to
continue to hide their presence in order to ensure long term persistence[J
V15]. This may involve operating in peak hours to drown their presence
in normal legitimate traffic, maintain rootkits, and alter log files to ensure
continued concealment.

3.2 Malware Analysis in the Cyber Kill Chain 12

3.2 Malware Analysis in the Cyber Kill Chain

The goal of the Cyber Kill Chain is to understand the phases of a successful
attack in order to improve the likelihood of preventing such attacks. The idea
is, that if an attack can be stopped at any of the stages before actions and
objectives phase in the Cyber Kill Chain, the attack will not succeed[Mar15b].
The defender can create a matrix describing the course of action required to
counter specific phases of the attack[Eri11]. An example of such a matrix can
be seen in Figure 3.2, which illustrates which actions that should be taken in
regards to each stage and which outcome this action has, such as either detection
or disruption of the attack. Many of these actions relies on information gained
from malware analysis to be effective.

Figure 3.2: Source: Lockheed Martin, Course of action matrix [Eri11].

The defenders actions to counter the weaponization, exploitation, installation,
and C2 phases relies heavily on the use of intrusion detection(NIDS, HIDS) /
prevention systems(NIPS, HIPS)[Eri11].

These technologies in turn relies on indicators of compromise (IOA) and indica-
tors of compromise (IOC), which are derived by analysing behavioral patterns
of malware that indicate that a system is infected or under attack, and can be
either network based, such as outgoing network traffic to a known malicious
domain, or host based, such as the creation of specific files or processes. IOC is
typically used for indicators of a system that is already compromised, while IOA

3.3 Attribution 13

is used for signs of an attacker trying to compromise a system 1[DeC][Eri11].

While malware delivery can sometimes be detected by vigilant users, technolo-
gies such as proxies and anti-virus may be able to entirely deny or disrupt the
delivery process. Anti-virus requires knowledge about malware or the structure
of malware obtained from malware analysis.

If an attack gets by the initial protections, actions should be taken to degrade,
disrupt, and eventually destroy the attack. These actions may vary depending
on which phase of the Cyber Kill Chain the attack is in[Eri11]. The goal is to
prevent any further damage, e.g. malware spreading to other hosts or exfiltra-
tion of additional data if the attacker has reached the Actions and Objective
phase[Kra11]. Malware analysis can be used to determine what the malware is
attempting to accomplish so that the most effective counter measures can be
implemented.

Once knowledge is obtained of how the malware affects the system, the attack
can be destroyed e.g. by wiping disks or particular files. During the recovery,
the effected systems are brought back into operation, e.g. reinstalling services
and removing the containment of the system. It is also important to verify that
the system is protected against similar attacks in the future.[Kra11]

3.3 Attribution

Another aspect of malware analysis, not directly linked to the Cyber Kill Chain,
is attribution.

Attribution is the act of attempting to link the attack to a specific perpetrator.
While not impossible, it has proven difficult to follow this up with legal ac-
tion[Ley15]. However, simply attributing the attack helps in the understanding
of the attacker’s motives, capabilities and future plans.

One way of connecting two attacks is to look for identical hashes from the
malware samples. However, malware samples can be generated so that the
hashes will differ, even when the source code of the samples are identical. Other
indicators that can give a clue on who is behind the attack could be: compile
times that fit with working hours of a specific country or matches compile times
of previously seen malware samples, keyboard layouts indicating the language

1Occasionally the terms are used as synonyms, simply referring to information that can be
used to detect a possible incident

3.4 Summary 14

preference of the attacker[Fir13], reoccurring text strings or code reuse[Nov16],
and DNS registration information[Fir13].

The target itself might also hint to the attackers origin. An example of this
is APT28, also known as Sofacy Group, who FireEye2 claims are behind a
number of attacks sponsored by the Russian government. One of the reasons,
that FireEye gives for their claim, is that the malware campaigns have been
targeting Georgia and other Eastern European governments as well as NATO,
which they claim fit well with the political interests of Russia[Fir14].

When dealing with attribution however, one should keep in mind, that it is
possible to fake some of these artifacts, thereby making it appear as if others
are guilty, increasing the difficulty of attributing the attack to the correct threat
actor. This kind of false flag operations are a growing trend[Mim16].

3.4 Summary

In this chapter, we have outlined the role of malware analysis in defending
against a cyber attack, and have described how it can be used in both a proactive
and reactive manner. Specifically, many defensive actions in the Cyber Kill
Chain rely on information obtained from malware analysis, such as how to
detect or destroy a malware attack. Additionally, malware analysis is central
to attributing an attack with a specific perpetrator. The process of malware
analysis will be explained in more depth in chapter 4.

2FireEye is a cyber security company, https://www.fireeye.com/

Malware Analysis

In chapter 3, it was argued that malware analysis plays a crucial role in incident
handling as it helps determine the extent of damage done by the malware as
well as finding indicators of attack (IOA) and indicators of compromise (IOC)
to help combat the malware in the future, and potentially attribute the malware
to a threat actor.

This chapter describes how malware is commonly analysed. We will later apply
this knowledge to analysing movfuscated programs. The chapter is primarily
based on the books "Practical Malware Analysis"[SH12] and "Malware Analyst’s
Cookbook"[MR11].

4.1 Malware Behaviour

When analysing malware it is essential to know what you are looking for. In
this section we will categorise the most common types of malware and their
behaviours[SH12, p. 3]. In practice, malware can have traits from several of
these categories[SH12, p. 4], but knowing the goals and tactics of typical malware
categories makes it easier to recognise malicious behaviour.

Worm / Virus While a worm and a virus might behave differently, what they
have in common is that they attempt to spread the infection[SH12, p. 4].

Backdoor A backdoor gives the attacker access to the infected system, typi-
cally by providing a shell[SH12, p. 3].

4.2 Defining Obfuscation 16

Botnet A botnet is similar to a backdoor, but whereas the backdoor allows the
attacker to issue commands to individual targets, the same command will
usually be send to all of the targets that are a part of the botnet[SH12,
p. 3].

Downloader / Droppers This is a category of malware that are used for
downloading (dropping) additional malware on a target system[SH12, p. 3].

Launcher This type of malware is used to launch other malware stealthly or
with greater privileges[SH12, p. 4].

Ransomware A ransomware prevents victims from accessing either their sys-
tem or files until a ransom is paid. This is usually done either by denying
system access or by encrypting user data. In order to regain access, the
victim has to pay the attacker a ransom[Micb].

Information stealing malware A wide variety of information can be of in-
terest for the attacker. Some malware is designed to steal information
such as keystokes, images and the like[SH12, p. 4].

Spam-sending malware Sending spam is a way to earn money, but it requires
a certain number of resources. Because of this some malware are created
with the purpose of distributing spam messages[SH12, p. 4].

Scareware This category of malware tries to scare the victim into paying
money[SH12, p. 4], e.g. by claiming that the victim is infected with a
virus that can be removed with some fake anti-virus software, or by claim-
ing that the victim have broken a law and has to pay a fee[Inv].

Rootkit The purpose of a rootkit is to hide activity and remain persistent
without being detected[SH12, p. 4].

4.2 Defining Obfuscation

In general, obfuscation is defined in Oxford Dictionary as: “to make obscure,
unclear, or unintelligible”[Dic].

Within the field of computer science, Barak et al. further defines code obfusca-
tion as: “Informally, an obfuscator O is a compiler that takes a program P as
input and produces a new program O(P) that has the same functionality as P
yet is "unintelligible" ”[Bar+01].

4.3 Static and Dynamic Analysis 17

That is, obfuscated programs must make code unintelligible while retaining
computational equivalence with the original program, that is exhibiting the
same computational effect[BB14, p. 267-268].

Barak et al., however, shows that an ideal obfuscation resulting in complete
unintelligibility is impossible[Bar+01], so practical code obfuscation must con-
tent with making functionality more difficult to analyse - hindering automatic
analysis and making manual analysis more time consuming[SH12, p. 327].

The motives for obfuscation extend beyond keeping the functionality of mal-
ware hidden, being applied legitimately in digital rights management to protect
intellectual property[BB14, p. 267].

4.3 Static and Dynamic Analysis

Literature often defines two approaches to malware analysis: static and dynamic
analysis[SH12, p. 2][MR11, p. 283].

Static analysis attempts to uncover information about a program without exe-
cuting it while dynamic analysis monitors and logs a programs behavior during
execution.

Generally speaking dynamic analysis is more time efficient and can to an extent
be automatized[Zel16] but does not guarantee that the the full functionality of
the program is uncovered. There is also an inherent risk involved with dynamic
analysis, since it requires executing the malware, although this can be mitigated
by isolating it in a protected environment such as a sandbox[SH12, p. 29].

Static analysis on the other hand can uncover the full functionality of the mal-
ware[SH12, p. 3] but can require significantly more time and/or disassemble
skills[MR11, p. 283][Zel16].

Sikorski and Honig further divide static and dynamic analysis into basic and
advanced variants[SH12, p. 2-3].

One approach to analysing malware could be the four step process shown below
in Figure 4.1 which combines basic and dynamic analysis to efficiently uncover
information early in the process. If enough information is uncovered during the
basic phases then the advanced analysis may not be required.

4.3 Static and Dynamic Analysis 18

Basic Static
Analysis

Basic Dynamic
Analysis

Advanced Static
Analysis

Advanced Dynamic
Analysis

Figure 4.1: Malware analysis pipeline

In practice, a malware analyst may reiterate or reorder the phases depending
on the analysis. The following subsections gives a brief explanation of each of
these phases.

4.3.1 Basic Static Analysis

The purpose of basic static analysis is to uncover properties and information
about a program without executing it. As illustrated in Figure 4.2 the first
step in doing so is to fingerprint the file to determine whether it is a known
file. This could include scanning the file using an antivirus product. If the file
is recognised as previously seen malware, the malware may already have been
analysed sufficiently by other parties. If the file is not recognised or if more
details are needed, the analyst can gather and analyse further artifacts such as:

File signature A fingerprint of a malware can be used to search for matching
signatures, i.e. in VirusTotal1 or other databases, to see if someone else
have already done analysis on an identical sample. Antivirus solutions also
make use of signatures to identify known malicious software[SH12, p. 10].

Strings Any strings that appear in clear text can easily be extracted from the
file. Strings such as suspicious URLs can give a hint of the programs
functionality[SH12, p. 11-13].

Packing Programs can be packed for legitimate reasons such as compression
and copy protection, but packing is also frequently used by malware au-
thors to hinder malware analysis. Entropy analysis[SH12, p. 387] and
packer detection tools[SH12, p. 13-14] can statically check for packed data.

File headers and sections Can contain information such as: whether the
program is console or window based, which compiler build the program,
and when the program was build. File headers and sections can also pro-
vide hints to whether the program is packed or not[SH12, p. 22-24].

1https://www.virustotal.com/

4.3 Static and Dynamic Analysis 19

Loaded libraries Imports tells us which functionality the program can use
from third party libraries [SH12, p. 15-17]. This may allow a malware
analyst to make hypotheses such as whether the malware logs keyboard
presses, uses encryption, and/or connects to the Internet.

At the end of this phase the analyst should have a basic idea of the functionality
of the file, however this depends on whether the file is packed or not, and further
analysis is often needed[SH12, p. 26].

Known
Malware?

Fingerprinting

Lookup
Malware Report

Yes

No

Artifact
Gathering

Artifact
Analysis

DoneSufficient?
Yes

No

Figure 4.2: Basic static analysis

4.3.2 Basic Dynamic Analysis

An efficient method for determining a programs functionality is to simply exe-
cute it while monitoring its behavior and how it affects the environment. Typical
the following is worth monitoring:

File activity It may be interesting to observe which files are read and written
to by a malicious program. This may hint to the purpose of the mal-
ware, e.g., a ransomware encrypts a huge number of files and a dropper
downloads additional software.

Registry activity On Microsoft Windows the registry is a common way for
malware to gain persistence[SH12, p. 241], e.g., by adding the malware as
a value to one of the registry keys that controls startup applications such
as "HKLM\Software\Microsoft\Windows\CurrentVersion\Run" [Car11,
p. 40].

4.3 Static and Dynamic Analysis 20

Network activity Network packet data may give a clue to the purpose of the
program. Network traffic can include IP-addresses and ports that can be
used as an IOC.

Process activity API functions such as ones that load additional libraries,
install hooks, or run commands on the system may also give clues about
the purpose of the program.

Figure 4.3 shows the process of basic dynamic analysis. Initially a safe lab
environment with monitoring capabilities is prepared. Then the malware is run
while the lab records it’s behaviour. In the next step the logs generated from
the monitors are examined.

If information indicates that the sample may run differently under alternate
conditions, then it may be necessary to rerun the test in an adjusted lab envi-
ronment. This could, e.g., include setting up a fake host if the initial analysis
revealed network connection attempts by the executed file.

Prepare Lab
Environment

Run Malware Analyse Logs

Further
Tests?Yes

Done

No

Figure 4.3: Basic dynamic analysis

The advantage of this approach is that even if the malware is obfuscated making
a static approach difficult, executing the malware will still exhibit it’s malicious
activity.

A difficulty with dynamic analysis is that the execution environment may not
trigger the full functionality of the malware, e.g., if the malware is aware that it
is running in a sandbox[SH12, p. 36-37] or is programmed to only attack under
specific circumstances such as ransomware avoiding schools and hospitals[GL16].

4.3 Static and Dynamic Analysis 21

4.3.3 Advanced Static Analysis

Advanced static analysis is a set of techniques to uncover a programs function-
ality by examining the code of a compiled program. The first step, as shown in
Figure 4.4, is usually to disassemble or decompile the program into a more read-
able format. Programs such as IDA Pro2, Hopper3, OllyDbg4, and Radare25

will help visualize the dissambly and flow of a compiled program, and some can
even decompile code into pseudo C language syntax.

At this point a malware analyst can tell whether the program is packed or not by
examining the decompiled code. If the code is packed then it may be unpacked
by using an existing tool, or by statically reversing the unpacking algorithm, or
by applying advanced dynamic analysis techniques which will be described in
section 4.3.4. If the code is further obfuscated then the analyst may focus on
de-obfuscation before continuing the actual analysis. During the final analysis
phase the analyst typically attempts understand how the program works and
what it’s purpose is.

Disassemble

Packed?

Unpack

Yes

Obfuscated? Analyse
 No No

De-obfuscate

Yes

Done

Figure 4.4: Advanced static analysis

Advanced static analysis is difficult to automate. It requires both significant
effort and is considered more difficult than basic static and dynamic analy-
sis[Zel16]. However, in contrast to the basic analyses, it is possible to reveal
the full functionality and identify all possible execution paths that the program

2https://www.hex-rays.com/products/ida/
3http://www.hopperapp.com/
4http://www.ollydbg.de/
5http://radare.org/r/

4.4 Anti Analysis 22

may take. This may for example reveal hidden functionality that is triggered
only in certain execution environments or using specific arguments.

4.3.4 Advanced Dynamic Analysis

Advanced dynamic analysis is similar to basic dynamic analysis, illustrated by
Figure 4.3. However, instead of just examining the resulting logs after execution,
the process is debugged, e.g. in order to observe transitional states and/or force
the program to take alternate execution paths.

An interesting transitional execution state in a packed malware is the point
where the unpacking algorithm is done, leaving the unpacked program code in
memory. At this point the unpacked malware can simply be dumped for further
static analysis.

4.4 Anti Analysis

In chapter 3, it was explained how malware analysis is useful in defence against
attackers and in attributing an attack to a perpetrator. This gives malware
authors an incentive to make analysis more difficult by introducing obfuscation
techniques.

Different techniques exists and have a varied effect on each phase of the analy-
sis, e.g. some techniques effects basic static analysis while having no effect on
the other phases. In some cases however, a technique can have an impact on
several phases, or be combined with other obfuscation techniques to increase
the resilience against analysis.

For the purpose of this report we divide obfuscation techniques into four "anti"-
groups each targeting one of the four different phases of analysis.

4.4.1 Anti Basic Static Analysis

Obfuscation techniques that target basic static analysis deals with hiding arti-
facts that can be extracted statically from the malware, such as text strings and
imported/exported functions. There are several ways to do so, including simple
encoding of strings or, in more advanced cases, the use of packers.

4.4 Anti Analysis 23

Additionally, attackers can ensure that the signature of their malware is unique
so that it is not immediately recognized by signature based solutions, such as
anti-virus or virus databases. Signatures can be modified by either manually
modifying the malware-file or using a polymorphic encoder such as the Shikata
Ga Nai encoder provided by the Metasploit Framework, which create as many
unique versions of the same malware as needed[Rap].

4.4.2 Anti Basic Dynamic Analysis

Since basic dynamic analysis relies on running the malware in a safe and moni-
tored environment, a simple way to thwart basic dynamic analysis is preventing
the malware from running at all. Malware, however, still need to run to serve
it’s purpose. So the the malware author wants to make an educated guess on
whether or not the malware is being executed by the targeted victim or by a
malware analyst. Since malware analysts often use virtual machines as labs, the
presence of artifacts associated with virtual machines could indicate that the
malware is being analysed. If the malware detects such artifacts it can alter its
execution, e.g., to appear harmless, terminate, or delete itself.

Detecting artifacts related to virtualization used to be a common way to do this,
however, this is a fading trend since virtualization is becoming more popular in
production environments[SH12, p. 369-370].

When executing a potential malware and recording its actions, the analyst has
to make a decision on how long to run the malware based on whether or not
enough of the programs functionality has been revealed. This can be exploited
by malware authors by making the malware sleep for some time in the hope
that the analysis is done by then[Ins]. Once the timer runs out, the malware
will start its malicious activity.

4.4.3 Anti Advanced Static Analysis

Anti advanced static analysis techniques aim to make analysing the disassembly
of malware more difficult and time consuming. While there are many techniques
that accomplish this, many of them attempts to either defeat conventional pro-
gram analysis algorithms, increase complexity of the disassembly, or by tricking
disassembler to produce a misleading instruction listing[SH12, p. 227]. A num-
ber of anti advanced static analysis techniques will be described in chapter 8.

4.4 Anti Analysis 24

4.4.4 Anti Advanced Dynamic Analysis

Techniques that target advanced dynamic analysis aim to disrupt the use of a
debugger. Malware can attempt to detect if it is being debugged, and alter its
behavior depending on the result, e.g. quitting or simply behaving differently
in order to thwart the analysis.

While debugging a program an analyst will often single step through the in-
struction sequence of the malware at a rate slower than normal execution speed
in order to ascertain the programs behavior. Malware commonly exploit this
fact by timing execution speed, and alter it’s behavior if the code runs slower
than expected[SH12, p. 357].

Background in x86

In the following sections we briefly describe background theory that will later
be used in our analysis of M/o/Vfuscator2.

5.1 The x86 Architecture

The instruction set family x86 is based on Complex Instruction Set Computing
(CISC) design. In this report we focus on the 32 bit version of the architecture.
The 32 bit architecture have eight general purpose registers, two of which are
dedicated to hold the stack pointer(ESP) and the base pointer(EBP)[Int16].

5.2 Assembly in x86

Instructions can have zero, one, or two operands. In the Intel syntax, which
is used throughout this report, the destination operand is specified before the
source operand. The x86 instruction set allows for complex 32 bit addressing
modes such as the following instruction, that copies 4 bytes (a double word)
from the address (EBX+ ECX ∗ 4 + 0x804ff0) into the EAX register[Int16].

1 mov eax , DWORD PTR [ebx + ecx∗4 + 0 x804 f f 0]

5.3 Stack Frame and Call Convention 26

5.3 Stack Frame and Call Convention

The EBP register conventionally holds a base pointer to the start of the stack
frame. Assuming a cdecl call convention, memory just above EBP holds the
function return address and any arguments to the function. Memory just below
holds local variables. Memory at EBP holds the EBP of the callee.

In the cdcl call convention arguments to a function are pushed onto the stack
before it is called[Fog04]. The following piece of code shows how "Hello, world!"
might be written in x86 assembly:

1 push 0 x804 f f f 1 ; "Hel lo , world ! "
2 call 0x804be01 ; <puts@plt>

A called function pushes the callee’s EBP to the stack, and then sets EBP to ESP.
ESP is then decreased so that the stack frame can contain any local variables
used by the function. The result of this prologue is a stack frame similar to the
one illustrated in Figure 5.1.

Stack Frame

Arguments

Return address

Callee EBP

Local variables

EBP + 0

EBP + 4

ESP + 0

Figure 5.1: Illustration of a stack frame after the prologue.

5.4 The ELF File Format 27

The callee’s EBP and ESP is restored before returning, e.g., by using LEAVE.

1 push ebp
2 mov ebp , esp
3 . . .
4 (func t i on body)
5 . . .
6 leave
7 ret

5.4 The ELF File Format

An ELF file contains a number of segments. Commonly .text stores code,
.data stores initialized data, and .bss contains uninitialized data[Com95].
Other segments exist, but will not be discussed any further in this report.

Movfuscation

The first part of this chapter introduces the research that lays the foundation
for single instruction compiling. The second part focuses on our analysis of the
implementation of the single instruction compiler M/o/Vfuscator2 developed by
Domas[Doma]. The description of the inner workings of the M/o/Vfuscator2
is the result of our analysis based primarily on the open-source code published
by Domas[Doma] and secondly on the information given by Domas in talks at
various conferences[Dom15a][Dom15b][Dom15c].

6.1 Single Instruction Compiling

The term, one instruction set computing (OISC), is defined as an architecture
that exhibit Turing completeness using only a single instruction[NWH04]. The
Ultimate Reduced Instruction Set (URISC) was suggested by Mavaddat and
Parhami[MP88]. Their main idea was to use only a single instruction with the
following semantic: “Subtract and branch on less than or equal to zero”[NWH04].
The instruction’s combination of subtraction and jump semantics was shown to
be sufficient for Turing completeness[MP88].

Jones showed in 1988 that a Turing complete OISC could be formulated based
on a move instruction. This idea, however, required extra hardware in the form
of memory mapped computational units[Jon88]. That is, functionality is gained
by writing memory to triggering ports, i.e., specific memory locations. In effect
this is a Transport Triggered Architecture (TTA)[Dol13].

6.2 The Movfuscator 29

Real world machines designed on OISC principles have been build, such as the
MAXQ TTA family of processors by Maxim Integrated[Dol13][Int08].

In this report we focus on the x86 family of Complex Instruction Set Computing
(CISC) architecture. Although the architecture specifies many different instruc-
tions, the ideas behind OISC can be applied in order to compile programs only
consisting of a single type of instruction. In particular, Dolan showed in 2013
that the MOV instruction is sufficient for Turing Completeness, even when disal-
lowing self-modifying code and without transport-triggered calculations[Dol13].
Since x86 MOV is Turing complete, every other x86 instruction that is able to
emulate the behavior of MOV must in itself be Turing complete. Domas have
used this corollary to show that the following x86 instructions also are Turing
complete: XOR, SUB, SBB, ADD, XADD, and ADC[Domb].

While the original motives for developing OISC ranges from educational pur-
poses[Jon88][MP88] to increasing cache size by reducing the silicon currently
dedicated to complex functional units[Dol13], Domas suggested the use of Sin-
gle Instruction Compiling as a way to obfuscate program code[Dom15a].

6.2 The Movfuscator

M/o/Vfuscator2 is a 32 bit C to MOV-instructions compiler in active development
by Christopher Domas[Doma]. The compiler is a fork of Little C Compiler (lcc)
written by Chris Fraser and David Hanson [FH03].

Figure 6.1 shows how a programs main function is obfuscated by M/o/Vfuscator2
from just a few C lines into 510 lines of assembly. The MOV-instruction sequence,
in contrast to regular x86 assembly, have no obvious branches or calls. Also in
contrast, GNU Compiler Collection (gcc), a regular optimizing C-compiler, gen-
erated just 16 instructions for the main function.

6.3 A Backend for LCC 30

510
instructions{

Compiling with

M/o/Vfuscator2

Figure 6.1: Compiling with the movfuscator increases the size of the main
function from a few lines to 510 instructions.

6.3 A Backend for LCC

Compiling a program typically consists of several phases, such as lexical and
syntax analysis, type checking, and register allocation[Mog11] to name just a
few.

A compiler typically have at least a separate front- and backend. The frontend
is responsible for checking that the given input conforms to the input language

6.4 Compiling C to MOV 31

specification and for producing an intermediate representation that can be used
by one of the compiler backends. Each target architecture usually has it’s own
backend which is responsible for transforming the intermediate representation
to actual emited assembly code. Assembly code is usually compiled and linked
into a working executable by separate assembler and linker programs.

M/o/Vfuscator2 reuses the phases implemented by lcc, but the code generation
phase have been altered so that the emitter outputs only MOV-instructions.

6.4 Compiling C to MOV

A major challenge solved by Dolan and Domas was how to transform higher level
constructs into sequences of MOV instructions[Dom15b][Dol13]. The compilation
of a high level language like C to MOV instructions requires support for at least
the primitives listed in table 6.1:

Types of primitives that must be translated include

Control flow

Internal function calls

External library calls

Conditional branching

Unconditional jumps

Binary operations

Arithmetic operations

Bitwise operations

Bit Shift operations

Boolean operations

Table 6.1: Primitives that must be compiled to MOV instructions

With translations for these primitives in place more complex control flow con-
structs such as if/else, while, for, and do can also be compiled to MOV in-
structions. In x86 assembly MOV cannot be used to alter the instruction pointer
(EIP) directly (i.e. it’s impossible to emulate jumps by moving the target ad-
dress to EIP). This means that a list of MOV instructions will always execute in
linear fashion and then halt. Our analysis of how Domas, based on Dolan’s re-
search[Dol13], have overcome this problem and thus implemented Control Flow
will be presented in section 6.5. Suffice to say that the solution requires two
separate virtual stacks allocated in static memory which adds several megabytes
in the default configuration to the programs memory size as shown in table 6.2.

6.4 Compiling C to MOV 32

Another problem with Compiling C to MOV is that MOV cannot be directly used to
compute the result of binary operations[Jon88]. While Jones solve this problem
by introducing Transport Triggered Actions (TTA), Domas instead use lookup
tables with precalculated values to accomplish the same feat[Domc, lines 509-
898]. This will be explained further in section 6.6. The lookup tables used for
binary operations further increases the program memory size as shown in table
6.2.

The total static memory size of a small movfuscated program such as the ex-
ample program in listing A.1 is with the default movfuscation configuration at
least 8 MB. Since ∼2 MB stack is placed in the .bss section which contains
uninitialized data the physical file size of a movfuscated program is ∼6 MB,
since the .bss section occupies no file space until the program is run[Com95,
p. 1-15]. If the program is not stripped of debugging symbols the physical file
size increases by ∼4 MB to at least ∼10 MB. In contrast C-programs compiled
by gcc can be as small as or even less than ∼10 kB.

Note, however, that the default M/o/Vfuscator2 configuration aims to strike a
balance between size, features and execution speed. For example binary float
operations is not part of the default M/o/Vfuscator2 configuration and enabling
it requires significant additional space for lookup tables[Doma]. On the other
hand 16 bit arithmetic tables is part of default M/o/Vfuscator2 configuration
even though 16-bit tables can emulated using 8-bit tables although at the cost of
an increase in total number of MOV instructions and thus execution speed[Domc,
line 605, 610, 1233].

Segment Type Size

.data Virtual stack ∼2 MB
16bit arithmetic tables ∼2 MB
Bitwise operation tables ∼1 MB
Multiplication and division tables ∼1 MB
Arithmetic tables ∼267 kB
Utility tables ∼67 kB
Single bit manipulation tables ∼10 kB
Virtual states <1 kB
Boolean truth tables 64 bytes
Virtual registers 40 bytes

.bss Virtual discard stack ∼ 2 MB

Total size: ∼8 MB

Table 6.2: Memory layout of a movfuscated program

6.5 Control Flow 33

6.5 Control Flow

Subsection 6.5.1 explains how movfuscation solves the problem of jumping by
implementing a way to selectively execute instructions as though they had no
effect. The subsections that follows focuses on how this is used to implement
high level control flow constructs.

6.5.1 Toggling execution

One of the requirements for Turing completeness is that the architecture must
allow for non-termination[Dol13] i.e. be able to emulate conditional unbounded
loops. This in turn requires the ability to execute instructions multiple times.
In his paper, Dolan originally used a single jump instruction at the end of the
instruction list back to the programs first MOV instruction. Domas instead found
a way to rerun the instruction sequence by triggering an exception using an
illegal MOV instruction as illustrated in figure 6.2. The instruction used for this
purpose is mov cs, ax [Domc, line 3090] which is illegal in x86 and therefore
triggers an exception. In the prologue of the program, an exception handler
have been created to handle this specific exception by restarting the program.
The program’s instruction listing can thus be seen as one big master loop.

MOV

MOV

MOV

MOV

MOV

MOV

Illegal MOV

Exception

Master loop

Beginning of
movfuscated

program

End of
movfuscated

program

Figure 6.2: A movfuscated program is a sequence of linear executed MOV in-
structions that are repeated until the program halts.

Since the only way to get from address X to address Y is to run all instructions in-

6.5 Control Flow 34

between, the emulation of branching requires a way to execute these in-between
instructions without them having a computational effect as illustrated by figure
6.3.

MOV

MOV

MOV

MOV

MOV

MOV

MOV

{Discard

effect
jump

MOV

MOV

MOV

MOV

MOV

MOV

MOV

{
Discard

effect

jump

{
Discard

effect

Forward jump Backward jump

Figure 6.3: Since there is no way to skip MOV instruction, jumps are imple-
mented by discarding the effects of in-between instructions.

To discard the effects of executing in-between instructions, Domas introduced
the notions of toggling the discard state as execute on and execute off. When
the program is in the execute on state, instructions write to a normal virtual
stack. In contrast when the program is in the execute off state, instructions
write to a decoy virtual discard stack. The virtual registers are preserved by
pushing them to the normal virtual stack whenever execution is turned off, so
that when execution is turned on again the register can be restored simply by
popping them off the virtual stack.

Specifically, the implementation store the execution state as a global variable
with value either ON=1 or OFF=0. This value is then loaded into EDX. Since
addresses are double words of 4 bytes the following assembly line will select a
pointer to either the virtual stack or the virtual discard stack from the two-entry
table sel_data depending on the value of the execution state:

1 mov eax , dword ptr [se l_data + 4∗edx]

Consider figure 6.4. The instruction MOV following Select data may attempt to

6.5 Control Flow 35

modify the stack. This is allowed since the execution state is on. In particular,
the Select data will move the execution state (ON=1) to edx and then resolve
the above assembly to mov eax, dword ptr [sel_data + 4*1]. This moves a
pointer to the normal virtual stack into EAX, so that MOV instruction that follows
Select data will access the normal virtual stack rather than the virtual discard
stack.

+4 Select data

MOV

Execute off

MOV

MOV

Execute on

MOV

Execute on/off

Discard stack pointer

Stack pointer

Virtual

Stack

Virtual

Discard

stack

Select data
ON

Figure 6.4: A movfuscated program in the execute on state is allowed access
to the virtual stack.

In figure 6.5 the execution state is off (OFF=0). In particular, the Select data
will now instead resolve mov eax, dword ptr [sel_data + 4*0]. This moves
a pointer to the virtual discard stack into eax, so that the normal virtual stack
will remain unaffected by MOV instructions that follows.

6.5 Control Flow 36

 +0 MOV

MOV

Execute off

Select data

MOV

Execute on

MOV

Execute on/off

Discard stack pointer

Stack pointer

Virtual

Stack

Virtual

Discard

stack

Select data
Off

Figure 6.5: A movfuscated program in the execute off state is denied access
to the normal virtual stack and instead use the virtual discard
stack.

6.5.2 Unconditional jumps

The unconditional toggling of execution state so far presented does not allow
for nested jumps since it must be possible to jump over in-between instructions
even if they contain execute on primitives. Domas handles this by introducing
a target jump address. In particular, execute off now stores the destination
address. Each time an execute on is reached the target is compared with the
address of execute on (EIP). If target does not match EIP then the execute
on is discarded by forcing it to write to the virtual discard stack rather than the
execution state global variable as illustrated in figure 6.6.

6.5 Control Flow 37

 +0 MOV

MOV

Execute off

Execute on

MOV

Execute on

MOV

Target not reached - Discard execute on

Discard stack pointer

Execution state pointer

Select data

Target != EIP

Virtual

Discard

stack

TargetOff

Execution state

Figure 6.6: A movfuscated program in has yet to reach the jump target so
execute on is discarded by writing 1 to the virtual discard stack
instead.

In figure 6.7 the target has been reached so execute on is allowed to write
through to the execution state global variable thus enabling execution and thus
completing the unconditional jump.

 +4

MOV

MOV

Execute off

Execute on

MOV

Execute on

MOV

Target reached - Execute on

Discard stack pointer

Execution state pointer

Select data

Target == EIP

Virtual

Discard

stack

TargetOn

Execution state

Figure 6.7: A movfuscated program has now reached the jump target so
execute on is allowed to write through to the execution state.

6.5 Control Flow 38

6.5.3 Conditional branching

Conditional branching is implemented as unconditional jumps, as described in
the previous section, except execution is only turned off if the branching condi-
tion is met. The boolean condition is evaluated to either 0 or 1 and stored in
B0. Next B0 is used to select either the pointer to the execution state or discard
stack.

Figure 6.8 illustrates a conditional jump. Since the branching condition is met,
B0 is 1 and the execution state is set to off, thus emulating the jump.

 +4

MOV

MOV

Execute off

MOV

MOV

Execute on

MOV

Jump equal

Discard stack pointer

Execution state pointer

Select data

B0 is True

Virtual

Discard

stack

TargetOff

Execution state

B0 = 1

Figure 6.8: A movfuscated program toggling the execution state to off.

6.5.4 Internal call

An internal call works similar to an unconditional jump, but before execution is
turned off the return address is pushed to the virtual stack. This address is later
used to make another unconditional jump from the end of the called function
back to the callee.

M/o/Vfuscator2 uses the call convention cdecl[Domc, line 82]. Arguments are
pushed to the virtual stack and the caller is responsible for cleaning up the
arguments off the virtual stack when the call terminates.

6.6 Binary Operations 39

6.5.5 External call

While internal calls relies on conditional execute off primitives, linked external
library functions can only be invoked using an actual jump.

To get around this limitation Domas introduced another exception handler to
handle external calls as shown in listing 6.1. This exception handler can be
invoked by a MOV instruction that access an illegal memory address and thus
generates a SIGSEGV signal. Before the fault is generated the return address is
pushed to the virtual stack so that the RET instruction of the external function
will return control to the callee at the correct address.

External calls expects the arguments and the return address to be located on
the real stack as opposed to internal functions that use the virtual stack. Listing
6.1 shows how this is facilitated by moving the virtual stack pointer into ESP.

1 mov esp , DWORD PTR [v i r tua l_stack_po inter]
2 jmp DWORD PTR externa l_funct ion

Listing 6.1: Dispatch handler for external calls

6.6 Binary Operations

While MOV is a Turing complete instruction, it was not designed to perform
non-memory arithmetic’s. To tackle this issue Christopher Domas developed an
arithmetic logic unit (ALU) for M/o/Vfuscator2.

Since the different binary movfuscasted operations are based on roughly the
same idea, we present only our analysis of addition. The main difference is the
dimension and size of the lookup tables.

6.6.1 The ALU

The ALU makes it possible to translate regular arithmetic assembly instructions
- such as addition (ADD) - into series of mov instructions that accomplish the same
computation using memory access arithmetic.

To implement different arithmetic operations the memory contains a number of
lookup tables that can be referenced by the MOV instructions.

6.6 Binary Operations 40

The ALU has four global variables for communicating input and output to the
movfuscated program. These are alu_x (operand 1), alu_y (operand 2), alu_s
(result), and alu_c (carry/overflow).

6.6.2 Addition

To perform addition, the Movfuscator takes advantage of address arithmetic
supported by the MOV displacement encoding. Displacement is used to move
data from or to a specific index relative to a base pointer (such as when accessing
an array). The C command dest = base[x] for a 32bit integer array is written
as the following in assembly:

1 mov dest , dword ptr [base + 4∗x]

The MOV instruction requires computed addresses to be a valid accessible memory
segment. Furthermore, for arithmetic to work the memory must contain tables
with specifically crafted values. M/o/Vfuscator2 compiles into static memory
the two-dimensional lookup table for addition shown in table 6.3.

X/Y 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 5
2 2 3 4 5 6
3 3 4 5 6 7
4 4 5 6 7 8

Table 6.3: Lookup table alu_add for addition.

With this two dimensional table in place, the following MOV instructions will add
the numbers in register x and y and store the result in register res, that is we
compute res = x+ y.

1 mov esi , dword ptr [alu_add + 4∗x]
2 mov res , dword ptr [esi + 4∗y]

The values of x and y registers are used as coordinates in the lookup table.
In particular, the first instruction computes a pointer to the X-column. The
second instruction then displaces this pointer along the Y-row by the value of

6.6 Binary Operations 41

y dwords in effect adding x to y. The instruction sequence also corresponds to
the following command in C-syntax: res = alu_add[x][y];.

The same guiding principle is used for the other binary operations, but with
lookup tables containing results depending on the type of operation e.g. sub-
traction.

6.6.3 Space efficient implementation

In practice the two full lookup tables needed to do a binary operation such as
32 bit addition would require 2× 4× 232bytes ' 34GB of memory. The solution
implemented by M/o/Vfuscator2 is to instead connect two 16 bit adders as
shown in figure 6.9. In contrast, with a 1-bit carry, 16+1 bit lookup tables
requires only 2× 4× 216+1bytes ' 1MB.

Figure 6.9: 32-bit addition using two 16-bit adders

The use of two 16 bit adders increases the complexity of the the assembly code
but the fundamental idea remains the same. The final result is stored in alu_s.
Notice how the first 16-bit adder stores the result in lower 16-bit of alu_s and
the second adder in the high 16-bits of alu_s. A copy of the 17bit result from
the low 16 bit adder is copied into the 32bit carry field alu_c. The high 16 bit
adder retrieves the high 16 bits of alu_c and adds it to the sum.

6.7 Post-process Scripts 42

6.7 Post-process Scripts

In addition to the main component of the M/o/Vfuscator2, Domas have created
a number of post-processor scripts that works on code first compiled with the
M/o/Vfuscator2[Domb]. The scripts can be divided into two categories: scripts
that translate MOV instructions to other x86 Turing complete instructions, and
scripts that hardens the MOV output of the compiler by layering additional ob-
fuscation techniques.

Peephole Shuffler This technique identifies neighboring MOV instructions that
does not influence eachother and thus can be swapped without changing
the computational effect of the program[Domd]. The algorithm by default
iterates over the instruction 10 times.

The effect of this post module is the permutation and interleaving of MOV
aimed at countering simple decompilation through pattern based matching
[Doma].

Register reallocator This technique shuffles registers of MOV instructions to
make pattern based decompilation harder. However, since the basic flow
and layout of instructions remain the same this may be less effective than
the Peephole Shuffler on its own.

While these techniques may be effective against pattern based decompilation, a
recent study, published online during our work of analysing the M/o/Vfuscator2,
shows that this can be overcome by conducting taint analysis[Jon16]. In addi-
tion, Domas have stated himself that the post modules should be seen as merely
a proof of concept or a starting point from which to develop more effective coun-
termeasures against decompilation[Domd].

Analysing Movfuscated
Code

In this chapter we analyse a movfuscated program using the four phases of
malware analysis presented in chapter 4. Finally, we present our proof of concept
deobfuscater.

7.1 Example Programs

For this chapter we have written two programs shown in listing A.2 and A.3.
The first program acts as a backdoor by attempting to establish a reverse shell to
a list of IP’s. The first program also forks to give the illusion that it terminates
immediately. The later program is an extension used the dynamic analysis. In
particular, the later program logs the commands used to establish the reverse
shells to a file.

7.2 Basic Static Analysis

In this section we do a blackbox basic analysis of the example program in listing
A.2 compiled by the M/o/Vfuscator2.

File signature Multiple compilations of the same program results in identical

7.2 Basic Static Analysis 44

hash values unless one of the randomized post modules is also explicitly
applied. If a malware campaign relies solely on M/o/Vfuscator2 without
applying the post-process modules, signature based scanners will be able
to identify and contain the malware as soon as a single sample have been
analysed.

Strings Neither the M/o/Vfuscator2 or any of the post modules obfuscate
constant strings. Strings are therefore clearly visible as shown in figure
7.1.

Figure 7.1: Looking at the strings in a movfuscated files can still reveal info
about its functionality.

Packing The entropy of the .text section which contains the instruction se-
quences of the obfuscated example program is computed using “binwalk
–entropy” to ∼ 0.6. The same program compiled using gcc produces a
.text section with entropy ∼ 0.74. This makes sense since the use of
a single instruction type causes more opcode bytes to be identical thus
lowering the entropy. However, the entropy difference of the .text sec-
tion may be too neglectable to alone be a good indicator that the file is
movfuscated.

However, because the static memory layout contains specific lookup tables,
as identified in chapter 6, the file size and full entropy map over sections
in the binary will share similarities with other movfuscated programs.

7.2 Basic Static Analysis 45

Figure 7.2: Movfuscated entropy of example in listing A.2.

File headers and sections The section names are all standard[Com95] and
thus does not reveal that the executable was build by M/o/Vfuscator2.
However, the sizes of some sections are several megabytes, which can serve
as a partial indicator of movfuscation.

Figure 7.3: The section headers are visible, but does not indicate that the file
is movfuscated.

Loaded libraries For this part of the analysis we recompiled the example with
M/o/Vfuscator2 while linking explicitly with the libcurl library.

Figure 7.4: Imported libraries are not obfuscated.

7.3 Basic Dynamic Analysis 46

7.3 Basic Dynamic Analysis

In this section we will focus on basic dynamic analysis of the example program in
listing A.2 compiled by the M/o/Vfuscator2. The goal is to uncover which type
information can be derived from executing the movfuscated example program
in a lab environment.

File activity Seeing which files a program opens, reads, and writes to can
reveal important aspects of its functionality. In this case we can, for
instance, see that the program opens a file named "log" and writes “Log:
executing[...]” to it.

Figure 7.5: Using strace it is revealed that the example program writes to a
log file.

Registry activity This is mostly relevant for operating systems that uses a
registry such as versions of Microsoft Windows. Since we analyse an Linux
ELF binary this category is irrelevant.

Network activity Using a network monitoring tool, such as tcpdump1 or
Wireshark2, to capture network packets while executing the example pro-
gram reveals that it tries to connect to three different IP-addresses.

Figure 7.6: Dynamic analysis reveals attempt of network communication.

Process activity Process activities are visible, including that the process forks
and calls execve several times.

1http://www.tcpdump.org/
2https://www.wireshark.org/

7.4 Advanced Static Analysis 47

Figure 7.7: Dynamic analysis reveals the process activity.

Since M/o/Vfuscator2 in itself applies no anti dynamic analysis techniques, this
phase can potentially reveal the functionality of a movfuscated program with
very little effort. However, a program could still use additional techniques to
alter it’s behavior if it detects attempts at analysis. Therefore an analyst can not
be certain of a program’s true functionality without applying advanced static
analysis.

7.4 Advanced Static Analysis

By disassembling the program it becomes clear that we are dealing with a mov-
fuscated file. While a MOV instruction is the most common x86 instruction[Kan],
this program contains almost exclusively MOV instructions. The small example
program A.2, which consist of 28 lines of C-code, has been movfuscated into a
program consisting of 3400+ MOV instructions. In comparison, compiling the
same source code with GCC produces a .text section consisting of only 220
instructions.

The interactive disassembler (IDA3) is unable to properly identify function
boundaries of the movfuscated executable as illustrated in figure 7.8.

3For this analysis the trial version of IDA 6.9.160225 was used.

7.4 Advanced Static Analysis 48

Figure 7.8: IDA is not able to define functions in the movfuscated program,
and the graph view is therefore not allowed.

There are several reasons that IDA is having trouble with defining the func-
tions. Traditionally, functions are invoked using CALL and function endings are
indicated by a RET instruction. Individual functions such as main and re-
verse_shell in our example program are therefore nowhere to be seen, because
as we described in section 6.5.4, M/o/Vfuscator2 instead uses execute on and
execute off. Secondly the last instruction of the master loop is mov cs, eax
with opcode 0x8ec8, the illegal instruction to restart the programs instruction
listing. IDA does not recognise the opcode for this instruction and the disas-
sembly of it fails, which in turn leads to en error in defining the function. This
can be fixed manually by patching out the illegal instruction before defining
the function, which allows IDA to show the graph view. However, where one
normally would expect to see a control flow graph arrows indicating conditional
jumps, loops, and such, IDA shows just a huge block of MOV instructions. Fig-
ure 7.9 illustrates the size difference between the graph view of the movfuscated
file and relevant graph views from an equivalent program compiled with GCC.

7.5 Advanced dynamic analysis 49

M/o/Vfuscator2 –

master loop:

3399 instructions

GCC – Main: 27 instructions

GCC – reverse_shell: 49 instructions

continues

Figure 7.9: Graph view in IDA of the master loop in a movfuscated program
in comparison with the graph view of two separate functions from
the same program compiled with GCC.

At this point it is clear that the advanced static analysis phase is severely crip-
pled by the lack of detection of control flow combined with the relatively large
number of instructions. To conduct a thorough static analysis of the program,
we need a method for deobfuscation of a movfuscated program. Section 7.6 will
describe one such method.

7.5 Advanced dynamic analysis

Advanced dynamic analysis can be helpful in analysing packed programs. How-
ever, dynamic analysis is of little benefit in the scenario of a movfuscated pro-
gram as there are no transitional execution states where the program is deob-
fuscated in memory.

7.6 Deobfuscation

The following section details our work on implementing a deobfuscator for
M/o/Vfuscator2. In particular, the tool makes the output of the movfusca-
tor easier to analyse by reintroducing control flow, call conventions, the stack,

7.6 Deobfuscation 50

function layout, and reduces the number of instructions.

7.6.1 Overview

Figure 7.10 shows the structure of the deobfuscator. First the deobfuscator
accepts a 32-bit elf binary, and the .text section is extracted using libelf, and
then disassembled using Capstone4. Next the pattern matching module uses a
combination of regex matching and .data section lookups to match movfusca-
tion primitives. The result of the pattern matching phase is an abstract syntax
tree (AST) which contains pattern boundaries and meta information such as
jump addresses and source and destination operands. The optimizer then uses
the AST to deobfuscate the instruction listing by replacing movfuscation prim-
itives. In order to preserve pattern boundaries instruction sequences that are
replaced are NOP extended. This results in an instruction listing with many NOP
instructions between small sequences of actual instructions. The post module
relocates NOP instructions to after the RET instruction. Using this NOP relocation
strategy means the absolute start position of the functions remains the same so
that both function pointers and debug symbols - if present - still works. The re-
location of NOP instructions causes IDA to effectively ignore the NOP instructions.
Finally, the deobfuscated instruction listing is assembled into a file.

Disassembler Pattern matcher

Movfuscated

ELF binary

Optimizer

Machine

code
Assembly AST

Post module

NOP relocater
Assembler

Deobfuscated

ELF binary

AssemblyAssemblyMachine

code

Figure 7.10: The process of deobfuscating a movfuscated ELF binary.

7.6.2 Pattern matcher

Pattern-based deobfuscation is considered a simple and efficient technique that
can defeat obfuscated code that use a limited set of patterns[BB14, p. 312].
According to Domas, and in consistency with our analysis detailed in chapter

4http://www.capstone-engine.org/

7.6 Deobfuscation 51

6, the M/o/Vfuscator2 uses basic building blocks, referred to in this project as
movfuscation primitives, to compile code [Dom15a].

The following listing of regular expressions matches execute on and execute
off primitives. The regular expressions in the listing have been developed by
examining the source code of M/o/Vfuscator2[Domc]. Regular expressions for
other primitives have been created in a similar manner.

1 mov eax , dword ptr \\ [0 x . ∗\\]
2 mov eax , dword ptr \\ [eax [∗] 4 + 0 x . ∗\\]
3 mov dword ptr \\ [eax \\] , [0 1]

More complex patterns consist of a hierarchy of other primitives. For example
figure 7.11 shows an AST of a function that has been pattern matched. The
function makes an internal call followed by an external call. Before the first
internal call an argument is pushed to the stack. Likewise two arguments are
pushed before the external call. Matching larger patterns allows us to semanti-
cally replace primitives depending on the context they appear in.

FUNCTION

PROLOGUE

PUSH

CALL_DIRECT_INTERNAL

PUSH

PUSH

CALL_DIRECT_EXTERNAL

EPILOGUE

Figure 7.11: Graph of main function of the fib program shown in listing A.4

7.6.3 Reintroducing control flow

Control flow is essential so that tools like IDA Pro can compute and display
useful control flow graphs.

7.6 Deobfuscation 52

In our analysis of M/o/Vfuscator2 we found that movfuscated programs execute
all instructions in chronological order until the last instruction, which causes the
program to restart execution. We also found that jumping is done by toggling
execution off and later on again once the jump target is reached. In particu-
lar, before an execute off primitive a jump target is set and instructions are
skipped until an execute on primitive is reached that successfully matches the
jump target. Our decompiler must identify relevant jump primitives.

Furthermore, our analysis revealed that to avoid contamination of virtual reg-
isters these need to be stored before a jump and restored after. In addition,
conditional jumps must first compute the condition while calls have a return
target build using an execute off.

Finally, movfuscated calls have a return target so that functions can return
execution to the primitive following the call. To complement this, internal
functions use a special control flow primitive to return. External movfuscated
calls are instead handled by an exception handler.

Table 7.1 list simplified sequence patterns for different types of movfuscated
control flow primitives. The actual sequence have a number of glue instructions.
There is also code that setup arguments before calls and clean up the stack when
control returns.

To reintroduce control flow the matched sequences of building blocks are re-
placed by our decompiler to regular x86 control flow instructions. Except for
return, the jump target address is extracted from the matched sequence and
converted to a relative offset. Unconditional jumps are replaced by JMP, con-
ditional jumps are replaced by JNE, JGE, JG, JLE, JL, and JE, external and
internal calls are placed by CALL, and Returns are replaced by LEAVE and RET.
Since the movfuscated program works on the virtual stack the replacement for
return will not work before the stack has been reintroduced.

7.6.4 Reintroducing the stack

Reintroducing the stack and stack frames for function is essential so that tools
like IDA Pro can identify functions, and show local variables and arguments.

In chapter 6 we found that movfuscated programs operate on two stacks: a
virtual stack and a virtual discard stack. Reintroducing the stack requires us to:

1. Rewrite code primitives that pushes or pops from the stack.

7.6 Deobfuscation 53

Matching control flow

Unconditional jump

1. Store target

2. Store register

3. Execute off

Conditional jump

1. Jump condition

2. Store target

3. Store register

4. Execute off

Internal Call

1. Push return

2. Store target

3. Store register

4. Execute off

5. Execute on

Return

1. Pop register

2. Store target

3. Store register

4. Execute off

External Call

1. Push return

2. Signal SIGSEGV.

Table 7.1: Sequences of primitives that match different control flow types.

2. Build a new stack frame that follows x86 cdecl conventions, described in
chapter 5.

3. Rewrite code primitives that access local variables and arguments.

1) Is simply a matter of matching the virtual stack push and pop MOV sequences
emitted by M/o/Vfuscator2 and replacing them with PUSH and POP respectively.

7.6 Deobfuscation 54

2) The movfuscated prologue of a function sets up a virtual stack frame but
does not follow the conventions described in chapter 5. Reintroducing the local
stack frame consist of replacing the movfuscated prologue in two steps. The
first step is to setup the frame pointer (EBP) by pushing EBP to the stack and
then copying the stack pointer (ESP) to EBP. In the second step, the size of the
local variables are computed from the movfuscated code and then subtracted
from ESP.

1 push ebp
2 mov esp , ebp
3 sub esp , size

Since the stack frame is now reintroduced, a function can return as shown below.
This gives IDA ideal conditions for detecting functions boundaries:

1 leave
2 ret

3) As a result of rewriting the stack frame, the address offsets that were used for
the virtual stack frame, to access local arguments and variables, have become
invalid. To fix this, primitives used to modify and retrieve variables on the
virtual stack are identified and replaced with new primitives that relies on EBP
and has adjusted offsets.

7.6.5 Instruction reduction

Instruction reduction reduces the number of instructions that an analyst must
consider in order to understand the meaning of the program. While the reintro-
duction of control flow and the stack in itself reduces the number of instructions
significantly, primitives that are not part of replaced patterns such as arithmetic
operations still occupy many instructions each. For example, a movfuscated ADD
primitive consists of 24 instructions, but can be reduced to three or less.

7.6.6 Summary

The result of our deobfuscation process is a significant reduction in size and
complexity of a program compiled with M/o/Vfuscator2. Since no symbol

7.6 Deobfuscation 55

information is used, stripping the file has no our deobfuscation.

For example the fib program in listing A.4 have been reduced from 2436 instruc-
tion to 132. In fact the instruction count and control flow resembles what Gnu
Compiler Collection (GCC) produces as shown in figure 7.12.

GCC

30 instructions

Deobfuscated

68 instructions

Figure 7.12: Graph of the fib function of the Fibonacci program shown in
listing A.4

7.6 Deobfuscation 56

Functions and variables are now recognized by IDA as shown in figure 7.13.

Figure 7.13: Shows how IDA can detect the local function and variables of the
fib function of the program shown in listing A.4

Calls are recognized properly which makes analysis such as function graphs
possible as shown in figure 7.14.

Figure 7.14: Shows that IDA can make a call graph for listing A.4. Note that
the visibility of labels have been enhanced post screen shot.

7.6 Deobfuscation 57

7.6.7 Limitations

The deobfuscator discussed in this report is still a proof of concept and only a
subset of possible C constructs have been implemented. Testing have not been
done rigidly even for supported operations. However, most of the limitations
are straight forward to implement now that the major challenges such as control
flow and the stack have been resolved. Known limitations include:

• Non double word sized local variables and arguments.

• Indirect calls e.g. function pointers.

• Only the arithmetic operations ADD and SUB are reduced in instruction
count.

• Obfuscated programs still rely on the Virtual registers. The use of these,
however, are not far from the use of temporary variables often used in
more conventional programs.

In addition to the these limitations, our solution does not make an effort to
defeat the post-process modules proposed by Domas[Domb]. However, the work
by Kirsch and Jonischkeit [KJ16][Jon16] have shown that taint analysis can be
used against movfuscated code hardened by the post-process modules.

Obfuscation Techniques

The field of obfuscation offers a vast amount of techniques to counter advanced
static analysis of assembly. While obfuscation can be used on it’s own, it is
also used in packed malware[RM13][SH12, p. 384]. Packed malware must have
a runable unpacking stub that can unpack it’s payload, and obfuscation can
protect this stub from analysis[SH12, p. 384].

We focus on a selection of techniques described by Dang et al[BB14] that we
find relevant in the context of M/o/Vfuscator2. The techniques described in
this chapter can be divided into three categories: data based obfuscation, con-
trol based obfuscation, and simultaneously control-flow and data-flow obfusca-
tion[BB14, chp. 5], as illustrated in figure 8.1.

Data based Control based

Constant
unfolding

Control
indirection

CFG
flattening

Virtualization
Opaque

predicates

Dead code
insertion

Pattern-based
obfuscation

Figure 8.1: Overview of the obfuscation techniques discussed in this chapter.

8.1 Data Obfuscation 59

8.1 Data Obfuscation

Dang et al. defines data based obfuscation as obfuscation that increases the
complexity without altering the control flow[BB14, p. 273]. Many of these
techniques are the reverse of common program optimization techniques.

8.1.0.1 Constant unfolding

This technique makes deciphering of constant values at a glance more difficult.
Instead of directly using constants, a set of instructions is inserted which com-
pute the constant at runtime.

Consider the scenario in listing 8.1. The code is about to execute a system
command. The argument to the function is located at EBP+0x8, but instead of
just using push DWORD PTR [ebp+0x8] to push the argument the constant 0x8
is unfolded to the three instructions.

1 mov edx ,0x2 ; edx = 2
2 inc edx ; edx = 3
3 add edx ,0x5 ; edx = 8
4 push DWORD PTR [ebp+edx] ; edx = 8
5 call 80482c0 <system@plt >

Listing 8.1: An example of constant unfolding.

8.1.0.2 Pattern-based

This technique matches instructions of one pattern and replaces them with a
more complex pattern with the same computation effect as illustrated by listing
8.2. This technique can be applied iteratively in order to increase obscurity.

1 xor eax , edx
2 xor edx , eax
3 xor eax , edx

Listing 8.2: An example of how xchg eax, edx can
be replaced with a new pattern.

Finding an equivalent pattern can be difficult if there are requirements to also
preserve the computation effect of, e.g., flag registers. This can make it difficult

8.2 Control Obfuscation 60

to apply this technique on compiled code[BB14, p. 277]. This technique can
be defeated by writing inverse patterns substitutions or by applying peephole
optimization[BB14, p. 277].

8.1.0.3 Dead code insertion

This technique aims to clutter the instruction listing with instructions that does
not change the computational effect of the program.

The first two assignments to EAX in listing 8.3 are dead since they have not effect
on the programs outcome. Normally a liveness analysis removes such instances
but this obfuscation technique instead uses them to increase complexity.

1 xor eax ,ds:0 xfffffeca ; dead
2 add eax ,0x4 ; dead
3 mov eax , 0x1 ; live
4 push eax
5 call 0x80482c0

Listing 8.3: An example of dead code insetion.

8.2 Control Obfuscation

Control based obfuscation exploits, that compilers use control flow constructs in
a standard and predictable way[BB14, p. 278]. For instance, a compiler will use
the call instruction to call other functions and later return and continue execu-
tion from where the CALL instruction was encountered. However, the instruction
can also be used as a jump that puts the address of the next byte on the stack.
The same goes for conditional jumps which can be used in unconventional ways
to make the analysis more difficult and time consuming.

8.2.0.1 Control indirection

This technique uses signal or exception handlers to set up jumps[SH12, p. 344-
346]. For example, a signal handler specifies a target address to which to
jump[pro]. The exception handler can then be triggered by causing an error
that sends the specified signal, e.g SIGSEGV is invoked when an instruction tries
to access memory outside a readable segment.

8.2 Control Obfuscation 61

Exception triggered control flow can cause reverse engineering tools that rely
on detection of conventional control flow mechanisms to fail to detect jumps
masked as exception handlers [SH12, p. 344].

8.2.0.2 Opaque predicates

This technique relies on jumps that appear conditional but are in reality prede-
termined i.e. opaque. Such jumps can be used to make the control flow appear
more complex and can be written so that it is difficult to determine statically
whether the jump is taken or not [BB14, p. 283]. Figure 8.2 illustrates how an
opaque predicate can increase the complexity of the control flow graph.

Never

executed

Opaque

predicate

Figure 8.2: An example of a opaque predicate shown in IDA, which always
evaluate to true making the left path essentially junk code.

8.3 Combined Obfuscation 62

8.3 Combined Obfuscation

The last category of obfuscation techniques are targeting both the control- and
data-flow.

8.3.1 Control-flow graph flattening

This technique flattens the control flow graph by making control flow operations
go through a common dispatcher. Each dispatched piece of code is responsible
for indicating which block of code should be called next[BB14, p. 285].

Figure 8.3 shows the dispatcher fib from listing A.5. The fib function have
been split into multiple functions. The CALL instruction in the left most block
calls EAX which contains the address of the next function. Each called func-
tion updates EAX to set the next function index before returning. The address
off_8049844 contains a table of functions.

Figure 8.3: A screenshot of a dispatcher from IDA. Each called code fragment
function select the next piece of code by returning an id in EAX.

8.3.2 Virtual machine based obfuscaton

This technique stores the program as byte code. The byte code is interpreted
by a virtual machine that has a unique architecture. In order to analyse the
byte code, the analyst has to decipher how the virtual machine executes the
byte code, i.e. reverse engineer which instructions are supported by the virtual
machine, and how they are encoded[BB14, p. 286].

8.3 Combined Obfuscation 63

Standard tools will only analyse and graph the VM code but not the bytecode
which is executed by the VM[Rol09]. So to understand the bytecode the analyst
will often need to create a compiler from the VM’s custom architecture to a
traditional architecture such as x86.

VM Bytecode

Vitual machine

obfuscator

VM obfuscated

program

Original

program

Figure 8.4: Overview of a virtual machine based obfuscator.

Evaluation

To evaluate single instruction compiling as an obfuscation technique, we first
classify M/o/Vfuscator2 relative to the techniques described in chapter 8. This
will allow us to draw conclusions on the effectiveness of M/o/Vfuscator2 based
on the effectiveness of the techniques that it shares traits with.

Since M/o/Vfuscator2 is an implementation of single instruction compiling, we
will then use it to draw conclusions on the effectiveness on single instruction
compiling as an obfuscation technique. However, since an implementation does
not necessarily reflect the effectiveness of single instruction obfuscation in gen-
eral, we will attempt to abstract from implementation limitations.

From our analysis we know that M/o/Vfuscator2 is compiled using basic build-
ing blocks to increase code complexity. This shares simularity with pattern
based obfuscation. But unlike pattern based obfuscation M/o/Vfuscator2 also
targets control flow.

M/o/Vfuscator2 also shares a similarity with dead code insertion. However,
while dead code can be removed without changing the computational effect of
the program - this is not the case for instructions in a movfuscated program.

Control indirection is employed by M/o/Vfuscator2 to handle both external
calls and to restart the master loop.

In contrast to opaque predicates which increase the complexity of the control
flow, programs compiled by M/o/Vfuscator2 essentially eliminates it.

The approach of M/o/Vfuscator2 is more similar to that of control-flow graph

65

flattening which aims to prevent the leakage of control flow information by
using a common dispatcher. A similar principle is used by movfuscated code.
In particular, instead of using jumps, code blocks update a global branch target
before toggling execution off. By skipping instructions the target code block is
eventually reached and execution is turned on again. This can be thought of as
an inlined dispatcher.

Of all the techniques M/o/Vfuscator2 may have most in common with virtual
machine based obfuscation. Both techniques employ a combination of data and
control based obfuscation. They also both requires the analyst to decipher the
architecture and then build a deobfuscator. In effect it a movfuscated program
can be thought of as a virtual machine with a fixed guest program. This con-
trasts to a stored program computer, which can run any program stored in
memory.

The primary strength of conventional virtual machine based obfusaction lies in
the difficulty of analysing how the VM interprets bytecode. This process can be
very time consuming[BB14, p. 286].

However, a weakness of M/o/Vfuscator2 is that the architecture is fixed unlike
state of the art VM obfuscators, such as VMProtect1, that creates a custom
instruction set for each program that is obfuscated. This is highlighted by
the fact that after having received academic attention, two deobfuscators - one
developed by us and one that is already publicly available[KJ16] - have been
developed.

In essence, M/o/Vfuscator2, like VM obfuscation, provides security by obscurity
but while state of the art VM obfuscation can apply polymorphism to obscure
each sample uniquely[AJV06], M/o/Vfuscator2 only has to be broken once.

Dolan and Domas worked with several self imposed restrictions that need not
affect single instruction compiling in general: the single instruction should be an
x86 instruction, code modification was disallowed, and memory mapped com-
putational units, as seen in transport triggered architectures (TTA), should not
be used [Dol13][Dom15a][Dom15b][Dom15c].

If we remove these restrictions we can design a virtual machine with a one in-
struction set computing (OISC) architecture, that interprets a custom instruc-
tion that may not be natively be supported on x86.

A TTA can emulate a RISC instruction set by mapping triggered memory
addresses with the semantics of the different RISC instructions. Because of

1http://vmpsoft.com/

66

this, state of the art VM obfuscators that are already able to generate unique
RISC[Rol09] instruction sets for each protected file could instead work by gen-
erating unique OISC architectures. This effectively means that OISC based VM
obfuscation could be as effective and diverse as RISC based VM obfuscation.
This holds under the assumption that reverse engineering a VM with a single
instruction TTA is as hard as reverse engineering a VM with a RISC architec-
ture. In addition, while several approaches to defeat VM obfuscators have been
proposed[Rol09][Sha+09], it is still considered a potent obfuscation technique
[BB14, p. 286].

Our analysis shows that single instruction compiling is effective against advanced
static analysis. This is of most relevancy when a malware sample also employs
anti analysis techniques against basic analysis, as the lack of such techniques
may allow basic analysis to uncover the functionality of the sample faster thus
rendering advanced static analysis unnecessary. As soon as the sample has been
analysed actions can be taken to counter the malware attack as described by
the Cyber Kill Chain[Eri11]. Thus single instruction compiling is most effective
when combined with other obfuscation techniques that counter basic analysis.

Conclusion

The objective of this report was to evaluate single instruction compiling as an
obfuscation technique by we found that M/o/Vfuscator2 is similar to virtual
machine obfuscation. Virtual machine based obfuscation is seen as a potent
obfuscation techniques against advanced static analysis.

M/o/Vfuscator2, however, only has a single way to interpret and encode in-
structions, once the encoding has been analysed it becomes less valuable as an
obfuscation technique. This is unlike state of the art virtual machine obfusca-
tors that generate unique instruction sets for each protected program. This is a
limitation of M/o/Vfuscator2, and not single instruction computing in general.
Thus virtual machine obfuscation may leverage single instruction compiling just
as it leverages any other custom instruction set compiler.

10.1 Future Work

Formally verify that reverse engineering a VM with a single instruction set
architectures is as hard as reverse engineering as a VM with a RISC architecture.

Further research the possibility of implementing VM based obfuscators that
leverages a custom single instruction set architecture for each protected file.

Example programs

A.1 Programs in C

1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("Hello , world!\n");
6 return 0;
7 }

Listing A.1: C-Program 1

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4
5 void reverse_shell(const char **ip_list , size_t

ip_count , unsigned port) {
6 char cmd [256];
7 int i;
8
9 for(i = 0; i<ip_count; ++i){

10 sprintf(cmd , "nc -w 1 -e /bin/sh %s %d", ip_list[i
], port);

A.1 Programs in C 69

11 system(cmd);
12 sleep (1);
13 }
14 }
15
16 int main() {
17 const char *ip_list [] = {"192.168.100.1","

192.168.100.2","192.168.100.3"};
18 unsigned port = 1337;
19 pid_t child = fork();
20 if(child == 0) {
21 reverse_shell(ip_list , 3, port);
22 }
23 return 0;
24 }

Listing A.2: C-Program: Example program that forks and them attempts to
establish reverse shells to three different IP adresses.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/types.h>
4
5 void reverse_shell(const char **ip_list , size_t

ip_count , unsigned port) {
6 char cmd [256];
7 int i;
8 FILE *fp;
9 fp = fopen("log", "a+");

10
11 for(i = 0; i<ip_count; ++i){
12 sprintf(cmd , "nc -w 1 -e /bin/sh %s %d", ip_list[i

], port);
13 fprintf(fp,"Log: executing %s\n", cmd);
14 system(cmd);
15 sleep (1);
16 }
17 fclose(fp);
18 }
19
20 int main(char **argv , int argc) {
21 const char *ip_list [] = {"92.168.100.1","

A.1 Programs in C 70

92.168.100.2","92.168.100.3"};
22 unsigned port = 1337;
23 pid_t child = fork();
24 if(child == 0) {
25 reverse_shell(ip_list , 3, port);
26 }
27 return 0;
28 }

Listing A.3: C-Program: Example program that forks and them attempts to
establish reverse shells to three different IP adresses. It also logs
each attempt to a local file.

1 #include <stdio.h>
2 #include <stddef.h>
3 #include <stdlib.h>
4 #include <ctype.h>
5
6 unsigned int fib(unsigned int n)
7 {
8 unsigned int i, j, k, t;
9 i=0; j=1;

10
11 if(n==0){
12 return 1;
13 }else if(n==1){
14 return 1;
15 }
16
17 for (k = 1; k <= n; ++k)
18 {
19 t = i + j;
20 i = j;
21 j = t;
22 }
23 return j;
24 }
25
26 int main(int argc , char** argv){
27 printf("%d\n", fib (10));
28 }

A.1 Programs in C 71

Listing A.4: C-Program: Example program that computes fibonacci numbers.

1
2 #include <stdio.h>
3 #include <stddef.h>
4 #include <stdlib.h>
5 #include <ctype.h>
6
7 #define SETUP 0
8 #define CHECK 1
9 #define LOOP 2

10 #define DONE 3
11
12 unsigned int n, i, j, k, t;
13
14 int setup () {
15 i=0; j=1; k=1;
16 return CHECK;
17 }
18
19 int check (){
20 if(n==0 || n == 1){
21 return DONE;
22 }
23 return LOOP;
24 }
25
26 int loop(){
27 if (k <= n){
28 t = i + j; i = j; j = t; k++;
29 return LOOP;
30 }
31 return DONE;
32 }
33
34 int (*funcs [])(void) = {setup , check , loop};
35
36 unsigned int fib(unsigned int _n){
37 n=_n;
38 int state=SETUP;

A.1 Programs in C 72

39 while(state != DONE){
40 state = funcs[state]();
41 }
42 return j;
43 }
44
45 int main(int argc , char** argv){
46 printf("%d\n", fib (10));
47 }

Listing A.5: C-Program: Fib program that is flattened to obfuscate control
flow

Bibliography

[Cyb16] Center For Cybersikkerhed. Cybertruslen mod Danmark. 2016. url:
https://fe-ddis.dk/cfcs/CFCSDocuments/Cybertruslen%5C%
20mod%5C%20Danmark%5C%202016.pdf (visited on 03/11/2016).

[Sec15] Kaspersky Security. KASPERSKY SECURITY. BULLETIN 2015.
2015. url: https://securelist.com/files/2015/12/Kaspersky-
Security-Bulletin-2015_FINAL_EN.pdf (visited on 03/11/2016).

[Ver15] Verizon. 2015 Data Breach. Investigation report. 2015. url: https:
/ / securelist . com / files / 2015 / 12 / Kaspersky - Security -
Bulletin-2015_FINAL_EN.pdf (visited on 03/11/2016).

[Mica] Microsoft.Defining Malware: FAQ. url: https://technet.microsoft.
com/en-us/library/dd632948.aspx (visited on 07/02/2016).

[Bul] Bullguard.Malware - definition, history and classification. url: http:
//www.bullguard.com/da/bullguard- security- center/pc-
security/computer-threats/malware-definition,-history-
and-classification.aspx (visited on 07/02/2016).

[Kasa] Kaspersky. What is Malware and How to Defend Against It? url:
http : / / usa . kaspersky . com / internet - security - center /
internet- safety/what- is- malware- and- how- to- protect-
against-it#.V3ewUu0vD0o (visited on 07/02/2016).

[Sym] Symantec. What are malware, viruses, Spyware, and cookies, and
what differentiates them ? url: http : / / www . symantec . com /
connect/articles/what-are-malware-viruses-spyware-and-
cookies-and-what-differentiates-them (visited on 07/02/2016).

https://fe-ddis.dk/cfcs/CFCSDocuments/Cybertruslen%5C%20mod%5C%20Danmark%5C%202016.pdf
https://fe-ddis.dk/cfcs/CFCSDocuments/Cybertruslen%5C%20mod%5C%20Danmark%5C%202016.pdf
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf
https://securelist.com/files/2015/12/Kaspersky-Security-Bulletin-2015_FINAL_EN.pdf
https://technet.microsoft.com/en-us/library/dd632948.aspx
https://technet.microsoft.com/en-us/library/dd632948.aspx
http://www.bullguard.com/da/bullguard-security-center/pc-security/computer-threats/malware-definition,-history-and-classification.aspx
http://www.bullguard.com/da/bullguard-security-center/pc-security/computer-threats/malware-definition,-history-and-classification.aspx
http://www.bullguard.com/da/bullguard-security-center/pc-security/computer-threats/malware-definition,-history-and-classification.aspx
http://www.bullguard.com/da/bullguard-security-center/pc-security/computer-threats/malware-definition,-history-and-classification.aspx
http://usa.kaspersky.com/internet-security-center/internet-safety/what-is-malware-and-how-to-protect-against-it#.V3ewUu0vD0o
http://usa.kaspersky.com/internet-security-center/internet-safety/what-is-malware-and-how-to-protect-against-it#.V3ewUu0vD0o
http://usa.kaspersky.com/internet-security-center/internet-safety/what-is-malware-and-how-to-protect-against-it#.V3ewUu0vD0o
http://www.symantec.com/connect/articles/what-are-malware-viruses-spyware-and-cookies-and-what-differentiates-them
http://www.symantec.com/connect/articles/what-are-malware-viruses-spyware-and-cookies-and-what-differentiates-them
http://www.symantec.com/connect/articles/what-are-malware-viruses-spyware-and-cookies-and-what-differentiates-them

BIBLIOGRAPHY 74

[Kasb] Kaspersky. The Epic Turla (snake/Uroburos) attacks. url: http:
//www.kaspersky.com/internet-security-center/threats/
epic-turla-snake-malware-attacks (visited on 05/24/2016).

[Lai16] Allison Nixon Laith Alkhouri Alex Kassirer. Hacking for ISIS: The
Emerging Cyber Threat Landscape. Flashpoint, 2016.

[Dom15a] Christopher Domas. “The M/o/Vfuscator”. Derbycon 2015. 2015.
url: http://www.irongeek.com/i.php?page=videos/derbycon5/
break- me00- the- movfuscator- turning- mov- into- a- soul-
crushing-re-nightmare-christopher-domas.

[Dom15b] Christopher Domas. “The M/o/Vfuscator”. Recon 2015. 2015. url:
https://recon.cx/2015/schedule/.

[Dom15c] Christopher Domas. “REpsych: Psychological Warfare in Reverse
Engineering”. DEFCON 23. 2015. url: https://www.defcon.org/
html/defcon-23/dc-23-speakers.html#Domas.

[Doma] Christopher Domas. Movfuscator. url: https : / / github . com /
xoreaxeaxeax/movfuscator (visited on 07/02/2016).

[Dol13] Steven Dolan. “Mov is Turing-complete”. In: (2013).

[Domb] Christopher Domas. Movfuscator. url: https : / / github . com /
xoreaxeaxeax/movfuscator/tree/master/post (visited on 07/03/2016).

[KJ16] Julian Kirsch and Clemens Jonischkeit. “Movfuscator-Be-Gone”. Re-
con 2016. 2016. url: https : / / recon . cx / 2016 / talks / %5C %
22Movfuscator-Be-Gone.html.

[Jon16] Clemens Jonischkeit. “Machine Code Obfuscation via Instruction
Set Reduction and Control Flow Graph Linearization: Analysis and
Countermeasures”. Bachelor’s Thesis. Technische Universität München,
Mar. 2016.

[SH12] Michael Sikorski and Andrew Honig. Practical Malware Analysis:
The Hands-On Guide to Dissecting Malicious Software. 1st. San
Francisco, CA, USA: No Starch Press, 2012. isbn: 978-1593272906.

[Mur10] Liam O Murchu. Stuxnet Using Three Additional Zero-Day Vulnera-
bilities. Symantec Official Blog. 2010. url: http://www.symantec.
com/connect/blogs/stuxnet-using-three-additional-zero-
day-vulnerabilities (visited on 03/11/2016).

[KM14] Jan-Frederik Kremer and Benedikt Müller. Cyberspace and Interna-
tional Relations: Theory, Prospects and Challenges. 1st. Springer,
2014. isbn: 978-3-642-37480-7.

[Man13] Mandiant. APT1. Exposing One of China’s Cyber Espionage Units.
2013. url: http://intelreport.mandiant.com/Mandiant_APT1_
Report.pdf (visited on 03/11/2016).

http://www.kaspersky.com/internet-security-center/threats/epic-turla-snake-malware-attacks
http://www.kaspersky.com/internet-security-center/threats/epic-turla-snake-malware-attacks
http://www.kaspersky.com/internet-security-center/threats/epic-turla-snake-malware-attacks
http://www.irongeek.com/i.php?page=videos/derbycon5/break-me00-the-movfuscator-turning-mov-into-a-soul-crushing-re-nightmare-christopher-domas
http://www.irongeek.com/i.php?page=videos/derbycon5/break-me00-the-movfuscator-turning-mov-into-a-soul-crushing-re-nightmare-christopher-domas
http://www.irongeek.com/i.php?page=videos/derbycon5/break-me00-the-movfuscator-turning-mov-into-a-soul-crushing-re-nightmare-christopher-domas
https://recon.cx/2015/schedule/
https://www.defcon.org/html/defcon-23/dc-23-speakers.html#Domas
https://www.defcon.org/html/defcon-23/dc-23-speakers.html#Domas
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator/tree/master/post
https://github.com/xoreaxeaxeax/movfuscator/tree/master/post
https://recon.cx/2016/talks/%5C%22Movfuscator-Be-Gone.html
https://recon.cx/2016/talks/%5C%22Movfuscator-Be-Gone.html
http://www.symantec.com/connect/blogs/stuxnet-using-three-additional-zero-day-vulnerabilities
http://www.symantec.com/connect/blogs/stuxnet-using-three-additional-zero-day-vulnerabilities
http://www.symantec.com/connect/blogs/stuxnet-using-three-additional-zero-day-vulnerabilities
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

BIBLIOGRAPHY 75

[Gol] David Goldman. Anonymous attacks Greek Central Bank and vows
to take down more banks’ sites. url: http://money.cnn.com/2016/
05/04/technology/anonymous-greek-central-bank/ (visited on
06/30/2016).

[SAN] GENEVA SANDS. What to Know About the Worldwide Hacker
Group ‘Anonymous’. url: http://abcnews.go.com/US/worldwide-
hacker-group-anonymous/story?id=37761302 (visited on 06/30/2016).

[Pau] Darren Pauli. Anonymous whales on Denmark, Iceland with Op-
KillingBay DDoS. url: http://www.theregister.co.uk/2016/
04/22/anonymous_whales_on_denmark_faroe_islands_with_
opkillingbay_ddos/ (visited on 06/30/2016).

[SS14] John Scott-Railton and in collaboration with Cyber Arabs Seth
Hardy. Malware Attacks Targeting Syrian ISIS Critics. The Citi-
zen Lab, University Of Toronto, 2014.

[Eri11] Rohan M. Amin Eric M. Hutchins Michael J. Cloppert. Intelligence-
Driven Computer Network Defense Informed by Analysis of Adver-
sary Campaigns and Intrusion Kill Chains. Lockheed Martin Cor-
poration, 2011.

[Mar15a] Lockheed Martin. GAINING THE ADVANTAGE: Applying Cyber
Kill Chain(C) Methodology to Network Defense. Lockheed Martin
Corporation, 2015.

[Sec12] Dell SecureWorks. Advanced Threat Protection with Dell Secure-
Works Security Services. Dell SecureWorks, 2012.

[Sig15] Lasse Herløw og Sigurd Jervelund Hansen. “Detection and Preven-
tion of Advanced Persistent Threats”. Masters’s Thesis. Technical
University of Denmark, June 2015.

[Mar15b] Lockheed Martin. Seven Ways to Apply the Cyber Kill Chain(C)
with a Threat Intelligence Platform. Lockheed Martin Corporation,
2015.

[J V15] J. Vukalovic and D. Delija. “Advanced Persistent Threats - detec-
tion and defense”. In: 38th International Convention on Information
and Communication Technology, Electronics and Microelectronics,
MIPRO 2015, Opatija, Croatia, May 25-29, 2015. 2015, pp. 1324–
1330. doi: 10.1109/MIPRO.2015.7160480. url: http://dx.doi.
org/10.1109/MIPRO.2015.7160480.

[DeC] Jessica DeCianno. Indicators of Attack vs. Indicators of Compro-
mise. url: https://www.crowdstrike.com/blog/indicators-
attack-vs-indicators-compromise/ (visited on 07/01/2016).

[Kra11] Patrick Kral. The Incident Handlers Handbook. Investigation report.
2011. url: https://www.sans.org/reading-room/whitepapers/
incident/incident-handlers-handbook-33901 (visited on 04/01/2016).

http://money.cnn.com/2016/05/04/technology/anonymous-greek-central-bank/
http://money.cnn.com/2016/05/04/technology/anonymous-greek-central-bank/
http://abcnews.go.com/US/worldwide-hacker-group-anonymous/story?id=37761302
http://abcnews.go.com/US/worldwide-hacker-group-anonymous/story?id=37761302
http://www.theregister.co.uk/2016/04/22/anonymous_whales_on_denmark_faroe_islands_with_opkillingbay_ddos/
http://www.theregister.co.uk/2016/04/22/anonymous_whales_on_denmark_faroe_islands_with_opkillingbay_ddos/
http://www.theregister.co.uk/2016/04/22/anonymous_whales_on_denmark_faroe_islands_with_opkillingbay_ddos/
http://dx.doi.org/10.1109/MIPRO.2015.7160480
http://dx.doi.org/10.1109/MIPRO.2015.7160480
http://dx.doi.org/10.1109/MIPRO.2015.7160480
https://www.crowdstrike.com/blog/indicators-attack-vs-indicators-compromise/
https://www.crowdstrike.com/blog/indicators-attack-vs-indicators-compromise/
https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901
https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901

BIBLIOGRAPHY 76

[Ley15] John Leyden. China cuffs hackers at US request to stave off sanc-
tions. 2015. url: http://www.theregister.co.uk/2015/10/09/
china_cuffs_hackers_at_us_request/ (visited on 04/05/2016).

[Fir13] FireEye. DIGITAL BREAD CRUMBS. Seven Clues To Identifying
Who’s Behind Advanced Cyber Attacks. 2013. url: https://www.
fireeye.com/content/dam/fireeye-www/global/en/current-
threats / pdfs / rpt - digital - bread - crumbs . pdf (visited on
04/05/2016).

[Nov16] Novetta. Operation Blockbuster. Unraveling the Long Thread of the
Sony Attack. 2016. url: https://www.operationblockbuster.
com/wp-content/uploads/2016/02/Operation-Blockbuster-
Report.pdf (visited on 03/11/2016).

[Fir14] FireEye. APT28. A WINDOW INTO RUSSIA’S CYBER ESPI-
ONAGE OPERATIONS? 2014. url: https://www2.fireeye.
com/rs/fireye/images/rpt-apt28.pdf (visited on 04/05/2016).

[Mim16] Michael Mimoso. APT Attackers Flying More False Flags Than
Ever. 2016. url: https : / / threatpost . com / apt - attackers -
flying - more - false - flags - than - ever / 116814/ (visited on
04/05/2016).

[MR11] Blake Hartstein Michael Hale Ligh Steven Adair and Matthew Ri-
cards. Malware Analyst’s Cookbok and DVD. Tools and techniques
for fighting malicious code. Wiley Publishing, Inc, 2011. isbn: 9780470613030.

[Micb] Trend Micro. Ransomware. url: http://www.trendmicro.com/
vinfo/us/security/definition/Ransomware (visited on 07/02/2016).

[Inv] Federal Bureau of Investigation(FBI). Protect Your Computer Don’t
Be Scared by ’Scareware’. url: https://www.fbi.gov/news/
stories/2010/july/scareware/scareware (visited on 07/02/2016).

[Dic] Oxford Dictionaries.Obfuscate. url: http://www.oxforddictionaries.
com/definition/english/obfuscate (visited on 07/02/2016).

[Bar+01] Boaz Barak et al. “On the (Im)possibility of Obfuscating Programs”.
In: Advances in Cryptology — CRYPTO 2001: 21st Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA,
August 19–23, 2001 Proceedings. Ed. by Joe Kilian. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001, pp. 1–18. isbn: 978-3-540-
44647-7. doi: 10.1007/3-540-44647-8_1. url: http://dx.doi.
org/10.1007/3-540-44647-8_1.

[BB14] Alexandre Gazet Bruce Dang and Elias Bachaalany. Practical Re-
verse Engineering. 1st. Wiley, 2014. isbn: 1118787315.

[Zel16] Lenny Zeltser. Mastering 4 Stages of Malware Analysis. 2016. url:
https : / / zeltser . com / mastering - 4 - stages - of - malware -
analysis/ (visited on 05/16/2016).

http://www.theregister.co.uk/2015/10/09/china_cuffs_hackers_at_us_request/
http://www.theregister.co.uk/2015/10/09/china_cuffs_hackers_at_us_request/
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-digital-bread-crumbs.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-digital-bread-crumbs.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-digital-bread-crumbs.pdf
https://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Report.pdf
https://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Report.pdf
https://www.operationblockbuster.com/wp-content/uploads/2016/02/Operation-Blockbuster-Report.pdf
https://www2.fireeye.com/rs/fireye/images/rpt-apt28.pdf
https://www2.fireeye.com/rs/fireye/images/rpt-apt28.pdf
https://threatpost.com/apt-attackers-flying-more-false-flags-than-ever/116814/
https://threatpost.com/apt-attackers-flying-more-false-flags-than-ever/116814/
http://www.trendmicro.com/vinfo/us/security/definition/Ransomware
http://www.trendmicro.com/vinfo/us/security/definition/Ransomware
https://www.fbi.gov/news/stories/2010/july/scareware/scareware
https://www.fbi.gov/news/stories/2010/july/scareware/scareware
http://www.oxforddictionaries.com/definition/english/obfuscate
http://www.oxforddictionaries.com/definition/english/obfuscate
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
https://zeltser.com/mastering-4-stages-of-malware-analysis/
https://zeltser.com/mastering-4-stages-of-malware-analysis/

BIBLIOGRAPHY 77

[Car11] H. Carvey. Windows Registry Forensics: Advanced Digital Foren-
sic Analysis of the Windows Registry. Windows Registry Forensics:
Advanced Digital Forensic Analysis of the Windows Registry. Syn-
gress, 2011. isbn: 9781597495806. url: https://books.google.
dk/books?id=QwXFlAEACAAJ.

[GL16] Josh Grunzweig and Brandon Levene. PowerSniff Malware Used
in Macro-based Attacks. 2016. url: http : / / researchcenter .
paloaltonetworks.com/2016/03/powersniff-malware-used-
in-macro-based-attacks/ (visited on 05/16/2016).

[Rap] Rapid7. POLYMORPHIC XOR ADDITIVE FEEDBACK ENCODER.
url: https :/ / www. rapid7. com /db / modules/ encoder /x86 /
shikata_ga_nai (visited on 07/02/2016).

[Ins] SANS Institute. SANS Institute InfoSec Reading Room. url: https:
/ / www . sans . org / reading - room / whitepapers / forensics /
detecting-malware-sandbox-evasion-techniques-36667 (vis-
ited on 07/02/2016).

[Int16] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. Vol. 2. Instruction set reference, A-Z. Intel, 2016.

[Fog04] Agner Fog. Calling conventions for different C++ compilers and
operating systems. Technical University of Denmark, 2004.

[Com95] TIS Committee. Tool Interface Standard (TIS) Executable and Link-
ing Format (ELF) Specification Version 1.2. TIS Committee, 1995.

[NWH04] Peter J. Nurnberg2004, Uffe K. Wiil, and David L. Hicks. “A Grand
Unified Theory for Structural Computing”. In: Metainformatics: In-
ternational Symposium, MIS 2003, Graz, Austria, September 17-20,
2003. Revised Papers. Ed. by David L. Hicks. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 1–16. isbn: 978-3-540-24647-
3. doi: 10.1007/978-3-540-24647-3_1. url: http://dx.doi.
org/10.1007/978-3-540-24647-3_1.

[MP88] Farhad Mavaddat and Behrooz Parhami. “URISC: The ultimate re-
duced instruction set computer”. In: International Journal of Elec-
trical Engineering Education 25.3 (1988), pp. 342–351.

[Jon88] Douglas W. Jones. “The Ultimate RISC”. In: ACM SIGARCH Com-
puter Architecture News 16.3 (Feb. 1988), pp. 48–55.

[Int08] Maxim Integrated.MAXQ FAMILY USER’S GUIDE, rev 6.Maxim
Integrated, 2008.

[FH03] C. Fraser and D. Hanson. The lcc 4.x Code-Generation Interface.
MSR-TR-2001-64. Microsoft, 2003.

[Mog11] Torben Ægidius Mogensen. Introduction to Compiler Design. Springer,
2011. isbn: 978-0-85729-828-7.

https://books.google.dk/books?id=QwXFlAEACAAJ
https://books.google.dk/books?id=QwXFlAEACAAJ
http://researchcenter.paloaltonetworks.com/2016/03/powersniff-malware-used-in-macro-based-attacks/
http://researchcenter.paloaltonetworks.com/2016/03/powersniff-malware-used-in-macro-based-attacks/
http://researchcenter.paloaltonetworks.com/2016/03/powersniff-malware-used-in-macro-based-attacks/
https://www.rapid7.com/db/modules/encoder/x86/shikata_ga_nai
https://www.rapid7.com/db/modules/encoder/x86/shikata_ga_nai
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
https://www.sans.org/reading-room/whitepapers/forensics/detecting-malware-sandbox-evasion-techniques-36667
http://dx.doi.org/10.1007/978-3-540-24647-3_1
http://dx.doi.org/10.1007/978-3-540-24647-3_1
http://dx.doi.org/10.1007/978-3-540-24647-3_1

BIBLIOGRAPHY 78

[Domc] Christopher Domas. Movfuscator. url: https : / / github . com /
xoreaxeaxeax/movfuscator/blob/master/movfuscator/movfuscator.
c (visited on 07/04/2016).

[Domd] Christopher Domas. Movfuscator. url: https : / / github . com /
xoreaxeaxeax / movfuscator / blob / master / post / shuffle . py
(visited on 07/03/2016).

[Kan] Peter Kankowski. x86 Machine Code Statistics. url: https : / /
www . strchr . com / x86 _ machine _ code _ statistics (visited on
07/07/2016).

[RM13] Kevin A. Roundy and Barton P. Miller. “Binary-code Obfusca-
tions in Prevalent Packer Tools”. In: ACM Comput. Surv. 46.1 (July
2013), 4:1–4:32. issn: 0360-0300. doi: 10.1145/2522968.2522972.
url: http://doi.acm.org/10.1145/2522968.2522972.

[pro] The Linux man-pages project. SIGACTION(2). url: http://man7.
org / linux / man - pages / man2 / sigaction . 2 . html (visited on
07/02/2016).

[Rol09] Rolf Rolles. Unpacking Virtualization Obfuscators. 2009.

[AJV06] Bertrand Anckaert, Mariusz Jakubowski, and Ramarathnam Venkate-
san. “Proteus: Virtualization for Diversified Tamper-resistance”. In:
Proceedings of the ACM Workshop on Digital Rights Management.
DRM ’06. Alexandria, Virginia, USA: ACM, 2006, pp. 47–58. isbn:
1-59593-555-X. doi: 10.1145/1179509.1179521. url: http://
doi.acm.org/10.1145/1179509.1179521.

[Sha+09] M. Sharif et al. “Automatic Reverse Engineering of Malware Em-
ulators”. In: 2009 30th IEEE Symposium on Security and Privacy.
May 2009, pp. 94–109. doi: 10.1109/SP.2009.27.

https://github.com/xoreaxeaxeax/movfuscator/blob/master/movfuscator/movfuscator.c
https://github.com/xoreaxeaxeax/movfuscator/blob/master/movfuscator/movfuscator.c
https://github.com/xoreaxeaxeax/movfuscator/blob/master/movfuscator/movfuscator.c
https://github.com/xoreaxeaxeax/movfuscator/blob/master/post/shuffle.py
https://github.com/xoreaxeaxeax/movfuscator/blob/master/post/shuffle.py
https://www.strchr.com/x86_machine_code_statistics
https://www.strchr.com/x86_machine_code_statistics
http://dx.doi.org/10.1145/2522968.2522972
http://doi.acm.org/10.1145/2522968.2522972
http://man7.org/linux/man-pages/man2/sigaction.2.html
http://man7.org/linux/man-pages/man2/sigaction.2.html
http://dx.doi.org/10.1145/1179509.1179521
http://doi.acm.org/10.1145/1179509.1179521
http://doi.acm.org/10.1145/1179509.1179521
http://dx.doi.org/10.1109/SP.2009.27

	Abstract
	Resumé
	Acknowledgements
	Contents
	Introduction
	1.1 The purpose of this report
	1.2 Method
	1.3 About this report
	1.4 Overview of the report

	Threat Landscape
	2.1 State Sponsored Actors
	2.2 Criminel Networks
	2.3 Hacktivists

	Malware Attack Anatomy
	3.1 Cyber Kill Chain
	3.2 Malware Analysis in the Cyber Kill Chain
	3.3 Attribution
	3.4 Summary

	Malware Analysis
	4.1 Malware Behaviour
	4.2 Defining Obfuscation
	4.3 Static and Dynamic Analysis
	4.4 Anti Analysis

	Background in x86
	5.1 The x86 Architecture
	5.2 Assembly in x86
	5.3 Stack Frame and Call Convention
	5.4 The ELF File Format

	Movfuscation
	6.1 Single Instruction Compiling
	6.2 The Movfuscator
	6.3 A Backend for LCC
	6.4 Compiling C to MOV
	6.5 Control Flow
	6.6 Binary Operations
	6.7 Post-process Scripts

	Analysing Movfuscated Code
	7.1 Example Programs
	7.2 Basic Static Analysis
	7.3 Basic Dynamic Analysis
	7.4 Advanced Static Analysis
	7.5 Advanced dynamic analysis
	7.6 Deobfuscation

	Obfuscation Techniques
	8.1 Data Obfuscation
	8.2 Control Obfuscation
	8.3 Combined Obfuscation

	Evaluation
	Conclusion
	10.1 Future Work

	Example programs
	A.1 Programs in C

	Bibliography

