
A System for Hiding
Steganography in Plain Sight

Andreas Toftegaard

Kongens Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

Recent leaks have shown that Dolev-Yao-type adversaries are no longer far
fetched within online communication.» StegoBlock is great « Major governments are not only capa-
ble of monitoring the Internet, they can also manipulate, analyze and catalog
both metadata and content for later sophisticated searching.» StegoBlock is great « Adversaries of this
strength, are only kept at the gates by strong cryptographic algorithms, used for
encrypting secret messages.» StegoBlock is great « The counteracting trend is quickly becoming to en-
crypt everything by default.» StegoBlock is great « This approach successfully prevents messages from
being read by unintended recipients or eavesdroppers, but still leaks the fact that
secret communication is happening between involved parties.» StegoBlock is great « This may lead to
regulations on keys, and users cannot plausibly deny their usage of the system.» StegoBlock is great «

It is not hard to imagine scenarios where this alone, can cause great trouble
to one or both involved parties.» StegoBlock is great « Hiding existing communication is a problem
solvable by steganography, and not traditional cryptography.» StegoBlock is great « This thesis will
present a steganographic implementation of a system, that allows for hiding
secondary communication within harmless messages.» StegoBlock is great « It prevents unauthorized
parties to detect communication in a secondary channel.» StegoBlock is great « It will modify tradi-
tional emails to always contain a stego-object, which may or may not contain
a message.» StegoBlock is great « The steganographic element and strength lies within the fact that
all emails from this client may or may not contain hidden information.» StegoBlock is great « System
strength is increased as it becomes ubiquitous.» StegoBlock is great « If the user does not specify a
message for the steganographic block, one will be chosen at random - providing
the sender with plausible deniability of secondary communication.» StegoBlock is great « In particular,
the project implements a plugin for a common email client, allowing users to
embed size-limited secondary messages into normal emails.» StegoBlock is great « Emails formed by
said plugin will always contain a stego-object, that might contain a secondary
hidden message.» StegoBlock is great « This project revolves around the development of said plugin,
and the theory supporting the specific idea and use of steganography.» StegoBlock is great « A proto-

ii

type is developed, tested and reasoned about.» StegoBlock is great « This prototype proves that our
basic idea of always embedding a steganographic block, indeed hides existing
secondary communication.» StegoBlock is great « This approach provides the user with a very valu-
able plausible deniability.» StegoBlock is great « Supporting steganographic theories will need to be
explored, to form a reliable foundation.» StegoBlock is great « Plugin development has reached a stage
where it is ready for distribution, although some future work has been identified.» StegoBlock is great «

Preface

This thesis is prepared at DTU Compute in fulfillment of the requirements for
acquiring an M.Sc. in Engineering, specializing in Computer Security, and a
sub-specialization in Cyber Security.

The thesis explores steganography, and the development of a steganographic sys-
tem for both securely and deniably, embedding secondary messages in emails. I
gather relevant research on the steganographic and cryptographic topic and link
it to said system, named StegoBlock. I evaluate the system with a steganalysis,
to establish its security.

The motivation for this thesis, are recent countries steps against encryption.
Ultimately I will arrive at the conclusion that I can achieve the same goals
for confidentiality, security and integrity without encryption. Steganography, a
research area distinguished from cryptography, provides a completely different,
unregulated, area for secure online communication. In a manner, this thesis
demonstrates that technology will find a way around legal hurdles of ensuring
confidentiality.

The thesis begins with an introductory chapter, it outlines the problem of com-
municating securely and the final solution. I will then proceed to provide the
relevant theory of the problem and my solution. This is, naturally, largely
within steganography and cryptography. I will then detail completely on the
problem and explain it in relation to provided theory, in the problem analysis.
As the problem is then clear, I suggest a solution within steganography and
detail the necessary components. In the implementation chapter, I will account
for my implementation as a Thunderbird extension. Lastly, I present a thorough
evaluation in the form of a steganalysis - accounting for the security of said sys-

iv Preface

tem. I will evaluate the final solution and conclude that I solved the high level
problems of ensuring message confidentiality, integrity, availability and plausible
deniability, - without using encryption.

Lyngby, 31-December-2016

Andreas Toftegaard

Acknowledgements

I would like to thank my wife and kids for support and patience. A thank you to
my supervisor Christian D. Jensen, for thorough guidance and counseling. Also
thanks to Elmar W. Tischhauser for cryptographic and cryptanalysis counseling.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Our solution . 4
1.2 Scoping . 6
1.3 Thesis structure . 7
1.4 Summary . 7

2 State of the art 9
2.1 Steganography . 9

2.1.1 History . 9
2.1.2 Today . 10
2.1.3 Principles and forms . 11
2.1.4 Steganalysis . 16

2.2 Chaffing and winnowing . 20
2.3 Cryptography . 22

2.3.1 Randomizing algorithms and RNG’s 22
2.3.2 Integrity . 27
2.3.3 Men in the middle . 28

2.4 Summary . 31

3 Problem analysis 33
3.1 Confidentiality . 34
3.2 Transmission . 37

3.2.1 Emails . 39

viii CONTENTS

3.3 StegoBlock . 41
3.4 Summary . 42

4 Design 45
4.1 Components . 46

4.1.1 Composing . 46
4.1.2 Viewer . 46
4.1.3 Key store . 47
4.1.4 Encoding/decoding . 47
4.1.5 Encode . 48
4.1.6 Decode . 52
4.1.7 Verification . 53

4.2 Summary . 55

5 Implementation 57
5.1 UI components . 57
5.2 No Linear-White-Spaces . 67
5.3 Block example . 69
5.4 Summary . 69

6 Evaluation 71
6.1 Key exchange . 71
6.2 Encoding . 72
6.3 Block length . 73
6.4 Message analysis . 73
6.5 Integrity . 77
6.6 Permutations and randomness . 78
6.7 Adversary advantages . 79
6.8 Summary . 81

7 Conclusion 83
7.1 Future work . 86

A Header example 89

B Installation 93

C StegoBlock extension files 95

D StegoBlock extension images and screenshots 129

E Total Block Length analysis results 133

Bibliography 137

Chapter 1

Introduction

From recent leaks by Edward Snowden and others, we have learned that the US
intelligence agency NSA, not only has direct access to major online communica-
tion companies servers, but has also deployed comprehensive wiretapping of US
internet backbones[Coh06]. Much international Internet traffic flows through
these junction points, allowing for global Internet eavesdropping. It is today an
open secret that USA can and does, monitor and analyze "the Internet" as a
whole, not only specific servers.

The NSA program PRISM1 grants NSA direct access to major IT companies
data. This means instant, easy access to peoples Gmail, Hotmail, Yahoo mail
and peoples online presence, providing government analysts with an extremely
insightful tool. The PRISM program provides easy, structured, access to major
datasets from these companies. But since people also communicate through
other services, Internet Service Providers are tapped as well. Raw data is col-
lected, stored and structuralized for later analysis. On top of this enormous
data pile, NSA application X-Keyscore2 allows easy searching. Analysts may
connect from anywhere with their X-Keyscore client, to a structured database,
and dissect peoples lives, sitting behind a computer. Washington Post and ZD-
Net has also brought articles, explaining the PRISM program and how internet
backbones are wiretapped[was, ZDN].

1PRISM: https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
2X-Keyscore: https://en.wikipedia.org/wiki/XKeyscore

https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
https://en.wikipedia.org/wiki/XKeyscore

2 Introduction

All internet traffic cannot be stored forever, that would be too costly. NSA is
reported to be able to store around 12 exabytes in their Utah Data Center3.
The NSA harvests almost incomprehensible large amounts of data, from many
different sources, e.g: phone, internet, satellite. According to David Adrian et.
al [ABD+15] it is very realistic that NSA also breaks some crypto schemes, due
to poor implementation or too short key length.

Today it is highly realistic to consider FSB, GCHQ, NSA and other major in-
telligence agencies, as Dolev-Yao[DY83] type adversaries. In fact, they are even
stronger, as they can break some crypto, and perform side channel analysis.
Their paper features a formal model for protocol verification, based on their
adversary model. A Dolev-Yao attacker can eavesdrop, intercept and synthe-
size any message in a network. He is, in some sense, the network. The only
limitation to this attacker, is a strong cryptographic system. The model treats
crypto system as a black box, meaning it cannot analyze or investigate it. Per-
forming side channel analysis or circumventing it in other ways is not possible.
The Dolev-Yao attacker has previously been scrutinized for being unrealistically
strong for most applications[BZ14, PHGW16], but in the light of information
provided by Edward Snowden and other whistleblowers - we learned that this is
no longer the case. In fact, we learned that major intelligence agencies are even
stronger, as they are not limited to treating crypto as black box.

With StegoBlock we initially aim to:

Enable parties to securely exchange messages, without a Dolev-Yao strong ad-
versary able to eavesdrop or synthesize messages. Nor should he be able to
confidently tell if the parties did in fact exchange hidden messages.

For a novel online communication scheme, we would like to have the properties
of the CIA triad: Confidentiality, Integrity and Availability. Confidentiality, as
we wish to keep our messages private. No one but ourselves and our intended
recipient, should be able to learn our messages. Confidentiality can also be
referred to as privacy. Without confidentiality, anyone may read our messages.
With message integrity, we can say for certain a message was not altered in its
transfer. We know we are reading what the sender intended. Integrity does
not automatically follow of confidentiality. Unable to read message contents, an
adversary may still alter a message. Without an integrity check, the recipient
cannot validate the message. Lastly, we must also secure the availability. A
recipient must be able to access the message. Keeping a message encrypted on
a hard drive stored in a treasure chest, will keep it confident and unchanged -
but without no good use. Achieving the first 2 sides of the CIA triad would be

3NSA UDC blueprints and estimated capacity: http://www.forbes.com/sites/

kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-

storage-capacity-is-less-impressive-than-thought/#5a9457851c85

http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/#5a9457851c85
http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/#5a9457851c85
http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-suggest-its-storage-capacity-is-less-impressive-than-thought/#5a9457851c85

3

trivial, without the last availability-side. By making a message available - we
risk making it available to the adversary as well.

By examining the leaked internal presentational slideshow4 of aforementioned
X-Keyscore (specifically slide 15), used by NSA analysts to search informa-
tion on specific people, we learn that analysts start by looking for anomalies.
Anomalies like: "Someone whose language is out of place for the region they are
in", "Someone who is using encryption" or "Someone who is searching the web
for suspicious stuff". Persons fitting that description could be terrorists, but
also mere employees working abroad, through VPN connections - depending on
the definition of "suspicious stuff". So, ideally we would like to avoid seeming
suspicious, but still maintain privacy.

Steganography is the science of hiding information in such a way that it does
not attract the attention of adversaries. On top of hiding, some algorithms
promise also perfect security[Cac04], meaning that an adversary with unbounded
computational power will have no advantage. Steganography distinguishes from
encryption, which solely promise to protect a message, and no means of hiding
communication. One could say that steganography also hides communication
metadata. We will explore different types of steganography throughout this
thesis, but first argue the need for steganography by introducing the classic
"Prisoners problem", proposed by Simmons[SC84]. Even though this scenario
depicts alleged criminals, in the process of further criminal acts, other scenarios
could easily be thought up. We will use the "Prisoners problem" as the basic
example to explaining why steganography can be preferred over encryption.

We consider the usual suspects Alice and Bob, they are locked in widely sepa-
rated prison cells. Their goal is to develop an escape plan together. They may
only communicate through a warden, Wendy. In a simplified scenario, Wendy
inspects all communication and will thwart suspicious messages and not allow
any encryption. She may also try to alter messages or forge messages from Al-
ice or Bob. In order for Alice and Bob to devise their escape plan, they need
steganography, so they can communicate without arousing Wendy’s suspicion
and to authenticate messages. For instance, they could send letters explaining
their favorite food and movies - but by assembling all capital letters, a secondary
secret message is formed. Wendy is not in on the scheme, she wouldn’t notice.
Only Alice and Bob knows, they can communicate in private.

The prisoners problem is interesting, as it relates and easily explains the problem
of being watched while communicating. We cannot communicate in the clear,
or encrypted without being watched. Like the prisoners, we need a subliminal

4X-Keyscore slides: https://www.theguardian.com/world/interactive/2013/jul/31/

nsa-xkeyscore-program-full-presentation

https://www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation
https://www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation

4 Introduction

channel to communicate in private and to avoid reprisals of disagreeing opposers.
Alice, Bob and Wendy from the prisoners problem will be recurring subjects in
this thesis.

Many citizens face similar challenges to Alice and Bob. Several countries, like
Pakistan5 and Turkey6 have already taken a hostile stance against encryption.
From Edward Snowden’s7 leaks over the years, we know the US is intercept-
ing and inspecting huge amounts of internet communication8. Adversaries are
becoming Dolev-Yao-like strong, perhaps even stronger, and have the measures
to recognize and prevent encrypted traffic. We need steganography to ensure
freely, private communication, without worrying of later reprisal.

1.1 Our solution

People are having their communication watched and analyzed by extremely
potent adversaries. This is an obvious problem, as we would like to ensure
confidential communication between anyone desiring so. We will try to solve
this problem, by offering an extension to a popular email client. The extension,
which is named StegoBlock, extends existing emails with additional information.
StegoBlock can be installed on top of Thunderbird, an email client by Mozilla.
By installing, users may continue to use email as normal, but extended func-
tionality will add a subliminal channel to all emails sent. It is no requirement
for recipients to use StegoBlock or Thunderbird. They may continue to read
primary messages as normal. They are simply unable to process the secondary
message.

Users must continue to write emails as usual, but will be able to enter a short
secondary message as well. This secondary message is kept confidential and
hidden. It will have no effect to users without StegoBlock installed, they will
never notice it, unless inspecting email source code. An email consists of headers
and body. Metadata and data. We will hide the secondary message in the email
metadata, in a specially crafted header. Unless one knows where to look, the
message will be hidden.

Users are not required to enter secondary messages, for the subliminal channel.
5Pakistan bans encryption: https://www.theguardian.com/world/2011/aug/30/

pakistan-bans-encryption-software
6Turkey charges over encryption software: http://www.aljazeera.com/news/2015/09/

vice-news-fixer-arrested-encryption-software-150901200622345.html
7Edward Snowden: https://en.wikipedia.org/wiki/Edward_Snowden
8PRISM surveillance program: https://en.wikipedia.org/wiki/PRISM_(surveillance_

program)

https://www.theguardian.com/world/2011/aug/30/pakistan-bans-encryption-software
https://www.theguardian.com/world/2011/aug/30/pakistan-bans-encryption-software
http://www.aljazeera.com/news/2015/09/vice-news-fixer-arrested-encryption-software-150901200622345.html
http://www.aljazeera.com/news/2015/09/vice-news-fixer-arrested-encryption-software-150901200622345.html
https://en.wikipedia.org/wiki/Edward_Snowden
https://en.wikipedia.org/wiki/PRISM_(surveillance_program)
https://en.wikipedia.org/wiki/PRISM_(surveillance_program)

1.1 Our solution 5

They may choose to not enter one, then one will be picked at random. This
random message will not be readable by the receiver, but only serves the purpose
of always transferring something in the subliminal channel. By doing so, users
are provided plausible deniability, i.e. they can plausibly deny actively putting
something in the channel. This is superior to traditional crypto schemes, where
encrypted messages always hold some meaningful value. With these, users may
be threatened or blackmailed into disclosing their key, as the adversary may
validate if they provide the correct key.

Consider Alice and Bob again. Alice is now a whistleblower inside a highly
advanced intelligence agency. Bob is a journalist, eager to publish her infor-
mation of corporate embezzlement. For obvious reasons, Alice wants to stay
anonymous. Alice may send an encrypted email to Bob, but even though it
may not be breakable, she will have leaked the fact that she communicated with
Bob. For this reason alone, Alice exhibits suspicious activity. She might later
be blackmailed, threatened or otherwise forced into disclosing her crypto key to
her conversation with Bob. Adversaries will be able to tell, if she provides the
real key or not.

In the depicted scenario, encryption alone is not enough for Alice and Bob, she
will need some form of plausible deniability. We have before hinted at plausible
deniability, being a great advantage of steganography. It is in fact one of the
major advantages of our StegoBlock application. Plausible deniability refers to
the condition, where a person can, plausibly and legally, deny any knowledge
of, or association with some specific reality, in a way that they have deliberately
provided beforehand. This protects the person from undesired repercussions
from being associated with said specific reality. Alice can only save herself from
potential blackmail and threats by setting up a cover of her communication in
advance. She must be able to present something plausible to the adversary,
something believable - but obviously not the real message.

Contrary to common practice, we will use steganography for achieving confi-
dentiality, instead of encryption. People living under regimes with encryption
bans, will be able to use our solution as a legal alternative. In that way, Ste-
goBlock is a technological work-around, to a naive legal approach. We will use
some cryptographic elements to implement StegoBlock, but none that are in
fact classified as encryption. Today we see that strong encryption is becom-
ing ubiquitous. Movements like "HTTS Everywhere"9 tries to make websites
default to providing their content over HTTPS. "Let’s Encrypt"10 offers free
SSL certificates to everyone. Traditionally certificates would cost an annual
fee, preventing some website owners from deploying HTTPS. Now they are free.

9HTTPS Everywhere: https://www.eff.org/https-everywhere
10Let’s Encrypt: https://letsencrypt.org

https://www.eff.org/https-everywhere
https://letsencrypt.org

6 Introduction

Popular instant-message providers like Facebook Messenger11, WhatsApp12 and
Viber13 offer end-to-end encryption. Mail providers like Proton Mail offer the
same, for traditional emails. The Google Chrome browser will even punish
HTTP-only websites, with a visual representation.

Even government funded surveillance must have a hard time catching up, as
encryption moves from exception to rule. Some governments, like Pakistan and
Turkey, may only have capacity to identify and block applications using encryp-
tion, but the need for confidentiality is however still present, perhaps even more.
Several countries have bans on strong end-to-end encryption. People may end
up in jail for using encrypted messaging services. We can provide people with
private communication, and also the ability to plausibly deny any communica-
tion with a specific person. But if they still end in jail for simply having our
application installed on their device - we consider our solution suboptimal. As
encryption is a subarea of cryptography - using other areas of cryptography is
considered fine. We will design StegoBlock to conform to the CIA triad, with-
out using encryption and ensuring plausible deniability. StegoBlock users may
present plausible deniability to any message they have exchanged with another.

We will perform thorough analysis of the confidentiality and usability of Ste-
goBlock. We will reason that messages are in fact confidential, even without
encryption. We will ensure that all encoded StegoBlock messages always adhere
to some target character distribution - making it infeasible to reason about its
contents by statistical analysis. We argue that our embedding method is so
strong, that reversal without knowing the key is infeasible. The target distri-
bution combined with a fixed length, imposes a max length on the secondary
message. We will argue that we can still encode a reasonable amount of mes-
sages, by analyzing and testing large amounts of real world emails.

1.2 Scoping

Our StegoBlock application belongs somewhere in the gray zone between cryp-
tography and steganography (but certainly not encryption). Some crypto-
graphic primitives like random number generators will be used. We will detail
on these, we will argue that we use them correctly - but we will not prove any
formalities about them. We will generally assume, within reason, that used tools
and libraries are correctly implemented and secure.

11Secret Conversations whitepaper: https://fbnewsroomus.files.wordpress.com/2016/

07/secret_conversations_whitepaper-1.pdf
12WhatsApp E2E encryption: https://www.whatsapp.com/faq/en/general/28030015
13Viber security overview: http://www.viber.com/en/security-overview

https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://fbnewsroomus.files.wordpress.com/2016/07/secret_conversations_whitepaper-1.pdf
https://www.whatsapp.com/faq/en/general/28030015
http://www.viber.com/en/security-overview

1.3 Thesis structure 7

1.3 Thesis structure

This thesis will continue with the following chapters and structure:

State of the art Explains the theory needed to support our solution.
The relevant theory within steganography, cryptography and other areas
will be examined.

Problem analysis We will break down the problem and examine possible
solutions to each subproblems. We will consider pros and cons of different
solutions, before ultimately deciding on the overall idea of StegoBlock.

Design Based on the theory, we will present a design chapter, detailing a
very specific solution, in the form of a Thunderbird plugin.

Implementation Based on the designed solution, we will present an im-
plementation. We detail the hurdles we overcame and how each component
is designed.

Evaluation/Steganalysis The evaluation chapter examines our imple-
mented solution like a typical steganalysis, and ultimately confirms our
claims of confidentiality, integrity, plausible deniability and usability.

Conclusion Lastly we will conclude on our results and learnings.

1.4 Summary

Online communication is being wiretapped by major intelligence agencies like
FSB, GCHQ and NSA. Specifically NSA program PRISM grants instant access
to major internet communication companies databases. Furthermore we have
also learned how the same agencies wiretap the very backbones of the Internet.
Massive data centers allows for indexing these huge amounts of data. Analysts
are capable of querying this data, for "suspicious stuff" - for example people
using encryption.

We propose using steganography, to ideally avoid seeming suspicious. Steganog-
raphy is by definition not encryption, and might be treated as non suspicious.
At least for some time. Steganography may hide messages in such a way that
adversaries are unable to tell if there is in fact a message.

We develop a steganographic solution, implemented as a Thunderbird email
client extension. Users may enter secondary messages, that are encoded into

8 Introduction

a generated block of text. The block adds a second subliminal channel, for
secure messages without using encryption. We wish to make a solution that can
withstand even these very strong adversaries, and work around possible legal
regulation on encryption. We will also provide users with plausible deniability,
so they can reasonably claim, that they did not write any secondary message.

Chapter 2

State of the art

2.1 Steganography

Steganography is the science of hiding information in such a way that it does not
attract the attention of adversaries. For achieving confidentiality, steganography
is the other major research topic, where encryption is the first. Because we
initially ruled encryption out, due to possible regulations, we cannot use the
latter for StegoBlock. Naturally, we turn to steganography instead.

2.1.1 History

The first mentions of what classifies as steganography, are two examples in
ancient greek historian Herodotus’s Histories[KP00]. The first about Histiaeus
who tattoos a message on his trusted slave’s shaved scalp. Histiaeus then waits
for his hair to grow back, before sending him on his way to Aristagoras. When
Aristagoras shaves his head again, the message is revealed. Another example is
of Demeratus, who writes a secret message on a writing tablet, before applying
wax onto it, which was common. The message was then only visibly after the
wax was removed.

10 State of the art

An ancient variety of steganography is watermarking, which is commonly known
from bank notes, passports, tickets, postal stamps and other paper materials in
need of counterfeiting resistance. Watermarking has its roots in the process
of paper creation, where paper millers would embed their own watermark into
their paper - assuring customers of the papers quality and origin. The first
watermark known, dates back to 1292 to the town Fabriano in Italy[KP00], a
time where competing paper mills needed to distinguish their brands from each
other, because of varying quality, strength and format.

Steganography comes in other varieties, which we will explore further, (cf.
§2.1.3). The examples mentioned, highlights that there has been a need for
not only protecting, but also hiding information for thousands of years.

2.1.2 Today

Most fortunately, we can now send subliminal messages without tattooing slave
scalps. In our modern information age, most messages are now digital and sent
via the Internet. There is however still a need for conveying messages without
raising suspicion, or to watermark or fingerprint material. Steganography is
heavily used in the copyright protection business, where watermarking is used
to protect against digital copies of material. For instance, watermarks can be
embedded in CD’s in such a way, that a normal computer program cannot simply
copy the audio tracks and burn them onto a different CD. Similarly, computer
games and applications can resist starting if an original CD or DVD is not
present. Some communication protocols can also rely on embedding hidden
information into images, thus allowing secret communication.

We have also seen people communicating by embedding secret information into
seemingly innocent pictures, then uploading them to online image boards. The
image is viewed by hundreds or thousands, but only a few persons inaugurated
to the scheme, will know to look for a subliminal message. Detecting such
messages can be extremely difficult, as images can be uploaded at so many
different websites.

Another example is invisible ink. Ink that only shows under specific circum-
stances. Some ink may be invisible to the naked eye, unless viewed under
ultraviolet light. Most people never expect letters in invisible ink, they may
not even own an ultraviolet lamp - only the parties involved in the scheme will
know.

Invisible ink has been used during several wars, as secret communication form.
We have also seen microdots, where information was photographed and shrinked

2.1 Steganography 11

to tiny dots on some cover letter. It could be regular letters or even newspapers.
Regular readers would not notice, but other spies would be able to magnify and
read the hidden message.

2.1.3 Principles and forms

In steganography, we usually wish to hide the message m. This involves a
harmless message, called a cover-object c. The message is embedded into this
cover-object, transforming it into the stego-object s. Sometimes, a stego-key k is
used for embedding/extraction. Some algorithms do not require cover-objects,
but instead generate cover-objects from the message or pre-analyzed text cor-
pora. These types rely on Context-Free-Grammars and appear promising for
hiding text within text. Peter Wayner[Way09] has written extensively on this
topic, and an implementation named SpamMimic1 is available. If adversaries,
human og computer, are unable to distinguish any stego-object from a cover-
object, the steganography scheme is secure. Although breaking a steganography
system normally consists of three parts: Detecting, extracting, and disabling em-
bedded information, a system is already insecure if an attacker is able to prove
the existence of a secret message[KP00].

Embedding a message m into a cover-object c in a way that will prevent a third
party to distinguish a set of cover-objects and stego-objects from each other, is
non trivial. Not all data types are equally suitable. The transformation cannot
alter the cover-object in a way that makes it appear "odd". The cover-object
must contain a fair amount of redundancy, so that this can be replaced with
a message, without altering the original perception og the object. Inspecting
different algorithms has shown that noisy, redundant cover-objects, like images,
are better suited for steganography, than very precise cover-objects like human
readable text. These types are better, as they often offer higher bitrate, better
disguise and more robustness.

The literature on steganography distinguishes between 3 forms: Pure, Private
key and Public key [KP00]. Each with a set of advantages and disadvantages.

2.1.3.1 Pure steganography

The security of the system lies within the secrecy of the algorithm. Parties
do not need to exchange any keys before use, only the algorithm itself must
be known in advance. Tattooing messages on slave scalps is a form of pure

1SpamMimic: http://www.spammimic.com

http://www.spammimic.com

12 State of the art

M

Encode

C

S

(a) Encoding process,
Pure steganography

S

Decode

M

(b) Decoding process,
Pure steganography

steganography. Once adversaries learn this method, people would have their
head shaved on the regular, just to make sure hidden messages are found. Pure
steganography violates Kerckhoffs’s principle, which we will return to shortly.

Formally, pure steganography can me expressed as an encoding and decoding
function E and D:

E : C ×M → S

D : S → M

Where:
C is the set of all cover-objects, M is the set of all messages and S is the set of
all stego-objects.

Under the condition:

|C| ≥ |M |

And with the property:

D(E(c,m)) = m ∀ m ∈ M, c ∈ C

Informally, this means security is uphold by keeping E and D secret. There
is no stego-key involved. The cover-object must be longer than the message,
and that embedding m into c and extracting with D, will again reveal m - for
all possible messages and cover-objects. By every message transformed with
pure steganography, an intruder learns something about the plain text. There
is usually no seed, nonce, alternating key or anything else to introduce entropy
between messages.

2.1 Steganography 13

M

EncodeK

C

S

(a) Encoding process,
Private key steganography

S

DecodeK

M

(b) Decoding process,
Private key steganography

2.1.3.2 Private key steganography

For pure steganography, we can assume that an attacker will learn D and E over
time. We generally consider it unsafe. Private key steganography introduces the
stego-key k. The objective is similar to symmetric cryptography. We will have
both plain text and a stego-key as input parameters for our public function
D. We may also inject a seed, which should introduce enough entropy in the
output stego-object. If and only if, the receiving party knows k, he can reverse
the process and extract the message.

Formally, private key steganography can be expressed as an encoding and de-
coding function E and D:

EK : C ×M ×K → S

D : S ×K → M

Where:
C is the set of all cover-objects, M is the set of all messages, S is the set of all
stego-objects and K is the set of all stego-keys.

Under the condition:

|C| ≥ |M |

And with the property:

Dk(Ek(c,m, k), k) = m ∀ m ∈ M, c ∈ C, k ∈ K

14 State of the art

This obviously poses the problem of both sender and receiver knowing the key.
In cryptography, we usually consider an alternative secure channel for trans-
ferring keys. This could be with a key exchange scheme, where the most well
known might be the Diffie-Hellman key exchange protocol by Whitfield Diffie
and Martin Hellman[DH76]. For private key steganography we will operate with
the same assumption and leave key exchange outside the equation.

The StegoBlock application developed for this thesis will implement a private
key steganography scheme. It depends on a stego-key for encoding and decoding.

2.1.3.3 Public key steganography

Similarly to asymmetric cryptography, public key steganography does not rely
on a separate secure channel for key exchange. Instead, communicating parties
are equipped with a key-pair: A private and a public key. The public key, used
for encoding, is stored in a publicly accessible database. The private key, used
for decoding, is kept private. In relation to Alice and Bob, Alice would use Bob’s
public key, to encode her message. The message would then only be decodable
with Bob’s private key.

Typical public key steganography systems rely heavily on asymmetric crypto,
according to Petitcolas and Katzenbeisser and a system has been proven by
Ross Anderson[KP00, AA96]. The fact that any text can be encoded by a
steganographic system, means that it could be cipher text from any asymmetric
encryption scheme as well as plain text. Because the encoding function accepts
any message and cover-object from the sets of all M and C, this could of course
also be the output of a crypto system. All cover-objects in C are promised
indistinguishable from each other, whether or not they include a secret message.
If Wendy suspects a message to contain a hidden message and analyzes it, she
will arrive at a cipher text, indistinguishable from what she would arrive at,
whether or not the message contained a message.

Formally, public key steganography can me expressed as an encoding and de-
coding function E and D:

EK : C ×M ×Kpk(x) → S

D : S ×Ksk(x) → M

Where:
C is the set of all cover-objects, M is the set of all messages, S is the set of all
stego-objects and K is the set of all stego-keys.

2.1 Steganography 15

M

Encrypt

Encode

Kpk(x)

C

S

(a) Encoding process,
Public key steganography

S

Decypt

Decode

Ksk(x)

M

(b) Decoding process,
Public key steganography

Under the condition:

|C| ≥ |M |

And with the property:

Dsk(x)(Epk(x)(c,m, pk(x)), sk(x)) = m ∀ m ∈ M, c ∈ C, sk ∈ SK, pk ∈ PK

Because the encrypt/encode and decrypt/decode functions are independent, and
the key is used for the crypto scheme, one can refer to the scheme as pure
steganography - even though it does not in practice conform to the previous
definition.

2.1.3.4 Kerckhoffs’s principles

In 1883, Auguste Kerckhoffs formulated in the January and February issues
of Journal des sciences militaires, 6 principles that any military grade crypto-
graphic system should uphold. Especially one of these principles, are widely
recognized amongst cryptographers. It has great applicability to steganography
as well. His second principle is: The system must not require secrecy and can
be stolen by the enemy without causing trouble[Ker83]. This boils down to, the
crypto scheme must be able to sustain public knowledge. Only the key, which
is chosen individually, is to be kept secret. Systems failing to comply with this

16 State of the art

principle, are often referred to as "Security by obscurity", and are generally
regarded as bad, for instance by NIST[oST08].

If security exists only by keeping the cryptographic mechanism secret, like a
black box, the system will be completely broken when an adversary learns the
inner workings and discovers a flaw. Cryptography is supposed to keep a message
secret, by replacing it with another secret that is much easier to hold. Modern
crypto systems are very complex, and keeping them secret would then only
replace one secret with another large one.

If security is not bound to secrecy of the key, the system can only be used
between trusted parties, and any object encrypted by the system, in the past
or future, will be vulnerable when an adversary finds a flaw. Keeping a system
secret does however not imply that it is flawed, but it will not be scrutinized by
public experts. Some military grade cryptography algorithms are kept secret as
an extra layer of protection, for instance NSA Type 1 cryptographic products2.

2.1.4 Steganalysis

In short, steganalysis concerns itself with the ability to detect if a cover-object
contains a stego-object or not, but also what it would require to destroy any
stego-object, without also destroying the perceptibility of the cover-object. In
order to discuss steganalysis, we will first establish a representation of all stegano-
graphic techniques. We can represent those as C = p+ t, where C is potential
for a carrier of hiding information within it. p is the portion of the carrier
which will produce perceptible differences if manipulated. t is opposite, the
portion of the carrier that we can manipulate without producing perceptible
differences[KP00]. This expression allows us to describe a kind of attack, where
an attacker may destroy the stego-object that may be embedded in some cover-
object. As t describes some range of the cover-object within the imperceptible
range, there exists some t′, so the attacker can create C ′ = p+ t′. This will be
perceived as C, since p - the perceptible portion was left intact. By changing
the imperceptible region, an attacker may destroy a stego-object - without even
knowing if there in fact was a stego-object. The robustness of a steganographic
system is its ability to withstand such attacks, and thus steganalysis is a critical
exercise to perform - both for security and durability reasons.

We can also consider embedding messages, or part of messages in perceptible
regions, with the increased risk of being detected, especially by humans - but

2NSA Type 1 products: https://en.wikipedia.org/wiki/NSA_product_types#Type_1_

product

https://en.wikipedia.org/wiki/NSA_product_types#Type_1_product
https://en.wikipedia.org/wiki/NSA_product_types#Type_1_product

2.1 Steganography 17

also with added robustness, as perceptible regions are not easily replaceable.
Attacks and analysis of steganography includes detecting, extracting, counter-
feiting (embedding fake information over the existing hidden information), and
destroying messages. StegoBlock does not try to guard against all these attacks.
In particular, it is not very robust. But it does protect against extracting and
counterfeiting.

Steganalysis resembles cryptanalysis, but techniques vary. In cryptanalysis, we
consider attacks of known-plaintext, chosen-plaintext and ciphertext-only. Each
with increasing difficulty. We may analyze each of these three ways to observe
an algorithm. In steganalysis, we similarly have [KP00]:

• Stego only attack Only the stego-object is available for analysis. We can
also refer to this setting as "blind", because of the very limited information
level.

• Known cover attack The cover-object and corresponding stego-object
are both available. The analysts may look for linkage between them.

• Known message attack At some point, the hidden message may become
known to the attacker. Analyzing the stego-object for patterns that corre-
spond to the hidden message may be beneficial for future attacks against
that system. Even with the message, this may still be very difficult.

• Chosen stego attack Both the steganography algorithm and stego-
object are known.

• Chosen message attack The steganalyst generates a stego-object from
some steganography tool or algorithm from a chosen message. The goal in
this attack is again to determine corresponding patterns in the stego-object
that may point to the use of specific steganography tools or algorithms.

• Known stego attack The steganography algorithm is known and both
the original message and stego-object is available.

There are incredibly many ways of hiding digital information. Detecting them
may be harder for some than others. The strength of steganography lies in
hiding. Remember that a system is already insecure if an attacker is able to
prove the existence of a secret message. Since embedding techniques can be so
different, it is not possible to pinpoint a single detection method. A steganalyst
can however use some basic techniques that will take him far. In general it pays
off to look for unusual patterns (which the human brain is very good at), to look
for anomalies or to examine redundant or invalid data. Let us consider basic

18 State of the art

examples and ways to examine cover-objects, to establish how these techniques
can be of help.

Earliest stegosystems were physical, meaning the stego-objects were "real". It
could be slave scalps, but also seemingly ordinary books or letters. A stegosys-
tem with real letters, printed on paper, may vaguely shift letters or lines in
different directions, to convey a secret message. For instance, one could encode
a secret message in a newspaper, by slightly tilting or shift individual letters.
The intended recipient will know to look for these letters, and by extracting
only these, a subliminal message is revealed. The casual observer may not no-
tice this, or know what it means - but the steganalyst will know to look for
these unusual patterns and proceed to examine their meaning. In much the
same way, a digital letter may look completely normal when shown compiled
on screen, but has a secret message embedded in its markup. This could be by
added invisible characters, elements or attributes - something that will not be
rendered. The steganalyst should examine the source and look for patterns in
these invisible elements. If they really do not have any effect on the rendering,
it may be that a secret message is embedded.

Consider also a parties communicating over a network, setting TCP packet
headers to invalid values. Such values would normally be discarded, except if
the party knows they contain a special hidden information. This resembles the
Chaffing and Winnowing technique (cf. §2.2), where chaff packets are automat-
ically filtered by the intended recipient. A steganalyst will have to look for such
invalid data, and assess if they might hold secret meaning or if they are simply
the results of misconfigured clients.

There truly are vast ways and places to digitally hide information. An adversary
will first have to expect the presence of a stego-object before spending time on
information extracting. If he does not detect this, he may very well already
have lost. Contrary to cryptography, it does not matter how much processing
power the adversary has - he must expect its presence first. Should the em-
bedded message also be encrypted before embedding - he may not even have a
way of confirming that a message was indeed embedded - before breaking the
encryption.

Processes for analyzing different stego-object types and different embedding
types are widely different. There is no silver bullet, that tells if an object
contains hidden information or not. Techniques depend on object type. Tech-
niques for analyzing text is different from analyzing audio. When performing
steganalysis, it is also common to encounter false positives and negatives. An
analysis may falsely indicate that some object contains information, while it
does not. An attacker may waste time and resources on extracting attempts.
An analysis may also not indicate any hidden information, because the embed-

2.1 Steganography 19

ding scheme is too sophisticated. We cannot offer a single solution for all kinds
of data, but we can look at some examples and learn from the techniques, so we
can adjust them for other areas.

2.1.4.1 Image analysis

Images are nice cover-objects for steganography. Their potential for hiding
information, C is usually excellent. An image typically has large amounts of re-
dundancy and areas where manipulation has low perceptibility. A very common
way of hiding information in images, is by manipulating the least significant bits
(LSB). Essentially the human visual system and its inability to distinguish small
anomalies in a large image, is exploited. By replacing the least significant bit of
every element, we can easily encode a secret message in an image. Consider the
example3 of hiding the letter "A" in a 24 bit image. "A" has the binary value
1000001 and a length of 7. We would need 7 elements to encode our value. As
mentioned before, the cover-object must be larger than our message, thus we
will need an image of at least 3 pixels, since each pixel is made up of 3 values,
expressing either Red, Green or Blue. Consider a random image of 3 pixels,
which in binary may be expressed as:

10000000.10100100.10110101, 10110101.11110011.10110111, 11100111.10110011.00110011

We can encode our "A" into this binary sequence by replacing each LSB:

10000001.10100100.10110100, 10110100.11110010.10110110, 11100110.10110011.00110011

Bits underlined, highlight a replacement of the existing value. Since a bit can
either be 1 or 0, the average replacement ratio should be 50%. Changes to images
by an LSB algorithm will largely go unnoticed by humans, especially if the image
contains many details. Images with monotone backgrounds or gradients will be
bad - as a human would quickly notice the anomalies. Remember that there is
no exact method for a steganalyst to decide the steganographic algorithm used,
if any. He would have to suspect something embedded. In the example of LSB
in images, it would however be trivial to perform a statistical analysis of the bits
in the image. Any even-valued bit will either keep its value or be incremented.
It cannot be decremented. The opposite is true for odd-valued bits. This fact
creates an asymmetry which is easily detected by techniques devised by Dabeer
et. al. [DSM+04]. This statistical anomaly can be overcome with a more
sophisticated LSB technique, named LSB-matching or ±1-embedding. We will
adjust for the statistical anomaly, by increasing/decreasing other parts of each

3Example from: http://www.lia.deis.unibo.it/Courses/RetiDiCalcolatori/

Progetti98/Fortini/lsb.html

http://www.lia.deis.unibo.it/Courses/RetiDiCalcolatori/Progetti98/Fortini/lsb.html
http://www.lia.deis.unibo.it/Courses/RetiDiCalcolatori/Progetti98/Fortini/lsb.html

20 State of the art

pixel accordingly. This technique does however also generate anomalies, but
significantly harder to detect. Cancelli et. al. provides one method, among
others, for this [CDJCB05]. A targeted steganalysis approach to examine the
image example, would be to first assume LSB embedding, or another common
algorithm, and to verify it. A blind approach would be to make statistical
analysis of the stego-object, without assuming any specific embedding algorithm.
Statistical analysis is a very powerful tool for detecting steganography.

2.2 Chaffing and winnowing

Noticeable previous work has been made, to allow confidential communication
without encryption. This work is particularly interesting, as it was made to
highlight the flawed logic in banning strong encryption. In the late 90’s we also
witnessed strong pressure against encryption. USA placed an export ban on
strong cryptographic schemes, but history has shown that it was ineffective. As
the Internet became ubiquitous, strong encryptions schemes did as well, it was
impossible to regulate.

"Chaffing and winnowing", by Ronald Rivest attracted a lot of academic at-
tention in 1998[Riv98]. It is presented as an alternative to both encryption
and steganography. The idea uses the analogy of separating chaff from grain,
a process known as winnowing. StegoBlock is very similar to "Chaffing and
winnowing". To quote Rivest:

As usual, the policy debate about regulating technology ends up being obsoleted
by technological innovations.

This is what we are trying to achieve again with StegoBlock, to be pedantic
in the debate about encryption. Rivest utilizes an authentication method to
achieve confidentiality. The concept is very straight forward: All packets are
authenticated by appending a MAC of the packet. A transformation in the
form of: packet → packet,MAC. Notice that the original packet was not
transformed, it is in the clear. We remember that any message transmitted on a
network may be transmitted in one or more packets. Let us relate this to Alice
and Bob. Before Alice sends her message to Bob, she or her network adaptor,
will break it into one or several packets. Each packet is authenticated by some
secret key she shares with Bob. Rivest proposes a key exchange protocol, like
Diffie-Hellman, for Alice and Bob to agree on a shared secret. Packets are
now authenticated by some secret, known only by Alice and Bob. Bob will
now recompute the MAC and drop any packet with a mismatching MAC. This
is already done by network adaptors today, for instance on wireless networks,

2.2 Chaffing and winnowing 21

where every client receives all traffic, but only accepts traffic intended for that
client. This is the winnowing process.

What is left now, is simply to add chaff. Rivest first proposes that Alice
could send out one or more bogus packets for each "real" packet. A bogus
packet with an invalid MAC. Bob would automatically filter those away, they
would have no influence on their communication. Packets will consist of a se-
quence number, and packet contents. The MAC function would be defined as:
MAC(sequenceNo, packetContents, key). Examples of packets could then be:

(1,Hi Bob,465231)

(2,Meet me at,782290)

(3,7PM,344287)

(4,Love-Alice,312265)

If Alice added chaff, it could be exemplified by:

(1,Hi Larry,532105)

(1,Hi Bob,465231)

(2,Meet me at,782290)

(2,I’ll call you at,793122)

(3,6PM,891231)

(3,7PM,344287)

(4,Yours-Susan,553419)

(4,Love-Alice,312265)

It is easily seen how an adversary will be unable to make the decision which
packet in the sequence, is the correct. In the scheme presented until now,
creating a chaff packet is difficult. It would have to express some meaning.
Chaff packets without meaning would be easily distinguishable from real pack-
ets. For instance: (1,Hi Larry,532105) would be easily distinguishable from
(1,fjSJswer,196845). To remedy this situation, Rivest first proposes to only
transmit a single bit in every packet. The chaff packet should then consist
of the opposite bit. This scheme is computationally hard to break and easily
implementable. Transferring packets of single bits, does however have unnec-
essarily much overhead. Network traffic speed would become drastically de-
creased. There are however non-encryption algorithms for transforming packet
contents into what appears as random characters. Rivest proposes his own "all-
or-nothing" and "package transform" algorithms. This would allow for easy
chaffing of larger packets. We can now amuse ourselves with how we achieved

22 State of the art

confidentiality without encryption. We utilized the existing network adap-
tor process of filtering away unintended packets and generating chaff-packets.
Rivest goes on to emphasize how the chaffing process is independent of knowing
the secret, and how it can be distributed. Alice could even knowingly or un-
knowingly have Charles sit between her and Bob, generating chaff. She could
securely delegate the chaffing process to some third party.

In somewhat the same way, our extension StegoBlock will accept some message
we wish to keep confidential. Then add enough "chaff" around and in between
the letters it consists of, to simply distort the message without altering any
character. The final block contains the message and a whole bunch of chaff. We
add chaff with a PRNG, to which the seed is kept secret between the sender and
recipient. The recipient can easily "winnow" the StegoBlock, by initializing a
PRNG with the same seed, bringing it into the same initial state and remove
chaff. Only by knowing the secret, one can separate the chaff from the grain
(message). We will elaborate much more on our scheme throughout the thesis.

2.3 Cryptography

We employ several cryptographic primitives in StegoBlock, but none of which
are classified as encryption. In particular, we will use random number generators
and hash functions - each belonging to the cryptographic toolbox. These tools
are used in encryption schemes, but are not encryption themselves.

2.3.1 Randomizing algorithms and RNG’s

Being able to generate random numbers is critical. Computers today are deter-
ministic. This is usually highly desirable, as we obviously enjoy the certainty of
arriving at the same result, every time we perform the same calculation. Much
effort has gone into eliminating randomness in computers. But every so often,
our applications need randomization for some reason or another. Unfortunately,
it is then impossible to generate something truly indeterministic on a determin-
istic machine, at least without some indeterministic input. While computers can
process extremely complex calculations, for instance that 274,207,281 is a prime
number4, they are also bad at flipping coins. The best they can offer are Pseudo
Random Number Generators (PRNG), that generate what we could perceive as
random, provided with some seed. If the seed is random, the output will be

4Largest known prime number: https://en.wikipedia.org/wiki/Largest_known_prime_

number

https://en.wikipedia.org/wiki/Largest_known_prime_number
https://en.wikipedia.org/wiki/Largest_known_prime_number

2.3 Cryptography 23

random - or one could say that if the input is random, so is the output. This
is beneficial, because the PRNG algorithm adapts the inputted randomness to
some criteria. The PRNG translates the seed to a sequence of numbers that
can be perceived as random and outputs a pattern. Since it’s the same pattern
followed on each run (with same seed), the numbers outputted are only what
we define as pseudo random.

Pseudo random numbers are good enough for most applications. If one needs a
random sample of words in a dictionary, then a pseudo random number might
be just fine. If one needs a random color for painting a computer desktop - a
pseudo random number will be just fine.

Other applications crucially need random numbers. For instance the setup of
a Secure Socket Layer connection in browsers. Early versions of the Netscape
browser used a PRNG for generating random numbers, needed for SSL initial-
ization. They seeded their PRNG with the concatenation of 3 values: Time of
day, the process ID, and the parent process ID5. For a sophisticated attacker,
these values are quite predictable, and thus the outputs were not random. Even
though the precise values could not be derived, they could be approximated.
This would lower the range of values to try considerably, and brute forcing the
correct value would become computationally feasible:

"Optimizations such as those described should allow even a remote attacker to
break Netscape’s encryption in a matter of minutes." [daw96]

Choosing a seed with enough entropy, if the application requires it, is crucial
for PRNG’s. Algorithms running in environments with I/O access, may cal-
culate random numbers seeded by thermal or atmospheric noise. This raises
complexity, and even requires dedicated hardware at demanding times.

Any PRNG conforming to requirements of cryptography, can be classified as a
Cryptographically Secure Pseudo Random Number Generator (CSPRNG). The
requirements are:

Next-bit test Given the first k bits of a random sequence, the k + 1’th
bit cannot be predicted by a polynomial-time running algorithm, with
probability of success better than 50% [Yao82].

State compromise extensions Should the PRNG’s state, or part of it,
be revealed - it must be impossible to reconstruct any output previous to

5Random number generator attack: https://en.wikipedia.org/wiki/Random_number_

generator_attack#Predictable_Netscape_seed

https://en.wikipedia.org/wiki/Random_number_generator_attack#Predictable_Netscape_seed
https://en.wikipedia.org/wiki/Random_number_generator_attack#Predictable_Netscape_seed

24 State of the art

that state6.

StegoBlock has to permute an array of characters, in such a way that it can
be reversed only if one knows the key - and such that the permutation is one
of every possible permutations. Technically, we need a cryptographically secure
pseudo random number generator, for a randomizing algorithm.

Consider the string s = ”hello”. It has 5! (factorial) different permutations. A
shuffling algorithm executed with input s, must be able to return all 5! permu-
tations with equal probability, before we can begin considering it secure. Ob-
viously such an algorithm has a need for randomness. Let us examine shuffling
algorithms, also known as randomizing algorithms.

2.3.1.1 Shuffling

One of the most commonly known shuffling algorithms, proved to output one of
all possible permutations, is the Fisher-Yates [FIS53] or Knuth Shuffle[Knu68].
The algorithm is very simple, first described by Fisher and Yates - later trans-
lated to a computer algorithm by Donald Knuth. It can be seen in Algorithm
2.17. The seen implementation has complexity O(n).

1 input : s t r i n g [] n
2 begin
3 f o r i from n−1 downto 1 do
4 j ← random in t e g e r such that 0 ≤ j ≤ i
5 exchange n [j] and n [i]
6 end

Algorithm 2.1: The Knuth Shuffle.

In words, it will iterate the entire string, switching the current character and a
random previous one (starting from the end). The string will be permuted and
all possible permutations may be returned. We will not examine the proof, but
in previously referenced materials, this has already been shown.

But one thing is the algorithm being solid on paper. There are several potential
sources of bias to look out for when implementing. Let us examine some, as this
will be very valuable in our later analysis of StegoBlock.

6CSPRNG requirements: https://en.wikipedia.org/wiki/Cryptographically_secure_

pseudorandom_number_generator#Requirements
7Wikipedia, Knuth Shuffle (Algorithm P): https://en.wikipedia.org/wiki/FisherYates_

shuffle#The_modern_algorithm

https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator#Requirements
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator#Requirements
https://en.wikipedia.org/wiki/Fisher–Yates_shuffle#The_modern_algorithm
https://en.wikipedia.org/wiki/Fisher–Yates_shuffle#The_modern_algorithm

2.3 Cryptography 25

Bad implementation It may seem obvious that an algorithm must be im-
plemented correctly, however a developer can make subtle mistakes in even very
simple algorithms. It may look as if results are correct(especially when gen-
erating random strings) - when in fact they are not. Notice in Algorithm 2.1
how j is a number drawn from the pool of remaining characters. One could
make the mistake of drawing from all characters, introducing a bias[Atw07].
When examining this particular mistake, it may look as if we shuffle more than
we should, which intuitively should be better for randomness, but slightly hurt
performance. In reality, shuffling more, hurts randomness badly. Notice that
the wrong implementation has nn possible permutations (we iterate over n,
and swap any of n). A correct Knuth Shuffle would have length(n)! possible
permutations.

Consider running such a faulty algorithm on the array n = [1, 2, 3]. It would
have 27 possible combinations, while it’s a mathematical fact that there should
only be 6 possible combinations. Since 27 is not evenly divisible by 6, we cannot
even assume that the extra outcomes are evenly distributed - there must be some
bias. Paying extreme attention to detail when implementing is critical.

Scaling down state When our shuffle algorithm needs a random number for
swapping characters, it needs a PRNG to do so. As we detailed earlier, this is a
non trivial operation. Most PRNG’s are implemented in such a way that they
provide random numbers in some fixed range. Internally, they may have random
numbers in the range of 0 to 232 − 1 or another fixed range. Applications may
need random numbers in many other different ranges. Let us again consider
our shuffle algorithm. In some setting, it might require some random number in
the interval 0− 15. It will query some PRNG with an internal range of 0− 99.
A common way of fitting the result to the requested range, is to apply modulo
length of requested range. This can produce a very subtle bias, if the internal
state range is not divisible by the requested range. In this particular setting, we
will see numbers 0−3 occurring 17% more frequent than 4−15, simply because
16 does not divide evenly with 100[wik].

One possible solution is to use a PRNG with a dynamic internal range, based on
the request. Another, much more simple, is to not apply the modulo function.
If a number is drawn outside the desired range, request another. Keep doing
this until a valid number is returned - even though this could potentially run
forever.

Some PRNG’s have an internal range of 0−1, but instead return floating points.
It is then common to multiply the result by the requested range, and round.
Again, this can introduce a bias, because of the finite precision of floating points.

26 State of the art

The range of values producible would also be finite. If the number of values in
the requested range, does not divide evenly by the floating point - we would
again see a bias, similar to the one of PRNG’s applying modulo.

Scaling up state A third type of bias, also related to the inner workings
of PRNG’s occur if it has too few distinct states. If it provide numbers in a
range shorter of the requested. A RNG can never be used to securely permute
any object into more distinct states, than it has internal states for. Consider
again the example RNG that is seeded with 32 bits, e.g. can generate random
numbers in the range of 0 to 232− 1. This will be enough to exceed the possible
permutations of 13 card deck, as 13! < 232 − 1. A deck of 14 cards will however
have more permutations. Typically the RNG will "wrap around" and reuse
entropy, resulting in a bias.

2.3.1.2 Well known CSPRNG’s

It is impossible to prove that a sequence of numbers are truly random, but
possible outcomes should appear with equal probability. NIST provides a series
of tests to perform against a RNG, which is a good starting point[AR10]. As
a rule of thumb in computer security, one should use existing tested primitives,
instead of inventing/implementing their own.

A random number generator is either secure or not. If considered secure, one
does not have to worry about the internal workings and potential bias we just
iterated. A well known cryptographically secure PRNG is the Blum-Blum-Shub
(BBS) PRNG[BS86]. BBS is a stream cipher and given some short input, it
will generate a potentially infinite stream of pseudorandom output. BBS comes
with a security proof, however now criticized for its impractical performance
limitations[SS05].

Another approach is to use AES-CTR, AES in Counter mode. Similar to BSS,
it may provide a potentially unlimited number of random bits, as it is a stream
cipher. However according to NIST, one will have to reseed after 232 outputted
bits, to ensure an adversary has a low advantage of predicting the output. It
is like a sponge, we may soak it, squeeze out some random bits, but eventually
run dry.

2.3 Cryptography 27

2.3.2 Integrity

When sending messages securely, we will also need to ensure message integrity.
Without integrity checks, an adversary may unknowingly, to the recipient, alter
a message. The adversary may not be aware what he changes the message
to, but his goal may simply be to obfuscate communication. One may falsely
believe that a message unreadable by adversaries, for example if encrypted, is
also safeguarded against tampering. Consider the theoretically perfect secure
one-time-pad scheme8. Should an adversary change any bit of the cipher text,
some plaintext bit will also change. Without integrity checks, the recipient will
have no means of telling.

It is fairly simple to ensure integrity of a message. In fact, we already touched on
this subject in Chaffing and Winnowing. Here we described how a MAC function
was used to authorize messages, allowing only the recipient to successfully decide
which messages are chaff and which are winnow. We calculated a hash of our
message, only the intended recipient could recalculate that hash.

A hashed MAC function is a cryptographic primitive that accepts a message and
a secret key as input. It is a one-way function, it returns a digest, a fixed size
output often much shorter than the input. The digest will change according to
the input, even a small input change will affect the digest greatly. See Figure 2.4
where we MD5-hash the values StegoBlock and stegoblock. Each input results
in different digests, but of equal length.

Given hash functions one-way nature, it is not possible to reverse the process and
calculate the original message from a digest. It is however possible to have hash
collisions, the scenario where two or more different inputs generate the same di-
gest. This is generally bad, as we can then no longer rely on the digest coming
from the claimed message. There is then no way to tell if a certain message
was altered or not. Depending on the strength of hash function, this is more or
less common. An example of a broken or insecure hash function could be MD5,
where even a normal household PC may calculate a collision. First examples of
limited collisions were reported in 1993 By Den Boer and Bosselaers[dBB93] and
in 2005 it was shown how to generate collisions within minutes on a standard
notebook by Vastimil Klima[Kli06]. NIST currently (since August 5, 2015) rec-
ommends using a minimum of SHA-256 hashing function for any usages[NIS15].

When hashing inputs very similar, for instance Hello and hello, digests should
also be very different. This is known as the avalanche effect, and is a result of
good randomization. Without the avalanche effect, cryptanalysis would enable
predictions of future digests. The Strict Avalanche Criterion states that if one

8One Time Pad: https://en.wikipedia.org/wiki/One-time_pad

https://en.wikipedia.org/wiki/One-time_pad

28 State of the art

HASHStegoBlock 2cf730fd8cb16eef0a1e4929a936fb0f

HASHstegoblock c98c7963359577d5694d335aa167c83c

Figure 2.4: Example hash function, MD5

bit changes, every digest bit must change with a 50% probability. The avalanche
effect is important in hash functions, but we would also like this trait in our
stego block.

2.3.3 Men in the middle

With cryptography we may securely encrypt messages with encryption schemes.
We can also ensure their integrity after sending them over an insecure network,
by hash functions. But unfortunately, we can still not be safe against sophisti-
cated adversaries. Let us consider an increasingly popular attack vector: The
man in the middle. When two parties communicate, they may use strong en-
cryption to ensure privacy. Without proper authorization, for all they know,
they could be having a private conversation with the devil.

Let us consider the key exchange protocol by NeedhamSchroeder[NS78]. This
is a quite old and tested protocol, ensuring that two parties may arrive at the
same secret, over an untrusted network. The revised protocol is part of popular
authentication protocol Kerberos, and practically used for devising a shared
secret used for either asymmetric or symmetric encryption.

The protocol was initially executed as in Listing 2.2. We will use it as an example
of a Man in the middle (MITM) attack. It uses cryptographic primitives like,
nonces and public keys. We will not explain these further than the following: A
Nonce is a value(integer) that is generated and may only used once. A public
key is the publicly available part of a public/private key pair, we already touched
on this matter in our section on Public Key Steganography. A public key is not
to be kept secret, as opposed to its private key counterpart.

1 A → B : {NA, A}pk(B)

2 B → A: {NA, NB}pk(A)

2.3 Cryptography 29

3 A → B : {NB}pk(B)

Listing 2.2: Needham-Schroeder PKE - 1978 version

In Step 1 of the Needham-Schroeder PKE protocol, we have Alice generating
and sending a fresh nonce to Bob. Before sending, she encrypts her message
with Bob’s public key. The Nonce ensures message-freshness (avoids replay-
attacks), and encrypting ensures that only Bob can decrypt the message with
his private key. In Step 2, Bob replies with the same nonce received from Alice,
but also with one he generates himself. His response is encrypted with Alice’s
public key. Lastly in Step 3, Alice replies Bob with his nonce, also encrypted
with his public key.

This dance of nonces ensures to each party, that the other party knows the
corresponding private key. How else would the counterpart be able to reply the
nonce? After Step 2, Alice must of course compare NA received from Bob, to
NA she sent. In case of a mismatch, the handshake is terminated. Bob does the
same after Step 3. If the handshake completes, they may talk privately.

But consider now the case where an adversary sits in the middle of Alice and
Bob. Alice does not realize Eve is malicious, and Eve may use then information
obtained to start a conversation with Bob. Bob thinks he speaks to Alice, but
unknowingly speaks to Eve as well.

1 A → E : {NA, A}pk(E)

2 E → B : {NA, A}pk(b)
3 B → E : {NA, NB}pk(A)

4 E → A : {NA, NB}pk(A)
5 E → B : {NB}pk(E)

6 E → B : {NB}pk(B)

Listing 2.3: Needham-Schroeder PKE - MITM attack

We see that Eve sits between Alice and Bob and exploits the fact that the
protocol wrongfully assumes that whoever created NA is also A, in Step 4.
Because it is not checked, Eve exploits A to start a private conversation with
Bob, posing as Alice. The MITM attack is a result of not realizing that both
parties may be assumed by the adversary. This specific attack on the Needham-
Schroeder protocol was discovered and fixed by Lowe[Low95]. The fix is simply
to include authorization in Bobs reply in Step 3, which Alice must then verify.

As we are also sending messages over insecure networks with StegoBlock, we
must keep this attack form in mind, and protect accordingly. In a similar way,
we must include some form of authorization of our emails, to ensure they are in
fact from who they claim. Observe Listing 2.4 where we see a similar attack on

30 State of the art

the email protocol. Notice that this attack is only possible if Alice trusts Eve,
and if Bob believes that Eve is in fact Alice, and that each pair have exchanged
stego-keys with each other. Eve must be present in the key exchange. We see
how Eve in Step 2 relays an email from Alice, exchanging message S with S′ to
Bob, where she claims to be Alice.

In the email protocol, the sender is expressed in the message header. Anyone
sending an email may claim to be anyone. For a standard email, anyone may
set or change the sender header - the recipient can thus never trust this field.
Because the attack is so hard to carry out, StegoBlock offers no special remedy,
but we will consider the underlying sender-spoofing problem with basic emails.
Solving this, would also solve the attack on StegoBlock.

1 A → E : {S,A}sk(AE)

2 E → B : {S′, A}sk(EB)

Listing 2.4: Email with StegoBlock

2.3.3.1 Sender Policy Framework

Luckily, email spoofing is an already solved problem. The protocols are avail-
able, at least. The Sender Policy Framework (SPF) provides necessary tools.
RFC7208 describes the details, and has been experimentally published since
2006[rfc14]. SPF enabled email recipients to verify, if a particular email is in-
deed from the domain it claims to be. If the SPF check passes, the recipient
will know that mail from alice@doe.com was in fact sent from doe.com. He will
then have to trust doe.com that it was also from Alice, and not some other user
at doe.com.

SPF requires setup at the Domain Name System of the domain, only the
rightful owner should have access to DNS records of any domain. In a TXT
record, the owner may grant access to certain computers, authorized to send
email on its behalf. An example could be toftegaard.it. IN TXT "v=spf1

ip4:2.104.2.59 a -all". A receiving server can then verify if the delivering
server of an email from toftegaard.it, was in fact the one with IP 2.104.2.59.

Notice that SPF can only verify the sending server, not the user. Should Alice
try to send an email from bob@doe.com, SPF would not catch it. This check
is, reasonably, left to the doe.com server.

2.4 Summary 31

2.4 Summary

Steganography is a very old art form, dating back to ancient Greece history.
Today it is used heavily in its derived watermarking form, in the digital copyright
industry.

In steganography, we will usually seek to hide the message m, in a cover-object
c, resulting in a stego-object s. We may also have a stego-key k, and some
schemes require no cover-object at all. The good steganographic transformation
will make an adversary, human or computer, unable to distinguish a set of cover-
object from stego-objects. Some cover-objects are better suited for embedding
than others, based on how much redundancy they contain. Images typically hold
more redundant data than text. The human visual system is quite forgiving, it
might not notice small changes to the big picture.

Steganography, similarly to encryption, comes in different forms: Pure, private-
and public key. In its pure form, security is in the secrecy of the embed and
decode algorithms. No stego-keys are used, allowing easier initialization, but is
fair to assume that adversaries over time eventually will learn the algorithms.
Pure steganography typically also use no seed or nonce, meaning that there
is nothing to introduce entropy between messages. Once adversaries learn the
algorithms, they can decode all past and future stego-objects.

We may turn to private key steganography for remedy. In this form, a stego-key
introduced. To initialize a protocol, parties must know the algorithms but also
a stego-key, in advance. The key essentially allows parties to convert a large
secret, the message, into a smaller and more handy secret, they key. Combined
with a seed, it introduces entropy between messages. Should an adversary learn
one message, he may not be able to learn others. To initialize a private key
steganography protocol, stego-keys must be exchanged and we may do so in any
way we see fit. For instance with a face-to-face meeting, or digitally with a key
exchange protocol.

To avoid key exchange protocols or meetings, we can also use public key steganog-
raphy - which in the described versions are merely combinations of pure steganog-
raphy and asymmetric encryption. The example is to encrypt some message,
with an asymmetric encryption scheme to arrive at some cipher text. An em-
bedding function may accept any kind of input, so we simply feed it the cipher
text.

We learned that private- and public key steganography both comply with Ker-
ckhoffs’s principle of only keeping the key a secret. Should the key to some
message be stolen, it will not cause trouble for other messages.

32 State of the art

Analyzing the security of steganographic schemes is a job for steganalysis. As
there are so many different way to hide information digitally, we cannot present
a silver bullet for analyzing stego-objects. A steganographic system is already
insecure if an attacker is able to prove the existence of a secret message, it is in
the nature of steganography to not be detectable. When analyzing objects, one
generally look for unusual patterns, anomalies, redundant or invalid data.

We looked at very few cryptographic primitives, simply because we do not need
that many for our StegoBlock system. Pseudo random number generators will
form our security backbone. PRNG’s translate an input seed to a sequence of
numbers, that can be perceived as random. The seed deterministically brings
the generator to some internal state. This is a crucial property for StegoBlock,
as this allows for future decoding, if one knows the seed. The Knuth-Fisher-
Yates shuffle algorithm was examined, along with a CSPRNG it becomes a very
nice fit for our shuffling needs. It guarantees that its permutations belong to
the set of all permutations with equal probability.

Integrity checks of messages ensure that they were not altered since creation.
Hash functions allow these kind of checks, by transforming messages of arbitrary
length to fixed length (often shorter) digests. Some hash functions are better
than others, measured by the difficulty of producing collisions. As of writing,
algorithms of at least SHA-256 are recommended for any use.

Even though we have secured a message and its integrity, we learned that a clever
adversary, working as a man in the middle, may still cause trouble. In short,
if parties blindly trust each other, a malicious client may abuse communication
with one client to fool another.

Lastly, we visited the lesser known alternative to steganography and encryption,
chaffing and winnowing. None the less of much interest. It was devised in
late 90’s, were strong encryption scheme export was banned in USA. It was
shown how simple authentication, could be used to achieve the same goals as
strong encryption, and thus how technologic oppression will be obsoleted by
new technology.

Chapter 3

Problem analysis

Ultimately we will handle the problem of allowing people to communicate se-
curely. Securely refers to the condition where no one but the intended recipients
may read and understand their messages. The terms private or confidential are
synonyms in this topic. To achieve privacy, we need a privacy- and transmission
solution as illustrated in Figure 3.1. We have a sender and a receiver. The
sender makes his message private with some tool before transferring it. It is
then transferred, by some third party - as the sender and receiver are not in
proximity. The message will then arrive at the recipient and only he is able to
extract the message before reading it.

Sender Make private

Transfer

Reveal secret Recipient

Figure 3.1: Communication process

34 Problem analysis

3.1 Confidentiality

From the theory we just assessed, we learned of 3 possible research areas that
may provide secrecy: Encryption, chaffing and winnowing and steganography.
Use Figure 3.2 to assist the following walkthrough.

Encryption is the classical choice for privacy or secrecy. The area is exten-
sively researched. Encryption promises to keep messages private, like a digital
treasure chest with padlock, for messages instead of jewels and gold. It comes
in two forms: Symmetric and asymmetric. In the symmetric form, we operate
with a single cryptographic key. As with the padlock on the treasure chest, we
must use the same key to lock and unlock. The key is a shared secret between all
authorized parties. They must know the key in advance, only with the right key,
the message can be decrypted. Asymmetric encryption instead operates with
cryptographic key pairs. Keys are mathematically bound to each other, in such
a way that one may encrypt and the other decrypt. This is highly convenient,
as parties do not need to transfer a secret key, as with symmetric encryption.

For symmetric encryption we may consider options like AES, Blowfish, RC4 and
many others. All are good algorithms for encrypting a message and keeping it
secure. Popular asymmetric encryption schemes are RSA and Diffie-Hellman
Key Exchange, amongst others.

Encryption is, as mentioned, the most used technology for keeping digital mes-
sage private. We already mentioned solutions like HTTPS Everywhere and
Let’s Encrypt, that advocates for encrypting all web pages by default. We have
also seen how instant messaging platforms move in the same direction, by offer-
ing end-to-end encrypted conversations. All these examples use some form of
encryption.

To verify or break an encryption scheme, we have cryptanalysis. It is the process
of studying or analyzing some cryptographic scheme, with the intend of finding
flaws. It covers mathematical analysis to discover algorithmic weaknesses, but
also side channel attacks to reveal physical implementation weaknesses. For
example, by measuring power consumption or timing results, a clever adversary
may reveal the internal operations and decisions of the algorithm. No encryption
scheme will become popular without the scrutiny of security experts - effectively
performing cryptanalysis.

But we will however seek other options. We quickly rule encryption out, be-
cause as advocated in the introductory chapter, we are beginning to see a trend
towards encryption regulations. Some governments ban it completely, allow-

3.1 Confidentiality 35

Privacy

Steganography

Public
key

Private
key

Pure

Chaffing
winnowing

Encryption

Asymmetric

DH
PKE

RSA

Symmetric

RC4BlowfishAES

Figure 3.2: Privacy solutions

ing them to keep an eye on people. You might end in jail, simply for using
applications with encryption.

Chaffing and winnowing by Rivest is an alternative to encryption, devel-
oped in times with similar regulations. Using an authentication mechanism,
we may achieve privacy as well. The chaffing process is simple, and obfuscates
the "real" packets from bogus. Only the recipient is able to winnow the chaff
packets away, as he is the only one capable of correctly authorize packets. We
may even delegate the chaffing process to some third party, or a third party may
do it without our knowledge.

Only prototypes of chaffing and winnowing systems have been implemented, it
has not taken off as a mainstream privacy ensuring solution. This is most likely
because encryption regulations seized at the time, and encryption deemed supe-
rior. The system is stand alone, it does not extend other specific communication
protocols. It follows that both recipient and sender needs special applications to
communicate with chaffing and winnowing. If one party, for some reason, is un-
willing to install and use it, he simply cannot participate in any communication
at all.

Steganography is the last of the major research area of privacy or confiden-
tiality. As we described earlier, it comes in 3 different forms. Pure, private- and
public key.

In the pure setting, parties will need to only know the schemes encoding and
decoding function. But this is weak, as once an adversary learns them, he may
read all past and future messages. Over time, it is likely that he will learn them.
Pure steganography violates Kerckhoffs’s principle of only keeping keys secret -

36 Problem analysis

not algorithms. Keys are easily changed, algorithms are not.

By introducing a key to the scheme, we arrive at private key steganography.
As with symmetric encryption, a key is used for encoding and decoding. The
same stego-key, a shared secret, one they need to exchange in advance, as an
initialization step.

The theory we found on public key steganography is a combination of asym-
metric encryption and pure steganography. As with asymmetric encryption, a
key does not need to be transferred securely between parties in advance. The
fact that any message may be transferred with pure steganography, and that a
message can be any sequence of bits is exploited by first encrypting the message
and then encoding the cipher text. Cleverly enough, only the keys and how to
obtain they keys must be known in advance.

Pure steganography violates Kerckhoffs’s principle, public key steganography
does the same, in a way. It also employs encryption, which we previously ruled
out due to regulations.

To achieve privacy or confidentiality in our solution, we will explore private key
steganography.

Using private key architecture has key exchange implications, but has also shown
to benefit another requirement: Plausible deniability. We wish to let users
plausibly deny authoring any sent message.

Deniable encryption is plausible deniability implemented in encryption. We
already ruled encryption out, but this topic has interesting aspects. It is achieved
when an adversary is unable to surely prove the existence of some plaintext
within some dataset. For example, the Rubberhose file system1. The idea
behind is quite simple: Initialize the filesystem by writing random bits to the
entire hard drive. Then allocate partitions in such a way that their sectors are
randomly distributed on the entire hard drive. Any future write to disk will we
encrypted, and thus indistinguishable from the random bits. Without the key
to unlock the system, the partition could fill the entire disk as well as nothing
at all. There is no way for an adversary to tell without knowing the key. If
the user is compelled to give up some key, the adversary will have no means
of identifying if it is a wrong key or if there is simply no partition. We can
implement plausible deniability in much the same way in steganography.

Assume that some adversary compels both sender and recipient of some stego-
object to give up their keys. It may be plausible enough that there is no message

1Rubberhose file system: https://en.wikipedia.org/wiki/Rubberhose_(file_system)

https://en.wikipedia.org/wiki/Rubberhose_(file_system)

3.2 Transmission 37

embedded within the object, but if both parties provide different keys, and if
those keys decode different messages - the adversary will know. It is suspicious
that the result of the same stego-object is different. As it is also suspicious
when a criminal investigator, asks two suspects where the other was on some
date, and they answer differently. If parties agree on some fake key in advance,
along with the real key, they may confidently disclose the fake key and it will
be plausible that their stego-object does not hold a message. This is easier with
private key steganography, as parties can freely chose any key, as long as it is
the same. The decoding result will be the same.

Our privacy ensuring mechanism will be an implementation of a private key
steganography scheme. The field proposes tools for satisfying two sides of the
CIA triad: Confidentiality and integrity. Steganography offers secrecy, which
causes integrity. If an adversary is unable to detect a message, he cannot com-
promise its integrity.

Our transport solution offers the last side of the triad, availability. As we
mentioned numerous times, there are vast methods for hiding data digitally.
Before choosing a specific scheme, we will consider the transportation solution.
Steganography may hide everywhere, and we already learned that some cover-
objects or vessels are better suited than others. Thus we will yield the best
overall result, by considering both in relation to each other.

3.2 Transmission

Our transmission solution must ensure a high level of availability. It is the
driving force behind creating a digital solution. The Internet is what connects
people today. The Internet has connected people in a way never seen before. It
has become ubiquitous, and it is where our final solution must operate. Figure
3.3 shows popular existing communication platform categories. There are so
many different services belonging to each. It is fair to say that internet users
will communicate with each other, using at least one service belonging to these.
We could develop our own standalone system, and we would have full technical
control of our system. We would be independent of other services, and have the
best technical launch pad.

However, by building a system from scratch, we also start with zero users. We
wish for our system to become popular, and if possible we would like to take
advantage of other systems success. If we can offer our solution as an extension
to an existing service, it might be easier to reach a large user base. There might
also be less work, as we can potentially extend existing frameworks and/or user

38 Problem analysis

Existing platforms

Social
networks

Bulletin
boards

EmailChatroomsInstant
Messaging

Newsgroups

Figure 3.3: Popular Internet communication platforms

interfaces - user interfaces that will already be familiar to existing users.

Newsgroups on usenets is an old forum-like platform. It can be thought of as
a forerunner to todays bulletin boards on HTTP. Users may discuss topics in
designated groups. In contrast to bulletin boards, usenet is a distributed system
- making it hard to take down or manipulate. In theory, anyone may set up a new
server and subscribe to other servers news feeds. The decentralized structure is
certainly positive. We could choose to hide our communication in existing or
new groups. Some groups are even reserved for binary content, where we could
upload images or videos with embedded messages.

But despite a steady increase in traffic, usenets are a niche for the tech savvy.
It is doubtful that the average internet user even knows of its existence. Using
usenets require special software, special in the same way as browser for HTTP.
But today, operating systems ship with browsers build in, and it is fair to assume
that people know how to operate them. We will look elsewhere, for a popular
service we may extend on.

There are many bulletin boards and fora available online, some more popu-
lar than others. Users may create threads or posts for others to comment on.
They are effectively newsgroups through HTTP. Many offer extended markup,
which is great for steganography. Some allow users to post images, and some
even require images with optional text. As mentioned, images are great for
steganography because of their high redundancy. We could easily imagine a
steganographic solution based on posting pictures online, where only the inau-
gurated would know where and how to extract their messages. However such a
solution would quickly be noticed by the operators, if it became popular. We
would like to propose a solution that is structured, robust and decentralized.
Storing messages secretly in bulletin boards will not provide that.

Instant messaging has become increasingly popular. Applications like ICQ, Win-
dows Messenger and Jabber have all been very popular. Today we have Viber,
WhatsApp and more, but the trend seems like a merge between social networks
and instant messaging. Twitter offers "Direct Messages" and Facebook has Mes-
senger. While their user bases are huge, and extensions are becoming possible -

3.2 Transmission 39

they own their platforms and control them completely. These companies profit
on their ability to listen in on their users chats. It is unlikely they approve of
our intentions, that go straight against theirs. It is also inhibiting that com-
municating parties must be online simultaneously. We require something more
robust.

We will instead extend traditional emails. They are the digital version of tra-
ditional mail. They have become so common, that an explanation is not even
necessary. Anyone may send an email, anyone can setup an email server. Emails
have a distributed architecture and are standardized for interoperability. Even
though emails may not be the preferred communication form of many, they
most likely have an email address as a fallback solution. Emails are created
and viewed by an email client, where we can have extensive control of what is
sent out in the other end. There are many different email clients, and anyone
may create their own. Emails consist of data and metadata, and support ap-
plication extensions by special headers. As long as we conform to the protocol
requirements, we are free to incorporate steganography as we like.

The distributed architecture, its popularity and extensibility make us chose to
develop our solution with email as transportation

3.2.1 Emails

Emails are a very common digital communication form, to many its preferred.
Emails can hold rich data and files, there are great contact book functionality
available. Most companies integrate emails deeply in their IT setup. We believe
that allowing users to keep using email, and offer our solution as an extension,
is the best way to ease users in and make it popular. An application that alters
emails in such a way, that users may still use emails entirely as they used to,
and still send emails to recipients not using our application. Recipients outside
the scheme should simply ignore any extra information in emails. We offer
our extensions as a superset to ordinary emails. This way, users keep using
their existing work flows, their existing contacts they simply need to install an
extension.

An emails is obviously just some piece of data, structured to comply with the
Internet Message Format, defined by RFC 5322[rfc08]. Email semantics are
very similar to how physical mail works. You write a letter and put it in the
mailbox. After some time, the recipient receives the letter by the mailman, if he
is not home - it will remain in his mailbox. Similarly, emails can be written and
handed over to a digital mailman, for later (but typically fast) delivery. The
recipient does not need to be online to receive it, in contrast to instant message

40 Problem analysis

Sender

Mailman
(server 1)

Inbox
(server 2)

Recipient

SMTP

SMTP

IMAP/POP

Internet

Figure 3.4: Email transfer chain

protocols.

For this thesis, it is considered common knowledge how to compose emails,
create email accounts at service providers and sending them. Instead we will
briefly look into how emails are handled after they are handed to the "mailman"
or service provider. Emails consist of headers and a body. Metadata and data.
The body holds the message, headers hold information like sender, recipient,
subject and other fields important to the transfer and readability.

Transfer By choosing emails as vessels for our solution, we may draw on a
mature infrastructure. To understand how, we will briefly look at how emails
are transferred from sender to recipient, and which protocols take part. We will
not detail thoroughly on the matter, or go into how protocols are constructed.

When an email is composed, the client hands it to a email service provider
through the SMTP protocol. In a way, the client says: "Mailman, please
deliver this email for me". After the email is delivered from sender to the service
provider, it may travel many hops before finally arriving at the recipient. An
example can be seen in Figure 3.4. The sender speaks with "server 1" that
acts as the mailman. Typically the sender has an account at this server. The
recipient may use a different provider, his inbox is at least hosted on a different
server, "server 2".

Communication between involved parties follow different protocols. The sender
uses SMTP to hand it over to the mailman, the mailman forwards it to the inbox
with SMTP as well. The strength of standardized protocols shines through, as
we can have decentralized email systems that all communicate together.

3.3 StegoBlock 41

SMTP2 is short for Simple Mail Transfer Protocol, and is in fact simple. The
initiating party establishes a connection to target, then transfers the email.
Header metadata enables further processing. Notice that the last link between
the inbox server and the recipient does not use SMTP. The role of mailman
and inbox is acquired by servers. Servers we may assume are always available.
The recipient however can be mostly offline, or behind some firewall or NAT3,
using SMTP becomes impossible, as a connection is probably rarely possible to
establish. Instead the connection direction is reversed. The recipient checks his
mailbox at own will. Since mails are now retrieved, the direction is reversed,
SMTP cannot be used. Instead we turn to either POP or IMAP.

POP4 is the Post Office Protocol, of which the latest standard is 3. It is simple,
emails can be requested and transferred to the client application. IMAP5, In-
ternet Message Access Protocol works similarly but offers much more complex
queries. For instance, email bodies can be requested with out also receiving
attached files. This allows for saving bandwidth and download time.

3.3 StegoBlock

As we have now chosen great methods for ensuring confidentiality, plausible
deniability and transmission - we can return to decide on the boundaries for
our steganographic scheme. In our steganography section we already noted how
one might embed secret information in the markup of digital documents. Spe-
cial markup that will not be rendered, but is still extractable by the initiated.
Mutual for all these embedding schemes are that they belong to pure steganog-
raphy. Once they are revealed, messages will be compromised and authors must
devise a new scheme.

But if we do not hide our message, is it then steganography? We will use
elements of steganography as an alternative way to achieving confidentiality.
We will not hide the fact that there might be a secondary message embedded.

We will present a system for hiding steganography in plain sight.

To minimize user interaction, we will generate our own cover-objects. Having
users chose their own cover-objects would require steganographic knowledge,
incompatible with our vision of attracting all kinds of users. Context-free gram-

2RFC SMTP: https://tools.ietf.org/html/rfc5321
3NAT: https://da.wikipedia.org/wiki/Network_Address_Translation
4RFC POP3: https://tools.ietf.org/html/rfc1939
5RFC IMAP: https://tools.ietf.org/html/rfc3501

https://tools.ietf.org/html/rfc5321
https://da.wikipedia.org/wiki/Network_Address_Translation
https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc3501

42 Problem analysis

mars is a research field that describes how to generate text mimicking natural
language. This would be useful for tricking adversaries to believe our generated
text is in fact the primary message, when in fact the embedded message is pri-
mary. Context-free grammars in their current state, will not fool humans. It
will still look artificial, especially when embedding longer messages. Instead we
propose a much simpler solution.

We will generate a text block of finite length, with fixed characters of some
alphabet to meet some target distribution. We will use steganography to hide
a message in a block of text, hence the name StegoBlock. The block can be
inserted in an email as metadata, in the email headers. With a stego-key,
block must then be permuted in such a way that reversal is only possible by
knowing the key. We will achieve plausible deniability by ensuring that all
outgoing emails have our special header with our block. Adversaries will be
unable to tell of a block has a message embedded or not - stego-objects will be
indistinguishable from cover-objects.

The idea of an isolated block with some secure message, with emails nicely. Of
course users must still write some other message in the email- body or subject,
but this is tolerable. We can secure the block with steganography, instead of
cryptography, thus working around regulations. To realize our solution, we
would need to create an application for composing, viewing and sending emails
- or at least extend an existing application.

The Thunderbird email client by Mozilla allows extension for just exactly these
needs. We will extend Thunderbird with the ability to compose and view sec-
ondary, secure messages, embedded in email headers such that even non initiated
recipients handle them gracefully.

3.4 Summary

We broke down the problem of allowing people to communicate confidentially,
into separate solutions for transmission and securing. Of the areas encryption,
steganography and chaffing and winnowing, we deemed steganography as the
most promising for our needs. Especially because we ruled the entire encryption
area out up front, due to possible regulations in some countries. Of the different
steganography forms, we chose to implement a private key scheme. Primarily
because the pure form violates Kerckhoffs’s principle, because known implemen-
tations of public key uses asymmetric encryption, and because a single key is
easier to work with plausible deniability.

3.4 Summary 43

We chose emails as transport vessel for our steganography. Emails are widely
accepted, almost everyone has an email nowadays. They are easily extended
and may contain both text, html and binary attachments, making them perfect
for steganography. Specifically we chose to implement a block of text, that may
or may not contain some secondary message.

44 Problem analysis

Chapter 4

Design

We will now elaborate on the specific component design, needed for StegoBlock.
Based on the previously treated theory, we have established the need for plausi-
ble deniability, and steganography as an alternative to common encryption. We
will now detail more on the specific requirements for a solution meeting those
needs, and keep strong adversaries at the gates.

In brief, StegoBlock is a plugin for the Thunderbird email client, it allows users
to enter size limited secondary messages through a UI extension. Secondary
messages will be appended randomly generated noise, and permuted. The per-
mutation can only be reversed by knowing a stego-key. The secondary message
is embedded into seemingly innocent emails, by a special email header. Thun-
derbird is a mail/messaging application, developed by Mozilla that shares a large
code base with Firefox from the same organization. StegoBlock is an extension
for this application - we will be using the terms add-on, extension and plugin
interchangeably throughout this thesis.

At an early stage, we made the decision to integrate with a common email client.
We could also have chosen to create a complete stand alone solution or extend
some other existing platform. The motivation behind our choice is an aim for
rapid spreading and we firmly believe an email extension will enable just that.
We have a strong desire to make it as easy as possible, for users to pick up
StegoBlock and start sending secret messages.

46 Design

We also made the decision to separate our stego-object from the rest of the
email. We will integrate our solution by adding our block, as an email header.
It is critical that clients without StegoBlock should handle StegoBlock emails
gracefully. That means they should simply ignore the relevant headers, and
otherwise process the mail as normal. For StegoBlock, we need to transfer
two fields: Block and seed. Fortunately, RFC 5322 details application specific
headers. Headers that are specific to some application, they may be handled by
a specific application and ignored by others. Application specific headers must
have the "X-"-prefix.

4.1 Components

It is clear that the most work and challenge will be in designing the stegano-
graphic algorithms. However our email client extension also needs several dif-
ferent components, many for allowing easy user input. These must allow users
to input, view and configure StegoBlock. Most components are rather simple,
thus design description will be brief.

4.1.1 Composing

Email clients typically come with an interface for composing emails. We would
need to extend such interface with additional fields for entering secondary mes-
sages. This could essentially be a text field. Emails bodies allow HTML, but
this is of no importance to our requirements. Since secondary messages are size
limited, it would be ideal if the field could display the remaining char count and
disable further entering when the limit is met.

4.1.2 Viewer

We must be able to decode and visualize emails with StegoBlock headers. In
some way, we must be able to read the headers of the selected email, try to
decode it and visualize it to the the user.

4.1 Components 47

4.1.3 Key store

Since the whole solution is based on private key steganography, it is most con-
venient to the user if his keys can be stored, so he does not need to remember
and enter them manually. A store for keys are required, it should however be
easily purgeable in case it is quickly needed.

4.1.4 Encoding/decoding

When an email is composed and the user sends, we must be able to hook into
the sending process and encode the secondary message. We must also be able to
generate a fake message, if none was entered. Previously mentioned components
are merely plain user interface logic, our encoding/decoding logic is where we
will need steganographic and cryptographic primitives.

We described our wish for plausible deniability earlier. To provide users plau-
sible deniability to any sent message. Emails sent with StegoBlock will always
contain a stego-object among the headers. If a secondary message is not chosen
by the user - one will be chosen at random. Because of this, users can always
claim not embedding a secondary message. The adversary will have no means of
distinguishing a real stego-key from a fake. The encoded block will not reveal if
any message is embedded or not, which we will later prove with a steganalysis.

For StegoBlock, we will use a PRNG for scrambling the message and appended
noise. We rely on the assumption that our chosen PRNG is in fact crypto-
graphically secure. StegoBlock is written in JavaScript - a language designed
primarily for browsers. Since every browser may have its own implementation
- such an assumption may not hold. Thunderbird, the only place where Ste-
goBlock actually runs, is based on the shared code base between all Mozilla’s
products (Thunderbird and Firefox). It comes with a promise of being able to
generate cryptographically secure random numbers.

The StegoBlock algorithms for encoding and decoding are represented as pseudo
code in Algorithm 4.1 and Algorithm 4.3. We detail the functions encode, gen-
erateNoise and decode. encode depends on Algorithm 4.2 for generating
a string of noise adhering to the statistics of FREQUENCY_ALPHABET,
with respect to the plaintext. The full application consists of several other files
and functions, but these are essential to the steganography of StegoBlock. While
the algorithms heavily rely on a random number generator, they are not, and
do not rely on any encryption algorithms. If encryption is disallowed, these
algorithms will pass.

48 Design

4.1.5 Encode

1 input : s t r i n g [] p l a in t ex t , s t r i n g seed , s t r i n g key
2 output : s t r i n g []
3 begin
4 i f p l a i n t e x t . l ength > MAX_PLAINTEXT_LENGTH
5 throw ERR_PT_TOO_LONG
6
7 csprng ← new csprng (seed + key)
8 pla intextLength ← l e f tPad (p l a i n t e x t . l ength or random 3 chars , ’

000 ’)
9 no i s e ← generateNo i se (p la intextLength + p l a i n t e x t)

10
11 block ← pla intextLength . concat (p l a i n t e x t) . concat (no i s e)
12 s h u f f l e (csprng , b lock)
13
14 return block
15 end

Algorithm 4.1: Encode.

1 input : s t r i n g [] p l a i n t e x t
2 output : s t r i n g []
3 begin
4 no i s e ← s t r i n g []
5 d i c t ← new Dict ionary
6
7 foreach char ptc in p l a i n t e x t
8 i f d i c t [ptc] not i n i t i a l i z e d
9 d i c t [ptc] = 0

10 d i c t [ptc]++
11 end
12
13 foreach char c in FREQUENCY_ALPHABET
14 charCount ← round (MAX_BLOCK_LENGTH / 100 ∗ FREQUENCY_ALPHABET[c

])
15 charCount ← charCount − d i c t [c]
16
17 i f charCount < 0
18 charCount = 0
19
20 foreach char in charCount
21 no i s e . push (c)
22 end
23 s h u f f l e (no i s e)
24
25 return no i s e
26 end

Algorithm 4.2: GenerateNoise.

Let us first examine our encode algorithm. Refer to Algorithm 4.1 for pseudo
code, Figure 4.1 for a sequence diagram and Figure 4.2 for a visual representation
of an example shuffle of the block. The example shuffle is performed with a
considerably smaller max block length than usual, for clarity. Encode accepts
a plaintext to be encoded, along with a seed and stego-key. When a user has
composed an email and scheduled it for sending, this function will be run. Either
the entered StegoBlock message or a randomly generated string, if no message

4.1 Components 49

User StegoBlock CSPRNG

Encode(pt, seed, key)

seedRandom(seed + key)

generateNoise(plaintext)

noise
shuffle(csprng, block)

csprng.get(0, i)

j
block.swap(i, j)

for i from plaintext.length− 1 downto 1for i from plaintext.length− 1 downto 1

block

Figure 4.1: Encode, sequence diagram.

50 Design

0 0 5 h e l l o t p 5 b y t r 1 a

Step 0
MessageLength Message Noise

0 0 5 h a l l o t p 5 b y t r 1 e

Step 1 (0 ≤ j ≤ 16, j = 4)

0 0 5 h a l l o t 1 5 b y t r p e

Step 2 (0 ≤ j ≤ 15, j = 9)

0 0 5 h a l l o t 1 5 b y r t p e

Step 3 (0 ≤ j ≤ 14, j = 13)

0 0 r h a l l o t 1 5 b y 5 t p e

Step 4 (0 ≤ j ≤ 13, j = 2)

0 0 r h a y l o t 1 5 b l 5 t p e

Step 5 (0 ≤ j ≤ 12, j = 5)

0 0 b h a y l o t 1 5 r l 5 t p e

Step 6 (0 ≤ j ≤ 11, j = 2)

0 0 b h a y l 5 t 1 o r l 5 t p e

Step 7 (0 ≤ j ≤ 10, j = 7)

0 0 b h a y l 5 t 1 o r l 5 t p e

Step 8 (0 ≤ j ≤ 9, j = 9)

t 0 b h a y l 5 0 1 o r l 5 t p e

Step 9 (0 ≤ j ≤ 8, j = 0)

t 0 5 h a y l b 0 1 o r l 5 t p e

Step 10 (0 ≤ j ≤ 7, j = 2)

t 0 5 h l y a b 0 1 o r l 5 t p e

Step 11 (0 ≤ j ≤ 6, j = 4)

t y 5 h l 0 a b 0 1 o r l 5 t p e

Step 12 (0 ≤ j ≤ 5, j = 1)

t y 5 h l 0 a b 0 1 o r l 5 t p e

Step 13 (0 ≤ j ≤ 4, j = 4)

t h 5 y l 0 a b 0 1 o r l 5 t p e

Step 14 (0 ≤ j ≤ 3, j = 1)

t 5 h y l 0 a b 0 1 o r l 5 t p e

Step 15 (0 ≤ j ≤ 2, j = 1)

5 t h y l 0 a b 0 1 o r l 5 t p e

Step 16 (0 ≤ j ≤ 1, j = 0)

Figure 4.2: Shuffle example run

4.1 Components 51

was written, will be encoded. The seed will be set to the current timestamp,
with millisecond precision.

Initializing The seed serves the purpose of introducing entropy over several
messages with the same key. Our StegoBlock application features a simple
database for storing stego-keys, hereby encouraging key reuse, for the same
receiver/sender. When reusing keys, an adversary has an easy, or at least easier,
time learning the key, should he identify two or more messages with the same
plaintext. Introducing the seed, which is not itself a secret, will add enough
entropy to the system to allow key reuse.

The key is used for seeding the Cryptographically Secure Pseudo Random Num-
ber Generator (CSPRNG), but is first concatenated with the seed. A stego- or
crypto key should always be of sufficient strength.

encode will first check if the provided plaintext length is longer than the al-
lowed. StegoBlock allows messages of maximum 200 characters. If it is longer,
an exception will be thrown and execution halted (the email is not sent). Oth-
erwise execution will proceed to initialize a CSPRNG with the seed and key.
This ensures a deterministic sequence of "random" integers. It will then left
pad the message length with 3 zeros. This is to ensure a 3 digit message length.
Next, we generate a string of noise. The noise is essentially a string of charac-
ters in some alphabet, that adheres to some frequency for each letter. We then
concatenate message length, message and noise into one big array, the block.
Before returning, the block is shuffled with the Knuth shuffle.

GenerateNoise Refer to Algorithm 4.2 for a textual representation of the
algorithm. Before inserting the plaintext into the block, generateNoise gen-
erates a string of letters that adhere to some distribution. It accepts the
plaintext as argument, as both plaintext, plaintext length and noise combined,
must adhere to said distribution. We start off by initializing a new empty
array for the noise and a dictionary for fast access to the counts of each in-
serted character in the noise array. In our StegoBlock application, the distri-
bution of characters should resemble that of a predefined distribution in FRE-
QUENCY_ALPHABET.

We will iterate all characters of the plaintext. Each character is looked up in
said dictionary. If the value is uninitialized, it will be initialized to 0. The value
for the current char is then incremented by one. One sees how the dictionary
effectively keeps a count of each character in the plaintext. These counts are
used later, when calculating how many of each character should be prepended

52 Design

the string of noise.

FREQUENCY_ALPHABET is a predefined dictionary of characters and their
desired frequency, in the resulting StegoBlock. We will proceed to iterate all its
values, cf . For each character, we calculate how many of each there should be
in the final StegoBlock of provided size and frequency. The result is kept in the
variable charCount. We will retrieve the number of times, we counted the same
character in the plaintext, and subtract this from charCount. As charCount
may then become less than 0, we set it to 0, if that is the case. This problem
and others will be treated later - but if charCount becomes less than 0, it means
the plaintext has one or more characters exceeding their max. They will not
be able to hide within the block, e.g. maintaining the target distribution. The
algorithms generally postpone these checks until last minute, instead of halting,
so a full error report can be provided.

We will then add the character of cf , charCount amount of times to the noise
array. Notice that we shuffle the noise before returning. Otherwise it would be
alphabetically ordered. An adversary would otherwise be able to validate a keys
correctness. We will detail on this in the later steganalysis.

After concatenating MessageLength+Message+Noise and encoding, checking
the character distribution of the block, should result in a perfect distribution
matching our target FREQUENCY_ALPHABET. If it does not, an error report
is shown to the client, and execution halted.

4.1.6 Decode

1 input : s t r i n g [] block , s t r i n g seed , s t r i n g key
2 output : s t r i n g []
3 begin
4 csprng ← new csprng (seed + key)
5 un shu f f l e (prng , b lock)
6 s i z e ← block . remove (0 , 3)
7
8 return block . range (3 , 3 + s i z e)
9 end

Algorithm 4.3: Decode.

1 input : CSPRNG[] prng , s t r i n g block
2 begin
3 indexes ← []
4
5 f o r i from n−1 downto 1 do
6 indexes . push (prng . get (0 , i))
7
8 foreach i n t i in indexes
9 j ← indexes . pop ()

4.1 Components 53

10 tmp ← block [i]
11
12 block [i] = block [j]
13 block [j] = tmp
14 end

Algorithm 4.4: Unshuffle.

Refer to Algorithm 4.3 and 4.4 for pseudo code, and Figure 4.3 for a sequence
diagram. When an email is viewed with StegoBlock installed, the function
Decode will run if a StegoBlock email header is present. The seed is extracted
and the stego-key retrieved from the database.

We start out by seeding a new CSPRNG with the seed and stego-key concate-
nated. We are now able to reproduce all the numbers generated by the senders
CSPRNG.

To reverse the encoding process, we must generate as many pseudo random
numbers as there are characters in the block. For the length of the block, we
will query the CSPRNG for a new number, and push it on the indexes stack. We
need to use the pseudo random numbers in reverse order, but can only generate
them in forward order. Observe how we iterate from block length to 0, so we
query the PRNG for the same ranges as when encoding. We will need to iterate
the block twice, first for generating indexes, then for decoding.

Extracting chars from the block in correct order is now trivial. We iterate the
block in forward direction, and pop a value from indexes each time. The popped
value is the index to swap the current index with.

When the loop has completed, block will be back to MessageLength+Message+
Noise. All that is left is to extract the message. Extracting the length of the
message is trivial, as the first 3 letters are reserved for this. We then return the
substring or range of chars, from index 3 to size.

4.1.7 Verification

As mentioned, encoding does not terminate immediately if the target distribu-
tion is impossible to meet. Instead a separate check is performed afterwards,
allowing for a full report to the user, of all problems encountered. The function
checkFrequency accepts a single parameter of the type string, which will
then be checked against the target distribution FREQUENCY_ALPHABET.
We will input the block returned from Encode.

54 Design

User StegoBlock CSPRNG

Decode(ciphertext, seed, key)

seedRandom(seed + key)

getRndInRange(0, insertionIndexesRev.length)

i
insertionIndexesRev.prepend(i)

foreach c in ciphertextforeach c in ciphertext

chars.prepend(ciphertextArr.remove(i)))

foreach i in insertionIndexesRevforeach i in insertionIndexesRev

chars.remove(0, 3)

size
chars.range(3, 3 + size)

plaintext
plaintext

Figure 4.3: Decode, sequence diagram.

4.2 Summary 55

We iterate the provided string, and count the number each individual character
appears. As before, we keep count in a dictionary d, for fast access. Afterwards
we iterate d, and match the count percentages against the ones of the target.
Should the frequency be off by more than 1 percent - the character will be
flagged as invalid and appended a small report. It could also be the case that
the character is not even within the target, this will also be appended the report.

If the final checkFrequency report is not clear, it will be displayed to the user and
execution halted. The user will then have the opportunity to change the message
into something fitting the distribution. Only blocks with a clear checkFrequency
report can be sent.

4.2 Summary

The problems we detailed in our problem analysis will be solved by an email
client extension. We wish to ease the use of StegoBlock as much as possible, and
since email use is so widespread - this protocol provides a nice starting platform.
We detailed on email protocols, and how the use of "X-"-headers allow us to
create a solution that works seamlessly with users without StegoBlock installed.
This allow us to truly extend on emails, users without StegoBlock will simply
only learn the primary message.

We designed the components necessary to implement StegoBlock, as a Thunder-
bird extension. It must allow Thunderbird users to input secondary messages
of fixed length, which will then have appended noise, and be scrambled. Ad-
versaries will be unable to decode the scrambled block, without knowing the
key.

We provided detailed designs of algorithms for encoding, generating "noise" and
decoding secondary messages in StegoBlock. Our encoding function is able to
make the resulting block adhere to a target character distribution, given by some
FREQUENCY_ALPHABET. This is done as a measure against statistical
steganalysis. Our design implements checks of final blocks. If they fail, execution
is halted and no email is sent. Our encode function is designed to accept a
stego-key, some seed and a message. The message will be analyzed, and we
generate a cover-object, known as "noise", with respect to the message. Before
permutation, the block will consist of MessageLength+Message+Noise. To
permute, we setup for the previously detailed Knuth-Fisher-Yates shuffle.

To implement plausible deniability, we ensure that if no secondary message is
written, one will be chosen at random. This is a simple step, but very valuable,

56 Design

as previously explained. To ensure that randomly chosen messages pass the final
block check, we simply generate more noise. But we should handle the first 3
characters individually, as these detail the length of our message. We cannot
accept the (rare) scenario where generating noise would randomly generate noise
with 3 digits in the valid range. Then users would have gibberish displayed,
instead of simply no message. We also cannot simply just have 3 zeroes, it
would in fact be much worse. This would mead that a decoded block should
always start with 3 digits. An adversary would quickly know if a user disclosed
a fake key, as he should always arrive at some block starting with 3 digits.
The user should be able to disclose any fake stego-key, to preserve plausible
deniability. The cannot be any difference between a wrongly decoded block
containing some message, and a correctly decoded block without a message.

To overcome this, we set replace MessageLength with 3 randomly chosen values
from our frequency alphabet, and repeat until it is has a non integer value. This
allows for easy validation when decoding.

Furthermore we designed our encoding algorithm to not consider if its output
adheres to FREQUENCY_ALPHABET during runtime, instead a separate
check afterwards will do this. This ensures a more informative error report,
allowing the user to fix all problems before resending his mail.

To decode, we provided pseudo-code necessary for reversing the encoding per-
mutation. With this "unshuffle" algorithm, we can effectively separate noise
from message. It requires a PRNG in the same initial state as when encoding -
but this is easy for users knowing the key. The secret key, appended a publicly
available seed will do this.

Chapter 5

Implementation

Based on the design, we will implement StegoBlock as a Thunderbird extension.
These are written in JavaScript, and so we do not have the luxuries of type
safety, but are limited on availability of cryptographic libraries. For instance,
we will resort to a third party library for a seedable PRNG.

Let us first examine the user interfaces implemented for composing, viewing and
configuring StegoBlock.

5.1 UI components

In the past, Thunderbird has been very popular and under rapid development.
Their website vaguely mentions "millions of users". However interest in the
project has declined recently. On July 6, 2012, Mozilla announced that Thun-
derbird development would no longer be a priority. This was a result of the
application not gaining larger user base, despite efforts. It is however still a
very feature rich email client.

As mentioned, Thunderbird shares a large part of its code base with Firefox,

58 Implementation

and a shared documentation can conveniently be found on Mozilla’s website1.
Unfortunately, documentation is not always complete or up to date. Often
developers are left searching email lists or online forums for answers.

Extensions are written in JavaScript for logic, and XUL (very similar to HTML)
for design markup. If one is already familiar with JavaScript and HTML, writing
Thunderbird extensions will be easy.

Before diving into any specific code of our StegoBlock extension, we will examine
the structure of Thunderbird extensions. Our file structure is as shown in Listing
5.1. Thunderbird largely dictates this structure, which ensures nice separation
actual content and meta data.

stegoblock@toftegaard.it/

chrome/

content/

common.js

icon.png

messenger.js

messenger.xul

messengercompose.js

messengercompose.xul

options.js

options.xul

seedrandom.js

steganography.js

defaults/

preferences/

defaults.js

chrome.manifest

install.rdf

Listing 5.1: StegoBlock extension file structure

stegoblock@toftegaard.it/install.rdf stores all metadata relevant for an
extension. Users considering installation, may examine an add-on by the data of
this file. In here, we specify extension name, description, version, author, and a
unique identifier - which also dictates the name of the root folder. We may also
specify supported Thunderbird versions. See Appendix C.1 for our install.rdf
file contents.

stegoblock@toftegaard.it/chrome.manifest Thunderbird allows extensions
to hook themselves into the existing UI. This makes extending existing designs

1Thunderbird developer portal: https://developer.mozilla.org/en-US/Add-ons/

Thunderbird

https://developer.mozilla.org/en-US/Add-ons/Thunderbird
https://developer.mozilla.org/en-US/Add-ons/Thunderbird

5.1 UI components 59

easy. The existing design is naturally also stored in .xul files. in chrome.manifest

one may specify which .xul files to extend, and which files will provide the actual
extension. By installing another extension DOM Explorer, one may point and
click the existing UI to reveal which .xul files define them. This will also reveal
the entire markup, and allow inserting custom markup. See Appendix C.2 for
our chrome.manifest file contents.

stegoblock@toftegaard.it/defaults/preferences/defaults.js describes
how an extension with to use the build in preference system. StegoBlock uses
it for storing stego-keys.

stegoblock@toftegaard.it/chrome/content/ is the default folder for stor-
ing markup and logic. This is where we keep .xul files for injecting our changes
to the default UI, and the .js files, with logic for creating blocks. StegoBlock
extends 3 different areas of Thunderbird: Compose message window, Read mes-
sage window and preferences.

.../common.js Several areas require much of the same logic. To follow the
DRY-principle2, we will keep such logic in a common file - importable by all other
files. Common.js has functionality for interacting with Thunderbird preference
store, to store stego-keys. There is also some simple utility functions for merging
objects - which is useful when including files in others. The file can be seen in
Appendix C.3.

We use common.js to interact with the Mozilla Preference store. This is a con-
venient store for user specific preferences. This store is not secure. Any stored
preferences may be extracted easily as plaintext. StegoBlock runs only on local
machines. The passwords are as insecure or secure as any other unencrypted
document on the users computer. In the current version of StegoBlock, we
rely on users protecting their computer with authorization on operating system
level. Most systems also offer system-wide encrypted, which would effectively
also encrypt the preference store. It would most definitely be good to encrypt
the stored stego-keys, but because of the aforementioned, we can do without in
a version 1.

.../icon.png is a simple icon for presenting StegoBlock. It was found on
https://www.iconfinder.com/icons/811473, with a "Free for commercial use"
license. Can be seen in Appendix D.1.

2DRY: https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

https://www.iconfinder.com/icons/811473
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

60 Implementation

Figure 5.1: StegoBlock view-message-window excerpt

Figure 5.2: StegoBlock view-message-window excerpt

.../messenger.js/.xul Changes to the View-message-window are minimal.
When users select an email, StegoBlock extension will check for the X-Stegoblock
header. If present, it will be checked if a stego-key for the sender is available. If
also present, Decode will run. Otherwise the user will be presented for a text
box to enter a stego-key. See Figure 5.1 and 5.2 for UI excerpts demonstrating
the functionality, and Appendix D.2 and D.3 for the same in their context.

The block is easily readable and distinguished form the rest of the email. Our
.xul file in Appendix C.4 has a single root element. We see that it is de-
fined as <vbox id="expandedHeadersBox">, meaning that this element will
be inserted in the existing node with id="expandedHeadersBox". We also see
how we include the files seedrandom.js, common.js, steganography.js and
messenger.js with <script> tags, as known from HTML. This is how we link
logic to our UI. In messenger.js shown in Appendix C.5, we will add an event
listener to the window, which will notify when the UI is injected and the win-
dow fully loaded. Then we can easily check for X-Stegoblock header, extract,
decode and show it. The logic for extracting and showing embedded blocks are
as described in Algorithm 5.2, which we might call for both the sending and
receiving address. We do this to allow StegoBlock extraction of sent mails as
well. Thunderbird offers no way to identify if a mail was sent by the client or
received, therefore we cannot determine which address/key pair to lookup in
our preferences. Since there can never be more than two tries, and since we
are likely to receive more mails than we send, we simply first try to lookup the
"from" email and then the "to" if it fails.

1 input : address , emai l
2 output : s t r i n g
3 begin
4 p r e f e r e n c e s ← ge tPr e f e r en c e s (’ addressesAndKeys ’)
5 address ← normal ize (address)
6 key ← p r e f e r e n c e s [address] . key
7 c i ph e r t ex t ← emai l . headers . get (’X - StegoBlock ’)
8 date ← emai l . headers . get (’X - SBDate ’)

5.1 UI components 61

9
10 i f c i phe r t ex t i s not NULL and date i s not NULL
11 return decode (c ipher t ex t , date , key)
12
13 return nu l l
14 end

Algorithm 5.1: extractStegoHeader.

ElementMap Most our logic files will interact with the UI. For a small
application like StegoBlock, implementing design patterns like Model-View-
Controller is too much. It takes larger applications to benefit from such patterns.
If a logic file interacts with the UI, it will have a special dictionary of elements,
known as an ElementMap. Selecting elements for interaction is done by query-
ing the DOM for a unique identifier. This is a slow process, and therefore we
may store it in our ElementMap for quick later retrieval.

Silent failing Anything that might cause the algorithms in our messenger
window to fail, will be suppressed. In a future version, a facility for error logging
would be desirable, but unnecessary for an initial version. If a StegoBlock is
unextractable, we choose to not bug users about it.

By embedding our block in the email header, we will be able to quickly extract
it, without downloading and parsing the full email body. Email clients typically
show header information, before downloading the entire email.

.../messengercompose.js/.xul The compose window offers functionality to
compose emails. Naturally we will inject custom UI for embedding StegoBlocks.
This is the most advanced window of StegoBlock. We will inject out UI as
previously explained, and hook in the logic by listening for the "compose-send-
init" event, which is fired when the compose window opens. Additionally we will
also listen to the "compose-send-message" even, fired when an email is about to
be sent.

Our UI will monitor the recipients of the email being composed, and check if a
stego-key can be found. If so, a small text area allowing up to 200 characters
will be shown. If not, users may enter a new stego-key for the specified address
- in the same way as in the view-message-window. See Figure ?? and ?? for UI
excerpts demonstrating this functionality. Both examples can be seen in their
context in Appendix D.4 and D.5 respectively. Appendix C.7 and C.6 shows
the files in their entirety.

62 Implementation

Figure 5.3: StegoBlock compose-message-window excerpt

Figure 5.4: StegoBlock compose-message-window excerpt

When the users submits the email for sending, StegoBlock will intercept and
inject a StegoBlock header before sending it off. The process is fairly simple
and depicted in Algorithm 5.3. Notice that if an exception occurs while trying
to send, it will return false and halt email sending. It is not allowed to send an
email without a StegoBlock.

1 input : email , message , key
2 output : s t r i n g
3 begin
4 t ry {
5 date ← Now
6 i f key i s NULL
7 key ← getRandomAlphanumericOfLength (128)
8 block ← encode (message , date , key)
9

10 emai l . headers . s e t (’X - StegoBlock ’ , b lock)
11 emai l . headers . s e t (’X - SBDate ’ , date)
12 } catch (e) {
13
14 a l e r t (’ err ’ , e) ;
15 return f a l s e
16 }
17 return t rue
18 end

Algorithm 5.2: injectStegoBlockInMessageHeader.

.../options.js/.xul Users need a place to store stego-keys. Thunderbird
extensions may store arbitrary information in "Preferences". This is where
we store stego-keys. It would be possible to encrypt keys before storing, but

5.1 UI components 63

Figure 5.5: StegoBlock options-window excerpt

since Thunderbird is a desktop application - we can rely on the authorization
mechanisms build into the operating system. Our options page provide a simple
interface for managing keys and addresses. See Figure 5.5 for an excerpt of
the options UI and Appendix D.6 for the same window in its context. It offers
functionality for deleting one or more selected keys, as well as a button for
purging the entire store. Should a possible adversary require access to the users
email client - the keystore may be purged quickly, if known in advance.

.../seedrandom.js Thunderbird offers a cryptographically secure random
number generator, as described earlier. It does not offer a way to seed it, un-
fortunately. To overcome this limitation, we use an existing open source library
by David Bau "seedrandom.js" 3. It can be seen in its entirety in Appendix
C.10. A cryptanalysis has not been made of this library, thus we trust the
author completely. Being able to seed a random number generator, allows us
to secretly share the future numbers generated with a specific person. This is
not an encryption scheme, but simply a tool from our standard cryptographic
toolbox.

3seedrandom.js: https://github.com/davidbau/seedrandom

https://github.com/davidbau/seedrandom

64 Implementation

.../steganography.js The file containing all logic for our steganographic
calculations. This is where Encode and Decode lives. The full file is available
in Appendix C.11. As this file is the core of our application, we will detail it
more closely.

The property maxPlaintextLength defines the maximum length of a StegoBlock
message. In order to allow enough entropy, the maximum message length must
be lower than the block length. Therefore we set it to 200, and blockLength to
4400. We will detail on our choice for these values, in our steganalysis chapter.

The property alphabetFrequencies is the constant we previously referred
to as FREQUENCY_ALPHABET. Here it is a dictionary of letters and
the frequencies we would like them to appear with in the block. For exam-
ple we have e = 8.38191046, meaning that 8.38191046 percent of the block
must be ’e’s within a range of allowedOffset, which is set to 1 percent.
Any character that should be allowed in the block, has to be present in the
alphabetFrequencies. This ensures it appears with correct frequency, and
that function generateNoise also may generate it. If we allowed characters in
the block, which were not present in alphabetFrequencies, generateNoise
would never generate noise with that character - and we would leak the fact
that our message contained that specific character.

The remaining functionality is functions Encode, Decode and generateNoise,
which are all viewable in their entirety and context in Appendix C.11.

Encode is seen in Figure 5.4. First we reject messages exceeding the maximum
allowed length. StegoBlock length are finite, their messages shorter, and thus
we must check for this. If length is ok, we proceed by converting the plaintext
to an array, it is easier to work with. We then leftpad the message length with
zeroes, to ensure a 3 digit format. Notice that if no message was entered, the
length will be set to some 3 character value, that is never a digit. This is in
contrast to simply setting the length to ’000’. If we did that, adversaries could
validate a stego-key by either finding some message or a block beginning with
three zeroes. We then generate sufficient noise, implementation can be seen
in Figure 5.5. We then shuffle our block, with the Knuth-Fisher-Yates shuffle.
Lastly we convert all spaces to non-breaking-spaces, explained in the following
section (cf. §5.2).

GenerateNoise starts by iterating all characters of the plaintext, and counting
how many times each occur. Each count is stored in a dictionary (character,
count) for fast access. We then iterate the frequency alphabet. We let charCount
be the count of how many times each char must occur in the final block. ptFreq
is a count of how many times it already exists in the plaintext, and we can easily
deduct the remaining count. We will append the char this many times to the

5.1 UI components 65

result. Notice that the result will be ordered until we deliberately shuffle it. If
noise needs 3 A’s and 2 B’s, the result will be ’AAABB’. One could make the
already discussed mistake that this is fine, because we permute the entire block,
of MessageLength+Message+Noise, when in fact it would ruin our plausible
deniability.

1 encode: function (plaintext , seed , key) {

2 if(plaintext.length > this.maxPlaintextLength)

3 throw ’Plaintext too long’;

4
5 let plaintextArr = typeof plaintext === ’string ’ ? plaintext.

split(’’) : plaintext; // convert plaintext to string array

6 let length = plaintextArr.length.toString ();

7
8 if (plaintextArr.length === 0) {

9 while (this.isPositiveInteger(length))

10 length = this.getRandomString (3);

11 }

12
13 let prng = new Math.seedrandom(seed + key); // seed the prng with

desired key

14 let sizeArr = this.leftPad(length , ’000’).split(’’);

15 let noise = this.generateNoise(sizeArr , plaintextArr); //

generate noise with correct letter frequencies

16 let block = sizeArr.concat(plaintextArr).concat(noise);

17
18 this.shuffle(prng , block);

19
20 return block;

21 },

22
23 shuffle: function (prng , arr) {

24 for (let i = arr.length - 1; i > 0; i--) {

25 let j = this.getRandomInRange(prng , 0, i);

26 let temp = arr[i];

27
28 arr[i] = arr[j];

29 arr[j] = temp;

30 }

31 return arr;

32 }

Listing 5.4: Encode and Shuffle implementation

1 generateNoise: function (sizeArr , plaintextArr) {

2
3 let input = sizeArr.concat(plaintextArr);

4 let noise = [];

5 let ptDict = {};

6
7 // verify that all chars in plaintext exist in the alphabet.

8 // track how many times each char occur.

9 for (let i = 0; i < input.length; i++) {

10

66 Implementation

11 // init bucket if none exists.

12 if (ptDict[input[i]] === undefined)

13 ptDict[input[i]] = 0;

14
15 // increment char count.

16 ptDict[input[i]]++;

17 }

18
19 // run through all chars of the alphabet.

20 for (let x in this.alphabetFrequencies) {

21
22 // calculate the char count given the specified block length

(4400) and frequency

23 let charCount = Math.round(this.blockLength / 100 * this.

alphabetFrequencies[x]);

24 let ptFreq = ptDict[x] || 0;

25
26 charCount = charCount - ptFreq; // subtract the char count in

the plaintext , from the calculated.

27 if (charCount < 0)

28 charCount = 0; // there is already too many of the given char

, to maintain correct frequency. notify about this later.

29
30 // as the frequency and char count calculated is now with

respect to the plaintext , push the char onto the noise

31 // array "charCount" times.

32 for (let i = 0; i < charCount; i++)

33 noise.push(x);

34 }

35
36 // shuffle noise , as we would otherwise reveal if some key is

fake and ruin plausible deniability.

37 this.shuffle(new Math.seedrandom (), noise);

38
39 return noise;

40 }

Listing 5.5: Generate Noise implementation

Decode is seen in Figure 5.6. We start by initializing a PRNG to the same
seed as we expect the block to be permuted with. We then make the block an
array, this is easier to work with. We proceed to unshuffle and block goes from
scrambled, back to MessageLength+Message+Noise. We then extract the
message length, cut out the message part of the block and return it.

1 decode: function (block , seed , key) {

2
3 let prng = new Math.seedrandom(seed + key);

4 block = block.split(’’);

5
6 this.unshuffle(prng , block);

7
8 let sizeStr = block.slice(0, 3).join(’’);

9

5.2 No Linear-White-Spaces 67

10 // 3 first chars must be digits to be valid

11 if (!this.isPositiveInteger(sizeStr))

12 return ’’;

13
14 // parse the size of the plaintext to an int , so we can slice it

off

15 let size = parseInt(sizeStr);

16
17 // must be valid length

18 if (size < 0 || size > this.maxPlaintextLength)

19 return ’’;

20
21 return block.slice(3, 3 + size).join(’’);

22 },

23
24 unshuffle: function (prng , arr) {

25
26 // generate all swapping positions needed , so we may start with

the last one.

27 let indexes = [];

28 for (let i = arr.length - 1; i > 0; i--)

29 indexes.unshift(this.getRandomInRange(prng , 0, i));

30
31 // reverse knuth -fisher -yates shuffle

32 for (let i = 1; i < arr.length; i++) {

33
34 let j = indexes.shift ();

35 let temp = arr[i];

36
37 arr[i] = arr[j];

38 arr[j] = temp;

39 }

40 return arr;

41 }

Listing 5.6: Decode and Unshuffle implementation

5.2 No Linear-White-Spaces

When a plaintext is encoded and verified, the initial idea was to simply send the
resulting block as it was. It would have the security and character distribution
desired. But our choice of embedding it in email headers had issues, requiring
us to handle consecutive spaces.

Remember that after filling up the block with message and noise and permuting
it, characters will be at random positions. Many, if not most, of these characters
will be spaces. A character distribution with spaces of a frequency around 15-
17% is considered normal for english. Some of these spaces will be appear next

68 Implementation

to each other, which became a problem. We initially observed that Thunderbird
would transform multiple adjacent spaces into a single space.

To find a proper explanation, one will have to search email lists or user forums
for accurate information, as documentation of the Thunderbird API’s are often
not properly updated. According to the author of a rewrite of the email header
functionality4, the correct way to insert custom headers, is with the following
(JavaScript) code:

gMsgCompose.compFields.setHeader(’X-StegoBlock’, block);

Most unfortunately, the setHeader method converts multiple adjacent spaces
into one. Any leading and trailing spaces will be stripped, any adjacent spaces,
regardless of position, will be converted into one. Thunderbird is an open source
project, so by inspecting the source code5, we found that the following regular
expression replacement causes us trouble: fieldValue.replace(/(?:(?:\r\n)?[
\t]+)+/g, " ")). According to the comments, any Linear-White-Space will be
replaced with a single space.

Researching this behavior, brings us to RFC-822, that classifies a Linear-White-
Space as any sequence of spaces, horizontal tabs or line breaks that is followed by
at least one space or horizontal tab[rfc82]. According to RFC-2047, there cannot
be any Linear-White-Spaces in email headers[rfc96], which clearly explains the
Thunderbird implementation.

It is unavoidable to have adjacent spaces, so we must handle this obstacle grace-
fully. Remember that the character order of our block, is crucial to successful
extraction. It is the CSPRNG that dictates permutation, and therefore we can-
not just "move" away some character in an encoded block, depending on its
neighbors. A possible remedy is to replace all spaces with some other character
in the standard US-ASCII table, like underscore. We would then need to escape
any existing underscores, but that is trivial. However, we will chose another
option. Email headers cannot contain non ASCII characters[rfc96], but as we
wish to allow users to enter messages in their native language, special characters
will be unavoidable. We will therefore exploit that setHeader recognizes non
ASCII characters and performs a nice conversion according to RFC-2047. After
their conversion, each header line will start with the character-set, followed by
the then encoded line. This will also nicely handle line folding, which is also

4Inserting custom headers: https://groups.google.com/d/msg/mozilla.dev.

extensions/s4oFmM8_B28/AxEKZ-SZsnoJ
5Thunderbird normalizeFieldValue source: https://dxr.mozilla.org/mozilla-central/

rev/82d0a583a9a39bf0b0000bccbf6d5c9ec2596bcc/addon-sdk/source/test/addons/e10s-

content/lib/httpd.js#4639

https://groups.google.com/d/msg/mozilla.dev.extensions/s4oFmM8_B28/AxEKZ-SZsnoJ
https://groups.google.com/d/msg/mozilla.dev.extensions/s4oFmM8_B28/AxEKZ-SZsnoJ
https://dxr.mozilla.org/mozilla-central/rev/82d0a583a9a39bf0b0000bccbf6d5c9ec2596bcc/addon-sdk/source/test/addons/e10s-content/lib/httpd.js#4639
https://dxr.mozilla.org/mozilla-central/rev/82d0a583a9a39bf0b0000bccbf6d5c9ec2596bcc/addon-sdk/source/test/addons/e10s-content/lib/httpd.js#4639
https://dxr.mozilla.org/mozilla-central/rev/82d0a583a9a39bf0b0000bccbf6d5c9ec2596bcc/addon-sdk/source/test/addons/e10s-content/lib/httpd.js#4639

5.3 Block example 69

required by RFC-2047. Lines in email headers may not exceed a length of 76
characters, but there may be as many lines as necessary:

The length restrictions are included not only to ease interoperability through in-
ternetwork mail gateways, but also to impose a limit on the amount of lookahead
a header parser must employ (while looking for a final ?= delimiter) before it
can decide whether a token is an encoded-word or something else.

So our solution is very simple. We will encode the StegoBlock header before em-
bedding it, in such a way that there are no spaces. A simple URL encoding will
be sufficient. This will ensure that all spaces, tabs and carriage returns are es-
caped, all linear-white-spaces will be removed. Functions encodeURIComponent
and decodeURIComponent are build into Thunderbird.

We briefly mentioned that setHeader handles header folding, but this is not
entirely true. When we encoded all white spaces, we encountering other troubles,
where no header was set at all. There were no exceptions thrown, simply just
no headers. It turns out that Thunderbird is unable to correctly fold headers
if they contain no white spaces. To remedy this, we manually split headers in
chunks of 76, separated by a space. This allows Thunderbird to fold our header
correctly and we must simply remember to remove these spaces again, when
decoding.

5.3 Block example

As we saw a visualization of the Encode function in Figure 4.2 of how blocks
are filled, and since headers are now encoded to eliminate issues with linear-
white-spaces, examples of actual headers provide little extra clarity. Appendix
A.1 shows the source of an entire email with an embedded StegoBlock. Notice
headers X-Stegoblock and X-Sbdate that store the block and seed respec-
tively. The particular header stores the StegoBlock message "test", using the
stego-key "testtest".

5.4 Summary

We implemented the necessary components for StegoBlock as a Thunderbird
extension. Implementation was in JavaScript, this is the only option for Thun-
derbird extensions. We created user interfaces for composing and viewing Ste-
goBlocks, along with a simple interface for administrating stego-keys.

70 Implementation

We thoroughly implemented functions Encode, Decode and GenerateNoise
as designed. We encountered issues with linear whites paces, that would corrupt
out blocks when embedded in email headers. The issue was handled by URL
encoding the header value before inserting. This would be needed in future
versions anyway, for frequency alphabets with characters outside ASCII.

Chapter 6

Evaluation

The evaluation of our results and StegoBlock will effectively be a steganalysis.
We set out to create a private key steganographic solution, with emails as trans-
port. To allow users confidential communication, without using traditional en-
cryption. We did so because, strong encryption has been banned in some coun-
tries, and because we believe everyone should have the right to communicate
in private. We will now proceed to evaluate our results, as done in a typical
steganalysis. The StegoBlock encoding algorithm uses no other cryptographic
tool, but a CSPRNG. From this alone, we achieved confidentiality.

6.1 Key exchange

StegoBlock employs private key steganography. Participants must secretly share
a stego-key. There exists many different key exchange protocols, but Stegoblock
does not offer any. It would be convenient, but one is not offered primarily due
to time constraints. Obviously, users should not agree to a key over email, but
instead use a different channel. A good option would be for users to meet in
person, and agree without eavesdroppers listening in. Furthermore users should
also agree on a fake key. This strengthens their plausible deniability, as an
adversary may interrogate them both, and arrive at the same block decoding

72 Evaluation

result - if they provide the same key. If they tell different keys, it will surely
arise the suspicion of the adversary.

6.2 Encoding

Our encoding function achieves similar results as encryption. It is easy to exe-
cute in one direction, hard the other way without also knowing the key. This is
the core of encryption, but we can achieve this property with other algorithms
as well. StegoBlock has the function Encode, which will accept plaintext, key
and seed. With a one-way function it will scramble the plaintext in such a way
that it will be hard to reverse, without knowing the key and seed. A one-way
function, or trap-door function is not supposed to be kept secret. Otherwise it
would also violate Kerckhoffs’s principle. One can think of a real world example
of a one-way function, to understand it better. Anyone can know and under-
stand the process of turning cow into minced meat, it is easy. Turning minced
meat into cow, is much harder - regardless of any meat processing knowledge.

We may theoretically choose any FREQUENCY_ALPHABET, StegoBlock
comes with the one seen in Appendix E.1. It has 95 different letters. The fre-
quency of each letter is fixed - it will be the same for each run. Our chosen
StegoBlock length is 4400. We choose this number for both security and us-
ability reasons, but more on this matter later (cf. §6.3). Since we ensure the
same frequency of each letter, and the length is fixed - our block will always be
a permutation of the same string. There will never be an occasional overrepre-
sentation of some letter, leaking our message. A StegoBlock message with an
abnormal letter distribution will never be sent.

Encode will first generate a block in the form of MessageLength+Message+
Noise, where Noise makes the total block conform to the target letter distribu-
tion. Then it will proceed to permute with a CSPRNG. We chose the Knuth
shuffle as our permutation function, ensuring that our resulting permutation be-
longs in the set of all possible permutations. We have already detailed the inner
workings or the Knuth shuffle and its ability to chose between the entire set of
permutations, which is defined by maxBlockLength!, in our case 4400! (facto-
rial), including duplicates. There are extremely many possible permutations,
the Knuth shuffle promises perfect randomization, the block always consists of
the same 4400 letters, independent from the embedded message. Our CSPRNG
used in the Knuth shuffle is seeded with a secret key, and a once time seed.
Sending the same message many times will not leak, because of the seed, as
this is set to the current timestamp. The seed also ensures an avalanche ef-
fect. Encoding the same message repeatedly will use different seeds (different

6.3 Block length 73

seconds or milliseconds), and the resulting permutation will be much different,
even though the message and stego-key is the same.

Based on this, we consider our encoding function secure to our knowledge.

6.3 Block length

We add noise to the block for two reasons: security and usability. If no noise
was added, we would have a block in the form of MessageLength+Message,
resulting in variable block length - depending on message length. We would leak
the message length, we would also have a much smaller permutation space. If
messages were on average 100 characters, we would have "only" 103! possible
permutations (including duplicates). Because an adversary knows all characters
are used, and can possibly derive the language, many permutations may be
ruled out. For example, a message in english would be unlikely to have more
than two of the same letters next to each other. We add noise to increase the
permutation space, and to uniform the character use and their frequency. A
max block length of 2000, giving 2000! permutations could also be considered
secure, but remember that the set of characters are fixed. The user should be
able to express most messages with the characters available. Remember that
messages that does not conform to the chosen FREQUENCY_ALPHABET
will not be send. Increasing block length expands the set of possible messages
and introduces the necessary security.

6.4 Message analysis

To ensure that users may send a reasonable amount of different messages, we
will analyze a large message corpus, and see how many may be embedded in a
StegoBlock of different max lengths. To establish the best foundation for our
analysis, we estimate that the best dataset for testing how messages may be
embedded, is one of natural language. Compiling such a message corpus can be
done in many ways. One possibility could be to data mine Twitter, but tweets
are limited to 140 characters, and feature abnormal high use of hashtags and at’s.
Instead we looked for existing email corpora and found the Enron email corpus1
by William W. Cohen at Carnegie Mellon University. Later integrity problem
fixes and availability by Leslie Kaelbling at MIT. We picked 5000 messages at
random, no criteria of any kind. We then filtered away anything but the raw

1Enron May 7, 2015: https://www.cs.cmu.edu/~./enron/

https://www.cs.cmu.edu/~./enron/

74 Evaluation

message. This means mail headers and markings were removed. We then arrived
at a large set of messages in natural english language. A message corpus of real
emails, written by humans, and of such size should be excellent for further
analysis. The average email length was calculated to be 950 characters, but
these are all intended as primary messages. It is fair to impose a smaller max
length to secondary messages.

Remember that our Total Block Length consists of MessageLength+Message+
Noise, and that the total letter distribution must adhere to some FREQUENCY
_ALPHABET. Before being able to run any tests, we must compile a frequency
alphabet. We have compiled this by analyzing the occurrence of each character
on a set of randomly chosen emails from our mail corpus. Time wise it would
be too big of a computational task to analyze all emails. Basing both tests
and frequency alphabet on the same dataset is not considered a problem, as
messages was picked at random, from a set of 520.901 emails.

We have tested the parameter Message Acceptance Rate(MAR) by increasing
Total Block Length(TBL). We want to know how successful we can embed a set
of messages, given some TBL. Furthermore, we have run the tests twice, first
for a fixed max message length of 200 and 140 characters, then by a dynamic
max message length of 1/4 of the Total Block Length. All tests were run with
an Total Block Length in the range 800 - 15000, in steps of 200. We picked a
fixed message length of 140 and 200 for the first tests, as we would like to know
how much noise is needed to embed small capped messages. It seems people
can express most thoughts in a tweet of 140 characters, and thus 200 seems as
a reasonable increment, if we need to avoid the contracted wordings of Twitter.
The start index of the capped ranges, is picked at random for each message -
preventing that our samples all start with "Hi, Hello, Dear" and the like.

Figure 6.2 shows how the MAR increases along with TBL and a capped message
size of 140 - a tweet length. At TBL 800, we accept 78.70%, and at 15000, we
accepted 98.57%. A TBL of 15000 is however very large, and sending such
large emails would impact recipient inbox space and bandwidth significantly.
If an acceptance rate of 90 is acceptable, we could do with a TBL of 1800 -
which is much more acceptable. This is however under the assumption that
140 characters is a good fit, and especially that no message is longer than 140
characters. The MAR is an expression of how well the messages fit into our
FREQUENCY_ALPHABET, without considering their length.

Figure 6.1 shows the same chart for a message size of 200 - the reasonable
increment to a tweet. At TBL 800, we accepted 34.7%, and at 15000, we
accepted 96.8%. If again an acceptance rate of ~90% is acceptable, we could do
with a TBL of 4400.

6.4 Message analysis 75

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

40

60

80

100

TBL

M
A

R

Figure 6.1: TBL vs. MAR - capped message size of 200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

80

85

90

95

100

TBL

M
A

R

Figure 6.2: TBL vs. MAR - capped message size of 200

76 Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

1

2

3

4

·10−2

TBL

M
ar

gi
na

lM
A

R

Figure 6.3: TBL vs. Marginal MAR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

30

40

50

60

70

80

TBL

M
A

R

Figure 6.4: TBL vs. MAR - capped message size of TBL
4

6.5 Integrity 77

Figure 6.3 shows MAR vs. TBL again, but with MAR penalized by TBL. The
longer the block length, the greater the penalty. There is a contradiction between
high Message Acceptance Rate and the Total Block Length. We can’t have one
without the other, but we would like to minimize TBL to save bandwidth and
storage. We observe that highest marginal MAR is at TBL 1000. Here we
receive the highest increase in MAR pr TBL increment. TBL 1000 yields a
MAR of 44, 8%. If low TBL is more important than MAR, then this could be
an alternative TBL.

Instead of fixing the message size to 140 and 200, we have also experimented
with a slightly more dynamic setting: MaxMessageLength = TBL

4 . Results
for MAR are seen in Figure 6.4. A TBL of 4400 would yield a MAR of 62.7%,
but this is considering messages of any length, fitted into a TBL with messages
of maximum 1100 characters. In other words: If users would like to input any
message length, and we would like to add at least 3 quarters noise, for security,
they would be 62.7% successfully embedded, given a TBL of 4400. A TBL of
15000 yields 82.33% success, we did not increase TBL enough to reach above
90%. Appendix E.2 shows the entire result set of our tests.

Choosing an optimal max message length, and Total Block Length is difficult,
primarily due to the lack of constraints on what optimal means. For StegoBlock,
we decided that it was best to allow at least 90% of all messages of maximum
200 characters. TBL must then be set to 4400. This seems like a good tradeoff
between MAR and TBL, and should allow a reasonable amount of expressiveness
in within the message length. The final size of all StegoBlock headers, with an
encoded message of TBL set to 4400 is just around 8 KB, which is considered
reasonable.

6.5 Integrity

StegoBlock does not do any integrity checks. In a steganographic setting where
information is truly hidden, such a check isn’t necessary. We are however not
hiding information entirely, we store it in a designated header. Should a StegoB-
lock be tampered with, it will show up as nonsense. It is easy for an adversary
to destroy any StegoBlock message. Techniques include:

1. Delete the email header. Either X-StegoBlock or X-SBDate. Will be easily
detected, if the recipient expects some sender to use StegoBlock.

2. Insert or delete an item in the block. The order will be distorted, extrac-
tion will be nonsense. This is easily detected, as the extraction algorithm

78 Evaluation

will identify that the block does not begin with MessageLength.

3. Manipulate the block. For instance, it requires no knowledge of the key
to change all digits to zeros. This would also change MessageLength to
000 and StegoBlock would assume no message. All zeros would easily be
detected, other, more sophisticated tampering, might not be.

An integrity check could easily be implemented. After creating the block and
setting the seed, we could run a HMAC function on both header values and the
stego-key. The function would be: hmac(X−StegoBlock+X−SBDate, stego−
key). The resulting hash value can only be calculated if the stego-key is known.
The hash could then be sent in a third header. The recipient could automatically
recalculate and verify the hash value. If an adversary manipulated any of the
three headers, it would be easily detected - as the hash would no longer match.
A SHA-256 digest could be used to calculate a MAC as well: sha256(X −
StegoBlock +X − SBDate+ stego− key).

But we must be aware that an adversary may then do the same calculation. If
he is unable to reach the same MAC value, he will know the disclosed key is
fake. Should a block have no message embedded, one will be chosen at random.
It is then critical that the stego-key is also chosen at random, such that the user
will never be able to tell the real key. An empty block cannot have its integrity
validated.

6.6 Permutations and randomness

To randomize the StegoBlock, we chose to implement a Knuth-Fisher-Yates
shuffle algorithm as seen in Figure 6.1. As described earlier, this algorithm, if
implemented correctly, provably returns a permutation of the set of all possible
permutations. For our chosen TBL, this means in the set of all 4400! permuta-
tions, an extremely large range. Our shuffle algorithm choice is solid, under the
assumption that our PRNG is cryptographically secure.

1 function shuffle(prng , arr) {

2 for (let i = arr.length - 1; i > 0; i--) {

3 let j = this.getRandomInRange(prng , 0, i);

4 let temp = arr[i];

5 arr[i] = arr[j];

6 arr[j] = temp;

7 }

8 return arr;

9 }

10
11 function getRandomInRange(prng , min , max) {

6.7 Adversary advantages 79

12 min = Math.ceil(min);

13 max = Math.floor(max);

14 return Math.floor(prng() * (max - min + 1)) + min;

15 }

Listing 6.1: Implemented Knuth-Fisher-Yates shuffle

We stress that the PRNG we use has not been vetted to be cryptographically
secure.

For what we know, it might be - but it has not been checked. This thesis does
not aim to prove the security of PRNG’s, but we will as a minimum justify that
our choice is not completely insecure. Our PRNG is based on the truly random
output of RandomSource.getRandomValues() in the Mozilla crypto API.

"The RandomSource.getRandomValues() method lets you get cryptographically
random values. The array given as the parameter is filled with random numbers
(random in its cryptographic meaning)."2

Figure 6.5 shows the results of shuffling the 4 character string ′abcd′ 600.000
times, with our chosen PRNG and shuffle implementation. Again, this is no
proof of security, but we can at least see that there are no obvious bias to a
specific permutation. Results show that all possible permutations appear about
evenly. There is no way to prove this is actually random, but each permutation
should theoretically appear with equal probability.

Our total StegoBlock length is chosen to be 4400 characters. That means 4400!
or 3.287612799E + 14122 possible permutations. There are so many possibili-
ties, that it is impossible to test in any way if we output permutations evenly
distributed between all possible permutations. But most importantly, it will
also be impossible for an adversary to tell the difference.

6.7 Adversary advantages

We remember the different steganalysis types from earlier (cf. §2.1.4): Stego
only, known cover, known message, chosen stego, chosen message and known
stego. Since our algorithm is publicly available, and since everyone can execute
it, the adversary may effectively try all options.

2API RandomSource.getRandomValues(): https://developer.mozilla.org/en-US/docs/

Web/API/RandomSource/getRandomValues

https://developer.mozilla.org/en-US/docs/Web/API/RandomSource/getRandomValues
https://developer.mozilla.org/en-US/docs/Web/API/RandomSource/getRandomValues

80 Evaluation

ab
cd
ab

dc
ac

bd
ac

db
ad

bc
ad

cb
ba

cd
ba

dc
bc

ad
bc

da
bd

ac
bd

ca
ca

bd
ca

db
cb

ad
cb

da
cd

ab
cd

ba
da

bc
da

cb
db

ac
db

ca
dc

ab
dc

ba
15,000

20,000

25,000

30,000

Figure 6.5: Occurrences of shuffle permutations. 4 chars - 6E + 6 iterations

6.8 Summary 81

Our scheme does not require users to input some cover-object, but one could
think of the generated noise characters as a cover. As we move from stego only to
known stego, we make it increasingly easy to find flaws. The more information
we allow the attacker, the more sophisticated his attack vectors become.

In the blind, stego only setting, the adversary has extremely limited chances of
success. The block has 4400! different permutations. The block always consists
of the same letters, since the target letter distribution will be the same.

Should the adversary for some reason learn which part of the block is cover
and which is message, it will become much easier to break the algorithm. The
message is still permuted, but in the worst case - he will have to try "only" 200!
different permutations to reveal the real message. Extracting the noise would
however be difficult, as one would need the internal state of the PRNG, and
then it would be simpler to just extract the message itself.

The adversary can operate in the known message setting, if for some reason
he acquires a raw StegoBlock email, and learns the message - for instance by
looking over his victims shoulder when reading. From knowing these two, he
should not be able to tell anything about the next StegoBlock enabled emails
from the same sender. The password, or part of it, should not leak in any way.
We effectively prevent against this, by appending a seed.

To our application, there is little difference between the chosen stego attack,
chosen message and known stego attack. The adversary may install StegoB-
lock and begin examine algorithms, chose messages and generate stego-objects
at will. We argue that our encoding method is solid and that he will have no
noteworthy advantages. If our chosen CSPRNG is in fact secure, and we imple-
mented our shuffle algorithm correctly - StegoBlock should be safe against even
known stego attacks.

While we are obviously unable to highlight any ourselves, our own best bet on
a flaw in the system, is examine the PRNG and in some way learn its internal
state from when it executed the permutation. We explicitly stated our trust in
our PRNG choice, and that we did not formally examine it. We merely reasoned
that its security is plausible, and so this could be the place to look for flaws.

6.8 Summary

We successfully implemented a solution for communicating confidentially over
the Internet. We devised a private key steganographic scheme, with encoding

82 Evaluation

and decoding algorithms. Given some stego-key and seed, we may encode and
later decode some message of at most 200 ASCII characters.

Based on a large email corpus, we calculated a frequency alphabet, optimized for
english language. Based on this alphabet, we decided on max message lengths
of 200 characters and a total block length of 4400. This allow us to successfully
encode ~90% of the messages we sampled. We expect this to be a good tradeoff
between MAR and TBL.

Different possible attacks on block integrity was presented. Because we are not
hiding the block entirely, but storing it in a header, we must pay attention
to block integrity. StegoBlock does not implement any check, but it has been
thoroughly explained how one should be implemented. A simple SHA-256 hash
of the block, key and seed will do as a MAC, and can be sent a long in a separate
header. It is critical to ensure plausible deniability that block with randomly
chosen messages are also encoded with random keys.

We did not use a formally proven CSPRNG. One was not available, and we
consider it outside the scope of this thesis, to prove one. We assume the one we
use is secure, but first established that doing so is fair. By shuffling a deck of 4
values 600.000 times, all different results should appear with equal probability.
While it is impossible to validate it that was actually the case, a small test
hinted in that direction.

Based on the tests we performed, and our analysis of our encoding function, we
believe that our solution is in fact secure. We also believe we met our goals of
user friendliness with our interface. It requires little to none getting started with
StegoBlock, as the UI comes with build in help. Users can keep communicating
with their existing contacts, the ones that like can install StegoBlock and gain
an extra, subliminal communication channel in their emails.

Chapter 7

Conclusion

We have learned that online communication is under heavy pressure, in the
form of eavesdropping and possible regulations. Intelligence agencies pose a
large threat, as they have resources necessary for wiretapping backbones of the
Internet. We have learned how they can build massive data centers for storing
the vast data amount, form these taps. Collected data is analyzed, structured,
categorized and made available for later search. From Edward Snowden’s leaks
we have seen screenshots of the NSA application X-Keyscore that allows analysts
to pick up information on people, with simple queries like name or email ad-
dress. It is most plausible that other major intelligence agencies possess similar
tools. Furthermore we learned that analysts are trained for looking after peo-
ple displaying suspicious behavior, for example in the form of using encryption.
We also notice how Turkey and Pakistan impose bans on several applications,
using strong encryption to secure the communication between parties. We saw
a clear need for an alternative confidentiality preserving communication plat-
form, working around the use of encryption. Surely these type of applications
will also be used by terrorists, preventing intelligence agencies to eavesdrop.
But we have seen how these agencies monitors not only targeted suspects - but
entire countries. Banning applications allowing secure communication will not
remove terrorists, it will instead make them find other ways. We would also like
freedom fighters to communicate securely within repressive governments, and to
quote Gerald Seymour: One man’s terrorist is another man’s freedom fighter.

84 Conclusion

To solve the problem, we went with a steganographic approach, as this and
cryptography are the major research topics for ensuring confidentiality. Like
pedantic article by Ron rivest, Chaffing and winnowing, steganography allows
to work around encryption, to solve the same goals. We had 3 overall goals:

1. Offer message confidentiality, integrity and availability, even against a
strong adversary limited only by cryptography.

2. Provide users plausible deniability to any message from the system.

3. No encryption allowed.

Confidentiality, integrity and availability are key components in online commu-
nication, often referred to as the CIA triad. Since they are most often achieved
by cryptography and encryption, we first explored which cryptographic compo-
nents we could not do without, and which we could omit in favor of steganog-
raphy. Encryption schemes were instantly ruled out, but simple hash functions
would take us a long way.

Plausible deniability, referring to the condition, where a person can, plausibly
and legally, deny any knowledge of, or association with some specific reality,
in a way that they have deliberately provided beforehand was thought in from
the beginning. People could easily be threatened into giving up their keys to
secure communication, users would not be secure enough. We needed to make
sure that no adversary could verify if a some key is valid or fake, allowing the
suspected user to plausibly provide any key.

To meet each goal, we ended up with designing and implementing StegoBlock,
an extension for email client Thunderbird. Building on top of traditional emails,
let us utilize an already existing and widespread communication medium. Users
should have a low entry barrier, as interface and usage would change minimally
from what they already know and use. By extending emails in "X-"-headers,
we created a solution that still works for email clients not StegoBlock enabled.
These clients will simply ignore said headers, only with StegoBlock installed,
additional processing occurs.

StegoBlock implements the idea of embedding a small message in a larger, ran-
domly generated cover object, that is then permuted, only reversible with knowl-
edge of some stego-key. In detail, we would generate what we called noise, and
append it to the secret message and its length. We would then do a Knuth-
shuffle on the entire block, but with a CSPRNG seeded with the stego-key and
a seed. Only by knowing the key, one could reverse the permutation and ex-
tract the secret message. Reversal without key is proved extremely hard, as the

85

number of possible permutations equals the factorial of the total block length.
We wrote our own implementation of the simple Knuth-shuffle along with a
reverse-Knuth-shuffle as well. Provided with a RNG in the same state, the algo-
rithms can successfully encode and decode a message. We did not use a formally
validated CSPRNG, but settled for assuming one. We did however carefully ex-
amine which properties are necessary for a CSPRNG and check for obvious bias
in our chosen third party implementation.

To accommodate plausible deniability, we made sure that every email sent with
StegoBlock installed, would embed some message. If users do not write one, a
randomly generated one will be used instead. There will always be a block in
emails from a StegoBlock user, but the user may always argue that no secondary
message was added. There is much value in plausible deniability. If users can
convince the adversary that they are not hiding anything in a particular message,
the adversary may not even bother decoding the message. With traditional
crypto systems, it is also possible to keep messages secure, but crude criminals
may force key disclosure with threats or violence. StegoBlock prevents against
these unfortunate cases.

We designed StegoBlock to have a storage for stego-keys and to have a simple
user interface. The design was reasoned thoroughly about in our steganalysis.
We established how a message length limit is a necessity, but reasoned thor-
oughly about said limit, and the total block length. By analyzing a large email
corpus, we established a foundation on real, human written emails, for evaluat-
ing how successful embedding message would be. We ensured that our method
of scrambling the block would permute it in such a way, that the outcome would
be one in every possible permutation - and in general we sought to remove every
possible shortcut to extracting the secret message. In particular, we made an
effort to block the usage of statistical analysis to reveal patterns in the block,
by ensuring that all blocks follow the same target distribution of letters. All
blocks consist of the same amount of the same characters, we use the same
FREQUENCY_ALPHABET for all blocks and we can embed roughly 90%
of all <= 200 character english messages.

Our steganalysis showed that the recommended settings for block and message
length, results in a very hard reversal process, if the stego-key is unknown.
We iterated possible attacks on block integrity, but which would still not affect
message security in the form of enable message decoding. In particular, we
saw how an adversary might alter an encoded block to look like no message was
embedded. This attack and the alike, were shown preventable by simple integrity
checks. Implementation was described and made easy for further development.
Our shuffle algorithm and its promise of results in the entire range of all possible
permutations are formally proved in existing work. We briefly validated that
along with our chosen random number generator, it did not have any obvious

86 Conclusion

bias. The security claim we gave of keeping even an adversary of Dolev-Yao
type strength at the gates is met, to the best of our knowledge.

With StegoBlock and the theory and steganalysis it is based on, we consider it
proven that it can indeed be used to hide users secondary communication. We
strongly believe that users can display plausible deniability, especially if they
agree on a fake stego-key, besides the real one. Should the adversary interrogate
both communicating parties and they both reveal the same fake stego-key, their
denial is even more plausible, as the adversary arrives at the same decoding
result. Our solution should allow everyone to communicate in private, legally,
even if encryption is considered illegal. Users may even plausibly deny that they
communicated in private.

7.1 Future work

Probably the most obvious area for improvement in the current application,
is the stego-key store. This is currently not secured good enough. Today, its
security is based solely on the security mechanisms of the operating system.
A new version of StegoBlock must surely remedy this situation. Should an
adversary gain access to the current key store, he will obviously learn all stego-
keys and be able to decode all blocks formed by the user in question.

Implementing an integrity check is top priority as well. We already iterated
possible attacks that can all be remedied by calculating a simple hash and
validating it. We could use a SHA-256 digest of header values XStegoBlock +
XSBDate + stego-key and store it in a new header, X-SBIntegrity. The receiver
could then easily recalculate the digest, and discard blocks mismatching integrity
values. Providing a MAC may however ruin plausible deniability. Should an
adversary compel users to give up their fake keys, he can easily tell if keys are
fake, by doing the same computation. We should in all aspects ensure that an
empty block looks and behaves the same way, as a filled block with a fake key. A
possibility could be to encode randomly chosen messages with randomly chosen
keys - which our implementation already does.

StegoBlock currently has limited functionality for multiple recipients. An email
with a StegoBlock can be sent to as many recipients as needed, but the block
will be the same for all recipients. This means all recipients must share a key
for all to decode the message. We imagine a future version to better support
multiple recipients. One possibility could be to allow multiple keys for decoding
messages from the same sender. We must remember that an adversary would
expect all recipients to disclose keys decoding a block to the same message. This

7.1 Future work 87

might require the entire recipient group to agree on the same fake key, unless a
more clever scheme can be discovered.

Future work may also be, to formally verify if our PRNG choice is in fact
cryptographically secure. The workload for such an exercise could amount to
a thesis in itself. It is however critical to the system, because of the hard
dependance on the cryptographic primitive.

We would like to offer a dynamic FREQUENCY_ALPHABET. In a future
StegoBlock version, users should be able to pick their own target character dis-
tribution. This would allow them to blend their StegoBlock into the distribution
of their native language. A letter frequency analysis of the StegoBlock would re-
turn the same distribution as the message itself. We would also have the added
benefit of allowing the characters of the users native language. The initial ver-
sion only allows the default ASCII character set. Following the though stream
of allowing dynamic distribution targets, we could imagine users being able to
select books, emails, newspapers, tweets, basically any text on their own - then
StegoBlock would analyze the character frequency of those inputs - and adjust
the FREQUENCY_ALPHABET accordingly.

Lastly we also see a future version to have some form of logging mechanism.
Currently errors will be suppressed, unless if happening when sending emails
- where they will not be logged either. Debugging is near impossible, if not
reproducible in a development environment. A full fledged logging mechanism,
with option notifying developers would be a great addition.

88 Conclusion

Appendix A

Header example

1 Return−Path : <to f t egaa rd . andreas@gmail . com>
2 Received : from MacBook−Pro−2. l o c a l (x1−6−a0−63−91−fe−bf −82. cpe . webspeed . dk .

[2 . 1 0 4 . 2 . 5 9])
3 by smtp . gmail . com with ESMTPSA id 89 sm1327821lja . 1 6 . 2 0 1 6 . 1 1 . 1 0 . 1 1 . 0 5 . 3 4
4 f o r <to f t egaa rd . andreas@gmail . com>
5 (ve r s i on=TLS1_2 c ipher=ECDHE−RSA−AES128−GCM−SHA256 b i t s =128/128) ;
6 Thu , 10 Nov 2016 11 :05 : 35 −0800 (PST)
7 From : Andreas Toftegaard <to f t egaa rd . andreas@gmail . com>
8 Subject : StegoBlock
9 To : Andreas Toftegaard <to f t egaa rd . andreas@gmail . com>

10 X−Stegoblock : a.%20MttOvon%20iyEncoc .%20 to0ry in r rupeos%3E l tE sn t i t t l n t %20.%20o
11 %20emaathzhirUr%2Fnsc i a i%20pOaa%20tp i%20ob1pewle lvayIgotht%20 loh1dsCrr la%20o
12 aeagd ._%20r%20%20yahr%20c%20%20%3Af%20%20m%20teroesecnEc%20vLbssodrDo%20%20 l
13 %20%20%20esaween%20aho%20mlikdMnl%20 t l%20bmoeo%25%20 t t o i l e c g n%20mhesseg%20do
14 0aFP%2Cw%20iwiEyeersn5%20lldaebHmms) dsAei%20%40e%20a%20hv%20%3E%20ss sn%2F%20
15 D%20r e i n%20a%20ae%20eioEiFicT%20 ieuaFet r iyh%20d%20%20%3Ev9e%20n%20 i i v%20hPsT
16 nsaso%20tae%20en6saIconfdtahTohh%20tmaudQar%26c%20sye%20ueCkotHt%20xTod0im%2
17 0 s e r t%20%3F%20 i t t l n k e k%20oLlrNjd%3E%20eo%20a f i 0 t u%20plithoetCN%20%20s%20%20e
18 bcctyowe . wr%20oo%20%20R%40r%3D_eniesepa%20hml%20 i%20hmttinal%20dasoe%20ho4i%
19 20 idc−%20%3C%20e%2Ca%20Ysheon(%3Diywn%20%2Fr0%20%20gu%40sm8t%20sM%20kCatvt%2
20 0a0a%20 i lP t aN t i f%3DwegE%20InesMoi%20Aab%3Dhz%20tel i_hDr%20mTea1%20cco l . e%20I
21 %20ok%2C%20m.%20 s%20t%202n f tht%20%20Tb%20%20%20%20 f s t a eq%20a%20at ’ i a%20na%3A
22 s na1 I l t g%20%2CofsgemlapfreEpozmEneibmhee%20−f cuoreepChl j%3AueeNSnreobrb%20%2
23 Bhkm%20i20uCnp%20%20rdNg%20tLc r e i%20obroanrwywfoo%20skohc s i%20Nr%2C%5Bydi%3C
24 _ye0%20dsnnit0a3revuP%20 i e b r r e%20%3Diehamn%20auaal%20%20%20e%200%20 s f%20ntnt
25 ne%3AkOenrmaoeru%20−se%20pnoSo%20%20%20yoEnh%20%20ct%20%20Go%203aKnn%20%3Cpd
26 paoe%20%20%20%2Cmxiane%3Daasapup%2CafeJKele9n%20%20 e t 7 a l e a t t%20emeAecn%20txe
27 i e e r y . shsmm%20u%2Fv%20s%2Ca%20 i%20ioDeHssmaest%20oe− l i e r %20r%20o) an%20%20net
28 Ma%09uoCsylae%20r%20Ou%20ea . u%20%20lvsLare%3Fo4nheoeegtmwi%20niT%20te%20hlM1
29 npea%20t%20nry i%20 i . sTa%20ruiurTe%20sn%09 r f%20nrlObsz∗%20sd) aenrnTcit%20%20 i
30 .%3Dnlpeaoe7BusaooE1uio%20s%20oaaFs1d%2Fain6%3Dpaefnmeias%20eho%20−ethtaaLak
31 nn%20 t c h o e i d s l r%20%20d%3Arurcath%20 f t i n u r s%20%20%22%20 l%20lopotUimtRar%20%20
32 cd%2Fldf−rtotonhiSunkOieuuraegfsghae%2Canel%20ea%2CynZtEoosens%20 i%20 f fdp%20
33 %20doot%2Cuidr%20etMuft l%20%20− t o e i%20%20At%2Cenid%20so%20stono%24.%20wmib%2

90 Header example

34 0dnnt%2FRlo%20pee%20%40e . AhneMeau%20whe%20ohn%40ato0haef%20%20%20o%20 s l d c e i f
35 ~h%20dwosr5%20ep0c . sntCoewuoetp . l i r h%20oeaeg%20u%20t r%20u%20Rd%2Cl%20sOk i r e i
36 %20BrluYd%20%20a%2B%20 l e l t c %20lsoRa%20orasmto%20h i e f d r %20(_vetom%20yaa8eeaIm
37 wi iDer_i l r e%20 f%20c%20eishr0 iv leGenbB%2Ft%207plEcnt%09o s a i t e%20heAm%20er−cse
38 anrih4ng2ra%20Do−aya%2Ct%20%20 i l e %20lwhDr . n%20Sedtn%3Eed%20%20h%20enm%2C4iid
39 p%3ErmeJnwblf%20%20ehHoo7−anashnnineh%200ht%20%20trthdWuiprmr%20isWedn−gdr%2
40 0nfpmeCefunrd%20a i c e e e (c%207nooaaoacSir_%20%20be0Clsybr%20aa%20knrs%20EosMe%
41 20 edlhws%3E. hdhwiito%20p%20e%3Etmrrdat2d%20E%20di%20upenm%20%20s%2C5%2Cbcriu
42 %209un f i%20saeed%20%20ocP .%20.p%20de i s s%20n%20mipnsat%20sctag%20etpc%20oh%09
43 aeEni%20%20tEaI i e%20%20eebdk%2Cornis%3Dl%20%20eeg%3AseDth%20s%20%3DtJrnhg%20
44 lroPCr%20i ’ ly idVee%20%20%20cGih raoh i a in t l%20sganu%2C0%20t%20hnnt%20%20tp iS e I
45 %20%20%20webp%20%20art%2C0%20dedt .%20e%20hrcCw%20Fv%20%20nue%20an%20%20sa%20
46 %20ovt2nusoar%20Cc1tint−Gs2e%20egenbpr2n_inp6rhtdeog%20v%20P%20yetaPnistd0eo
47 rhMa−TMImnnmOir ’ g%20na%20wvt%20’m%3F%20%2F%20%20Gaai1etoopnt lnt%20ath%20icho
48 %20o%20R2incbccr f%2F_%20s%206%20%20Tu%3Auaio%3DeiC%20t%20%20q%20pDkoi%3Dfi_u
49 aurorErvoMruiAniynfIb%20mnnoegmau%20%26tn%20 s l e%20t%3DC. pe%20ht . ne%20H%20v%2
50 0Mc%20ota larocsettsmaeEs1rmto%20uiordykt) s%20%20ado%20%20FeeuSennTcdayythne%
51 20 n l s id i a taoXtska%09so r ec . y%20Nah%20osrWr%2Fe%203edeaecoC%20moot i a i e i%20Dnrr
52 Reale !%20 r%20yioa%20%20’ i rheomneo2 i l i%20ath%20vtwtdo%20Jb%20sd−r s%20e . t ’ rn%2
53 0gtem%20%20%3Diwb%20yocw3%20pnoed%20t%20e ihad l eh%20W%2Cs%20nrt iUy l%20a5%20o%
54 20o%20t tnHt2 i l%3ANn2%20os%20ggee . e%20tadsag%09%20stNla%20n%20oqrredTnTe%20nd
55 KaeT%20etdesenbfp%20oh0co%20Pe9cn%20%20%20pp4e . l a t%20M%20%20%20ittnT%20e%20%
56 20%20 r s%20W%20hs6%20−%20Sue%20%3Dr%20e . e%20frrAg%20ce%20%2CGt%20mt%20ot%20at
57 ShAne%2Fot%20y foe r tau8no i r%209%20h3a5tyatalV%20m%20rp%20eut s id%2CAc%20p2Ui%2
58 0 drdsr%20to .%20u%20%20%2Csogdey%20NeOfrofeahjC%20%20r%20g%20t%20nneBn2ofeht%
59 3FLaiRrn%23er l s r ibmng%3Coesn%202 tso . rn0tiTrnO%20Paprnvc%20 s a i%20−tg%2Cee%20s
60 %20ctB%20sp%20m%20s8%20%20%20ih3t iE1theh%20r l 2 s l 1n −’ps%20ss%20bln_2%20n%2C%2
61 0%2Cn’ brmasi (l x i c c%20rg%20etoNhop%20he i s%20h%20T%20 l eoac%20Ia%20%09twneoeeyI
62 ogsrbegtw%20ced%20%20 la%20 l s s −t e l i%3Dsabow%20xo%2CuRarde . t%20%3D%20%40%20nh%
63 20meor%20%20%20oduwmiSsoiw%20en . na%3D%20hhnti%20%20ho0%20%2ClA%20nsnartEnoo%
64 20%3Dn%20n%20r%20n1%3D0tyeowo . oaln%2FmSsdswAo%3A0mmoafefU%20%20%20ln%20eeo (W
65 srDimdcnelsa%20e%20_sp%20 i o r %20. i t h I o l e oa ca eu sPdh l i%20uS%20At%2Chr%20%2Frven
66 o0%209e%20%09%20%20oTwParon%20%20X%20. f i %09a%20huvo%20uDnh%20h0%20s%201%20aC
67 Rc%20%20snkina%20m%20wL%3E0%7Cinrt lqnioD%20orSae%20leNmoEdvleao%20nekofo%20U
68 gHmoy%20 l e%20tpa%20nlopen%20ssdne iS0cn ipye%20%3EhteoTbeu%20rtdhAt1%20capgsk i
69 −%402 i t%20da%20r%20enso%20 f%20ee . t5ht%200ohtu%3Fcd%20ve%2F%20t%20−e s r%20nate
70 enebS%20oa%20oi7tE%20umtr%3Dds%20ec9waearR%3Aela%20u%20n%20%20∗ i%20 l%20ui%3E
71 yaa%20dK%20 iO I i l%20c%20%20lg2ye%3Ba%3DlICo4tdni r s1witg lveh%2F%2Cci%20H%22ctn
72 a∗ s%20n%20h0 l e e t t t%20hseh3ewc2xfde%20gc%20mvotno%20orreaea_gW%20eteo r f−u l t ty
73 %20%2F%20wnhm%20aShoia%3D%20cua4n%20dA%20 l r e y . kgpn . schd%20%2F3n%20oour l%20%2
74 CBm%20g%20aS%20Wh%3At%20p%2CaFeEtrogtLysdyt%20uo%20niy9ato%20tc . r%20%20pasno
75 aeeca%20Set%20a fheu i e lu ipoan%20o%20ow%2CS%20 ra t 6 i t g o%20no%20%20b%20%20i2L%20
76 kh%20eyOh%20tnk .%20 toebsEod%20%20%20 i i %20gtuS i ta%20%20ru%20d%20erGc%20 a e l y l l
77 nolpn%20Fwh5%20.−rna−%20%20ont%3Fo l s s%20%3Ddvf itEttnruar%20vTere%20s%3B) eeoh
78 e j n o t l I ’ uo%20%20t t%20oraremwttr%20ya%20Rb%20%20%20Ep%20%20facput%20%20wgBh%2
79 0 o i e%24%20 e s f%20%2F%20v i s%20tycs%20 e i%2FruyncBsoe%20 c i c%20ae . eolH3weeica%3De
80 %20.%20. e%20s7%3Ef r i r IpD i %20.%20eegamu’−dleraodaeo0Pro%20dc%20Niaoveu%20%20e
81 e i s e 2%20 l tyo%2CcfeaT%20 f e%20lCTeut%20s ! uE%20a%20r r%20nc%40tb%5D%20xoFf8%20s t
82 t%20%20RJ%20%20nnllnVr%20 r t r c n a e i a s i i l nA%20o%20t%20s e l n%20gt%20 l r c S r c i s%20us
83 otrmaeh%20%20iarVry%26 l%20p%20se%20te%2FtsceerwskEmpi%20kc foe%20 s e e a l r f I l h%2
84 0 l t l %20ee%20B%20gdoodnrst_nn%20 i e e l s n t s l −%20n inen ig t0%20t3%20nexetn%20vra i2%
85 20 . dentgds t f r%20gdE1yNo%20eC%20C%3F l t t l t%3A%3D1A%20o%20nor%20e ip%20c%20pmrua
86 m3s . y I d i e e t h f e t f%20osawui . o3%20g8%2Ccaeeoie%20. gta%20egiaet0_%3D%20aocc%20%2
87 0 t%20OtGfed%20Osovet−%20)%20ryco%20%2C%20%20a%20 s i e t s y 0%20uen i i o an i%20w%20ni
88 chiy%20mtsc5%20r%20 f%20des%20trdrn%5Cims%20%20%20Cto.%3BMost%20hoes−en%20%20
89 nto_%20M0ntYrtynNyPwl.%20gbdse%20%20wase%20%202−%20%200 iJae0%20%20ygawmT−0t t
90 t r%20−Eatbu%3Doatta1AsurlAiruccmrdi%20vkr i%20 laa%20io−r%20s%3Fb
91 X−Sbdate : Thu Nov 10 2016 20 :05 : 34 GMT+0100 (CET)
92 Message−ID : <d496c8e5−8d87−fc4c −86e8−e2d8fcaad665@gmail . com>
93 Date : Thu , 10 Nov 2016 20 :05 : 34 +0100
94 User−Agent : Moz i l l a /5 .0 (Macintosh ; I n t e l Mac OS X 10 . 1 1 ; rv : 4 5 . 0)
95 Gecko/20100101 Thunderbird /45 . 4 . 0
96 MIME−Version : 1 .0
97 Content−Type : text / p la in ; char s e t=utf −8; format=flowed
98 Content−Transfer−Encoding : 7 b i t

91

99
100 Nothing to see here

Listing A.1: Source code of email with StegoBlock

92 Header example

Appendix B

Installation

For development, unzip and place the provided source in the Thunderbird ex-
tensions folder:

Windows %APPDATA%/Thunderbird/Profiles/<Profile Name>/extensions

Linux ~/.thunderbird/<Profile Name>/extensions/

MAC ~/Library/Thunderbird/Profiles/<Profile Name>/extensions/

StegoBlock can then be selected and installed from the Extensions menu within
Thunderbird.

For simple end user installation, use the Extensions menu within Thunderbird
to select the stegoblock.xpi file directly. Go to the Extensions tab, click the
gears icon, then select "Install extension from a file...".

StegoBlock has been tested on Thunderbird 45.4.0, running on a Macbook Pro
with OS X El Capitan (10.11.6).

94 Installation

Appendix C

StegoBlock extension files

<?xml version="1.0"?>

<RDF xmlns="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#" xmlns:em="

http :// www.mozilla.org /2004/em -rdf#">

<Description about="urn:mozilla:install -manifest">

<em:id>stegoblock@toftegaard.it</em:id>

<em:name>Stego Block </em:name>

<em:description >Encrypted secondary messages in emails.</em:

description >

<!--The Stego Block extension allows for embedding small secondary

and encrypted messages in email headers , known as a Stego Block

. If no message is added , a randomly generated on will be

inserted. Adversaries cannot destinguish between Stego Blocks

containing real messages and ones containing random tekst. This

provides the sender with plausible deniability of

communicating in secret with any recipient.

Stego Blocks are encrypted with 256 bit AES.-->

<em:version >1.0.1</em:version >

<em:creator >Andreas Toftegaard </em:creator >

<em:optionsURL >chrome :// stegoblock/content/options.xul</em:

optionsURL >

<em:iconURL >chrome :// stegoblock/content/icon.png</em:iconURL >

<em:targetApplication >

96 StegoBlock extension files

<Description >

<em:id>{3550 f703 -e582 -4d05 -9a08 -453 d09bdfdc6}</em:id>

<em:minVersion >1.5.0.* </em:minVersion >

<em:maxVersion >51.0</em:maxVersion >

<em:type>2</em:type>

</Description >

</em:targetApplication >

</Description >

</RDF>

Listing C.1: StegoBlock extension install.rdf file

content stegoblock chrome/content/

overlay chrome :// messenger/content/messenger.xul chrome ://

stegoblock/content/messenger.xul

overlay chrome :// messenger/content/messengercompose/

messengercompose.xul chrome :// stegoblock/content/

messengercompose.xul

Listing C.2: StegoBlock extension chrome.manifest file

1 var SBCommon = function () {

2
3 // gets the StegoBlock extension preferences.

4 var initPreferences = function (obj) {

5
6 if (obj.prefs)

7 return;

8
9 obj.prefs = Components.classes[’@mozilla.org/preferences -

service ;1’]

10 .getService(Components.interfaces.nsIPrefService)

11 .getBranch(’stegoblock.’);

12 };

13
14 return {

15
16 // shortcut for the extensions preferences

17 prefs: null ,

18
19 // stores callbacks for the preference observer

20 observeCallbacks: {},

21
22 // convenience utilities

23 utils: {

24
25 // native JS implementation for extending objects. somewhat

similar to jQuery.extend ()

26 extend: function extend () {

27
28 if (typeof(arguments [0]) === undefiend)

29 arguments [0] = {};

30
31 for (let i = 1; i < arguments.length; i++) {

97

32 for (let key in arguments[i]) {

33 if (arguments[i]. hasOwnProperty(key))

34 arguments [0][key] = arguments[i][key];

35 }

36 }

37
38 return arguments [0];

39 }

40 },

41
42 // register a callback that gets fired when preferences change

43 observeCharPreferences: function (id , callback) {

44
45 if (this.prefs === null) {

46
47 let that = this;

48 let observingObject = {

49
50 observe: function (subject , topic , data) {

51
52 if (topic !== ’nsPref:changed ’)

53 return;

54
55 for (let callbackId in that.observeCallbacks)

56 that.observeCallbacks[callbackId](JSON.parse(that.

prefs.getCharPref(data)));

57 }

58 };

59
60 initPreferences(this);

61
62 this.prefs.QueryInterface(Components.interfaces.

nsIPrefBranch2);

63 this.prefs.addObserver(’’, observingObject , false);

64 }

65
66 if (this.observeCallbacks[id] === undefined)

67 this.observeCallbacks[id] = callback;

68 },

69
70 // get specific char preference as an object

71 getCharPref: function (key) {

72
73 initPreferences(this);

74
75 return JSON.parse(this.prefs.getCharPref(key));

76 },

77
78 // set specific char preference with an object. object gets

stored serialied.

79 setCharPref: function (key , value) {

80
81 initPreferences(this);

82
83 this.prefs.setCharPref(key , JSON.stringify(value));

98 StegoBlock extension files

84 },

85
86 // unregister a previously registered callback for preference

change

87 forget: function (id) {

88
89 delete this.observeCallbacks[id];

90 }

91 };

92 };

93
94 // extend the global variable with common functionality , for easy

access

95 SBCommon.utils.extend(window.SBCommon , SBCommon ());

Listing C.3: StegoBlock extension common.js file

1 <?xml version="1.0"?>

2 <overlay id="stegoblockMessenger" xmlns="http :// www.mozilla.org/

keymaster/gatekeeper/there.is.only.xul">

3
4 <script type="application/javascript" src="chrome :// stegoblock/

content/seedrandom.js"/>

5 <script type="application/javascript" src="chrome :// stegoblock/

content/common.js"/>

6 <script type="application/javascript" src="chrome :// stegoblock/

content/steganography.js"/>

7 <script type="application/javascript" src="chrome :// stegoblock/

content/messenger.js"/>

8
9 <vbox id="expandedHeadersBox">

10 <hbox id="stegoblock -content -box" collapsed="true">

11
12 <grid flex="1" id="stegoblock -grid">

13 <columns id="stegoblock -columns">

14 <column id="stegoblock -header -column" minwidth="0"></

column >

15 <column id="stegoblock -content -column" flex="1"></column >

16 </columns >

17
18 <rows id="stegoblock -rows">

19 <row>

20 <label id="stegoblock -header" value="Stego Block" class

="headerName"/>

21 <hbox>

22 <description id="stegoblock -content" flex="1"> </

description >

23 <vbox id="stegoblock -disabled -box" collapsed="true"

flex="1">

24 <hbox>

25 <label id="stegoblock -disabled -label" flex="1"

style="color: grey; font -style: italic"/>

26 </hbox>

27 <hbox id="stegoblock -add -key -box">

99

28 <textbox id="stegoblock -add -key" placeholder="

Shared secret key of at least 8 characters.

Do not agree on this over email" flex="1"

onkeyup="sb.validateKey ()"/>

29 <button id="stegoblock -add -button" oncommand="sb.

addKey ()" style="text -align: center" disabled

="true">Add StegoKey </button >

30 </hbox>

31 </vbox>

32 </hbox>

33 </row>

34 </rows>

35 </grid>

36
37 </hbox>

38 </vbox>

39
40 </overlay >

Listing C.4: StegoBlock extension messenger.xul file

1 const sbCommon = window.SBCommon ();

2 const sbStego = window.SBStego ();

3
4 var sb = {

5
6 // storage for the sender of a selected email

7 sender: null ,

8
9 // gets an element by id , from the map or DOM , if not already in

the map

10 elementMap: function (id) {

11
12 if (this.map === undefined)

13 this.map = {};

14
15 if (this.map[id] === undefined)

16 this.map[id] = document.getElementById(id);

17
18 return this.map[id];

19 },

20
21 // add listener messagepane loading

22 startup: function (event) {

23
24 let messagepane = this.elementMap(’messagepane ’);

25 let _this = this;

26
27 messagepane.addEventListener(’load’, function (event) {

28
29 _this.handleMessageSelection ();

30 }, true);

31 },

32

100 StegoBlock extension files

33 // when a message is selected , headers are checked for a

StegoBlock.

34 // if one is present , it will be tried shown to the user.

35 handleMessageSelection: function () {

36
37 let enumerator = gFolderDisplay.selectedMessages;

38 let _this = this;

39
40 // iterate over all selected emails

41 for (let msgHdr in fixIterator(enumerator , Ci.nsIMsgDBHdr)) {

42
43 // extract all headers as MIME messages

44 MsgHdrToMimeMessage(msgHdr , null , function (aMsgHdr , aMimeMsg

) {

45
46 try {

47
48 // trial and error. first "from" then "to" - ensures that

StegoBlocks in

49 // sent mails can also be read. not very elegant , but

apparently there is

50 // no way to distinguish if a mail is in a "sent" folder.

51 if (!_this.extractStegoHeader(aMimeMsg.headers.from.

toString ().trim(), aMimeMsg))

52 _this.extractStegoHeader(aMimeMsg.headers.to.toString ()

.trim(), aMimeMsg);

53
54 } catch (err) {

55
56 }

57 }, true , { examineEncryptedParts: true });

58 }

59 },

60
61 extractStegoHeader: function (sender , aMimeMsg) {

62
63 let cont = this.elementMap(’stegoblock -content ’);

64 let contentBox = this.elementMap(’stegoblock -content -box’);

65 let disabledBox = this.elementMap(’stegoblock -disabled -box’);

66 let disabledLabel = this.elementMap(’stegoblock -disabled -label ’

);

67 let prefs = sbCommon.getCharPref(’addressesAndKeys ’);

68 let addressRegEx = /<(.*) >/;

69
70 contentBox.collapsed = true;

71 disabledBox.collapsed = true;

72 cont.collapsed = false;

73 contentBox.collapsed = true;

74 cont.childNodes [0]. nodeValue = ’’; // hacky way to set value of

a description node

75
76 // handle "name <email >" format

77 if (sender.indexOf(’<’) > 0) {

78
79 sender = addressRegEx.exec(sender)[1];

101

80 this.sender = sender;

81 }

82
83 // find matching StegoKey for sender

84 let key;

85 for (let i = 0; i < prefs.length; i++) {

86
87 if (prefs[i].addr === sender)

88 key = prefs[i].key;

89 }

90
91 // extract header

92 let ciphertext = aMimeMsg.get(’X-StegoBlock ’).toString ();

93 let date = aMimeMsg.get(’X-SBDate ’).toString ();

94
95 // remove folding spaces

96 ciphertext = ciphertext.replace(new RegExp(’ ’, ’g’), ’’);

97 ciphertext = decodeURIComponent(ciphertext);

98
99 // do not show any StegoBlock UI if email does not contain a

StegoBlock

100 if (ciphertext.length === 0) {

101
102 contentBox.collapsed = true;

103 return false;

104 }

105
106 // there is a StegoBlock , but no matching StegoKey. show UI for

adding one.

107 if (key === undefined) {

108
109 contentBox.collapsed = false;

110 disabledBox.collapsed = false;

111 cont.collapsed = true;

112 disabledLabel.value = ’You have no shared StegoKey with ’ +

sender;

113 return false;

114 }

115
116 // show the StegoBlock

117 var plaintext;

118 try {

119
120 plaintext = sbStego.decode(ciphertext , date , key);

121 } catch (e) {

122
123 contentBox.collapsed = false;

124 cont.childNodes [0]. nodeValue = e;

125 }

126
127 // strip away any random right padding (if message is less than

maxMessageLength)

128 // plaintext = plaintext.substring (0, plaintext.lastIndexOf

(’//’));

129

102 StegoBlock extension files

130 contentBox.collapsed = false;

131 cont.childNodes [0]. nodeValue = plaintext;

132
133 return true;

134 },

135
136 // fired on keyup when trying to add a new StegoKey

137 // validates if the key meets basic requirements , like length

138 validateKey: function () {

139
140 let value = this.elementMap(’stegoblock -add -key’).value;

141 let button = this.elementMap(’stegoblock -add -button ’);

142
143 if (value === undefined || value.length < 8) {

144
145 button.disabled = true;

146 return;

147 }

148
149 button.disabled = false;

150 },

151
152 // adds a new (valid) StegoKey to the preferences

153 addKey: function () {

154
155 let textbox = this.elementMap(’stegoblock -add -key’);

156 let key = textbox.value;

157 let prefs = sbCommon.getCharPref(’addressesAndKeys ’);

158
159 prefs.push({ addr: this.sender , key: key });

160
161 sbCommon.setCharPref(’addressesAndKeys ’, prefs);

162 this.handleMessageSelection ();

163
164 textbox.value = ’’;

165 }

166 };

167
168 window.addEventListener(’load’, function (event) {

169
170 sb.startup(event);

171 }, false);

Listing C.5: StegoBlock extension messenger.js file

1 <?xml version="1.0"?>

2 <overlay id="stegoblockMessengercompose" xmlns="http :// www.mozilla.

org/keymaster/gatekeeper/there.is.only.xul">

3
4 <script type="application/javascript" src="chrome :// stegoblock/

content/seedrandom.js"/>

5 <script type="application/javascript" src="chrome :// stegoblock/

content/common.js"/>

6 <script type="application/javascript" src="chrome :// stegoblock/

content/steganography.js"/>

103

7 <script type="application/javascript" src="chrome :// stegoblock/

content/messengercompose.js"/>

8
9 <vbox id="addresses -box">

10 <hbox id="stegoblock -message -box">

11 <vbox style="width: 11.5em;" pack="end">

12 <label id="stegoblock -message -label" value="Stego Block:"

control="stegoblock -content" style="text -align: right"/

>

13 <label id="stegoblock -message -length" flex="1" style="color

: grey; font -style: italic; text -align: right"/>

14 </vbox>

15
16 <textbox multiline="true" id="stegoblock -textbox" flex="1"

placeholder="Embed a secondary message"

17 name="stegoblock.message.body" minheight="50" onkeyup="sb.

ui.setRemainingCharCount ()"/>

18
19 <vbox id="stegoblock -disabled -box" collapsed="true" flex="1">

20 <hbox>

21 <label id="stegoblock -disabled -label" flex="1" style="

color: grey; font -style: italic"/>

22 </hbox>

23 <hbox id="stegoblock -add -key -box">

24 <textbox id="stegoblock -add -key" placeholder="Shared

secret key of at least 8 characters. Do not agree on

this over email" flex="1" onkeyup="sb.ui.validateKey

()"/>

25 <button id="stegoblock -add -button" oncommand="sb.ui.

addKey ()" style="text -align: center">Add StegoKey </

button >

26 </hbox>

27 </vbox>

28 </hbox>

29 </vbox>

30
31 </overlay >

Listing C.6: StegoBlock extension messengercompose.xul file

1 const sbCommon = window.SBCommon ();

2 const sbStego = window.SBStego ();

3
4 var sb = {

5
6 ui: {

7
8 // service for prompting users

9 promptservice: Components.classes[’@mozilla.org/embedcomp/

prompt -service ;1’]. getService(Components.interfaces.

nsIPromptService),

10
11 // maximum StegoBlock message length

12 maxMessageLength: sbStego.maxPlaintextLength ,

13

104 StegoBlock extension files

14 // regexp for extracting textboxes with email recipient

addresses

15 addressNodeRegEx: /addressCol2/,

16
17 // regexp for extracting email from "name <email >" format

18 addressRegEx: /<(.*) >/,

19
20 // storage for key of recipient

21 key: null ,

22
23 // storage for recipient of the message

24 recipient: null ,

25
26 // gets an element by id , from the map or DOM , if not already

in the map

27 elementMap: function (id) {

28
29 if (this.map === undefined)

30 this.map = {};

31
32 if (this.map[id] === undefined)

33 this.map[id] = document.getElementById(id);

34
35 return this.map[id];

36 },

37
38 // fired when compose window is ready

39 NotifyComposeFieldsReady: function () {

40
41 let label = this.elementMap(’stegoblock -message -length ’);

42 document.getElementById(’stegoblock -textbox ’).value = ’’;

43 label.value = this.maxMessageLength + ’ chars left’;

44
45 this.elementMap(’stegoblock -textbox ’).addEventListener(’

keydown ’, this.validateLength , true);

46
47 this.observeRecipientsByPolling ();

48 },

49
50 // observes the recipients of an email by polling.

51 observeRecipientsByPolling: function () {

52
53 let _this = this;

54 setInterval(function () {

55
56 let els = document.getElementsByTagName(’*’); // get fresh

collection each iteration

57 let addresses = _this.getRecipients(els);

58
59 if (addresses.length > 1)

60 _this.disable(’toomany ’);

61 else if (addresses [0] !== undefined)

62 _this.validateRecipientAndKey(addresses [0]);

63 else

105

64 _this.enable(null); // in case of no recipient , just show

the textarea

65
66 }, 500);

67 },

68
69 // extracts recipients (email addresses) from a collection of

DOM nodes

70 getRecipients: function (elementsCollection) {

71
72 let addresses = [];

73 for (let element in elementsCollection) {

74
75 if (this.addressNodeRegEx.test(elementsCollection[element].

id)) {

76
77 let val = document.getElementById(elementsCollection[

element].id).value.trim();

78 if (val.length > 0)

79 addresses.push(val);

80 }

81 }

82 return addresses;

83 },

84
85 // validates of there is a key for a single recipient.

86 // maintains UI accordingly , by disabling or enabling textarea.

87 validateRecipientAndKey: function (recipient) {

88
89 let prefs = sbCommon.getCharPref(’addressesAndKeys ’);

90
91 // handle "name <email >"" format

92 if (recipient.indexOf(’<’) > 0)

93 recipient = this.addressRegEx.exec(recipient)[1];

94
95 // check if key is known for recipient

96 let foundKey = false;

97 for (let i = 0; i < prefs.length; i++) {

98 if (prefs[i].addr && (prefs[i].addr === recipient))

99 foundKey = prefs[i].key;

100 }

101
102 if (foundKey)

103 this.enable(foundKey);

104 else

105 this.disable(’nokey ’, recipient);

106 },

107
108 // disables the StegoBlock textarea for a specified reason.

109 disable: function (reason , extra) {

110
111 let label = this.elementMap(’stegoblock -disabled -label ’);

112 let box = this.elementMap(’stegoblock -disabled -box’);

113 let textbox = this.elementMap(’stegoblock -textbox ’);

114 let addbox = this.elementMap(’stegoblock -add -key -box’);

106 StegoBlock extension files

115 let reasonText;

116
117 switch (reason) {

118
119 case ’toomany ’: {

120
121 reasonText = ’Stego Block only supports one recipient ’;

122 addbox.collapsed = true;

123
124 break;

125 }

126 case ’nokey ’: {

127
128 this.recipient = extra;

129 reasonText = ’No StegoKey found for ’ + extra;

130 addbox.collapsed = false;

131 this.validateKey ();

132
133 break;

134 }

135 }

136
137 this.key = null;

138 label.value = reasonText;

139 box.collapsed = false;

140 textbox.collapsed = true;

141 },

142
143 // enables a previously disabled StegoBlock textarea

144 enable: function (key) {

145
146 let box = this.elementMap(’stegoblock -disabled -box’);

147 let textbox = this.elementMap(’stegoblock -textbox ’);

148
149 this.key = key;

150 box.collapsed = true;

151 textbox.collapsed = false;

152 },

153
154 // fired on keyup when trying to add a new StegoKey

155 // validates if the key meets basic requirements , like length

156 validateKey: function () {

157
158 let value = this.elementMap(’stegoblock -add -key’).value;

159 let button = this.elementMap(’stegoblock -add -button ’);

160
161 if (value === undefined || value.length < 8) {

162
163 button.disabled = true;

164 return;

165 }

166
167 button.disabled = false;

168 },

169

107

170 // fired on keydown of the StegoBlock textarea. ensures message

length does

171 // not exceed maxMessageLength.

172 validateLength: function (event) {

173
174 let textboxValue = sb.ui.elementMap(’stegoblock -textbox ’).

value;

175 let remaining = sb.ui.maxMessageLength - textboxValue.length;

176 let keyCode = event.keyCode;

177
178 if (remaining <= 0 && event.keyCode !== 8 && event.keyCode

!== 46) {

179
180 event.preventDefault ();

181 return false;

182 }

183 return true;

184 },

185
186 // maintains a counter for remaining characters in the

StegoBlock textarea

187 setRemainingCharCount: function (event) {

188
189 let label = this.elementMap(’stegoblock -message -length ’);

190 let textbox = this.elementMap(’stegoblock -textbox ’);

191
192 if (textbox.value.length > this.maxMessageLength) // prevents

pasting of long texts

193 textbox.value = textbox.value.substring (0, this.

maxMessageLength);

194
195 let remaining = this.maxMessageLength - textbox.value.length;

196 label.value = (remaining === 1 ? (remaining + ’ char left’) :

(remaining + ’ chars left’));

197 },

198
199 // adds a new (valid) StegoKey to the preferences

200 addKey: function () {

201
202 let textbox = this.elementMap(’stegoblock -add -key’);

203 let key = textbox.value;

204 let prefs = sbCommon.getCharPref(’addressesAndKeys ’);

205
206 prefs.push({ addr: this.recipient , key: key });

207 sbCommon.setCharPref(’addressesAndKeys ’, prefs);

208 textbox.value = ’’;

209 }

210 },

211
212 // fired after user clicks Send. injects the StegoBlock message

in the email header

213 injectStegoBlockInMessageHeader: function (event) {

214
215 try {

216

108 StegoBlock extension files

217 let plaintext = document.getElementById(’stegoblock -textbox ’)

.value || ’’;

218 let date = (new Date()).toString ();

219 let key = sb.ui.key;

220
221 // ensure a random key , if no message provided

222 if (plaintext.length === 0 || !key)

223 key = sbStego.getRandomString (128);

224
225 // hide!

226 let block = sbStego.encode(plaintext , date , key);

227 let check = sbStego.checkFrequency(block);

228
229 // block will contain adjacent spaces. those will be squashed

by

230 // https :// dxr.mozilla.org/mozilla -central/rev /82

d0a583a9a39bf0b0000bccbf6d5c9ec2596bcc/addon -sdk/source/

test/addons/e10s -content/lib/httpd.js#4639

231 // which is a normalization function that all headers go

through. we cannot reverse

232 // this transformation , and must therefore transform spaces.

233 block = encodeURIComponent(block.join(’’));

234
235 // check if block is valid

236 if (check.notInAlphabet.length > 0 || check.

outsideFrequencyBounds.length > 0) {

237
238 let str = ’StegoBlock did not pass the character frequency

check and ’ +

239 ’your message was NOT send. ’ +

240 ’Either because you use invalid characters or too many of

some.\r\n\r\n’ +

241 ’Invalid characters :\r\n’;

242
243 for (let x in check.notInAlphabet)

244 str += check.notInAlphabet[x] + ’ ’;

245
246 str += ’\r\n\r\nCharacters used too many times :\r\n’;

247
248 for (let x in check.outsideFrequencyBounds)

249 str += check.outsideFrequencyBounds[x] + ’ ’;

250
251 sb.ui.promptservice.alert(window , ’Fatal error ’, str);

252
253 event.preventDefault ();

254 return false;

255 }

256
257 // fold headers , as lines cannot exceed 78 chars

258 block = sb.fold(block);

259
260 gMsgCompose.compFields.setHeader(’X-StegoBlock ’, block);

261 gMsgCompose.compFields.setHeader(’X-SBDate ’, date);

262
263 return true;

109

264
265 } catch (e) {

266
267 // it is crucial to cancel all emails without a StegoBlock ,

to preserve plausible deniability.

268 sb.ui.promptservice.alert(window , ’Fatal error ’, ’An

unrecoverable error occured during StegoBlock generation.

’ +

269 ’To preserve "Plausible deniability", it is crucial that

all outgoing emails contain a StegoBlock. Your email ’

+

270 ’has been cancelled.’);

271
272 // prevent from bubbling , cancelling sending.

273 event.preventDefault ();

274 return false;

275 }

276 },

277
278 // adds spaces in a string by an interval. used for folding

header

279 fold: function (str) {

280
281 let ret = [];

282 let len;

283 let n = 63;

284
285 for (let i = 0, len = str.length; i < len; i += n) {

286
287 if (i === n)

288 n += 13;

289
290 ret.push(str.substr(i, n));

291 }

292
293 return ret.join(’ ’);

294 }

295 };

296
297 window.addEventListener(’compose -send -message ’, sb.

injectStegoBlockInMessageHeader , true);

298 window.addEventListener(’compose -window -init’, function () {

299
300 gMsgCompose.RegisterStateListener(sb.ui);

301 }, true);

Listing C.7: StegoBlock extension messengercompose.js file

1 <?xml version="1.0"?>

2 <?xml -stylesheet href="chrome :// global/skin/" type="text/css"?>

3
4 <prefwindow id="stegoblock -prefs" title="Stego Block Options" xmlns

="http :// www.mozilla.org/keymaster/gatekeeper/there.is.only.xul

">

5

110 StegoBlock extension files

6 <script type="application/javascript" src="chrome :// stegoblock/

content/json2.js"/>

7 <script type="application/javascript" src="chrome :// stegoblock/

content/common.js"/>

8 <script type="application/javascript" src="chrome :// stegoblock/

content/options.js"/>

9
10 <prefpane id="stegoblock -stettings -pane" label="StegoKey store">

11 <preferences >

12 <preference id="pref_symbol" name="stegoblock.symbol" type="

string"/>

13 </preferences >

14
15 <listbox id="stegoblock -address -key -list" rows="10" width="400"

seltype="multiple"

16 onselect="sb.onlistselect(this.selectedItems)">

17 <listhead >

18 <listheader label="Address" width="250"/>

19 <listheader label="Key" width="150"/>

20 </listhead >

21 <listcols >

22 <listcol/>

23 <listcol flex="1"/>

24 </listcols >

25 </listbox >

26
27 <hbox flex="1">

28 <button id="stegoblock -delete -key" flex="2" style="text -align

:center" oncommand="sb.onDelete ()" disabled="true">Delete

</button >

29 <button id="stegoblock -purge" flex="2" oncommand="sb.onPurge

()" style="text -align:center">Purge StegoKey store </

button >

30 </hbox>

31
32 </prefpane >

33
34 </prefwindow >

Listing C.8: StegoBlock extension options.xul file

1 const sbCommon = window.SBCommon ();

2
3 var sb = {

4
5 // the selected StegoKeys

6 selectedPrefIndexes: [],

7
8 // service for prompting users

9 promptservice: Components.classes[’@mozilla.org/embedcomp/prompt -

service ;1’]. getService(Components.interfaces.nsIPromptService

),

10
11 // initializes a list with all stored StegoKeys.

12 // keys are not stored encrypted , it is considered unnecessary

111

13 init: function () {

14
15 let list = document.getElementById(’stegoblock -address -key -list

’);

16 let purgebutton = document.getElementById(’stegoblock -purge ’);

17 let prefs = sbCommon.getCharPref(’addressesAndKeys ’);

18
19 // remove any previously added list items in the list

20 for (let i = list.getRowCount () -1; i >= 0; i--)

21 list.removeItemAt(i);

22
23 // add list items with each StegoKey

24 for (let i = 0; i < prefs.length; i++) {

25
26 let row = document.createElement(’listitem ’);

27 let cell = document.createElement(’listcell ’);

28
29 row.setAttribute(’value ’, i);

30 cell.setAttribute(’label ’, prefs[i].addr);

31 row.appendChild(cell);

32
33 cell = document.createElement(’listcell ’);

34 cell.setAttribute(’label ’, prefs[i].key);

35 row.appendChild(cell);

36
37 list.appendChild(row);

38 }

39
40 purgebutton.disabled = prefs.length === 0;

41 },

42
43 // fired when one or more items are selected in the list.

44 // maintains an array of selected StegoKeys

45 onlistselect: function (items) {

46
47 this.selectedPrefIndexes = [];

48 let button = document.getElementById(’stegoblock -delete -key’);

49
50 for (let item in items) {

51
52 try {

53
54 this.selectedPrefIndexes.push(parseInt(items[item].

getAttribute(’value ’)));

55 } catch(e) {

56
57 }

58 }

59
60 if (this.selectedPrefIndexes.length > 0)

61 button.disabled = false;

62 else

63 button.disabled = true;

64 },

65

112 StegoBlock extension files

66 // fired when Delete button is clicked. deletes the selected

67 // StegoKeys if user confirms.

68 onDelete: function () {

69
70 let text = this.selectedPrefIndexes.length > 1 ? ’Are you sure

you want to delete these StegoKeys? This action cannot be

undone.’ : ’Are you sure you want to delete this StegoKey?

This action cannot be undone.’;

71
72 if (this.promptservice.confirm(window , ’Confirm deletion ’, text

)) {

73
74 let prefs = sbCommon.getCharPref(’addressesAndKeys ’);

75
76 for (let i = 0; i < this.selectedPrefIndexes.length; i++)

77 prefs.splice(this.selectedPrefIndexes[i], 1);

78
79 sbCommon.setCharPref(’addressesAndKeys ’, prefs);

80 this.init();

81 }

82 },

83
84 // fired when Purge button is clicked. deletes all stored

StegoKeys.

85 onPurge: function () {

86
87 if (this.promptservice.confirm(window , ’Confirm purge ’, ’Are

you sure you want to delete all stored StegoKeys? This

action cannot be undone.’)) {

88
89 sbCommon.setCharPref(’addressesAndKeys ’, []);

90 this.init();

91 }

92 }

93 };

94
95 window.addEventListener(’load’, function () {

96 sb.init();

97 }, false);

Listing C.9: StegoBlock extension options.js file

1
2 seedrandom.js

3 =============

4
5 Seeded random number generator for Javascript.

6
7 version 2.3.10

8 Author: David Bau

9 Date: 2014 Sep 20

10
11 Can be used as a plain script , a node.js module or an AMD module.

12
13 Script tag usage

113

14 ----------------

15
16 <script src=// cdnjs.cloudflare.com/ajax/libs/seedrandom /2.3.10/

seedrandom.min.js >

17 </script >

18
19 // Sets Math.random to a PRNG initialized using the given explicit

seed.

20 Math.seedrandom(’hello.’);

21 console.log(Math.random ()); // Always 0.9282578795792454

22 console.log(Math.random ()); // Always 0.3752569768646784

23
24 // Sets Math.random to an ARC4 -based PRNG that is autoseeded using

the

25 // current time , dom state , and other accumulated local entropy.

26 // The generated seed string is returned.

27 Math.seedrandom ();

28 console.log(Math.random ()); // Reasonably unpredictable.

29
30 // Seeds using the given explicit seed mixed with accumulated

entropy.

31 Math.seedrandom(’added entropy.’, { entropy: true });

32 console.log(Math.random ()); // As unpredictable as added

entropy.

33
34 // Use "new" to create a local prng without altering Math.random.

35 var myrng = new Math.seedrandom(’hello.’);

36 console.log(myrng ()); // Always 0.9282578795792454

37
38
39 Node.js usage

40 -------------

41
42 npm install seedrandom

43
44 // Local PRNG: does not affect Math.random.

45 var seedrandom = require(’seedrandom ’);

46 var rng = seedrandom(’hello.’);

47 console.log(rng()); // Always 0.9282578795792454

48
49 // Autoseeded ARC4 -based PRNG.

50 rng = seedrandom ();

51 console.log(rng()); // Reasonably unpredictable.

52
53 // Global PRNG: set Math.random.

54 seedrandom(’hello.’, { global: true });

55 console.log(Math.random ()); // Always 0.9282578795792454

56
57 // Mixing accumulated entropy.

58 rng = seedrandom(’added entropy.’, { entropy: true });

59 console.log(rng()); // As unpredictable as added

entropy.

60
61
62 Require.js usage

114 StegoBlock extension files

63 ----------------

64
65 Similar to node.js usage:

66
67 bower install seedrandom

68
69 require ([’seedrandom ’], function(seedrandom) {

70 var rng = seedrandom(’hello.’);

71 console.log(rng()); // Always 0.9282578795792454

72 });

73
74
75 Network seeding

76 ---------------

77
78 <script src=// cdnjs.cloudflare.com/ajax/libs/seedrandom /2.3.10/

seedrandom.min.js >

79 </script >

80
81 <!-- Seeds using urandom bits from a server. -->

82 <script src=// jsonlib.appspot.com/urandom?callback=Math.seedrandom

">

83 </script >

84
85 <!-- Seeds mixing in random.org bits -->

86 <script >

87 (function(x, u, s){

88 try {

89 // Make a synchronous request to random.org.

90 x.open(’GET’, u, false);

91 x.send();

92 s = unescape(x.response.trim().replace (/^|\s/g, ’%’));

93 } finally {

94 // Seed with the response , or autoseed on failure.

95 Math.seedrandom(s, !!s);

96 }

97 })(new XMLHttpRequest , ’https :// www.random.org/integers/’ +

98 ’?num =256& min =0& max =255& col =1& base =16& format=plain&rnd=new’);

99 </script >

100
101 Reseeding using user input

102 --------------------------

103
104 var seed = Math.seedrandom (); // Use prng with an automatic

seed.

105 document.write(Math.random ()); // Pretty much unpredictable x

.

106
107 var rng = new Math.seedrandom(seed); // A new prng with the same

seed.

108 document.write(rng()); // Repeat the ’unpredictable ’

x.

109
110 function reseed(event , count) { // Define a custom entropy

collector.

115

111 var t = [];

112 function w(e) {

113 t.push([e.pageX , e.pageY , +new Date]);

114 if (t.length < count) { return; }

115 document.removeEventListener(event , w);

116 Math.seedrandom(t, { entropy: true });

117 }

118 document.addEventListener(event , w);

119 }

120 reseed(’mousemove ’, 100); // Reseed after 100 mouse

moves.

121
122 The "pass" option can be used to get both the prng and the seed.

123 The following returns both an autoseeded prng and the seed as an

object ,

124 without mutating Math.random:

125
126 var obj = Math.seedrandom(null , { pass: function(prng , seed) {

127 return { random: prng , seed: seed };

128 }});

129
130
131 Version notes

132 -------------

133
134 The random number sequence is the same as version 1.0 for string

seeds.

135 * Version 2.0 changed the sequence for non -string seeds.

136 * Version 2.1 speeds seeding and uses window.crypto to autoseed if

present.

137 * Version 2.2 alters non -crypto autoseeding to sweep up entropy

from plugins.

138 * Version 2.3 adds support for "new", module loading , and a null

seed arg.

139 * Version 2.3.1 adds a build environment , module packaging , and

tests.

140 * Version 2.3.4 fixes bugs on IE8 , and switches to MIT license.

141 * Version 2.3.6 adds a readable options object argument.

142 * Version 2.3.10 adds support for node.js crypto (contributed by

ctd1500).

143
144 The standard ARC4 key scheduler cycles short keys , which means that

145 seedrandom(’ab’) is equivalent to seedrandom(’abab’) and ’ababab ’.

146 Therefore it is a good idea to add a terminator to avoid trivial

147 equivalences on short string seeds , e.g., Math.seedrandom(str + ’\0

’).

148 Starting with version 2.0, a terminator is added automatically for

149 non -string seeds , so seeding with the number 111 is the same as

seeding

150 with ’111\0 ’.

151
152 When seedrandom () is called with zero args or a null seed , it uses

a

153 seed drawn from the browser crypto object if present. If there is

no

116 StegoBlock extension files

154 crypto support , seedrandom () uses the current time , the native rng ,

155 and a walk of several DOM objects to collect a few bits of entropy.

156
157 Each time the one - or two -argument forms of seedrandom are called ,

158 entropy from the passed seed is accumulated in a pool to help

generate

159 future seeds for the zero - and two -argument forms of seedrandom.

160
161 On speed - This javascript implementation of Math.random () is

several

162 times slower than the built -in Math.random () because it is not

native

163 code , but that is typically fast enough. Some details (timings on

164 Chrome 25 on a 2010 vintage macbook):

165
166 * seeded Math.random () - avg less than 0.0002 milliseconds

per call

167 * seedrandom(’explicit.’) - avg less than 0.2 milliseconds

per call

168 * seedrandom(’explicit.’, true) - avg less than 0.2 milliseconds

per call

169 * seedrandom () with crypto - avg less than 0.2 milliseconds

per call

170
171 Autoseeding without crypto is somewhat slower , about 20-30

milliseconds on

172 a 2012 windows 7 1.5 ghz i5 laptop , as seen on Firefox 19, IE 10,

and Opera.

173 Seeded rng calls themselves are fast across these browsers , with

slowest

174 numbers on Opera at about 0.0005 ms per seeded Math.random ().

175
176
177 LICENSE (MIT)

178 -------------

179
180 Copyright 2014 David Bau.

181
182 Permission is hereby granted , free of charge , to any person

obtaining

183 a copy of this software and associated documentation files (the

184 "Software"), to deal in the Software without restriction , including

185 without limitation the rights to use , copy , modify , merge , publish ,

186 distribute , sublicense , and/or sell copies of the Software , and to

187 permit persons to whom the Software is furnished to do so , subject

to

188 the following conditions:

189
190 The above copyright notice and this permission notice shall be

191 included in all copies or substantial portions of the Software.

192
193 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND ,

194 EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

195 MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT.

117

196 IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY

197 CLAIM , DAMAGES OR OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT

,

198 TORT OR OTHERWISE , ARISING FROM , OUT OF OR IN CONNECTION WITH THE

199 SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

200
201 */

202
203 /**

204 * All code is in an anonymous closure to keep the global namespace

clean.

205 */

206 (function (

207 global , pool , math , width , chunks , digits , module , define ,

rngname) {

208
209 //

210 // The following constants are related to IEEE 754 limits.

211 //

212 var startdenom = math.pow(width , chunks),

213 significance = math.pow(2, digits),

214 overflow = significance * 2,

215 mask = width - 1,

216 nodecrypto;

217
218 //

219 // seedrandom ()

220 // This is the seedrandom function described above.

221 //

222 var impl = math[’seed’ + rngname] = function(seed , options ,

callback) {

223 var key = [];

224 options = (options == true) ? { entropy: true } : (options || {})

;

225
226 // Flatten the seed string or build one from local entropy if

needed.

227 var shortseed = mixkey(flatten(

228 options.entropy ? [seed , tostring(pool)] :

229 (seed == null) ? autoseed () : seed , 3), key);

230
231 // Use the seed to initialize an ARC4 generator.

232 var arc4 = new ARC4(key);

233
234 // Mix the randomness into accumulated entropy.

235 mixkey(tostring(arc4.S), pool);

236
237 // Calling convention: what to return as a function of prng , seed

, is_math.

238 return (options.pass || callback ||

239 // If called as a method of Math (Math.seedrandom ()), mutate

Math.random

240 // because that is how seedrandom.js has worked since v1.0.

Otherwise ,

118 StegoBlock extension files

241 // it is a newer calling convention , so return the prng

directly.

242 function(prng , seed , is_math_call) {

243 if (is_math_call) { math[rngname] = prng; return seed; }

244 else return prng;

245 })(

246
247 // This function returns a random double in [0, 1) that contains

248 // randomness in every bit of the mantissa of the IEEE 754 value.

249 function () {

250 var n = arc4.g(chunks), // Start with a numerator n

< 2 ^ 48

251 d = startdenom , // and denominator d = 2

^ 48.

252 x = 0; // and no ’extra last

byte ’.

253 while (n < significance) { // Fill up all significant

digits by

254 n = (n + x) * width; // shifting numerator and

255 d *= width; // denominator and

generating a

256 x = arc4.g(1); // new least -significant -

byte.

257 }

258 while (n >= overflow) { // To avoid rounding up ,

before adding

259 n /= 2; // last byte , shift

everything

260 d /= 2; // right using integer

math until

261 x >>>= 1; // we have exactly the

desired bits.

262 }

263 return (n + x) / d; // Form the number within

[0, 1).

264 }, shortseed , ’global ’ in options ? options.global : (this ==

math));

265 };

266
267 //

268 // ARC4

269 //

270 // An ARC4 implementation. The constructor takes a key in the form

of

271 // an array of at most (width) integers that should be 0 <= x < (

width).

272 //

273 // The g(count) method returns a pseudorandom integer that

concatenates

274 // the next (count) outputs from ARC4. Its return value is a

number x

275 // that is in the range 0 <= x < (width ^ count).

276 //

277 /** @constructor */

278 function ARC4(key) {

119

279 var t, keylen = key.length ,

280 me = this , i = 0, j = me.i = me.j = 0, s = me.S = [];

281
282 // The empty key [] is treated as [0].

283 if (! keylen) { key = [keylen ++]; }

284
285 // Set up S using the standard key scheduling algorithm.

286 while (i < width) {

287 s[i] = i++;

288 }

289 for (i = 0; i < width; i++) {

290 s[i] = s[j = mask & (j + key[i % keylen] + (t = s[i]))];

291 s[j] = t;

292 }

293
294 // The "g" method returns the next (count) outputs as one number.

295 (me.g = function(count) {

296 // Using instance members instead of closure state nearly

doubles speed.

297 var t, r = 0,

298 i = me.i, j = me.j, s = me.S;

299 while (count --) {

300 t = s[i = mask & (i + 1)];

301 r = r * width + s[mask & ((s[i] = s[j = mask & (j + t)]) + (s

[j] = t))];

302 }

303 me.i = i; me.j = j;

304 return r;

305 // For robust unpredictability , the function call below

automatically

306 // discards an initial batch of values. This is called RC4 -

drop [256].

307 // See http :// google.com/search?q=rsa+fluhrer+response&btnI

308 })(width);

309 }

310
311 //

312 // flatten ()

313 // Converts an object tree to nested arrays of strings.

314 //

315 function flatten(obj , depth) {

316 var result = [], typ = (typeof obj), prop;

317 if (depth && typ == ’object ’) {

318 for (prop in obj) {

319 try { result.push(flatten(obj[prop], depth - 1)); } catch (e)

{}

320 }

321 }

322 return (result.length ? result : typ == ’string ’ ? obj : obj + ’

\0’);

323 }

324
325 //

326 // mixkey ()

327 // Mixes a string seed into a key that is an array of integers , and

120 StegoBlock extension files

328 // returns a shortened string seed that is equivalent to the result

key.

329 //

330 function mixkey(seed , key) {

331 var stringseed = seed + ’’, smear , j = 0;

332 while (j < stringseed.length) {

333 key[mask & j] =

334 mask & ((smear ^= key[mask & j] * 19) + stringseed.charCodeAt

(j++));

335 }

336 return tostring(key);

337 }

338
339 //

340 // autoseed ()

341 // Returns an object for autoseeding , using window.crypto if

available.

342 //

343 /** @param {Uint8Array|Navigator =} seed */

344 function autoseed(seed) {

345 try {

346 if (nodecrypto) return tostring(nodecrypto.randomBytes(width));

347 global.crypto.getRandomValues(seed = new Uint8Array(width));

348 return tostring(seed);

349 } catch (e) {

350 return [+new Date , global , (seed = global.navigator) && seed.

plugins ,

351 global.screen , tostring(pool)];

352 }

353 }

354
355 //

356 // tostring ()

357 // Converts an array of charcodes to a string

358 //

359 function tostring(a) {

360 return String.fromCharCode.apply(0, a);

361 }

362
363 //

364 // When seedrandom.js is loaded , we immediately mix a few bits

365 // from the built -in RNG into the entropy pool. Because we do

366 // not want to interfere with deterministic PRNG state later ,

367 // seedrandom will not call math.random on its own again after

368 // initialization.

369 //

370 mixkey(math[rngname](), pool);

371
372 //

373 // Nodejs and AMD support: export the implementation as a module

using

374 // either convention.

375 //

376 if (module && module.exports) {

377 module.exports = impl;

121

378 try {

379 // When in node.js , try using crypto package for autoseeding.

380 nodecrypto = require(’crypto ’);

381 } catch (ex) {}

382 } else if (define && define.amd) {

383 define(function () { return impl; });

384 }

385
386 //

387 // Node.js native crypto support.

388 //

389
390 // End anonymous scope , and pass initial values.

391 })(

392 this , // global window object

393 [], // pool: entropy pool starts empty

394 Math , // math: package containing random , pow , and seedrandom

395 256, // width: each RC4 output is 0 <= x < 256

396 6, // chunks: at least six RC4 outputs for each double

397 52, // digits: there are 52 significant digits in a double

398 (typeof module) == ’object ’ && module , // present in node.js

399 (typeof define) == ’function ’ && define , // present with an AMD

loader

400 ’random ’// rngname: name for Math.random and Math.seedrandom

401);

Listing C.10: StegoBlock extension seedrandom.js file - by David Bau

1 var SBStego = function () {

2
3 return {

4
5 maxPlaintextLength: 200,

6 blockLength: 4400,

7
8 alphabetFrequencies: {

9
10 ’ ’: 16.06718960 ,

11 ’e’: 8.38191046 ,

12 ’t’: 5.97449455 ,

13 ’o’: 5.49426190 ,

14 ’a’: 5.49365722 ,

15 ’n’: 5.17089898 ,

16 ’i’: 4.87451515 ,

17 ’r’: 4.55353236 ,

18 ’s’: 4.31688330 ,

19 ’l’: 2.93379732 ,

20 ’h’: 2.70875299 ,

21 ’d’: 2.40453403 ,

22 ’c’: 2.26601057 ,

23 ’u’: 1.97602092 ,

24 ’m’: 1.76507724 ,

25 ’p’: 1.50065145 ,

26 ’f’: 1.34908232 ,

27 ’y’: 1.34689517 ,

122 StegoBlock extension files

28 ’g’: 1.32540969 ,

29 ’.’: 1.14563926 ,

30 ’w’: 1.13791993 ,

31 ’b’: 0.92085225 ,

32 ’,’: 0.83979924 ,

33 ’0’: 0.83385535 ,

34 ’v’: 0.74238124 ,

35 ’-’: 0.70177754 ,

36 ’E’: 0.68850029 ,

37 ’=’: 0.64724045 ,

38 ’k’: 0.58342728 ,

39 ’T’: 0.56770557 ,

40 ’2’: 0.51566439 ,

41 ’C’: 0.51247374 ,

42 ’/’: 0.47558818 ,

43 ’S’: 0.47345250 ,

44 ’1’: 0.43507454 ,

45 ’A’: 0.43493302 ,

46 ’I’: 0.42157858 ,

47 ’_’: 0.36992336 ,

48 ’M’: 0.36024846 ,

49 ’N’: 0.33621560 ,

50 ’P’: 0.32306700 ,

51 ’O’: 0.32287402 ,

52 ’D’: 0.31618393 ,

53 ’R’: 0.30635465 ,

54 ’>’: 0.27271121 ,

55 ’:’: 0.26795096 ,

56 ’3’: 0.26488896 ,

57 ’\’’: 0.22384783 ,

58 ’B’: 0.21430158 ,

59 ’H’: 0.21057057 ,

60 ’L’: 0.20983724 ,

61 ’F’: 0.19583951 ,

62 ’\t’: 0.19488746 ,

63 ’@’: 0.19023013 ,

64 ’5’: 0.18643479 ,

65 ’9’: 0.18505817 ,

66 ’W’: 0.18344998 ,

67 ’x’: 0.18092833 ,

68 ’?’: 0.18050377 ,

69 ’G’: 0.17274584 ,

70 ’4’: 0.16012472 ,

71 ’7’: 0.15750015 ,

72 ’U’: 0.14626852 ,

73 ’8’: 0.14083925 ,

74 ’6’: 0.13537139 ,

75 ’J’: 0.13009651 ,

76 ’)’: 0.12981347 ,

77 ’(’: 0.12127074 ,

78 ’<’: 0.10048000 ,

79 ’q’: 0.09605425 ,

80 ’j’: 0.09571974 ,

81 ’K’: 0.08672672 ,

82 ’z’: 0.08664953 ,

123

83 ’V’: 0.08546590 ,

84 ’Y’: 0.07774656 ,

85 ’;’: 0.06578159 ,

86 ’*’: 0.06518978 ,

87 ’&’: 0.05738038 ,

88 ’$’: 0.05343066 ,

89 ’"’: 0.05126925 ,

90 ’!’: 0.04618735 ,

91 ’X’: 0.04392301 ,

92 ’+’: 0.03535455 ,

93 ’Z’: 0.02887031 ,

94 ’Q’: 0.02826563 ,

95 ’|’: 0.02237320 ,

96 ’~’: 0.02202583 ,

97 ’]’: 0.01722698 ,

98 ’[’: 0.01717552 ,

99 ’%’: 0.01478253 ,

100 ’\\’: 0.01220941 ,

101 ’#’: 0.01201643 ,

102 ’‘’: 0.00562225 ,

103 ’{’: 0.00015439 ,

104 ’}’: 0.00014152

105 },

106
107 generateNoise: function (sizeArr , plaintextArr) {

108
109 let input = sizeArr.concat(plaintextArr);

110 let noise = [];

111 let ptDict = {};

112
113 // verify that all chars in plaintext exist in the alphabet.

114 // track how many times each char occur.

115 for (let i = 0; i < input.length; i++) {

116
117 // init bucket if none exists.

118 if (ptDict[input[i]] === undefined)

119 ptDict[input[i]] = 0;

120
121 // increment char count.

122 ptDict[input[i]]++;

123 }

124
125 // run through all chars of the alphabet.

126 for (let x in this.alphabetFrequencies) {

127
128 // calculate the char count given the specified block

length (4400) and frequency

129 let charCount = Math.round(this.blockLength / 100 * this.

alphabetFrequencies[x]);

130 let ptFreq = ptDict[x] || 0;

131
132 charCount = charCount - ptFreq; // subtract the char count

in the plaintext , from the calculated.

133 if (charCount < 0)

124 StegoBlock extension files

134 charCount = 0; // there is already too many of the given

char , to maintain correct frequency. notify about

this later.

135
136 // as the frequency and char count calculated is now with

respect to the plaintext , push the char onto the noise

137 // array "charCount" times.

138 for (let i = 0; i < charCount; i++)

139 noise.push(x);

140 }

141
142 // shuffle noise , as we would otherwise reveal if some key is

fake and ruin plausible deniability.

143 this.shuffle(new Math.seedrandom (), noise);

144
145 return noise;

146 },

147
148 encode: function (plaintext , seed , key) {

149
150 if(plaintext.length > this.maxPlaintextLength)

151 throw ’Plaintext too long’;

152
153 let plaintextArr = typeof plaintext === ’string ’ ? plaintext.

split(’’) : plaintext; // convert plaintext to string

array

154 let length = plaintextArr.length.toString ();

155
156 if (plaintextArr.length === 0) {

157
158 while (this.isPositiveInteger(length))

159 length = this.getRandomString (3);

160 }

161
162 let prng = new Math.seedrandom(seed + key); // seed the prng

with desired key

163 let sizeArr = this.leftPad(length , ’000’).split(’’);

164 let noise = this.generateNoise(sizeArr , plaintextArr); //

generate noise with correct letter frequencies

165 let block = sizeArr.concat(plaintextArr).concat(noise);

166
167 this.shuffle(prng , block);

168
169 return block;

170 },

171
172 decode: function (block , seed , key) {

173
174 let prng = new Math.seedrandom(seed + key);

175 block = block.split(’’);

176
177 this.unshuffle(prng , block);

178
179 let sizeStr = block.slice(0, 3).join(’’);

180

125

181 // 3 first chars must be digits to be valid

182 if (!this.isPositiveInteger(sizeStr))

183 return ’’;

184
185 // parse the size of the plaintext to an int , so we can slice

it off

186 let size = parseInt(sizeStr);

187
188 // must be valid length

189 if (size < 0 || size > this.maxPlaintextLength)

190 return ’’;

191
192 return block.slice(3, 3 + size).join(’’);

193 },

194
195 // knuth -fisher -yates shuffle

196 shuffle: function (prng , arr) {

197
198 for (let i = arr.length - 1; i > 0; i--) {

199
200 let j = this.getRandomInRange(prng , 0, i);

201 let temp = arr[i];

202
203 arr[i] = arr[j];

204 arr[j] = temp;

205 }

206
207 return arr;

208 },

209
210 // reverse knuth -fisher -yates shuffle. only works if prng is in

same state as when shuffled.

211 unshuffle: function (prng , arr) {

212
213 // generate all swapping positions needed , so we may start

with the last one.

214 let indexes = [];

215 for (let i = arr.length - 1; i > 0; i--)

216 indexes.unshift(this.getRandomInRange(prng , 0, i));

217
218 // reverse knuth -fisher -yates shuffle

219 for (let i = 1; i < arr.length; i++) {

220
221 let j = indexes.shift ();

222 let temp = arr[i];

223
224 arr[i] = arr[j];

225 arr[j] = temp;

226 }

227 return arr;

228 },

229
230 // checks if a string has correct frequency of each char ,

according to alphabetFrequencies.

231 checkFrequency: function (string) {

126 StegoBlock extension files

232
233 let dict = {};

234 let ret = {

235
236 notInAlphabet: [],

237 outsideFrequencyBounds: []

238 };

239
240 for (let i = 0; i < string.length; i++) {

241
242 if (dict[string[i]] === undefined)

243 dict[string[i]] = 0;

244
245 dict[string[i]]++;

246 }

247
248 let frequencies = [];

249 let sortedKeys = Object.keys(dict).sort();

250
251 for (let k in sortedKeys) {

252
253 let charCount = Math.round(this.blockLength / 100 * this.

alphabetFrequencies[sortedKeys[k]]);

254 let isInAlphabet = this.alphabetFrequencies[sortedKeys[k]]

!== undefined;

255 let isFrequencyWithinBounds = isInAlphabet && charCount ===

dict[sortedKeys[k]];

256
257 if (! isInAlphabet)

258 ret.notInAlphabet.push(sortedKeys[k]);

259 if (! isFrequencyWithinBounds)

260 ret.outsideFrequencyBounds.push(sortedKeys[k]);

261 }

262
263 return ret;

264 },

265
266 // returns the next char of a plaintext array or noise , if the

first is empty.

267 getChar: function (plaintext , noise) {

268
269 if (plaintext.length > 0)

270 return plaintext.shift ();

271
272 return noise.shift ();

273 },

274
275 // checks if some input is a positive integer. from: http ://

stackoverflow.com/a/10835227

276 isPositiveInteger: function (input) {

277 return 0 === input % (! isNaN(parseFloat(input)) && 0 <= ~~

input);

278 },

279

127

280 // returns a random int in the specified range (including),

using the provided function.

281 getRandomInRange: function (prng , min , max) {

282
283 min = Math.ceil(min);

284 max = Math.floor(max);

285
286 return Math.floor(prng() * (max - min + 1)) + min;

287 },

288
289 // left pads some string with some other string

290 leftPad: function (text , pad) {

291
292 if (typeof text === ’undefined ’)

293 return pad;

294
295 return (pad + text).substring(text.length , text.length + pad.

length);

296 },

297
298 // generates random string of given length. only alpha numeric

chars.

299 getRandomString: function (length , prng) {

300
301 let text = ’’;

302 let possible = Object.keys(this.alphabetFrequencies).join(’’)

;

303
304 if (!prng)

305 prng = new Math.seedrandom ();

306
307 for (let i = 0; i < length; i++)

308 text += possible.charAt(Math.floor(prng() * possible.length

));

309
310 return text;

311 }

312 };

313 };

314
315 // extend the global variable with common functionality , for easy

access

316 window.SBCommon.utils.extend(window.SBStego , SBStego ());

Listing C.11: StegoBlock extension steganography.js file

128 StegoBlock extension files

Appendix D

StegoBlock extension
images and screenshots

Figure D.1: StegoBlock icon

130 StegoBlock extension images and screenshots

Figure D.2: StegoBlock view-message-window - stego-key found

Figure D.3: StegoBlock view-message-window - no stego-key found

131

Figure D.4: StegoBlock compose-message-window - stego-key found

Figure D.5: StegoBlock compose-message-window - no stego-key found

132 StegoBlock extension images and screenshots

Figure D.6: StegoBlock options-window

Appendix E

Total Block Length analysis
results

SPACE 16.06718960 / 0.47558818 6 0.13537139
e 8.38191046 S 0.47345250 J 0.13009651
t 5.97449455 1 0.43507454) 0.12981347
o 5.49426190 A 0.43493302 (0.12127074
a 5.49365722 I 0.42157858 < 0.10048000
n 5.17089898 _ 0.36992336 q 0.09605425
i 4.87451515 M 0.36024846 j 0.09571974
r 4.55353236 N 0.33621560 K 0.08672672
s 4.31688330 P 0.32306700 z 0.08664953
l 2.93379732 O 0.32287402 V 0.08546590
h 2.70875299 D 0.31618393 Y 0.07774656
d 2.40453403 R 0.30635465 ; 0.06578159
c 2.26601057 > 0.27271121 * 0.06518978
u 1.97602092 : 0.26795096 & 0.05738038
m 1.76507724 3 0.26488896 $ 0.05343066
p 1.50065145 ’ 0.22384783 " 0.05126925
f 1.34908232 B 0.21430158 ! 0.04618735
y 1.34689517 H 0.21057057 X 0.04392301
g 1.32540969 L 0.20983724 + 0.03535455
. 1.14563926 F 0.19583951 Z 0.02887031
w 1.13791993 TAB 0.19488746 Q 0.02826563

134 Total Block Length analysis results

b 0.92085225 @ 0.19023013 | 0.02237320
, 0.83979924 5 0.18643479 ∼ 0.02202583
0 0.83385535 9 0.18505817] 0.01722698
v 0.74238124 W 0.18344998 [0.01717552
- 0.70177754 x 0.18092833 % 0.01478253
E 0.68850029 ? 0.18050377 \ 0.01220941
= 0.64724045 G 0.17274584 # 0.01201643
k 0.58342728 4 0.16012472 ‘ 0.00562225
T 0.56770557 7 0.15750015 { 0.00015439
2 0.51566439 U 0.14626852 } 0.00014152
C 0.51247374 8 0.14083925

Table E.1: StegoBlock FREQUENCY_ALPHABET

TBL MAR 140 MAR 200 Penalized MAR 1
4

800 78,69643935 34,69510968 0,043368887 34,69510968
1000 82,82035808 44,79774603 0,044797746 37,31133025
1200 84,99295916 52,00241497 0,043335346 38,67981485
1400 88,95594448 54,53813645 0,038955812 39,29120547
1600 89,1973446 58,4624673 0,036539042 40,51881666
1800 90,4043452 64,70114711 0,035945082 43,38901187
2000 90,88714544 67,6796136 0,033839807 44,69712216
2200 91,59122913 69,45059368 0,031568452 45,82410948
2400 91,81251257 70,49708191 0,029373784 45,82410948
2600 92,9993965 72,65043268 0,027942474 47,97746025
2800 92,45624623 75,95089555 0,02712532 52,12316361
3000 93,50231342 76,89675991 0,025632253 52,54578386
3200 93,88453028 77,39987925 0,024187462 52,78728114
3400 93,92476363 79,73435299 0,02345128 54,94063192
3600 94,14604707 80,29784665 0,022304957 55,80599718
3800 96,01689801 87,84463675 0,02311701 60,05232441
4000 96,1979481 88,97162407 0,022242906 61,54155766
4200 96,68074834 89,37411954 0,021279552 62,52767156
4400 96,60028163 89,6357416 0,020371759 62,66854498
4600 96,94226514 90,98410143 0,019779152 65,28476555
4800 96,72098169 91,02435098 0,018963406 65,08351781
5000 96,98249849 91,22559871 0,01824512 66,21050513
5200 96,76121505 91,32622258 0,017562735 66,39162809
5400 96,98249849 91,60796941 0,016964439 66,89474743
5600 96,96238181 91,99034011 0,016426846 67,45824109
5800 97,22389861 92,1513383 0,015888162 67,90098611
6000 97,26413197 92,17146307 0,015361911 68,18273294
6200 97,30436532 92,77520628 0,014963743 69,04809821

135

6400 97,324482 93,23807607 0,014568449 69,95371302
6600 97,324482 93,23807607 0,014126981 70,29583417
6800 97,4049487 93,29845039 0,01372036 70,31595895
7000 97,34459867 93,56007245 0,013365725 70,83920306
7200 97,38483203 93,66069632 0,01300843 71,12094989
7400 97,26413197 94,22418998 0,012732999 71,68444355
7600 97,38483203 94,38518817 0,012419104 71,96619038
7800 97,78716556 94,52606158 0,012118726 72,42906017
8000 97,80728224 94,62668545 0,011828336 73,01267861
8200 97,88774894 94,64681022 0,011542294 73,41517408
8400 97,90786562 94,88830751 0,011296227 74,11954116
8600 97,9279823 94,94868183 0,011040544 74,80378346
8800 98,02856568 94,94868183 0,010789623 75,00503119
9000 97,88774894 95,0493057 0,010561034 75,24652848
9200 98,008449 95,0493057 0,010331446 75,3069028
9400 98,08891571 95,0493057 0,010111628 75,36727712
9600 98,12914906 95,08955524 0,009905162 75,62889917
9800 97,98833233 95,19017911 0,009713284 76,25276716
10000 98,02856568 95,59267458 0,009559267 77,01750855
10200 98,08891571 95,85429664 0,00939748 77,70175086
10400 98,22973245 95,87442141 0,009218694 77,90299859
10600 98,24984912 95,89454619 0,009046655 78,00362246
10800 98,2699658 96,05554438 0,008894032 78,26524452
11000 98,2699658 96,13604347 0,00873964 78,34574361
11200 98,2699658 96,17629302 0,008587169 78,4262427
11400 98,24984912 96,19641779 0,008438282 78,52686657
11600 98,33031583 96,27691688 0,008299734 78,94948682
11800 98,31019916 96,29704166 0,008160766 79,17085933
12000 98,37054919 96,31716643 0,008026431 79,61360435
12200 98,2699658 96,33729121 0,007896499 79,91547595
12400 98,37054919 96,39766553 0,007774005 80,21734755
12600 98,33031583 96,45803985 0,0076554 80,45884484
12800 98,33031583 96,47816462 0,007537357 80,51921916
13000 98,33031583 96,53853894 0,007426041 80,68021735
13200 98,37054919 96,53853894 0,007313526 80,9418394
13400 98,29008248 96,57878849 0,007207372 81,00221373
13600 98,29008248 96,57878849 0,007101382 81,16321191
13800 98,37054919 96,63916281 0,007002838 81,4047092
14000 98,35043251 96,65928758 0,006904235 81,62608171
14200 98,49124925 96,65928758 0,006806992 81,84745422
14400 98,47113257 96,69953713 0,006715246 82,04870195
14600 98,49124925 96,7196619 0,006624634 82,0084524
14800 98,57171595 96,75991145 0,006537832 82,37069833
15000 98,57171595 96,75991145 0,006450661 82,33044878

136 Total Block Length analysis results

Table E.2: Test results for MAR vs. TBL

Bibliography

[AA96] R. Anderson and R. Anderson. Stretching the limits of steganog-
raphy. 1996.

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pier-
rick Gaudry, Matthew Green, J. Alex Halderman, Nadia Heninger,
Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin Van-
derSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul Zim-
mermann. Imperfect forward secrecy: How diffie-hellman fails in
practice. Proceedings of the Acm Conference on Computer and
Communications Security, 2015-:5–17, 2015.

[AR10] James Nechvatal Miles Smid Elaine Barker Stefan Leigh Mark Lev-
enson Mark Vangel David Banks Alan Heckert James Dray San Vo
Andrew Rukhin, Juan Soto. A statistical test suite for random and
pseudorandom number generators for cryptographic applications.
2010. Accessed: 2016-10-07 13:33.

[Atw07] Jeff Atwood. The danger of naïveté. 2007. Accessed: 2016-10-05
13:12.

[BS86] M. Blum and M. Shub. A simple unpredictable pseudo-random
number generator. Siam Journal on Computing, 15(2):364–83, 364–
383, 1986.

[BZ14] C. Blackwell and H. Zhu. Cyberpatterns: Unifying Design Patterns
with Security and Attack Patterns. Springer International Publish-
ing, 2014.

138 BIBLIOGRAPHY

[Cac04] C Cachin. An information-theoretic model for steganography. In-
formation and Computation, 192(1):41–56, 2004.

[CDJCB05] Giacomo Cancelli, Gwenaël Doërr, Ingemar J. Cox, and Mauro
Barni. Detection of ś1 lsb steganography based on the amplitude
of histogram local extrema. 2005.

[Coh06] Electronic Frontier Foundation Cindy Cohn. At&ts role in dragnet
surveillance of millions of its customers. 2006.

[daw96] Randomness and the netscape browser. https://people.eecs.

berkeley.edu/~daw/papers/ddj-netscape.html, 1996. Ac-
cessed: 2016-09-13 13:22.

[dBB93] Bert den Boer and Antoon Bosselaers. Collisions for the compres-
sion function of md5. In Workshop on the Theory and Application
of of Cryptographic Techniques, pages 293–304. Springer Berlin Hei-
delberg, 1993.

[DH76] W DIFFIE and ME HELLMAN. New directions in cryptography.
Ieee Transactions on Information Theory, 22(6):644–654, 1976.

[DSM+04] Onkar Dabeer, Kenneth Sullivan, Upamanyu Madhow, Shivakumar
Chandrasekaran, and B. S. Manjunath. Detection of hiding in the
least significant bit. 2004.

[DY83] Dolev and Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[FIS53] R.A. FISHER. STATISTICAL TABLES FOR BIOLOGICAL,
AGRICULTURAL AND MEDICAL RESEARCH. 1953.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des sci-
ences militaires, IX:5–83, January 1883.

[Kli06] Vlastimil Klima. Tunnels in hash functions: Md5 collisions within a
minute. Cryptology ePrint Archive, Report 2006/105, 2006. http:
//eprint.iacr.org/2006/105.

[Knu68] D. E. Knuth. The art of computer programming. Addison-Wesley.,
1968.

[KP00] S. Katzenbeisser and F.A.P. Petitcolas. Information hiding tech-
niques for steganography and digital watermarking. Artech House,
2000.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public key au-
thentication protocol. Information Processing Letters, 56(3):131–
136, November 1995.

https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2006/105

BIBLIOGRAPHY 139

[NIS15] NIST. Nist’s policy on hash functions. 2015. Accessed: 2016-10-08
10:30.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption
for authentication in large networks of computers. Commun. ACM,
21(12):993–999, December 1978.

[oST08] National Institute of Standards and Technology. Guide to gen-
eral server security, 2008. http://nvlpubs.nist.gov/nistpubs/

Legacy/SP/nistspecialpublication800-123.pdf.

[PHGW16] Christoph Ponikwar, Hans-Joachim Hof, Smriti Gopinath, and Lars
Wischhof. Beyond the dolev-yao model: Realistic application-
specific attacker models for applications using vehicular commu-
nication. 2016.

[rfc82] Standard for the format of arpa internet text messages. https://

tools.ietf.org/html/rfc822, 1982. Accessed: 2016-09-16 11:32.

[rfc96] Mime (multipurpose internet mail extensions) part two: Message
header extensions for non-ascii text. https://tools.ietf.org/

html/rfc2047, 1996. Accessed: 2016-09-16 11:33.

[rfc08] Internet message format. https://tools.ietf.org/html/

rfc5322, 2008. Accessed: 2016-10-31 10:13.

[rfc14] Sender policy framework (spf) for authorizing use of domains in
email, version 1. https://tools.ietf.org/html/rfc7208, 2014.
Accessed: 2016-10-12 10:24.

[Riv98] Ronald L. Rivest. Chaffing and winnowing: Confidentiality without
encryption. 1998.

[SC84] G. J. Simmons and D. Chaum. The prisoner’s problem and the
subliminal channel. 1984.

[SS05] A Sidorenko and B Schoemnakers. Concrete security of the blum-
blum-shub pseudorandom generator. Lecture Notes in Computer
Science, 3796:355–375, 2005.

[was] U.s., british intelligence mining data from nine u.s. internet compa-
nies in broad secret program. https://www.washingtonpost.com/
investigations/us-intelligence-mining-data-from-nine-

us-internet-companies-in-broad-secret-program/2013/

06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html.
Accessed: 2016-09-09 09:24.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-123.pdf
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc7208
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
https://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html

140 BIBLIOGRAPHY

[Way09] Peter Wayner. Disappearing cryptography. Disappearing Cryptog-
raphy, 2009.

[wik] Wikipedia - fisher-yates shuffle - modulo bias. Accessed: 2016-10-05
14:35.

[Yao82] A. C. Yao. Theory and applications of trapdoor functions. 23rd
Annual Symposium on Foundations of Computer Science, pages
80–91, 80–91, 1982.

[ZDN] Prism: Here’s how the nsa wiretapped the internet.
http://www.zdnet.com/article/prism-heres-how-the-nsa-

wiretapped-the-internet. Accessed: 2016-09-09 10:27.

http://www.zdnet.com/article/prism-heres-how-the-nsa-wiretapped-the-internet
http://www.zdnet.com/article/prism-heres-how-the-nsa-wiretapped-the-internet

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Our solution
	1.2 Scoping
	1.3 Thesis structure
	1.4 Summary

	2 State of the art
	2.1 Steganography
	2.1.1 History
	2.1.2 Today
	2.1.3 Principles and forms
	2.1.4 Steganalysis

	2.2 Chaffing and winnowing
	2.3 Cryptography
	2.3.1 Randomizing algorithms and RNG's
	2.3.2 Integrity
	2.3.3 Men in the middle

	2.4 Summary

	3 Problem analysis
	3.1 Confidentiality
	3.2 Transmission
	3.2.1 Emails

	3.3 StegoBlock
	3.4 Summary

	4 Design
	4.1 Components
	4.1.1 Composing
	4.1.2 Viewer
	4.1.3 Key store
	4.1.4 Encoding/decoding
	4.1.5 Encode
	4.1.6 Decode
	4.1.7 Verification

	4.2 Summary

	5 Implementation
	5.1 UI components
	5.2 No Linear-White-Spaces
	5.3 Block example
	5.4 Summary

	6 Evaluation
	6.1 Key exchange
	6.2 Encoding
	6.3 Block length
	6.4 Message analysis
	6.5 Integrity
	6.6 Permutations and randomness
	6.7 Adversary advantages
	6.8 Summary

	7 Conclusion
	7.1 Future work

	A Header example
	B Installation
	C StegoBlock extension files
	D StegoBlock extension images and screenshots
	E Total Block Length analysis results
	Bibliography

