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Summary

English

The goal of this thesis is to establish a secure line of communication for IoT
devices. The IoT devices are CPEs, as used by Trifork for their Secure Device
Grid. A CPE device is placed in customers’ homes and acts as a control unit for
a home automation system. By connecting CPEs, different home automation
systems would be able to communicate. This would give customers the oppor-
tunity to make automation processes across multiple home automation systems,
instead of them only working within their own home automation system. The
thesis investigates state of the art cryptographic techniques, and the existing
system of Trifork, to gain knowledge of the techniques required to design and
implement a secure line of communication. Protocol requirements are defined
based on Trifork’s security goals and the Dolev-Yao attack model. Two proto-
cols are considered to facilitate secure communication between home automation
systems: the ISO/IEC 11770-2 Key Establishment Mechanism 6 (ISO-6), rely-
ing on symmetric encryption; and the Station-to-Station protocol, relying on
asymmetric encryption. Efficiency tests results in the selection of ISO-6 for the
secure protocol. A prototype using the ISO-6 protocol is created, where the
Networking and Cryptography library (NaCl) is used for cryptographic compu-
tations. Finally the implemented version of the ISO-6 protocol is tested using
the OFMC model checker. OFMC doesn’t find any attacks for the implemented
version of the ISO-6 protocol.
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Danish

Målet for denne afhandling er at etablere sikker kommunikation mellem IoT
enheder. Disse IoT enheder er CPEer, som bruges af Trifork med deres Secure
Device Grid. Enhederne er placeret i kunders hjem, hvor de fungerer som kon-
trolenheder for automatiseringssystemer i hjemmet. Hvis man forbinder flere
CPEer, giver det mulighed for kommunikation på tværs automatiseringssyste-
mer. Det giver kunder mulighed for at automatisere på tværs af automatise-
ringssystemer, i stedet for at de enkelt automatiseringssystemer kun arbejder
inden for deres egets systems begrænsninger. Afhandlingen undersøger relevante
kryptografiske teknikker, Triforks eksisterende system og bruge det som afsæt
for designet og implementationen af den sikre protokol. Kravene for protokollen
er defineret ud fra Triforks sikkerhedskrav og med udgangspunkt i en Dolev-
Yao angrebsmodel. To protokoller er undersøgt som protokol mellem CPEer:
ISO/IEC 11770-2 Key Establishment Mechanism 6 (ISO-6), som benytter sig
af symmetrisk kryptering; og Station-to-Station protocol, som benytter sig af
asymmetrisk kryptering. Test af protokollernes effektivitet afslører ISO-6, som
den bedre protokol. Der er lavet en prototype af Triforks system som benytter
sig af ISO-6 protokollen til at kommunikere sikkert. Her benyttes Networking
and Cryptography library (NaCl), som bibliotek til at udføre kryptografiske be-
regninger. Test af den implementerede protocol med OFMC afslører af intet
angreb er fundet for den implementerede version af ISO-6 protokollen.
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This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an M.Sc. in Engineering.

I would like to thank Associate Professor Christian Damsgaard Jensen for giving
counsel and help seeing things from a different perspective. Thank you!

The thesis is created in cooperation with Trifork. Trifork has an issue with an
already existing product: the Secure Device Grid. The Secure Device Grid is a
safe scalable infrastructure, which is used for NAT relaying of devices. Specif-
ically connecting smartphones with IoT devices for home automation systems.
The two devices are paired with each other using the Secure Device Grid, which
also relay all future traffic between the two.

Trifork’s challenge is homes containing more than one IoT devices, called CPE. A
CPE is a control box for a home automation system, e.g.. an automated heating
system. The issue is that a customer might have more than one CPE in its home,
e.g. an automated heating system and a automated windows control system.
These systems will each have a CPE, one for controlling the heating and one
controlling the windows, and they will work as two individual home automation
systems. Trifork would like to make the two home automation systems seem
like one home automation system. This means that the two systems should be
able to communicate, so that the customer will be able to have e.g. the heating
turn off in a room when a window has been opened.

This means that the CPEs would have to communicate. This communication
should be able to use the LAN with a point-to-point connection between the
CPEs. The connection must be secure. It is important for data to be kept
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confidential, and that data exchanged between the CPEs can be trusted. The
design of the solution should provide a secure line of communication for the
CPEs to communicate using the LAN, and a prototype working independently
of the existing Secure Device Grid.

Lyngby, 29-April-2016

Michael Messell
s140045



Notation for protocols

This description explains the protocol syntax use throughout the paper. First by
explaining the different modules used in the protocol and ending with a protocol
example, Protocol 1.

A is the identity of a protocol participant.

B is the identity of a protocol participant.

T is the trusted entity in the protocol.

I is the the identity of the intruder. The party trying to attack a protocol.

x, y, i indicates the private values selected in a Diffie-Hellman key exchange:
x→ A, y → B, i→ I.

p is a prime defining prime-order subgroup Z∗
p , and is used as modulus for

Diffie-Hellman key exchange.

αx is the public session key value of A and α is a primitive root of p.

xG is the public session key value of A in a Diffie-Hellman key exchange using
elliptic curves.

pkA is the long term public key of A.

a is the long term private key of A.

KAB is the long term shared key of A and B.

NA is a nonce generated by A.

RA is a random number generated by A and can be used as input for key
generation.
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[message] indicates the hash of a message.

signT (message) indicates that a message has been signed by the trusted party
T .

CertA is the certificate of A containing: A, pkA, T, signT ([A, pkA, T ])

{message}KAB is a symmetric encryption of message using the shared key of
A and B.

{message}Kxy is a symmetric encryption of message using the session key gen-
erate based on A’s and B’s private keys in a Diffie-Hellman key exchange.

{|message|}KAB is a symmetric encryption of message using the shared key of
A and B including data integrity.

Protocols will be recognised throughout the thesis by the number just right to
the description. For the protocol right below, the number 1.

1. A→ B : NA

2. B → A : signB(NA)

3. A→ B : message

(1)
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Chapter 1

Introduction

Internet of Things (IoT), is often defined as bringing physical objects online.
IoT is merging the real world of physical objects with the virtual world of
the internet. According to Gartner, IoT has been among the top 10 strategic
technology trends for the last four years [Gara][Garb][Garc][Gard]. Gartner
identifies IoT to have four basic usage models: manage, monitor, operate and
extend. Four usage models that could basically include anything, but also four
usage models that encourage automation of manual processes. This has made
IoT popular in the market for home automation, where putting physical object
on the LAN, has made it possible to make more flexible and cost effective systems
that don’t rely on wiring. Considering a heating system, being automated by
relying on IoT. The customer would be able to operate the system, by setting a
desired temperature for each room. IoT sensors could then monitor the rooms,
and ensure that the desired temperature is maintained by regulating the IoT
thermostats. The setup keeps the customer informed of the temperature for each
room. This allows the customer to improve utilisation of heating resources,
which means that the customer is able to better manage the heating of the
home. Such a home automation system covers the three usage models: manage,
monitor and operate; but not the extend usage model. This thesis addresses the
extend usage model, as will become apparent later.

Trifork works together with manufacturers to supply home automation systems,
which offers similar services as the heating system. The manufacturers are
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responsible for the monitor process, and Trifork is responsible for the managing
and the operation of the IoT devices. For a heating system this means that
the manufacturer would regulate the room temperatures based on the rooms’
temperature settings and the current temperature of the rooms. The monetising
process is tied to the event-condition-action paradigm. An event is evaluated by
the condition, which if true triggers the action. When related to a heating system
with IoT devices, the events would be produced by sensors and the actions
performed by thermostats. Events could simply be the current temperature,
where the condition would assess if the temperature is within the defined range.
Should the temperature be lower or higher than the defined range, the condition
would trigger the thermostat to either increase or decrease the heating. In
using the event-condition-action paradigm with IoT; It is easy to imagine sensor
triggering events and actuators performing actions, but for the condition no such
apparent solution presents itself. One option is to include the condition in the
individual thermostats of the system. This approach turns out to be quite
expensive, as each actuator would need to be provided with extensive resources.
What is usually done, and what is also done in the cooperation between Trifork
and manufacturers, is to have a centralised control unit, which evaluates events
received from sensor and instructs actuators to perform accordingly. The control
unit is also an IoT device. Having a centralised control unit, or a Customer
premises equipment (CPE) as Trifork calls them, has an added benefit. When
Trifork implements management and operation, they don’t need to communicate
directly with all sensors and actuators. They instead rely on the control unit to
relay the secure communication to and from sensors and actuators.

Home automation systems, such as the heating system, have already been im-
plemented. Further cooperations with other manufacturers are investigated.
Working with different manufacturers, when designing automated home sys-
tems, results in having multiple control units, as manufacturers are interested
in having their own control unit. This somewhat cripples the automation pro-
cess, as the heating system would be able to only react to events from the heating
system. This mean that if you have two home automation systems, you would
have two control units, that wouldn’t be able to react to each others’ events,
even if this might be relevant to the customer.

This thesis suggests a solution for a policy-based home automation system,
where multiple control units are available. More specifically, the thesis concen-
trate on how events from a sensor belonging to one home automation system
may result in an action for an actuator belonging to another home automation
system. The challenge is that the current home automation systems don’t sup-
port this form of secure communication. To solve this, the current policy-based
system is formalised and extended to include multiple control units.

A protocol is designed, which facilitates the secure communication between
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home automations systems. The protocol supports confidentiality, authentica-
tion and data integrity, which are needed for this system to be considered secure.
The protocol facilitates the secure distribution of a sensor event from one home
automation system to an actuator of another home automation system.

This protocol is implemented. It is implemented separately from the actual
system of Trifork (Secure Device Grid) as a prototype. It is implemented using
virtual linux machines, which acts as the IoT devices: control units (CPEs),
sensors and actuators. The security of the protocol designs are evaluated using
a model checker (OFMC ), to ensure that designs doesn’t introduce security
flaws. The overall flow of the implemented protocol is evaluated using unit
tests.

Working with the challenges faced by Trifork, has given me a chance take a deep
dive into modern cryptographic techniques. I have learned that a lot of thought
goes into defining the requirements for a secure protocol, as you will have to
consider which type of attacker you are protecting your system against. The
design reflects the requirements and setup of your system. The protocol used
could then be based on either symmetric- or asymmetric encryption or both de-
pending on these requirements. The symmetric encryption usually turns out to
be much more efficient than asymmetric encryption, on the other hand symmet-
ric encryption doesn’t scale as well and doesn’t provide non-repudiation. The
two techniques are therefor often combined, to get the best of both encryption
schemes. The final design takes all these things into consideration before settling
for the best design for that system. For this system the symmetric encryption
scheme turned out to be the better fit.

The thesis starts of by explaining the Motivation of Trifork and how it’s relevant
from an academic stand point. The motivation is then refined into a more
tangible Goal to fulfil. The State of the art of cryptographic techniques is then
investigated, to know which techniques are need to design a secure protocol and
to give a base to take more responsible choices for the secure protocol. The goal
is then further refined into Protocol requirements, which should be fulfilled by
the secure protocol. The Protocol design then decides on a design for the secure
protocol, which fulfils the protocol requirements and also provides an efficient
solution for the existing system’s setup. The System design takes a wider look
at how the system for the prototype is designed: How is the secure protocol
triggered and what is the effect of this trigger. The Implementation looks at
how the secure protocol is implemented, which cryptographic techniques are
used, and how are they used with the implementation of the protocol design.
The Evaluation explains the tests made to insecure that the works and is in
fact secure. It also explains the setup of virtual machines used for visualising
the use of the prototype. Finally the Conclusion summarise the findings of the
thesis and the academic relevance of these findings.
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Chapter 2

Motivation

The motivation section presents the setup of the current system, and why an
extension is interesting for Trifork and from an academic standpoint.

2.1 Trifork’s motivation

To reap the benefits of the growing IoT marked, Trifork has created a solution
called Secure Device Grid [Tri]. The Secure Device Grid lets a customer commu-
nicate securely with the control unit of the customer’s home automation system,
with a smartphone. The customer is able to manage and operate the system,
when not even at home, e.g. when at work or vacation.

This section will introduce the different IoT devices, consider them in a home
automation system and clarify why an extension to the current system is needed.

2.1.1 Customer-Premises Equipment (CPE)

In the context of the Secure Device Grid, the control unit is called a CPE. An
illustration of a CPE can be seen in figure 2.1. The CPE is an IoT device,
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which allows it to communicate using the LAN.

The CPE is created by a manufacturer. A manufacturer could be a company
providing heating to customers’ homes. This manufacturer is interested in sell-
ing CPEs to customers, which automate the heating process in the customers’
homes. The CPE has a series of sensors and actuators connected wirelessly
to it. The manufacturer has written the software facilitating the communica-
tion with the sensors and actuators. This means that the software Trifork is
providing and thereby the software of this thesis, cannot communicate directly
with sensors and actuators, but needs to access them through the manufacturer
API. If needed for a home automation system, the manufacturer software will
monitor the system. For an automated heating system, this would mean that
the manufacturer software ensures that the correct temperature is maintained
based on the desired- and current temperature.

Trifork’s software, on the CPE, facilitates the secure communication with the
smartphone. In the context of the automated heating system the communi-
cation would provide the manufacturer software with the desired temperature
(operate), and provide the smartphone with the current temperature of the
individual rooms (manage).

To recap, the manufacturer provides a home automation system and Trifork
provides the setup allowing a smartphone to communicate with the home au-
tomation system.

CPE

Trifork
Software

CPE 
Manufacturer

Software

Actuator Sensor

Communication

Figure 2.1: Detailed CPE view.

Throughout the thesis, we will use an example scenario, in which two different
CPEs will be referenced; CPE A and CPE B. The two CPEs are examples,
and help to provide a more realistic view of a Secure Device Grid system’s
capabilities.
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CPE A can control the windows in a customer’s home. The sensors of CPE A
informs the manufacturer software when a window has been opened and when a
window has been closed. The actuators of the CPE A facilitates the automatic
opening- and closing of windows, by instruction from the manufacturer software.

CPE B is the CPE previously used as an example, the heat regulating CPE.
The sensors of CPE B keeps the manufacturer software updated with the cur-
rent temperature. The actuators control the radiators, thereby increasing or
decreasing the temperature, by instruction from the manufacturer software.

2.1.2 Client

A Client corresponds to a customer’s smartphone. For the rest of this thesis
the smartphone will be referenced Client. It is more fitting, as the device com-
municating with the CPEs is not limited to a smartphone, but could be any
device with the capability to access the internet. This software on the Client is
provided entirely by Trifork.

2.1.3 Secure Device Grid server

The Secure Device Grid Server relays messages between CPEs and Clients,
which are connected to different networks. This means that it’s allows for devices
that resides behind different firewalls to communicate securely.

2.1.4 Secure Device Grid setup

A Secure Device Grid setup with one CPE, like seen in figure 2.2, offers a wide
range of automated processes for the customer.

Considering a setup with only CPE B. Customers would be able to set a different
temperature for each room equipped with a sensor and an actuator. Room
temperature could also be set to change during the day. To save money and
not compromise the comfort, customers could make intervals where the radiators
should be turned off. This could be during work hours or during the night where
a lower temperature might be preferred. It could also be during a longer absence
from home like vacation. The Secure Device Grid allows the customer, should
they forget to turn off the radiators, to do it from anywhere in the world. The
customer can also turn on the radiators, when on their way home from vacation,
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to ensure that their home is nicely temperate. This scenario, however, has no
way to deal with the situation where the room becomes too hot.

Considering a setup with only CPE A. CPE A allows the customer to open and
close windows from the Client. It makes it easier to open and close windows,
that might be hard to reach for the customer, e.g. skylights. Ventilating is also
done much easier. The customer could open all windows at the same time from
the Client with a single touch, instead of manually opening each of them. The
command could ensure that the windows automatically closes after five minutes
to further help the customer.

A home containing both the home automation system of CPE A and the home
automation system of CPE B would be able to carry out these automated
processes and thereby automating a lot of manual work for the customer.

CPE

Sensors Actuators

Secure Device Grid

Customer
Client

Figure 2.2: Secure Device Grid setup with 1 CPE.

Under the existing system, a home containing two CPEs, as shown in figure 2.3,
could be thought of as two individual setups with one CPE. The CPEs have no
knowledge of each other’s existence.

The obvious question is: instead of having a CPE A and a CPE B why not
just have one CPE controlling both windows and heating. The reason leads
back to the manufacturers that Trifork work with. They aren’t interested in
sharing CPEs with one another, which results in homes with multiple CPEs
unable to communicate. Having multiple CPEs also means that the customers
can only automate processes within the individual home systems. This makes
it impossible to have a sensor event of CPE A result in an actuator action in
CPE B, and vice versa.
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CPESecure Device Grid

Sensors Actuators

CPE

Sensors ActuatorsCustomer
Client

Figure 2.3: Secure Device Grid setup with 2 CPEs.

The current setup doesn’t allow CPEs to communicate. The customer’s CPEs
are connected to the same LAN, making direct communication between them
possible. If the CPEs are connected using the LAN, this would make it possible
for sensor events of CPE A to result in actuator actions in CPE B, and vice
versa.

The idea is to connect CPE A and CPE B with Trifork’s software and thereby
give the customer the illusion of an uniform home automation system, where
a sensor event of CPE A results in a actuator action in CPE B. The customer
would then be able to automate processes across CPEs. This approach wouldn’t
affect the companies creating the CPEs, as this could be implemented entirely
by Trifork and distributed with Trifork’s software.

An example of a new automated process could be turning off the radiator, when
a window has been opened. The customer could then just open the window
without worrying about turning off the heat. A similar automation could be
made to ensure that the radiator is turned on again when the window has been
closed.

This thesis is working with the problem of having a sensor event from one CPE
result in an actuator action in another CPE. In addition to distributing the
sensor event using LAN, the distribution must also be done securely.
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2.2 Academic motivation

This section put Trifork’s motivation into an academic perspective, to see how
Trifork’s motivation can translate into relevance for a thesis. Essentially Trifork
needs a way to have two IoT devices communicate securely on a LAN.

How one CPE informs another CPE of a sensor event needs to be formalised.
This is needed so we know which information is sent between CPEs, and how
the internal software should process this information. It also helps to know
which kind of information is exchanged from a security standpoint. It would be
academically relevant to formalise the exchange of information from sensor to
actuator as a policy-based system.

As for security between the CPEs, an investigation into what is required to
consider an exchange of information secure, is needed. How the security re-
quirements are met would also need an investigation. Here the state of the art
authentication- and key establishment protocols, and the underlying cryptog-
raphy they rely on are interesting. It would also be necessary to investigate
Trifork’s existing solution for secure communication in order to compare it to
the alternative solution of this thesis.

2.3 Summary

The motivation of Trifork is to give a collection of different home automation
systems, using CPEs, the illusion of being on home automation system. Allowing
customers to create relevant scenarios across CPE, e.g. having the heat turned
off, when a window is being opened. For this to happen, the CPEs will need a
way to communicate and also to communicate securely.

The thesis therefor will need to investigate how to facilitate secure communica-
tion between CPEs, by looking into cryptography, protocol and how to translate
events from one CPE to actions of another.



Chapter 3

Goal

The challenge with having actuators from one CPE act on sensor events from
another CPE, is that no communication channel exists between the two.

The Client might be able to communicate with both CPEs securely through
the Secure Device Grid, and thereby theoretically act as a relay server between
the CPEs. This approach, however, is not possible, as the Client, being a
smartphone, can’t be expected to be available all the time. The approach isn’t
desirable anyways, as the Client ’s battery life would decrease due to an increase
of network traffic, and because latency between CPEs would be higher compared
to using direct communication over the LAN.

Guidelines need to be created for how the communication from a sensor event
to an actuator action is facilitated. This should be considered for home automa-
tion systems containing one or more CPEs. These guidelines would need to be
addressed before considering, which additional means of secure communication
is required, and before considering what is required for a communication to be
considered secure.
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3.1 Policy-based systems

A policy-based system consists of a set of policies determining how a system acts
to certain events within that system. To enforce the policies of a policy-based
system, it is done using the structure: event-condition-action.

When a policy-based system produces an event, this event triggers the condi-
tion. The condition then evaluates the event against the policies of the system,
determining if the event should result in a certain action from the system. This
way the policies of a policy-based system, determine how the system should act.

The policies, which the condition evaluates events against, are constructed using
the form: if event then action. As there can exist many policies for a system,
one event might result in multiple actions, and one action might be caused by
multiple events.

condition

event action

Figure 3.1: The event-condition-action structure.

The home automation system, in which Trifork are participating, follows the
structure of a policy-based system. It is unclear if the manufacturer is aware
of this. The structure, event-condition-action, enforcing the policies, are easily
applied to a home automation systems using CPEs. In such systems the sensors
would produce the events, the actuators would perform the actions and the CPE
would be the condition, containing the logic enforcing the policies.

CPE

condition

event action

Sensor Actuator

Figure 3.2: The event-condition-action structure using a CPE.
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A policy-based system, using the CPE B heating automation system, could have
multiple policies in place to ensure the desired temperature of the home. To
ensure the desired temperature of the living room the following 2 policies are
created. The policies are created on the assumption that CPE B receives events
from a sensor corresponding of the current temperature of that specific room;
and that the actions performed by the actuator increase or decrease the heat
intensity of that specific room, where the heat intensity doesn’t correspond to
a specific temperature.

• if living room temperature exceeds 21 ◦C
then decrease living room temperature

• if living room temperature is below 19 ◦C
then increase living room temperature

The desired temperature for the living room, according to the policies, is 20 ◦C.
The sensor, measuring the temperature of the living room, will periodically
inform the CPE of the current temperature. If the temperature of the living
room is too high, the CPE will inform the actuator to perform the action,
decrease living room temperature; and if the temperature of the living room is
to low, the CPE will inform the actuator to perform the action, increase living
room temperature.

The policy-based system of the CPE B home automation system will ensure
that the desired temperature of the living room is maintained. The system has
a very low coupling, where sensors and actuators can easily be added to the
system, and similar policies created to ensure the desired temperature of the
rooms in question.

The challenge is now to apply the principle of a policy-based system to a home
containing two CPEs, CPE A and CPE B. The goal is to have an event from
one CPE result in an action from the other CPE. For now, the fact that this is
not possible in the current system is ignored. A policy is created which depends
on both home automation systems. The event is the living room window being
opened, which is an event of the CPE A; and the action is turning off the heating
of the living room, which is an action of the CPE B.

• if living room window is opened
then turn off living room heating

Considering the event-condition-action structure of a policy-based system, the
events are still provided to the condition from the sensor and the action is
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still performed by the actuator when the condition is fulfilled. Trifork cannot
have one CPE communicate with sensors and actuators of another CPE, as this
communication is facilitated by the manufacturer’s software. This means that,
instead of having one CPE enforcing policies, the structure now relies on two
CPEs to enforce policies of the condition.

CPE

condition

event CPE action

Sensor Actuator

Figure 3.3: The event-condition-action structure using two CPEs.

This mean that the policy, if living room windows is opened then turn off living
room heating, is applied over two CPEs instead of one. In practice this means
that the original policy is split in two, and one part of the policy is provided
to each of the CPEs. The event of the original policy is used as the event for
the policy of CPE A, and the action of the original policy is used as the action
for the policy of CPE B. This leaves CPE A without an action to perform and
CPE B without an event to react on. These should facilitate the communication
between the CPEs, where CPE A informs CPE B of an event happening. This
means the action of CPE A corresponds to the event of CPE B.

Original policy: if living room windows is opened
then turn off living room heating

CPE A policy: if living room windows is opened
then inform CPE B of event

CPE B policy: if informed of event by CPE A
then turn off living room heating

Having two CPEs for a policy-based system introduced the need for having
the CPEs communicate. A channel not previously considered by Trifork, and
therefor not covered under the secure communication of the Secure Device Grid.

3.2 Policy-based security considerations

This section considers the interactions needed to enforce policies for a policy-
based system containing two CPEs. The CPEs work together to give the cus-
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tomer the illusion, that the home automation systems of CPE A and CPE B
are one home automation system, where policies can be created across CPEs.
A challenge for the system is that the CPEs aren’t aware of each other’s exis-
tence, and that policies should be provided. The idea is to let the Client make
the CPEs aware of each other’s existence and to let the Client distribute the
individual policies to the CPEs previously discussed. The CPEs both have a
secure channel through the Secure Device Grid to the Client.

Device Grid

Client

CPE A

Sensor Actuator

CPE B

condition

actioninsecureevent

Figure 3.4: A home automation system containing 2 CPEs.

This means that in order to enforce policies, for a policy-based system containing
two CPEs, the following interactions are needed: an interaction from the Client
distributing the policies and making the CPEs aware of each other’s existence;
and an interaction between the CPEs following the structure event-condition-
action for two CPEs. Below the interactions needed to distribute and enforce
policies are described.

1. The Client provides CPE A and CPE B with individual policies

2. Hiatus until a sensor event, window opened, is sent to CPE A

3. If sensor event satisfies CPE A’s policy, it results in an action

4. CPE B is informed of sensor event. If sensor event satisfies CPE A’s
policy, it results in the action, turn off heating

5. Sequence starts over from 2.
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This is the overall sequence for the system. The Client distributes the policies
and sends them to the CPEs. After distribution of the policies, the Client isn’t
part of the sequence anymore. Instead the CPEs enforce the policies indepen-
dent of the Client.

When distributing the policies, the Client should be able to use the secure
channel, already established through the Secure Device Grid, between the Client
and the CPEs, which is why this protocol won’t be considered.

The CPE have no way of communicating, it should therefor be considered how
the CPEs should be able to communicate using the LAN. The CPEs have no
way of communicating securely, which is why security needs to be considered for
the protocol. Later it is also needed to consider, what the event, sent from CPE
A to CPE B, should contain, in order for CPE B to understand the event. This
is a design issue, and will therefor be discussed during design of the protocol.

3.3 Security goals for enforcing policies

This section discusses security properties and their relevance to enforcing poli-
cies. Well known properties will be evaluated. The CIA triad’s properties;
confidentiality, integrity and availability will be used. These are paired with
the cryptographic goals from the Handbook of Applied Cryptography [Gre14]:
confidentiality, data integrity, authentication and non-repudiation. Notice that
some of the properties overlap. Confidentiality is mentioned for both, and data
integrity and integrity are considered the same property.

3.3.1 Confidentiality

Confidentiality ensures that only authorised users gain read access to informa-
tion. Considering the policies it means that no attacker should be able to read
the policies neither at distribution or enforcement.

This is an important property of the system. A policy distributed to CPEs
contain information about which properties needs to be fulfilled in order to
trigger an action.; e.g. when a window is being opened. Information sent
between CPEs could indicate that a windows is being opened. To secure and
make the customer feel more protected policy distribution and enforcement need
to ensure confidentiality.
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3.3.2 Data integrity

Data integrity ensures protocol participants that messages has not been modified
by an attacker. For a policy-based system it means that attackers aren’t able
to alter data in the exchanged messages for the distribution and enforcement of
policies unnoticed.

Without data integrity the attacker might be able to change the policies when
distributed, which could lead to a window being opened when it is favourable.
If the data integrity is not provided when enforcing the policies. Here changing
the data could result in a window not being closed when expected, or a windows
being opened when not expected. Data integrity is needed to ensure a secure
system.

3.3.3 Availability

Availability ensures that information concerned is accessible to the authorised
user at all times. Considering the policies, it means that Clients and CPEs
should be able to communicate at all time.

If an attacker floods the system with messages, executing a DoS attacker, it could
result in policies not being distributed and enforced. If a CPE, experiencing an
event, aren’t able to inform the CPEs defined in the policy, this could lead to
a windows not being closed. A Client unable to distribute a policy, definitely
doesn’t provide a good user experience, but it doesn’t expose the system to any
security threat, assuming that the existing policies are secure. The system is
vulnerable to DoS attacks, regardless this property is disregarded, as protocols
can’t defend against DoS attacks. DoS attacks should instead be solved by
Trifork’s surrounding software.

3.3.4 Authentication

Authentication is a two-part property consisting of entity authentication and
data origin authentication. Entity authentication is insurance that the two
parties entering into a communication identify each other. Data origin authen-
tication ensures data integrity and that data originates from the authenticated
party.

This is an important property of the system. If authentication is not enforced,
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an attacker would be able to force actions on a CPE that should be done by
trusted parties. In terms it could result in the attacker opening a window. An
attacker could also force another policy at distribution. Authentication implies
data integrity, which mean that arguments made for data integrity also apply
for authentication. Authentication is an important property for the system.

3.3.5 Non-repudiation

Non-repudiation ensures that parties cannot deny ownership of information.
Considering policies, it would mean that a Client wouldn’t be able to deny
distributing the policies, and that a CPE wouldn’t be able to deny informing
another CPE of an event happening. Information can still be trusted without
non-repudiation.

This is not an important property of the system. There is no need for ownership
between Client and CPEs. The same is true between CPEs. As long as infor-
mation can be trusted, there is no need to apply non-repudiation. If the final
solution provide non-repudiation it is because other arguments has provided a
solution that implements non-repudiation.

3.4 Summary

The goal is to design a protocol to enforce the policies across CPEs. The proto-
col needs to enforce the security properties: confidentiality, data integrity and
authentication, in order to protect customers from attackers. For now only the
security properties are considered for secure communication. Security considera-
tions for key management are included in section 5, where protocol requirements
are defined.



Chapter 4

State of the art

This section looks at the cryptographic tools, that are relevant to creating a
secure solution for Trifork’s goal. This mean that the current system of Trifork
is investigated along with the cryptographic techniques used by Trifork. Ad-
ditionally other state of the art cryptographics are investigated to provide an
alternative to the current solution of Trifork.

4.1 Trifork’s existing system

This section gives an insight into the existing system and its solution for a secure
system. It starts of by explaining the need of the Device Grid server and the
solutions selected. After that security is considered, how to generate session
keys and how to pair devices. The generation of session key are considered first
as this is used for the Device pairing. Next the way of ensuring random for
small devices is described. Finally the used crypto are presented.

In the motivation section, we saw how the Client (smartphone) and the CPE
are suppose to communicate, in order for the Client to control the CPE. It is
relatively easy for the devices to communicate, if they reside on the same LAN,
but this not always the case. Trifork is working with a scenario where the Client
and the CPE communicate using TCP from two different LANs, which means
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that they reside behind two different NATs. This means that the two devices
have no way of contacting each other without the help of a mutually trusted
third party.

4.1.1 Network address translation (NAT)

The introduction of NATs complicates communication between the two devices.
Most NATs are outbound NATs[FSK05], which means that they allow con-
nections to be established from within the LAN, but deny connections to be
established from the internet. A device on a LAN doesn’t initially have a public
address where others might contact it. The NAT assigns the device a public
port number, when it connects to a public ip address. This port number and
the public ip address of the NAT corresponds to the public address of the device
also called the session endpoint. The session endpoint is where, replies to the
device for this session, can be send. When the NAT receives a reply on the
session endpoint it translates the public port number to the local ip address and
local port number of the device thereby routing the reply to the device (vice
versa for a request).

CPEDevice Grid

Sensors Actuators

Client

SWRouter
N
A
T

Figure 4.1: Device Grid Setup.

To solve this predicament, where both device resides behind a NAT, techniques
called NAT traversal are used. There exists two popular NAT traversal ap-
proaches: Relaying and Hole punching.

4.1.1.1 Relaying

This approach is the one Trifork is using. Here a trusted server is uses to relay
messages between the two devices. For Trifork this trusted server is the Secure
Device Grid server. The server would keep an open connection to both devices,
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making relaying of messages conceptually easy. In reality only the CPE would
have a keep an open connection with the server, and the Client would only
have an open connection to the server when contacting the CPE. This is not a
problem, as the initiative for communication lies entirely with the Client, and
both devices would have an open connection with the server at this time.

The strength of relaying is that it always work, no matter what kind of NATs you
are working with. The disadvantage is that efficiency depends on the server’s
processing power and the network bandwidth. The added link for the commu-
nication flow increases latency, and this is even if great processing power and
great network bandwidth is available[FSK05].

4.1.1.2 Hole punching

For this approach the server doesn’t relay the messages, but rather facilitates
the connection between the devices. Using Trifork’s setup as an example; the
Client would inform the server that it wishes to communicate with the CPE.
The server would then provide the Client with the CPE ’s public endpoint for
the Client to contact the CPE directly. At the same time the server sends a
connection request to the CPE containing the Client ’s public endpoint. The
Client and CPE will now be able to communicate directly, without relying on
the server to relay messages.

Hole punching allow for a much greater throughput. It has the downside of
not working with all NATs. In fact only 64 % of NATs support TCP hole
punching[FSK05]. Keeping in mind, that these numbers where published in
2005. An increase of support for hole punching has been reported, but regardless
it still means that hole punching can’t be relied on to always work.

4.1.1.3 NAT Conclusion

Trifork’s reason for choosing the relaying approach rather than hole punching,
derives from the need to serve all customers. It is more important to have
a system that always works rather than having great throughput. Also the
volume of data send between the Client and the CPE isn’t that great and the
transmission rate isn’t that important. Hole punching is usually used in systems
like VoIP, where great throughput outweighs the need for compatibility.

Relaying gives the Client and the CPE the means to communicate, but lacks
the secure aspect, as all messages would be sent in plaintext. Therefor protocols
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ensuring a secure communication between Clients and CPEs are now considered.

4.1.2 CurveTun protocol

CurveTun is a Diffie-Hellman key exchange used for secure communication by
Trifork. The protocol is used in three variation by Trifork, where the underlined
part in message 3 changes based on these variations. First the overall flow of
the protocol is described and after that the three variations will be discussed.

Message 1: Here A sends a random challenge to T , which is also A’s public
session key xG.

Message 2: T returns its own challenge, yG, to A, which is also T ’s public
session key. The challenge is encrypted and ensured data integrity under the
symmetric key derived from A’s public session key and T ’s long-term private
key. This means that the message can only be opened by one in possession of
T ’s long-term public key and the private session key corresponding to xG. A
trusts that the value yG comes from T , as T ’s private key has been used to
encrypt the message.

Message 3: A sends the public session xG again, encrypted under the shared
long-term symmetric key, which can be derived using A an T ’s long-term public-
and private keys. This ensures T that the session key is shared with A. The
long-term public key of A, pkA, and the licens value is encrypted under the
session key. This mean that encrypted messages containing these two fixed
values will differ for every protocol run. After message 3 A and T can engage
in secure trusted communication using the session key, xyG.

1. A→ T : xG

2. T → A : {|yG|}KtxG

3. A→ T : {|pkA, licens, {|xG|}KatG
|}KxyG

(4.1)

As mentioned, how message 3 is perceived and what it includes depends on
which of three variations are considered. The three variations are discussed
below.

CPE→ Server
This is the establishment of a secure connection between the Server and a CPE.
The CPE has the role of A and the Server has the role of T . This variation
includes both pkA and licens. The CPE has the long-term public key of the
Server, but the Server doesn’t have the long-term key of the CPE. This means
that the CPE needs to provide it for the Server. The Server cannot trust the
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long-term public key of A without being ensured that A can be trusted. This
trust is provided by the licens, the Server has a long list of licenses it trusts,
and if it trust the provided licens, it will trust the long-term public key. When
the Server trusts the long-term public key, it can unpack xG to determine if it
trusts the session key xyG.

Client→ Server
This is the establishment of a secure connection between the Server and a
Client. The Client has the role of A and the Server has the role of T . The
Client connects to the Server when pairing with a CPE. This variation only
includes the Client ’s long-term public key pkA. The Client has the long-term
public key of the Server, but the Server doesn’t have the long-term key of
the Client. The Server doesn’t have anything to authenticate the Clientwith,
neither a licens or a long-term public key. The protocol ensures that the Server
and the Client share a session key. No trust is provided between the two, instead
the responsibility to ensure trust is passed to the CPE (See the paring section
4.1.3).

Client→ CPE
This is the establishment of a secure connection between a Clientand a CPE.
The Client has the role of A and the CPE has the role of T . This connection
is not the pairing mentioned above, but is rather the connection between a
Clientand a CPE when they have been paired. This means that the two know
each others’ long-term public keys. This variation doesn’t include any of the
underlined part. In fact the trust in the session key is establish using the above
mentioned step procedure.

4.1.2.1 Cryptographic functions of CurveTun

The CurveTun protocol relies on the Networking and Cryptography library
(NaCl)[Ber], where it uses the function crypto_box for encrypting messages
and the function crypto_box_open for decrypting messages.

crypto_box encrypts messages using the symmetric-key algorithm Salsa. In
addition to the message the function also takes the following as input: a public
key, a private key and a nonce; to create the ciphertext.

ciphertext = crypto_box(message, nonce, public_key, private_key)

Symmetric encryption functions uses a shared secret to encrypt and decrypt mes-
sages. The crypto_box function takes a public key and a private key. Within
the crypto_box function a shared secret is dereived from these keys using the
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Curve25519 function, which is based on a elliptic curve Diffie-Hellman key ex-
change. In addition crypto_box offers data integrity by creating a MAC using
Poly1305.

4.1.3 Pairing of Client and CPE

This protocol seeks to establish trust between a Clientand a CPE ; meaning
exchanging their long-term public keys, and ensuring the CPE and Clientthat
these public keys in fact can be trusted. The pairing is needed so that the
Client might communicate with the CPE and thereby regulate e.g. the heat of
the customers home.

Protocol 4.2 shows the interaction needed to ensure this trust. The protocol is
complex, and a protocol description can be seen below. The protocol has three
participants: A the CPE, S the Server and C the Client.

1. A→ S : start pairing

2. S → A : R1, token

3. A gen. : R2

4. A shows : R1, R2

5. Enter C : R1, R2

6. C → S : R1

7. S → C : token

8. A→ S : token

9. C → S : token

10. A↔ C : connected

11. A↔ C : upgrade curvetun

12. A↔ C : PACE protocol : R1, R2

(4.2)

The protocol prerequisites a physical setup. The customer standing next to the
CPEwith the Client(smartphone) in hand. The customer is considered trusted,
as the CPE is located within the home of the customer.

Step 1. The customer put the CPE in pairing mode. The CPE contacts the
Server and sets up a secure channel, as described in section 4.1.2, and lets the
Server know that it wishes to be paired.

Step 2. The Server returns a fixed length random string, R1, and a connection
token, token.
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Step 3/4. The CPE then generates another fixed length string R2, and shows
R1 concatenated with R2 on its display.

Step 5. The customer enter the string into the Client. The idea here is that
only the trusted customer would be able to enter R1 concatenated with R2 into
the Client device.

Step 6. The Client contacts the Server and sets up a secure channel, as de-
scribed in section 4.1.2, and sends R1 to the Server indicating that the Server
should provide the Client with the connection token corresponding to R1. Ref-
erencing section 4.1.2 the Server doesn’t trust the Client.

Step 7. The Server returns the connection token to the Client.

Step 8/9. The CPE and the Client informs the Server that they wish to be
connected.

Step 10. The Client and the CPE are now connected through the Server. The
Server provides the Client with the CPE’s public key and vice versa. The
Server now relays the messages as previously discussed. This also means that
the Server puts it on the CPE to determine for itself if it trusts the Client.

Step 11. The Client and the CPE exchange public session keys using Protocol
4.1. This means that they have a secure connection, but trust isn’t provided
yet.

Step 12. To establish trust, a protocol called the PACE protocol [BFK09] is used.
It determines if the Client and CPE have the same value for R1 concatenated
with R2. Remember that only the Client, owned by the customers initialising
the pairing protocol, should be able to know this string and therefor be trusted.
If the strings are identical the pairing is successful meaning that the CPE trusts
the Client and vice versa. The two can now communicate securely using the
CurveTun protocol from section 4.1.2.

Understanding the CurveTun- and the Paring protocol, it should be obvious
why the Server doesn’t need to trust the Client as long as the CPE does. It
might not be obvious why the Server needs to trust the CPE, when the Client
would trust the CPE regardless. The trust between Server and CPE is need
for two main reasons. Only certified CPEs should be able to use the benefits
of the Device Grid. If the server just accept any device with at public key, one
could in theory connect its own device, taking advantage of the Device Grid
infrastructure. The second reason is that Device Grid allows updates of the
software in the CPE through the Server. Only a trusted Server should be
able to push updates to the CPE.
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4.1.4 Randomness considerations

There is a lot of CPEs connected to the Device Grid. These devices are in many
ways identical, the same piece of hardware with the same piece of software. Only
keys and licenses differ. This is necessary for the devices to not generate the
same random value under the same circumstances, so that an attacker won’t be
able to deduce the random generation of one device and use it to attack another
device.

To ensure a unique random among CPEs, a random feed of 32 bytes are written
to the flash at production. When the CPE is running it keeps a random feed
of 64 bytes in memory. The random feed in memory is constructed by running
SHA-512 on the random feed in the flash, the uptime counter and realtime clock.
These values are xored to obtain the 64 bytes random feed. This random value
is constructed at boot and the formula can be seen below.

Construction of random 64 byte value in memory at boot
mem_rand = SHA-512(flash_rand) ⊕ SHA-512(uptime) ⊕ SHA-512(realtime)

To ensure that the random value in memory isn’t guessed by an attacker, it
needs to be updated. This is done by, every time the CPE receives trusted data
from the Server, the decrypted value is run through SHA-512 and xored with
the existing random value in memory. The decrypted value is used because it
is confidential, which means, that should the value be known, security would
already have been broken regardless. Formula for updating based on the received
Server data.

Updating of random 64 byte value in memory
mem_rand = mem_rand ⊕ SHA-512(decrypted_server_data)

The random feed in flash is never updated. This means that after a power down,
the booting sequence starts again with the same random feed. Flash memory
has a finite number of writes, the random value in flash therefor isn’t updated
as this would wear on the flash and decrease the lifespan of the CPE.

4.2 Block Cipher

This section is based on chapter 7, Block Ciphers, from the book, Handbook
of Applied Cryptography [MvOV01]. Block ciphers and block cipher modes are
investigated, as they are widely used for symmetric-key encryption.
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A block cipher is a deterministic function. It consists of two paired algorithms;
one for encryption and one for decryption. Block ciphers provide confidentiality.
The Advance Encryption Standard (AES) is a block cipher. Block ciphers are
usually thought of as encryption- and decryption function in a symmetric key
encryption scheme. Block ciphers are very generic, and can be used as a building
block for pseudorandom number generators, stream ciphers, MACs and hash
functions. This section approaches the block ciphers from the perspective of
AES.

A block cipher encryption function, E, transforms n-bit plaintext blocks to n-bit
ciphertext blocks and a block cipher decryption function, E−1, transforms n-bit
ciphertext blocks to n-bit plaintext blocks. This means that plaintext is input for
the encryption function and that ciphertext is input for the decryption function.
In addition, both functions takes a key K, which the texts are transformed
according to.

Encrypting: ciphertext = E(plaintext,K)

Decrypting: plaintext = E−1(ciphertext,K)

plaintext = E−1(E(plaintext,K),K)

There exist a lot of block ciphers, such as AES. These block ciphers can be used
in different modes, which have great impact on the efficiency and security. De-
pending on applications’ restrictions, it might be necessary to favour efficiency,
which degrades security; or security might be favoured hurting efficiency. Modes
don’t affect the block cipher, which is still a deterministic function. The mode
determines how blocks are fed to the block cipher, which affects the resulting
cipher- or plaintext.

The most popular block cipher modes are: Electronic Codebook, Cipher Block
Chaining, and Counter.

4.2.1 Electronic Codebook (ECB)

ECB is a fairly simple block cipher mode. Figure 4.2 illustrates the encryption,
E, and the decryption, E−1, for ECB mode. Remember these corresponds to
the AES encryption- and the decryption function.

For ECB mode, all n-bit plaintext blocks, x1, ..., xj , are being used individually
along with the key K as input for the encryption function E. Plaintext blocks
are being encrypted one by one, with the key K being the only value affecting
the resulting ciphertext. This means that identical plaintext blocks will result
in identical ciphertext blocks, under the condition that the same key is used.



28 State of the art

Having a mode, where identical plaintext blocks encrypted result in identical
ciphertext blocks, makes the ciphertext susceptible to data analysis. Attackers
might be able to deduce the plaintext from the repeated ciphertext. Attackers
might also be able to identify places in the ciphertext, where bits could be
substituted to the attacker’s benefit.

The ECB mode might be vulnerable to attacks, because it encrypts blocks
individually only using an additional key as input, but it has positive impact
on performance. When blocks are encrypted in ECB mode they don’t rely on
any previous computation, which means that encryption of blocks can be done
in parallel. The same applies for decryptions.

Figure 4.2: Electronic Codebook mode

The ECB mode is a very efficient block cipher mode, but has clear security
weaknesses. The ECB mode should therefor only be used for application where
the need for efficiency outweighs the need for security, and if other more secure
modes do not meet the efficiency requirements.

4.2.2 Cipher Block Chaining (CBC)

CBC mode is a slight more complex block cipher mode than the ECB mode.
Figure 4.3 illustrates the encryption, E, and the decryption, E−1, for CBC
mode. Compared to ECB mode it relies on additional data to create a strong
encryption. The first plaintext block, x0, is being xored with an initialisation
vector, IV , which consist of random data; before being encrypted with key K.
The additional plaintext blocks, x2, ..., xj , uses the preceding ciphertext block,
cj−1, to xored with before being encrypted with key K.

A different random initialisation vector should be used every time, as this will
result in, identical plaintext blocks being encrypted to unique ciphertext blocks.
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The use of the CBC mode makes the ciphertext resilient to data analysis, as
attackers can’t deduce anything from identical ciphertext blocks.

Using the CBC mode will impact efficiency negatively. When plaintext block
are being encrypted, it relies on the encryption of the previous plaintext block.
This means that CBC mode doesn’t supported parallel encryption of plaintext
block, but instead is forced to encrypt blocks sequentially.

Figure 4.3: Cipher Block Chaining mode

The CBC mode is a very secure block cipher mode, but but isn’t as efficient
as ECB mode. The CBC mode is recommended mode for applications where
strength of security is of high priority and where the efficiency speed up using
ECB mode aren’t required.

4.2.3 Counter (CTR)

The CTR mode is an efficient and secure block cipher mode. It can, as ECB
mode, encrypt and decrypt text in parallel, and gives, as CBC mode, a new
output ciphertext for the same plaintext, given the random provided input is
different. The input to the encryption function, apart from the key, is a nonce
and a counter corresponding to the block number being encrypted. The in-
put doesn’t rely on any previous computation, which is the reason it can be
computed using the encryption function in parallel. The use of nonces makes
sure that identical plaintext for different encryptions differs and addition of
the counter makes sure that identical blocks of plaintext within the encryption
differs.
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CTR mode also differs from the two previous mode, by not encrypting the
plaintext using the encryption function, but rather encrypting the plaintext by
xoring it with the output of the encryption function. Decryption is done in
a similar way. Here the ciphertext xored with the output of the encryption
function results in the plaintext. Notice that that encryption function E−1 isn’t
used, but rather the E for both encryption and decryption.

E

nonce + j

key

Xj

E

Cj

nonce + j

Xj

key

Figure 4.4: Counter mode

The CTR mode includes both the stregth of ECB mode and the stregth of the
CBC, while not inheriting any of their weaknesses. This makes the CTR mode
the superior cipher block mode, which is also the reason is it used along modern
encryption functions like AES.

4.3 Advanced Encryption Standard (AES)

This section is based on the paper AES Proposal: Rijndael by Joan Daemen
and Vincent Rijmen [DR98]. AES is the NIST standard for symmetric key
encryption[Bar15]. It is therefor widely used in the industry, which is why it is
considered for this system.

AES is a block cipher. Rijndael, which is the name from the paper, and AES is
basically the same. The only the difference is that AES has some regulations,
that implementations should follow. Rijndael has a variable length for the blocks
and the key. For Rijndael the block and key length can be any multiple of 32-
bit, starting at 128-bit and a ended at 256-bit. AES has a fixed block length of
128-bit, and three options for the key length: 128-bit, 192-bit and 256-bit.
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AES is block cipher, which means that it can be used in ECB- and CBC mode.
It also means that it has an encryption function and an decryption function.
This section only focuses on how the encryption function work, as the decryption
function is very similar. Remembering section 4.2, the decryption function is
just the inverse of the encryption function.

4.3.1 AES encryption

The AES encryption function takes a plaintext block and a key as input, to
produce a ciphertext block. The plaintext changes during the AES encryption
algorithm, which is why it’s called state instead. The state is visually represented
as a two-dimensional array consisting of 16 bytes (Figure 4.5). According to
Rijndael, the state always have 4 rows, which makes 32 bits pr. row. The
number of columns depends on the block length. AES has a fixed block length
of 128 bits, which makes: 128-bits/32-bits = 4 columns.

state =

p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15
p4 p8 p12 p16

Figure 4.5: Two-dimensional state array

The AES encryption is done in three overall steps: Initial Round, Nr−1 Round
and Final Round; which is visualised in the list below. The Nr − 1 Round is
repeated Nr − 1 times, where Nr is the total number of rounds. The Final
Round counts as the last round, which makes the number of rounds reach Nr.

The Initial Round isn’t considered among the total number of rounds, but rather
as a setup round before the actual rounds. Here the KeyExpansion function
expands the key from the input, CipherKey, to Nr + 1 RoundKeys. This makes
one RoundKey for each Nr and on for the InitialRound. A new RoundKey is
given as input to AddRoundKey every time it is performed.

1. Initial Round(State,CipherKey)

KeyExpansion(CipherKey,RoundKeys);
AddRoundKey(State,RoundKey);]

2. Nr − 1 Rounds(State,RoundKey)

SubBytes(State);
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ShiftRows(State);
MixColumns(State);
AddRoundKey(State,RoundKey);

3. Final Round(State,RoundKey)

SubBytes(State);
ShiftRows(State);
AddRoundKey(State,RoundKey);

The Initial Round and the Final Round are each performed once. How many
times the Nr − 1 Rounds are performed varies. According to Rijndael, the
number of total rounds, Nr, depends on the key size and block size. AES has
a fixed block size, which makes the number of rounds depend on the key size.
Total number of rounds, Nr, based on key size can be seen in the list below.

• 128-bit = 10 rounds

• 192-bit = 12 rounds

• 256-bit = 14 rounds

The four round transformations: SubBytes, ShiftRows, MixColumns and Ad-
dRoundKey; will be described, to get an idea of, how the plaintext is encrypted.

4.3.2 SubBytes

In this transformation every ai,j is map to a bi,j , e.g. a0,1 is mapped to b0,1.
The transformation for the value ai,j to bi,j happens in the function S-box.

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

ai,j−−→ S-box
bi,j−−→

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

The S-box transformation is rather simple. It takes the 8 bit, x0, ..., x7, of a ai,j
byte and inserts them in the function below.
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y0
y1
y2
y3
y4
y5
y6
y7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


×



x0
x1
x2
x3
x4
x5
x6
x7


⊕



1
1
0
0
0
1
1
0


The bi,j byte’s 8 bit, y0, ..., y7 are calculated by the equation below. The example
shows y0 being calculated, but a similar approach is used for y1, ..., y7.

y0 = (1x0 ⊕ 0x1 ⊕ 0x2 ⊕ 0x3 ⊕ 1x4 ⊕ 1x5 ⊕ 1x6 ⊕ 1x7)⊕ 1 (4.3)

This S-box transform is applied to all the bits in the a-matrix to get the resulting
b-matrix.

4.3.3 ShiftRows

Here each each rows is shifted by an offset. The offset is based on the number of
columns, NB . For AES NB is always 4, and the offset for each rows is therefor:
row0 = 0, row1 = 1, row2 = 2 and row3 = 3.

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

ShiftRows−−−−−−−→

a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

4.3.4 MixColumns

Here each column of the state is transformed and mapped to the same column
in the resulting state.

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

a0,j
a1,j
a2,j
a3,j−−−→ Mix

b0,j
b1,j
b2,j
b3,j−−−→

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3
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In the transformation the four input bytes a0,j , ..., a3,j are inserted into the
matrix multiplication below to get the resulting bytes b0,j , ..., b3,j .

b0
b1
b2
b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

a0
a1
a2
a3



4.3.5 AddRoundKey

In this transformation the state bytes are xored with the RoundKey bytes and
mapped to the resulting bytes.

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⊕

k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

=

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

ai,j ⊕ ki,j = bi,j

Every state byte, ai,j , is simply xored with it corresponding key byte, ki,j , to
get the resulting state byte, bi,j .

4.3.6 Summary

When all the rounds have been completed, one block of 128-bits has been en-
crypted. If used in counter mode the output from the encryption function would
then needed to be xored with the plaintext block corresponding to the counter
used for input.

4.4 Salsa20

This section is based on the paper, The Salsa20 family of stream ciphers by
Daniel J. Bernstein [Ber08]. The Salsa20 stream cipher is relevant to investigate,
as it is the cipher used for confidentiality in the crypto_box-function of the NaCl
crypto library, used by Trifork. Salsa20 is considered to be faster than AES and
to be just as secure, according to Bernstein. Salsa20 is not a NIST approved
encryption standard.
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A stream cipher is very similar to a block cipher. A block cipher used in counter
mode could actually be considered a stream cipher. A cipher can be considered
a stream cipher if a cipher outputs a cipher stream s which are then xored with
plaintext p to get the ciphertext c. This is just as presented for counter mode
for block ciphers. This means that block cipher such as AES could be used to
generate the cipher stream, but other types of ciphers might also generate the
cipher stream. Here the Salsa20 stream cipher generate the cipher stream s
used for xoring, when encrypting and decrypting.

p = 00111010
s = 01010101
c = 01101111

Encryption

c = 01101111
s = 01010101
p = 00111010

Decryption

The Salsa20 encryption function uses three simple operations to generate the
cipher stream.

1. 32-bit addition, producing the sum a + b mod 232 of two 32-bit words a,
b;

2. 32-bit exclusive-or, producing the xor a⊕ b of two 32-bit words a, b; and

3. constant-distance 32-bit rotation, producing the rotation a <<< b of a
32-bit word a by b bits to the left, where b is constant.

The cipher stream is generated in 64 byte blocks corresponding to the plaintext
blocks. Each cipher stream block is computed independently as it doesn’t rely
on computations from any previous blocks. To generate a stream block the
following values are needed: a secret key, a nonce, a block number (counter) and
4 constants. Given that none of the input relies on any previous computations,
the cipher stream blocks can be computed in parallel.

The input values: secret key, nonce, block number and 4 constants; are inserted
into an initial block structure. The structure is depicted in figure 4.7. The block
structure is a 64 byte block stream consisting of a 256-bit secret key, a 64-bit
nonce, a 64-bit block-counter and four 32-bit constants. This block structure is
now put through 20 rounds of the Salsa stream cipher. A round of the Salsa20
stream cipher consists of 5 steps using the three earlier mentioned computations.
The 16 values in the block structure is called words.
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constant1 key2 key3 key4
key5 constant6 nonce7 nonce8

counter9 counter10 constant11 key12
key13 key14 key15 constant16

Figure 4.7: A 16 word, 64-byte block structure

Step 1: All the words below a constant are altered. This makes key5, counter10,
key15 & key4. They are altered by using the 3 simple computations mentioned
early this section. key5 will be used as an example. To alter the value of key5,
the word above key5 it is used, constant1, and the word above constant1 is
used, key13. For step 1, the constant 7 is used for left bit rotation.

key5 = (key5 ⊕ (key13 + constant1 mod 232)) <<< 7

Step 2: All the words below-below a constant are altered. This makes counter9,
key14, key3 & nonce8. They are altered by using the same 3 simple computations
as in step 1. counter9 will be used as example. To alter the value of counter9,
the word above-above counter9 is used, constant1, and the word above counter9
is used, key5. For step 2, the constant 9 is used for left bit rotation.

counter9 = (counter9 ⊕ (key5 + constant11 mod 232)) <<< 9

Step 3: All words above a constant are altered. This makes key13, key2, nonce7
& key12. key13 will be used as an example. key13 uses the two words just above
it for the computation: key5 and counter9. For step 3, the constant 13 is used
for left bit rotation.

key13 = (key13 ⊕ (key5 + counter9 mod 232)) <<< 13

Step 4: All constants are altered. constant1 will be used as an example.
constant1 uses the two words just above it for the computation: key13 and
counter9. For step 4, the constant 18 is used for left bit rotation.

constant1 = constant1 ⊕ ((key13 + counter9) mod 232) <<< 18

Step 5: The round ends by transposing the state array, to ready it for the next
round. When the 20th round is done the last step is to add the resulting array
to the initial array. This will result in the final array used for encrypting the
plaintext or decrypting the ciphertext.
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4.5 Message Authentication Code (MAC)

This section is based on Section 4.2.3, Message Authentication Codes (MACs),
of the publication, Recommendation for Key Management by NIST [Bar15].

A MAC can be used to provide source and integrity authentication. The MAC
is a checksum generated by a MAC-algorithm, which as input accepts at least:
a message of a variable length and a secret key known only to the sender and
receiver. The MAC can help to ensure that data hasn’t changed. A change in
a MAC could be the result of an error in the transmission of data or that an
attacker has modified or forged the data.

Integrity for MACs are ensured by that the sender and the receiver share a secret
key as MACs are both generated and verified using the same secret key. For this
reason MACs are usually used to ensure integrity for symmetric encryption as
sender and receiver already share a secret key. Non-repudiation is not possible,
as both the sender and the receiver would be able to verify and generate the
same MAC using their shared secret key.

4.6 Keyed-Hash Message Authentication Code
(HMAC)

This section is based on the FIPS PUB 198-1, which is the NIST standard for
HMAC[NIS08]. The HMAC uses a hash function and a secret key to provide
a MAC for messages thereby providing data integrity and data authentication
to a symmetric key protocol.

The HMAC function takes as input a secret key and a message of arbitrary
length. Depending on the underlying hash function the algorithm will use a
different block size B to compute the MAC. The block size B depends on
which data block size the underlying hash algorithm operates upon.

The algorithm start by preprocessing the secret key K to K0. How the key
should by preprocessed is determined by the length of the key K. If the length
of K equals B, K0 is set to K. If the length of K is greater than B, K0 is set
to the hash of K appended with zeroes to obtain the length of B. If the length
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of K is less than B, K0 is set to K appended zeroes to obtain the length of B.

if length of K = B : K0 = K

if length of K > B : K0 = H(K) + 00...00

if length of K < B : K0 = K + 00...00

The next step is to xor K0 with the value ipad, which produces the value:
K0 ⊕ ipad. The ipad is an inner pad consisting of the byte 0x36 repeated B
times. The message is appended to this value and hashed.

H((K0 ⊕ ipad) +message)

The next step is to xor K0 with the value opad, which produces the value:
K0 ⊕ opad. The opad is an outer pad consisting of the byte 0x5c repeated B
times.

The MAC is then computed by appending H((K0⊕ ipad) +message) to K0 ⊕
opad and hashing it. This value can now be used to ensure data integrity and
data authentication to a symmetric key protocol.

H((K0 ⊕ opad) +H((K0 ⊕ ipad) +message))

For the hash function H any hash function may be used, but the cryptographic
strength of the HMAC depends greatly upon the cryptographic strength of the
underlying hash function. The NIST publication with recommendation on key
management[Bar15], recommends a wide range of hash function for HMAC:
SHA-1, SHA-224, SHA-512/224, SHA-256, SHA-512/256, SHA-384, SHA-512
and SHA3-512.

4.7 Poly1305-AES

This section is based on the paper, The Poly1305-AES message-authentication
code by Daniel J. Bernstein [Ber05]. The Poly1305 is the algorithm used to
create MACs and thereby provide data integrity to the NaCl crypto_box sym-
metric encryption used by Trifork.

Poly1305-AES is a secret-key message-authentication code (MAC). As suggested
by the name, the Poly1305-AES uses the AES block-cipher algorithm to compute
the MAC. Poly1305-AES computes a 16-byte MAC from the input: a variable
length message m, a 16-byte nonce n, a 32-byte shared key. Below the function
used for computing the MAC is presented.

(((c1r
q + c2r

q − 1 + ...+ cqr
1) mod 2130 − 5) +AESk(n)) mod 2128
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The function requires some prepossessing on some of the input. The values
c1, c2, ..., cq are computed from the message m of length l, where q = l/16
and c1, c2, ..., cq ∈ {1, 2, 3, ..., 2129}. The message m, m[0],m[1], ...,m[l − 1], is
converted to the sequence of c integers by:

if 1 ≤ i ≤ [l/16] then:

ci = m[16i− 16] + 28m[16i− 15] + 216m[16i− 14] + ...+ 2120m[16i− 1] + 2128

if l is not a multiple of 16 then:

cq = m[16q − 16] + 28m[16q − 15] + ...+ 28(l mod 16)−8m[l − 1] + 28(l mod 16)

The 32-byte secret key is a two part key: a 16-byte AES-key k and a 16-byte
string r. The key r is used along the c integers, while the key k is used to
encrypt the nonce n. Key r needs some bits cleared; r[3], r[7], r[11], r[15] are
required to have their top four bits cleared and r[4], r[8], r[12] are required to
have their bottom two bits clear.

The Poly1305-AES MAC algorithm explicitly takes a 16-byte nonce as input.
The nonce helps to ensure that the MAC is freshly generated to prevent replay
attacks for protocols using the Poly1305-AES. Poly1305-AES provides the nonce
n as input for AES and encrypts is with the secret key k to obtain a 16-byte
string AESk(n).

The prime 2130 − 5 is used in computing the MAC and is where the algorithm
gets its name from. The algorithm is guaranteed secure if AES is secure. The
use of AES algorithm to encrypt the nonce could easily be substituted by an-
other algorithm. The NaCl crypto_box function uses the Salsa20 stream cipher
instead of the AES block cipher.

4.8 Sub-groups

The sub-groups of Z∗
p and elliptic curves are widely used for asymmetric en-

cryption schemes. The two will be investigated with more focus on the elliptic
curves, as they present a more complex problem. Finally comparable strength
for the sub-groups will be match with different encryption schemes.

4.8.1 Sub-group, Z∗
p

The sub-group of Z∗
p is a fairly simple sub-group, which is based on the discrete

logarithm problem. This problem relies on the hard problem of integer factori-



40 State of the art

sation. In sense how to identify the integer x from a function: αx, where the
value of α is known. The base α is a primitive root modulo of p from Z∗

p.

The value of αx is usually used as public key for e.g. a Diffie-Hellman key
exchange, where an attacker shouldn’t be able to derive the private key x from
the public key αx. Increasing the prime defining prime-order sub-group Z∗

p,
would increase the key size an thereby increase the security of the private key
x.

This concludes the sub-group of Z∗
p, which turns out to be simple to understand,

but a hard problem to break.

4.8.2 Sub-group, Elliptic curves

The sub-group of elliptic curves is a more complex sub-group than Z∗
p. The el-

liptic curve discrete logarithm problem is significantly harder than the discrete
logarithm problem of Z∗

p. This results in a strength-per-key-bit is substantially
greater in elliptic curve systems than in conventional discrete logarithm sys-
tems. This results in greater speed, smaller keys and smaller certificates. To
understand how an elliptic curve crypto system work, one first need to know
elliptic curves and its group operations.

Elliptic curves over the finite field Fp. Let p be a prime. Fp is comprised of
the set of integers {0, 1, 2, ..., p − 1}. When working with elliptic curves over
the finite field Fp, there are two operations to be familiar with: addition and
multiplication.

An elliptic curve E over Fp could have the form y2 = x3+ax+b, where a, b ∈ Fp,
and 4a3 + 27b2 6≡ 0(modp). Further more the set E(Fp) consists of all points
(x, y), x ∈ Fp, y ∈ Fp that satisfy the equation E, together with the point at
infinity.

P+Q=R
The addition for elliptic curves is when adding two point, P +Q on the elliptic
curve E(Fp) to get the pointR. The addition is easily understood geometrically
and is depicted in Figure 4.8. Here a line line is drawn through point P and Q,
the third intersection on the elliptic curve is −R. To get R the point is mirrored
in the x-axis.
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Figure 4.8: Addition of P +Q = R.

The formulas below is used for calculating point x and point y of R:

Rx =
y2 − y1
x2 − x1

2

− x1 − x2

Ry =
y2 − y1
x2 − x1

(x1 − x3)− y1

P+P=2P
P + P is called point doubling. Geometrically it is very similar to P +Q = R.
Instead of drawing a line through P and Q, the tangent of P is drawn (Figure
4.9a). The second intersection is then −2P , and mirroring it with the x-axis
results in 2P . It might be apparent that the P + P operation actually is the
multiplication operation (2× P ).

For point doubling the following formulas are used to calculate point x and point
y of 2P :

2Px =
3x21 + a

2y1

2

− 2x1

2Py =
3x21 + a

2y1
(x1 − x3)− y1
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(a) Point doubling P + P = 2P (b) Scalar multiplication 3P

Figure 4.9: Point doubling

Figure 4.9b also shows the multiplication 3P . Here a line is drawn through the
point P and 2P to get the point −3P , and again this point is mirrored in the
x-axis to get the result 3P . The formula of multiplication is Q = kP , where k
is an integer 1 ≤ k ≤ n− 1 (n is the order of the subgroup).

The computation of Q = kP is called scalar multiplication, and is relevant for
asymmetric encryption schemes. Here the value of Q would correspond to a
public key and the value of k corresponds to a private key. P is the generator
point of the elliptic curve and scalar multiplying it with the private key k results
in the public keys Q. Computing the public key from the private key and
generator is an inexpensive computation, whereas computing the private key
from the public key and generator point is considered hard. This characteristic
makes it a good sub-group for an asymmetric encryption scheme.

4.8.3 Comparable strengths of Asymmetric-key algorithms

This section compare the strength of the sub-groups usually used for asymmetric-
key algorithms. Figure 4.1 shows how the key size in bits compare between the
two sub-groups [Bar15]. A 2048 bit key of sub-group Z∗

p corresponds to a 224-255
bit key of the elliptic curve sub-group.

A Diffie-Hellman key exchange relies on the these two sub-group. The key
size using elliptic curves is smaller, which turns out a valuable property to a
Diffie-Hellman key exchange. The smaller key is significantly faster to generate
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Z∗
p Elliptic curve

2048 bit 224-255 bit
3072 bit 256-383 bit

Table 4.1: Comparable key strength of sub-groups.

[SSG13], and a smaller key size is also significantly faster to transfer between
protocol participants.

Signature generation algorithms like RSA and DSA uses the Z∗
p sub-group,

whereas ECDSA uses the elliptic curve sub-group. Algorithms using the Z∗
p

sub-group are faster at generating signatures and verifying signatures, but they
again have the disadvantage of larger key. Apart from having to store these, you
would also have to, if enforcing forward secrecy (more on this later), transfer
these larger key for your Diffie-Hellman key exchange.

Using elliptic curves seems like a better choice than using Z∗
p. ECDSA will there-

for be investigated rather than RSA and DSA. ECDSA is DSA’s counterpart,
where DSA uses Z∗

p instead of elliptic curves.

4.9 Elliptic Curve Digital Signature Algorithm
(ECDSA)

This section is based on the paper, The Elliptic Curve Digital Signature Algo-
rithm (ECDSA) by Don Johnson, Alfred Menezes and Scott Vanstone [JMV01].

Domain paramers The parameters from this section which represent the
most important domain parameters are:

1. The prime p that specifies the size of the finite field.

2. The coefficients a and b of the elliptic curve equation.

3. The generator point G (The initial point on the curve. In Figure 4.8 P is
the generator point.

4. The order n of the subgroup.

The key pair is created by following these steps.
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1. Select a random integer d in the interval [1, n− 1].

2. Compute Q = dG (scalar multiplication of the generator point, G on the
curve E.)

3. d is the private key; Q is the public key.

Signature generation The signature consists of the pair (r, s) generated from
the following steps.

1. Select random integer k, 1 ≤ k ≤ n− 1.

2. Compute kG = (x1, y1) and convert x1 to an integer x̄1.

3. Compute hash(m) and convert to an integer e.

4. Compute r = x̄1 mod n. If r = 0 select a new k.

5. Compute s = k−1(e+ d× r) mod n. If s = 0 select a new k.

Signature verification For another party to verify the signature (r, s) on m,
one also need the domain parameters (p, a, b,G, n) and public key Q.

1. Verify that r and s are integers in the interval [1, n− 1].

2. Compute hash(m) and convert to an integer e.

3. Compute w = s−1 mod n.

4. Compute u1 = ew mod n.

5. Compute u2 = rw mod n.

6. Compute X = u1G+ u2Q.

7. If X = point at infinity reject the signature.
Otherwise, convert the x coordinate x1 of X to an integer x̄1.

8. Compute v = x̄1 mod n.

9. Accept the signature if and only if v = r.

Comparing the two procedures of DSA and ECDSA it is apparent that they are
very similar only with the difference in subgroups.
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4.10 Diffie-Hellman key exchange

This section is based on the paper, New Directions in Cryptography by Whitfield
Diffie and Martin E. Hellman [DH76]. This is the original paper suggesting the
Diffie-Hellman key exchange. The original sub-group of Z∗

p is therefor used.
A Diffie-Hellman key exchange allow parties to share a key over an insecure
channel. Previously keys would have to be pre-distributed using an already
secure channel. This put an unnecessary delay on the actual communication.
The Diffie-Hellman key exchange has been widely accepted in security field and
is being used in countless applications.

When using the Diffie-Hellman key exchange the two parties Alice and Bob
wishes to obtain a shared secret, SAB , which may be used for future symmetric
encryption and - decryption. Alice and Bob initially agrees on the two values α
and p, which may be publicly known. The next step is to compute the public
keys of Alice and Bob. A public key is computed by raising a private value
to the power of α. In the protocol below Alice’s private value is x and Bob’s
private value is y. When the public keys, αx and αy have been exchange Alice
and Bob can now compute the secret key. Alice computes the secret key as:
SAB = (αx)y mod p. Bob computes the secret key similary by using his own
private value y and Alice’s public value.

1. A→ B : αx

2. B → A : αy (4.4)

During the Diffie-Hellman key exchange only the public values αx and αy have
been compromised to a possible eavesdropper. It is not possible to compute
SAB from αx and αy directly. An eavesdropper would have to extract x from
αx or y from αy in order to achieve it. This is consider a computational hard
problem, and is also known as the discrete logarithm problem.

This is the basic of a Diffie-Hellman key exchange. It doesn’t encrypt or decrypt
data, but rather help to obtain a shared secret between two parties, who do not
share a secure channel.

4.10.1 Man-in-the-middle attack

The Diffie-Hellman key exchange protocol is secure when dealing with an eaves-
dropper, as SAB can’t be computed from αx and αy.

The protocol is vulnerable to a man-in-the-middle attack, where the attacker,
Mallory, intercepts the messaging between Alice and Bob and alters it. This
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is due to the fact that the protocol doesn’t include any form of authentication
between Alice and Bob. This attack is depicted in Protocol 4.5.

It is a fairly simple attack where Mallory intercepts the key exchange and
negotiates and secret key with Alice and Bob respectively. Alice now thinks she
shares a secret key with Bob, and vice versa, when they in fact are sharing one
with Mallory.

1. A→ I : gx

2. I → B : gi

3. B → I : gy

4. I → A : gi

(4.5)

Alice would then encrypt her message send it to Mallory. Mallory decrypts
the data using the key she shares with Alice, encrypt it again using the secret
key she shares with Bob and finally send it to Bob. Bob receives the message
decrypts it using the secret key he shares with Mallory. Alice now believes
she has sent a secret message to Bob and Bob believes he has received a secret
message from Alice when in factMallory knows the content of the message. The
attack is very efficient and is something all public key exchanges are vulnerable
to.

4.10.2 Elliptic curve Diffie-Hellman

As the name suggest the Elliptic curve Diffie-Hellman uses elliptic curves to
obtain a shared secret. Knowing about the elliptic curves from the section
about ECDSA, it is possible to redesign the protocol using elliptic curves. It is
fairly simple. Alice and Bob must agree on the domain parameters. Remember
the generator point G and the order n of the subgroup. The other parameters
are also needed but only these two are needed to understand the procedure.

The sequence the depicted in protocol 4.6. Alice selects a random integer x
as her private key, where 1 ≤ a ≤ n − 1. Scalar multiplication is used to
compute Alice’s public key xG, where G is the generator point of the elliptic
curve. Bob does the same to get his private- and public key. The public key
are exchanged and a shared keys (point on the curve), Kxy, can be derived by
scalar multiplication ones own private key with the other party’s public key e.g.
y ∗ xG.

1. A→ B : xG

2. B → A : yG
(4.6)
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The shared key is usually computed as the hashed value of the x-coordinate of
the shared point SAB .

4.11 Station-to-station (STS) protocol

This section is based on the paper, Authentication and Authenticated Key Ex-
changes by Whitfield Diffie, Paul C. Van Oorschot and Michael J. Wiener
[DVOW92].

The paper offers a solution to the simple but very powerful man-in-the-middle
attack on the Diffie-Hellman key exchange. It is resistant to an attacker that is
able to see all messages, delete, alter, inject and redirect messages, initiate com-
munications with another party and reuse messages from past communications.
Its a two-party mutual authentication protocol, which provides the communica-
tion parties with assurance, that they know each other’s identity. Further more
it, as the Diffie-Hellman key exchange, allows the two parties to share a common
key. This secret key may be used to provide data integrity. The protocol also
offers perfect forward secrecy as the dynamically created secret key cannot be
compromised should the long-term key be compromised.

The paper includes two examples of the STS protocol; a more basic one without
the use of certificates and more complex one using certificates.

The basic STS protocol prerequisites that Alice and Bob know each other’s
public keys. The approach is very similar to the Diffie-Hellman key exchange
and the security of the protocol also relies on the discrete logarithm problem of
the exponential key. The sequence is depicted int Protocol 4.7.

1. A→ B : αx

2. B → A : αy, {signB([αx, αy])}Kxy

3. A→ B : {signA([αx, αy])}Kxy

(4.7)

Alice creates a random number x and sends the value αx to Bob. Bod creates his
own random number y and creates the value αy and the keyK (αxy). Bobs sends
the exponential αy and the signed hash value of αx concatenated with αy. Alice
can now compute the key K and verify Bob’s signature using Bob’s public key.
Finally Alice sends her signature of the concatenated αx and αy, so that Bob
might verify Alice’s signature using Alice’s public key. The verification works
because Alice and Bob themselves have influence over what should be signed.
Alice trusts Bob because he encrypts his signature with K, which demonstrates
that he in fact created y.
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The protocol doesn’t address how Alice and Bob end up with each other’s public
keys, which is a very essential part of the protocol. Without the pre-distributed
public keys the protocol doesn’t work. This is what the STS protocol with
certificates addresses.

The STS protocol with certificates prerequisite that Alice and Bob have been
provided with a certificate signed by a trusted party T . It is necessary that
Alice and Bob both trust T and that they have T ’s public key. Alice and Bob
do not know any of each other’s keys and do not share any information. This
version of the protocol doesn’t rely on a network wide α and p. Alice and Bob’s
α and p are individual and included in the certificates, see Protocol 4.8. Alice’s
α and p are also used by Bob in order to obtain the shared secret.

1. A→ B : α, p, αx

2. B → A : αy, CertB , {signB([αx, αy])}Kxy

3. A→ B : CertA, {signA([αx, αy])}Kxy

(4.8)

The sequence of the STS protocol with certificates is very similar to the basic
STS protocol. The difference is that Alice gets Bob public key from the certifi-
cate CertB . Alice can verify the public key of Bob as the certificate include T ’s
signature hash over Bob’s name and public key. When acquiring the public key,
Alice can verify Bob’s identity the same way as in the basic STS protocol. Bob
gets Alice’s public key in a similar fashion and verifies Alice’s identity as in the
basic STS protocol.

Once again this protocol doesn’t explain how Alice and Bob acquires T ’s public
key. This exchange is also vulnerable to the man-in-the-middle attack. The
advantage is that this public key only needs to be distributed once, and that it
can be used to verify numerous parties, knowing this public key. The public key
of T is usually distributed at installation or by bootstrapping. The certificate
can be requested from T in a secure manner when Alice knows T ’s public key.

4.12 Curve25519

This section is based on the paper, Curve25519: new Diffie-Hellman speed
records by Daniel J. Bernstein [Ber06]. The Curve25519 is the Diffie-Hellman
algorithm used to create a shared key from a public value and private value in
the NaCl crypto_box symmetric encryption used by Trifork.

Curve25519 is a elliptic curve Diffie-Hellman function. It allows a sender and a
receiver to obtain a shared secret without sharing any information considered
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secret. Curve25519 is considered very fast as is has obtain new speed records
for high-security Diffie-Hellman computations. It is more than twice as fast as
any other elliptic curve Diffie-Hellman functions, which has the same security
level.

Curve25519 computations are limited to the group operation, scalar multiplica-
tion on E(Fp2), where p is the prime number, 2255 − 19, and E is the elliptic
curve, y2 = x3 + 486662x2 + x. The prime number p is also where Curve25519
gets its name.

Protocol 4.9 shows the basic Diffie-Hellman key exchange with respect to Curve25519.
Alice and Bob’s initial knowledge is their own private keys respectively: a and
b. They both generate their public key, A and B, using the Curve25519 function
with their private keys and the public string 9. Alice sends her public key to
Bob and Bob sends his public key to Alice.

1. A→ B : Curve25519(a, 9)

2. B → A : Curve25519(b, 9)
(4.9)

Alice and Bob can now generate the shared secret Q by using their own private
key and the other’s public key as input for Curve25519. The only information
an eavesdropper would be able to collect is the public keys. There is no way the
eavesdropper would be able to compute the shared secret from the two public
keys. A private key is needed to compute the shared secret, and the problem of
distracting the private key from its public key is considered a very hard problem.

The protocol is vulnerable to the Diffie-Hellman protocol attack, so other means
of security is needed to overcome this attack.

4.13 Summary

The State of the art chapter has investigated the existing system of Trifork, and
cryptographic techniques relevant to secure communication. This includes sym-
metric and asymmetric encryption and Diffie-Hellman key exchange. Current
state of the art cryptographic techniques has been investigated along the cryp-
tographic techniques used by Trifork in the NaCl crypto library. The knowledge
acquired can now be used to make responsible design choices.
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Chapter 5

Protocol Requirements

This section refines the security goal from section 3.3 to protocol requirements,
with regards to an attack model.

5.1 Protocol Goal

The overall goal of the protocols is to ensure the security properties from section
3.3, when enforcing policies. The security properties are confidentiality, data
integrity and authentication. Additionally some refining goals are needed for
the protocol.

Relay attack The protocol mustn’t be vulnerable to relay attacks, meaning
that authentication must ensure that no attacker is relaying messages to influ-
ence a CPE.
Replay attack The protocol mustn’t be vulnerable to replay attacks, meaning
that messages can’t be reused to influence a CPE.
Crypto analysis The attacker mustn’t be able to identify packages, meaning
that the ciphertext must vary for each transfer.
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5.2 Attack Model

In order to characterise a protocol secure, an attack model is needed. When
an attack model is defined you know the kind of attacker you need to defend
against. Protocols that complies with the attack model ensures the customer
that the security properties are met according to the attack model.

The Dolev-Yao[DY83] attack model serves as a comprehensive attack model for
distributing and enforcing policies. Here the attacker is only limited by the
constraints of the used cryptographic methods.

1. An attacker controls the communications between all parties which means
that the adversary can observe all messages sent, alter messages, insert
new messages, delay messages or delete messages.

2. An attacker can obtain any session keys used in previous protocol runs.

3. An insider, who is part of the protocol, will not act malicious but according
to the protocol.

What is important to notice is that, there exits the notion of a passive attacker
and an active attacker. The passive attacker can observe all messages and
thereby also store these for later use. The active attacker can in theory also
do this, but we work with the distinction, where the active attacker can alter
messages, insert new messages, delay messages and delete messages.

The active attacker is interested in impersonate one of the two commu-
nicating parties in order to exploit the influence of this party. It is therefor
important for parties to authentication each other. The attacker might wish to
change some values with in a message to influence some action. To prevent the
action data integrity ensures that altered values are detected.

The passive attacker is interested in recording the messages and learning
valuable information. For this reason confidentiality is needed. The passive
attacker is therefor interested in breaking the encryption enforcing the confi-
dentiality by either a flawed key exchange or leak of a secret key. Point 2 in
the attack model might seem extreme, as attackers will be able to obtain any
session keys from previous protocol runs. In term it means that should the long
term shared key be used for such a protocol run it would be compromised, and
all previous protocol runs would be exposed, breaking confidentiality. Therefor
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a new session key should be generated for each protocol run, ensuring confiden-
tiality should the long term secret key be exposed. Generating a new session
key for each protocol run is to implement Forward Secrecy.

Generating session keys and ensuring authentication is achieved through a series
of messages, whereas data integrity in ensured message specific. Requirements
for data integrity is therefor a more simple matter than requirements for authen-
tication and establishing session key. For a symmetric encryption scheme MACs
are used to ensure data integrity and an asymmetric scheme digital signatures
are used.

5.3 Requirements for authentication and session
key establishment

Requirements for generating session keys and ensuring authentication are more
complex and exists in different degrees of security strength. Therefor a more
thorough evaluation of requirements for generating session keys and ensuring
authentication are needed. This section refines these requirements for authen-
tication and session key establishment.

5.3.1 Authentication requirements

Authentication comes in two versions, as described in section3.3. One that deals
with authentication between two parties, Entity Authentication, and one that
incorporate entity authentication and data integrity, Data Origin Authentica-
tion. This section considers entity authentication and to which degree entity
authentication should be realised. Data origin authentication aren’t considered
as, it is accomplished if entity authentication and data integrity are supported.

Entity authentication is the process whereby one party is assured
(through acquisition of corroborative evidence) of the identity of a
second party involved in a protocol, and that the second has actually
participated (i.e., is active at, or immediately prior to, the time the
evidence is acquired).[MvOV01]

It is a requirement that the protocol enforcing policies, should support mutual
authentication.
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Mutual authentication occurs if both entities are authenticated to
each other in the same protocol.[BM03]

Protocol 5.1 is an example of a protocol implementing mutual authentication,
where B is authenticated to A in message 2, by returning A’s random challenge,
NA, signed with B’s private key. A is authenticated to B in a similar fashion in
message 3. The protocol can by no means be considered secure for this system,
but is a mere example of mutual authentication using signatures.

1. A→ B : NA

2. B → A : NB , SigB(NA)

3. A→ B : SigA(NB)

(5.1)

Mutual authentication is important when enforcing policies. It ensures both
entities that they in fact is communicating with a trusted CPE. Using unpre-
dictable nonces together with mutual authentication will also make the protocol
resilient against replay attacks.

It is a requirement that the protocol enforcing policies should support strong
entity authentication.

Strong entity authentication of A to B is provided if B has a fresh
assurance that A has knowledge of B as her peer entity.[BM03]

Protocol 5.2 provides strong authentication of B to A. The fresh assurance is
provided by NA signed by B and the inclusion of A’s identity ensures that B is
aware of A as the peer entity. If the identity wasn’t included A could be sure
that B was aware he was communicating with A. The inclusion of A’s identity
therefor provides a stronger sense of authentication. It also has the added benefit
of protecting against reflection attack, should the protocol be vulnerable to it.

1. A→ B : NA

2. B → A : SigB(A,NA)
(5.2)

Protocol 5.3 illustrates how C could use a relay attack on a protocol not sup-
porting strong entity authentication. Here C could make B trust C by using
the authenticated messages from A. Identities are included as plaintext to help
illustrate the weakening of authentication. By including the identity of A, C
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won’t be able to exploit this vulnerability.

1. A→ CB : A,B,NA

1’. C → B : C,B,NA

2. B → C : B,C, SigB(NA)

2’. CB → A : B,A, SigB(NA)

(5.3)

5.3.2 Session key requirements

To get a quality session key, Boyd [BM03] lists two goals, that should be uphold.
The session key should be good and key confirmation should be provided. It is
therefor a requirement that the enforcement protocol should meet these goals.
Should the policy distribution protocol require the need to provide new key
material to the CPEs the same requirements apply to this key.

The following is the definition of the good key goal for shared session keys.

The shared session key is a good key for A to use with B only if A
has assurance that[BM03]:

• the key is fresh
• the key is known only to A and B and any mutually trusted

parties

A similar one exists for public session keys.

The public session key is a good key for A to use with B only
if[BM03]:

• the key is fresh
• the corresponding private key is known only to B

To ensure that the key is fresh, nonces are used. In protocol 5.4, XA and XB

are the values needed to create the session key. A knows that the values received
from B, XB , is fresh, because it resides along A’s nonce NA. The same is true
for B in message 3. The session key feeds, XA and XB , are not confidential,
so if the key should be know to only A, B and any mutually trusted parties, a
Diffie-Hellman styled key exchange would be need here. Other protocols might
not need Diffie-Hellman key exchange, if the session key feed could be kept
confidential.
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Protocol 5.4 is a key exchange protocol where both parties are providing key
material. Freshness can also be accomplished for key transportation protocols.
If XB where confidential between A and B in protocol 5.4, XB could be used
as the session key, as A know it to be fresh, because the inclusion of NA.

1. A→ B : NA

2. B → A : SigB(NA, NB , XB)

3. A→ B : SigA(NB , XA)

(5.4)

Having a good session key will ensure that messages can’t be identified by the
ciphertext, as the same plaintext will results in different ciphertext, when using
different session keys. Thereby the crypto analysis goal is also fulfilled.

The good key requirement concludes the requirements for authentication and
session key establishment. The requirements that the policy enforcement pro-
tocol should support is:

• Mutual authentication

• Strong entity authentication

• Good key
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Protocol Design

This section investigates how to design the protocol used to enforce policies
(Policy enforcement protocol). Before considering the protocol some general
design decisions are to be made. A design of the policy setup is required: which
information should the CPEs exchange to enforce the customer’s policies. A
freshness approach is also needed, where one of three should be chosen: counters,
nonces or timestamps. When this is done different protocols will be considered
for the Policy enforcement protocol.

6.1 Policy-based protocol

The design, of a policy-based protocol, is illustrated in figure 6.1. Here the
event is triggered by the sensor of CPE A and the action is performed by the
actuator of CPE B. Events and actions are specific to the sensors and actuators
of a CPE. This mean that CPE B have no way of interpreting the event from
CPE A directly. Because of this, informing CPE B of a sensor event by sending
the event along wouldn’t do much by itself. Some sort of mapping is needed
between sensor events and actuator actions.
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CPE BCPE A

actuator

event

policy id

action

sensor

Figure 6.1: Policy-based sequence

Consider the customer’s policy from section 3.1, which is seen below.

Policy : IF window a is opened THEN turn off radiator b
Event : window a is opened
Action : turn off radiator b

This is an overall policy, and from this two sub-policies can be created. One
for CPE A and one for CPE B. The idea is to have these sub-policies enforce
the overall policy across CPEs. To supply a mapping between sensor event and
actuator action, a policy id is introduced. The policy id is then send from the
CPE experiencing a sensor event to the CPE performing the actuator action.
The sub-policies of CPE A and CPE B can be seen below.

CPE A : IF window a is opened THEN send policy id i
CPE B : IF policy id i received THEN turn off radiator b

When CPE A recognises the sensor event from the policy, it would then send
the policy id to CPE B. CPE B would then match the policy id to an existing
policy and perform the action associated with that policy.

Why not use the sensor event as mapping between CPEs, as seen below.

CPE A : IF window a is opened THEN send window a is opened
CPE B : IF window a is opened THEN turn off radiator b

There are two reasons for not doing this. The first is that by using a policy id,
a fixed length random value can be used. The length of sensor events can’t be
counted on, to have a fixed length. Having a fixed length message means that
the corresponding ciphertext will have a fixed length. This helps to conceal the
intend of the message and thereby limits the attacker’s opportunity to perform
crypto analysis. The other reason isn’t quite as scientific, but there is something
reassuring by not explicitly sending, which sensor experiences an event and the
content of that event. This is despite the information being encrypted.
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6.2 Counters, Nonces or Timestamps

To comply with the requirements for authentication and session key establish-
ment, assurance of freshness is needed. Freshness is usually achieved by intro-
ducing one of three approaches; counters, nonces or timestamps, into a protocol.
The three approaches ensures that no number is used twice for a protocol. It is
necessary to decide a freshness approach before deciding a protocol, as protocols
vary based on the freshness approach.

Counters ensures that no number is used twice by having a synchronised counter
between the communicating parties. For every new message the value is sent
along and then incremented. It is necessary, to prevent attacks, that the state
is synchronised at all time. Keeping the counter synchronised can be quite
challenging. The state of counters must be stored for every communication
partner. Should a counter be out of sync, it can be quite troublesome recovering,
and synchronising the counter again. A user could synchronise the counter or
another freshness approach could help recovering from a counter out of sync.
Using another freshness approach sort of nullifies the reason for using counters
in the first place.

Nonces rely on random challenges to authenticate and ensure fresh keys. A
nonce NA is generate and sent from A to B. B returns this nonce to A along
with the message which has been encrypted. A can now confirm that the re-
ceived nonce is in fact identical to NA, which ensures A that the response from B
is fresh. Using nonces can result in an increased number of interactions in a pro-
tocol, as both parties need to verify the random challenge sent. The minimum
number of interactions is therefor three, where e.g. the counter- and timestamp
approach can do with just two interactions.

Timestamps are used along with a synchronised time clock between the com-
municating parties to ensure freshness. A timestamp are sent along side the
message which allows the receiver to validate the freshness according to the
receivers own time clock. Using timestamps introduces some difficulties: it is
necessary to agree on an interval where the sent message can be considered fresh,
the time clock between the parties need to stay synchronised. A time clock out
of sync, opens a protocol to exploits. Recovering from an unsynchronised time
clock introduces the same inconvenience as a counter out of sync.

Nonces seem like the more attractive choice. There is no need to synchronise
nonces, should they come out of sync, and implementation a protocol using
random numbers rather than counters or timestamps seems likely to have better
success of not introducing freshness errors. Based on these reasons protocols
using nonces will be considered.
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6.3 Policy enforcement protocol

The goal of this protocol is to enforce a policy created by a customer. More
specifically transfer a policy id from one CPE to another, while still upholding
the security goals and protocol requirement. The protocol needs to establish a
session key with an authenticated party, and use this session key to encrypt the
policy id before sending it to the intended CPE.

According to C. Boyd and A. Mathuria [BM03] there are three things to consider
when designing a secure session key protocol: the number of users, the existing
cryptographic keys, and the method of session key generation.

Number of Users
The protocol has two active users: CPE A and CPE B. The protocol can assume
that both parties previously have had contact with a mutually trusted party.

Existing Cryptographic Keys
It is not possible to obtain a secure session key and authentication for a pro-
tocol, if there is no initial trust established. This mean that either the two
communicating share a key, or they both trust a mutual third party, usually a
server. The different ways of having initial trust are:

1. The CPEs already shared a secret key.
2. An online server is used. The CPEs share a key with a server. The server

is contacted when a new session key is needed.
3. An offline server is used. This is essentially the usage of public key certifi-

cates, signed by a mutual trusted third party.

The protocol could support a shared secret key. This would mean that the
Client would need to supply the two CPEs with a shared secret key.

The protocol couldn’t support an online server, as the number of active users
are 2, CPE A and CPE B. The only party both CPEs trust is the Client, which
would need to act as the online server. The Client (smartphone) cannot be
counted on to always be online, which is why this approach wouldn’t work.

The protocol would be able to support an offline server. Here the Client could be
used as the server. At distribution, the Client is already supplying the policies,
which would make it possible to supply certificates along side them.

This means that option 1 and 3 is being consider as an approach for the Policy
enforcement protocol.
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Method of Session Key Generation
There exists three different ways of generating a session key: key transportation,
key agreement and a hybrid of the two. The hybrid key generation is not
considered as it is only viable for protocol with more that two active participants.
Therefore only two are considered.

1. Key transportation, where one CPE generates the session key and there-
after transfers it to the other CPE.

2. Key agreement, where both CPEs provided input for the function gener-
ating the session key.

Both key transportation and key agreement can be used for the Policy enforce-
ment protocol. Key agreement is usually preferred in protocols. Here input for
the session key generation is provided by two different entities, which results in
a more random secret key[BM03]. Using key agreement also allows one to use a
Diffie-Hellman based key exchange, which ensures that an attacker wouldn’t be
able to derive the secret key from the exchanged information. Based on these
reasons key agreement is selected, as the method for generating session keys.

The previous considerations leaves two protocols to consider, as the approach
for the Policy enforcement protocol.

1. Shared secret with key agreement (section 6.3.1).

2. Offline server with key agreement (section 6.3.2).

Now two protocols will be suggested, one for each approach. After that the
protocols will be evaluated, to see which one is the better choice, as the Policy
enforcement protocol.

6.3.1 Policy enforcement protocol using shared key
cryptography

Here we consider a protocol from the ISO standard, ISO/IEC 11770-2 [ISO96],
key establishment protocols using symmetric key encryption. Protocol 6.1 illus-
trates Key Establishment Mechanism 6 (ISO-6) from this standard.

The underlined value is not part of the original protocol. It is the policy id
encrypted with the session key. In order to save on the number of interactions,
the policy id is sent as part of message 3. The reason for encrypting the policy
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id, with the session key, rather than only relying on the encryption of the long-
term symmetric key, KAB , is: to ensure that the same policy id encrypted will
result in different ciphertext. The session key, KRARB

, is derived from the two
random generated key values RA and RB . The key values are kept confidential
under the encryption of the shared secret key, KAB , which makes it possible for
A and B to use any function to generate the session key.

1. A→ B : NA

2. B → A : {|NB , NA, A,RB |}KAB

3. A→ B : {|NA, NB , RA, {policyid}KRARB
|}KAB

(6.1)

If the values for RA and RB and the function generating the session aren’t
selected with care, perfect forward secrecy might break, exposing the policy id.
The values selected for the session key generation should therefor follow a Diffie-
Hellman key exchange, making the session key secure. The Diffie-Hellman key
exchange should use elliptic curves to help minimise the key size.

Protocol 6.2 has made the use of public session keys using elliptic curves explicit,
and will be the protocol considered for the Policy enforcement protocol using
shared key cryptography.

1. A→ B : NA

2. B → A : {|NB , NA, A, xG|}KAB

3. A→ B : {|NA, NB , yG, {policyid}KxyG
|}KAB

(6.2)

The ISO-6 protocol using elliptic curve Diffie-Hellman satisfies all the require-
ments for the Protocol enforcement protocol. Mutual authentication is provided
by challenge responses of the nonces NA and NB . Strong entity authentication
is provide of B to A, by the inclusion of A’s identity and A’s nonce in message 2.
The inclusion of A’s identity and A’s nonce, provides A with a fresh assurance
that B has knowledge of A as his peer entity. The public session keys xG and
yG can be considered good. A knows the public session key of B to be fresh by
A’s associated nonce NA, and B knows the public session key of A to be fresh
by B’s associated nonce NB

By fulfilling the requirements for authentication and session key establishment,
the session key, xyG, can now be used to ensure confidentiality for the policy
id. Data integrity can, for symmetric key protocols, be ensured by providing a
MAC along the message, e.g. using Poly1305 or a HMAC to compute such a
MAC. The recipient will then be able to check if messages have been altered.
The use of a fixed length policy id and a session key to encrypt it also ensures
that a package can’t be identified from the ciphertext alone, fulfilling the crypto
analysis requirement.
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Using protocol 6.2 the Client would need to supply the CPEs with a sub-policy
and a shared symmetric key, paired with the identity of the CPE sharing the
symmetric key.

6.3.2 Policy enforcement protocol using offline server
cryptography

A protocol using an offline server is based upon certificates, where the protocol
entities A and B, receive certificates. These certificates have been signed by a
mutual trusted party, which ensures the validity of B’s public key for A, and
vice versa. The exchange of certificates is done for A and B to obtain each
other’s public keys. The certificate could also include domain parameters, but
these are excluded in the following protocols to simplify expressions. Instead
domain parameters are considered to be global.

The STS protocol rely on certificates to exchange public keys. Protocol 6.3
illustrates the STS protocol using certificates, and is similar to the STS protocol
from the State of the art section. Protocol 6.3 uses the subgroup of elliptic
curves.

1. A→ B : xG

2. B → A : yG,CertB , {|SigB([yG, xG])|}KxyG

3. A→ B : CertA, {|SigA([xG, yG]), policyid|}KxyG

(6.3)

Looking at protocol 6.3, it becomes apparent, that strong entity authentication
is not supported. B doesn’t give A fresh assurance that B wishes to commu-
nicate with A; A’s identity is not included in message 2. This means that an
attacker could masquerade as B in regards to A, breaking strong entity authen-
tication.

Protocol 6.4 includes the identity of A to ensure strong authentication. Includ-
ing the identity of A, nullifies the need for the symmetric encryption over the
signature in message 2 and -3[BM03], which is also expressed in protocol 6.4.

1. A→ B : xG

2. B → A : yG,CertB , SigB([yG, xG,A])

3. A→ B : CertA, SigA([xG, yG,B]), {|policyid|}KxyG

(6.4)

Protocol 6.4 now ensures strong entity authentication. Mutual authentication is
ensured by using the public session keys xG and yG as challenge-responses. A
knows is assured of B identity, because A trusts B’s public keys from the certifi-
cate, and because only B would be able to supply this signature over A’s public
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session key xG. Both strong entity authentication and mutual authentication
are supported by the protocol satisfying the authentication requirements.

The session key requirements are also satisfied. A know the public session key
of B to be fresh, as it is sent along A’s public session key in message 2. The
same freshness assurance is provide to B, where A’s public session key is sent
along B’s public session key in message 3. The public keys do not need to be
kept confidential. A and B only need to have assurance of data integrity of the
keys. Data integrity is provided by signatures for the STS protocol.

In addition to satisfying all the protocol requirements, protocol 6.4 have some
functional advantages over protocol 6.3. Test results are being referenced from
appendix A.1. Comparing message 2 of the protocols; protocol 6.4 has a 16 byte
smaller payload than protocol 6.3 and is 1,04168 times faster to compute. For
message 3 the protocols have the identical payload. Message 3 isn’t that different
for the two protocols. The difference is that the signature isn’t encrypted under
the session key, KxyG, for protocol 6.4. The difference doesn’t affect the security
of the protocols, but protocol 6.4’s message 3 is computed 1,03160 times faster
than message 3 of protocol 6.3. The difference in cryptographic computation
time, probably won’t affect the system, but why not use the faster of the two,
when security isn’t compromised.

There is no doubt that protocol 6.4 is the better protocol, compared to protocol
6.3. The question is if it is good enough. A and B are exchanging certificates,
to obtain each other’s public key. It might be better, to just have the Client
distribute the public keys of the CPEs, rather than the certificate. Tests refer-
enced is from appendix A.2. The test shows that storing four public key, from
different CPEs, corresponds to storing one certificate. If also factoring in that
verification isn’t needed when receiving the certificate, having the public key
stored rather than exchanging certificates seem more efficient. The system con-
sidered here, would rarely have more than four CPEs, which is why public key
easily could be stored instead of using certificates. Protocol 6.5 is the version of
the STS protocol without certificates.

1. A→ B : xG

2. B → A : yG, SigB([yG, xG,A])

3. A→ B : SigA([xG, yG,B]), {|policyid|}KxyG

(6.5)

Removing the certificates doesn’t affect the assurance of the protocol require-
ments, as certificates are only relied upon to distribute public keys in a secure
manner. Protocol 6.5 has been put through the model checker, Open-Source
Fixedpoint Model-Checker, to identify possible attacks on the protocol. No at-
tacks where found for 2 sessions, of the model checker (Appendix A.4).
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Protocol 6.5 is chosen as the Policy enforcement protocol using an offline server,
and the one to evaluate against the protocol, selected for the shared key cryp-
tography. Using protocol 6.5 the Client would need to supply the CPEs with a
sub-policy and a public key, paired with the identity of the public key owner.

6.3.3 ISO or STS for the Policy enforcement protocol

This section compares the two approaches, chosen as possible solutions for the
Policy enforcement protocol: protocol 6.2 (ISO-6) and protocol 6.5 (STS). The
section compares the efficiency of the two protocols and consider the storage
needed for each approach.

1. NA

2. {|NB , NA, A, xG|}KAB

3. {|NA, NB , yG, {policyid}KxyG
|}KAB

(a) Protocol 6.2 (ISO-6).

1. xG
2. yG, SigB([yG, xG,A])

3. SigA([xG, yG,B]), {|policyid|}KxyG

(b) Protocol 6.5 (STS).

Figure 6.2: Protocols considered for the Policy enforcement protocol.

The efficiency of a protocol depends one three parameter, which is an expression
of the total protocol run time. How many interactions, does the protocol require.
How long does it take to ready messages, sent between CPEs. How long does it
takes to transfer the messages.

The number of interactions are the same for both protocols (see figure 6.2).
Therefor the number of interactions are disregarded.

Payload is a representation of the time it takes to transfer messages between
CPEs, and is thereby relevant for efficiency. A smaller payload results in a faster
transfer time. This is relevant for evaluating the protocols, as the payload for
message 2 and -3 vary between the protocols.

Crypto time is a representation of the time it takes to ready a message, and is
thereby relevant for efficiency. Message 2 and -3 are encrypted before sent and
decrypted at reception. Therefore the time it takes to encrypt and decrypt will
be measured for message 2 and -3.

Storage is the final thing considered. The two protocol approaches should require
different amount of storage. It isn’t relevant to the efficiency of the protocol, but
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it’s relevant for smaller devices, like a CPE, as they might have limited storage
space.

Evaluating the three parameters: payload, crypto time and key storage, for each
protocol, should help identify the better approach for the Policy enforcement
protocol.

6.3.3.1 Payload

Results for the payload can be found in appendix A.3. The reason for considering
payloads, is that the size of the payload impact the transfer time of the message
between the CPEs. The greater payload the longer transfer time. The more
efficient protocol will therefor have the smaller payload.

Message 1: The ISO-6 protocol and the STS protocol has identical payloads.

Message 2: The ISO-6 protocol’s payload is 80 B smaller than the payload of
the STS protocol, which corresponds to a factor of 2.

Message 3: The ISO-6 protocol’s payload is 56 B smaller than the payload of
the STS protocol, which corresponds to a factor of 1.6.

The ISO protocol has, for message 2 and message 3, a smaller payload; payloads
which is smaller by factors of 2 and 1.6. From a payload perspective the ISO-6
protocol is the better choice for the Policy enforcement protocol.

6.3.3.2 Crypto time

Results for the crypto time, for encrypting and decrypting message 2 and -3,
can be found in appendix A.3. The reason, for considering crypto time, is that
it together with the transfer time constitutes the total protocol run time. The
better protocol, from a crypto time perspective, will therefor have the faster
crypto time. Message 1 isn’t considered, as no encryption or decryption is
needed.

Message 2: The ISO-6 protocol’s crypto time is 7,12 ms faster than the crypto
time of the STS protocol, which corresponds to a factor of 3954.

Message 3: The ISO-6 protocol’s crypto time is 7,11 ms faster than the crypto
time of the STS protocol, which corresponds to a factor of 3476.
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The ISO protocol has, for message 2 and message 3, a significantly faster crypto
time; crypto times which is faster by factors of 3758 and 3128. From a crypto
time perspective the ISO-6 protocol is the better choice for the Policy enforce-
ment protocol.

6.3.3.3 Key storage

For key storage, Appendix A.2, is used, which contain key storage requirements
tests for both protocols. The reason, for considering key storage, is that IoT
devices have a limited amount of storage. The better protocol, from a key
storage perspective, will therefor require the least amount of storage.

ISO protocol: The storage requirements for the ISO-6 protocol follow the
function: 40B × relations

STS protocol: The storage requirements for the STS protocol follow the func-
tion: 40B × relations+ 96B

Both protocols need to store a key and an identity for each relation they have.
In addition, for the STS protocol, one needs to store one’s own public- and
private key, which constitutes the 96B. This mean that the STS protocol would
always require 96B more storage than the ISO protocol. For Trifork’s setup,
this is not true. In this setup, the CPEs would already store this private- and
public key. For Trifork this means that neither protocol is better from a storage
perspective. For others not having this setup, the ISO protocol is the better
protocol from a storage perspective.

6.4 Conclusion on protocol design

The ISO-6 protocol turns out to be a better fit for the Policy enforcement
protocol. It is better or equally as good as the STS protocol, when considering
payload, crypto time and key storage. The ISO-6 protocol also meets all the
protocol requirements from section 5, while being the more efficient protocol.
The ISO protocol, protocol 6.2, will serve as the Policy enforcement protocol.
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1. A→ B : NA

2. B → A : {|NB , NA, A, xG|}KAB

3. A→ B : {|NA, NB , yG, {policyid}KxyG
|}KAB

Figure 6.3: Policy enforcement protocol (ISO-6).



Chapter 7

System design

The system design reflects how the Policy enforcing protocol might be imple-
mented in a policy-based system. The design doesn’t reflect the design of Trifork
and the existing manufacturers’ systems, but is the design of the prototype. It’s
designed to see how a sensor event from one CPE might lead to an actuator
action for another CPE. The design is mainly centred around the software of the
CPE, and how the protocol is incorporated in the system. The system design
includes considerations for programs representing the Client, sensors and actu-
ators. These are simple programs that, when implemented, helps to illustrate
the flow of the policy-based system. The software, to the CPE, is provide by
Trifork and a manufacturer. To make this clear, the design strives to separate
the software into two parts, which work independently and only communicate
using messages.

The system design includes a package diagram illustrating the layered architec-
ture of the system. It also includes an overview of processes needed and their
connectivity to illustrate the flow of the system. For the CPE software, there
is provided an overview of running threads and how these communicate to en-
force policies. Interaction diagrams are included for the protocol flow, to give
a dynamic representation of the system. Finally a class diagram is include, it
gives a static representation of the software designed for Trifork.
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7.1 Package diagram

The package diagram shows the logical architecture of the CPE system, includ-
ing Trifork’s- and the Manufacturer’s software. Notice in figure B.1, that the UI
layer and the Data layer has been greyed out. Usually, when designing software
systems, you rely on a layered architecture to separate your software. This allow
engineers to substitute old layers for new, should the system, e.g. need a new
user interface. Seen from this thesis’ point of view, the CPE system doesn’t rely
on any user interface. The need for persistence of data isn’t really important
either. The data in need of persistence would be long-term keys paired with
identities, and policies. Instead of using a data layer, keys are incorporated in
the code, whereas policies will be distributed by the Client.

Trifork
communication

Trifork
controller

Manufacturer
controller

Manufacturer
communication

UI

Data

Figure 7.1: Package diagram for CPE.

The application logic layer embraces the scope for this thesis. Here the Policy
enforcement protocol is implemented. It is only possible to make new additions
to the software written by Trifork. New software additions can therefor only
be made to the Trifork communication- and the Trifork controller package. I
have also designed a simple Manufacturer communication- and Manufacturer
controller package. This is done to simulate the entire flow of a sensor event
from one CPE to the actuator action of another CPE.

The Trifork communication package facilitates all incoming- and outgoing com-
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munication with CPEs and Clients. It is here the Policy enforcement protocol
will be implemented.

The Trifork controller package interprets the messages from CPEs, Clients and
the Manufacturer controller package. If a message comes from a CPE the mes-
sage is evaluated against the policies, and the Manufacturer controller packade
is informed according to the policies, e.g. turn off heating. If the message is
from a Client the message is translated to a policy, which later, is used for eval-
uation against messages from CPEs. If a message comes from the Manufacturer
controller package, the message is evaluated against the policies, to see if any
CPE should be informed of the event in the message.

TheManufacturer communication package facilitates all incoming- and outgoing
communication with sensors and actuators.

The Manufacturer controller package interprets messages from the Trifork con-
troller package and the Manufacturer communication package. If the message
is from the Trifork Controller package, the Manufacturer controller package
makes sure the correct actuator receives the message, by sending a message to
the Manufacturer communication package. If the message is from the Manu-
facturer communication package, the message is from a sensor, and the Trifork
controller package is informed of the sensor event.

7.2 Processes

This section gives insight into the processes needed to simulate a home automa-
tion system. Figure 7.2 illustrates these processes from a CPE ’s perspective; the
CPE with the bold border. The figure has five processes. These five processes
run on five unique physical devices, which has wireless communication capabil-
ities. The dashed lines illustrate the connectivity among the devices and the
directional arrow identifies the initiator, e.g. the sensor process initiates com-
munication with the CPE, and both CPE processes may initiate communication
with the other CPE process.
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Actuator
process

Sensor
process

Other CPE
processes

CPE
process

Client
process

Home

Figure 7.2: Processes in a home automation system and their connectivity.

The Other CPE processes box illustrates other CPE home automation systems
within the customer’s home. These processes are also connected to sensors,
actuator and the Client. These processes and connections have been left out of
figure 7.2 to provide a more simplistic illustration.

Having five processes on five different devices means that four different programs
should be written. The sensor-, actuator- and Client program will be simple
programs providing the necessary implementation to illustrate the flow through
the system.

The Client program is connected to all the CPEs within a home, and should
provide them with policies and key material

The sensor program needs to initiate contact with the CPE when an event
happens and provide the CPE with the event.

The actuator program should accept connections from the CPE and perform
the action provided by the CPE.

The communication between these three programs and the CPE does not pro-
vide any security, as it is just clear text sent between them to help reach the
actual goal of the system. The goal of having the CPEs communicate securely
using the Policy enforcement protocol, when policies are satisfied.

The CPE program implements the Policy enforcement protocol, that facilitates
communication between CPEs. Therefore the CPE program is the more com-
plex program, which is why the following design section will focus solely on the
software design of the CPE. The CPE software is designed generically, which
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means that the same program can be used for multiple CPEs, only the provided
policies will be different, thereby ensuring different behaviour for different CPE.

7.3 Threads

This section explains the inner workings of the CPE process. It looks at the
threads running in the process, how the threads communicate and which mes-
sages are passed along between them. The CPE process is illustrated in fig-
ure 7.3. Messages within the process is passed along using message queues.
Incoming- and outgoing messages of the process uses a TCP connection. The
process is conceptually split in two by the dashed line. The right side is the
manufacturer software and the left side is Trifork’s software.

Manufacturer
Communication Out

Thread

CPE

Manufacturer
Communication In

Thread

Manufacturer
Controller

Thread

Trifork
Controller

Thread

Trifork
Communication Out

Thread

Trifork
Communication In

Thread

B4

A2

B3

A4

B2, C2
B1, C1 

A5

A1

B5

A3

Figure 7.3: Threads in a CPE process and their connectivity.

Trifork’s software consists of three threads: Trifork Communication Out, Trifork
Controller and Trifork Communication In.

The Trifork Communication Out thread facilities the TCP communication,
when the CPE itself initiates the contact to other CPEs. The thread therefore
acts as the initiator A, for the Policy enforcement protocol, when connecting
to other CPEs. The thread has a message queue and is only activated when
messages is passed to the message queue by the Trifork Controller.

The Trifork Communication In thread facilities the TCP communication when
the CPE is contacted by either the Client or other CPEs. The thread therefore
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acts as the responder B, for the Policy enforcement protocol, when contacted
by other CPEs. The thread also receives policies and key material from the
Client. The thread has a pointer to the Trifork Controller ’s message queue, to
which received messages are relayed. The thread is only active when a TCP
connection is accepted.

The Trifork Controller evaluates the messages received from the manufacturer
software and the Trifork Communication In thread against existing policies.
If policies are satisfied either the manufacturer software is informed, using the
message queue of the Manufacturer Controller thread; or other CPEs are in-
formed, using the Trifork Communication Out thread as a relay. If a messages
contain a new policy, it is instead added to the existing policies.

In theory only the messages and threads to the left of the dashed line, would
be relevant to consider for the design. This is the software provided by Trifork,
which is the only part we can add code to. The manufacturer software, which
is to the right of the dashed line, is a very simple design. It reuses the classes
designed for the Trifork software to save time on implementation.

The Manufacturer Communication Out thread sends a message to an actuator
when the Manufacturer Controller thread instructs it to.

The Manufacturer Communication In thread sends a message to the Manufac-
turer Controller thread’s message queue when receiving an event from a sensor.

The Manufacturer Controller thread relays messages between the Trifork Con-
troller thread and the Manufacturer Controller ’s communication threads.

7.3.1 Flows

Figure 7.3 also illustrates the three flows of the system: Flow A, -B and -C.
It shows how different events trigger different flows. Flows are triggered by
the initial messages: A1, B1 and C1. A message contains the type of entity
the message is sent from, being it sensor, client or cpe. It also contains event
information and may contain information about the action to perform. Messages
contain information about: entity type, event and action.

Flow A: illustrates the flow through the CPE, from when the manufacturer
software receives a sensor event, to the policy id corresponding to that event,
has been sent to another CPE by Trifork’s software.

Flow B: illustrates the flow through the CPE, from when Trifork’s software
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receives a policy id from another CPE, to the corresponding actuator action has
been sent to an actuator by the manufacturer software.

Flow C: illustrates the flow through the CPE, from when receiving policies and
key material from a Client. Here the key material is stored by the Trifork
Communication In thread. The policies are stored by the Trifork Controller
thread to evaluate future policy ids and sensor events against.

A closing remark for the section. It has been emphasised in the design, that the
manufacturer software and Trifork’s software should be able to coexist in the
same process while still be two individual systems, where they only communicate
through an API styled interface using message queues.

7.4 Interaction diagrams

The following two pages contain interaction diagrams depicting the interactions
of the Policy enforcement protocol between two CPEs. Figure 7.4 shows the
interaction from the initiator’s point of view, which corresponds to the actions
taken by the Trifork Communication Out thread, when it receives message 4
of flow A. Figure 7.5 shows the interaction from the responder’s point of view,
which corresponds to the actions taken by the Trifork Communication In thread,
when it receives message 1 of flow B.

7.4.1 Initiator sequence diagram

The sequence diagram of the initiator, in figure 7.4, is activated by the re-
ception of a message on the class ComOutTrifork ’s message queue. The key
corresponding to CPE, which the message is intended to, is fetched from the
CpeRepo. When the key is fetched, the CPE connects to the other CPE to
inform it that a CPE wishes to communicate, before initiating the protocol.
The SocketTCP class facilitates all the communication to and from the other
CPE. The ProtocolISO class follows the steps of the protocol initiator A from
the protocol design, when calling the function Initiate. The NaclLibrary class
provides the ProtocolISO class with the necessary cryptographic functions. The
protocol finishes with the last encrypted message being sent to the other CPE,
and the ComOutTrifork class continuing to listen on its message queue.
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7.4.2 Responder sequence diagram

The sequence diagram of the responder is very similar to the initiator sequence
diagram. Here the ComInTrifork class continuously accepts connections, and
is activated by the other CPE connecting to it. After the connected CPE ’s
id is received, the corresponding shared key is fetched. After that the Proto-
colISO function, Response, is activated. It performs the necessary steps of the
protocol responder B from the protocol design. The NaclLibrary is used for the
necessary cryptographic functions. The sequence finishes by passing along the
received message (policy id) to the Trifork Controller thread’s message queue,
and continues to accept incoming connections.
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7.5 Class diagrams

The following class diagram, shown in figure 7.6, shows the static representation
of the Trifork software. If interested the class diagram of the manufacturer
software can be seen in appendix B.1.

The three classes representing the three threads of the Trifork software are:
TriforkController, TriforkComOut and TriforkComIn. They all inherit from
the Thread base class, which simplifies thread creation. The Controller class,
which TriforkController inherits from is created to minimise redundancy be-
tween the TriforkController and the ManufacturerController, as they both have
three references to the MessageQueue class. The TriforkCommunication class
has been created to minimise redundancy between the TriforkComOut class and
the TriforkComIn class. They both need an ICommunication class to accept
connections and connect to other CPEs and they both need an IProtocol class
to communicate securely with another CPE.

The classes of the TriforkCommunication class, ICommunication and IProtocol,
are using the Strategy design pattern, which means that other implementations
of the interfaces easily can be used instead. If another protocol, using symmetric
encryption, is selected instead of the ProtocolISO, it just needs to implement the
IProtocol using a ICryptoLibrary for it to work with the system. The same goes
for the NaclLibrary, which uses Daniel Bernstein’s crypto library. If another
class is implemented, which relies on an AES implementation, it just need to
implement the ICryptoLibrary. In fact the new implementation using AES could
be used with the existing ProtocolISO class.

The design has been made generic where it makes sense, which makes it easy
to change communication protocol, security protocol and crypto library. Other
parts just use a simple class, that acts like a database, as the data layer is not
provided. These are the repo classes, which contain identities, keys and policies
for the CPE.
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Figure 7.6: Class diagram for Trifork’s software.
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Implementation

The implementation chapter discusses the cryptographic techniques and func-
tions used for the implementation of the Policy enforcement protocol. It con-
cludes by describing the implementation of the protocol design.

8.1 Cryptographic techniques

This section explains the cryptographic techniques used for the Policy enforce-
ment protocol. NaCl has been selected for cryptographic computations as Tri-
fork is already using it. This means that the Salsa20 stream cipher will be used
to ensure confidentiality, the Poly1305 MAC function will be used to provide
data integrity and finally the Curve25519 elliptic-curve Diffie-Hellman function
will be used for session key generation. Another approach for cryptographic
techniques can be seen in table 8.1. Here AES could be substituted for Salsa20,
an HMAC function could provide MACs instead of Poly1305 and a key genera-
tion based on a Diffie-Hellman key exchange using sub-group Z∗

p. Even though
the computations used for e.g. AES- and Salsa20 implementations are fairly
simple, time and again, flawed implementations keep opening perfectly designed
protocols to attacks such as side channel attacks[ZF05]. This is also a reason
for selecting NaCl, as its considered secure against side channel attacks[Ber16].
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Cipher MAC DHKE
NaCl Salsa20 Poly1305 Curve25519
Other AES HMAC DH, Z∗

p

Table 8.1: Cryptographic approaches.

The use of AES, HMAC and DH, Z∗
p; could be relevant for other implemen-

tations where the customer might be more comfortable using NIST approved
methods rather than NaCl. The ICryptoLibrary provides an interface, that
the NaClLibrary class implements using the NaCl library. Another implemen-
tation of the ICryptoLibrary could be made using NIST approved techniques
instead. This way Trifork’s software could easily change between a NaCl library
and a library using NIST approved techniques.

8.1.1 Linking NaCl with production code.

The NaCl crypto library can be downloaded from Daniel Bernstein’s webpage[Ber].
It is build by running the file do. This will build the library for the environment.
The library is linked to the production code using the paths below. Here the
nacl-20110221 folder is the NaCl library main folder.

Include path: ./nacl-20110221/build/ubuntu/include/amd64
Static library path: ./nacl-20110221/build/ubuntu/lib/amd64
Static library: nacl

The command for building the code for the CPE is shown below. Here the
include path, the static library path and the static library are added to give
the production code a reference to the NaCl library. If other object files are
needed, they are added by project_ofiles. For this implementation the follow-
ing object files are needed: $(Static library path)/randombytes.o, SocketTCP.o
and ProtocolISO.o. Finally the -lpthread is added to allow the program to use
threads.

g++ -I$(Include path) -L$(Static library path) $(project_ofiles)
$(CPE).cpp -o $(CPE) -lnacl -lpthread

The Makefile for the entire program can be found on the USB in the folder
program.
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8.2 Policy enforcement protocol functions

This section describes the implementation of the two ProtocolISO functions:
Initiate and Response; that are used for the Policy enforcement protocol. These
are implemented based on the findings of the protocol design section. The
Initiate function is used by protocol participant A and Response is used by
protocol participant B. Before going into the protocol functions the functions
used for encryption and decryption are explained.

8.2.1 Crypto helper functions

The protocol functions are using some helper functions, which handle encryption
and decryption for the Policy enforcement protocol.

The first encryption function takes a message, a nonce and a symmetric key.
The function uses the NaCl function secret_box, which is based on the Salsa20
stream cipher and the Poly1305 MAC. These both need a nonce and a key, to
compute the ciphertext and MAC respectively. By using a nonce for ciphertext-
and MAC generation, freshness can be assured indirectly for the encrypted mes-
sage, rather than sending the nonce along in the message itself.

string Encrypt(string message, string nonce, stringkey)

The second encryption message is very similar to the first. The difference here
is, that the message is encrypted using a private session key and a public session
key, instead of a shared key. The function uses the NaCl function crypto_box.
This function is also based on the Salsa20 stream cipher and the Poly1305 MAC.
Additionally the Curve25519 elliptic-curve Diffie-Hellman function is used to
generate the symmetric session key from the private session key and the public
session key. This symmetric session key is then used to compute the ciphertext
and MAC, similar to the encryption function above.

string Encrypt(string message, string nonce, string pk, string sk)

The decryption functions below are the opposites of the above encryption func-
tion. The functions are based on the NaCl decryption functions secret_box_open
and crypto_box_open. These functions have the added functionality of check-
ing data integrity, e.i. have the message been encrypted with the same key and
nonce as used for decryption.

string Decrypt(string cipher, string nonce, string key)

string Decrypt(string cipher, string nonce, string pk, string sk)
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When a nonce is used for MACs, it proves freshness of authentication for
challenge-responses, without including the nonce in the message itself. This
means that NA can by excluded from message 2 and that NB can be excluded
from message 3, as they are already included as part of the MAC. The decryption
function fails, if the correct nonce hasn’t been used for the encryption.

8.2.2 The Initiate function

The Initiate function is supposed to send a policy id, policyId, using a sym-
metric key, symKey. The function starts by generating a nonce for challenge-
response and a Diffie-Hellman key pair, containing a private- and public key.
According to the protocol design the protocol starts by sending the nonce (Mes-
sage 1 ).

Message 2 is received from the protocol responder. According to the design, this
message is encrypted using the shared symmetric key between the two protocol
participants. The message is also encrypted using the nonce. The nonce is part
of the Poly1305 MAC, which means that the nonce isn’t returned explicitly,
but rather as part of the MAC. If decryption succeeds the protocol responder
has used the correct nonce and symmetric key, which makes him trustworthy.
The decrypted Message 2 is then split into the three remaining values sent
from the protocol responder: The protocol responder’s nonce, the responder’s
public session key, and the identity of the CPE, the protocol responder believes
to be communicating with. If this identity equals one’s own identity, strong
authentication is fulfilled, and the protocol can proceed.

Message 3 is then constructed by encrypting the policy id, with the session key,
and encrypted again along with the the initiator’s nonce and the initiator’s pub-
lic session key. The message is then finally encrypted using the provided nonce,
rNonce, and the shared symmetric key, before sent to the protocol responder.
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void ProtocolISO : : I n i t i a t e ( s t r i n g po l i cy Id , s t r i n g symKey)
{

// Generates
s t r i n g nonce = _crypto−>GenerateNonce ( ) ;
DHKeyPair dh = _crypto−>GenerateDHKeyPair ( ) ;

// Message 1
SendMessage ( nonce ) ;

// Message 2
s t r i n g cM2 = ReceiveMessage ( ) ;
s t r i n g m2 = _crypto−>Decrypt (cM2 , nonce , symKey ) ;
s t r i n g rNonce = m2. subs t r (0 , _crypto−>_nonceSize ) ;
s t r i n g rPk = m2. subs t r (_crypto−>_nonceSize , _crypto−>_pkSize ) ;
s t r i n g i I d = m2. subs t r (_crypto−>_nonceSize+_crypto−>_pkSize ,

m2. s i z e ()−_crypto−>_nonceSize+_crypto−>_pkSize ) ;
i f (_hostname != i I d ) { e x i t (EXIT_FAILURE) ; }

// Message 3
s t r i n g cPI = _crypto−>Encrypt ( po l i cy Id , rNonce , rPk , dh . sk ) ;
s t r i n g m3 = _crypto−>Encrypt ( nonce+dh . pk+cPI , rNonce , symKey ) ;
SendMessage (m3) ;

}
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8.2.3 The Response function

The Response function represents the other half of the Policy enforcement pro-
tocol. The function takes the CPE id of the CPE initiating the protocol and
the symmetric key they share. The function starts by generating a nonce for
challenge-response and a Diffie-Hellman key pair, containing a private- and pub-
lic key. According to the protocol design the protocol starts by receiving the
nonce, iNonce, of the protocol initiator (Message 1 ).

Message 2 is constructed by encrypting the CPE id, cpeId, of the protocol
initiator, the responder’s nonce, nonce, and the responder’s public session key,
dh.pk. The message is encrypted using the initiator’s nonce, iNonce, and the
shared symmetric key, symKey.

Message 3 is decrypted using the nonce, nonce and the symmetric key, symKey.
Here the nonce is the one provided for message 2 to challenge the initiator. The
nonce is used to verify the MAC along with the symmetric key. If the message is
encrypted using the correct nonce and symmetric key, the message is decrypted.
Message 3 is then split into the message described in the protocol design: The
nonce, iNonce; the public session key of the protocol initiator, and the encrypted
policy id, cPolicyId. The iiNonce is compared to the iNonce value to ensure
that the protocol participant is the same as the protocol initiator. Finally the
policy id is decrypted using the session key: the public key of the protocol
initiator and the protocol responder’s private key.
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s t r i n g ProtocolISO : : Response ( s t r i n g cpeId , s t r i n g symKey)
{

// Generates
s t r i n g nonce = _crypto−>GenerateNonce ( ) ;
DHKeyPair dh = _crypto−>GenerateDHKeyPair ( ) ;

// Message 1
s t r i n g iNonce = ReceiveMessage ( ) ;

// Message 2
s t r i n g m2 = nonce+dh . pk+cpeId ;
s t r i n g cM2 = _crypto−>Encrypt (m2, iNonce , symKey ) ;
SendMessage (cM2 ) ;

// Message 3
s t r i n g cm3 = ReceiveMessage ( ) ;
s t r i n g m3 = _crypto−>Decrypt (cm3 , nonce , symKey ) ;
s t r i n g i iNonce = m3. subs t r (0 , _crypto−>_nonceSize ) ;
s t r i n g iPk = m3. subs t r (_crypto−>_nonceSize , _crypto−>_pkSize ) ;
s t r i n g cPI = m3. subs t r (_crypto−>_pkSize+_crypto−>_nonceSize ,

m3. s i z e ()−_crypto−>_pkSize−_crypto−>_nonceSize ) ;
i f ( iNonce != i iNonce ) { e x i t (EXIT_FAILURE) ; }
s t r i n g po l i c y I d = _crypto−>Decrypt ( cPI , nonce , iPk , dh . sk ) ;

return po l i c y Id ;
}
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Chapter 9

Evaluation

The evaluation chapter presents the test ensuring, that the Policy enforcement
protocol is secure, and the automated test ensuring that the negotiated output
of the protocol is correct. Finally the prototype’s test setup is explained.

9.1 Security evaluation of the Policy enforcement
protocol

The OFMC is a model checker. It uses a Dolev-Yao intruder [BMV05], to
analyse protocols for weaknesses. Weaknesses are determined based on the
defined protocol goals. It is possible to set goals for authentication by using the
keyword authenticates and to set goals for confidentiality by using the keyword
secret.

Figure 9.1 shows the Policy enforcement protocol implemented in the OFMC
syntax. Here the goals are set to: keep the policy id secret between the two
protocol participants A and B, let A authenticate B by A’s nonce challenge
NA, and to let B authenticate A by B’s nonce challenge NB .

The OFMC protocol implementation follows the implementation of the Policy
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enforcement protocol. A is the protocol initiator, and B is the protocol respon-
der. This is just as represented in the protocol design.

Message 1: The protocol initiator, starts the protocol by sending a freshly
generated nonce, NA.

B now knows the nonce value NA.

Message 2: The protocol responder sends back three values: B’s nonce, NB ;
B’s public session key, exp(g, Y )inv(mod(B)); and the identity of A. A MAC
is also provided to ensure data integrity of the message, notice here that A’s
nonce, NA, is included as response to A’s challenge. This is similar to what the
Poly1305 MAC does for the implementation. Finally the message is encrypted
using A and B’s shared key, {message}sym(A,B).

A now knows the three values: B’s nonce, B’s public session key and the iden-
tity of the protocol initiator. B has now been authenticated to A, and A can
make sure of strong entity authentication, by comparing the protocol initiator’s
identity provided by B to A’s own identity. Just as done for the implementation.

Message 3: The protocol initiator, sends three values to B: A’s nonce, NA; A’s
public session key, exp(g,X)inv(mod(A)); and the policy id encrypted by the
session key, {|PolicyId|}exp(exp(g, Y ), X)). Just as for the implementation.
The nonce of B, NB , is only included as part of the MAC, just as for the
Poly1305 MAC.

B can now authenticate A with the MAC, which includes NB , and ensure that
A in fact initiated the protocol by comparing the two values of NA received
from the initiator. Just as done for the implementation. B now also knows
the session key, and can therefore decrypt the policy id. All goals have been
reached, and the protocol is done.

The policy id has been kept secret between A and B, A was authenticated to
B and B was authenticated to A. This is at least true from what has been
presented so far. The OFMC model checker does support the theory. It didn’t
find any attacks for the protocol implementation. The OFMC test can by found
in the folder test/ofmc on the supplied USB, and can be confirmed using the
command below:

./ofmc-mac Symmetric_ISO6.AnB –numSess 2
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Protoco l : ISO6

Types :
Agent A, B;
Number NA, NB, X, Y, g , Po l i cy Id ;
Function mod, sym , mac ;

Knowledge :
A: A,B, sym(A,B) , inv (sym(A,B) ) ,mod , inv (mod(A) ) , g ,mac ;
B: A,B, sym(A,B) , inv (sym(A,B) ) ,mod , inv (mod(B) ) , g ,mac ;

Act ions :
A −> B: NA

B −> A: { NB, A, {exp (g ,Y)} inv (mod(B) ) ,
mac(NA,NB,A,{ exp (g ,Y)} inv (mod(B) ) ) }sym(A,B)

A −> B: { NA, {exp (g ,X)} inv (mod(A) ) ,
{ | Po l i cy Id | } exp ( exp (g ,Y) ,X) ,
mac(NB,NA,{ exp (g ,X)} inv (mod(A) ) ,

{ | Po l i cy Id | } exp ( exp (g ,Y) ,X) ) }sym(A,B)

Goals :
A au then t i c a t e s B on NA
B authen t i c a t e s A on NB
Pol i cy Id s e c r e t between A,B

Figure 9.1: OFMC test of the Policy enforcement protocol

9.2 Protocol integration test

The test in figure 9.2 was used during implementation of the ProtocolISO class,
to test the communication between the two protocol participants. The two
functions: Initiator and Responder; are thread functions, which represent the
two protocol participants.

The Responder function simply accepts connections and when connected to, it
starts responding to the Policy enforcement protocol. If the correct policy id is
received, the test is successful.
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The Initiator function connects to itself as the host, thereby connecting to the
Responder function’s open connection. The Policy enforcement protocol is then
initiated using the function Initiate of the ProtocolISO class.

The test is a simple test for developing the Policy enforcement protocol functions
of the ProtocolISO class: Initiate and Response. The protocol test can be found
on the USB at program/test_protocol.

s t r i n g cpeId = "CPE1" ;
s t r i n g po l i c y I d = "12345678" ;
s t r i n g secretKey = "10101010101010101010101010101010" ;

void ∗ I n i t i a t o r (void ∗ptr )
{

SocketTCP t cp_ in i t i a t o r ;
t c p_ in i t i a t o r . ConnectLocal ( cpeId , TRIFORK_PORT) ;
ProtocolISO pro to co l (& tcp_in i t i a t o r , new NaclLibrary ( ) ) ;
p r o to co l . I n i t i a t e ( po l i cy Id , secretKey ) ;

}

void ∗Responder (void ∗ptr )
{

SocketTCP tcp_responder ;
tcp_responder . AcceptConnection (TRIFORK_PORT) ;
ProtocolISO pro to co l (&tcp_responder , new NaclLibrary ( ) ) ;
s t r i n g r e c e i v edPo l i c y Id = pro to co l . Response ( cpeId , secretKey ) ;

i f ( r e c e i v edPo l i c y Id == po l i c y Id ) {
cout << "TEST:SUCCESSFUL" << endl ;

}
else {

cout << "TEST:UNSUCCESSFUL" << endl ;
}

}

Figure 9.2: Thread functions used to integration test the Policy enforcement
protocol



9.3 Prototype 93

9.3 Prototype

I have successfully created four program, which correspond to the processes from
the system design chapter. The four programs are: mainClient, mainCPE,
mainActuator and mainSensor. They can be found in the folder program on
the USB.

I have tested the programs using a virtual machine setup running the linux
distribution ubuntu. Figure 9.3 illustrates the setup, using 3 virtual machines
communicating using TCP. I have been successful in distributing policies from
the Client to the CPEs. The policies are then being enforced by the CPEs. This
has been successfully confirmed by initiating an event from the sensor. The
CPE, connected to the sensor, contacts the other CPE and using the Policy
enforcement protocol, they exchange the policy id corresponding the sensor
event. The CPE receiving the event then successfully informs the actuator to
perform an action.

Sensor CPE

Client

CPE Actuator

VMVM

VM

Figure 9.3: The test setup using three virtual machines (VM).

The prototype is successfully using the Policy enforcement protocol to securely
transferring the policy id, when a sensor event fulfils a policy. Thereby giving the
illusion of one home automation systems, when there is in fact is two different
home automation systems using two different CPEs.
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Chapter 10

Conclusion

Trifork would like to have CPEs communicate securely. This would allow cus-
tomers to create automation process across multiple home automation systems.
The proposed solution reshapes the existing system as a policy-based system,
where sensor events from one CPE is paired with actuator actions by policy
ids. This means, that only a policy id needs to be transferred between CPEs.
The transfer of the policy id follows the security properties confidentiality, data
integrity and authentication, to ensure security. Furthermore some refined re-
quirements are created to address the Dolev-Yao attack model. These are mu-
tual authentication, strong entity authentication and good key. The refined
requirements help to prevent replay attacks, relay attacks and data analysis of
package data. Two protocols, ISO-6 and STS, are then analysed for the pro-
tocol design. They both fulfil the protocol requirements, and are evaluated in
order to select the better protocol, for transferring the policy id. The ISO-
6 protocol is selected, as it is more efficient, and require less storage for key
material. A system design and implementation is created for the prototype.
It is created to imitate the flow from a sensor of one system to the action of
an actuator of another system. The implementation uses the ISO-6 protocol
for communication between CPEs and uses the NaCl crypto library for crypto-
graphic computations. The security of the protocol implementation is evaluated
using the OFMC model, which doesn’t find any attacks on the protocol.
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Working with Trifork’s problem has given me a great insight into what is re-
quired to created a secure line of communication. You need to know, which
type of attacker you are defending against and which security goals should be
fulfilled. Without it, there is no way of evaluating, if the system is secure.
The existing setup also have a great impact on how you design your system.
Does protocol participants have a trusted third party available, or do you need
to pre-distribute keys, in order to achieve a secure line communication. Sym-
metric keys encryption is way more efficient than asymmetric encryption, but
asymmetric encryption has the benefit of scaling better than, as certificates can
keep the need for key storage constant. Asymmetric encryption also provides
non-repudiation.

I think the important thing to take away for the thesis is, that there is no one
way of doing things, it all depends. It depends the existing setup, the needed
for speed or the need for scalability, and are you defending against an active
attacker or a passive attacker. All these external factors and requirements all
help you to reach the best solution under the given circumstances.
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A.1 Test of STS protocol payload and crypto-
graphic computations

This test compares message 2 and 3 from the two version of the STS protocol;
protocol 6.3 and protocol 6.4. The test files can be found on the USB in folder
/tests/sts_test.

Message 2 and message 3 differ some, and to see the affects of changing between
the two, payload and computational time is considered. Only the part that
differs in the two protocols are considered, which is why the public session keys
and certificates are not included.

The results from the payload testing can be seen in figure A.2.

2. STS Protocol 6.3 {|SigB([yG, xG])|}KxyG 144 bytes
2. STS Protocol 6.4 SigB([yG, xG,A]) 128 bytes
3. STS Protocol 6.3 {|SigA([xG, yG]), policyid|}KxyG 152 bytes
3. STS Protocol 6.4 SigA([xG, yG]), {|policyid|}KxyG 152 bytes

Figure A.1: Payload for STS protocols.

The results from the computational testing can be seen in figure A.2. Results
is an average of 1.000.000 computations.

2. STS Protocol 6.3 {|SigB([yG, xG])|}KxyG 2.09207 ms
2. STS Protocol 6.4 SigB([yG, xG,A]) 2.00835 ms
3. STS Protocol 6.3 {|SigA([xG, yG]), policyid|}KxyG 2.01198 ms
3. STS Protocol 6.4 SigA([xG, yG]), {|policyid|}KxyG 1.95034 ms

Figure A.2: Payload for STS protocols.

Protocol 6.4’s message 2 is computed 2.09207/2.00835 = 1, 04168 times faster,
that message 2 of protocol 6.3.

Protocol 6.4’s message 3 is computed 2.01198/1.95034 = 1, 03160 times faster,
that message 3 of protocol 6.3.
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A.2 Storage requirements for different key ap-
proaches

Tabel A.1 shows the different storage need for keys using the ISO protocol and
the STS protocol without certificates. For each relation ISO needs an id of 8
bytes and a key of 32 byte. STS need an id of 8 bytes and a public key of
32 bytes for every relation. Additionally STS also needs 64 bytes for ones own
private key and 32 bytes for the corresponding public key.

Number of relations ISO-6 STS no cert.
1 40 136
2 80 176
3 120 216
4 160 256
5 200 296

Table A.1: Comparison of storage between ISO and STS.

Tabel A.2 shows the storage requirements for the STS protocol with and without
certificates. It only shows the difference is storage which is why ones own key
pair isn’t included. STS without certificates need an id of 8 bytes and a public
key of 32 bytes for every relation. STS with certificates only need the certificate,
with is why the size is constant.

Number of relations STS without cert. STS with cert.
1 40 160
2 80 160
3 120 160
4 160 160
5 200 160

Table A.2: Comparison of storage between STS with and without certificates.
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A.3 Test of payload and efficiency

Table A.3 presents the payload for the different messages of protocol 6.2 (ISO)
and protocol 6.5 (STS).

Message ISO STS STS / ISO
1. A→ B 40 B 40 B 1
2. B → A 80 B 160 B 2
3. A→ B 96 B 152 B 1.6

Table A.3: Comparison of payloads.

Tabel A.4 presents the computation time for encryption and decryption for the
different messages of protocol 6.2 (ISO) and protocol 6.5 (STS). The encryption
and decryption time are considered together to compensate for the difference
in encrypting and decrypting signatures. This mean that it takes 7.12549ms to
encrypt and decrypt the signature of message 2 for the STS protocol.

Message ISO STS STS / ISO
2. B → A 0.001802 ms 7.12549 ms 3954
3. A→ B 0.002046 ms 7.11178 ms 3476

Table A.4: Comparison of cryptographic computation time.
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A.4 Test of STS protocol security with ofmc

Protoco l : STS_Cert i f icate

Types :
Agent A,B,C;
Number X,Y, g , Po l i cy Id ;
Function pk ,mod ;

Knowledge :
A: A,B,C,mod, inv (mod(A) ) , g , pk (A) , inv (pk (A) ) ,

{A, pk (A)} inv (pk (C) ) , pk (C) ;
B: A,B,C,mod, inv (mod(B) ) , g , pk (B) , inv (pk (B) ) ,

{B, pk (B)} inv (pk (C) ) , pk (C) ;
C: A,B,C, pk (C) , inv (pk (C) )
where C != i

Act ions :
A −> B: A,{ exp (g ,X)} inv (mod(A) )

B −> A: {exp (g ,Y)} inv (mod(B) ) ,
B, pk (B) ,{B, pk (B)} inv (pk (C) ) ,
{{exp (g ,X)} inv (mod(A) ) ,
{exp (g ,Y)} inv (mod(B))} inv (pk (B) )

A −> B: A, pk (A) ,{A, pk (A)} inv (pk (C) ) ,
{{exp (g ,X)} inv (mod(A) ) ,
{exp (g ,Y)} inv (mod(B))} inv (pk (A) ) ,
{ | Po l i cy Id | } exp ( exp (g ,Y) ,X)

Goals :
A au then t i c a t e s B on {exp (g ,X)} inv (mod(A) )
B authen t i c a t e s A on {exp (g ,Y)} inv (mod(B) )
Po l i cy Id s e c r e t between A,B
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B.1 Manufacturer class diagram

Thread

+ virtual start()

ManufacturerComIn

ManufacturerComOut

+ getMsgQPtr() : 
MessageQueue<Message>*

Controller

+ virtual run()

MessageQueue<T>

- c : pthread_cond_t
+ enqueue(t:T)

ICommunication

+ virtual AcceptConnection(port:int): bool
+ virtual Connect(host:string, port:int)
+ virtual ConnectLocal(host:string, 
port:int)

+ virtual GetHostname() : string

+ virtual Send(string)
+ virtual Receive() : string

Message

+ _event : string
+ toString() : string

+ _name : string
+ _entity : ENTITY

<<Enumeration>>

ENTITY

NA
CPE

SENSOR
CLIENT

+ dequeue() : T

- m : pthread_mutex_t
- q : queue<T>

SocketTCP

- headerSize : int = 3
- connector : int
- socketHandleAccept : int
- listening : bool = false
- Listen(port:int)
- SendHelper(message : string)
- ReceiveHelper(size : int) : string
- HostnameToIP(char*,char*) : int

ManufacturerController

- policyRepo : PolicyRepo

- _msgQ : MessageQueue<Message>

Figure B.1: Package diagram for CPE.
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