
Cloud architecture for Smart
Homes - an implementation for

the HOMER platform

Anders Jensen

Kongens Lyngby 2016

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

Abstract

This master thesis presents a cloud architecture for smart homes running the
HOMER platform by AIT. The architecture achieves remote access to data
stored on local servers in smart homes, by foregoing the usage of port forward-
ing, VPN's or other remote access techniques and instead storing all smart-home
related data on a central database server. By doing this we can allow users do
modify the smart home con�guration running on the local server (also called
Home gateway or Hub), using a developed app or webpage. The app and the
webpage communicate with the server through a client API, which is imple-
mented on the server as a RESTful service oriented architecture.
To facilitate communication with the HOMER platform running in the smart
home, an OSGI bundle has been developed that synchronizes the central server
with the local server. The proposed and implemented architecture seems promis-
ing, since it foregoes traditional remote access techniques such as port forwarding
or VPN's and instead actually moves all the data to a cloud server. This makes
the system easier to maintain and develop further on.

ii

Acknowledgements

I would like to thank my advisor Lukas Roedl from AIT, for all the support he
has given me and for always being available to discuss ideas with. He has been
a great help throughout the entire project and has helped me re�ne the project
goals as the project developed. He's proofreading has also been greatly appre-
ciated. Secondly i would like to thank my advisor at DTU Christan Damsgaard
Jensen, for being available to discuss project research topics with and for gen-
erally providing guidance. Lastly a thanks also goes out to Emanuel Sandner
at AIT for technical discussions and sparring.

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Problem de�nition . 2
1.2 Contributions . 2
1.3 Thesis overview . 3

2 State of the art 5
2.1 Research in the Home Automation �eld 5
2.2 Home automation market . 6
2.3 Technological background for smart homes 7

2.3.1 Physical/Datalink layer 9
2.3.2 Network and Transport layers 10
2.3.3 Application and Vendor layer 10

2.4 High level architecture of a smart house 11
2.5 What is HOMER . 14

3 Analysis 17
3.1 Detailed problem de�nition . 17
3.2 Advantages and disadvantages of a local server 18
3.3 Achieving remote access to the local server 19

3.3.1 Moving the architecture online 20
3.4 Synchronization . 22
3.5 Requirements . 23

3.5.1 Users . 24
3.5.2 Requirements & quality parameters 24

vi CONTENTS

4 Design 27
4.1 Overall system architecture . 27
4.2 Central server . 28

4.2.1 Client API & server interface 29
4.2.2 Database . 30
4.2.3 Commons library . 30
4.2.4 Device entity . 30

4.3 HOMER bundle . 32
4.3.1 Synchronization scheduler 32
4.3.2 Device conversion . 33

4.4 Mobile Android Application . 33
4.4.1 Server-app communication 34
4.4.2 User interface . 35

4.5 Web page . 40
4.6 Synchronization . 41

4.6.1 Setting �ags . 43
4.6.2 Synchronization procedure 44

5 Implementation 47
5.1 Development tools . 47
5.2 Central server . 49

5.2.1 Server interface & client API 49
5.2.2 JPA Persistence bundle 51
5.2.3 Common entities . 52
5.2.4 DAO Implementation . 53
5.2.5 Server interface implementation 55

5.3 HOMER synchronization bundle 59
5.3.1 Synchronization methods 60
5.3.2 Device Converter . 62

5.4 App . 63
5.4.1 Main Activity . 63
5.4.2 Checkin Activity . 67
5.4.3 Edit, Add & select room activities 67

6 Evaluation 69
6.0.4 Central server . 69
6.0.5 App . 72
6.0.6 Webpage . 74
6.0.7 HOMER synchronization bundle 75

7 Conclusions 79
7.1 Future work . 80

A Source code 81

CONTENTS vii

Bibliography 83

viii CONTENTS

Chapter 1

Introduction

Home automation has become increasingly popular over the last decade and
is becoming more frequently integrated in modern homes. The main reason
for introducing computer based control systems in homes, is to increase the
comfort level by automating tasks and o�ering inhabitants extended control
over their homes, for example through their smart phones. Other bene�ts could
be reducing consumption of resources such as electricity, heating and water.
However, home automation is still not a very common technology to have in
homes, because it is too di�cult for non-tech users to set up and because the
system needs to be maintained, which often involves working with very non-user
friendly platforms. The underlying problem is often the myriad of incompatible
communication protocols and standards that exists on the market and previous
research [GYYL09] [BMST10] [HMK+05] has focused a lot on developing
application layer software that allows other software developers to abstract from
the underlying protocols.
Even though some companies have this smart piece of software running in the
house, allowing devices using di�erent protocols to speak with each other, then
they still have no means of remotely maintaining that software. Users are left
to maintain their own system (and often also set it up themselves), unless they
will pay for having a company expert come out to the house and con�gure it
for them.

For this project i have worked with Austrian Institute of Technology (AIT),

2 Introduction

which has such an application layer software platform as described above. The
platform is called HOMER (Home event recognition) and is freely available at
(http://homer.aaloa.org/).

1.1 Problem de�nition

At the moment the AIT is facing the issue that they have a piece of well devel-
oped software (in this case HOMER), but with no means of remotely installing
or con�guring it in peoples homes. When setting up new smart homes, a tech-
nician always needs to go to people's houses and spend a lot of time in their
house, while installing the devices at the correct locations, setting up a local
server, pairing devices with the local server etc. Additionally, the software run-
ning on the local server needs to be con�gured exactly in the right way before
the technician leaves the house, since he cannot modify the software once he has
left the house. This means that users must re-con�gure the house themselves,
if something afterwards doesn't work as it should, or if they think of a better
way the sensors could be con�gured etc. This is not a very �exible setup and
it means that technicians will have to spend a lot of time in people's homes,
which is expensive for the customers as well as for the company and creates a
poor user experience. In order to solve these issues a solution is required that
speeds up this process.

1.2 Contributions

This thesis will contribute to public research by developing and implementing a
prototype architecture that provides remote access to smart homes, by moving
all smart home related data from local server in the houses, onto the cloud.
This solution makes it unnecessary to obtain remote access to the smart home
by using e.g. port forwarding or VPN's, since it will store and manage all the
date on an online server. Software used to run the smart homes should still be
stored and run from a local server in the house to ensure o�ine functionality,
but it should also be stored on the cloud. The local server and the cloud will
need to synchronize with each other.

In this thesis the following has been developed and implemented:

• A central server (the cloud server), with a database storing all device-
related information from all houses on it. The server o�ers a client API

http://homer.aaloa.org/

1.3 Thesis overview 3

for clients to consume.

• A software bundle to be deployed in houses running HOMER, facilitating
synchronization with the central server.

• An app allowing users to log into a house and get an overview of the
devices present in the house.

• A web page for managing all the device stored on the central server.

1.3 Thesis overview

The remainder of this paper is organized as follows.

• Chapter 2 gives the reader an introduction to the smart home �eld, by
discussing some of the previous work that has been done in the �eld, and
presenting the smart home market. Afterwards, a thourough background
on the software architecture of a smart house is provided, ending the
chapter by describing the HOMER platform.

• Chapter 3 elaborates on the problem de�nition in more detail and con-
cludes that the problem is the lack of remote access. Afterwards, it dis-
cusses the solutions with which one can achieve remote access and con-
cludes that moving the architecture online is the most �exible and ex-
tendible solution. The chapter ends with a speci�cation of the require-
ments for the system consisting of: A central server, a HOMER synchro-
nization bundle, an app and a web page.

• Chapter 4 presents the design of each of the 4 proposed system compo-
nents. It describes in detail how the various clients communicate with the
server using a RESTful client API and how the server accesses the central
database using a DAO interface. The synchronization procedure between
the HOMER bundle and the central server is also described in detail, as
well as the structure of the android app and its UI components.

• Chapter 5 describes the implementation details of the system, showing the
reader the general coding patterns used for implementing the 4 system
components. Extra attention is also given to certain pitfalls or tricky
implementations.

• Chapter 6 evaluates the 4 developed components, in relation to the stated
requirements for the system given at the end of chapter 3. A few tests
on the system are presented as well, including a stress test of the central
server and space consumption of the central database.

4 Introduction

• Chapter 7 �nally sums up the conclusions of this thesis.

Chapter 2

State of the art

2.1 Research in the Home Automation �eld

Since the early 2000's, home automation has become an increasingly popular
�eld of study, although one of the oldest home automation protocols X10, was
invented in 1975. By the early 90's many companies had gotten in to the mar-
ket, and a myriad of incompatible standards had started to appear [Wac02].
[Wac02] and [VF02] from 2002, were some of the early works that addressed
the problem of protocol heterogeneity. As a solutuon to this problem, [VF02]
proposes an OSGI Service Platform that includes a common device abstrac-
tion layer, mapping devices from all sub networks to the same common entities.
It also suggests providing a common programming interface, so that develop-
ers can develop applications for the platform without knowing anything about
the underlying device protocols or how the individual devices connected to the
system are con�gured. It concludes that all companies developing home au-
tomation products, should each provide a piece of OSGI-compatible �rmware
capable of managing their products. To the knowledge of this author, this was
one of the �rst real proposals of a software architecture to solve the problem of
incompatible protocols at the application layer.

In 2005 the Gator Tech Smart House was created [HMK+05], which was a
university made project that very nicely described the complete architecture

6 State of the art

of a Smart House, including all the sub layers of the system. It even imple-
mented the described system in a big model house. A few years later the myr-
iad of protocols and standards on the market, still posed a big problem and a
lot of the research within home automation was being dedicated to this topic
[MTMT06] [BMST10] [GYYL09][PRL+08] [KBY+12] [WKLA13]. The general
solution amongst these papers is to have n gateways (one for each subnetwork),
and connect them to a service layer that maps all of the di�erent protocols to a
common language. Thereafter they have some software in the application layer
that implements a client API on top of the common mapping, allowing devel-
opers and/or users to work with devices connected to the sytem in a uniform
manner regardless of device protocols. This last step di�ers quite a bit, with
some of the articles not specifying how this last part is done, some of them
implementing a new "programming" language to be used, while others suggest
the idea of modelling devices as RESTful resources. [KBY+12] [WKLA13] from
2012 and 2013, build upon the mentioned architecture adding a cloud compo-
nent to the system capable of automatically installing device driver components
to the system. They suggest having all gateway-speci�c �rmware installed on
a cloud platform and then downloading drivers for new subnetworks/protocols
when the system detects a new sub network (this still requires that the cloud is
updated when new protocols are invented).

Most of the articles above have in common, that all software is placed on some
server running locally in the house (often combining this server with the gate-
ways into one big "hub"). This also makes sense since most devices on the mar-
ket back then (and still today) communicate over low-rate protocols (802.15.4),
requiring dedicated local gateways to pick up their radio signals. However, over
the last few years IP-based protocols have become increasingly popular in the
home automation market, despite using more power for sending their signals.
[DGV09] argues that embedding mini webservers into every device communi-
cating with TCP/IP, is not as bad power-wise as the industry tends to believe.
By implementing some memory optimization and using o�-line precalculations
it shows that the expensive TCP/IP communication can be done it a more ef-
�cient way. [GTW10] [KP12] suggest embedding mini web servers into all
non-IP speaking devices and then having all devices communicate directly with
a web server, which means that no local server would be used at all. This will
be discussed further in section 3.2

2.2 Home automation market

There is currently a standardization "war" going on in the Home Automation
market, where each company is striving to make their protocol the de facto

2.3 Technological background for smart homes 7

protocol for home automation [Wro14] [Kas14]. It is similar to the VHS
vs. Betamax standard war, back in the 70's and 80's [Wik15b]. Therefore
the companies form alliances, to gain as many supporters as possible. Such
alliances include the ZigBee Alliance, the Z-wave Alliance, the Thread Group,
the AllSeenAlliance, the UPnP Forum and the Digital Living Network Alliance
(DLNA) and many more, each of them claiming they have the best solution. The
result is that vendors developing and selling smart home devices to consumers,
will have to chose a protocol (or a suite of protocols), that their products will
support. But in the end, it is really the consumers who su�er the most, since
if a consumer goes out and buys a ZigBee device and a ZigBee gateway to
communicate with it, he will be limited to only ZigBee products. If he then
later sees a clever device communicating over the new Thread protocol, then he
will also need another gateway that speaks Thread, and it will get even more
complicated if he want those two devices to interact with each other (having the
Zigbee-speaking motion sensor, trigger the Thread speaking device). This makes
home automation cumbersome, expensive and something only tech-users do.
Regular consumers don't know about protocols and don't care about protocols
[Wro14].

The optimal solution to this problem, would be that the whole world chose
one protocol as the standard to adhere to. This is of course an unrealistic
scenario even for large companies such as Google or Apple. However, both of
these companies joined the home automation market in 2014 - Google having
acquired the NEST company developing the Thread protocol and Apple having
started development on their own proprietary Apple HometKit system [Mer14]
[Quo14]. In the meantime until the number of protocols on the market have
converged to a only a few ones, the next-best solution for the average smart-
home vendor, is to ensure that your products support as many protocols as
possible. What is equally important, is that you have a really user friendly
implementation that also appeals to non-tech users.

Some of the newer companies on the market have thought

2.3 Technological background for smart homes

This section will present the reader to the relevant protocol layers of a smart-
home architecture, relating them to the OSI model and where standards, tech-
nologies and brands �t into. Very often companies mostly focus on selling and
up-talking their products rather than specifying exactly what they are. To clar-
ify this, �gure 2.1 shows where in the OSI model a technology, standard or brand
belongs. The grouping of the technologies, standards and brands in layers does

8 State of the art

not mean that each element of a layer works with every element of another layer.
For example UPnP only works with TCP/IP while Apple Homekit only works
with Bluetooth and TCP/IP.

Application Layer

Datalink/Physical
Layer

Vendor

802.3
(Ethernet)

802.11
(WI-FI)

Bluetooth Low
Energy 4.x

(BLE)

802.15.4
(LR-WPAN)

Z-wave

TCP

AllJoyn HOMER UPnP

Microsoft

Smart
Things

Apple
HomeKIt

G
o

o
gl

e

NEST

Brillo/
Weave

Thread

LG

6lowPan Zigbee IP

Transport Layer

Network Layer

UDP

HomeSeer

Figure 2.1: SmartHome market and the OSI layers.

Figure 2.1 clari�es the relationship between the various technologies and stan-
dards on the market. It is important to understand the di�erence between
the layers when discussing them, since it makes no sense to for example say
that Apple HomeKit is "better" than ZigBee or that NEST works better than
Z-Wave. Apple HomeKit is a development framework and toolkit created by
apple and intended to be used over Bluetooth or IP [Quo14], while ZigBee
is network layer communication technology using the 802.15.4 phy layer and

2.3 Technological background for smart homes 9

TCP as its transport layer [Ash13]. Theoretically Apple HomeKit could even
run over ZigBee if Apple had chosen to go that direction. Comparing Apple
HomeKit with SmartThings and HomeSeer is 100 % valid, since they are all 3
companies that have built their own application layer, working on top of a few
select transport/network protocols (apple; Bluetooth & IP, SmartThings; IP,
ZigBee & Z-wave; HomeSeer; Z-wave, X10, Insteon & IP [Sma16] [Hom16]).
All 3 companies have created their own pseudo "programming" language for
customers and other developers to use when con�guring their houses. You can
even create apps with these con�guration languages that other people can use
(provided they use products from the same company).

2.3.1 Physical/Datalink layer

As we know from the OSI model, the Physical/Data Link layer is the bottom
most layer of the OSI model describing the physical means of transportation
used in the network together with the very basic data exchange protocols used.
This layer de�nes the very basics of a network, i.e are we using Ethernet cables,
power lines or radio waves (and which frequency) for the communication in the
network. Examples of standards de�ning the Physical and Data Link layers are
the 802.x family of standards, for example 802.15.4(LR-WPAN), 802.3 (Ether-
net) and 802.11 (WI-FI). Other standards at this level include the proprietary
Z-wave stack and Bluetooth 4.0 (also called BLE - Blueooth Low Energy).

In relation to the �eld of smart homes, the main requirement for the physical/-
datalink, is that the devices in it should be able to operate with a very low
power consumption, since most smart home devices run on batteries and chang-
ing batteries is an unwanted burden for the inhabitants. That is exactly what
the 802.15.4 [CGH+02], BLE and Z-wave standards are developed for. These
are standards where the maximum transmission unit (MTU) of the packages
sent have been reduced, in order to achieve low power consumption and low
speed at the cost of bandwidth. On the opposite side of the spectrum we �nd
well-established standards such as 802.3 (Ethernet) and 802.11 (WI-FI) that
are already widely used with the Internet, and which o�er large bandwidth, but
with no special consideration towards power consumption. Therefore devices
operating over Ethernet or Wi-Fi most often operate in the context of ample
power supply and highly capable devices.

10 State of the art

2.3.2 Network and Transport layers

The network and transport layers describe how data is packaged in the network
and how it is transported. The requirements for a smart home are again the
same: low power consumption. For this purpose the 802.15.4-family, Z-wave
and bluetooth protocols have been developed, where in order to achieve low
power consumption, the data rate and the maximum packet sizes have been
drastically reduced i.e 128 byte max packet size and 250 kbps throughput for
the 802.15.4-family, 22 byte for BLE and 270 kbps and 64 byte and 40 kbps
for Z-wave. It should be noted that the stated throughputs for 802.15.4 and
BLE are the raw maximum data throughput, meaning that on the application
level this throughput will be signi�cantly lower. This is in contrast to the well-
established IPv4 and IPv6 which allow for much larger throughputs, but again
with no consideration towards power consumption. 6LoWPAN is a promising
protocol specially developed for the IoT (Internet of Things) and also for smart
homes. It allows IPv6 packets to be sent and received over 802.15.4 networks,
and it implements header compression techniques to reduce the packet size.

2.3.3 Application and Vendor layer

The application layer in a smart home consists of several parts, amongst them a
mapping part, con�guration management and developer services. The mapping
integrates one or more protocols and maps them to a uni�ed data structure
allowing further development to abstract from underlying protocols. As an
example, this means that a motion sensor using the ZigBee protocol and another
motion sensor using an IP-based protocol will simply be mapped to the same
entity called "motion sensor". In this way all "kinds" of devices from various
protocols should be mapped to common entities. Preferably the mapping is
done using some standard such as ISO/IEEE 11073 [Wik15a].

Con�guration management regards the creation and management of house plans
(often also called a con�guration or a house con�guration). This means having
some means for the user to create and manage a house plan with. Although
it is a very un-user friendly solution, most solutions today involve creating a
new if-else-programming language/mapping language that users are supposed
to use themselves to create and manage the con�guration of their house with.
Along with this a UI usually follows visualizing the house and sometimes semi-
replacing the programming language by implementing rudimentary drag-n-drop
mapping.

The open-source application layer projects such as AllJoyn, Weave and HOMER

2.4 High level architecture of a smart house 11

include developer services in them. They are extra infrastructure services that
other developers can use to extend the system with such as easy database ac-
cess, frameworks for supporting new protocols or frameworks for extending the
con�guration management tools and much more. Proprietary systems have de-
veloper services too but they are kept within the companies developing them
(or subcribing to them in the case of Z-wave and Apple HomeKit MFI).

The di�erence between the vendor "layer" and the application layer might seem
vague, but the point is that some companies chose to implement existing ap-
plication libraries and sell their products using them (Microsoft and LG), while
many other companies chose to both develop their own libraries and afterwards
also implement them in apps and devices etc (SmartThings, HomeSeer and Ap-
ple). Projects such as AllJoyn, HOMER, Weave and UPnP seek to establish
open-source application layer libraries for vendors to use and implement.

2.4 High level architecture of a smart house

This section will give the reader an overview of the high level architecture of
most smart houses. Figure 2.2 shows this architecture.

12 State of the art

ZigBee Z-wave
Other gateways

 ..

802.15.4 Devices IP devices

 Web server

 Cloud services

 RouterLocal server

Web-based
controller clients

Figure 2.2: General smarthome architecture

A common thing for any smart house, or for that matter also when talking
about the Internet of Things (IOT), are sensors and actuators which we under
one name call devices. A sensor is a term for any device that measures some
element e.g a motion sensor, a light sensor, heat sensor (thermometer), water-
level sensor, smoke sensor, contact sensor etc. An actuator is a term for any
device that does something depending on what state it is in e.g a lamp can
be on or o�, a heating element might have 5 levels of heat it can supply or a
power outlet might be turned on or o�. Devices can use a variety of protocols to
communicate their data with, but common for almost all of them (the exception
are IP devices) is that they need some gateway to pick up their radio signals.
Whether this gateway is a ZigBee, Z-wave, Bluetooth Low Energy (BLE) or
another gateway, they all play the same role of picking up the signals sent from
their corresponding devices. Most gateways nowadays are small and often built-
in to the local servers, but they often also come as USB dongles that you simply
plug in to a computer and it instantly acts as a gateway. As mentioned IP
devices are the exception because they don't need a speci�c gateway, rather

2.4 High level architecture of a smart house 13

they simply use a router to pick up their signals. So actually IP devices in some
way do need a gateway to pickup their signals, but they are able to use the
already existing infrastructure i.e the router installed in most modern houses
nowadays.

The local server (also often called Hub or Home Gateway or Logical Controller
etc) usually consists of a number of gateways used to communicate with sub
networks, as well as a software module running some software (the house plan or
the con�guration), to control the house. It is responsible for doing the thinking
in the system i.e making logical decisions based on the information from sensors,
state of actuators and the stored con�guration on the server. What the local
server does, depends on what software is running on it, which is di�erent from
company to company. A simple use case could be that it turns on lamps A and
B when motion sensor C detects movement, and o� again when no movement
has been detected for a while. A more advanced scenario would be if we only
wanted to turn on those two lamps if motion sensor sensor D has not detected
any motion for the last 2 minutes, and only if actuator E is not in a certain
state. This can make up entire scenarios triggered by certain conditions, and
even scenarios triggering other scenarios based on other conditions. Companies
such as SmartThings and HomeSeer have built their own custom programming
languages, that customers can program their houses with (only for the products
supported by those companies), while projects like AllJoyn and HOMER and
Google Weave o�er open-source platforms for this purpose.

5 years ago most homes worked with just the above described components i.e a
local server running the house con�guration,a gateway for each protocol and the
devices connected to the gateways. However, with the increasing usage of smart
phones, a web integration has become important since users want to control and
monitor their house from the smart phones. Furthermore the local server can
also use information from the smart phone (for example its location), essentially
making the smart phone an extra "sensor" providing input information for the
local server. This has almost become the standard nowadays and most company
solutions include features to control and monitor your house with your smart
phone and with other web platforms.

House plan/Con�guration - a house plan or a con�guration is a piece of
software consisting of two parts. One of the parts is the software device entities
and all their associated data. Each physical device in the house, has a matching
device entity in the house plan, with all the associated data attributes for that
device e.g id, type, protocol, room. The other part of a house plan is the
interaction between all those devices; for example specifying that when sensor
A is triggered then actuator B should go to state On.

14 State of the art

2.5 What is HOMER

HOMER (Home event recognition system) is an application layer system as
shown in �gure 2.1. It is developed for the OSGI speci�cations and runs in
Apache Karaf which is an OSGI implementation. Apache Karaf is an OSGI
container where bundles can interact with each other, by declaring which pack-
ages they export and import. A bundle is simply a jar �le that contains extra
manifest �les needed by the OSGI container. A bundle also contains a Blueprint
�le that the OSGI container uses to manage the lifecycles of bundles and to wire
bundles together e.g. if bundle A exposes a service and bundle B uses this ser-
vice then this is speci�ed in the Blueprint �le and the OSGI framework then
uses the Blueprint �le to wire these two bundles. Bundles can be loaded and
unloaded at run time without stopping the underlying OSGI container.

HOMER is an open source system supporting a variety of established protocols,
by uniformly mapping devices according to the 11073 ISO standards. All devices
that are already ISO 11073 compliant can be directly connected to a system
running HOMER as shown in �gure 2.4, while other devices need to be mapped
�rst. Each supported protocol has its own developed bundle that if loaded will
map devices speaking that protocol to HOMER using the ISO 11073 mapping.
In this way the technician speci�es which protocols need to be supported and
hence con�gures HOMER to load the according mapping bundles. Figure 2.3
shows each protocol having its own bundle for the mapping.

2.5 What is HOMER 15

Integration/Interop Layer
ISO 11073 Agent Interface

Access
Layer

Abstraction Layer
ISO 11073 Mapping

HOMER System

OSGI
Event
Admin

Hardware driver,
protocol library

 ..

 ..

 ..

ZigBee
agent

OSGI
bundle

Enocean
agent

OSGI
bundle

Other
protocol
agents

OSGI
bundle

Agent interface

Protocol to ISO
11073 Mapping

Figure 2.3: How HOMER maps the various protocols to the rest of the
HOMER system

HOMER is an open source platform and therefore includes a bunch of services
meant to help other developers extend it, such as easy database access, tem-
porary data storage, scheduled bundle execution, templates for setting up new
bundle services and much more. It is made to be extended. It includes a rudi-
mentary GUI for users to create and manage their house plans with.

HOMER consists of a collection of many bundles, that all run simultaneously
in Apache Karaf. Each instance of HOMER running in a home will at least
have the HOMER Core bundles running in Apache Karaf, plus a bundle for
each protocol used on devices in the house. However depending on what special
needs are needed by the bundles created by other developers, additional bundles
can be loaded that o�er other services, and over the years since HOMER started
many extra bundle services have become part of the HOMER core bundles.

16 State of the art

Figure 2.4: HOMER Architecture (from AIT's HOMER manual)

Figure 2.4 shows some of the features that HOMER o�ers, including a database
and an implemented DAO for it, File I/O logical reasoning (pre-implemented
scenarios) etc. AIT is a non-pro�t research institute funded by the Austrian
government and therefore all work produced here is publicly available. Compa-
nies can chose to use the HOMER platform as it is and extend it to their needs
or build their own system inspired by the architecture of HOMER. It was made
by AIT to show companies how an application layer for home automation can
look like. HOMER is currently running in a number of houses as test projects
to gather data about the performance of it.

Chapter 3

Analysis

3.1 Detailed problem de�nition

The problem for AIT is that, it's currently too expensive and cumbersome for
them, to set up new smart houses. The local server running in each house cannot
be accessed remotely, making it necessary for a technician to be on-site to setup
or recon�gure the software running in it. So the basic problem is that we have
a piece of well developed software (in this case HOMER, but it could have been
other systems as well), but with no way of remotely installing or con�guring it
in peoples homes. The work �ow for a company-technician when setting up a
new house currently involves the following steps:

1. While sitting at company o�ces, the technician creates a house plan for all
the devices in the house and their interactions. This is maybe done having
incomplete knowledge of the precise house layout, but is still necessary in
order to try to minimize the amount of time spent in peoples homes.

2. Drive to the house where the installation is to take place.

3. Physically place all devices where they belong.

4. Set up the local server consisting of the gateway(s) to the various devices
in the house, as well as the software component running the house plan.

18 Analysis

5. Compile and deploy the con�gured house plan on the local server (initial
con�guration can be pre-deployed on the local server).

6. If/when things don't work as intended, then modify the house plan while
still being in the inhabitants house and recompile and redeploy it to the
local server.

The biggest problem is that AIT currently has no software that allows the
technician to remotely deploy a house plan a local server. It is possible to create
a house plan before going to the house, but you have to be on-site to deploy the
software to the local server. This can become a problem if something does not
work as intended when he is setting up the house. A sensor might need to be
moved because it cannot transmit properly from it's location, or while setting
up the house, the technician and the inhabitants realize that something could
have been done in a smarter way etc. This is not very �exible or dynamical
solution and it means that the technician will have to spend quite some time in
peoples homes, since he needs to ensure that the con�guration works 100 % as
intended before leaving the house.

3.2 Advantages and disadvantages of a local server

HOMER is developed to be running on a local server in each house, which im-
plies that an actual server is installed in each house. Before we accept this
solution we should ask the questions: Is a local server needed ? How little
on-site soft/hardware could we get away with? To answer these questions we
need to consider which devices are installed in the house. A few devices are
native TCP/IP-speaking devices, meaning they have their own embedded mini
web server in them. These devices could communicate directly with a central
web server meaning that no extra hard- or software at all would be needed in
the house. However, most devices currently on the market do not include an
embedded mini web server, but instead communicate over 802.15.4 networks.
These networks do not use TCP/IP, but rather need a gateway to pick up the
radio signals sent from them. If an ultra lightweight solution was desired for de-
vices running over these networks, you could chose to have the gateway forward
the signals it receive directly to a central server. The gateway would need to be
equipped with a mini web server to do this, but this is a�ordable. In this way we
would have all TCP/IP-speaking devices in the house communicating directly
with a central server, while all 802.15.4-speaking devices would communicate
through the gateway directly to the central server. This architecture allows
for very easy maintenance of the system since no software is deployed locally.

3.3 Achieving remote access to the local server 19

Inhabitants and/or technicians can simply log on to a central web server and
modify the software running in that speci�c house.

The downside to this solution lies in how expensive TCP/IP communication
is compared to low rate protocols (802.15.4), since with this architecture all
communication needs to go over the internet. So every time you turn on the
light, or a motion sensor triggers or basically anything happens in your house,
the data needs to be sent over the internet. This will create a lot of tra�c.
Devices with embedded mini servers on them would either need to be wired or
have very good/large batteries in them. However, as we saw earlier some articles
argue that the embedding of mini web servers communicating over TCP/IP is
not as power consuming as one might think [DGV09]. And with the recent
development of low power Wi-Fi protocols, such as ZigBee IP [Zig15], as well
as 6LoWPAN allowing e�cient IPv6 communication over 802.15.4 networks,
embedded mini web servers in every device might not be a bad idea for the
future.

But since these new low power protocols have not yet become widely adopted
and because very few devices currently on the market come equipped with em-
bedded web servers in them, AIT's solution (and the solution used by most
vendors) with a local server in each house makes sense. The main advantage to
a local server is that it saves a lot of power. Devices communicating over 802.15.4
and other low rate protocols, can send their signals to the gateway, which simply
forwards it to the local server - no TCP/IP communication needed. TCP/IP
embedded devices can communicate directly with the local server, which still
takes up considerably more power than low rate protocols, but is better than
communicating with a central server. The downside to this solution, is that we
cannot modify the house plan in each house as easily, since it is now located
on the local server and not on the central server. Therefore some means of
communicating with the local server is needed.

3.3 Achieving remote access to the local server

There are several means to achieve remote access to a local server behind a
�rewall. Port forwarding is a technique that allows computers outside the local
area network, to pass data to a speci�c computer or service within the network.
This is done by creating rules on your local router, con�guring it to listen to
inbound tra�c on certain ports, and then forwarding all incoming tra�c on these
ports to internal services on the local network. Port forwarding is very insecure
because no encryption is in place, but also because hackers have port scanning
available as a tool to them, where they can �nd the open port on the �rewall

20 Analysis

and use the channel in a malicious way. Until 2014 port forwarding was used in
all homes using the nr. 1 smart-home vendor on the market [Car15]: HomeSeer
(and is still used in many houses today). In 2014 they released their optional
Remote Access Service [Hom13], o�ering customers to sync their house plan to
a cloud and then access the cloud with their mobile devices. 4Control, Another
large Smart Home, is also strongly against port forwarding and warned in 2013
their users against using this technique [4Co13]. Other large vendors such as
SmartThings and Apple HomeKit have also opted not to use port forwarding.

A way more secure alternative to port forwarding is using Virtual Private Net-
works wherein the client downloads a VPN client program that securely sets up
a connection with a remote server behind a �rewall. It provides several layers
of security, by both encrypting datagrams but also sending them through a so
called "tunnel". A popular packet encryption method for VPN's is the IPSec
protocol, which is often used in conjunction with a tunnelling protocol e.g L2TP.
VPN's o�er a lot of security but can impose quite some overhead slowing tra�c
down. It is however still a good viable option for remote access.

3.3.1 Moving the architecture online

Instead of using either of the remote access techniques, you could simply chose
to move the entire architecture online. You could store all devices and device-
related information in an online database and avoid using any kind of remote
access to a local server. We would then store house plans for all houses in the
system on a central web server and to facilitate this we would need to build
an information exchange architecture, allowing communication between local
servers running HOMER and the central server. A synchronization mechanism
between the local and the web server would also be needed, to ensure that the
users are always viewing a correct version of the houseplans on their mobile
phones or browsers.

For software developers, the bene�ts of an online architecture would be huge,
since you no longer need to deal with information begin stored on many dis-
tributed servers, but instead in one big database. Having devices stored in an
online database, enables you to put a tag (NFC, QR, Bar code) on each device
linking that device to an entry in the online database. Private users can then
simply scan the device, and the underlying information needed to con�gure that
device will simply be fetched from the database where after the system automat-
ically con�gures the device, all without the user having to know anything about
protocols, device types or anything. For software developers this architecture
helps immensely because it is a �exible and extendible solution, making it much
easier for software developers to extend the system, much easier to maintain

3.3 Achieving remote access to the local server 21

the system and much easier to plan for future unknown use cases. Backwards
compatibility also becomes easier; for example if you want to change the way
a device is stored in the database, or the information linked to a certain type
of devices, or implement new services to be used by other developers. Another
bene�t is that we don't need to access any data behind any �rewall. Client
controllers (mobile APP and browsers etc.) can simply access the house plans
directly on the web server. There would also be no need for customers to con-
�gure their �rewall for port forwarding or setting up a VPN. Devices can also
be authenticated with their tag. One of the disadvantages of the solution, is
that a secure means of storing and accessing house data, becomes even more
important when storing all data on an online cloud server. If we chose to use
local servers and an online cloud architecture, then we will also need to build
some means of exchanging data between the local servers and the cloud i.e a
synchronization mechanism. This communication should also be secured using
for example SSL/TLS.

Choice of tag technology NFC and QR codes were considered. Bar codes
is an old technology that is not capable of storing very much information, and
which is inferior to QR codes. QR Codes have the big advantage that it is a
completely free technology to use, while NFC tags costs around 0,10 to 0,80
dollars pr. chip if you buy them in bulks (min. 500). The price depends on
the desired storage capacity. Anyone can print out a QR tag (and in many
di�erent sizes) and place it wherever they want to, while NFC tags need to
be shielded from rain and weather since it is an actual chip. Depending on
how much error correction is desired in the QR code, it can store somewhere
between 0,5 kb and 3 kb of data, while NFC tags on the market currently range
between 64 bytes for the smallest ones and up to 888 byte for the newest NFC
tag on the market; NTAG216. Any smart phone equipped with a camera is
capable of reading a qr code, provided they have downloaded the app for it,
while reading NFC tags requires new hardware not supported by the majority
of smart phones currently on the market. The major advantage with NFC tags
is the scan speed. Simply holding a scanner near a tag will almost instantly
scan it, while the scanning process with QR codes can be a bit cumbersome
holding the camera at the exact right angle etc. Furthermore NFC tags can be
placed "under the hood", meaning they don't need to be visible on the product,
while QR codes obviously need to be visible for the camera to read. Last of
all, most NFC tags include built-in encryption, while QR codes o�er no security
and actually can be tampered with, to cause malicious behaviour. Ultimately
QR tags were chosen, because they are free to use, easy to implement and is
already a widely used technology.

22 Analysis

3.4 Synchronization

A consequence of using local servers is that it necessitates a synchronization
mechanism, since we will have a distributed system where data is stored in
di�erent places; at the central server and at the local servers. Whenever any
changes happen to data on the central server, those changes need to be re�ected
on the local server in the house linked to the a�ected data. Synchronization is
meant to happen in one direction only i.e from the central server to the local
server. This is because the system should be a closed system, where creation
of devices only happen through a web page and modi�cation of devices only
happen through the app. Therefore no synchronization should be performed in
the other direction, meaning that the local server should always take the house
plan from the central server and overwrite the locally stored one ensuring only
one entry point for data, making the system easier to maintain and supervise.
However AIT does not yet use this system and therefore we should ensure that
the system is also backwards compatible with the work �ow currently being
used - a work�ow that involves deploying the local servers with the house plans
on them pre-installed. Therefore synchronization should be performed in both
directions; from the central server to the local server, but also in the other
direction. This means that if the local server has a device unknown by the
central server, the central server will create that device and link it to that
house.

A problem we are facing when synchronizing from the central server to the local
server, is that we can't communicate directly with the local server, since it is
located behind a �rewall. Generally the �rewall will prevent incoming packets,
unless it can identify them as the response to an outgoing packet, or a special
rule has been created e.g port forwarding (which we do not want). Therefore
the central server cannot just notify the local server whenever changes happen.
Instead the local server needs to regularly "check in" with the central server,
to see if any devices have been added, deleted or edited. But one might ask
how applications such as Skype then initiate a call, since the client receiving
the call certainly hasn't requested this call. This has to do with a technique
called "UDP Hole Punching" [Sch07]. Alice wants to send data directly to bob
(and receive), but this is restricted by Bob's �rewall. Instead Alice tells the
Skype server (which Bob trusts) that she wants to talk with Bob. The Skype
server forwards the message to Bob, upon which Bob "punches" a temporary
hole in his own �rewall for Alice to use and similarly the other way around. So
essentially Alice uses a 3rd party (Skype) to authorize herself with Bob. This is
a very rough simpli�cation, but it shows us that communication initiated from
outside a �rewall is possible. And indeed this is what danish company Nabto
has developed - A protocol that allows direct outside communication to a device
behind a �rewall.

3.5 Requirements 23

Such a �rewall punching technology would be very well suited for smart homes
since it basically allows local servers to act as clients subscribing to changes
made to devices linked to them. This would mean that the central server could
notify the entire system (webpage, app and local server), whenever a change was
made from a controller client. However, this system is patented by Nabto and
is not free. Neither does AIT have their own implementation of it or anything
similar. Therefore we have chosen the alternative, which is that all communi-
cation is initiated by the local server, which means that it regularly requests a
synchronization with the central server, to see if there are any changes to the
house plan.

3.5 Requirements

The main requirement for the system said in words is: "To ease the installation
and setup of new smart houses for technicians", and as discussed the problem
was the lack of remotely being able to modify data on HOMER. The system
should enable the technician to deploy a house plan on a local server remotely,
but also enable him to modify an existing house plan remotely. This spawned
a discussion about how best we can achieve remote access to the local server,
which led us to take the decision of using an online architecture, instead of deal-
ing with port forwarding or VPN's. A few weeks into the project we decided
that including the interaction part of house plans was too big for this project,
and instead we chose to focus entirely on implementing an extendible structured
online architecture for storing, adding, deleting and editing devices - the inter-
action part would be left for another project. The basic functionalities of the
system would concern devices i.e adding, deleting, editing, linking and unlinking
devices. We set out building the system for the technician as a tool to aid him
when installing new smart houses, but along the way we realized that we wanted
the system to be implemented in a way, so that it in a later project could be
expanded, so private non-tech users (customers) can use the system themselves
to install their own houses. Therefore we wanted to spread the functionality
over 2 client controllers in the system, both of them for technicians, but one of
them implemented to be adaptable in the future for customers only. A simple
webpage should be implemented for the company to manage all their devices
with, allowing technicians/admins to add, delete and edit devices in the system.
An app should be implemented allowing technicians to link and unlink existing
devices in the database with houses. To give the technician more control over
the system allowing quick testing of new device setups, the add device and edit
functions should also be available on the app as well as on the webpage. To
facilitate communication with the HOMER platform an OSGI bundle should be
developed to be deployed on HOMER.

24 Analysis

3.5.1 Users

The overall users of the system are companies wanting to develop and sell smart
home products. Below we will describe what users of such a system value..

Software Developer

Developers of the system will focus on how the features of the system are built
rather than the actual features themselves, since it is them who are tasked with
understanding, maintaining and extending the system. They prioritize a system
with a good architecture, meaning a server with a clearly de�ned interface,
that can easily be extended with new functions. A modularized system, where
services, calls or components are reusable and a system where logics are grouped
and placed in a structured and understandable manner. In addition to that the
code should be easy to compile, build and test.

Technician

A technician cares mostly about the amount of features o�ered by the app, and
that the app is working and stable. Usability of the app also means a bit to a
technician since he doesn't want to waste his time with the app, while setting
up a new smart home. The time it takes for data to be transferred from the
app to the local server should also not be too long.

3.5.2 Requirements & quality parameters

The system will require 4 components to be developed. A central web server,
an application for a mobile phone, a webpage and a software bundle for the
HOMER platform. The software-centric qualities touched upon under the soft-
ware developer user description, are here relevant for all parts of the system,
since no matter which part we're considering, a software developer will appre-
ciate good architecture when he's working with the system. So the software
quality will not be commented upon under each section, though it is important
for all components of the system.

3.5 Requirements 25

Server

• It should be able to store devices in a database.

• It should provide clients access to devices in a usable manner i.e provide
proper services to get devices.

• It should provide clients operations to: add, delete, edit, link and unlink
devices.

• It should provide a library of common objects for clients (and itself) to
use.

The server should be able to store large amounts of data as e�ciently as possible
as well as having a reasonable data access speed. In our case a fast access speed
relies more on the I/O performance of the database, rather than a high transfer
speed, since we're dealing with small chunks of data.

App

• It should enable a technician to log in to a house.

• It should present the devices on the central server associated with the
house logged into, in a clear presentable manner.

• It should remain synchronized with the central server.

• It should enable users to link existing devices on the central server, to the
house currently logged into, by scanning a QR-tag.

• It should enable users to unlink a device linked to the house currently
logged into.

• It should enable technicians to quickly test new device setups, by manually
adding new devices to the system and editing them.

A smooth user experience is important for the app, since it is trying to save
the technician time. Users value that the app works as intended, does not
crash/freeze and is easy to use. A nice UI giving a nice overview of the presented
devices is valued. Besides from this, since the app is for technicians, it should
be an accurate re�ection of the system state and what is currently going on in
the system, meaning that it should be synced with the devices on the webserver
and it should show the technician the "state" of a device being synchronized.
By this it is meant whether the device has been synchronized to HOMER yet
or not.

26 Analysis

Webpage

• It should present all device on the central server to the user.

• For each device it should display the corresponding QR tag linked to that
device.

• It should remain synchronized with the central server.

• It should allow a technician to delete, edit and add devices to the system

The web page does not have so strict requirements for the user experience, since
it is not for private users. Here it is more important that it works as intended and
is robust. The amount of features o�ered is also somewhat important here, since
admins and technicians need to have additional rights to manage the system.

HOMER bundle

• It should keep the devices on HOMER synchronized with the devices on
the central server.

• Synchronization should happen in both directions i.e from central server
to HOMER and from HOMER to central server.

The HOMER bundle should be stable and never crash even though it runs in the
background all the time. It is important that it syncs correctly without losing
any data during the sync process. The frequency at which synchronization
takes place is important - we want it to happen often, but not too often causing
unnecessary tra�c. The synchronization should also not be too slow.

Besides from the 4 described components described above, the system requires
that each device has a QR tag on it that stores the hardware id of that device.

Chapter 4

Design

This chapter will describe the architecture of the entire system, as well as design
of each of the 4 components, their subcomponents and how they interact with
each other. The focus is on the high level architecture and not code speci�c
details.

4.1 Overall system architecture

The system is divided into four parts as can be seen in �gure 4.1; the central
server, the local server(s) running HOMER, an app and a webpage. The central
server stores and manages all devices in the system in its JPA database, meaning
that this database stores all devices for all houses in the system. Each house
has a local server in it running an instance of HOMER. Local servers, mobile
clients and browsers all communicate with the central server, by consuming the
REST client API implemented by the central server.

28 Design

Client
API

Firewall

Firewall

Firewall

Firewall

JPA
Database

DAO

Client
API

Figure 4.1: Overall system architecture

4.2 Central server

The central server was designed with a service oriented architecture in mind,
relying heavily on the REST principles. All calls are either POST, GET, PUT or
DELETE calls a�ecting 1 or more resources. The server is completely stateless,
meaning that no client context is ever stored on the server and all information
needed to execute a requested service is provided by the client. Furthermore the
server and client are generally at all times sought to be completely separated
having nothing to do with each other. The only link between them should be a
uniform interface provided by the server that the client implements, as well as
the common

4.2 Central server 29

This architecture is very modular and reusable achieving a very lose coupling
in the system on two levels. One of them is between clients and the server.
A client can call server commands independently of one another, and combine
the results of the calls to do whatever the client wishes to do. This can be
done synchronously and asynchronously depending on the clients needs. The
second level exists between the implementation of the service interface and the
device-service-DAO, where a service implementation can combine the results of
any DAO calls (all sequentially executed), to obtain the desired result. This
architecture decouples the server and the client so development can happen on
both simultaneously and independent of each other. And within the server,
development can happen simultaneously and independently of one another on
the service implementation and the device-service-DAO.

4.2.1 Client API & server interface

The server and the clients are connected only through a uniform REST interface,
making the methods de�ned in the client API the only means for clients to inter-
act with the server. The methods de�ned by the client API, are implemented on
the server through the APIService interface. This nicely encapsulates the server
by de�ning the entry points into the code and is a good "�rst line of defence"
against unwanted behaviour. The binding link between the client API and the
APIService interface are the Universal Rsource Identi�er's(URI's), which should
be identical in the client API and the APIService interface. Each service call
has one and it could look something like this: "/devices/get/�atid", belonging
to the a service call that will fetch all devices from the server with the provided
�atid. In addition to this each service call also de�nes a data return type, that
the client can rely on being returned, no matter how the call is initiated from
the client. These return types should be used by all clients in the system (an
by the server itself) and therefore they are stored in the commons library on
the server. Service calls are de�ned both as synchronous and asynchronous, but
clients should keep in mind that calling a service call synchronously locks the
calling thread, which gives a bad user experience. Therefore the app never makes
any calls synchronous, it is mainly the HOMER bundle that uses synchronous
calls when executing the sync procedure. Optionally the service calls can also
specify which parameters they need, which are also clearly de�ned entities de-
�ned in the commons library e.g. the call editDevice(EditRequestWrapper
device) requires an EditRequestWrapper as a parameter, which is a common
entity de�ned in the commons library.

30 Design

4.2.2 Database

The database is a MySQL database created and managed by Java Persistence
API (JPA) and run over an Apache server. It is a simple database, with just
one table for all devices. There are a few extra tables for users, their roles and
their permissions, but they were not created for this project, nor are they the
focus of this project. The database is accessed through a DAO interface called
DeviceService, o�ering the central server (which in relation to the database acts
as a client) a set of methods de�ned in the DAO. The advantage of using a
DAO is that we can o�er a speci�c set of data operations to the user, without
exposing the details of the database. Secondly we can also reuse the DAO if
other components are introduced to the system that need database access. To
help maintain the code, logics are kept as much as possible out of the DAO
implementation, and are instead implemented in the server interface implemen-
tation. This is to have the logic gathered as much as possible at the same place
in the system, helping software developers quickly get an overview of the code.

4.2.3 Commons library

The commons library contains common data structures for the entire system,
along with a few utility classes used for parsing JSON objects to/from the
server. Clients don't need to implement a JSON parser, because the client
API is de�ned with Retro�t that does it for you. The common data structures
mainly include response objects for the server to use when returning data to the
clients, essentially acting as data contracts between the clients and the server.
Besides from the response objects, the entities stored in the JPA database are
also de�ned here; Device, User, Role, Permission (only Device is important for
this project). What is very nice about having a commons library where the
Device class is de�ned, is that all service and DAO methods don't need to know
the contents of the Device class. They can simply specify the Device class as
their parameter and/or return object and ignore what the Device contains, when
passing the device object around in the system.

4.2.4 Device entity

The device class stores all information on a device and can be seen in �gure 4.2.
A device has a hardware id, which is a unique id that only that speci�c device
can have. Whether or not the uniqueness of this hardware id will extend further
than each vendors collection depends on the implementation of the system, but

4.2 Central server 31

this id is presumed to be the unique id of a device in this system. This id should
also be stored in a tag on the device, to link the physical device with its entry
in the online database.

Device

 - databaseID: int
 - hardwareID: long
 - deviceProtocol: String
 - deviceType: String
 - roomType: String
 - houseID: int
 - deleteFlag: boolean
 - editFlag: boolean
 - oldHardwareID: long

(All fields are private with getters/
setters)

Figure 4.2: Device Entity

Besides from the hardware id, other mandatory �elds that must be set when a
device is created, are the device type and the device protocol. Since HOMER is
developed with the ISO 11073 standards for devices, we have also used this for
the device types in this system. The device type should therefore be speci�ed
according to this standard; an example of such a type is the motion sensor type:
MDC_AI_TYPE_SENSOR_MOTION. The device protocol is also mandatory
and should be speci�ed according to the currently 12 di�erent protocols sup-
ported by HOMER. The deviceProtocol, deviceType and roomType have been
implemented with string types as can be seen on �gure 4.2. In hindsight it
would have been cleaner and better, to implement them as enumeration types
matching the speci�ed enumeration types on HOMER, but issues importing the
library from the HOMER Core bundles, prevented us from doing this. The 3
properties; hardwareId, deviceType and protocol are mandatory properties and
must be provided when creating an instance of the Device class. The last manda-
tory attribute is the roomid, which is included because the HOMER database
requires it and because the app uses it to group devices under the rooms they
are located in. Besides from these mandatory �elds each device has a �atid (not
mandatory upon ceation), linking that device to a certain �at, along with some
�ags and pointers used for synchronization which will be described in detail in

32 Design

section 4.6.1.

4.3 HOMER bundle

The purpose of the developed HOMER bundle is to facilitate data communica-
tion between the central server and HOMER, by keeping devices on HOMER
synchronized with devices on the central server (and the other way around, due
to backwards compatibilty as discussed in the analysis section 3.4. The bundle
is deployed along with the HOMER core bundles on the local server.

4.3.1 Synchronization scheduler

The HOMER bundle is responsible for the synchronization between HOMER
and the central server, since due to local �rewalls, communication cannot be
initiated in the other direction as discussed in 3.4. So HOMER is responsible
for synchronizing itself with the server, not the other way around. Therefore
the bundle makes use of a scheduler function from the HOMER Core frame-
work, that makes the bundle runnable and executes its run() method at a
regular interval. The entire synchronization �ow is executed inside this run()
method on every execution. To achieve more modularity in the system and
to ease debugging of the synchronization mechanism, the synchronization code
has been split up into several methods. These include: getDevicesWithFlatID-
FromServer(), deleteDevicesFromLocalDBMarkedForDeletion(), editOrAddDe-
vicesFromLocalDBMarkedForEditing(), loadDevicesFromLocalDB(), addSyncedList-
ToWebserver(), webserverCleanUp(�atid) and together they make up the entire
synchronization process executed in every run(). They will be described in detail
in section 4.6. The scheduler timer (or synchronization timer) is set to execute
the run() method every 5 minutes. However, if the app is checked into the house
it most likely means that the house plan is being modi�ed, and therefore we set
a �ag on the server, indicating that the app is being used. When the run()
method executes next time, it will check whether this �ag has been set and if
it has, the synchronization timer will be set to 10 seconds for as long as the
app is in use. This is to facilitate more frequent synchronization whenever a
technician is modifying the house plan. The full synchronization procedure will
be described in detail in section 4.6 and can be seen on �gure on �gure 4.7.

4.4 Mobile Android Application 33

4.3.2 Device conversion

Some device conversion is sadly needed in the HOMER bundle, since the HOMER
database uses a di�erent kind of device type than the rest of the system. The
original intention was to use the same class for de�ning devices in the entire
system i.e HOMER and server would use the same common device class for
this. However, the HOMER Core system currently uses two di�erent objects
for devices: DBSensor and DBActuator. The system is undergoing changes
that are going to merge these two into one entity simply called DBDevice. Ide-
ally our de�ned Device entity should have been identical to this DBDevice class,
that will be implemented by HOMER in the future, in order to avoid any de-
vice conversion. But since these changes are not part of HOMER Core yet,
we have de�ned a our own Device class as described earlier, and a device con-
verter class has been implemented that converts between our Device entity and
the DBSensor and DBActuator classes used by HOMER. Note that this de-
vice conversion is only needed when storing a device from the central server on
HOMER, or when sending a device from HOMER back to the central server.
The central server and all clients work with our de�ned Device class.

4.4 Mobile Android Application

The app is one of the two clients in the system, and its main responsibility is
to facilitate linking and unlinking devices on the central server with individual
houses. Currently the intended usage is for company technicians to use it as an
aid when setting up new houses. Once the technician has checked into a house
the app will fetch all devices from the central server with the given house id and
the technician will be shown a list of those devices. Through the graphical user
interface, the technician can link, edit and unlink devices on the app and these
changes will be re�ected on the central server and in the visual device list on
the app thereafter.

The app starts up in the checkinActivity, asking the user to check in to a house.
This is currently done by simply providing the house id of the desired house.
Originally we had an idea about installing a scannable tag in each house that
would allow the technician to check in to an apartment by scanning the tag.
But although this was implemented in the app, the idea has since been scraped
in favor of a user/password combination used to log into a house (although this
has not been implemented). The thought behind this, is that if remote access
is wanted, then a tag in the house will not help and hence one might as well
use a user/pass combination all the time instead. This also supports future

34 Design

development, because in the future when the system has been further developed
and made so user friendly that private users can install their own houses, then
they will log into their own house with a user/password combination.

Once the user has checked into a house, the app session will be bound to that
house, meaning that he will only be shown devices linked to that house and all
actions he perform in the app will be done on that house. After checking in,
the user will be taken to the main screen shown later in �gure 4.3.

Before discussing the communication between the app and central server, we
would like to brie�y address why devices are linked in the app and not created.
This is because devices are added to the system unlinked through the webpage,
and then later linked to houses through the app. For the system this separation
makes no di�erence, since we could just as easily have put this functionality in
the app and then cut the web page out of the project. But for future purposes
the adding and linking of devices to the system has been separated, because
as mentioned above, private users should be able to install their own house in
the future and at that point the app should only be for private users, while
the webpage will be meant for the company to manage everything with. In the
future the app should also only allow linking devices through scanning, since this
function better encapsulates the system preventing faulty user input. Editing
devices and manually adding devices to the system, are also features that would
be taken out of the app. They are only meant for technicians to have access to.

4.4.1 Server-app communication

The app implements the client API provided by the central server, namely it im-
plements 5 methods from this interface: getDevicesByFlatIDFromServer(�atid),
linkDevice(device), markDeviceForUnlink(device), editDevice(device) and set-
SyncTimerFlag(boolean). All communication between the app and server, is
initiated from the app which means we have a fully passive server in this rela-
tionship, that only responds on the requests given by the app. Calls from the
app to the server are always performed asynchronously, which is almost always
recommended to do between a client with a UI and a server, in order to free up
the thread running the UI on the client. Therefore callbacks are implemented
on all calls from the app to the server and one should hence keep in mind when
developing on the app, not to rely on calls being performed sequentially.

Synchronization on the app is done manually by pressing the refresh button
found in the action bar on the app. Alternatively we could have put this re-
fresh call inside an asynchronous thread running in the background executing
every 10 seconds or so. But waiting for this background process to do the syn-

4.4 Mobile Android Application 35

chronization every time a change happens on the app, seemed like an annoying
solution. Lowering the synchronization timer too much (say to 2-3 seconds)
would imply too much unnecessary synchronization tra�c, and therefore the
manual approach was favoured. The best solution, however, would be to have
the server inform the app whenever a change happens on it. This would require
creating a background process on the app listening and communicating with
the server, while the server would need to store session information on each app
instance currently logged in to a house, in order to be able to notify the correct
observers. Ultimately due to time constraints this was not implemented, but
would be a nice alternative to manually refreshing.

4.4.2 User interface

The main menu screen can be seen in �gure 4.3. The user interface was not the
focus of this project, but nonetheless we felt that it was important to have a
decent UI that could give a good user experience. The UI is divided into two
sections; the buttons on the left side and the list of all the devices connected to
the house on the right. The list is a 3-layered expandable list, made to quickly be
able to gain an overview of all devices in the house, the information associated
with device and the rooms the devices are placed in.

36 Design

Figure 4.3: The main menu on the app

Currently the names of the rooms are just the according ISO 11073 standard
names for rooms, while the devices are named after their hardwareID. They are
named this way, with the assumption that the technician knows about these
standards and will appreciate the standards. In the future when private users
are going to use the app, the intention is to force the user to give a description
of a device and a name of the room it is in, when scanning it. For example the
device description could be "Table lamp" and the room name could be "O�ce".
This will allow us to use this data in the UI, making it easier to recognize devices
and the rooms they are in.

For the sake of simplicity and a good user experience, an extra e�ort was put
into creating the list view on the right side of the screen. First of all we felt that
a standard list view would be annoying to work with since androids basic list
view is static and hence cannot be interacted with. Had we used this option,
details on every device would have to be visible at all times (expanded all the
time), which would make getting an overview very hard with many devices.

4.4 Mobile Android Application 37

To solve this an expandable list which allows the user to expand and collapse
details on individual devices was used. In this way the user can collapse devices
that he does not wish to view the details on. Android has a built in function for
expandable lists which is nice, but we wanted to further group devices under the
rooms they belong to and make entire rooms expandable/collapseable, so that
when the "Kitchen" is collapsed then all devices in the kitchen will no longer be
shown. Furthermore with expandable lists the developer can programmatically
control which devices are expanded/collapsed (for example we could expand
devices that have just been edited, linked or added). This would mean, that
we would need an expandable list containing rooms, with each room containing
another expandable list of the devices present in it, essentially giving us a 3-
layered expandable list as seen in �gure 4.4. Level 1 contains rooms, level 2
the devices present in that room and level 3 the details on a device. 3-layered
expandable lists is not a feature that is supported natively by android and
therefore the layouts, xml-�les, list-adapters and a cache had to be custom built
which will be elaborated further on in the implementation section 5.4.1.

Figure 4.4: 3-layered expandable list

38 Design

The device list is re-fetched from the server and redrawn whenever any call
from the app to the server is carried out. The user can also manually request
this with the refresh button in the action bar. For a technician when he links
a device to a house through the app, it is important that he knows when the
device has been synchronized to HOMER. The synchronization is something
that happens in the background, but we want to visualize it. Therefore the
delete- and edit �ags, are checked whenever a redraw is initialized. If either �ag
is set, a spinning circle will appear on the device meaning it has not yet been
synchronized to HOMER, additionally devices with their delete �ag set will be
greyed out and their buttons will be unclickable. Device 226584239 on �gure
4.4 has its delete �ag set, and therefore it will be drawn greyed out and with
a spinning circle, while device 477596325 has its edit �ag set and will therefore
have a spinning circle on it. Devices with a tick on them are synchronized with
HOMER.

Gathering data provided by the user is needed, when editing a device or adding
a device to the system. For this, a subactivity has been implemented which acts
as a device data form, where the user provides new data for a device he wants to
add or edit (see �gure 4.5). To minimize faulty user input, spinners have been
used wherever the user should only be able to select an option from a given set
of options, e.g in the case of device protocols and device types.

4.4 Mobile Android Application 39

Figure 4.5: Device data form for editing and adding devices

In the case of editing a device, all data from the clicked device are passed through
an intent to the edit subactivity. When the user is done entering device data,
he taps the done button and the data is transferred to the main activity again
through an intent. The main activity picks up the data from the intent through
its onActivityResult method and then calls the appropriate server method (edit,
add, link or unlink device).

As mentioned earlier, if the system and the app becomes user friendly enough
the app should only be for private users. In this case this edit/add screen should
not be an option for the private user since he should only use the scan function
to add devices with. Editing devices should not be an option for the private
user as it leads to buggy behaviour. Private users shouldn't be concerned with
protocols, device types, id's or anything like that. But as long as the app is
used by technicians, functions like edit and add are needed, for example to be
able to quickly add a dummy device with hardware id "123" and test it out.

40 Design

4.5 Web page

The webpage is the second of the two controller clients in the system, and plays
a smaller role than the app. Development on the app was always prioritized in
this project over the web page, but nonetheless some platform to manage the
system with was part of the requirements. The most important function of the
web page is to create and delete devices in the system, and it is only meant for
company technicians to use. It is the only point in the system where the user can
permanently delete device records from the system. As mentioned previously,
devices should be created with the web page and then linked/unlinked from
houses using the app. A nice feature provided by the web page, is that it
automatically generates a QR tag when a new device is created matching the
hardware id of the device.

In terms of communication with the central server, the web page is simply
another client implementing the client API provided by the server. Like with
the app it is again important to implement server calls asynchronously, to free
up the UI thread.

A screenshot of the webpage can be seen on �gure 4.6. The UI of the webpage
was not prioritized highly when developing the system. Adding devices to the
system is done by clicking the New device button which resets the device form
on the right side. When the device form has been �lled out, clicking save will
store the device on the central server. Clicking on a device record in the grid,
will �ll out the device form prepopulated with the data of the device. The data
can then be edited, whereafter clicking the save button, again will save the
device on the central server.

4.6 Synchronization 41

Figure 4.6: Screenshot of the webpage

4.6 Synchronization

When the app requests a change on the server, then the change should not be
carried out immediately, but rather some mechanism should be used to indicate,
that the given change is scheduled to happen. This is because if you simply
delete the device on the central server without leaving any indication of what
device was deleted, then HOMER doesn't know that the device was deleted.
Therefore when the sync procedure runs again, HOMER will think it has a
device the central server does not, and then the device will be added to the
server again. To solve this a �agging mechanism has been used in the system,
to signal when changes have have been scheduled to happen on a device.

While describing the synchronization in this section, �gure 4.7 can be kept in
mind as a reference to how the overall synchronization �ow looks like.

42 Design

UML arrow notation

APP Central Server
HOMER
bundle

editDevice(Device)

Asynchronous

Edit device and
set edited flag to

true

markDeviceForDeletion(Device)

markDeviceForDeletionResponse

Synchronous

editDeviceResponse

getAllFlaggedDevicesWith
FlatIDFromServer(flatid)

Synchronization
process starts

serverDeviceList

getDeviceWithFlatID
FromServer(flatid)

Local
Database

deleteDevicesMarked
ForDeletion()

editOrAddDevicesFrom
LocalDBMarkedForEditing()

loadAllDevicesFrom
LocalDatabase()

localDatabaseDeviceList

addSyncedListTo
CentralServer()

addDeviceListResponse

webServer
Cleanup(flatid)

Perform cleanup
procedure

Refresh button
Is pressed

serverDeviceList

Update UI

cleanUpDevicesResponse

Figure 4.7: Synchronization procedure

4.6 Synchronization 43

4.6.1 Setting �ags

Each device contains 3 �ags; a deletion �ag, an editing �ag and an unlink �ag,
showing whether the device has been scheduled for deletion, editing or unlink.
Only the webpage can schedule a device for deletion. The app can schedule a
device for edit or for unlink. If a device has been scheduled for unlink or deletion,
the device will not be immediately deleted or unlinked from a house, but rather
the �ag will be set. In the case that a client wants to edit a device, then the edit
is immediately carried out and edit �ag is set. Sometime later when HOMER
initiates a sync procedure, it will know what to with devices depending on what
�ags are set. If a device has either its unlink or delete �ag set, then HOMER
simply deletes that device from its local database. If the edit �ag is set on a
device, it means one of 2 things; either the device already exists on HOMER's
local database but needs to be edited, or the device does not yet exist in it and
therefore needs to be added. Technically it is not needed to set the edit �ag on
newly added or linked devices, since HOMER can simply re-insert all the devices
from the central server into its local database, overwriting the old values stored.
However this would result in many unnecessary database insertions on every
synchronization, since devices with no changes to them will also be reinserted.
To facilitate editing the hardware id of a device, an edit �ag is not enough,
since if the hardware id of a device is overwritten then HOMER does not know
which device to edit the hardware id on. Therefore an oldhardwareid �eld was
added to the device, that is only set in case the hardware id is edited. If the
hardware is edited, the oldhardwareid is set to the previous hardware id of the
device, so HOMER has a pointer to the device it needs to edit. After HOMER
has performed a synchronization, the oldhardwareid will be set to null in the
cleanup step. Care should be taken, if the user edits the hardware id more than
once before a sync has taken place. In this case one should make sure that the
oldhardwareid still points to the original hardware id and not the 2nd hardware
id as shown in �gure 4.8.

Device Device Device

Old
HardwareID

Edit
hardware id

Edit hardware
id again

Figure 4.8: Maintaining the oldHardwareID pointer

44 Design

The choice of having �ags in each device to indicate changes, was weighed against
having a list on the server indicating which devices are scheduled for deletion,
editing and adding. The advantage of using a dedicated server list to indicate
changes are that we don't have to have extra �elds in our device class indicating
this, which is a valid concern that might reduce the size of the a device object
a bit. The drawbacks are that it adds a lot of unnecessary complexity since we
would need to store the list in a separate table in the central server database
(which also costs additional space). Additionally we would have to separately
pass these lists around in the system, when passing device lists between the
central server and HOMER and between the central server and the clients.
Ultimately the �ags were chosen because of the simplicity of the solution and
because the infrastructure was already there. Devices as entire objects were
already passed around in the system, so adding some �elds to the device imposed
no changes on the system. The little amount of space one could save was
negligible compared to the added complexity.

4.6.2 Synchronization procedure

Synchronizing the devices on the central server with the devices on HOMER,
can be viewed as a set reconciliation problem where we want to �nd Sa ∪ Sb,
with Sa being the devices on the server and Sb being the devices on HOMER.
Our goal will be to solve the problem transferring as few devices as possible
between HOMER and the central server. The �rst thought one should think, is
that when HOMER initializes a sync procedure, then we only need to transfer
the devices from the central server to HOMER, that have been modi�ed/added
since the last time the sync procedure took place. Therefore we assume that
devices that does not have a �ag set, already exists on HOMER and therefore
we will only transfer devices to HOMER that have a �ag set i.e edit, delete or
unlink. This assumption is fair to make, because whenever any device is added
to the system or linked to HOMER, then a �ag is set that indicates this change
and the only way to remove this �ag is through the cleanup method which is only
called by HOMER. The assumption does not hold, if devices for some reason
are inserted by the admin directly into the database without using the DAO.

The following methods are called when a synchronization procedure is initialised
by the HOMER bundle. All calls are performed sequentially by the HOMER
bundle.

• getAllFlaggedDevicesWithFlatIDFromServer(). This method retrieves all
�agged devices from the central server with the �atid of the calling HOMER
instance. Doing this allows us to easily synchronize, since we have all de-

4.6 Synchronization 45

vices that have been changed on the HOMER side. After this call we are
ready to start applying changes.

• deleteDevicesFromLocalDBMarkedForDeletion(). Here we delete all de-
vices in HOMER's local database that have been marked for deletion (has
the delete �ag set). HOMER's local database does not check for null point-
ers and it is therefore important to check if the device exists in HOMER
before trying to delete it. This is relevant if the user has added a device
and deleted it again before synchronization took place.

• editOrAddDevicesFromLocalDBMarkedForEditing(). This method applies
all edits from the central server to HOMER's database i.e all devices that
have their edit �ag set are either edited or added. If the device already
exists in HOMER's database then the record is updated and otherwise if
the device does not exist then it is added.

• loadDevicesFromLocalDB(). All devices from HOMER's local database
are loaded into the HOMER bundle. This method �lters away devices
with unknown device types and/or unknown protocol types.

• prepareListForWebserver(). This method prepares a list of devices, to be
sent back to the central server. It �lters away all devices that were initially
retrieved from the central server, by the getAllFlaggedDevicesWithFlatID-
FromServer() call.

• addSyncedListToWebserver(). Sends the list of devices prepared by the
prepareListForWebserver() call, to the central server. Note that step is
only necessary because we want to provide backwards functionality, as
discussed in the analysis section 3.4.

• webserverCleanUp(�atid). This method tells the server to perform a cleanup
on all devices belonging to the �atid given as parameter. A cleanup con-
sists of resetting all �ags and old hardware id pointers while also carrying
out the actual changes on the central server (we can do this now that
HOMER has been sync'ed). Edit and unlink �ags are set to null and
old hardware ids are set to null. Devices marked for deletion can now be
permanently deleted from the system while devices marked for unlink will
have their �at id set to -1.

At this point the synchronization is done and the central server and HOMER
now both contain the same devices. Clients can now fetch a fresh copy of the
devices from the central server.

46 Design

Chapter 5

Implementation

AIT's entire HOMER platform is developed to run in an OSGI container (Apache
Karaf) and therefore they wanted the system for this project to be compliant
with that. That meant that the software bundle developed in this project for
HOMER, should be deployable as a bundle alongside the rest of all the other
bundles running in HOMER. As for the central server, we also chose to imple-
ment this as a collection of bundles running in an Apache Karaf container. The
instance of Apache Karaf running the central server, should not be confused
with each of all the instances of Apache Karaf running on the local servers.

5.1 Development tools

Maven is a build management tool, that helps you build and manage dependen-
cies in Java projects. Maven essentially gathers all build-related activities into
one �le for each folder in your project. This �le is called the POM �le (Project
Object Model), wherein you specify what libraries your project depends on,
how your project should be built (.jar, .war .ear OSGI bundle etc) and how
your project should be packaged etc. For this project Maven has been used
extensively as a dependency management tool, since when you have speci�ed a
dependency, then it automatically downloads all the libraries needed for that,

48 Implementation

including sub-libraries that those libraries depend on etc. Maven is also IDE
independent, meaning it doesn't matter whether you are working in Eclipse,
IntelliJ or NetBeans, the code will be compiled to the same. Maven o�ers many
additional functions, but the above are some of the core functions used in this
project.

Apache Aries Blueprint is used to manage bundles in an OSGI container. It acts
a bit similar to the POM �le, but only internally inside the OSGI container,
specifying the dependencies between the bundles and ensuring that bundles are
wired properly when bundles are loaded and unloaded at run-time. For example
in this project, the blueprint �le of the persistence bundle speci�es that the DAO
interface implementation should be exposed as a bundle for the server interface
implementation to use.

Figure 5.1 shows the server bundles: Persistence, Servlet and shell running in
Apache Karaf (the shell is only used as test client).

Figure 5.1: Screenshot of server running in Apache Karaf

5.2 Central server 49

5.2 Central server

The central server has been implemented using Apache's CXF implementation
of JAX-RS. To be OSGI compatible it is implemented as three separate OSGI
bundles; a servlet bundle implementing the server interface, a persistence bundle
implementing the DAO interface and a commons library bundle (loaded and
exposed from inside the persistence bundle). Besides from these three bundles,
the server has a client API library with matching URI end-points to the server
interface.

5.2.1 Server interface & client API

The RESTful server interface has been implemented using the javax.ws.rs pack-
age. When implementing a method with the RESTful interface you at the very
least need to specify what kind of call it is i.e GET, POST, PUT or DELETE
and the Universal Resource Identi�er (URI) of the call (see �gure 5.1).

Listing 5.1: RESTful server interface methods implemented with the
JAVAX.ws.rs package

@POST

@Path("/devices/add")

@AuthenticationNotRequired

public AddDeviceResponse addDevice(Device device) throws Exception;

@POST

@Path("/devices/editdevice")

@AuthenticationNotRequired

public EditDeviceResponse editDevice(Device device)throws Exception;

@GET

@Path("/devices/{hardwareid}")

@AuthenticationNotRequired

public GetDeviceResponse getDevice(@PathParam("hardwareid") Long

hardwareid) throws Exception;

@GET

@Path("/devices/flatdevices/{flatid}")

@AuthenticationNotRequired

public DeviceListResponse

getAllDevicesWithFlatID(@PathParam("flatid") int flatid) throws

Exception;

50 Implementation

The URI is the binding link between the central server and the clients and
should uniquely de�ne a service call. This is for example relevant in the case of
the getDevice method, where part of the URI path is used as a parameter for
the method. As can be seen from �gure 5.1 the URI of the getDevice method
is "/devices/hardwareid", where hardwareid is used as the parameter of the
method interface. The other method getAllDevicesWithFlatID(), can't simply
have the path "/devices/�atid", because it would con�ict with getDevice's path.
All clients implementing the client API must in addition to the URI also specify
the base URL used for all calls to the central server. This could look some-
thing like: "http://128.130.251.91:8181/cxf/easycon�guration/api/1.0", which
is prepended to the unique URI on a service call.

The original intention was to have the client API be identical to the JAX-RS
interface used for the server, which would have given us just one single inter-
face in the whole system, implemented by the server and used by the clients.
RESTEasy is a JAX-RS implementation by JBoss intended for java clients,
which is developed for exactly this purpose [Jbo16]. However, the android
framework proved very uncooperative with the Jboss Resteasy technology, and
therefore we switched to using Retro�t 1.9 instead, which is speci�cally devel-
oped as a framework for consuming API's on Android and Java platforms. This
does, however, mean that we have 2 interfaces to maintain in the system, since
the client API is a complete copy of the server interface. The only di�erence is
that it is de�ned using Retro�t instead of JAX-RS, which means that the an-
notations di�er a bit. Besides from these di�erences the URI's are still identical
(they must be). As mentioned in the design section 4.4.1, we mainly want to
use asynchronous communication. To do this, most service calls return to the
client, using a callback pattern. The response entity returned from the server
is returned inside this callbacks success method, or if the server interaction was
unsuccessful then it returns in the failure method. We have used Retro�ts v.
1.9 for this implementation, but it should be noted that Retro�t 2.0 was rolled
out recently (October 2015) which changes the callback structure a bit, as well
how the services are built. Retro�t has released a speci�c upgrade guide from
1.9 to 2.0 [Pö15].

When a client wants to consume the client API it can use the ServiceGenerator
class implemented in the api.lib package on the server. The class has one single
method called createService that is overloaded so it can be called with or
without a username and password. No matter what, a client API must be
provided, as well as a base URL used for building the path URI for each call with.
The method will instantiate an OkHttp client and con�gure it with a timeout
as speci�ed, as well as log level as can be seen in code listing 5.2(there are many
additional con�gurations that can be use). The createService method will
return an adapter object capable of calling all the API methods speci�ed in the
provided client API. An example of instantiating such an object and making a

5.2 Central server 51

call can be seen in �gure 5.9.

Listing 5.2: Device class properties

final OkHttpClient okHttpClient = new OkHttpClient();

okHttpClient.setReadTimeout(httpTimeout, TimeUnit.SECONDS);

okHttpClient.setConnectTimeout(httpTimeout, TimeUnit.SECONDS);

RestAdapter.Builder builder = new RestAdapter.Builder()

.setEndpoint(baseUrl)

.setClient(new OkClient(okHttpClient))

.setLogLevel(RestAdapter.LogLevel.FULL);

//if user/pass was provided to method, then a so called

RequestInterceptor is configured and added to the builder object

RestAdapter adapter = builder.build();

return adapter.create(serviceClass);

5.2.2 JPA Persistence bundle

The database used by the central server is created and managed by OpenJPA's
implementation of JPA (Java persistence API). When starting up the Apache
Karaf framework for the central server, one of the �rst things to happen is the
initialization of the MySQL database, its database drivers and the OpenJPA
framework. OpenJPA looks for the persistence.xml �le which has to be located
in the META-INF directory in the classpath. It reads the con�gurations settings
stored in there and links the database with the persistence bundle containing the
DAO. This procedure happens during the startup of the Karaf OSGI framework.
When the persistence bundle is completely loaded, its blueprint �le will have
initialized an EntityManagerFactory object in the DAO bundle for the DAO
implementation to use, which will be further discussed in the DAO section 5.2.4.

The nice thing about using JPA is that once it is set up and con�gured, one
doesn't need to be concerned with creating and managing a database. JPA
does it automatically for you, provided that you have annotated the classes to
be included in the database correctly. With JPA you can also specify whether
�elds of the classes should be mandatory, unique, public or private and you can
specify the relationships (1-1, 1-n, n-n etc.) between classes and this will be
re�ected in the created database by JPA. Normally when changing a class in
the commons library on a server, you would also need to re�ect this change in
the database. With JPA the database is automatically recreated and managed

52 Implementation

when the Device class is changed. And unless you change the constructor of
the device class, then the clients will also not need any updates. This has made
extending the Device class slowly, a very easy process.

5.2.3 Common entities

The common library includes response objects, entities and a utility library for
the JSON converter class. The device class seen in �gure 4.2 is just a POJO,
but contains many extra annotations and imports to make it work with the JPA
database. These annotations tell the JPA framework that this class is an entity
and should be created as a table in the database with a given name. Each
�eld in the class has a Column annotation, specifying the name of the �eld
in the database, specifying whether the �eld is unique and whether it should
be nullable. Id �elds for example are usually unique and not nullable, which
means we want to make sure to specify that in the column annotation. The
device protocol and device types must both be provided but neither are unique
and therefore they have nullable = false but do not specify being unique. The
minimum required �elds to create a Device instance are: hardware id, device
type, device protocol and room type. Figure 5.3 shows how the hardwareid and
devicetype �elds are speci�ed in the device class, with all their annotations used
by the JPA framework.

Listing 5.3: Device class properties

@Column(name = "hardwareid", nullable = false, unique = true)

@SerializedName("hardwareid")

@Expose

private Long hardwareid;

@Column(name = "devicetype", nullable = false)

@SerializedName("devicetype")

@Expose

private String devicetype;

Response objects in the common library are there to have wrappers for every-
thing instead of parsing raw types. They also act as data contract ensuring
that clients can rely on receiving their response payload in certain format. So
for example instead of having the server calls addDeviceList(deviceListWrapper)
and getAllDevicesWithFlatID(�atid) return a list of devices they instead return
a DeviceListResponse object that contains a device list, a success boolean and a
message. All response objects are implemented as serializable objects, because
they need to be serialized before being sent back to the clients.

5.2 Central server 53

5.2.4 DAO Implementation

The DAO implementation consists of a range of methods o�ering various database
operations to the user. The general structure of a DAO method is shown in �g-
ure 5.4, showing a simple DAO method.

Listing 5.4: addDevice(): a simple DAO method

@Override

public Boolean addDevice(final Device device) {

final EntityManager entityManager = factory.createEntityManager();

final EntityTransaction entityTransaction =

entityManager.getTransaction();

try {

entityTransaction.begin();

entityManager.persist(device);

entityTransaction.commit();

} catch (Throwable ex) {

log.error("Error during interaction with database", ex);

return false;

}

return true;

}

Each DAO methods need an EntityManager object to create an EntityTransac-
tion. While the Karaf framework is initializing all the bundles in the system, the
OpenJPA framework together with the persistence bundle, make sure to initial-
ize an EntityManagerFactory object inside the DAO class. Each DAO method
will use this EntityManagerFactory object to instantiate an EntityManager ob-
ject for them. Once this has been done we can start a transaction using the
entityTransaction.begin() call and the transaction can be closed again call-
ing entityTransaction.commit(). In between these two calls, data operations
and queries should be placed. In the case of the simple addDevice() method
shown on �gure 5.4, the only operation used is a simple persist call, asking the
JPA to create and manage the given object, which in this case is a new device.

Figure 5.5 shows the unlinkDevice() method, which is a bit more advanced. The
method is supposed to fetch a given device, set its �atid to -1, reset its unlink�ag
by setting it to false and store the device again with the new changes applied.
This requires a query which is de�ned using the createQuery call, providing as
parameters the SQL query to be executed and the object entity to return. When

54 Implementation

retrieving the result from a query you can specify whether you are expecting a
list of elements or a single element, by using either Query.getSingleResult()
or Query.getResultList() calls. Finally when the device has been retrieved,
we set the desired �elds on the device and call merge(), which is used for over-
writing existing data entries.

Listing 5.5: unlinkDevice(): a normal DAO method

@Override

public Device unlinkDevice(Device device) {

final EntityManager entityManager = factory.createEntityManager();

final EntityTransaction entityTransaction =

entityManager.getTransaction();

Device deviceResult = null;

try {

entityTransaction.begin();

final Query q = entityManager.createQuery("select d from

Device D where d.hardwareid = :hardwareid", Device.class);

q.setParameter("hardwareid", device.getHardwareid());

deviceResult = (Device) q.getSingleResult();

deviceResult.setFlatid(-1);

deviceResult.setUnlinkFlag(false);

entityManager.merge(deviceResult);

entityTransaction.commit();

} catch (Throwable ex) {

log.error("Error during interaction with database", ex);

return null;

}

return deviceResult;

}

Edit device method

Implementing a method for editing devices on the central server, turned out to
not be as straight forward as simply editing another property. Originally the
edit method had implemented in a similar way to the cleanDevice() method,
where you simply fetch the stored device, overwrite the stored �elds on it and
store it again. To facilitate changing hardware ids, you have to store a pointer
to the old hardware ID somewhere in the system. Therefore an oldHardwareId

5.2 Central server 55

�eld was added to the device, storing the old hardware id of the device (if the
hardware id had been modi�ed).

However the old hardware id might not always be set and the way the device
should be edited will di�er depending on whether the old hardware id has been
set or not. Therefore the DAO contains 2 di�erent methods to edit a device;
one of them is called editDeviceNormal and does it the straightforward way
i.e retrieving the speci�ed device using it's hardware id and then overwriting
its values. This edit DAO call should be used when editing a device, that
has not had its hardware id set. The other DAO method to edit a device is
called editDeviceHardwareID and should be used when the hardware id has
been edited, which means the old hardware id has been set. In this case, the
DAO method will look through the devices records in the database and see if
any of their hardware id's match with the old hardware id of the edited device -
not the new hardware id of the device. When the device record has been found,
all its �elds will be overwritten with the new edited values and the hardware
id of the device record will be updated to the new hardware id, while the old
hardware id of the device record will be set to the old hardware id of the edited
device as was illustrated on �gure 4.8.

The minor exception is if the hardware id of the device has been edited more
than once before a synchronization has taken place. In this case querying the
hardware id's of the device stored in the database, for the old hardware id of the
edited device, wont yield any results, since the id we are looking for is located
in the old hardware id �eld of one of the devices in the database. The DAO
method therefore needs to look through the devices records in the database and
see if any of their old hardware id's match with the old hardware id of the edited
device.

Logics for deciding when to use the editDeviceNormal or editDeviceHardwareID
should be kept out of the DAO and instead be placed in the server interface
implementation, where all logic is placed. All the methods implemented in the
DAO are de�ned by the persistence bundle as a bean called deviceService and
exposed for the server interface implementation to use. A blueprint �le for
the persistence bundle speci�es that the Karaf framework should expose the
deviceService.

5.2.5 Server interface implementation

The class APIServiceImpl implements the RESTful server interface and is the
execution entry point of all calls coming from clients implementing the client
API. Data sent between clients and the server is formatted as JSON objects

56 Implementation

and therefore need to be deserialized when received by the server and serialized
when sent from the server. For clients, Retro�t does this for them, but the server
interface is not (and can not) be de�ned with Retro�t. However, AIT had a
ready-made implementation of Google's GSON library that was used by the
server. The Blueprint �le for the servlet bundle speci�es this GSON library as a
provider when starting up the bundle. The Blueprint �le also speci�es the DAO
interface from the persistence bundle as an interface to be implemented by the
APIServiceImpl class. In this way when Karaf starts up, �rst the persistence
bundle is loaded as described in section 5.2.2, followed by the servlet bundle
containing the APIServiceImpl class.

Logics should be kept as much as possible in the APIServiceImpl class instead
of in the DAO, and therefore it is the APIServiceImpl class's responsibility to
always check whether a device exists before performing an operation it. Checks
for whether devices exist are not done in the DAO. To show how a service call
de�ned in the server interface is implemented, the code for a few calls will be
shown and described below.

A simple example is the getDevice(hardwareid) method as shown in �gure 5.6.
Most method implementations have the general structure, that they �rst check
if the deviceService is up and running (remember the deviceService is exposed
by the persistence bundle), then they check if the device(s) they are about to
perform an operation on exist, then they carry out the operation and �nally
they return an appropriate response object. getDevice() follows this pattern
nicely.

Listing 5.6: getDevice(hardwareid): a simple servlet method

@Override

@AuthenticationNotRequired

public GetDeviceResponse getDevice(final Long hardwareid) throws

Exception {

if (deviceService != null) {

if (deviceService.existsDevice(hardwareid)) {

Device device = deviceService.getDevice(hardwareid);

return new GetDeviceResponse(true,"Succesfully got

Device",device);

} else {

log.error("Device with hardwareid '" + hardwareid + "'

doesn't exist");

return new GetDeviceResponse(false,"Unsuccesful! device

payload is null! ",null);

}

}

return new GetDeviceResponse(false,"Unable to get device. Device

service is null",null);

5.2 Central server 57

}

Another method not shown here is the addDevice() method, which works oppo-
sitely, so if the device already exists, it returns an AddDeviceResponse object,
saying that the device already exists. If it does not already exist, the DAO
method addDevice is called: deviceService.addDevice(device) and after-
wards it returns successfully.

The webserverCleanUp() method seen on �gure 5.7, adds a bit more complexity.
The responsibilities of this method is to reset �ags and pointers and carry out
the speci�ed operations on the central server. This method is only called from
HOMER after a sync procedure has taken place.

The method iterates all devices on the central server, with the �at id of the
calling HOMER instance. These devices are retrieved calling the DAO method
deviceService.getAllDevicesWithFlatID(flatid). Thereafter the devices
are iterated and if the deleteFlag is set, we check if the device exists and if it
does we call the DAO method deviceService.deleteDevice(currDevice) to
delete it. A similar pattern is followed for devices marked for unlink: if they
exist we call deviceService.unlinkDevice(currDevice) which sets the �at
id of the device to -1 and sets the unlink �ag to false. Devices marked for edit,
simply have their edit �ag set to false and their old hardware id set to null.

Listing 5.7: webserverCleanUp(): a normal servlet method

public CleanUpDevicesResponse webserverCleanUp(final int flatid) throws

Exception {

if (deviceService != null) {

List<Device> allDevicesWithFlatID =

deviceService.getAllDevicesWithFlatID(flatid);

List<Device> deletedDevices = new ArrayList<Device>();

List<Device> editedDevices = new ArrayList<Device>();

List<Device> unlinkedDevices = new ArrayList<Device>();

for(int i = 0;i<allDevicesWithFlatID.size();i++){

Device currDevice = allDevicesWithFlatID.get(i);

//If device is marked for deletion then delete it

if(currDevice.getDeleteFlag()){

if(deviceService.existsDevice(currDevice.getHardwareid())){

Device deletedDevice =

deviceService.deleteDevice(currDevice);

58 Implementation

if(deletedDevice != null){

deletedDevices.add(deletedDevice);

}else{

log.warn("Device with hardwareID: " +

currDevice.getHardwareid() +

" should have been deleted, but was not!");

}

}

}

//If device is marked for unlink then unlink it

if(currDevice.getUnlinkflag()){

if(deviceService.existsDevice(currDevice.getHardwareid())){

Device unlinkedDevice =

deviceService.unlinkDevice(currDevice);

if(unlinkedDevice != null){

unlinkedDevices.add(unlinkedDevice);

}else{

log.warn("Device with hardwareID: " +

currDevice.getHardwareid() +

" should have been unlinked, but was not!");

}

}

}

//if device is marked for edit then reset the edit flag and set

oldHardwareID to null

if(currDevice.getEditflag()){

if(deviceService.existsDevice(currDevice.getHardwareid())){

Device editCleanedUpDevice =

deviceService.cleanDevice(currDevice);

if(editCleanedUpDevice != null){

editedDevices.add(editCleanedUpDevice);

}else{

log.warn("Device with hardwareID: " +

currDevice.getHardwareid() +

" should have been edited, but was not!");

}

}

}

}

return new CleanUpDevicesResponse(true,"Deleted

5.3 HOMER synchronization bundle 59

"+deletedDevices.size() + " device(s). "

+ "Edited " + editedDevices.size() + " device(s)",

deletedDevices, editedDevices,unlinkedDevices);

}

return new CleanUpDevicesResponse(false, "Unable to delete or edit

devices from webDB. DeviceService down", null,null,null);

}

5.3 HOMER synchronization bundle

The synchronization bundle for HOMER, is made to start up as a bundle along-
side the rest of the HOMER bundles running on the local server in the house.
The blueprint �le for the bundle speci�es 3 classes loaded from HOMER Core, to
be initiated by the OSGI container and loaded into the synchronization bundle
when the bundle starts up:

• DataAccess. This is a HOMER Core database implementation used to
communicate with the local database. A call could look likedataAccess.deleteSensor(id)
(dataAccess being the name identi�er for DataAccess).

• Con�gurationService. This class is used to access a con�guration �le lo-
cally stored on a HOMER instance. This �le contains many variables
related to the speci�c instance of HOMER that is running. We use it
to access the system id of the running HOMER instance, which can be
considered the �atId.

• Scheduler. A class used for making bundles runnable executing a run()
method at regular intervals. This is used to make to make the synchro-
nization process execute regularly at a speci�ed interval. It executes every
10 seconds when the app is in use i.e changes are happening to the house
plan, and every 300 seconds otherwise.

The HOMER synchronization bundle consists of just two classes; the main class
and a helper class. The main class contains the synchronization methods used for
the synchronization and is at the same time also the runnable class executing
the synchronization every 10 seconds. Additionally it implements the client
API from the server. The second class, DeviceConverter, is a helper class used
for device conversion between the Device entity de�ned in our system and the
DBSensor/DBActuator classes used by HOMER's local database.

60 Implementation

5.3.1 Synchronization methods

Synchronization takes place inside the run() method, called by the scheduler in
regular intervals. The contents of the run() method is shown below. Whenever
the run() method is called, synchronization takes place which involves calling
the following methods in order:

1. getAllFlaggedDevicesWithFlatIDFromServer();

2. deleteDevicesFromLocalDBMarkedForDeletion();

3. editOrAddDevicesFromLocalDBMarkedForEditing();

4. loadDevicesFromLocalDB();

5. prepareListForWebserver()

6. addSyncedListToWebserver();

7. webserverCleanUp();

It should be noted that because HOMER uses DBSensor and DBActuator, it not
only means that we need device conversion, but it also means that lot of code
has to be duplicated to �t for both types. Whenever possible, this duplicated
code has been left out of this report and rather described.

The �rst call,getDevicesWithFlatIDFromServer(), is a really simple method that
just calls the easyConfigurationAPIClient.getAllDevicesWithFlatIDSynchronous(flatid)
method of the client API and stores the result in a local array list as well as in
Hash Map for e�ciency purposes.

The code for deleteDevicesFromLocalDBMarkedForDeletion() can be seen in �g-
ure 5.8. The code iterates all the devices from the central server fetched in the
previous step, and checks if the delete �ag is set on them. If it is, we check if the
device is a sensor or an actuator and continue appropriately. The code is mir-
rored for sensors and actuators, since only method names and parameters di�er
- the structure of the code remains the same. After the device type check, we
want to �nd the device in the local database. This is however, not so easy since
HOMER cannot look up devices on a hardware id - only on it's own internally
generated database id. Therefore we fetch all devices of the appropriate type
from the local database and iterate them until we �nd a device with a matching
hardware id. Once this device has been found we delete it on the local database
by calling dataAccess.deleteSensor(dbIDForDeletion) (sensor is replaced
with actuator if we are dealing with an actuator). A detail is that on the device

5.3 HOMER synchronization bundle 61

that is about to be deleted, we check whether the oldHardwareId has been set.
If it has then we need to search the local database for the oldHardwareId instead
of the hardwareId.

Listing 5.8: deleteDevicesFromLocalDBMarkedForDeletion(): a method used
for synchronization

private void deleteDevicesFromLocalDBMarkedForDeletionOrUnlink(){

for(int i = 0;i<devicesWithFlatIDFromServer.size();i++){

Device currDevice = devicesWithFlatIDFromServer.get(i);

if(currDevice.getDeleteFlag() || currDevice.getUnlinkflag()){

if

(DeviceType.isSensor(DeviceType.getDeviceType(currDevice.getDevicetype())))

{

List<DBSensor> localDBSensors = dataAccess.getSensors();

Integer dbIDForDeletion = 0;

for(int j = 0;j<localDBSensors.size();j++){

Long idToCompareOn = currDevice.getHardwareid();

if(currDevice.getOldHardwareid() != null){

idToCompareOn = currDevice.getOldHardwareid();

}

if((long)localDBSensors.get(j).getHardwareId() == (long)

idToCompareOn){

//Bingo! we found the corresponding sensor in the

LocalDB

dbIDForDeletion = localDBSensors.get(j).getSensorId();

dataAccess.deleteSensor(dbIDForDeletion);

}

}

}else

if

(DeviceType.isActuator(DeviceType.getDeviceType(currDevice.getDevicetype())))

{

//mirrored code for actuators

}

}

}

62 Implementation

}

The editOrAddDevicesFromLocalDBMarkedForEditing() method is by far the
biggest and most complex of the synchronization methods, but is too big to
include here. Structurally it is very similar to the delete procedure described
above. The method iterates the device list retrieved from the server and if a
device has its edit �ag set, while neither of the unlink or delete �ags are set,
then we want to edit it in the local database. Again we need to �nd it the
locally stored copy in same way as described for the delete procedure because
we can't look up devices on their hardware id. When the device has been found,
we apply the changes and save the object in the database again. A problem we
might encounter, is if the device type of the device has been edited e.g. from an
actuator to a sensor. In this case we will not �nd the device, in the local sensor
table and instead we need to search the local actuator table. If the device could
not be found in either table, it means the device is newly created/linked and in
that case, it should be added to the local database.

5.3.2 Device Converter

The Device converter class is responsible for converting between the DBSen-
sor/DBActuator classes used by the HOMER database and the Device class
used by the rest of the system. This is done through 4 di�erent methods: De-
viceTODBSensor, DeviceTODBActautor, DBSensorToDevice and DBSensor-
ToDevice. The �rst 2 methods are mirrored for sensors/actuators and the last 2
methods as well. Conversion from a Device to a DBSensor/DBActuator is very
simple, since DBActuator and DBSensor contain all information that a Device
does plus more. Remember that a device just needs the hardwareId, device
protocol, device type and room type to be created. Therefore we simply create
a new instance of device and populate these 4 �elds with information from the
DBSensor/DBActuator. So conversion in this direction, involves throwing away
unneeded data.

Conversion from Device to DBSensor/DBActuator involves supplying some dummy
data to create the DBSensor/DBActuator, since those entities contain extra
�elds that the Device entity does not. The dummy data involves inputting
either null, an empty string, 0 or false in the unnecessary �elds. The DBSen-
sor/DBActuator contain a room id pointing to a Room entity, while a Device
just contains a room type. Therefore when translating from Device to DBSen-
sor/DBActuator we need to ensure that a room entity in the database exists
with a matching room type to the Device and if not then create a new room
entity with the given room type.

5.4 App 63

5.4 App

The app was developed for the Android platform and programmed in Java.
The app consumes the client API o�ered by the server using Retro�t 1.9, which
as mentioned, conveniently also takes care of serializing/deserializing objects
to/from JSON format.

The android app consists of 2 activities; the main activity and the checkin
activity. In addition to this, comes the 3 minor dialog activites; edit and add
device activity, as well as the select room activity. Each activity consist of some
number of visual elements, all stored in the resource folder of the android app
project, as well as the logics using those visual elements implemented with Java
in the activities.

5.4.1 Main Activity

As mentioned in the design section, the Main activity uses 5 methods from the
client API to communicate with the central server. Those methods are accessed
through the API adapter object created by Retro�t using the ServiceGenerator
class. An example is shown below where we instantiate an adapter object using
Retro�t and afterwards make an asynchronous call using the object 5.9.

Listing 5.9: Pattern of an API call using adapter object from Retro�t

//APIInterface.class : client API offered by server.

//API_BASE_URL : String defining the base URL of the server.

//DeviceListResponse : Response type for getAllDevicesWithFlatID()

call.

APIInterface clientProxy =

ServiceGenerator.createService(APIInterface.class,API_BASE_URL,

userName, userPassword);

clientProxy.getAllDevicesWithFlatID(currentFlatid, new

Callback<DeviceListResponse>() {

@Override

public void success(DeviceListResponse response,Response ignored) {

// Do stuff if call is succesful

}

@Override

public void failure(RetrofitError retrofitError) {

64 Implementation

Log.d(TAG, "Failure, retrofitError" + retrofitError);

}

});

On the left-side vertical pane we have a scan button and a button to create de-
vices in the system. All scan-related functionality was implemented using Zxing
QR-tag library borrowed from here (https://github.com/zxing/zxing).

3-layered Expandable list

The 3-layered expandable list on the right side of the UI is not a view sup-
ported natively by android. Android includes a normal expandable list, where
each group element in the list contains a list of children. In order to achieve
a 3-layered list, we had to put an expandable list inside another expandable
list as seen on �gure 5.2. Since this is not supported by any Android library,
all draw-related and size calculation-related methods that normally run in the
background and that one normally doesn't have to be concerned with, had to be
implemented from scratch. Consider the following scenario: The user expands
a level 1 group element called (A) and immediately all 6 of its children should
be shown, which means we need to calculate the size of those children plus the
group element. Then the user chooses to expand 3 of the 6 children and again we
recalculate the size and update the UI. Now if group element (A) is collapsed,
then we again need to recalculate the size and redraw the UI, but this time we
want to remember which children were already expanded. In this way, we are
saving the state of each group element, so next time (A) is expanded, then the
3 children will also automatically be expanded. A basic implementation of this
was borrowed from here http://mylifewithandroid.blogspot.co.at/2011/

02/3-level-expandable-lists.html. The implementation provides the back-
ground calculations done when lists are expanded/collapsed, as well as a cache
for storing the state of each element in the whole list. In this way we also avoid
creating new views all the time, which is an expensive operation on Android.

(https://github.com/zxing/zxing)
http://mylifewithandroid.blogspot.co.at/2011/02/3-level-expandable-lists.html
http://mylifewithandroid.blogspot.co.at/2011/02/3-level-expandable-lists.html

5.4 App 65

Group
elements

Child
elements

Level 1

Level 2

Level 3

Group
elements

Child
elements

Level 1

Level 2

Level 3

Figure 5.2: 3-layered Expandable List

The �rst level of the 3-layered expandable list, is a list of all the rooms in the
house, where the layout of each element, is de�ned by a simple xml �le with
just an android textView in it. The children of a room are devices, which each
are implemented as an expandable list. Each device element is de�ned by the
secondlevellayer_expandablelist.xml �le in the resource folder, and it includes
edit- and delete buttons as well as a sync status icon as can be seen on �gure
4.4 from the design section. The children of a device, are the properties linked
to that device i.e device type and protocol. When the user taps room, the
getGroupView method of that room element is called and needs a view returned
to it. First the cache is checked if it stores a view state for that group element.
If it doesn't, then a new expandable listView is created as well as an expandable
list adapter for this view. This expandable list will contain all the devices of
that room and will be saved in the cache. Almost the same procedure happens
when a device group element is pressed; again we check the cache and use the

66 Implementation

state it has, and if it has nothing stored then a new static list is created to
contain the properties of the device.

Figure 5.3 illustrates the role of an adapter (in our case a listView adapter).
Generally an adapter works as a middle man, between a view and its data
source, converting the data from the data source to UI elements usable by the
listView.

Figure 5.3: Adapter role (�gure borrowed from video source: https://www.

youtube.com/watch?v=N6YdwzAvwOA

When implementing buttons in android, it is usually good code practice to
declare the button listener statically inside the xml element de�ning the button,
and then implement the listener in the activity containing the button. This is
how it is done for the scan and add device manually buttons, as well as for the
checkin button in the checkin activity. However, child elements of expandable
lists are dynamically created, which means that the views for the devices are
not created before the room group element is clicked on. Therefore we cannot
implement button listeners for buttons on devices in the Main activity, since we
don't know how many buttons there, but moreover they have not been created
yet by the time the Main activity is initialised. Instead they should be initialized
when the getGroupView() method is called, in the second level expandable list
adapter. The getGroupView() method is where the list elements are created
�rst time, and it is also the place to implement logics concerning the UI of each
device group element, e.g whether the device should be greyed out (delete �ag
is set), or whether a spinner or a tick be should be shown next to the device
(edit �ag set or not set).

A device currently only has 2 properties connected to it, which might seem like
too little information on a device. This is because a lot of other information

https://www.youtube.com/watch?v=N6YdwzAvwOA
https://www.youtube.com/watch?v=N6YdwzAvwOA

5.4 App 67

on the device is indirectly shown through the UI. The delete �ag is re�ected in
whether or not the device group element is greyed out, while the value of the
edit �ag is re�ected in whether or not the spinner or a tick is shown next to
the device group element. There is no need to show the �at id of devices, since
they all belong to the �at that the app is currently checked into, which is shown
in the action bar. The room type of the device can be seen from the room it
is grouped under, and the hardwareId of the device is the name shown on the
device group element. A future plan is to force the user to provide a description
of the device when he adds it, and then use this description as the name of the
device instead of the hardwareId. In this case the hardware id of the device
should be shown as a device property when it is expanded.

5.4.2 Checkin Activity

The checkin activity is the start up activity in the app and displays a simple
screen with a text �eld and a button. The text �eld is for entering a �at id and
the button can then be pressed to log in to that �at. In the future a user/pass
combination should be to replace the checkin procedure, but for now this has not
been implemented. When the check in button is pressed ,the Main activity is
started and the �at id typed in by the user is passed along to the main activity,
to be shown in the action bar.

Besides from allowing the user to login, the checkin activity also shows a progress
dialog upon start up and performs a testConnection() call in the background
to the server. If the call is successful the dialog disappears, meaning that there
is connection to the central server. If connection to the server was successfully
initiated, the checkin activity then calls setSyncTimerFlag(true), indicating that
the app is now in use and that the sync timer should therefore be set to 10
seconds instead of 300 seconds.

5.4.3 Edit, Add & select room activities

The edit, add and select room activities are really very simply activities that are
very similar. They are data gathering forms implemented as a sub activities to
the Main activity. When the add device or edit device is called, the add device
or edit device activity is appropriately started and prompts the user for data.
The edit activity is used when the edit button is pressed, and it prepopulates the
data �elds with the data from the device that the user wants to edit, while the
add activity shows all the data �elds empty. When the user has entered/edited
the data he wants to, he presses the Done button and the data is passed to the

68 Implementation

main activity through an android intent. The data is picked up by the main
activity in its onActivityResult() method; request code 1 is for the add activity,
request code 2 is for the edit activity and request code 3 is for the select room
activity.

Spinners have been implemented to select device type and device protocol. This
prevents erroneous user input, and helps the technician to know what his choices
are. Implementation wise, it means that the app needs to store all possible device
type values, as well as device protocol values. If a protocol or device type is
added or removed from the system it needs to be re�ected in this list.

As mentioned in the design section, the add or edit activities should not be
used at all if private users are using the app. Instead the scan function should
completely con�gure the device in the system, without the user having to know
anything about what the properties of the device are. This improves the user
experience tremendously for a private user and nicely encapsulates the system
preventing erroneous input or even malicious input.

Chapter 6

Evaluation

The implemented system will be evaluated based upon the requirements dis-
cussed in section 3.5. For each of the 4 components, the requirements to them
will be discussed and additionally the quality parameters will be addressed as
well.

6.0.4 Central server

Figure 6.1 shows the requirements for the central server.

70 Evaluation

Component Requirement Solution

Store devices in a database An implemented web server database has a
table for storing devices

Provide clients access
 to devices in a usable

manner

A clearly defined interface with uniform endpoints,
have been defined and implemented for communication

between the central server and client controllers

Add, delete, edit, link and
unlink devices

The server has implemented these functions and clients
can access them through the client API

Library of common objects
The server includes a common package with common

entities and response/request wrappers for itself and all
clients to use

Central
Server

Figure 6.1: Requirements to the central server

All of the requirements for the server have been satisfactorily ful�lled - it is
capable of doing what it was planned to do. In addition to meeting the require-
ments for it, it has an extendible structure, because the services on it have been
decoupled to a high degree. If a developer wants to implement a new call, he
simply de�nes it in the interface and implements the call in the APIServiceImpl
class, where all the logic should be placed. If the call needs database access, he
can use the database functions already de�ned in the DeviceService interface, or
de�ne a new DeviceService call and implement it in the DeviceServiceDAOImpl
class.

Besides from just the services related to adding, deleting, linking, unlinking and
editing, the server also includes many utility and helper calls that are convenient
when implementing new services.

Stress tests were conducted by making rapid asynchronous calls from the app
to the server and from a simple shell to the server. Table 6.1 shows the results
between the app and the server. The interval time is the amount of time the
calling thread waits between each call, and the rest of the columns show the
amount of calls conducted.

71

Table 6.1: Stress testing the app and the central server

Interval 5 calls 20 calls 100 calls 1000 calls
0 ms App crashes App crashes App crashes App crashes
50 ms No crash App crashes App crashes App crashes
100 ms No crash No crash No crash No crash

Table 6.1 shows that the app is the weak point, between the server and the app.
Making 5 or more amount of asynchronous calls with no delay in between will
crash the app, because the calls are asynchronous and therefore the amount of
threads will pile up and either exceed the amount of cores allowed by the JVM,
or cause the app to run out of available memory. Only when enough delay is
inserted (100 ms) can the already called asynchronous calls be released from
threads fast enough to allow new calls.

Table 6.2: Stress testing the central server with a shell

Delay 5 calls 20 calls 100 calls 1000 calls
0 ms No crash No crash No crash No crash
50 ms No crash No crash No crash No crash
100 ms No crash No crash No crash No crash

Table 6.2 shows us that the server basically never crashes when the calls are
coming from a simple shell. Even with no interval at all the server never crashes.
This could be because JAX-RS has built-in �ood protection. However, it should
be noted, that the stress tests was done on two computers on the same network.
The latency will be higher when making calls over the internet.

Table 6.3 and �gure 6.2 show the space consumption of the device table in
relation to the amount of devices stored in it.

Table 6.3: Space consumption and amount of devices stored in database

Devices 0 50 100 200 400 800 ... 12000 18000 32000 48000 64000
Space (kB) 16 16 48 64 80 128 ... 1500 2500 4500 6500 8500

72 Evaluation

Figure 6.2: Space consumption in relation to amount of devices stored in
database

0 10 20 30 40 50 60 70
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

Devices stored in database x1000

S
p
a
ce

co
n
su
m
p
ti
o
n
(k
B
)

Despite the plateaus, the space consumption does seem to grow linearly with
the amount of devices. The plateaus on the graph probably occur due to lots
of extra memory being allocated to the table to avoid reallocation too often.
This is because the reallocation is an expensive operation, in which (depending
on the speci�c implementation) the size of the current table is doubled and
afterwards all the elements from the full old table, are copied to the new table.
All space consumption tests were carried out by importing a standard device
many times into the SQL database using the PHPMyadmin front end. All space
consumption values were also read by querying PHPMyadmin for the size of the
Device table.

6.0.5 App

Figure 6.3 shows the requirements for the Android app.

73

Component Requirement Description

Log in to a house Technician can checkin to any house he wants to, but
no login or authentication is currently implemented

Clearly present devices of the
house currently checked into in a

presentable manner

A 3-layered expandable list view has been implemented
on the app to provide good user experience. Users

can easily get an overview of the devices in the house
and the data associated with each device

Link existing devices by
scanning a QR tag

Pressing the "Scan" button on the app will initialize a
scan, that upon completion will prompt the user for a room
to add the device to. Afterwards it is automatically added

to the central server, fully configured and linked to the
house.

Unlink a currently linked
device

 Each device displayed on the app has a thrash can
button on them, which if pressed will unlink the

device from the house currently logged into.

Allow technicians to add
devices manually

A button below the scan button, allows technicians to
manually add a device. Pressing this button brings up the

device data gathering form that he fills out. When he is
done he presses "Done" and the device will be added to

the central server linked to the house the app is
logged into.

Allow technicians to edit
devices manually

Each device displayed on the app, has an edit button
on them, which brings up the device data gathering form

pre-populated with the data from the selected device.
When he is done editing the device he presses "Done"

and the changed are stored on the central server

Remain synchronized with
the central web server

A button has been implemented on the app, that reloads
all devices linked to the house, that the app is currently

logged into.

App

Figure 6.3: Requirements to the app

A proper login authentication mechanism was not implemented due to time
constraints. A simple checkin procedure replaces it. An important feature
about the app is that the user quickly can get an overview of the devices in
the house and where they are placed. This has been achieved by using the 3-
layered expandable list, grouping devices together under rooms they belong to
and remembering the collapsed/expanded states of the list elements. Users are

74 Evaluation

able to get detailed information about the devices present in the house, and they
can see the state of the synchronization in the system from the UI. The names
of devices displayed on the app, are currently simply their hardware id's. This
could be improved by forcing customers to give a description of the device when
they add/link it to the house. There is also plenty of room for improvement
when it comes to the graphics of the app e.g better looking buttons, boxes,
layouts and frames, but for a prototype the user experience has reached an
acceptable level.

The synchronization for the app has been designed and implemented with AIT's
needs in mind, which were a single technician going out into houses and setting
them up. For this, a manual update procedure was su�cient i.e. tapping the
refresh button to sync the app. This does not work very well if multiple users
are logged into a house and are working simultaneously on con�guring the house
plan. In this case synchronization must happen instantly every time an update
happens, to ensure that users are always seeing the latest state of the system.
Automation of the sync procedure could be done by having a background thread
on the app and webpage subscribe to changes from the server, meaning that
we no longer have a passive server, but rather one that noti�es clients about
changes. However, as the sync function works now, it does not crash the system
if a user has not synced the app in a while and tries performing an operation
on a device that does not exist or has been updated. The database operation
simply fails and execution continues, without anything happening on the central
server. Additionally the app will call refresh, after execution from the failed call
returns to the app and the user will then see the updated state.

6.0.6 Webpage

Figure 6.4 shows the requirements for the webpage.

75

Component Requirement Solution
Present all devices in the system

to the technician
Devices and their associated information are displayed in

a grid

Display device QR tags QR images are not displayed but simply generated and
put in a folder

Allow technicians to edit
devices

Clicking on a device will bring up a device form pre-
populated with the data related to it. From here the device
data can be edited and afterwards the "Save" button will

save the changes on the central serve

Allow technicians to add
devices to the system

The same device form and workflow as for editing is used
for adding new devices. The data form will start out empty

Allow technicians to delete
devices from the system

Selecting a device and then clicking the delete button will
permanently delete the device from the system

Remain synchronized with
the central web server

Refeshing the webpage will reload the device list from the
central server

Webpage

Figure 6.4: Requirements to the webpage

The basic functionality on the webpage works i.e. adding devices to the system,
deleting them from the system and editing them. However, the UI is very
rudimentary and could use a lot of extra work. Whenever a new device is
created and added to the system, a QR code is created storing the hardware id
of the device. The QR tag is not displayed on the webpage, but instead simply
stored in a folder. Like with the app, syncing could also be automated where
the webpage subscribes to changes from the central server.

6.0.7 HOMER synchronization bundle

Figure 6.5 shows the requirements for the HOMER bundle.

76 Evaluation

Component Requirement Solution
Add devices to HOMER's local

DB that the central server has, but
HOMER does not.

Update devices in HOMER's
local DB with changes from

devices on the central server
Delete devices in HOMER's

local DB that either have been
marked for deletion or marked
for unlink by the central server

Upload any devices to the
central server from HOMER's

local DB that the central
server does not already have

HOMER
Bundle

Every time the synchronization procedure on the HOMER
bundle runs, it reloads all devices from the central server.

These devices have flags set on them, indicating what
changes to carry out in HOMER's local DB. These

changes are carried out and afterwards devices on the
local HOMER DB not contained in the original list loaded

from the central server, are uploaded to the central server.
Lastly a clean-up procedure is initiated on the central

server to reset flags and old hardware id's.

Figure 6.5: Requirements to the HOMER bundle

The HOMER bundle is capable of doing exactly what it was planned to do
and is developed as an OSGI bundle, deployable alongside the HOME Core
bundles running in a house. We have tried to reduce the amount of devices
being transferred between the central server and HOMER as much as possible,
but we have not achieved a linearity between the amount of devices that needs
synchronization and the actual number of transferred devices. Neither could
this be achieved if we had used timestamps in the system and the reason is
given here.

Say we have a set A with 100 elements in it and another set B with 100 ele-
ments in it (not necessarily the same) and that these sets should always remain
synchronized. If only 1 element changes in one set, we don't want to transfer all
the elements to the other set for synchronization, but rather only the a�ected
element. A timestamp solution, where all elements are marked with timestamps,
achieves this by looking at the timestamp of all elements and only transferring
the elements that have timestamps newer than last time a sync took place. Our
implemented solution achieves the same, since it will only transfer elements that
have had their �ag set. Elements that have been synced with the other set, will
have had their �ags reset and will therefore not be transferred next time a sync
procedure takes place. So both of these solutions, will transfer only the a�ected
elements from set A to set B. The problem arises because we want the synchro-
nization to also happen in the other direction i.e set B also needs to transfer
changed elements to set A. Set B does not know which elements set A has, it

77

only knows that set A de�nitely has the 1 element that was already transferred.
Therefore set B will need to transfer all 99 elements to set A to ensure that A
is not missing any elements from B.

The problem could be solved by relaxing the requirements for the synchroniza-
tion a bit. Instead of requiring that synchronization is done in both directions
on every sync procedure, we could instead only sync in both directions when the
system starts up. In this way we would have ensured, that all devices that have
been pre-deployed on HOMER will have been transferred to the central server
in the beginning. Afterwards, it is a fair to assume, that devices will only be
added to the system through the central server, making synchronization from
HOMER to the central server unnecessary. A balance between the approaches
might prove fruitful i.e once pr. 24 hours a full sync procedure in both directions
will be done.

78 Evaluation

Chapter 7

Conclusions

A cloud architecture for smart homes running the HOMER platform by AIT,
has been introduced and implemented. The architecture achieves remote access
to data stored on local servers in smart homes, by foregoing the usage of port
forwarding, VPN's or other remote access techniques and instead storing all
smart-home related data on a central database server.
The implemented system consists of 4 components; a central web server with a
database, an OSGI bundle running on the local server in the smart home and
an app and a webpage to interact with the server. The two clients can log into
a house and display all the devices present in that house. Using the clients
a user can add devices to the house logged into, delete devices from it, edit
devices in it and link or unlink devices to the house. These changes will then
be re�ected on the central server. The bundle running on the local server will
frequently synchronize the devices on the local server, with the devices on the
central server. This ensures that the actions done on the client controllers, are
re�ected on the local server running in the smart home. Users are able to scan
a QR code on devices, whereafter the device will automatically be con�gured in
the system.
Clients communicate with the server through a client API, which is implemented
on the server as a RESTful service oriented architecture. This decouples clients
and servers to a high degree, making it easy for software developers to maintain
the system. Development on clients and servers, can happen simultaneously and
almost independently of one another.

80 Conclusions

The work done in this thesis relies on an application layer platform running in
houses, enabling the developer to abstract from the underlying protocols. Such
an application layer has been the subject of much research of the last decade
and for this project the HOMER platform developed by AIT was used.

7.1 Future work

The biggest missing piece in this thesis, is the interaction between devices,
which was deliberately omitted from the project. The system has been built
to manage devices, but the system does not store any interaction con�guration
between the devices e.g. motion sensor A should turn on lamp B. When this
has been implemented, the system would be complete and ready to be tested in
real houses.

In the future the system shouldn't be meant to aid technicians in setting up
houses, but actually allow private users to set up their own house. Currently
the app allows the technician to create, add and edit devices in the system.
These functions should be removed, only allowing the private user to link and
unlink devices from/to the house - never to edit or add devices. Furthermore he
should only be able to link a device to the house, by using the scan function. This
nicely encapsulates the system preventing faulty user input and it also spares
the user the need to know about device protocols, device types, hardware id's
etc, improving the user experience.
However, before implementing these changes, the app would need to be made
even more user friendly than it already is. An authentication mechanism is also
needed for users to log into a house.

Lastly, it would be interesting to actually move the running HOMER instance
from the local server, onto the the cloud, so the smart home software is actually
running on the cloud server, rather than on the local server. The disadvantage
is if the internet in the house is not working, then the smart home no longer
works. To solve this, the cloud could be used as the primary source for running
the smart home software, while having a backup stored on the local server.

Appendix A

Source code

The source code can be found on Github at https://github.com/Jenne577/
Easyconfiguration.git.

https://github.com/Jenne577/Easyconfiguration.git
https://github.com/Jenne577/Easyconfiguration.git

82 Source code

Bibliography

[4Co13] 4Control. 4 control warns users against port forward-
ing. URL: http://www.cepro.com/article/control4_warns_

dealers_about_port_forwarding, 2013. [Online; accessed 22-
January-2016].

[Ash13] Skip Ashton. Zigbee's new ip speci�cation for ipv6
6lowpan wireless network designs. URL: http:

//www.embedded.com/design/connectivity/4419558/

Zigbee-s-new-IP-specification-for-IPv6-6LoPAN-wireless-network-designs,
2013. [Online; accessed 22-January-2016].

[BMST10] Jeppe Brønsted, Per Printz Madsen, Arne Skou, and Rune Tor-
bensen. The homeport system. In Consumer Communications and
Networking Conference (CCNC), 2010 7th IEEE, pages 1�5. IEEE,
2010.

[Car15] John Carlsen. Home automation systems review! URL: http://
home-automation-systems-review.toptenreviews.com/, 2015.
[Online; accessed 22-January-2016].

[CGH+02] Ed Callaway, Paul Gorday, Lance Hester, Jose A Gutierrez, Marco
Naeve, Bob Heile, Venkat Bahl, et al. Home networking with ieee
802. 15. 4: a developing standard for low-rate wireless personal area
networks. IEEE Communications magazine, 40(8):70�77, 2002.

[DGV09] Simon Duquennoy, Gilles Grimaud, and Jean-Jacques Vandewalle.
The web of things: interconnecting devices with high usability and
performance. In Embedded Software and Systems, 2009. ICESS'09.
International Conference on, pages 323�330. IEEE, 2009.

http://www.cepro.com/article/control4_warns_dealers_about_port_forwarding
http://www.cepro.com/article/control4_warns_dealers_about_port_forwarding
http://www.embedded.com/design/connectivity/4419558/Zigbee-s-new-IP-specification-for-IPv6-6LoPAN-wireless-network-designs
http://www.embedded.com/design/connectivity/4419558/Zigbee-s-new-IP-specification-for-IPv6-6LoPAN-wireless-network-designs
http://www.embedded.com/design/connectivity/4419558/Zigbee-s-new-IP-specification-for-IPv6-6LoPAN-wireless-network-designs
http://home-automation-systems-review.toptenreviews.com/
http://home-automation-systems-review.toptenreviews.com/

84 BIBLIOGRAPHY

[GTW10] Dominique Guinard, Vlad Mihai Trifa, and Erik Wilde. Architecting
a mashable open world wide web of things. ETH, Department of
Computer Science, 2010.

[GYYL09] Khusvinder Gill, Shuang-Hua Yang, Fang Yao, and Xin Lu. A
zigbee-based home automation system. Consumer Electronics,
IEEE Transactions on, 55(2):422�430, 2009.

[HMK+05] Sumi Helal, William Mann, Je�rey King, Youssef Kaddoura, Er-
win Jansen, et al. The gator tech smart house: A programmable
pervasive space. Computer, 38(3):50�60, 2005.

[Hom13] HomeSeer. Introducing myhomeseer remote access service! URL:
http://board.homeseer.com/showthread.php?t=167137, 2013.
[Online; accessed 22-January-2016].

[Hom16] HomeSeer. Homeseer supported protocols. URL: http://www.

homeseer.com/faq.html, 2016. [Online; accessed 22-January-
2016].

[Jbo16] Jboss. Jax-rs 2.0 client api. URL: https://docs.jboss.

org/resteasy/docs/3.0-beta-3/userguide/html/RESTEasy_

Client_Framework.html, 2016. [Online; accessed 22-January-
2016].

[Kas14] Jacob Kastrenakes. The dumb state of the smart home.
URL: http://www.theverge.com/2014/1/24/5336104/

smart-home-standard-are-a-mess-zigbee-z-wave, 2014.
[Online; accessed 6-November-2015].

[KBY+12] Ji Eun Kim, George Boulos, John Yackovich, Tassilo Barth, Chris-
tian Beckel, and Daniel Mosse. Seamless integration of heteroge-
neous devices and access control in smart homes. In Intelligent
Environments (IE), 2012 8th International Conference on, pages
206�213. IEEE, 2012.

[KP12] Andreas Kamilaris and Andreas Pitsillides. A restful architecture
for web-based smart homes using request queues. Technical report,
Citeseer, 2012.

[Mer14] Rick Merritt. Nest nurtures new iot protocol. URL: http://www.
eetimes.com/document.asp?doc_id=1323094, 2014. [Online; ac-
cessed 22-January-2016].

[MTMT06] Vittorio Miori, Luca Tarrini, Maurizio Manca, and Gabriele
Tolomei. An open standard solution for domotic interoperability.
Consumer Electronics, IEEE Transactions on, 52(1):97�103, 2006.

http://board.homeseer.com/showthread.php?t=167137
http://www.homeseer.com/faq.html
http://www.homeseer.com/faq.html
https://docs.jboss.org/resteasy/docs/3.0-beta-3/userguide/html/RESTEasy_Client_Framework.html
https://docs.jboss.org/resteasy/docs/3.0-beta-3/userguide/html/RESTEasy_Client_Framework.html
https://docs.jboss.org/resteasy/docs/3.0-beta-3/userguide/html/RESTEasy_Client_Framework.html
http://www.theverge.com/2014/1/24/5336104/smart-home-standard-are-a-mess-zigbee-z-wave
http://www.theverge.com/2014/1/24/5336104/smart-home-standard-are-a-mess-zigbee-z-wave
http://www.eetimes.com/document.asp?doc_id=1323094
http://www.eetimes.com/document.asp?doc_id=1323094

BIBLIOGRAPHY 85

[Pö15] Marcus Pöhls. Retro�t 2 � upgrade guide from 1.9. URL: https:
//futurestud.io/blog/retrofit-2-upgrade-guide-from-1-9,
2015. [Online; accessed 22-January-2016].

[PRL+08] Thinagaran Perumal, Abdul Rahman Ramli, Chui Yew Leong,
Shattri Mansor, and Khairulmizam Samsudin. Interoperability for
smart home environment using web services. International Journal
of Smart Home, 2(4):1�16, 2008.

[Quo14] Quora. Apple homekit protocol
stack. URL: https://www.quora.com/

What-protocol-does-HomeKit-use-to-communicate-with-its-devices,
2014. [Online; Online; accessed 22-January-2016].

[Sch07] Jurgen Schmidt. How skype & co. get round �rewalls.
URL: http://www.made4biz-security.com/log/2007/02/

jrgen-schmidt-hole-trick-how-skype-co.html, 2007. [Online;
accessed 22-January-2016].

[Sma16] SmartThings. Smartthings speak 3 protocols. URL: https://www.
smartthings.com/compatible-products, 2016. [Online; accessed
22-January-2016].

[VF02] Dimitar Valtchev and Ivailo Frankov. Service gateway architecture
for a smart home. Communications Magazine, IEEE, 40(4):126�
132, 2002.

[Wac02] Kenneth Wacks. Home systems standards: achievements and chal-
lenges. Communications Magazine, IEEE, 40(4):152�159, 2002.

[Wik15a] Wikipedia. Iso/ieee 11073 � wikipedia, the free encyclopedia, 2015.
[Online; accessed 6-November-2015].

[Wik15b] Wikipedia. Videotape format war � wikipedia, the free encyclope-
dia, 2015. [Online; accessed 6-November-2015].

[WKLA13] Ehsan Ullah Warriach, Eirini Kaldeli, Alexander Lazovik, and
Marco Aiello. An interpaltform service-oriented middleware for the
smart home. International Journal of Smart Home, 7(1):115�141,
2013.

[Wro14] Daniel Wroclawsk. We're losing the war for the smart home
- our tech is smarter than ever, so why is the industry so
dumb? URL: http://smarthome.reviewed.com/features/

were-losing-the-war-for-the-smart-home, 2014. [Online; ac-
cessed 6-November-2015].

https://futurestud.io/blog/retrofit-2-upgrade-guide-from-1-9
https://futurestud.io/blog/retrofit-2-upgrade-guide-from-1-9
https://www.quora.com/What-protocol-does-HomeKit-use-to-communicate-with-its-devices
https://www.quora.com/What-protocol-does-HomeKit-use-to-communicate-with-its-devices
http://www.made4biz-security.com/log/2007/02/jrgen-schmidt-hole-trick-how-skype-co.html
http://www.made4biz-security.com/log/2007/02/jrgen-schmidt-hole-trick-how-skype-co.html
https://www.smartthings.com/compatible-products
https://www.smartthings.com/compatible-products
http://smarthome.reviewed.com/features/were-losing-the-war-for-the-smart-home
http://smarthome.reviewed.com/features/were-losing-the-war-for-the-smart-home

86 BIBLIOGRAPHY

[Zig15] ZigBee. New zigbee ipv6 protocol. URL: http://www.zigbee.org/
zigbee-for-developers/network-specifications/zigbeeip/,
2015. [Online; accessed 22-January-2016].

http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeeip/
http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeeip/

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problem definition
	1.2 Contributions
	1.3 Thesis overview

	2 State of the art
	2.1 Research in the Home Automation field
	2.2 Home automation market
	2.3 Technological background for smart homes
	2.3.1 Physical/Datalink layer
	2.3.2 Network and Transport layers
	2.3.3 Application and Vendor layer

	2.4 High level architecture of a smart house
	2.5 What is HOMER

	3 Analysis
	3.1 Detailed problem definition
	3.2 Advantages and disadvantages of a local server
	3.3 Achieving remote access to the local server
	3.3.1 Moving the architecture online

	3.4 Synchronization
	3.5 Requirements
	3.5.1 Users
	3.5.2 Requirements & quality parameters

	4 Design
	4.1 Overall system architecture
	4.2 Central server
	4.2.1 Client API & server interface
	4.2.2 Database
	4.2.3 Commons library
	4.2.4 Device entity

	4.3 HOMER bundle
	4.3.1 Synchronization scheduler
	4.3.2 Device conversion

	4.4 Mobile Android Application
	4.4.1 Server-app communication
	4.4.2 User interface

	4.5 Web page
	4.6 Synchronization
	4.6.1 Setting flags
	4.6.2 Synchronization procedure

	5 Implementation
	5.1 Development tools
	5.2 Central server
	5.2.1 Server interface & client API
	5.2.2 JPA Persistence bundle
	5.2.3 Common entities
	5.2.4 DAO Implementation
	5.2.5 Server interface implementation

	5.3 HOMER synchronization bundle
	5.3.1 Synchronization methods
	5.3.2 Device Converter

	5.4 App
	5.4.1 Main Activity
	5.4.2 Checkin Activity
	5.4.3 Edit, Add & select room activities

	6 Evaluation
	6.0.4 Central server
	6.0.5 App
	6.0.6 Webpage
	6.0.7 HOMER synchronization bundle

	7 Conclusions
	7.1 Future work

	A Source code
	Bibliography

