
Cryptographic Access Control in a
Cloud Based File Storage

Environment

Mads Lundt & Kristian Flamsted

Kongens Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract

The goal of this master thesis is to look at the possibility to develop a cloud
based file storage system. This system should include a local client and a remote
file storage system, using MediaWiki.
The purpose is to explore whether it is a possibility to use cryptographic ac-
cess control, to make sure only people with the correct cryptographic keys, are
getting the right access. Avoiding the use of any regular access control meth-
ods that already exist. When using cryptographic access control the all data
is encrypted already at the client and this allows the trust level to the server
to be much lower than in any regular cloud file storage setups. This is because
nobody should ever be able to read the data at any time if they do not have
the correct keys. When protecting the data using cryptographic access control
a combination of symmetric- and asymmetric cryptography is used.

The possibility of sharing files among different users is also a part of this project,
and this can be done using key rings. Each user have access to key ring, that
includes keys for both files and for other key rings and these can be shared. The
system is supposed to automatically create these keys when creating files, but
sharing is something a user does manually.

The current prototype implemented shows that it is possible to create a cloud
based file storage using MediaWiki. However, the current application is not
using FUSE to automatically create keys when adding files due to errors. The
reason is that the XML parser was not working properly with FUSE. However,
as it was close to a solution so the FUSE library have been saved for possible
future implementations. It is possible to share files in between users, but this
needs to be done manually.
A risk analysis has been made showing possible attacks, how they are done and

ii

how big of a risk these are.

Resume

Målet for denne afhandling er at undersøge mulighederne for at udvikle et cloud
baseret fil system. Hensigten er at bruge FUSE, som den lokale klient for at
skabe et fil system og herefter bruge MediaWiki som den eksterne server, hvor
filerne gemmes.
Formålet med projektet er at se om det er muligt kun at bruge kryptografisk
adgangskontrol for at sørge for det kun er folk med de korrekte kryptografiske
nøgler der for de rette adgange. Den overordnet idé er helt at undgå allerede
eksisterende adgangs kontroller. Når der bruges kryptografisk adgangskontrol
kan det sikres at alt data bliver krypteret på den lokale klient, hvilket betyder
at man ikke behøver at stole på serveren, som ved normale cloud baseret fil
systemer. Dette er fordi at uanset hvor dataen ender, vil det kun være dem med
de rette nøgler der kan læse dataen. I kryptografisk adgangskontrol bruges der en
kombination af symmetrisk- og asymmetrisk kryptografik for data beskyttelse.

Det skal også være muligt at dele filer i mellem flere brugere og til dette formål
bruges der nøgle ringe. Hver bruger har deres egen nøglering, indeholdende en
andre nøgler, der både kan være nøgler til filer eller links til andre nøgleringe.
Idéen er at systemet automatisk skal oprette nøgler for hver fil, som brugeren
laver dem. Disse kan deles mellem brugererne, men dette skal gøres manuelt.

Den nuværende implementeret prototype, viser at det muligt at lave et cloud
baseret fil system ved brugern af MediaWiki. Der bliver dog ikke gjort brug af
FUSE til automatisk at oprette nøgler, da dette biblotek har givet fejl. Grunden
til dette var at XML parseren ikke fungerede sammen med FUSE. Da det har
været tæt på at FUSE problemerne kunne løses, er kildekoden til dette blevet
gemt, som en del af projektet. Det er muligt i denne implementering at dele filer
mellem brugere, men dette kræver en række manuelle operationer.

iv

Derudover er der lavet en risiko analyse hvor mulige trusler til systemet er
gennemgået og hvor stor en trussel disse er til systemet.

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an M.Sc. in Engineering.

The thesis deals with cloud based file storage and was done in the period from
January 4th, 2016 to June 4th, 2016 and was supervised by associate professor
Christian D. Jensen.

Lyngby, 04-June-2016

Mads Lundt & Kristian Flamsted

vi

Acknowledgements

We would like to thank our supervisor Christian D. Jensen for help, advise and
for giving great inputs and ideas during this project.

viii

Contents

Abstract i

Resume iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Problems . 2
1.2 Report Structure . 2

2 Theory 5
2.1 General Cryptography . 5
2.2 Access Control . 13
2.3 Key Rings . 18
2.4 Key Sharing . 19
2.5 MediaWiki . 20
2.6 Existing Encrypted File Systems 25
2.7 FUSE . 28
2.8 Key storage . 31
2.9 Summary . 32

3 Requirements 33
3.1 The Application . 33
3.2 Use Cases . 34
3.3 Cryptographic Requirements . 40
3.4 System requirements . 42
3.5 Summary . 47

x CONTENTS

4 Design 49
4.1 Overall System Design . 49
4.2 Key handling . 51
4.3 Integration . 51
4.4 Cryptography Design . 72
4.5 Summary . 73

5 Implementation 75
5.1 Overview of Implementation . 75
5.2 Encoding . 77
5.3 File stream . 77
5.4 Unique identifier . 78
5.5 Cryptography Library . 78
5.6 Key Structure . 83
5.7 Key sharing . 87
5.8 Implementation description . 88
5.9 Summary . 100

6 Results 101
6.1 Testing . 101
6.2 Threats to the system . 103
6.3 Future Work . 107
6.4 Summary . 108

7 Conclusion 109

A Appendix 111
A.1 Usage Guide . 111
A.2 Performance test . 119

Bibliography 123

Chapter 1

Introduction

The cloud is everywhere and more applications are turning into cloud based
applications. The reason for this is that people need their pictures, videos and
so on, available at any time and everywhere. Cloud based file storage solutions
is a thing that has arrived to stay, but the data needs to be protected, while
sending, receiving and storing it as it should not be available to any other than
the owner(s). However, the owners and administrators of the data should be
able to share it with whomever they want to. Meaning it should be available to
any person they desire.
To solve the problem of cloud based file storage it is suggested to use crypto-
graphic access control combined with proper key management, to make sure
that only the correct users can get access to the data. This involves encryption
of the data before it is transmitted to the remote server. This means that the
data stored on the remote server is always encrypted.
In this project the cloud based file storage problem is solved using MediaWiki
as the remote server storage together with proper key management. This gives
an environment that is easy to setup for everyone as well as a very clean cryp-
tography solution. All data handled is encrypted already at the client which
means that authentication of the server is not necessary.
From this project it has been learned that a cloud based file storage is a really
complex problem involving many sub problems. Even when creating a simple
clean solution it gets complex with a lot of needed choices to be made.

2 Introduction

1.1 Problems

The goal of this project is to create a very easy to setup cloud based file stor-
age solution. Combining cryptographic access control together with proper key
management giving a very clean cryptography setup. MediaWiki should be used
for the remote storage and FUSE for the local file system. The goals/problems
of the project can be described as follows:

• Implement a cloud based file storage using MediaWiki backend.
• Uploading and downloading data to and from the MediaWiki
• Protect the data, so it is only available to the owner(s).
• Implement a way for a user to share files with another user, without a

third part getting access to the same data.
• Implement a client file system using FUSE.

1.2 Report Structure

The rest of this report includes the following chapters.

Theory The theory chapter is where all the basic knowledge needed for this
project is outlined. It is build up by eight different sections. The general
cryptography section including symmetric- and asymmetric cryptography as
well as hashing. The access control session researching different access control
methods. The next section, key rings, gives the idea of how the key rings
works, followed by how to share keys. MediaWiki is looked into next followed
by existing encrypted file systems as well as FUSE.

Requirements This chapter is to define all the different requirements needed
for the application. This is both functionality- and security requirements.

Design This chapter is used to design the prototype of the application, which
then afterwards can be implemented. The cryptography choices needed is also
done here.

Implementation This chapter shows how the already outlined application de-
sign has been implemented.

Results The results chapter is where the different tests needed are outlined
and how they went. Furthermore, the security evaluation of the application is

1.2 Report Structure 3

done here and afterwards the future work that could be done on this project is
discussed here as well.

Conclusion The conclusion chapter is where the whole project is concluded
and explains why this projects is a solution to the outlined problems.

Appendix The appendices includes a usage guide and performance tests.

4 Introduction

Chapter 2

Theory

When implementing the Cloud File storage, a lot of basic information is re-
quired. The purpose of the theory chapter is to get all this information, to
easier setup the requirements later. Especially general cryptography subjects
such as symmetric, asymmetric and hashing are needed to ensure the goals of
the project. However, cryptography is not the only things essential for this. The
needed tools such as FUSE, MediaWiki and more will be covered as well.

2.1 General Cryptography

Cryptography is an important aspect in this project, because it only allows
people with the secret, to the data, to read or write to it. Cryptography is using
mathematics to encrypt and decrypt data. When encrypting it turns plain text
into unrecognizable gibberish. This outcome is called cipher text. When reading
the encrypted data there is a need to reverse the process of encryption and this
is called decryption and turns the cipher text back into plain text.

The main focus for this project is to make sure only the owner(s) of the file
is able to read and write to the file. For this to happen a deeper analysis of

6 Theory

different cryptography methods have to be made.

2.1.1 Symmetric Cryptography

In symmetric cryptography the keys used for encryption and decryption are
the same. It is possible for the keys to be identical or to just have a simple
transformation between them. This means that the encryption and decryption
algorithms are basically identical, except that the decryption process is done in
the reverse order than the encryption.
Symmetric cryptography can use either stream ciphers or block ciphers.

2.1.1.1 Stream Ciphers

A stream cipher combines plain text with a pseudo random cipher digit stream
(key stream). This means that each digit in the plain text is encrypted one at
a time with the corresponding digit in the key stream.

• Stream ciphers are typically faster.
• They typically require less memory because it only works on one digit at

a time.
• Not as susceptible to noise in transmission because each digit is encrypted

individually.
• Does not need padding.

2.1.1.2 Block Ciphers

A block cipher is operating on fixed-length groups (blocks). This means that
it takes a block of plain text and encrypts it to a block of cipher text. It is
important to mention that it only operates on complete blocks. If a block is not
complete some generated padding is added to the block to complete it. Some
advantages over stream ciphers are:

• Easier to implement correctly.
• Depending on mode, it can provide integrity protection in addition to

confidentiality.

2.1 General Cryptography 7

This does not mean that stream ciphers are better than block ciphers or the
other way around. Choosing between stream and block ciphers depends on the
problem. A stream cipher would for example usually be better when the data is
unknown or continuous (network stream) and a block cipher would usually be
better where the amount of data is known from the beginning.

2.1.1.3 AES

Advanced Encryption Standard (AES) [NISb] has been established as one of
the most used standards when doing symmetric encryption / decryption. The
algorithm is used to make data impossible to use for people that do not have
the key. AES have a fixed block size of 128 bits, and the key sizes possible are:
128, 192 and 256.
The cipher works with four simple methods: SubBytes, ShiftRows, MixColumns,
and AddRoundKey.
These will only be briefly described and a more technical description can be
found in the NIST paper (see [NISb]) section 5.

SubBytes
The SubBytes method is a substitution of bytes, where all bytes are transformed
using a substitution table, also called S-box, that should be possible to invert.
The inverted S-box is used for decryption. The byte are substituted by looking
up in the S-box to see what the byte should be substituted with.

ShiftRows
The ShiftRow operation runs trough the block and simply shift all the rows
depending on which row the operation is currently at. The first row is not
shifted, the next row is shifted by one, third row by two and so on and all
shifting of bytes is to the left in the byte array.

MixColumns
This transformation is working through each column of the blocks and then the
block is worked as a four-term polynomial where each polynomial is multiplied
with the polynomial

a(x) = 03x3 + 01x2 + 01x+ 02 mod x4 + 1

This is multiplied using matrix multiplication, as the bytes are represented in a
matrix.

AddRoundkey
The AddRoundKey methods are simply adding a key to the current state of the

8 Theory

cipher by XORing it. The key added is called a round key as it is different each
round.

AES Algorithm
Initially AES starts everything with one AddRoundKey method.
The next thing is to run the four methods in the given order: SubBytes,
ShiftRows, MixColumns and AddRoundKey 10, 12 or 14 times depending on
the key size.
After this a last round consisting only of the transformations: SubBytes, ShiftRows
and AddRoundKey is done.
The number of times running the rounds are 10 if the key size is 128, 12 if the
key size is 192 and 14 times if the key size is 256.

A key of a bigger size is more complex and requires more time to crack. By
looking at it mathematically a key of size 128 have 2128 combinations compared
to a key size of 256 with 2256 combinations. With all these combinations it
shows that brute forcing is just a waste of time and even if a super computer
or a bot net could try ten billion keys a second on an AES 256, it would take
almost 3 billion years to run through all key combinations.

2.1.1.4 Modes of Operation

When having an algorithm such as AES, a mode of operation is needed. Modes
of operation are algorithms that uses block ciphers to be able to ensure things as
authentication. Most of the modes of operation uses an initialization vectoralso
called IV, which is a unique string of binary representations. As the sequence
is unique, the IV, cannot be used twice.
There exists a lot of different modes of operation but the most common ones
that will be described here are:

• Electronic Codebook (ECB)
• Cipher Block Chaining (CBC)
• Cipher Feedback (CFB)
• Output Feedback (OFB)
• Counter (CTR)

Electronic Codebook (ECB)
Perhaps the simplest mode of operation is the ECB where the plain text message
is split into blocks and then each block are encrypted separately. For decryption
it is the same but vice versa.
The problem with ECB is that if two blocks in the plain text are the same they

2.1 General Cryptography 9

will be encrypted into the same cipher text which means that it does not hide
patterns in messages. The classic example for showing the bad side of ECB is
when this is done for bitmap images, looking at the encrypted image, one can
recognize the original image.
It is not recommended at all to be used in cryptography protocols as it is.

Cipher Block Chaining (CBC)
A very common and used mode of operation is the Cipher Block Chaining. In
CBC the plain text blocks will be XORed with the cipher text output from the
previous block. The first block of plain text, will however be XORed with an
IV, which has to be unique.
The decrypting is very similar to the encryption just vice versa. When decrypt-
ing with a wrong IV it is not only the first block of the outputted plain text that
will be wrong, but all of it because the blocks depend on each other. The reason
for this is that the first block output is needed for the second block decryption,
second block output is needed for the third block and so on.
Even though CBC is the most commonly used mode of operation, it still has
one performance problem. It is not possible to parallelize CBC when encrypt-
ing which can be very effective sometimes as encryption can be very resource
needed.

Cipher Feedback (CFB)
Looking at Cipher Text Feedback it is similar to the CBC. However, when using
CFB the idea is to start with the IV and then encrypt this with the key then
XOR that with the plain text to get the cipher text. The cipher text is then
used as the IV for the next block and so on. The decryption is same as the
encryption but vice versa. It is only the decryption that can be parallelized and
this can be a problem sometimes.

Output Feedback (OFB)
In the Output Feedback mode it uses freshly generated blocks for each round,
instead of using the cipher text blocks as in CBC. Starting with an IV through
the block cipher encryption, and this is used as the next input. Post encryption
in each round is XORed with the plain text creating the cipher text.
The decryption is basically the same as encryption with the cipher text and
plain text being switched. A problem about OFB is that neither encryption or
decryption is parallelizable as all outputs from one block is needed to the next.
However, the block cipher encryption steps can be performed beforehand which
can be beneficial.

Counter (CTR)
The Counter mode is the last mode of operation that will be looked at here and
it is the only one that can be parallelized for both encryption and decryption.

10 Theory

The way CTR works is that there is a nonce created, which can somewhat
be compared to an IV. This is then concatenated with a counter variable and
becomes the block for the encryption of this key, this is XORed with the plain
text to give the cipher text.
The decryption is basically the same as the encryption switching the cipher text
and plain text.
The requirement of the counter variable is that it can never be the same for any
of the blocks. This means the simple starting from 0 and then adding one for
each block is often used.

2.1.2 Asymmetric Cryptography

In asymmetric cryptography the keys used for encryption and decryption are
separated into two different paired keys called public- and private-key. The
public-key is disseminated widely which means it is allowed to be publicly avail-
able. The private-key is only known to the intended recipient.
Comparing asymmetric with symmetric cryptography shows that there are some
disadvantages and advantages:

• Asymmetric encryption is much, much slower than symmetric ciphers.
• There is no shared secret with asymmetric cryptography. This means you

do not have to trust all involved parties to keep the key secret.

Depending on the problem asymmetric-keys can be better than symmetric-keys
and the other way around.

2.1.2.1 RSA

RSA[RA83] is an asymmetric encryption algorithm that is used to encrypt and
decrypt messages. The security of the algorithm is based on the fact that finding
factors of a given integer is a hard problem. In RSA the product of two large
prime numbers are published together with an extra value to be the public-key.
However, the factors of these two prime numbers are kept secret.

Calculating Keys

1. Choosing two different random prime numbers, called p & q.

2.1 General Cryptography 11

2. Calculate n = pq.
3. Calculate the totient φ(n) = (p− 1)(q − 1).
4. The public-key e exponent is now chosen such that 1 < e < φ(n) and is a

co prime with φ(n).
5. The secret key exponent d should be computed such that it satisfies:
de = kφ(n), for an integer k.

The public-key can now be created by the modulus of n and e, and the private-
key can be created by the modulus of n and d, which is stored as a secret.

Encryption
The encryption is done by having the message m and the public-key consisting
of n & e, and the cipher text can be calculated with the formula:

c = me mod n

Decryption
When calculating message m the private-key d is needed, and m can be calcu-
lated as follows:

m = cd mod n

However, RSA can give some troubles when not using an agreed upon padding
scheme, but this will not be covered in the project.

2.1.3 Hashing

Hashing functions are very important in terms of cryptography and in general
they are much used in a lot of different communication protocols. A hash
function is a function that when given any data as input, it will output the data
to a fixed size. The output is called a variety of things like; hash- value, code
or sum. Given the same input, the output of the hash function should always
be the same.
Looking into a few cryptography hash functions is done and the most popular
ones today:

• MD5
• SHA-1
• SHA-2

12 Theory

The difference between a regular hash function and cryptography hash func-
tions, is that the cryptography ones are practically impossible to recreate the
input data (to the hash function) from the output hash. This give various of pos-
sibilities in what they can be used for; password verification, file manipulation
detection, partly of setting up communication protocols and much more.

2.1.3.1 MD5

MD5 is a message-digest algorithm and it is commonly mentioned throughout
a lot of cryptography papers. It is generating a 128-bit hash value from any
given value, typically a string. It was published in 1992 and designed by Ron
Rivest but already in 1996 a flaw was found but was not deemed as a fatal
weakness. In 2004 it was shown that MD5 was not collision resistant and later
it was considered as broken. This means that the same hash could be calculated
from different given inputs bigger than 128 bit.

2.1.3.2 SHA-1

SHA-1 was published in 1995 and designed by United States National Security
Agency (NSA). It is today widely used, but already in 2005 crypt analysts
found theoretical attacks and said that it might not be secure enough and that
a stronger hash function would be desirable. Microsoft, Google and Mozilla have
announced that they will stop supporting SHA-1-based SSL certificates because
of the insecurities in SHA-1.

2.1.3.3 SHA-2

SHA-2 is not one but a set of hash functions developed by the NSA. The SHA-2
contains six different hash functions; SHA- 224, 256, 384, 512, 512/224, 512/256.
The six different algorithms have different length of inputs and outputs, hence
the name indication. It is in the same series as SHA-1 and even though it has
some similarities with SHA-1, the security flaws of SHA-1 have not been found
in SHA-2. However, there exist various attacks on the SHA-2 family of algo-
rithms, however these are usually very complex or only on small rounds versions
of the algorithm, meaning the algorithm is considered secure for now.
The latest hash function in the Secure Hash Algorithm family is SHA-3, that
was released by NIST on August 5, 2015. SHA-3 is not created to replace SHA-
2, as there has not been demonstrated any significant attacks on SHA-2.

2.2 Access Control 13

2.2 Access Control

The access control section is looking at a variety of different access control pos-
sibilities. Starting with cryptographic access control, as it can be somewhat
considered an introduction to access controls in general, followed by more con-
crete examples as ACL, RBAC, ABAC and DAC.

2.2.1 Cryptographic Access Control

Access control is an important aspect in this project because it controls the
permissions assigned to each user. If a user has access to a file, the user can
have the following capabilities:

• Read and write
• Read

This could be based on asymmetric cryptography, where files are encrypted
with a private-key (encryption key) and decrypted with a public-key (decryp-
tion key). This makes sure that only the person with the encryption key, for
the file, can write to the file. People with the decryption key can read the file.
This can be used to act as capabilities for the files by having the decryption
key corresponds to a read-capability and the encryption key corresponds to a
write-capability.[HJ03]
The cons for this approach is that asymmetric cryptography is not sufficiently
fast compared to symmetric cryptography, because of the encryption and de-
cryption algorithms.
The size also matters for the cryptogram made by the encryption. An asym-
metric cryptography encryption increases the size of the cryptogram where a
symmetric cryptography encryption does not. The asymmetric cryptography
was only designed for encrypting data smaller than its key size.

A second approach is to use symmetric cryptography to encrypt and decrypt
files [HJ03]. The problem by only using symmetric cryptography is to have
capabilities for the files, such as read- and write-capability. The symmetric
cryptography only allows a client with the belonging symmetric-key for the file
to encrypt and decrypt it.
To solve this problem the same asymmetric cryptography needs to be extended
to this approach but only on a smaller part. This allows the client to create
and encrypt a digital signature (hash or message digest of the encrypted file)
belonging to a file to guarantee integrity of the data. By each user having a

14 Theory

digital signature it is possible to use it to generate a signature for each file. The
client and the server can identify if the file has been tampered with, by matching
the file’s signature. This give three keys:

• The symmetric-key used to encrypt and decrypt a file client-side. Only
known by the client.

• The encryption-key used to encrypt the generated signature for the file,
to ensure integrity of the file client-side. Only known by the client.

• The decryption-key used to verify the signature for the file, to prove the
integrity of the file. This can be done by either client, server or both.

It is important to state that all files on the server and transmission between the
server and client are encrypted. This means that the client needs to encrypt
all data transmitted to the server. The idea is that the server does not do any
decryption at all, however some server side verification could be implemented if
wanted.

2.2.2 Access Control List

Access Control List (ACL) is an old and much used way of determine access to
different objects. The idea is that the object (a file for example) has an ACL
attached to it. The ACL can then determine all the users with read and/or
write access, which are the operations that the user is allowed to have on that
object.
This can be defined as a big table, with the users as rows and each file, object
or operation as objects, and then for each of the objects, the permissions can
be set into the table at that specific point. An example of this can be seen in
figure 2.1.

2.2 Access Control 15

Figure 2.1: Example of an access control table.

In many cases ACL is combined together with roles giving a role-based access
control.

2.2.3 RBAC

Role-based access control (RBAC) is used to restrict system access to authorized
users depending on what role they have. By having roles and assigning each
role some permissions, it is possible to assign each user a role. This does not
assign users to permissions directly but through their role. This simplifies the
management of individual user rights but limits the flexibility because it does
not scale well with many users. The limited flexibility is about having roles that
contain all the different user rights. This is not a problem when having a few
number of roles, but as the number of connected systems grows, the number
of roles grows as well. This requires a huge backend implementation and can
easily end up with having too many roles. This just transforms the problem
from having many users to have many roles which are not really helping. This
is also called role explosion [EK].
RBAC gets tricky when having more working sites. These often require the
same roles on each site, but with a little difference and this means copying all
of the roles when creating a new site.
When hiring new people for the same job, there might be needed something
extra for the new person and that result in a new role as well, even though the
new role could have been avoided.

16 Theory

2.2.4 ABAC

The before mentioned RBAC (see section 2.2.3) can in some way be considered
an Attribute Based Access Control (ABAC)[VCHS], as the role for each user
could be the attribute or a role could include different attributes. The way
ABAC differs from RBAC, is that everyone have their own complete set of
rules or attributes which define their different access. Obviously this leads to
redundancy as more users need to have the exact same set of attributes.

Figure 2.2: Example of attribute based access control

The ABAC is more flexible than RBAC, as when changing one persons access
to the system (in RBAC), if the change is not an already existing role, a whole
new role needs to be created. However, in ABAC the attribute will just be set
to true or added to the user’s attributes (depending on the setup). This will
also avoid role explosion mentioned in the RBAC section 2.2.3.
Whenever a new method or process needs to be added, and it should be decided
whether or not who should have access, a new attribute can be created and by
default no one or a very few could initially have access, then as the users need
the access it could be provided along the way. It does not need to be decided
for all users right away who needs access.

2.2 Access Control 17

The flexibility is way better than in for example RBAC, but ABAC is rather
new compared to other Access Control Systems and there for it can be difficult
to find good implementations when consider using it.

2.2.5 DAC

Discretionary access control[Jor] also called DAC is defined by TCSEC1 by re-
stricting access to objects based on user identification with supplied credentials
during authentication. It is discretionary because the owner determines object
access privileges. This means the owner can transfer information access to other
users. With this approach each data object has an owner who determines the
access policy for the data object.
A huge disadvantage by using DAC is that it is vulnerable to inherent vulnera-
bilities, such as a trojan horse.
An example of this can be done with two users A and B, where A is an honest
user and B is a dishonest user.
A has a data file called adatafile with highly sensitive data. A makes sure that
he is the only user to read the file which means no other users are authorized
to access the file.
B is curious and determines to gain access to A’s file, adatafile. Since B has le-
gitimate access to the system, it allows him to implement an utility program. In
this utility program B embeds a covert function (trojan horse) to read adatafile
and copies its content into a another file in B’s address space called bdatafile.
bdatafile has an ACL associated with it that allow processes executing on A’s
behalf to write to the file and allowing B’s process to read the file.
By convincing A to execute B’s utility program, without knowing about the
covert function, A does not know that his adatafile is being copied to bdatafile.
The problem here is that the copy taking place is within the constraints of the
DAC, and A is not aware of what is happening. This allows B to read all content
that A writes to his own file adatafile.

1Trusted Computer System Evaluation Criteria is a United States Government Depart-
ment of Defense (DoD) standard that sets basic requirements for assessing the effectiveness
of computer security controls built into a computer system. The TCSEC is used to evaluate,
classify and select computer systems being considered for the processing, storage and retrieval
of sensitive or classified information.

18 Theory

2.3 Key Rings

Key rings are a way to store known encryption- and decryption-keys. It can be
used in a cloud file storage environment to give a user access to a file if the user
has a belonging key to the file. Each key in the key ring can point to either a
file or another key ring.
Each key contains an encryption- and a decryption-key and the capabilities for
the file. These capabilities could be read and/or write permissions. Then by
combining all the features in key rings, it could end up giving an access control
system.

2.3.1 Key Ring idea

The idea in this project is to use key rings to indicate whether or not a user
have access for a file.

Figure 2.3: The key ring idea showed in a simple sketch.

2.4 Key Sharing 19

Looking at the figure 2.3; the rings symbolize a key ring and the arrows are
keys. A user can have several keys and key rings, and a key ring can lead to
another key ring.
Having this kind of structure would end up being somewhat similar to a mix of
role-based access control (RBAC) and attribute-based access control (ABAC).
Each key ring could be representing a role in RBAC and a key could be an
attribute in ABAC.

2.4 Key Sharing

Sharing keys among users require cryptography privacy and authentication for
the data communication. This is required to make sure the key shared between
two parties is only known by them.
A solution to do this is to use PGP (Pretty Good Privacy). PGP is a hybrid
crypto system, which is by combining the convenience of asymmetric cryptog-
raphy with the efficiency of symmetric cryptography. PGP is often used when
signing, encrypting and decrypting text strings, emails, files, etc.

2.4.1 How PGP works

PGP is using both asymmetric- as well as symmetric cryptography to encrypt
and decrypt the data. PGP starts by having the receiver generating two keys
using asymmetric cryptography including a public- and private-key. The public-
key is given to the sender where it is assumed that the connection for this
transmission is secure and that the public-key has not been tampered with or
read by any third-parties.
As seen in figure 2.4 this gives a decryption process which initializes the sharing
by the receiver and an encryption process used by the sender.

The sender is now able to generate a random secret and encrypt the data,
that is later sent to the receiver, by using symmetric cryptography. After the
encryption of the data, the sender also encrypts the random generated secret
with the asymmetric-key received by the receiver earlier. This means the sender
now have an encrypted message containing the encrypted data and encrypted
secret. The sender can send this to the receiver and the receiver can decrypt
the secret with the private-key belonging to the public-key that was used for
the encryption of the secret. With the secret decrypted the receiver is now able
to decrypt the data.

20 Theory

Figure 2.4: PGP

If a third-party should read the encrypted data object sent from the sender, the
third-party is not able to decrypt or modify it. If the third-party modifies it, the
receiver will know that this was not encrypted with the public-key provided in
the beginning. This is only true because of the assumption that the public-key
sent in the beginning was not read or tampered with by any third-parties.

2.5 MediaWiki

In the introduction and goals section 1 it was mentioned that MediaWiki is
used as the backend for the file storage. In this chapter the MediaWiki will be
described including; the API and how the design is and briefly how the revisions
work. It will also be described how all this is supposed to be used as a part of
the project.

2.5 MediaWiki 21

2.5.1 General Description MediaWiki

MediaWiki is a free open source software developed by theWikimedia foundation[wik]
and it is the same engine that is used for their project Wikipedia[Fou], that have
a lot of visitors everyday from all around the world. It is written in PHP[php]
and is using MySQL[mys] as the database solution. A good thing about Medi-
aWiki is that it is easy to setup, and is cross platform supported, as it can be
setup on Windows, MAC OS and Linux as well. The MediaWiki is not needed
to be private, but the user can decide if anybody else should have access to the
MediaWiki.
MediaWiki does not provide a client that should be installed on each computer,
as it should only be installed on the server. It is web application based where
the user can upload files via a browser if wanted and this can also be used when
looking at a files revisions.
More users can upload to the same MediaWiki stored on a web server, in fact
the idea is that the user does not even need to trust the host of the MediaWiki.
MediaWiki does not handle conflicts in files very well, as the MediaWiki is not
build with the idea of only using this as storing files. This is all handled by
revisions which means that if there is a conflict it is not lost, but is stored in a
separate file (older revision).

2.5.2 MediaWiki design

Finding a backend for storing files can be difficult, and in the description it
could sound like MediaWiki is all good. This is obviously not the case as there
are downsides with it. As mentioned it is not directly build for using as a remote
storage for files only. This becomes evident when looking at the design, as the
structure is flat. It is not possible to upload directives to MediaWiki, unless one
would do it with some compression method like zip or rar. When downloading
files from a wiki, it can be done simply by accessing the direct link to the file.
Each file is uploaded as it would be a picture for a Wikipedia site and this could
give troubles when creating a complete file system like DropBox, but it does not
make it impossible.
A thing to mention about a Wiki is that it is not designed to keep some things
a secret. However, when first having access, the idéa is that you should at least
have read access to all of the content. This is no problem in this project, because
all the files stored in the MediaWiki have been encrypted by the client.
As the software code is open, each MediaWiki could be designed completely
as the administrator would want, but this is not what is supposed to happen.
However, the Wikimedia foundation made it possible to do small tweaks only
for that hosted MediaWiki, without ruining all the basic principles of a Medi-

22 Theory

aWiki. This is done trough a LocalSettings.php files, which is stored on every
MediaWiki. It is possible to enable an API to use for the MediaWiki, and this
will make it easy to use programming wise. The MediaWiki API is a REST
web service and the commands are HTTP Request, such as GET, PUT, POST,
DELETE.

2.5.3 MediaWiki API

As mentioned the MediaWiki offers a great API[Medd], which is very easy to
use, just having a little knowledge on how APIs work. The API is open for
everyone to see as well, and even if wanted, one could develop their hosted
MediaWiki to have a bigger API than the original. The MediaWiki API is a
web service that provides all the features, data, meta-data etc. over HTTP.
The API offers a lot of different commands:

• Upload Image Info (file)
• Download file
• File content
• Revision file URLs
• Log in (if it is not an open MediaWiki)
• Log out

Upload Image
As mentioned MediaWiki is not build to be a file system, but can do that with
no problems. The MediaWiki are considering the files as pictures (hence the
image name), and not all file extensions are accepted as default, which is why
the user needs to specify the file extensions into their own MediaWiki.
The command for uploading is build up the following way[Medc]:

<link_to_the_MediaWiki>/api.php?action=upload&filename=<the_filename>
&url=<url_to_the_file_on_MediaWiki>&token=<the_token_provided>

This is an example on how to upload the file using the MediaWiki API. Other
parameters can be used as well. In the example from above, the token is given
after a successful login to the MediaWiki, meaning it is not necessary when the
MediaWiki is open.
Uploading is needed to be enabled on the MediaWiki before it works.

Downloading File
This is not really done by using the MediaWiki API, but is done simply by
direct linking to the file on the MediaWiki. Getting the direct link to the file in

2.5 MediaWiki 23

the other hand, can be hard if it was not for the API. The command for this is
simple [Meda]:

<link_to_the_MediaWiki>/api.php?action=query&titles=File:<the_filename>
&prop=imageinfo&iiprop=url&format=xml

This command will output XML that contains the direct url (because of the
iiprol=url parameter). Having the direct link to the file it can be downloaded
easily. Other parameters can also be used to get more file information if neces-
sary.

File content
The file content can be used to get the content uploaded next to a given file.
The idea here is to use the content as a check up with the file on the current
system. There might have been an overwriting which none was interested in,
and possibly more, which means it can be useful to get older revisions to get
the old one back. This is done by the following command[Medb]:

<link_to_the_MediaWiki>/api.php?action=query&titles=File:<the_filename>
&prop=revisions&rvprop=content&rvlimit=max&format=xml

Outputting the XML, giving file content for each revision. Other parameters
are available too.
The iilimit=max parameter, is for not only getting one file but getting the
maximum of files per page (currently this is only 500). If there are more files
than 500 iicontinue has to be used.

Revision urls
Revisions are needed in this project, as the user might be interested in going
back to an older revision. This is done using the imageinfo command from
earlier, but with a little change in parameters. It looks like this:

<link_to_the_MediaWiki>/api.php?action=query&titles=File:<the_filename>
&prop=imageinfo&iiprop=url&iilimit=max&format=xml

Outputting the XML, including the urls for the revisions.

Log in
This part is only needed if the MediaWiki is not an open MediaWiki, and the
command is very simple (this has to be a POST command):

<link_to_the_MediaWiki>/api.php?action=login&lgname=<username>
&lgpassword=<password>&format=xml

24 Theory

This will return a cookie in the HTTP header and a confirmation like ’Success’
or ’NeedToken’. If it is the case that it returns ’NeedToken’ another call have
to be made just after:

<link_to_the_MediaWiki>/api.php?action=login&lgname=<username>
&lgpassword=<password>&lgtoken=<the_token_provided>&format=xml

The user should now have a cookie, that can be used for the earlier mentioned
methods. If the user has access on the MediaWiki to these.

Log out
As well as with the log in, log out is only needed if the MediaWiki is not an
open MediaWiki and the user wants to sign out:

<link_to_the_MediaWiki>/api.php?action=logout

This will delete the log in token provided earlier and browser cookies. For
security measures this should be called every time the user is done calling the
MediaWiki to be sure there are no valid tokens that can be used for the specific
user.

2.5.4 Revisions

The MediaWiki stores all revisions for a file and this is one of the reasons why it
is good for the project. However, as it is not a system that is directly build for
file storage, it lacks a few operations which are provided by remote file storage
systems.
There is no such thing as conflict handling, meaning that if two users changing
in the same file at the same time, the last one to upload the file, will basically
have uploaded the final file. However, none of the other uploads will be lost, as
they will be stored as an earlier revision. Conflict handling could be a nice tool
to have, but it is not needed in this project.

2.5.5 Other Storage possibilities

This section will only give a small view on which other systems could be in
consideration for remote file storage solution.

Django Custom File Storage[dja]
The first one is a Django web host, custom file storage library. Django is a

2.6 Existing Encrypted File Systems 25

good web hosting solution and using it as a storage would not be bad. However,
revisions are missing in this, as it is used for when actually hosting a web page,
so this should be developed by the user. Django is written in Python which
offers a lot of libraries for other possibilities.

OFS File Storage[ofs]
Yet again another Python storage possibility, which as with Django would give
the possibility to offer a lot of python libraries. OFS File Storage offers setting
up an easy to use web api, but as with Django there is not a native revision
handling methods, so this should be developed. There is a lot of nice methods
included in this library.

RemoteStorage.io[rem]
Remote Storage looks similar to already existing file host solutions, and this
would not be a clean file storage. Developing own methods is possible though
as it is open source. This looks similar to Git or SVN but more having complete
files in mind.

Git[git]
One possibility could be to use Git as it is the new hot subject in version
controlling. It is free and open source and is able to store files very easily. Git
is famous for the conflict handling and the merge possibilities and is capable to
store large projects with no performance issues. It handles revisions very well
as it is a version control system and it saves revisions all the way back to the
initialization of the project. Branches are also available in git and this is great
when more people have different suggesting in changing a file.

2.6 Existing Encrypted File Systems

Many file systems already exists with all kinds of different purposes. The idéa of
this section is to find and look at some different file systems, as in this project a
file system needs to be developed. It does not make sense to just look at random
file systems, but to have a look at file systems with a more cryptography point
of view.

2.6.1 Cryptographic File System

When looking into Cryptographic File Systems, the first that comes to mind is
the Cryptographic File System for Unix[Bla93]. This system is kind of a classic,

26 Theory

when it comes to cryptographic file systems, and might not use the newest
technologies, when it comes to cryptography.
It is one of the first, to have encryption directly as a part of the file system and
the idea is that the user have a cryptography key, and a directory they want to
use.
The encryption / decryption happens as the user is working, meaning that
documents containing plain text are never actually stored on disk. It is especially
not stored remotely as plain text, but is always encrypted.
The CFS uses DES as the encryption method, and according to the article
[Bla93] more modes of operations are available. The one described is a mixture
of OFB and ECB mode, making sure the pattern recognition problem with ECB
is avoided.

2.6.2 Transparent cryptography File System

The TCFS[Mau] was developed at Dipartimento di Informatica ed Applicazione
of the Universita di Salerno in Italy and back in 1997 [CP97] and can be seen
as an extended version of the NFS. NFS has a hard trust model, meaning that
when storing data remotely using NFS, it is assumed that one trusts the server.
This is not always the case and TCFS is better at that point. Instead of trusting
the server TCFS will allow the user to encrypt files them self before storing them
remotely.
TCFS as well as CFS uses DES as encryption algorithm, but can use other block
ciphers, and stores keys in an database on the system. The keys are encrypted
by the user’s master password meaning they are never stored locally in clean
text. The idea behind TCFS is that they want to keep the trust level to a
minimum.

2.6.3 Encrypting File System

The Encryption File System[Wri] (EFS) is a Windows built in function used to
encrypt and decrypt files and is a part of NTFS. It was initially designed due
to the lack of security in the NTFS as it was easy to bypass permissions needed
in the NTFS.
EFS uses a mix of symmetric and asymmetric-key encryption and the first time
a file is encrypted the EFS will give a public- and private-key pair for the
users account. After this it generates a random number which is called a File
Encryption Key (FEK) and this will be used to encrypt files with DESX [Rog]
which is an extended version of DES processing the data three times with three
different keys. Then after this the FEK is stored encrypted using the public-key.

2.6 Existing Encrypted File Systems 27

The public- / private-key encryption algorithm is RSA.
The way of using symmetric-keys for the files and then public- / private-keys for
the symmetric-key is a great way to give good performance while not missing
out on the security. Public- / private-key encryption schemes are not good to
use for huge amount of data as they require way more performance to do so (see
section 2.1.2.
EFS have some flaws which the biggest one is the use of the recovery agent and
this uses a recovery key which is a second generated key that the administrator
of the system can use to recover data. It is smart for big companies as they never
know what happens to their employees, however it is also a major security flaw.
The problem is that in a typical default setup the local system administrator is
chosen as being possible to be the recover administrator and for most regular
users in windows it is easy to get this access as the password for this user is
usually blank. This is a whole other subject, but needed to be mentioned as
well.

2.6.4 eCryptFS

The eCryptFS is a kernel-native stacked cryptographic file system used on
Linux[Hal]. This means that the file system is layered on top of already ex-
isting mounted file systems. The way eCryptFS works is that it encrypts /
decrypts the files as they are written or read to and from the lower file system.
The idea is that applications working in the user space, use file system calls
that goes trough the Virtual File System. eCryptFS works mostly in the kernel,
however on top of that it might do some key management from an eCrypt dae-
mon running in the user space. It should mostly work in the kernel by getting
keys from the users key ring and only use the cryptography api from the kernel
to do all the encryption and decryption. Key rings are stored in the kernel as
well. As a default eCryptFS uses AES as the cipher, but the user can basically
use all the ciphers available in the kernel.
eCryptFS will only protect the confidentiality of the data, which means that
if one wants to use eCrypt they should use some kind of access control on a
trusted host.

2.6.5 CryptoFS

CryptoFS is an encryption file system using FUSE and Linux Userland FileSystem[Hoh].
CryptoFS uses a regular directory on the computer to store all files encrypted
and then the mount point will have all the decrypted files. If the user unmounts,
the system needs to mount again using the users password to be able to access

28 Theory

the files again.
When mounting the system CryptoFS generates a key specifically for the re-
quested cipher using the requested message digest function. The different al-
gorithms have their own required key size. When the key have been generated
salts and initialization vectors are generated (if these are needed) and will be
used in the encryption later.
CryptoFS seems like a good basic encryption file system if a user wants to ensure
their data is encrypted.

2.7 FUSE

FUSE or Filesystem in Userspace, is a UNIX software interface and it can be
used by users to have their own file system without accessing the kernel inter-
face. However, it is a bridge to the kernel interface, accessed from the user
space.
This section will look into FUSE as it is essential to look how FUSE works to
fully understand it. When looking at FileSystem in Userspace, the first thing
to understand is the difference between kernel- and user space. Then why a
FileSystem is good to have in Userspace and in the end what kind of methods
FUSE provides.

2.7.1 Kernel- and User Space

There is a big difference between kernel- and user space. The kernel space is
somewhat everything that is being done within the kernel of a system. This also
means that changing the kernel space or code, means that one needs to have
special rights to do so, as not everyone should be allowed to change what is in
the kernel space. In fact most people should not be allowed to do so.
Jeffrey Layton uses a great example [Mag] of a programmer that wants to create
something, and this something could be developed into the kernel. However, this
can be dangerous as if there is a bug, it could potentially create a bug for the
whole system. When moving the code or application to user space, this is never
gonna be a problem as the kernel will only provide the necessary resources, but
not actually affect the kernel it self. This also means that the kernel will remain
stable when testing the application. In fact this means that the application
can get to test faster, as a bug in the application only means it crashes the
application it self and not the kernel.
So staying in user space for a file system is perfect, as if it crashes, one could

2.7 FUSE 29

easily just end the started processes and remount the file system again, and
never be in danger of an entire system crash.

2.7.2 FUSE Introduction

Creating a File System for specific purposes, was impossible to do without in-
teracting with the kernel space. It is possible now, as the FUSE library have
been created. It is a great tool for writing a file system that works in user space
and it includes a very good API to do so.
The way FUSE works around the scenario of working in the kernel space, is
through a Virtual File System (also called VFS), as it need help from the kernel
to work. The VFS is located within the kernel but is accessible for users only
working in the user space.
Looking at figure 2.5, which is the hello.c example from the FUSE Github

Figure 2.5: The general flow of a hello world file system using FUSE.

Repository, it creates a hello world binary that is mounted at another mount-
point. The way it works is that creating the mount point (upper left), it works
using the glibc through VFS and into the FUSE in the kernel, back through

30 Theory

glibc and then to the libfuse (which is the FUSE library in user space) to get
the binary hello world. Here the hello world is compiled and it goes all the way
back to the mount point. It can be seen that the user never works directly in
the kernel space at all, and this is one of the keys to why FUSE is so useful.

2.7.3 Methods in FUSE

The FUSE API includes a lot of different methods or operations that can be
used. IBM provides a good introduction[SS], but also a good explanation of
these methods.

• getattr is used to retrieve the extended attributes.
• readlink reads the target of a symbolic link.
• symlink creates a symbolic link.
• link creates a hard link to a file.
• getdir reads the content of a directory.
• mknod creates a file node.
• mkdir and rmdir creates and removes directories.
• chmod changes the file permission bits.
• chown changes the user/group ownser ship of a file.
• truncate changes the size of a file.
• utime is used in the modification of the time in a file.
• open opens the file (it does not read the file).
• read reads the data from an open file. Returns the number of byte re-

quested.
• write writes data to an open file.
• close closes an open file.
• statfs gets the statistics of the file system.
• flush is representing the flush-cached data.
• release is called when there is no more references to an open file, descrip-

tors are closed and all mappings are unmapped.
• setxattr, getxattr, listxattr and removexattr, set, get, list and remove

extended attributes.

This is all the methods/operations that the FUSE API offers[SS], when creating
a file system.

2.8 Key storage 31

2.7.4 FUSE-JNA

The FUSE API is written in C, however it is also possible to work with FUSE
in other programming languages. The beauty of this is that other languages
than C are providing first of all easier implementation, but also tons of libraries
that can be a great benefit when developing a file system.
Especially the FUSE-JNA[Eti] makes it easy to develop a FUSE file system,
without the need to define all FUSE methods, and structures.

2.8 Key storage

When storing keys and key rings there is a need for a format or system to store
these in. This could be done with one of the following:

• Online database
• Local database
• Markup language

The important thing in this project when selecting the storage option for the
keys and key rings is that they should be easy to add and retrieve. It should
also be possible for users to share keys between each other and easily update
them without delete and/or ruin already uploaded keys. This can be done by
having revisions stored to make sure if a key is ruined that an older version can
be read.

2.8.1 Online databases

An online database could be one way of storing keys and key rings. Most
databases are made for storing a lot of data and retrieving the data fast by
having it indexed. Besides that the online database needs to be hosted some
place and needs to be accessed from some where else. This can be a security
risk because now there is one more system containing data, even though it is
encrypted. This would require more work for the end user because they need to
set up a database and the user permissions.

32 Theory

2.8.2 Local database

A local database is almost like an online database except it is running on a local
machine. By having it locally and without it being accessed from the outside
it reduces the risk of an intruder. The problem here is synchronizing keys and
key rings between users. This is a problem because users depend on each other
when reading and/or updating shared keys.

2.8.3 Markup language

A markup language is not a system like a database but a document that stores
data in a format that is both easily readable by humans and machines. The
thought behind having a markup language storing the keys and key rings is to
have files containing them and later uploading the key or key ring to the online
file storage. This is still accessible from somewhere else but at least it is not
another system to maintain. This stores the keys and key rings like they were
files and just be downloaded and uploaded like every other file.

2.9 Summary

In the theory chapter different subjects have been researched and these subjects
are: general cryptography, access control, key rings, key sharing, MediaWiki,
file systems and key storage.

The general cryptography section looked into the difference between symmetric-
and asymmetric cryptography as well as looking at different already used cryp-
tography schemes. Hashing was also looked at in this section. Access control
was the next section where different used access controls variants where looked
at. Next thing was to look at key rings as well as the key sharing included
finding an idea for key rings and also how PGP works.
MediaWiki was looked into as well as this is used as the server / backend for
the remote file storage. Researching different kind of cryptographic file systems
that exists already, and possibly got some inspiration from these. Many of these
use FUSE and this project is supposed to do so as well. In the end looking at
how to store the keys using online- or local database or a markup language such
as XML.

Chapter 3

Requirements

The requirement chapter’s goals are to define the needs and requirements of
the application. The chapter starts with a brief description of the application,
followed by some use cases. Afterwards the cryptographic needs are found and
then the more technical requirements to the system are found. This should lead
to a more clearer view of what the application actually contains.

3.1 The Application

Looking at already done implementations from earlier, there are a lot of pos-
sibilities on what this system could be. The idea of the project is to have a
file system on the computer where the user can work with the files and then
remotely store them. When the user wants to store the files remotely the server
is not trusted.
Given this the whole project can be divided into several categories which are:

• A file system handling all files stored locally on the computer. There is no
need to encrypt files while working, however when done working with the
files they may never be stored locally in plain text. They could either be
uploaded and deleted, for then to be downloaded again when running the

34 Requirements

application, or stored encrypted after use and decrypted next time when
running the application.

• The local storage should be a FUSE application meaning it is only required
to work on Linux distributions.

• A remote file storage is needed to be implemented as the user needs to
synchronize all files at all time. MediaWiki will be setup to do this as it
is very easy and revisions is a possibility. Conflicts and merging is not a
requirement to the current system, but revisions should be implemented.
Trusting the server is not needed so the MediaWiki can be open if that is
what a user want.

• Files stored remotely needs to be encrypted as someone might be able to
open the files, however not everybody should be able to read files.

• Key management is needed, as a user should be able to share access to a
file with another user.

These points sums up the basic needs of the system being a FUSE local file
system, with MediaWiki as remote storage and some kind of key management.

3.2 Use Cases

The system have various needs, which can be difficult to discover right away
and in order to do this, some use cases have been developed. These will later
be developed as tests that also can be used to check if various functions are
working as intended.
A thing that is needed to be known to fully understand the use cases is that
there exist keys and key rings, where a key ring is simply just a collection of
keys.

3.2.1 Initialization of the Application

This is the basic use case when the user starts the system.

1. User initialize to start the application.
2. Application reads a config file from the user including; MediaWiki setup

(url, file extension for encrypted files and optional username and pass-
word), root directory and a key k.

3. Application downloads the belonging key ring kr and its content using k.
4. Application decrypts content c using read-key in k.

3.2 Use Cases 35

5. Application validates that the encrypted kr’s checksum is equal to c.
6. If kr is not valid the next revision is downloaded, validated until it is valid.
7. When kr is valid it is decrypted using the symmetric-key and IV in k.
8. Runs through all keys in kr and download and decrypt all corresponding

files and key rings from kr.
9. When there is a new key ring it downloads, validates and decrypts all files

and possibly new key rings. Continues until there are no more key rings
to run through.

10. Mounts the file system including all the downloaded files.

The user can now change the files as wanted, and further use cases can be
developed from this.

3.2.2 Uploading a new file

Uploading a file is essential to this application, as it is the most basic usage
other than initializing the system. It is assumed from this use case that the
system have been initialized.

1. User creates a file f in the mounted folder.
2. Application creates a key k pointing to f.
3. Encrypts f using k.
4. Generates a checksum c for encrypted f and encrypts it using write-key in

k.
5. Uploads both encrypted c and f to the MediaWiki.
6. k is added to the parent key ring kr.
7. Parent key pk for kr is then found.
8. Encrypts kr using pk.
9. Generates a checksum c2 for encrypted kr and encrypts it using write-key

in pk.
10. Uploads both encrypted c2 and kr.

After creating and uploading the file, the user might want to change this file.

3.2.3 Updating an existing file

The user wants to change a file, that already exists. It is already a part of the
mounted system. It is assumed that the user has created a new file, downloaded,

36 Requirements

verified and decrypted the corresponding key for the file and initialized the
system.

1. User changes file f, in the mounted directory and saves f.
2. The application looks up key k pointing to f.
3. Encrypts f using symmetric-key and IV in k.
4. Generates a checksum c for encrypted f and encrypts it using write-key in

k.
5. Uploads both encrypted c and f to the MediaWiki.

3.2.4 Change file name

It happens that the user only wants to change the file name of a file, not nec-
essarily the file data. It is assumed that the user has a file in the mounted
system, downloaded, verified and decrypted the corresponding key for the file
and initialized the system.

1. User changes the file name of file f. The old file name is considered o_fn,
new is n_fn.

2. Application finds the key k pointing to f.
3. Updates name in k from o_fn to n_fn.
4. Application finds the key ring kr containing k.
5. Application finds the key pk pointing to kr.
6. Encrypts kr using pk.
7. Generates a checksum c for encrypted kr and encrypts it using write-key

in pk.
8. Uploads both encrypted c and kr.

3.2.5 Download file

The user might want to download a file, after having uploaded some file. It is
assumed that the system has been initialized, a file have been uploaded to the
MediaWiki and the user has the key for the file.

1. Application finds and download f and its content using k.
2. Application decrypts content c using read-key in k.
3. Application validates that the encrypted file f’s checksum is equal to c.
4. If this is not valid the next revision is downloaded, validated until it is

confirmed being the right file.

3.2 Use Cases 37

5. When f is valid it is decrypted using the symmetric-key and IV in k.

This is done when the user wants the most updated version of the file, however
this is not always the case.

3.2.6 Downloading older revision of File

The user might want to download a file, but not necessarily the newest version of
the file. Downloading an older revision of the file is essential to this application.
It is assumed that the application has been initialized, and there has been
uploaded several versions of the file to the MediaWiki.
It is important to notice that each revision are ordered by their upload date in
descending order in the application. This gives the latest uploads first.
This is one of the essential things behind MediaWiki, because it makes sure
other users can not screw files up by encrypting them wrong, delete file content,
etc.

1. Application finds the file f by using key k.
2. Finds and download f and its content using k.
3. Decrypts content c using read-key in k.
4. Validates that the encrypted file f’s checksum is equal to c.
5. If is not valid the next revision is downloaded, validated until it is con-

firmed being the right file.
6. When f is valid it is decrypted using the symmetric-key and IV in k.

3.2.7 Sharing File with Read & Write access

When the system is up and running and the user has uploaded and downloaded
files, they sooner or later want to share some of their files. This is done by shar-
ing the key to the file in between them. A user has the option to allow other
users to get full or only read permission as long as the user himself have these
permissions. That means a user with only read permission can only share the
read permission to another user, because he is not in a possession of a write-key.
It is also possible for a user to share a key belonging to a key ring that contain
multiple keys. The connection between the users are not covered in this project
and is assumed to be a secure line.
In this use case it is assumed that more users exist, the system has been initial-
ized, a file already exists and the file is uploaded to the MediaWiki and the key

38 Requirements

for the file is downloaded, verified and decrypted. It is also assumed that both
users can connect to the same MediaWiki.

1. User B wants to share file f with user A.
2. User A generates a public-key pub and a private-key piv.
3. User A sends pub to user B (assuming the line between them is secure).
4. User B finds belonging key k for f.
5. User B generates a secret s.
6. User B clones k2 and keeps read-key and write-key in it.
7. User B encrypts k2 by using s.
8. User B encrypts s by using pub.
9. User B sends encrypted k2 and encrypted s to user A.
10. User A decrypts the encrypted s by using piv.
11. User A decrypts the encrypted k2 using decrypted s.
12. User A adds decrypted k2 to a key ring kr.
13. User A finds the key pk pointing to kr.
14. User A encrypts kr, with the new key k included, using symmetric-key

and IV in pk.
15. Generates a checksum c for encrypted kr and encrypts it using write-key

in pk.
16. Uploads both encrypted c and kr.
17. f can now be downloaded, verified, decrypted and written, encrypted and

uploaded.

User B can now change and upload new revisions of the file.

3.2.8 Sharing File Only with Read access

It is also a possibility that a user only wants to share a key, but only giving read
access. It is assumed that the first user has read access already. Connection is
as mentioned not covered in this project, and this means it is assumed to be
shared on a secure line.
In this use case it is assumed that more users exists, that the system have been
started and that the file already exist and is uploaded to the MediaWiki.

1. User B wants to share file f with user A.
2. User A generates a public-key pub and a private-key piv.
3. User A sends pub to user B (assuming the line between them is secure).
4. User B finds belonging key k for f.
5. User B generates a secret s.

3.2 Use Cases 39

6. User B clones k2 and only keeps read-key in it.
7. User B encrypts k2 by using s.
8. User B encrypts s by using pub.
9. User B sends encrypted k2 and encrypted s to user A.
10. User A decrypts the encrypted s by using piv.
11. User A decrypts the encrypted k2 using decrypted s.
12. User A adds decrypted k2 to a key ring kr.
13. User A finds the key pk pointing to kr.
14. User A encrypts kr, with the new key k included, using symmetric-key

and IV in pk.
15. Generates a checksum c for encrypted kr and encrypts it using write-key

in pk.
16. Uploads both encrypted c and kr.
17. f can now be downloaded, verified, decrypted.

User B can now read the file, and is able to change the file locally. Technically
B can create another write-key and upload the file, but all the other users with
the read-key for the file would be able to detect an invalid revision. The other
users would then just ignore the invalid file and download the latest valid file
available from revisions in the MediaWiki.

3.2.9 Ending the session

A lot of operations or methods are now covered, but closing the application is
also essential to a file system, as it cannot be closed as any other application. It
is assumed that the system has been initialized and there are files created and
downloaded in the mounted system.

1. User wants to close the file system application.
2. User gets to choose if the user wants to upload all files in the directory to

the MediaWiki.
3. If no: All files are deleted locally and program is terminated.
4. If yes: Application runs through the all the keys.
5. For any key k, locally stored, file f is found.
6. Encrypts f using symmetric-key and IV in k.
7. Generates a checksum c for encrypted f and encrypts it using write-key in

k.
8. Uploads both encrypted c and f to the MediaWiki.
9. If k is a key ring, it runs through this and do the same for all the keys.

However, for each child key rings the parent key pk is found and used to

40 Requirements

encrypt and upload the key ring as well.
10. In the end reaching the root key means all files and key rings have been

uploaded.

In the user case above, it is stated that the files are deleted locally, this could
also be possible to have them stored locally, as long as they are encrypted,
because other users could get access to the files.

3.3 Cryptographic Requirements

Cryptography is an important aspect in this project, because it only allows users
with the secret, to the data, to read or write to it. Having the only users with
the secret to read and/or write the data, is not the only thing being apart of
the cryptographic needs. There are some things needed for this project to be
considered and this section will include part of this.
Confidentiality, integrity, availability are three important components describing
a secure system, called the CIA triad. The CIA concepts are the fundamental
concepts in security. The CIA concepts are not the only ones needed for this
project, as other important elements are missing; such as authorization and
authenticity.

3.3.1 Confidentiality

Confidentiality or secrecy is to protect the information from disclosure to unau-
thorized parties. This can be done by encrypting the information to make sure
only the people with the secret can read it. Confidentiality is a big part of this
project and is, as already mentioned, a part of the CIA. When encrypting files
using symmetric cryptographic schemes, it protects the files by encrypting all
the files in the system. This makes it only readable and writeable for users
knowing about the secret for decrypting the file and this gives confidentiality.
When having an open MediaWiki a third party can get a hold onto the files,
but as everything are encrypted the confidentiality is ensured to a high enough
level.

3.3 Cryptographic Requirements 41

3.3.2 Integrity

Integrity is to protect the information from being modified by unauthorized
parties. This can be done by including a hash of the information sent and
comparing it with the hash of the original message. It is difficult to protect
unauthorized people from modifying the data on an open MediaWiki if the user
wants that. However, an such unauthorized change can be detected, and along
with revisions the user can get back to the last authorized version of a file. This
can be used to ensure the integrity of the data.

3.3.3 Availability

Availability is to ensure that authorized parties are able to access the information
when needed. This can be done by having an off-site backup location of the
information to limit the damages caused by hard drive failure, DoS attacks,
natural disasters and more.
For an open MediaWiki it can be hard to ensure availability all the time, as the
mentioned DoS attack. The connection between the client and the MediaWiki
can easily be blocked, or another way is that if an attacker ever gets a hold of
the files encrypted name on the MediaWiki, they can just spam it with new files
with the same name. The user will be able to detect this through the integrity,
but it can be a major performance issue to get through all revisions to find a
right one, if say the attacker have spammed a thousands of new revisions to that
exact file.
It is difficult to avoid DoS attack in this kind of setup, but it is somewhat covered
by using revisions, performance wise it will be difficult to cover completely,
meaning the performance issue will not be within the scope of the project. Only
that the user in theory is able to recover the data.

3.3.4 Authorization

Authorization ensures that the user requesting some kind of access to the files,
are in fact having that kind of access. A user with read access only, should not
be able to write to the file. As mentioned in the integrity section 3.3.2 it is
difficult to completely stop unauthorized actions, however they can be detected.
If a user only has read access, they only get the read-key and the symmetric-key
to the file. This means they can verify the file using the read-key, but when they
want to write and do not have the write-key, another user with read access can
invalidate the files an go on to the next revision. This means the authorization

42 Requirements

is possible to maintain, but this can give performance issues.

3.3.5 Authenticity

Authenticity is to ensure the data, transactions, communications and so on are
genuine. It is also to validate that both parties involved are who they claim to
be. It is not needed in this project to authenticate the server, as the whole idea
is to keep the trust level down for the MediaWiki server. Authenticity can be
needed when sharing keys in between the users, a write-key in the wrong hands,
can be a major disaster. Authentication can be done by having features such
as digital signatures.

3.4 System requirements

The cryptographic requirements are not the only one needed in this project, as
some certain functionality is needed as well. The system requirement section is
to cover what kind of requirements that are not regarding cryptography.
It will be divided into three parts the client system, key handling and Medi-
aWiki. The key handling is in principle also a part of the client system, but
they are separated in this section to simplify things.

3.4.1 Client system

The client system is basically whenever the user is changing files locally a op-
eration is needed in order to do so. This subsection will not cover anything
regarding the key handling section.

3.4.2 Initialization of system

When initializing the system, the user should either have a key stored or input
a master password. When doing so the system should create a key type using
the master password. Now after this is done it should download the users
corresponding key ring from the MediaWiki and decrypt it. If it does not exist
it means the user does not have one and a new one should be created.
Download the key ring, decrypt it and start downloading the files this key ring is

3.4 System requirements 43

linked up to. If there are other key rings included, they need to be downloaded,
verified and decrypted as well. This stops when a key contains a file (not a key
ring, but a file the user has uploaded). This file is then downloaded, verified
and decrypted.

3.4.3 Creation of a file

An essential part whenever start working in a file system is to create a file,
initially or at any point. What needed to be done is that a key for this file
should be created and stored in the corresponding key ring. There are some
requirements to this key, as one simple key is not enough. The key need to
include a read- and write-key as well as a symmetric-key, IV and name of the
file after the decryption.
When creating a file the system needs to encrypt the file using the symmetric-key
and IV. After the file has been encrypted there should be generated a file hash
(checksum). This file hash needs to be encrypted with the write-key. Already
when creating a file, the system needs to upload the file and file hash to the
MediaWiki.
Regarding the key, it is added to a key ring, and this key ring’s parent key needs
to be found, and used for encrypting and uploading the updated key ring.

3.4.3.1 Upload file

The user change files all the time, and whenever there is a change to a file, this
file needs to be uploaded to the MediaWiki. It is expected during an upload
to the MediaWiki that the system find the right key. The key contains a read-
and write-key, symmetric-key, IV and what the name for the file should be after
it has been decrypted. The symmetric-key and IV in the key is needed for
encrypting the file. After the file has been encrypted there should be generated
a file hash (checksum). This file hash needs to be encrypted with the write-key.

3.4.3.2 Change file name

The user might want to change the name of a file, without changing the content.
The file name is depended on the information from the key. This means when
a file name is changed, the system needs to find the key accordingly, change the
name entity. Find the parent key of this key, encrypt the file, its file hash and
finally upload the key.

44 Requirements

As the key is included in a key ring, it should be updated in that key ring. The
key ring needs to be encrypted using its parent key and then the key ring can
be encrypted, generate file hash, encrypts file hash and finally upload the key
ring.

3.4.3.3 Download file

When downloading a file, it is assumed that the initial key ring already have
been downloaded and decrypted. So needed from the system is to find the
corresponding key, which might require downloading new key rings and decrypt
these. After the key for the file is found, the hash for the encrypted file should
be downloaded and verified using the read-key. When it is verified the file should
be downloaded and decrypted using the symmetric-key.
If the file is not verified the next in line revision should be tried until a revision
is verified, downloaded and decrypted using the symmetric-key and IV.

3.4.3.4 Download revision

A user might want to download an older revision of a file which the system
should be able to handle this. When a user requests an older revision this
should be downloaded, verified using the read-key and then decrypted using the
symmetric-key and IV.

3.4.3.5 Deletion of a file

When a user wants to delete a file, the file should be removed from the user’s
local file system. The file is never removed from the MediaWiki. The key ring
containing the key for the file has to be changed by the user by having the user
removing the key. This gives a key ring modified to contain all the same keys
but without the key for the file the user just removed locally.
After the key ring has been modified the key ring can be uploaded by encrypting
the key ring and its hash. This requires the user to have write permission.

3.4.3.6 Read- / Write-key

As mentioned there is needed to be a read- and/or write-key included in each
key. The write-key is used to encrypt the file hash of the encrypted file, and the

3.4 System requirements 45

read-key is used to verify this file hash when downloading.

3.4.3.7 Working File System

The user wants to work in a file system, and do not want to manually handle
all the operations mentioned above. This means there should be a working
file system that automatically handles; upload, download and change file name,
while the user is working.
When a user wants to download an older revision of a file, the user should
call this method manually and it is not a requirement to the system to do so
automatically.

3.4.4 Key Handling

The key handling part is done by the client system as well, however for the
simplicity this is separated in the requirement section. The methods for the key
handling are; creation, verifying, sharing and removal of sharing.

3.4.4.1 Creation

When creating a key a couple of attributes should be included; a newly generated
key id, symmetric-key, IV, read- and write-key, MediaWiki information and a
name for the file when it is decrypted.
When all attributes have been set, the key should be added to the corresponding
key ring. The parent key of the key ring should be found and used to encrypt
and upload the key ring and its file hash to the MediaWiki.
It should be defined in every key whether it links to a key ring or a file by an
attribute.

3.4.4.2 Sharing

When sharing a key from user A to user B, the key needs to be added to user
B’s key ring. User A has the option to add the same or less permissions as
user A already has. This gives a user with read- and write permissions the
availability to share the file with only read permission or with both read- and
write permissions. A user that only have read permission can only share the
key with read permission. User B chooses which key ring it should be added to.

46 Requirements

The corresponding parent key to that key ring then needs to be found and used
to encrypt and upload the updated key ring to the MediaWiki.

3.4.4.3 Share removal

Removing a shared key cannot be done, as a user should not be able to remove
keys from another user. An option for this to happen is to copy all shared files
and include them in a new key ring. This key ring and files are then encrypted
and uploaded to the MediaWiki with a new parent key. This key ring and files
are now only readable and writeable by the user who uploaded this. It is of
course possible for the user to share these just like any other key ring or file.

3.4.4.4 Update file name

This method is whenever a user decides to update a file name. The file name
attribute in the corresponding key should then be updated. Parent key should
be found, used to encrypt and upload the updated key.

3.4.5 MediaWiki requirements

The MediaWiki has been chosen as the remote file storage in the cloud, and can
be consider the server side of the project. It has some requirements as well that
are covered in this section.

3.4.5.1 Setup requirements

Using a default MediaWiki setup is not enough, as some things are disabled.

1. API needs to be enabled
2. All, non default, file extensions needs to be added as accepted file exten-

sions.
3. Uploading needs to be enabled.

When these are done, the MediaWiki setup should be as intended.

3.5 Summary 47

3.4.5.2 Storing of Files

The MediaWiki should be able to store the encrypted file types. It is not
a requirement that all file types are needed to be stored, but only a specific
encrypted file type. A requirement for storing files is that no one should be able
to delete files.

3.4.5.3 Storing of Keys

The MediaWiki should be able to store encrypted key rings containing keys.

3.4.5.4 Revisions

Revision is a huge part of this project, and as the user should be able to download
a revision of a file through the client system, MediaWiki needs to support this
as well.

3.4.5.5 File Content

During the encryption of a file, the hash of the file needs to be encrypted using
the write-key. When downloading a file this is used to verify that the uploader
had authorization to change the file.
MediaWiki needs to support some extra file content to be uploaded a long with
a file, that can be used for this encryption of the hash.

3.5 Summary

The requirement section was made to specify the different requirements for
both the application but also the cryptographic needs. This was needed before
being able to design the actual application / system. Firstly finding the general
overview of what the application actually is supposed to be, next thing creating
use cases to specify what kind of usage there could be on this system.
Cryptographic requirements was also specified using the CIA and more and in
the end the non cryptographic system requirements was specified.

48 Requirements

Chapter 4

Design

In the design chapter, the purpose is to get an overview of what needs to be
implemented. This will start out by the overall design, that defines the needed
libraries. Use cases are defined in the requirements section 3, and here they will
be specified in a more technical manner using sequence diagrams. In the end
there will be a need for the cryptography choices done in this project.

4.1 Overall System Design

Showing the flow of the program is done in the integration section 4.3, but first
an overview of the system is needed to be designed. Using the requirements
defined earlier, the needed classes / libraries have been identified and can be
seen in figure 4.1.

50 Design

Figure 4.1: Overview of the system design, including the identified needed
libraries.

Looking at figure 4.1 it can be seen that the following libraries are needed:

• client_system; the client that the user performs to work in.
• key_handler; all the key operations handled in the client_system, such

as creating keys and key rings, as well as finding and adding keys to key
rings.

• cryptography; all the cryptography operations handled in the client_system,
both asymmetric and symmetric as well as hashing operations.

• FUSE; all the FUSE or file system operations, handled locally on the
client. This includes operations such as create-, rename-, change-, delete
file and more.

• MediaWiki; the operations to and from the MediaWiki, such as upload
and downloading files.

It can be seen that most operations in this system, is done in the client_system.
Splitting it up into three main libraries and a communication library with the
MediaWiki. These are the five libraries used in the integration part as well.

4.2 Key handling 51

4.2 Key handling

Key handling is done by storing keys in files using a markup language. A file
can contain many keys, which is called a key ring. These key rings can then be
uploaded to the MediaWiki as they are files.
That means the MediaWiki contains both files uploaded by a user and key rings
containing keys. Each key then knows if the file pointed to in the MediaWiki is
another key ring or a file.

4.3 Integration

The overall system design has been covered in section 4.1, but before actually
implementing the system, there are a lot of different ways to use the system
that have not been clarified.
This section will cover the more technical designs of how to use the program.
This is done in a series of sequence diagrams where each sequence diagram will
include a brief description on when they are used and any needed assumptions.
Then a step by step description of how the actual sequence diagram is done,
where each step will include a number that will be used in the description.

4.3.1 Initialize System

Initializing the system is when the user decides to start the application. The
user would input the master key, and the program finds the initial key ring in
the MediaWiki that will be downloaded, verified and decrypted. The program
will then run through the key ring and look up each key in the key ring. Each
key points to a file in the MediaWiki and this can be either a key ring or a
regular file. Each file found through the key ring is downloaded, verified and
decrypted. Verification of each file is done by using each key’s read-key. The
sequence diagram can be seen in figure 4.2.

Looking at figure 4.2 it can be seen that there is a series of 24 steps before the
system has been fully initialized.

1: start is where the user starts the program and includes a configuration file
containing a link to a unique key.
2: loadKey and 3 is where the key is loaded using the key_handling library.
4: downloadFile and 5 is where the encrypted key ring is downloaded by

52 Design

using the key included in the beginning.
6: downloadHash and 7 is where the encrypted hash for the encrypted key
ring is downloaded.
8: decryptHash and 9 is where the application uses the cryptography library
to verify that the hash was originally written with the correct write-key. This
is done by decrypting the encrypted hash with the read-key from the key.
10: verifyFile is where the application generates a hash for the key ring and
matches it with the decrypted hash and verifies that they are equal.
11: decryptFile and 12 is where the key ring is decrypted using the symmetric-
key and IV from the key included in the beginning.
13: downloadFiles is where the program runs through all keys in the key ring.
A key can point to another key ring or a file. Key ring and file are all files in
the MediaWiki but are handled differently.
14: downloadFile and 15 is where the encrypted file, from a given key in the
key ring, is downloaded.
16: downloadHash and 17 is where the encrypted hash for the encrypted file
is downloaded.
18: decryptHash and 19 is where the application uses the cryptography li-
brary to verify that the hash was originally written with the correct write-key.
This is done by decrypting the encrypted hash with the read-key from the key.
20: verifyFile is where the application generates a hash for the file and matches
it with the decrypted hash and verifies that they are equal.
21: decryptFile and 22 is where the file is decrypted. If this is a key ring
this will be ran through recursion until all files have been downloaded. If it is a
file it is renamed to the name and extension contained in the the key.
23: addFile is where the file gets added to the FUSE file system. This can
be done before the mounting happens, so when the folder gets mounted all files
previously added will be in the FUSE directory.
24: mount is when all files have been downloaded, verified and decrypted. The
rootdir, specified in the configuration file in the beginning, will be mounted and
it should include all the downloaded files.

4.3 Integration 53

Figure 4.2: Sequence diagram showing the flow for when initializing the sys-
tem.

54 Design

4.3.2 Creating File

When the user has initialized the system, the user can work around with files
as they want. Essentially the first thing to do would be to create a file. It is
assumed that the system has been initialized already before creating a new file.
The sequence diagram for when creating a file can be seen at figure 4.3

Looking at figure 4.3 there is a series of 22 steps for when a user creates a file
in the FUSE system.

1: createFile and 2 is when the user creates the file, in the mount point or in
the file system.
3: createKey and 4 is where the client uses the key_handling library to create
a new key for the file. This key includes both read- and write-key.
5: addKey and 6 is where the client adds the key to the key ring using the
key_handling library.
7: encryptFile and 8 is where the first created file is encrypted using the
created key. This is done using the cryptography library.
9: hashFile and 10 is where the encrypted file gets hashed.
11: encryptHash and 12 is where the hash of the encrypted file gets encrypted
with the write-key. This will output an encrypted hash of the file as it will be
saved on the MediaWiki.
13: findParentKey and 14 finds the parent key of that key ring. The parent
key is the key used to initially encrypt the key ring.
15: encryptFile and 16 is where the key ring is encrypted, using the parent
key’s symmetric-key and IV.
17: hashFile and 18 is where the encrypted key ring gets hashed.
19: encryptHash and 20 is where the hash of the encrypted key ring gets
encrypted with the parent key’s write-key. This will output an encrypted hash
of the file as it will be saved on the MediaWiki.
21: uploadFile the encrypted file is uploaded to the MediaWiki along side
with the encrypted hash for the file.
22: uploadFile the encrypted key ring is uploaded to the MediaWiki along
side with the encrypted hash for the key ring.

It can be seen that it needs some steps just to create a file in the file system.
This is because the file has to be encrypted and a verification has to be added
next to the file giving other users downloading the file the possibility to verify
it.

4.3 Integration 55

Figure 4.3: Sequence diagram showing the flow for when a user creates a file.

4.3.3 Upload File

While creating a file the system should automatically uploads the file to the
MediaWiki. It is assumed that a file has already been created and the system
is initialized.
The sequence diagram can be seen at figure 4.4.

56 Design

The sequence diagram at figure 4.4 shows a series of 9 steps for when a user
wants to upload a file already existing.

1: findKey and 2 is where the key_handler finds the key for the file, that the
user wants to upload. At this point it should be a part of the key ring.
3: encryptFile and 4 is where the cryptography library is used to encrypt the
file, using the found key’s symmetric-key and IV.
5: hashFile and 6 is where the encrypted file gets hashed.
7: encryptHash and 8 is where the hash of the encrypted file is encrypted
with the write-key. This will output an encrypted hash of the file as it will be
saved on the MediaWiki.
9: uploadFile the encrypted file is uploaded to the MediaWiki along side with
the encrypted hash.

Figure 4.4: Sequence diagram showing the flow for when a user uploads a file.

4.3 Integration 57

4.3.4 Change File

The user often wants to change their files, and as he or she does that the
program needs to automatically keep the remote storage synchronized. It is
assumed that the system have been initialized and there is a file to change. The
sequence diagram of a file change can be seen at figure 4.5

Looking at figure 4.5 it can be seen that when the user changes a file a series of
11 steps is needed.

1: changeFile and 2 is when the user changes the file, and this is automatically
detected by the FUSE library.
3: findKey and 4 is where the client uses the key_handler library to find the
key for the changed file.
5: encryptFile 6 the file is encrypted by the cryptography library using the
symmetric-key and IV from the key found earlier.
7: hashFile and 8 is where the encrypted file gets hashed.
9: encryptHash and 10 is where the hash of the encrypted file gets encrypted
with the write-key. This will output an encrypted hash of the file as it will be
saved on the MediaWiki.
11: uploadFile the encrypted file is uploaded to the MediaWiki along side
with the encrypted hash.

This is all most the same as just uploading a file, but it includes the detecting
of a file change from the FUSE library.

58 Design

Figure 4.5: Sequence diagram showing the flow for when a user changes a file.

4.3.5 Download File

A lot of the time the user wants to download a file, this could be because another
one changed it. It is assumed that the system has been initialized and that the
user already has the key to a file stored on the MediaWiki. The sequence
diagram for when the user downloads a file is shown at figure 4.6. Looking at
figure 4.6 it can be seen that for downloading a file, a series of 10 steps are
needed.

1: downloadFile and 2 using the key the encrypted file key gets downloaded
from the MediaWiki.
3: downloadHash and 4 is where the encrypted hash for the encrypted file
is downloaded.
5: decryptHash and 6 is where the application uses the cryptography library
to verify that the hash was originally written with the correct write-key. This
is done by decrypting the encrypted hash with the read-key from the key.
7: verifyFile is where the application generates a hash for the file and matches
it with the decrypted hash and verifies that they are equal.
8: decryptFile and 9 is where the file gets decrypted using the cryptography
library.

4.3 Integration 59

10: addFile the file gets added to the FUSE file system, so the user can keep
working on it from there.

Figure 4.6: Sequence diagram showing the flow for when a user downloads a
file.

60 Design

4.3.6 Download Revision

When a user downloads a file and finds out that it can not be verified because the
encrypted file does not match the file’s hash on the MediaWiki. It is assumed
that the system has been initialized and there is a file that has been uploaded
to the MediaWiki multiple times but the last upload is uploaded with a wrong
file hash. The sequence diagram of downloading a revision is shown at figure
4.7

Looking at figure 4.7 it can be seen that it requires a series of 19 steps for the
system to download a revision.

1: getKey and 2 is where the client uses the key_handling library to get the
key for the file.
3: downloadFile and 4 is where the encrypted file gets downloaded from the
MediaWiki.
5: downloadHash and 6 is where the encrypted hash for the file gets down-
loaded.
7: decryptHash and 8 is where the application uses the cryptography library
to verify that the hash was originally written with the correct write-key. This
is done by decrypting the encrypted hash with the read-key from the key.
9: verifyFile is where the application generates a hash for the file and matches
it with the decrypted hash and verifies that they are equal.
10: downloadRevision and 11 is where the encrypted revision is downloaded
from the MediaWiki. This is ran because of the verification of the previous file
is invalid.
12: downloadRevisionHash and 13 is where the encrypted hash for the file
revision is downloaded.
14: decryptHash and 15 is where the application uses the cryptography li-
brary to verify that the hash was originally written with the correct write-key.
This is done by decrypting the encrypted hash with the read-key from the key.
16: verifyFile is where the application generates a hash for the file and matches
it with the decrypted hash and verifies that they are equal.
17: decryptFile and 18 is where the revision file gets decrypted using the
cryptography library. This is ran because of the verification of the revision file
is valid.
19: addFile is where the file gets added to the mounted folder using the FUSE
library. The user can now play around with this revision. When uploading
changes to this file, these changes will become the newest version of the file and
not be an old revision anymore.

4.3 Integration 61

Figure 4.7: Sequence diagram showing the flow for when a user downloads a
revision of a file.

62 Design

4.3.7 Rename File

The user will rename files every now and then, and the local file name is decided
from the corresponding key. This means that when changing a file’s name, the
file does not need to be uploaded. Only the change to the key. It is assumed
that the system has been initialized and that the user has a key for an uploaded
file with write permissions. The sequence diagram for changing a files name is
shown at figure 4.8

Looking at the sequence diagram from figure 4.8 it can be seen that a series of
17 steps is needed whenever the user changes a file.

1: renameFile and 2 is where the user actively changes a file in the mounted
folder. The FUSE library then detects a file name change.
3: findKey and 4 is where the key is found in the user’s key ring, using the
key_handler library.
5: changeFileName and 6 is where the file name attribute in the key is
changed from the old to the new name.
7: replaceKey and 8 is where the old key is replaced with the new key, in the
users key ring. Here the key_handler library is used as well.
9: findParentKey and 10 is where the parent key to the key ring is found
using the key_handler library.
11: encryptFile and 12 is where the key ring gets encrypted using the parent
key with the cryptography library.
13: hashFile and 14 is where the encrypted file gets hashed.
15: encryptHash and 16 is where the hash of the encrypted file is encrypted
with the write-key. This will output an encrypted hash of the file as it will be
saved on the MediaWiki.
17: uploadFile the encrypted file is uploaded to the MediaWiki along side
with the encrypted hash.

4.3 Integration 63

Figure 4.8: Sequence diagram showing the flow for when a user changes a files
name.

4.3.8 Delete File

The user might want to delete a file in his or her file system. The file should
not be deleted on the MediaWiki, since it should never be possible to do as
it would be a major threat to the system. It is assumed that a user already
have initialized the system and that a file exists with a key in the system. The
sequence diagram shown in figure 4.9 is when a user deletes a file.

Looking at figure 4.9 it can be seen that a series of 16 steps is needed whenever
a user deletes a file.

64 Design

1: deleteFile is where the user deletes a file inside the mounted folder. The
FUSE library then detects that a file gets deleted.
2: findKey and 3 is where the key_handler finds the key to the file.
4: findKeyRing and 5 is where the key_handler finds the key ring containing
the key.
6: removeKey and 7 is where the found key is removed from the key ring.
8: findParentKey and 9 is where the parent key for the key ring is found.
This is needed as the key ring needs to be updated on the MediaWiki as well.
10: encryptFile and 11 is where the key ring gets encrypted with the parent
key using the cryptography library.
12: hashFile and 13 is where the encrypted key ring gets hashed.
14: encryptHash and 15 is where the hash of the encrypted key ring is
encrypted with the write-key. This will output an encrypted hash of the key
ring as it will be saved on the MediaWiki.
16: uploadFile the encrypted key ring is uploaded to the MediaWiki along
side with the encrypted hash. Outputting true when succeeding.

4.3 Integration 65

Figure 4.9: Sequence diagram showing the flow for when a user deletes a file.

4.3.9 Share File

Sharing a file between two users is a little bit difficult, when there is not a place
for the users to be created other than locally on their own machine. This means
the public-key needs to be shared on a secure line.
It is assumed that the system have been initialized for both user A and B, and
that user B has uploaded a key that should be shared with user A. The sequence
diagram for sharing a file, can be seen in figure 4.10

Looking at figure 4.10 it can be seen that a series of 35 steps are needed for
sharing a key. Some of it includes manually transfer of objects.

66 Design

1: generateKeys and 2 is where user A generates a key pair consisting of an
encryption key (public-key) a decryption key (private-key).
3: sendEncryptionKey is where user A sends the encryption key from the
key pair to user A.
4: createSecret and 5 is where user B, creates a one time symmetric-key and
IV needed for encrypting the key to be shared with user B.
6: encryptFile and 7 is where user B encrypts the key using the before gen-
erated one time symmetric-key and IV. User B can select if there should be
included read- and/or write-key.
8: encryptSecret and 9 is where user B, encrypts the symmetric-key and IV
using the public-key received from user A.
10: sendKey is where user B, sends the encrypted file and encrypted symmetric-
key and IV to user A.
11: decryptSecret and 12 is where user A decrypts the symmetric-key and
IV, using the private-key generated in the beginning.
13: decryptFile and 14 is where user A decrypts the key using the symmetric-
key and IV decrypted in previous step.
15: downloadFile and 16 user A downloads the encrypted file from the Me-
diaWiki.
17: downloadHash and 18 is where the encrypted hash for the file is down-
loaded.
19: decryptHash and 20 is where the application uses the cryptography li-
brary to verify that the hash was originally written with the correct write-key.
This is done by decrypting the encrypted hash with the read-key from the key.
21: verifyFile is where the application uses the cryptography library to verify
that the encrypted hash was originally written with the correct write-key. This
is done by decrypting the encrypted hash with the read-key from the key and
matching it with the file just downloaded.
22: decryptFile and 23 is where user A decrypts the file using the symmetric-
key and IV from the key decrypted earlier.
24: addFile is where the file is added to the mounted directory using the FUSE
library. Changes made by user A can be uploaded the MediaWiki, if user B in-
cluded a write-key in the key sent to user A.
25: addKey 26 is where user A adds the key to his own key ring.
27: findParentKey and 28 is where user A finds the parent key to the key
ring.
29: encryptFile and 30 is where user A encrypts the key ring using the parent
key found in previous step.
31: hashFile and 32 is where the encrypted key ring gets hashed.
33: encryptHash and 34 is where the hash of the encrypted key ring is en-
crypted with the write-key. This will output an encrypted hash of the file as it
will be saved on the MediaWiki.
35: uploadFile the encrypted key ring is uploaded to the MediaWiki along
side with the encrypted hash.

4.3 Integration 67

Figure 4.10: Sequence diagram showing the flow for when a user wants to
share a file with another user.

68 Design

4.3.10 Remove Sharing

Whenever a user removes a sharing to another user, unfortunately he or she
cannot remove the sharing to the current file. What the user can do is simply
to create a new key for the changed file and upload the file as a new file, where
the user does not give access to the user who needed to be removed from the
sharing.
The reason that it is not possible to remove a sharing for an existing key is that
it would be possible for all users having access to the key be able to remove
users from it. The only access control added to sharing is read- and/or write
permissions.
It is assumed that the system has been initialized and that there is a file where
the user have this files key, and that it is shared with another user, but the key
ring is not shared. The sequence diagram for removing a sharing can be seen at
figure 4.11.

Looking at figure 4.11 it can be seen that a series of 13 steps is needed whenever
a user needs to re-create a key and in that way "remove" a sharing.

1: createKey and 2 is where the key_handler library is used to create a new
key for the file.
3: addKey and 4 is where the key_handler library is used to add the newly
created key into the key ring.
5: findParentKey and 6 finds the parent key to the key ring as it is needed
to upload the current changes to the key ring to the MediaWiki.
7: encryptFile and 8 is where the key ring is encrypted using the cryptography
library.
9: hashFile and 10 is where the encrypted key ring gets hashed.
11: encryptHash and 12 is where the hash of the encrypted key ring is
encrypted with the write-key. This will output an encrypted hash of the file as
it will be saved on the MediaWiki.
13: uploadFile the encrypted key ring is uploaded to the MediaWiki along
side with the encrypted hash.

4.3 Integration 69

Figure 4.11: Sequence diagram showing the flow for when a user removes a
sharing to a file.

4.3.11 End Session

Sooner or later the user is done using the application and when that happens all
files needs to be uploaded to the MediaWiki. They could then be either stored
encrypted locally on the computer or simply deleted. In this project they will be
deleted as when starting the project, the user needs to download the file when
initializing.
It is assumed that the system has been initialized and that the user has all
the keys and files in the current session. The sequence diagram for ending the
session is shown in figure 4.12

Looking at figure 4.12 it can be seen that a series of 20 steps are needed when
the user closes the application.

1: end is where the user tells the application that it should close down.
2: getKeyRing and 3 is where the user’s key ring is loaded that was retrieved

70 Design

using the key in the configuration in the initialization.
4: uploadFiles is where the system runs through all keys in the key ring and
do the operations needed on them.
5: encryptFile and 6 is where the system encrypts the given file using the
given key from the key ring.
7: hashFile and 8 is where the encrypted file gets hashed.
9: encryptHash and 10 is where the hash of the encrypted file is encrypted
with the write-key. This will output the content as it will be saved on the
MediaWiki as the file content.
11: uploadFile is where the encrypted file is uploaded to the MediaWiki along
side with the hash of the file.
12: removeFile is where the FUSE library removes the file from the mounted
folder.
13: encryptFile and 14 is where the key ring is encrypted using the master
key with the cryptography library.
15: hashFile and 16 is where the encrypted key ring gets hashed.
17: encryptHash and 18 is where the hash of the encrypted key ring is
encrypted with the parent keys write-key. This will output an encrypted hash
of the key ring as it will be saved on the MediaWiki.
19: uploadFile the encrypted key ring is uploaded to the MediaWiki along
side with the hash.
20: unmount is where the mounted folder gets unmounted using the FUSE
library.

All files have now been uploaded to the MediaWiki so the application is ready
to be closed.

4.3 Integration 71

Figure 4.12: Sequence diagram showing the flow for when a user closes the file
system.

72 Design

4.4 Cryptography Design

The functionalities have now been designed using sequence diagrams, and they
show the flow of the application. However, they do not tell anything about
which cryptography algorithms that should be used. It is needed to choose
a symmetric algorithm for file encryption / decryption and a asymmetric for
both key encryption and for verification of the file. Hashing is a part of the
verification as well.
All methods and the choices for algorithms are listed in table 4.1, and afterwards
described why they have been chosen.

Operation Algorithm Mode of Operation Key length
File encryption AES CBC 256
File decryption AES CBC 256
Key sharing RSA None 2048
File verification RSA None 2048
File hashing SHA256 None None

Table 4.1: The different chosen cryptography algorithms needed.

In 2003 RSA Security claimed that a 1024-bit RSA key is equivalent to a 80-bit
symmetric-key. 2048-bit RSA key is equivalent to a 112-bit symmetric-key and
3072-bit RSA key is equivalent to a 128-bit symmetric-key.
It is also claimed that a 1024-bit RSA key is likely to become crackable some
time between 2006 and 2010. 2048-bit RSA key should be sufficient until 2030
[NISc] and that is why the key length of RSA in this project decided to be 2048.

4.4.1 File Encryption and Decryption

When encrypting and decrypting files performance can very quickly become an
issue as files in general growing rapidly. This is why it is a must to use symmet-
ric encryption as the performance is way better than when using asymmetric
encryption.
There is used AES CBC 256-bit as this is a NIST Standard [NISb] and this
is considered a very good algorithm for the purpose. If it come to the matter
of performance AES can also be implemented to be very lightweight without
compromising the security level.
Performance is not a part of the scope in this project, so other algorithms could
be used as well, however as the security is not worse when using AES it is still
chosen.

4.5 Summary 73

4.4.2 File Hashing and Verification

All files are encrypted with a symmetric-key at first, then after this they are
hashed using SHA256. When the files have been encrypted and hashed, the
hash is encrypted using a private-key, called the write-key. For hashing SHA256
is chosen as this is minimum recommendation from NIST [nisa].
MD5 hashing could be considered as it is not password hashing, but since NIST
recommends not to use it at all.
It is mentioned that a write-key is needed to encrypt the file hash afterwards,
and this requires an asymmetric algorithm to do so. Then the public-key can
be considered the read-key as this can be used to verify the right write-key has
been used to encrypt. As the performance is not a problem when the files have
been hashed first (these hashes have a fixed output size), RSA can be used for
this as well.

4.5 Summary

The design of the application have now been specified. This was done by first
making an overall design on which different libraries needed and where these
should be included. Shortly how the key handling is done, and next a lot of the
given use cases was created as sequence diagrams. In the end the cryptography
design was chosen. All this was done to get ready for the implementation.

74 Design

Chapter 5

Implementation

The implementation chapter will be more in depth on how the system actually
have been implemented. In the theory chapter 2 the tools where researched, in
the requirements chapter 3 a more specific list of requirements was setup for
both cryptography and the technical point of view. Furthermore, the design
chapter 4 handled how the system is designed.
However, as in all projects the implementations and design is not always the
same and the implementation will specify more directly how different methods
are implemented. Firstly an overview of the implementation is shown, then how
the cryptography choices was implemented and which libraries was chosen for
this. The key- and data structure is looked at and in the end there will be a
description for different methods implemented.

5.1 Overview of Implementation

Looking at the overview of the system there is a lot of different libraries created
for this specific system. The overall implementation is shown at figure 5.1 and
it can be seen that the implementation is splitted into three different subjects.

• Client System

76 Implementation

• Libraries
• Web server

Looking at figure 5.1 it can be seen that the user uses the system through
the client system. In the client system there is the client it self and the file
system, and the client is basically a console application where the user can give
commands to the system and the file system is all the file operations.
Next to see at is the Libraries involved in the system and looking at 5.1 it can
be seen there is six different libraries included in this section. Cryptography is
basically all the cryptography operations, including symmetric- and asymmetric
encryption / decryption as well as hashing. Next is the Key library which
includes all methods regarding keys. MediaWiki is the library for handling the
communication with the MediaWiki, it is basically an imported library with
some changes.
The user needs to specify the config (see section 5.8.1). The JAXBContext
operations handles the XML parsing and the XmlValidator validates the given
XML by comparing it with the associated XML schema for the XML.
The web server is the standard MediaWiki setup with a few changes to the
LocalSettings.php file. It is running on an apache2 server, with MySQL database.
No major changes to the default setups.

Figure 5.1: The overall view of the implementation

The programming language for the implementation is Oracle’s Java version eight
[Ora], as there is a lot of good standard libraries for both encryption / decryp-
tion, hashing, file handling and more. Furthermore, there exists some decent
open libraries that includes the MediaWiki operations.

5.2 Encoding 77

5.2 Encoding

When shipping binary data across a network it is important to encode the data
to prevent interpret with other protocols by eliminating special characters. The
encoder used in this project is Base64 because it rely on the same 64 characters
being present in many character sets.
When creating the encode function in java the library java.util.Base64 is used.
This library is able to both encode and decode data by having static functions
for a Base64 encoder and decoder.
When encoding data the Base64 library has a static function to get the encoder
using the method getEncoder(). This encoder has a function for encoding an
array of bytes and returning the encoded data as a string.
When decoding a Base64 string the Base64 library has a static function to get
the decoder using the method getDecoder(). This decoder has a function for
decoding a string and returning an array of bytes.

Listing 5.1: Encoding and deconding using Base64

Base64 . getEncoder () . encodeToString (bytes) ; // Encoding

Base64 . getDecoder () . decode (encoding) ; // Decoding

5.3 File stream

Accessing files across a network is done by using a file stream. A file stream
is used when retrieving data from a source or writing data to a destination.
In Java there are two libraries for reading a file stream and writing to a file
stream, java.io.InputStream and java.io.OutputStream. These libraries are ab-
stract classes and is the superclass of all other classes representing InputStream
and OutputStream.
In this project the only subclass used is FileInputStream and FileOutputStream.

Using the Java library java.io.FileInputStream it is possible to initialize a FileIn-
putStream. A FileInputStream is only used to read data from a source. The
initialization of the FileInputStream takes either a file or a string file path as
input. When having the FileInputStream initialized it is possible to read data
from the source, given in the initialization, by using the function read(byte b[]).
The read function stores all the bytes read from the stream into the buffer array
b. Once the FileInputStream is read it does not contain the data and if the data
is needed to be read once again, the FileInputStream needs to be reinitialized.

78 Implementation

When writing a file the Java library java.io.FileOutputStream is used to initial-
ize a FileOutputStream. A FileOutputStream is only used to write data to
a destination. The initialization of FileOutputStream takes the same inputs
as FileInputStream. When having the FileOutputStream initialized it is pos-
sible to write data to a destination, given in the initialization, by using the
function write(byte b[]). However, this function is rarely used because normally
the only writing done is copying bytes from a source to a destination. Copy-
ing data from a source to a destination can be done with the Java library
org.apache.commons.io.IOUtils that contains a copy function taking an Input-
Stream and OutputStream as input. This function simply just copies the data
in the InputStream to the OutputStream. This allows streams up to 2GB to be
copied. When copying data streams greater than 2GB another copy function is
used in the library.

When using InputStream and OutputStream it is important to make sure to
close the stream after it has been used to release any system resources associated
with the stream.

5.4 Unique identifier

Storing and retrieving files in the cloud needs to be done with a unique identifier
for each file. The identifier is needed when the file is later retrieved or changed
by a user. Using Globally Unique Identifier also called GUID allows to create a
unique reference number. GUIDs are stored as 128-bit values and are displayed
as 32 hexadecimal digits with groups seperated by dashes (-).
The total number of unique GUIDs is 2122 and gives the probability of having
a duplicate as negligible.
By using the Java library java.util.UUID it is possible to generate a random
GUID. Every file stored in the cloud are stored with random generated GUID.

5.5 Cryptography Library

Cryptography is an important aspect in this project to make sure the files stored
in the cloud is only accessible by the owners them self. One of the cryptography
methods that is needed is a hash function for generating a checksum of the
files. This is needed to check if two files are the same by comparing both files
checksum. Another cryptography method is symmetric cryptography and is
used when encrypting and decrypting files. Symmetric cryptography is used for

5.5 Cryptography Library 79

encrypting files because it is fast and efficient. The last cryptography method
that is needed is the asymmetric cryptography. Among other things asymmetric
cryptography is used to generate a digital signature to verify read and write
permissions.

5.5.1 Hashing

Hashing is used to generate a checksum for a file. This is used to verify that the
file downloaded and uploaded are the same by comparing the file downloaded
with its checksum.
When creating the hash function the Java library java.security.MessageDigest is
used. Message digests are one-way hash functions that take arbitrary-sized data
and output a fixed-length hash value. The library provides several hash func-
tions such as SHA-1, MD5, SHA-256, etc.
By initializing a MessageDigest with the hash function SHA-256, the MessageDi-
gest can now be updated with bytes. The update function updates the digest
using the specified byte array and an offset and limit of bytes to use.

Listing 5.2: Generating checksum for a file

MessageDigest md;
md = MessageDigest . g e t In s tance (_DIGEST_ALGORITHM) ;

byte [] b u f f e r = new byte [_READ_BYTE_LENGTH] ;
int l en ;
while ((l en = stream . read (bu f f e r)) >= 0)
{

md. update (bu f f e r , 0 , l en) ;
}

5.5.2 Symmetric cryptography

Symmetric cryptography is used for encrypting files uploaded to the cloud. The
algorithm used is AES-256 with CBC and PKCS5Padding. This requires a se-
cret and an initialization vector when encrypting and decrypting data.
The Java library javax.crypto.Cipher has been used to encrypt and decrypt
data. The initialization of the cipher is done by using the static function
getInstance(String var0) where the input parameter is the algorithm that is going
to be used for the cipher, in this case AES/CBC/PKCS5Padding. When having
the cipher initialized it can then be set to either encrypt or decrypt data. This is

80 Implementation

done by using the function init(int var1, Key var2, AlgorithmParameterSpec var3)
on the initialized cipher. Where var1 sets if it should encrypt or decrypt data,
var2 is the secret and var3 is the initialization vector. Now the cipher is all
set and ready for either encrypt or decrypt data with the specified secret and
initialization vector.
This cipher is only used to encrypt and decrypt files in the project and to do
that another Java library javax.crypto.CipherOutputStream is needed. The Ciph-
erOutputStream is initialized by giving it an OutputStream (described earlier
in section 5.3) and the cipher just created. Now when writing the output stream
the cipher will make sure it gets encrypted.

Listing 5.3: Encrypting a file using Cipher

public void encrypt (InputStream in , OutputStream out)
Cipher c iphe r = Cipher . g e t In s tance (this .

_PADDING_SCHEME) ;
// secretKey and IV known from the i n i t i a l i z a t i o n o f

the o b j e c t
c iphe r . i n i t (Cipher .ENCRYPT_MODE, this . _secretKey ,

this . _iv) ;

out = new CipherOutputStream (out , c iphe r) ;
IOUt i l s . copy (in , out) ;

in . c l o s e () ;
out . c l o s e () ;

}

Listing 5.4: Decrypting a file using Cipher

public void decrypt (InputStream in , OutputStream out) {
Cipher c iphe r = Cipher . g e t In s tance (this .

_PADDING_SCHEME) ;
// secretKey and IV known from the i n i t i a l i z a t i o n o f

the o b j e c t
c iphe r . i n i t (Cipher .DECRYPT_MODE, this . _secretKey ,

this . _iv) ;

in = new CipherInputStream (in , c iphe r) ;
IOUt i l s . copy (in , out) ;

in . c l o s e () ;
out . c l o s e () ;

}

5.5 Cryptography Library 81

5.5.3 Asymmetric cryptography

Asymmetric cryptography is used to grant users read- and/or write permis-
sions and key sharing. The algorithm used is RSA 2048-bit. The RSA requires
a KeyPair consisting of a public- and a private-key. KeyPair is generated by
using the Java library java.security.KeyPair and java.security.KeyPairGenerator.
The KeyPairGenerator is initialized by using the static function KeyPairGenera-
tor.getInstance(String algorithm) where the parameter specifies what cryptogra-
phy algorithm is going to be used, in this case RSA. Then the KeyPairGenerator
object needs to know the key length which is done by using the function initial-
ize(int keysize), in this case 2048. Now a KeyPair, containing the public- and
private-key, can be extracted from the KeyPairGenerator by using the function
generateKeyPair().

Listing 5.5: Generating KeyPair

KeyPairGenerator kpg = KeyPairGenerator . g e t In s tance (this .
_CRYPTOGRAPHY_ALGORITHM) ;

kpg . i n i t i a l i z e (this ._KEY_LENGTH) ;
KeyPair kp = kpg . generateKeyPair () ;
kp . ge tPub l i c () . getEncoded () ;
kp . ge tPr iva t e () . getEncoded () ;

When the KeyPair is generated it is possible to encrypt and decrypt using either
the public- or private-key. That means there are following four functions that
need to be declared:

• Encrypting using the private-key
• Encrypting using the public-key
• Decrypting using the private-key
• Decrypting using the public-key

In all functions a cipher needs to be declared by using the Java library javax.crypto.Cipher.
The cipher is initialized by using the static function getInstance(String var0)
where the parameter is the algorithm used, in this case RSA. When the cipher
is initialized it needs to be set if it should encrypt or decrypt and the secret
used for the operation. This is done by using the function init(int var1, Key
var2) where var1 decides if it should encrypt or decrypt and var2 is the public-
or private-key. When the mode of operation is set the cipher function doFi-
nal(byte[] var1) can be used where var1 is the plain text or cipher text that
needs to be encrypted or decrypted.

Listing 5.6: Asymmetric cryptography encryption using private-key

82 Implementation

public void encryptByUsingprivate−key (St r ing pla inText) {
c iphe r = Cipher . g e t In s tance (this ._CIPHER_ENCRYPTION) ;
// pr i va t e−key known from the i n i t i a l i z a t i o n o f the

o b j e c t
c iphe r . i n i t (Cipher .ENCRYPT_MODE, this . _getprivate−key

()) ;
c iphe r . doFinal (p la inText . getBytes ("UTF−8")) ;

}

Listing 5.7: Asymmetric cryptography encryption using public-key

public void encryptByUsingpubl ic−key (St r ing pla inText) {
c iphe r = Cipher . g e t In s tance (this ._CIPHER_ENCRYPTION) ;
// pub l i c−key known from the i n i t i a l i z a t i o n o f the

o b j e c t
c iphe r . i n i t (Cipher .ENCRYPT_MODE, this . _getpublic−key

()) ;
c iphe r . doFinal (p la inText . getBytes ("UTF−8")) ;

}

Listing 5.8: Asymmetric cryptography decryption using private-key

public void decryptByUsingprivate−key (St r ing c ipherText)
{
c iphe r = Cipher . g e t In s tance (this ._CIPHER_ENCRYPTION) ;
// pr i va t e−key known from the i n i t i a l i z a t i o n o f the

o b j e c t
c iphe r . i n i t (Cipher .DECRYPT_MODE, this . _getprivate−key

()) ;
c iphe r . doFinal (Encoding . decode (c ipherText)) ;

}

Listing 5.9: Asymmetric cryptography decryption using public-key

public void decryptByUsingpubl ic−key (St r ing c ipherText) {
c iphe r = Cipher . g e t In s tance (this ._CIPHER_ENCRYPTION) ;
// pub l i c−key known from the i n i t i a l i z a t i o n o f the

o b j e c t
c iphe r . i n i t (Cipher .DECRYPT_MODE, this . _getpublic−key

()) ;
c iphe r . doFinal (Encoding . decode (c ipherText)) ;

}

5.6 Key Structure 83

The private-key (write-key) is used to sign the file when uploading it to the
cloud. It starts by generating a checksum for the encrypted file and encrypting
the checksum with the private-key and adds it next to the file. Now when a
user downloads the file and have the public-key (read-key), it is possible for the
user to verify that the file is legit by decrypting the checksum and comparing
it with a checksum generated for the downloaded encrypted file. If they match
the user can be certain that the file is legit and that the user who uploaded the
file actually had write permissions. If the checksum does not match or simply
the checksum is not defined, the user knows that there is a mismatch and that
the file is not legit. The user now tries an older revision and continues to do
this until there is a match.

5.6 Key Structure

This section includes the structure of the keys and how it will be shown in the
XML format as they are used in the implementation. There are two kind of key
types in the implementation, FileKey and KeyRing. This is given by the type
attribute in the key structure and is used to know if the file pointing to (also
called the reference) is a KeyRing containing other keys or just a normal file.
Typically the file will not contain a single key, but be a KeyRing. However,
looking first at the structure of one key, and then afterwards for a KeyRing.
Looking at listing 5.10 the structure of one key can be seen. Firstly the id of
the key is an XML attribute and the same goes for type where as the rest of the
objects are XML elements.
Some of the XML elements are the symmetric-key and IV (initialization vector)
that are used to encrypt and decrypt the reference.
The read-key and write-key are the public-key and private-key. These are used
to allow read- and/or write permissions.
The reference is the id of the file that has been decrypted with the key.
The MediaWiki element contains url, file-extension, and optional username and
password. Each key contains a MediaWiki element to make it easier to share
files across different MediaWikis.
Finally there is a date for when the key has been added.

Listing 5.10: Example of Key structure in XML.

<key id="397b5be3−d0f9−40a8−b47c−9e696db6081c" type="
KeyRing">
<symmetric−key>

lWPgsgCcdbWN1X1nHe6ztqfSDMPrq3WO1j4lCAwzvGk=</
symmetric−key>

<IV>LBnmODwmSG/usGhkqGZA+Q==</IV>

84 Implementation

<read−key>MIIBI . . .</read−key>
<write−key>MIIEv . . .</write−key>
<r e f e r e n c e>ae6be7bc−5a3e−4a8f−9e4b−f 570eba66 fcb</

r e f e r e n c e>
<MediaWiki>

<ur l>h t tp s : // l o c a l h o s t /MediaWiki</ u r l>
<username>user1</username>
<password>user1</password>
<f i l e −extens i on>. box</ f i l e −extens i on>

</MediaWiki>
<added>2016−05−10T20:22 :44</added>

</key>

Looking at the type it can be seen that this specific example is linking to a key
ring. The needed information in a key is the symmetric-key with the initializa-
tion vector (used in CBC mode in AES). Next is the read- and the write-key
used for RSA. The reference object, is the id of the object this key is referring
to, in listing 5.10 it is empty, but this would typically be a string with the id.
The name object is the name of the object, this is only used when it is a file key
as it will be the name of the file, when it is downloaded.
Next is the information for the MediaWiki used for the object this key is linking
too. One user can use more than one MediaWiki, so this information is needed
on each key as it might be different. The last is when the key was added.
The next object is the key ring and this can be seen in listing 5.11, where this
also have an id as the keys does.

Listing 5.11: Example of KeyRing structure in XML.

<?xml version=" 1 .0 " encoding="UTF−8" standalone="yes "?>
<key−r i ng id="ae6be7bc−5a3e−4a8f−9e4b−f 570eba66 fcb ">

<key id="41b7d1d8−9b51−4718−9132−acda8dee4076" type="
FileKey">

. .
</key>
. .
<key id="b0da69bd−885e−4c33−bb97−4c6b8d65ba8a" type="

KeyRing">
. .
</key>
<la s t−updated>2016−05−10T20:22 :44</ l a s t−updated>

</key−r i ng>

The id is an XML Attribute where the rest are XML elements. The key ring is

5.6 Key Structure 85

basically an id, list of keys with XML format and then when it was last updated.
When working with XML files, they need to have a corresponding XML schema,
as they are defining the structure of a given XML File.

Listing 5.12: Key structure in XSD (XML Schema) format.

<xs:schema attr ibuteFormDefau l t=" unqua l i f i e d "
elementFormDefault=" q u a l i f i e d " xmlns :xs=" ht tp : //www.w3
. org /2001/XMLSchema">
<xs:complexType name="MediaWikiType">

<xs : s equence>
<xs : e l ement type=" x s : s t r i n g " name=" ur l "/>
<xs : e l ement type=" x s : s t r i n g " minOccurs="0"

maxOccurs="1" name="username"/>
<xs : e l ement type=" x s : s t r i n g " minOccurs="0"

maxOccurs="1" name="password"/>
<xs : e l ement type=" x s : s t r i n g " name=" f i l e −

extens i on "/>
</ xs : s equence>

</xs:complexType>

<xs:complexType name="KeyType">
<xs : s equence>

<xs : e l ement type=" x s : s t r i n g " name="symmetric−
key"/>

<xs : e l ement type=" x s : s t r i n g " name="IV"/>
<xs : e l ement type=" x s : s t r i n g " name="name"

minOccurs="0" maxOccurs="1" />
<xs : e l ement type=" x s : s t r i n g " name="read−key"

minOccurs="0" maxOccurs="1" />
<xs : e l ement type=" x s : s t r i n g " name="write−key"

minOccurs="0" maxOccurs="1" />
<xs : e l ement type=" x s : s t r i n g " name=" r e f e r e n c e "

/>
<xs : e l ement type="MediaWikiType" name="

MediaWiki" />
<xs : e l ement type=" x s : s t r i n g " name="added" />

</ xs : s equence>
<x s : a t t r i b u t e type=" x s : s t r i n g " name=" id "/>
<x s : a t t r i b u t e type=" x s : s t r i n g " name=" type"/>

</xs:complexType>
<xs : e l ement name="key" type="KeyType"/>

</xs:schema>

86 Implementation

The XSD structure for keys is shown in listing 5.12, where all the mentioned
XML attributes and elements from listing 5.10 is also shown.
The XSD structure for key rings are missing at this point, but it is also needed
to be defined.

Listing 5.13: Key Ring structure in XSD (XML Schema) format.

<xs:schema attr ibuteFormDefau l t=" unqua l i f i e d "
elementFormDefault=" q u a l i f i e d " xmlns :xs=" ht tp : //www.w3
. org /2001/XMLSchema">

<xs:complexType name="MediaWikiType">
<xs : s equence>

<xs : e l ement type=" x s : s t r i n g " name=" ur l "/>
<xs : e l ement type=" x s : s t r i n g " minOccurs="0"

maxOccurs="1" name="username"/>
<xs : e l ement type=" x s : s t r i n g " minOccurs="0"

maxOccurs="1" name="password"/>
<xs : e l ement type=" x s : s t r i n g " name=" f i l e −extens i on

"/>
</ xs : s equence>

</xs:complexType>

<xs:complexType name="KeyType">
<xs : s equence>

<xs : e l ement type=" x s : s t r i n g " name="symmetric−key"
/>

<xs : e l ement type=" x s : s t r i n g " name="IV"/>
<xs : e l ement type=" x s : s t r i n g " name="name"

minOccurs="0" maxOccurs="1" />
<xs : e l ement type=" x s : s t r i n g " name="read−key"

minOccurs="0" maxOccurs="1" />
<xs : e l ement type=" x s : s t r i n g " name="write−key"

minOccurs="0" maxOccurs="1" />
<xs : e l ement type=" x s : s t r i n g " name=" r e f e r e n c e "/>
<xs : e l ement type="MediaWikiType" name="MediaWiki"

/>
<xs : e l ement type=" x s : s t r i n g " name="added" />

</ xs : s equence>
<x s : a t t r i b u t e type=" x s : s t r i n g " name=" id "/>
<x s : a t t r i b u t e type=" x s : s t r i n g " name=" type"/>

</xs:complexType>

<xs : e l ement name="key−r i ng ">
<xs:complexType>

<xs : s equence>

5.7 Key sharing 87

<xs : e l ement name="keys ">
<xs:complexType>

<xs : s equence>
<xs : e l ement name="key" type="

KeyType" minOccurs="0"
maxOccurs="unbounded"/>

</ xs : s equence>
</xs:complexType>

</ xs : e l ement>
<xs : e l ement type=" x s : s t r i n g " name=" l a s t−

updated"/>
</ xs : s equence>
<x s : a t t r i b u t e type=" x s : s t r i n g " name=" id "/>

</xs:complexType>
</ xs : e l ement>
</xs:schema>

The key ring XSD structure is shown in listing 5.13, and all the same elements
and attributes as in both listing 5.11 and listing 5.10 is represented.
The methods used in regards to keys are not described in this section, as this
section only include the structure of the keys. These methods will be described
at a later section, where all methods will be described more in depth.

5.7 Key sharing

When sharing keys between users it is important that the key is not shared to
an intruder and that the intruder can not read the them. The implementation
of key sharing is done by using PGP. PGP is a hybrid crypto system combining
both asymmetric cryptography as well as symmetric cryptography.
It starts by having two users: User A who wants to retrieve a file key from
user B. User A starts by generating a key pair using asymmetric cryptography
and sends the public-key to user B. Here it is assumed that the public-key
shared between user A and user B has not been modified by any third part.
User B generates a random key for encrypting the file key that is later sent to
user A. User B encrypts the file key with the random generated key by using
symmetric cryptography. User B also encrypts the random generated key by
using the public-key retrieved from user A in the beginning. User B now sends
the encrypted file key and encrypted random generated key, that was used for
the encryption of the file key, to user A. User A can now, as the only one,
decrypt the encrypted random generated key by using the private-key from the

88 Implementation

key pair he generated in the beginning. When the random generated key has
been decrypted it is possible to decrypt the file key with it and the key can be
used by user A.
In the key sharing it is possible for the user to allow respectively read permissions
and/or write permissions but only if the user have these permissions from the
beginning.

5.8 Implementation description

The overview of the implementation has been described, the cryptography im-
plementations as well as the structure of the keys. However, some methods have
not been covered yet and this section is to somewhat cover the missing parts of
the implementation. Such as methods for keys, the client and more.
Listings will be included to show the source code but only the more complex
methods.

A console application has been implemented making sure it is easy for the user to
encrypt, decrypt, verify, download, rename and upload files to the MediaWiki.
Firstly looking at the initialization, that is shown in listing 5.14

Listing 5.14: Initialization of the system.

private void _ini t () {
_localRootDir = new F i l e (_conf ig . getRootDirectory ()) ;
F i l e f i l e = new F i l e (_conf ig . getLocalKeyPath ()) ;
i f (! f i l e . e x i s t s () | | ! f i l e . i s F i l e ()) {

try {
f i l e . createNewFi le () ;

} catch (IOException e) {
e . pr intStackTrace () ;

}
} else {

this . _key = Key . loadKeyFromXML(f i l e) ;
}
i f (this . _key == null) {

System . out . p r i n t l n ("No␣key␣was␣ found . ␣Do␣you␣want
␣us␣ to ␣ c r e a t e ␣one␣ f o r ␣you␣ (Y/N) ?␣") ;

BufferedReader br = new BufferedReader (new
InputStreamReader (System . in)) ;

try {
St r ing c r e a t e = br . readLine () ;
i f (c r e a t e . equa l s IgnoreCase ("y")) {

5.8 Implementation description 89

this . _key = this . _createKey (f i l e) ;
} else {

f i l e . d e l e t e () ;
return ;

}
} catch (IOException e) {

e . pr intStackTrace () ;
}

} else {
System . out . p r i n t l n ("Key␣was␣ s u c c e s f u l l y ␣ loaded . ")

;
}
i f (! _localRootDir . i sD i r e c t o r y ()) {

_localRootDir . mkdir () ;
System . out . p r i n t l n ("Couldn ’ t ␣ f i nd ␣ the ␣ de f ined ␣

root ␣ dir , ␣but␣ i t ␣has␣been␣ created . ") ;
}
f i l e = this . _key . download (this . _localRootDir . getPath

() , true) ;
F i l e newFile = new F i l e (this . _localRootDir . getPath ()

+ "/" + this . _key . getName () + " . xml") ;
newFile = this . _key . decrypt (f i l e , newFile , true) ;
i f (newFile != null) {

this . _keyRing = KeyRing . loadXML(newFile . getPath ()
) ;

newFile . d e l e t e () ;
this . _cl ientLoaded = true ;

}
}

Rootdir and the key file is located in the beginning, and if the key file does not
exists the user is asked whether or not they want to create a new key. If the
rootdir does not exist it is created as well.
java.io.Bufferedreader is used for getting inputs from the user.
A key is included in the configration file that the system reads from in the ini-
tialization. This key is linked to an encrypted key ring stored on the MediaWiki.
This key ring is downloaded and decrypted.

Next thing is the uploadFile method shown in listing 5.15.

Listing 5.15: Upload file method.

public void up loadFi l e (F i l e f i l e , boolean moveFile) {
i f (! f i l e . e x i s t s ()) {

90 Implementation

return ;
}

System . out . p r i n t l n ("\nAttempting␣ to ␣upload␣ f i l e : ␣" +
f i l e . getName ()) ;

Key key = this . _keyRing . getKeyByFilename (f i l e . getName
()) ;

i f (key == null) {
key = new Key(f i l e) ;
this . _keyRing . addKey(key) ;
this . _key . encryptAndUpload (this . _keyRing) ;
key . encryptAndUpload (f i l e) ;

} else {
i f (key . getWriteKey () == null | | key . getWriteKey

() . isEmpty ()) {
System . out . p r i n t l n ("\ tMiss ing ␣ permis s ion . ␣You

␣do␣not␣have␣wr i t e ␣ a c c e s s ␣ to ␣ the ␣ cur rent ␣
f i l e . \ n\ tF i l e ␣can␣not␣be␣uploaded . ") ;

return ;
} else {

i f (key . encryptAndUpload (f i l e)) {
System . out . p r i n t l n ("\ t " + f i l e . getName ()

+ "␣was␣uploaded␣with␣ e x i s t i n g ␣key . ") ;
}

}
}
i f (moveFile) {

try {
InputStream in = new Fi leInputStream (f i l e) ;
OutputStream out = new FileOutputStream (this .

_localRootDir . getPath () + "/" + f i l e .
getName ()) ;

IOUt i l s . copy (in , out) ;
} catch (IOException e) {

e . pr intStackTrace () ;
}

}
}

Looking at listing 5.15 it looks if there exists a key, if not a new key is created
and added to the user’s key ring, encrypting and uploading the file with this
key. Otherwise the existing key is used for encrypting and uploading, as long

5.8 Implementation description 91

as there exists a non empty write-key.
The moveFile boolean input is used for whenever the user wants to upload a file
outside of the rootdir. In the end it then copies the file to the rootdir, if this is
true.

The next method is the renameFile, which is shown in listing 5.16.

Listing 5.16: Client systems rename file method.

public void renameFi le (S t r ing oldName , S t r ing newName) {
F i l e o l dF i l e = new F i l e (_localRootDir . getPath () + "/"

+ oldName) ;
F i l e newFile = new F i l e (_localRootDir . getPath () + "/"

+ newName) ;

i f (newFile . e x i s t s ()) {
System . out . p r i n t l n ("\ t " + newName + "␣ a l ready ␣

ex i s t s , ␣ d e l e t e ␣ or ␣ t ry ␣ another ␣name . ") ;
return ;

}
Key key = this . _keyRing . getKeyByFilename (oldName) ;
i f (key == null) {

System . out . p r i n t l n ("Key␣ could ␣not␣be␣ found") ;
}
i f (o l dF i l e . renameTo (newFile)) {

System . out . p r i n t l n ("\ t " + oldName + "␣was␣
s u c c e s f u l l y ␣renamed␣ to ␣" + newName) ;

key . setName (newName) ;
KeyRing keyRing = this . _keyRing .

getKeyRingContainingKey (key . ge t Id ()) ;
keyRing . addKey(key , true) ;
i f (this . _key . ge tRe f e rence () . equa l s (keyRing . ge t Id

())) {
key = this . _key ;

} else {
key = this . _keyRing . getKeyReferingToKeyRing (

keyRing . ge t Id ()) ;
}
key . encryptAndUpload (keyRing) ;

} else {
System . out . p r i n t l n (" F i l e ␣was␣not␣renamed . ␣Try␣

again . ") ;
}

}

92 Implementation

Looking at listing 5.16 it can be seen that the key for the file is looked up.
Afterwards the name of the key is changed to the new name, added to the key
ring. The key that is referring to the key ring (earlier called parent key) is found
and used to encrypt and upload the key ring.

The last method described is when a user wants to export a key to another user,
meaning it is a part of the key sharing. This is done by either making an exact
copy of the key (if it should contain all the same permissions) or just include for
example a read-key. This new key is then encrypted using a random generated
symmetric-key and initialization vector (IV). The symmetric-key and IV is then
encrypted with the given public-key from the other user.
These are the most difficult methods from the Client.java explained. There are
other methods in the same file as well, however these are very easy to understand
and does not need further explanation.
The function to do this can be seen in listing 5.17.

Listing 5.17: Client exportKey method.

Key newKey = key . exportKey (read , wr i t e) ; // Exports the
key i n c l ud i n g e i t h e r read and/or wri te−key

Asymmetric asym = new Asymmetric (public−key) ;
S t r ing s e c r e t = Symmetric . generateKey () ;
S t r ing IV = Symmetric . g ene ra t e i v () ;
Symmetric sym = new Symmetric (s e c r e t , IV) ;
F i l e dec ryptedF i l e = new F i l e (newKey . get Id ()) ;
newKey . saveXML(dec ryptedF i l e) ;

InputStream in = new Fi leInputStream (dec ryptedF i l e) ;
OutputStream out = new FileOutputStream (f i l e) ;
sym . encrypt (in , out) ;

dec ryptedF i l e . d e l e t e () ;

return asym . encryptByUsingpubl ic−key (s e c r e t + "␣ : ␣" + IV)
;

5.8.1 Configuration file

The configuration file is an XML document which the program will read as soon
as it is started. The configuration allows the user to specify where the keys and
files are going to be stored and the MediaWiki endpoint. The configuration

5.8 Implementation description 93

contains following:

• Root directory: Directory containing all the files downloaded from the
cloud.

• Local key: The key used to find, decrypt and encrypt the key ring stored
in the cloud.

• MediaWiki: MediaWiki information such as url, file extension allowed and
optional username and password.

That gives structure of the Config.xml shown in listing 5.18.

Listing 5.18: Example of Config structure in XML.

<con f i g>
<root−d i r e c t o r y>testFUSE/</ root−d i r e c t o r y>
<lo ca l−key>Localkey . xml</ l o ca l−key>
<MediaWiki>

<ur l>h t tp s : // l o c a l h o s t /MediaWiki</ u r l>
<username>user1</username>
<password>user1</password>
<f i l e −extens i on>. box</ f i l e −extens i on>

</MediaWiki>
</ con f i g>

An XSD (XML Schema) has also been added to prevent program failure if the
user mistype or forgets some of the required XML elements.

Listing 5.19: Config structure in XSD (XML Schema) format.

<xs:schema attr ibuteFormDefau l t=" unqua l i f i e d "
elementFormDefault=" q u a l i f i e d " xmlns :xs=" ht tp : //www.w3
. org /2001/XMLSchema">
<xs:complexType name="MediaWikiType">

<xs : s equence>
<xs : e l ement type=" x s : s t r i n g " name=" ur l "/>
<xs : e l ement type=" x s : s t r i n g " minOccurs="0"

maxOccurs="1" name="username"/>
<xs : e l ement type=" x s : s t r i n g " minOccurs="0"

maxOccurs="1" name="password"/>
<xs : e l ement type=" x s : s t r i n g " name=" f i l e −

extens i on "/>
</ xs : s equence>

</xs:complexType>

94 Implementation

<xs : e l ement name=" con f i g ">
<xs:complexType>

<xs : s equence>
<xs : e l ement type=" x s : s t r i n g " name=" root−

d i r e c t o r y "/>
<xs : e l ement type=" x s : s t r i n g " name=" l o ca l−

key"/>
<xs : e l ement type="MediaWikiType" name="

MediaWiki"/>
</ xs : s equence>

</xs:complexType>
</ xs : e l ement>

</xs:schema>

5.8.2 Key methods

The structure of keys have been established in an earlier section of the imple-
mentation, but the methods have not been covered yet. This section will only
cover the complex method and not the most basic ones.
When a user wants to upload a file, this is done through the key method up-
loadFile. This is shown in listing 5.20.

Listing 5.20: Key method uploadFile.

private boolean _uploadFile (F i l e enc ryptedF i l e) {
boolean su c c e s s = fa l se ;
try {

Mediawiki wik i = this . _mediaWiki . l o g i n () ;
InputStream in = new Fi leInputStream (

enc ryptedF i l e) ;
S t r ing f i leName = this . _re fe rence + this .

_mediaWiki . g e tF i l eExten s i on () ;

S t r ing encryptedFi leHash = this .
_generateEncryptedFileHash (in) ;

i f (encryptedFi leHash == null | |
encryptedFi leHash . isEmpty ()) {
in . c l o s e () ;
throw new I l l e g a l S t a t eEx c ep t i o n ("Could␣not␣

encrypt ␣ f i l e ␣hash") ;
} else {

5.8 Implementation description 95

St r ing content = wik i . getPageContent (" F i l e : "
+ fi leName) ;

i f (content == null | | ! content . equa l s (
encryptedFi leHash)) {
in = new Fi leInputStream (enc ryptedF i l e) ;
try {

wik i . upload (in , f i leName ,
encryptedFi leHash , "") ;

wik i . e d i t (" F i l e : " + fi leName ,
encryptedFi leHash , "") ; // Have to
e d i t page because upload does not
change content but on ly adds .

su c c e s s = true ;
} catch (Exception e) {

e . pr intStackTrace () ;
throw new I l l e g a l S t a t eEx c ep t i o n () ;

}
in . c l o s e () ;

} else {
System . out . p r i n t l n (" F i l e ␣ i s ␣no␣ d i f f e r e n t ␣

from␣ the ␣ f i l e ␣uploaded␣ e a r l i e r . ␣Upload
␣has␣been␣ can c e l l e d . ") ;

}

enc ryptedF i l e . d e l e t e () ;
}

this . _mediaWiki . l ogout () ;
} catch (Exception e) {

e . pr intStackTrace () ;
}

return su c c e s s ;
}

The uploadFile is returning a boolean, whether or not the file has been success-
fully uploaded. First logging into the MediaWiki, using the information given
from this key and getting the file extension defined. Secondly the file hash is
generated using the input stream of the file and then encrypted using the write-
key.
The page information from MediaWiki for this exact file is then found. This is
used to find the exact location of uploading, and afterwards the page content
is changed to include the encrypted file hash. This is done using the Medi-

96 Implementation

aWiki command edit, instead of uploading. The encrypted file is deleted locally
afterwards, and then logging out of the MediaWiki to delete the token used.

Before uploading to the MediaWiki it has to be encrypted and this is shown in
the listing 5.21.

Listing 5.21: Key method encryptFile.

private F i l e _encryptFi le (F i l e dec ryptedF i l e) {
try {

F i l e enc ryptedF i l e = new F i l e (this . _re fe rence +
this . _mediaWiki . g e tF i l eExtens i on ()) ;

Symmetric sym = new Symmetric (this . _symmetricKey ,
this . _iv) ;

InputStream f i l eKey Input = new Fi leInputStream (
dec ryptedF i l e) ;

OutputStream fi leKeyOutput = new FileOutputStream
(enc ryptedF i l e) ;

sym . encrypt (f i l eKeyInput , f i leKeyOutput) ;
f i l eKey Input . c l o s e () ;
f i leKeyOutput . c l o s e () ;

return enc ryptedF i l e ;
} catch (Exception e) {

e . pr intStackTrace () ;
}

return null ;
}

The method shown in listing 5.21 is getting a non encrypted file as input and
returns the encrypted file. Finding the encrypted file’s extension, from the key’s
MediaWiki information.
Simply opening the input stream from the non encrypted file, to the out-
put stream of the encrypted file, and uses the two streams together with the
Crypto.Symmetric to encrypt the stream. This will encrypt the output file, and
this file is returned in the end.

At some point the user wants to download the uploaded files, this is done using
the method download, shown in listing 5.22.

Listing 5.22: Key method download.

public F i l e download (St r ing path , boolean
runThroughRevisions) {

5.8 Implementation description 97

i f (! path . endsWith ("/")) {
path += "/" ;

}
Mediawiki wik i = this . _mediaWiki . l o g i n () ;
S t r ing pageName = " F i l e : " + this . _re fe rence + this .

_mediaWiki . g e tF i l eExten s i on () ;
S t r ing u r l = null ;
S t r ing content = null ;
try {

u r l = wik i . get ImageInfo (pageName) . getUr l () ;
content = wik i . getPageContent (pageName) ;

} catch (Exception e) {
e . pr intStackTrace () ;
this . _mediaWiki . l ogout () ;

}
F i l e download = this . _downloadFile (ur l , content , path

) ;
i f (download == null) {

i f (runThroughRevisions) {
try {

download = this . _ f indCorrec tF i l e (wik i .
g e tRev i s i on s (pageName) , path) ;

} catch (Exception e) {
e . pr intStackTrace () ;
this . _mediaWiki . l ogout () ;
throw new I l l e g a l S t a t eEx c ep t i o n (" F i l e ␣

does ␣not␣match␣ f i l e ␣ content ") ;
}

} else {
throw new I l l e g a l S t a t eEx c ep t i o n (" F i l e ␣ does ␣

not␣match␣ f i l e ␣ content ") ;
}

}

this . _mediaWiki . l ogout () ;

return download ;
}

Looking at listing 5.22 it can be seen that first the application is logging into the
MediaWiki, then the page information for the file is given. Here the reference-
attribute from the key is used.
Using the getImageInfo to get the direct url to the file. When having the url a

98 Implementation

private-key method _downloadFile is used, that basically opens an input- and
output stream to read the file and write it locally (see section 5.3 to read more
about file streams). The _downloadFile method might return null, if this version
of the file could not be validated. If this happens, as it can be seen in listing 5.22
it will find the last valid revision. The last valid revision is found by looping
through all revisions ordered by its upload date descending. In the end logging
out of the MediaWiki to delete the token used and returning the newest revision
that could be verified.

The last thing to show of the key methods is the decrypt and this is shown in
the listing 5.23.

Listing 5.23: Key method decrypt

private F i l e _downloadFile (S t r ing ur l , S t r ing content ,
S t r ing path) {
F i l e f i l e = new F i l e (path + this . g e tRe fe rence () +

this . _mediaWiki . g e tF i l eExtens i on ()) ;
try {

InputStream in = new URL(u r l) . openStream () ;
i f (content == null | | content . isEmpty () | | ! this

. _va l i da t eF i l e (in , content)) {
in . c l o s e () ;
return null ;

} else {
in = new URL(u r l) . openStream () ;
OutputStream out = new FileOutputStream (f i l e)

;
IOUt i l s . copy (in , out) ;
out . c l o s e () ;

}
in . c l o s e () ;

return f i l e ;
} catch (IOException e) {

e . pr intStackTrace () ;
}

return null ;
}

Looking at listing 5.23 it can be seen that the Crypto.Symmetric library is used
and this is initialized by using the information from this key. Opening the
two file streams input- and output stream to read the encrypted file and write

5.8 Implementation description 99

the file decrypted (see section 5.5.2 to read about the decryption process using
symmetric cryptography). Deleting the encrypted file and returning the newly
decrypted file.
This was the more complex methods of the key library. However, the library does
include many more methods, but these are all simple and easy to understand.

5.8.3 FUSE

In this implementation it is meant to work such that the application on the
computer to detect changes to files and automatically upload changes to the
MediaWiki.
The current application is implemented in Oracle’s Java, and the regular FUSE
API, is used for C, however there does exist libraries to make it Java compatible.
In this project, the library chosen for FUSE in java is called FUSE-JNA (see
[Eti]).
There have been problems with the implementation of the FUSE file system and
there for the application does not include the FUSE mounting part. However,
the source is still there, for further working possibilities. The reason for the
problem is explained in the end of this section.
When starting the application the folder should be mounted, and have down-
loaded all the files that the user have keys for. The mount method does whatever
needed before mounting and this is shown in listing 5.24.

Listing 5.24: The FUSE library mount method.

public void mount () throws FUSEException {
System . se tProper ty (" jna . nosys " , " t rue ") ;
S t r ing rootd i rPath = _localRootDir . getPath () ;
i f (! _localRootDir . e x i s t s ()) {

_localRootDir . mkdir () ;
}
i f (! _isDirEmpty (rootd i rPath)) {

System . out . p r i n t l n (rootd i rPath + "␣ i s ␣not␣empty . ␣
The␣ root ␣ d i r e c t o r y ␣ f o l d e r ␣needs ␣ to ␣be␣empty . \
nConsider ␣ choos ing ␣a␣new␣ r o o t d i r ␣by␣ changing ␣
the ␣Config . xml . \ nMounting␣ o f ␣" + rootd i rPath +
"␣Canceled . ") ;

return ;
}
_loadFileKeys () ;
this . _addFilesDir (rootd i rPath) ;
this . mount (_localRootDir . getPath ()) ;

}

100 Implementation

Looking at listing 5.24, the rootdir is checked at first and created if it does not
exist. The actual rootdir have to be empty when mounting it, so this is checked.
After this the keys are loaded, meaning they are downloaded from MediaWiki,
and the corresponding files are downloaded as well.
After the files are downloaded, they are added to the rootdir, this is not copying
them into the folder, but creating a MemoryFile object. This is how the FUSE-
JNA works with files. This object is then added to the rootdir list of files. Then
when mouting the rootdir, the files gets added to the mounted file system and
the user can work with them.

When the file system is mounted, the user can work with files, and while doing
that the system should automatically upload files. However, when uploading
files through the FUSE library, it gives problems as explained earlier.
Looking back at the implementation overview from figure 5.1, it can be seen that
there is use of the jaxb xml parser, and this is causing problems when working
in FUSE as it gives parser errors. When uploading to the MediaWiki, XML is
used to send information, and somehow the FUSE library cannot handle this
way of doing it, as it gives ClassNotFoundException as seen in listing 5.25.

Listing 5.25: Error given when uploading files via FUSE.

javax . xml . bind . JAXBException
− with l i nked except ion :
[java . lang . ClassNotFoundException : org / e c l i p s e /

p e r s i s t e n c e / jaxb/JAXBContextFactory]

Due to the error from listing 5.25, the FUSE part was removed from the running
application, but the Java code is still in the project, as this problem has been
close to resolved.

5.9 Summary

The implementation section has described how the implementation of the appli-
cation has been done. First with an overview of how the whole setup have been
done. Next how some different problems have been solved such as encoding, file
streams and the unique identifier. The cryptography library implementation
was described. The key structure was described showing the XML structure
and next the key sharing as well.
Implementation description covered a more technical explanation of the differ-
ent methods implemented in this project including different listings. However,
this only included some of the more complex methods.

Chapter 6

Results

This section should include Evaluation as well.

6.1 Testing

Testing is an important aspect when creating software to make sure the func-
tionality works every time a new feature is implemented. To make sure the core
functionalities work there have been created unit tests. That gives the following
automated tests:

• Hashing
• Encoding
• Asymmetric cryptography
• Symmetric cryptography
• Key (including connection to MediaWiki)
• KeyRing (including connection to MediaWiki)

All tests included in the source code have been ran each time a new feature has
been changed or implemented to make sure it was not breaking anything.

102 Results

The most important tests are to make sure the cryptographic methods work
by testing the hashing, symmetric- and asymmetric cryptography. The tests
written here makes sure following is correct:

• Generating file hash.
• Comparing file hashes.
• Generating and retrieving public- and private-key.
• Asymmetric encryption using public-key.
• Asymmetric decrypting using private-key.
• Asymmetric encryption using private-key.
• Asymmetric decrypting using public-key.
• Generating and retrieving symmetric-key and IV.
• Symmetric encrypting using symmetric-key and IV.
• Symmetric decrypting using symmetric-key and IV.
• Encoding data.*
• Decoding data.*

*Encoding and decoding data is not cryptographic methods, but is used to send
and store data.

Now that the cryptographic methods are tested to work, they can be used in
keys and key rings. This gives the following tests in keys and key rings:

• Initializing a key pointing to a key ring.
• Initializing a key pointing to a file.
• Encrypting the file/key ring pointed to by the key.
• Decrypting the file/key ring pointed to by the key.
• Upload file/key ring using the key.
• Downloading and decrypt file/key ring user the key.
• Retrieving a key from a key ring.
• Inserting a key into a key ring.
• Sharing a key with only read permission.
• Sharing a key with read and write permissions.

Most of these tests have been ran several times to measure performance for
different operations (see appendix A.2). Performance was not focused in this
project but looking at the performance tests they show a decent result overall.

Besides unit tests some manual tests have also been made (some of them are
shown in appendix A.1):

• Initialize system without a local key.

6.2 Threats to the system 103

• Initialize system with a local key.
• Create and upload a file.
• Change and upload a file.
• Rename a file.
• Download and decrypt all files stored in the MediaWiki.
• Closing the system and delete all files locally.
• Sharing a file.

6.2 Threats to the system

A risk analysis has been made to list the threats to the system looking at the
probability for the threat to happen and the impact of the threat.

Figure 6.1: Risk analysis

104 Results

6.2.1 Man-in-the-middle attacks

Man-in-the-middle attacks, also called MITM attacks, are attacks with most
probability. A MITM is an attack where the attacker secretly modifies or alters
the communication between two parties. The two parties have no idea that
they are communicating through a MITM and think they are communicating
directly with each other.
The reason the probability is that high for MITM attacks is that it is easy to
perform a MITM attack on a unencrypted connection between two parties which
in this exact case are the client and MediaWiki server.

6.2.1.1 Replay Attack

Replay attack is an attack where a MITM performs an earlier valid data trans-
mission repeated or delayed.
In the case where a user uploads a file to the MediaWiki server and this data
transmission is intercepted by a MITM. The MITM later repeats the data trans-
mission to the MediaWiki server. This would upload the file successful to the
MediaWiki server, but without any harm because the data is still valid. On the
other hand, if it was the case that the MITM had intercepted an even older data
transmission and repeated it to the MediaWiki server when a user wanted to
upload a newer file it set the old file as the new file. Next time the user would
download the file he would simply get an older file than the one he uploaded
earlier. This could happen but thanks to revisions in MediaWiki the user would
be able to retrieve his file in another revision.
This gives a low impact but a high probability to happen.

6.2.1.2 Eavesdropping

Eavesdropping is where a MITM intercepts the communication between two
parties. This allows the MITM to simply listen to all the data communicated
between two parties. In the case where a user uploads a file to the MediaWiki
server it would allow the MITM to listen to the data sent to the MediaWiki
server.This can easily happen but thanks to encryption done by the user before
the data transmission, the MITM can not read the data. The same goes when
a user downloads a file from the MediaWiki server.
This gives a low impact but a high probability to happen.

6.2 Threats to the system 105

6.2.1.3 Deletion

A MITM has the option to delete the entire data transmission done via the
communication between two parties. This allows the MITM to avoid any file
uploads and/or file downloads to and from the MediaWiki server. This gives
a bigger problem for the user because the user could lose data if he does not
know the data uploaded earlier has been deleted. The MediaWiki server would
never know that the user have tried to upload a file to it and can not create any
revisions for the file.
This gives a medium impact but a high probability to happen.

6.2.1.4 Modification

A MITM have the option to modify the data transmitted via the communication
between two parties. This allows the MITM to modify the file uploaded and/or
file downloaded to and from the MediaWiki server. The biggest problem here is
when the user tries to upload the file to the MediaWiki server because it could
turn the valid file upload into an invalid file. When the user wants to download
the file again the user would quickly find out that the data downloaded does
not match with the checksum provided next to the file. This gives the same
problem as deletion, in section 6.2.1.3, because the user could lose data if he
does not know the file uploading had been modified.
This gives a medium impact but a high probability to happen.

6.2.1.5 Fabrication

A MITM can perform fabrication by transmitting data to the MediaWiki server.
This allows the MITM to upload files to the MediaWiki server and upload files
to the user when the user tries to download files.
If the user tries to download a file from the MediaWiki server where a MITM
have been doing fabrication, the user would quickly find out that the data
downloaded does not match with the checksum provided next to the file. The
user then knows that this is a corrupt file and downloads another revision of the
file.
This gives a low impact but a high probability to happen.

106 Results

6.2.2 Denial-Of-Service attack

The Denial-Of-Service attack, also known as DoS attack, is when an attacker
in some way deny the service needed for the user. It could be by giving the
MediaWiki server so many requests, the server cannot handle and then causes
it to break down or that the attacker simply uploads so many versions of an
existing file, that it take a long time for the client to find a viable revision.
Another type of DoS attack is a DDoS attack, Distributed-Denial-of-Service
attack, where the principles are the same as a DoS attack but, where DoS
attack typically uses one computer to do this with, DDoS attack uses multiple
computers and are often global attacks distributed via a botnet.
A good thing about the MediaWiki server, is that it is made to handle a lot of
traffic and this also makes it difficult to require a bot net big enough to take
it down, however it is not impossible and it is getting easier and easier day by
day to do. The impact is set to medium because taking the server down could
only be temporarily one way or another and even so the user could still have
their files locally stored, meaning it would only have impact until the server is
up and running again.

6.2.3 Unauthorized MediaWiki access

Unauthorized MediaWiki access is when an attacker somehow get access to the
server he or she is not supposed to have. This could either be by getting physical
access to the server or by getting an sensitive user information (username and
password) to the MediaWiki. When having administrator rights to a MediaWiki
one is simply able to delete all files uploaded and this would be a disaster.
However, the probability of this is very low if the password is strong, but then
again this depends on the user administrating the MediaWiki. This could be
improved by having a backup server available.
Getting physical access for a regular attacker is also very difficult and there for
the probability for this happening is set to low on the risk analysis. The impact
is high for this as well, because if an attacker got access to the server he or she
could simply destroy it. This could like the administrator rights be improved
by having a backup server available in a different building with different access
requirements physically.

6.3 Future Work 107

6.3 Future Work

This section is supposed to be a way to first of all show which parts of the
project that was not implemented as intended. Next of all how they should
have been and how any new contributors to this project can work further on.

6.3.1 FUSE & MediaWiki

Starting this future work section with the already mentioned FUSE & Medi-
aWiki error that this implementation has. Instead of the user actively have to
upload changes to the MediaWiki using the command line application, FUSE
should be able to automatically detect changes to files and then upload the file.
When doing this it gives an error which is caused by the XML binder jaxb.
Future work should include fixing this error, as it would give a complete file sys-
tem and that gives a better user experience and it would look closer to already
existing file cloud storage solutions such as DropBox.

6.3.2 Key Sharing made easy

The user experience as it is in the current application regarding key sharing, is
not very user friendly. The two users have to manually do the most operations
other than generating the needed keys, as well as sending the encrypted key file
them self. Future work could be to automatically do most of these operations.
However this would require some key distribution, through a trusted server to
verify that a given public-key is in fact this users public-key. The MediaWiki
servers could possibly be used to the key distribution, however this require some
server development, and the goal of the project would be compromised in this
way, as the clean implementation is avoided.
Besides that it is not known by the user who else has access to the key and what
permissions they have.

6.3.3 Lost key

If a user looses their key they can not decrypt their files they have uploaded
earlier, except if they shared all their files with another user. If this is the case
the other user can simply share the key with the first user. If it is not the case
that the user has shared the files with other users it is not possible for the user

108 Results

to decrypt the files.
This could have been done by using secret sharing where the user divides the
key into X number of junks and distributes each junk to a participant. This
allows the user to reconstruct the key by combining Y number of shares together,
where Y is less or equal to X, and the individual shares are of no use on their
own.

6.4 Summary

The result section includes various tests that are included in the project to make
sure the needed methods are rightfully implemented. Some of them was done as
unit tests in the source code, and some of them where done by manually testing.
The security aspect of the project was also looked at, and some of threats to
the system was identified and they where included in a risk analysis.
In the end a future work section including various suggestions on how the project
could be worked at in the future and how it could be made a better project.

Chapter 7

Conclusion

The goal of the project was to look into the possibility to develop a cloud
based file storage environment using only a combination of cryptographic access
control and key rings to do so. The idea was to use FUSE as the local client /
file system and MediaWiki as the remote file storage server.

There have been implemented a solid prototype to show that it is possible to do
so. The application does not need to trust the MediaWiki server as everything
is encrypted client side, and it is not possible to use the current client to upload
without the data get encrypted.
One of the goals was to use FUSE as the local client file system, but due to
XML parser errors this goal was not reached. However, this could possibly be
implemented in the future.
This also means that the current application should not be looked at as an end
product, as it is a console application with the user telling the system which
operations needed to be done.

The possibility to share files / keys in between users was a goal in this project
as well and this goal have somewhat been reached. However, it is not an easy
way to share files / keys, as this is done with a series of manual steps.

Furthermore, a risk analysis has been made and shows that the application is
mostly compromised to DoS attacks.

110 Conclusion

Overall we are satisfied with the prototype, although it could have been nice to
have the FUSE implementation ready as well.

Appendix A

Appendix

A.1 Usage Guide

The purpose of the usage guide is to show how some of the basic operations are
done in the current application, including screen shots.

A.1.1 Initialize system

Assuming that MediaWiki have been setup and the needed information in the
Config.xml file has been filled. The program needs to be started and because
there is no key created for this user it will ask for it as shown on figure A.1.

Figure A.1: Screenshot of when starting the system without a localkey.xml
file.

112 Appendix

When inputting "y", keys file in at the given location from the config fileshown
in figure A.2.

Figure A.2: Keys file created after typing y to the initialization.

After this the menu of the application is shown for the user, and this can be
seen in figure A.3.

Figure A.3: Menu loaded after initialization and creation of the localkeys.xml

The keys file have been created for the user, and the menu is shown as in figure
A.3 and this means that the system have been initialized successfully.

A.1.2 Create and upload file

When the system have been initialized and the menu is shown as in figure A.3,
it is time for the user to create a file. This can either be done by using the "Add
new file" feature inputting 3 or by putting a file into the root directory and use
option 1 "Sync all files".

Firstly a file called linux_penguin.jpeg and anothertest.txt is added to the root
directory and will be uploaded to the MediaWiki using the command "Sync all

A.1 Usage Guide 113

files". The output from the console application is shown in figure A.4.

Figure A.4: The output from the application after synchronizing all files in
the root directory.

Next a file that is not manually copied into the root directory by the user, is
added. This is done using input 3 "Add new file" and the program want the
file path to the file from where the java application is running. In this case it is
src/TestFiles/test.txt. This is shown in figure A.5.

Figure A.5: The input and the output from the application when adding a file
placed outside the root directory.

It is also added into the root directory, and this is shown in figure A.6.

Figure A.6: The root directory after adding a file placed outside the root di-
rectory.

114 Appendix

This is how to add one or more files after initialization of the system. Closing
and opening the program will later be shown, to show that these files are in fact
saved onto the MediaWiki.

A.1.3 Change and upload file

Three files are added to the root directory as shown in figure A.6, and now the
content will be changed in anothertest.txt, as shown in figure A.7.

Figure A.7: Showing the change of anothertest.txt.

And afterwards the "Sync all files" needs to be inputted by the user. This is
shown in figure A.8, where it can be seen that it only uploads anothertest.txt
as this is the only one that have been changed.

Figure A.8: Running the Sync all files command after having changed anoth-
ertest.txt

This was how to change a file in the current application, and later it will be
shown that the changes actually have taken effect and are uploaded to the
MediaWiki.

A.1 Usage Guide 115

A.1.4 Rename file

Looking at the menu from figure A.3 it can also be seen that by inputting 2, it
is possible to rename a file. This should be done by using this command, and
not by doing it directly to the file. The user needs to input the name of the
current file, and the new name that the user wants. Both input and output is
shown in figure A.9.

Figure A.9: The input and output to and from the application when renaming
a file.

The file have also been renamed in the root directory. This is shown in figure
A.10.

Figure A.10: The root directory after renaming test.txt to testischanged.txt .

This was how to rename a file the correct way when using the application. It
will be shown that all these changes and rename will take effect when closing
and starting the program.

116 Appendix

A.1.5 Exit and start program

Now the session needs to be ended, which is done by inputting -1 into the appli-
cation. After wards it will be shown that all the files are the same when opening
the application again. Closing the session is shown in figure A.11.

Figure A.11: The input and output when ending the session.

It can be seen from figure A.11 that all files was already uploaded to the Medi-
aWiki, but it attempted to do so anyway. Everything in the root directory have
also been locally deleted as shown in figure A.12.

Figure A.12: The root directory is empty after closing the application and
uploading all files.

The application have been closed successfully, but to show that it actually works
as intended the program needs to be started again. The start of the application
again is shown in figure A.13.

A.1 Usage Guide 117

Figure A.13: The output from the application when starting it, already having
a localkeys.xml file.

All files is downloaded to the root directory and this is shown in figure A.14.

Figure A.14: The root directory shown after starting the application already
having a localkeys.xml where some files has been uploaded to
the MediaWiki. This including the change to anothertest.txt

118 Appendix

Looking at figure A.14 it can also be seen that both the rename made in an
earlier section as well as the change to anothertest.txt is the same.

A.1.6 Sharing file

When sharing a file, it is needed for two users to have initialized the system.
Firstly the user B use the Add Key command by inputting 4, this is shown in
figure A.15.

Figure A.15: User B typed Add Key, getting the secret that needs to be send
to user A.

What user B needs to do now is to copy the public-key shown in figure A.15,
and send it to user A over a secure line.
User A now uses the command "Export key (by filename)" with the linux_penguin.jpg
file name as input and inputs user B’s public-key received, as second input and
"RW" as third to give read- & write access. This could also just be "R" for read
access only. The last input is the destination for the output file.
When this is done the application outputs a testshare.box file and a one time
generated secret that user B needs. User A’a input and output is shown in figure
A.16.

Figure A.16: User A exporting a key that needs to be send to user B along
with the public-key of user A.

When user B inputs the given secret the file is downloaded as shown in figure
A.17.

A.2 Performance test 119

Figure A.17: Application downloading the file given from user A to B.

Looking at the root directory of user B as shown in figure A.18 it can be seen
that the linux_penguin.jpg picture have been downloaded successfully.

Figure A.18: The root directory for user B after getting a key from user A.

That is how the sharing of a file works in the current application.

A.2 Performance test

The purpose of the performance tests are to check that the program is not too
slow. It is not to compare anything, but only to see that the program does run
within regular operation times.

The tests have been ran on a machine running Ubuntu 16.04 with following
specifications:

• Intel Core i5-5250U CPU @ 1.60GHz
• 16 GB memory
• Intel 120 GB SSD (SSDSCKHW120A4)

All tests are using a 104.9 MB test file and have been ran several times to find

120 Appendix

the average time of each operation.

A.2.1 Encryption using symmetric cryptography

This test includes reading a decrypted file and writing to a new file encrypting
the content in the file:

Encrypting: ∼ 380ms

Normal reading and writing without encryption: ∼ 120ms

A.2.2 Decryption using symmetric cryptography

This test includes reading an encrypted file and writing to a new file decrypting
the content in the file:

Decrypting: ∼ 600ms

Normal reading and writing without decryption: ∼ 120ms

A.2.3 Encryption using asymmetric cryptography

These tests include reading a hash and encrypting it by using public- and private
key:

Encrypting using public key: ∼ 1ms

Encrypting using private key: ∼ 10ms

A.2.4 Decryption using asymmetric cryptography

These tests include reading an encrypted hash and decrypting it by using public-
and private key:

Decrypting using public key: ∼ 1ms

A.2 Performance test 121

Decrypting using private key: ∼ 10ms

A.2.5 Hash file

This test includes reading a file and generating a hash for the file:

Hashing: ∼ 800ms

Reading without hashing: ∼ 75ms

A.2.6 Encoding

This test includes reading a public- key and encode it:

Encoding: ∼ 1ms

A.2.7 Decoding

This test includes reading a public- key encoded and then decode it:

Decoding: ∼ 1ms

A.2.8 Upload file

This test includes reading a file locally and then upload it to a MediaWiki hosted
locally:

Upload file without encryption: ∼ 5800ms

Encrypt file and upload: ∼ 6500ms

A.2.9 Download file

This test includes downloading an encrypted file from MediaWiki hosted locally:

122 Appendix

Download file without decryption: ∼ 1750ms

Download file and decrypt: ∼ 2400ms

Bibliography

[Bla93] Matt Blaze. A cryptographic file system for unix. Conference on Com-
puter and Communications Security, pages 9–16, 1993.

[CP97] G Cattaneo and G Persiano. Design and implementation of a trans-
parent cryptographic file system for unix. 1997.

[dja] Django file storage. https://docs.djangoproject.com/en/1.9/
howto/custom-file-storage/.

[EK] A. A. Elliott and G. S. Knight. Role explosion: Acknowledg-
ing the problem. http://knight.segfaults.net/papers/20100502%
20-%20Aaron%20Elliott%20-%20WOLRDCOMP%202010%20Paper.pdf.

[Eti] EtiennePerot. Fuse-jna library. https://github.com/EtiennePerot/
fuse-jna.

[Fou] Wikimedia Foundation. Wikipedia. https://www.wikipedia.org/.

[git] Git. https://git-scm.com/.

[Hal] Mike Halcrow. ecryptfs: a stacked cryptographic filesystem. http:
//www.linuxjournal.com/article/9400.

[HJ03] Anthony Harrington and Christian Jensen. Cryptographic access con-
trol in a distributed file system. Proceedings of ACM Symposium on
Access Control Models and Technologies (SACMAT 2002), pages 158–
165, 2003.

[Hoh] Christoph Hohmann. Cryptofs. http://reboot.github.io/
cryptofs/.

https://docs.djangoproject.com/en/1.9/howto/custom-file-storage/
https://docs.djangoproject.com/en/1.9/howto/custom-file-storage/
http://knight.segfaults.net/papers/20100502%20-%20Aaron%20Elliott%20-%20WOLRDCOMP%202010%20Paper.pdf
http://knight.segfaults.net/papers/20100502%20-%20Aaron%20Elliott%20-%20WOLRDCOMP%202010%20Paper.pdf
https://github.com/EtiennePerot/fuse-jna
https://github.com/EtiennePerot/fuse-jna
https://www.wikipedia.org/
https://git-scm.com/
http://www.linuxjournal.com/article/9400
http://www.linuxjournal.com/article/9400
http://reboot.github.io/cryptofs/
http://reboot.github.io/cryptofs/

124 BIBLIOGRAPHY

[Jor] Carole S. Jordan. A guide to understanding discretionary access control
in trusted systems. http://fas.org/irp/nsa/rainbow/tg003.htm.

[Mag] Jeffrey B. Layton Linux Magazine. User space file systems. http:
//www.linux-mag.com/id/7814/.

[Mau] Ermelindo Mauriello. Tcfs: Transparent cryptographic file system.
http://www.linuxjournal.com/article/2174.

[Meda] Mediawiki api imageinfo. https://www.mediawiki.org/wiki/API:
Imageinfo.

[Medb] Mediawiki api revisions. https://www.mediawiki.org/wiki/API:
Revisions.

[Medc] Mediawiki api upload. https://www.mediawiki.org/wiki/API:
Upload.

[Medd] Mediawiki main page. https://www.mediawiki.org/wiki/API:Main_
page.

[mys] Mysql. https://www.mysql.com/.

[nisa] Nist’s policy on hash functions. http://csrc.nist.gov/groups/ST/
hash/policy.html.

[NISb] NIST. Announcing the advanced encryption standard (aes). http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[NISc] NIST. Twirl and rsa key size. http://www.emc.com/emc-plus/
rsa-labs/historical/twirl-and-rsa-key-size.htm.

[ofs] Ofs file storage. https://pythonhosted.org/ofs/.

[Ora] Oracle. Java. https://www.java.com/en/.

[php] Php. https://secure.php.net/.

[RA83] Shamir A Rivest, R. L and L Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
26(1):96–99, 1983.

[rem] Remotestorage.io. https://remotestorage.io/.

[Rog] Philip Rogaway. The security of desx. http://web.cs.ucdavis.edu/
~rogaway/papers/cryptobytes.pdf.

[SS] IBM Sumit Singh, Software Engineer. Develop your own filesystem
with fuse. http://www.ibm.com/developerworks/linux/library/
l-fuse/.

http://fas.org/irp/nsa/rainbow/tg003.htm
http://www.linux-mag.com/id/7814/
http://www.linux-mag.com/id/7814/
http://www.linuxjournal.com/article/2174
https://www.mediawiki.org/wiki/API:Imageinfo
https://www.mediawiki.org/wiki/API:Imageinfo
https://www.mediawiki.org/wiki/API:Revisions
https://www.mediawiki.org/wiki/API:Revisions
https://www.mediawiki.org/wiki/API:Upload
https://www.mediawiki.org/wiki/API:Upload
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Main_page
https://www.mysql.com/
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/groups/ST/hash/policy.html
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
http://www.emc.com/emc-plus/rsa-labs/historical/twirl-and-rsa-key-size.htm
https://pythonhosted.org/ofs/
https://www.java.com/en/
https://secure.php.net/
https://remotestorage.io/
http://web.cs.ucdavis.edu/~rogaway/papers/cryptobytes.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/cryptobytes.pdf
http://www.ibm.com/developerworks/linux/library/l-fuse/
http://www.ibm.com/developerworks/linux/library/l-fuse/

BIBLIOGRAPHY 125

[VCHS] Rick Kuhn Adam Schnitzer Kenneth Sandlin Robert Miller Vincent
C. Hu, David Ferraiolo and Karen Scarfone. Guide to attribute based
access control (abac) definition and considerations. http://nvlpubs.
nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf.

[wik] Wikimedia foundation. https://wikimediafoundation.org/wiki/
Home.

[Wri] Howard Wright. The encrypting file system – how secure is
it? https://www.sans.org/reading-room/whitepapers/win2k/
encrypting-file-system-secure-it-211.

http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
https://wikimediafoundation.org/wiki/Home
https://wikimediafoundation.org/wiki/Home
https://www.sans.org/reading-room/whitepapers/win2k/encrypting-file-system-secure-it-211
https://www.sans.org/reading-room/whitepapers/win2k/encrypting-file-system-secure-it-211

	Abstract
	Resume
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problems
	1.2 Report Structure

	2 Theory
	2.1 General Cryptography
	2.2 Access Control
	2.3 Key Rings
	2.4 Key Sharing
	2.5 MediaWiki
	2.6 Existing Encrypted File Systems
	2.7 FUSE
	2.8 Key storage
	2.9 Summary

	3 Requirements
	3.1 The Application
	3.2 Use Cases
	3.3 Cryptographic Requirements
	3.4 System requirements
	3.5 Summary

	4 Design
	4.1 Overall System Design
	4.2 Key handling
	4.3 Integration
	4.4 Cryptography Design
	4.5 Summary

	5 Implementation
	5.1 Overview of Implementation
	5.2 Encoding
	5.3 File stream
	5.4 Unique identifier
	5.5 Cryptography Library
	5.6 Key Structure
	5.7 Key sharing
	5.8 Implementation description
	5.9 Summary

	6 Results
	6.1 Testing
	6.2 Threats to the system
	6.3 Future Work
	6.4 Summary

	7 Conclusion
	A Appendix
	A.1 Usage Guide
	A.2 Performance test

	Bibliography

