TECHNICAL UNIVERSITY OF DENMARK

BACHELOR THESIS

Smart City Tratfic Management

Author: Supervisor:
Rasmus Alkestrup Christian D. Jensen
Eskesen (s133997) ,

Jacob Thinglev Grundahl
(s133994)

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Engineering (IT)

in the

Department of Applied Mathematics and Computer Science

23. January - 2017

http://www.dtu.com
http://www.dtu.dk
http://www.dtu.dk
http://www.dtu.dk
http://www.dtu.dk
http://www.dtu.dk
http://department.university.com

Abstract

Rasmus Alkestrup Eskesen (s133997) , Jacob Thinglev Grundahl (s133994)

Smart City Traffic Management

The concept of smart cities involves a city or urban development, where
multiple Information and Communication Technology (ICT) and Internet of
Things (IoT) solutions are integrated in a secure way to manage the city’s
assets. We want to focus on transportation systems in this regard - more
specifically, traffic management with special focus on traffic signals and the
control thereof.

The ultimate goal of smart cities, is to improve quality of life using urban
informatics and technology to improve the efficiency of the relevant services,
while still satisfying the needs of the residents. We aim to benefit a given
city (thus ultimately improving the quality of life) by providing a more effi-
cient traffic flow, reducing overall pollution and other general environmental
impacts, improving the utilization of the city’s budget, and automating inci-
dent detection allowing for quicker responses from a relevant authority. All
the while, citizens will ultimately benefit in the form of improved road safety,
reduced congestion (and fuel costs), and generally a better driving and com-
muting experience.

We want to introduce a software-based solution that simulates a relevant
environment (i.e. one or more traffic signals) and implements the necessary
features to achieve the abovementioned visions. More specifically, the idea is
to control the traffic signals in a more dynamic way than the result of using
fixed timers and/or simple sensors that provide the green waves today. We
want to simulate one or more traffic signals as a local system or a network
of local systems respectively. This would require a general model of a traffic
signal, where the actual signals are controlled locally based on a local policy
and by using inputs from various sensors, and this policy would then be
able to communicate with other parts of the network by sending relevant
information.

ii

Contents

Abstract i
1 Introduction 1
1.1 ProjectMotivation. 1
1.2 Project Description 2
1.3 ProjectScope 2
14 ReportOutline. 3
2 State of the Art 4
2.1 Trafficsimulators, 4
2.2 Vehicularnetworks L. 5
2.3 Urban Traffic Management Control (UTMC) 6
3 Analysis 7
3.1 System overview and overall description 7
3.2 Product perspective and user characteristics 10
33 UseCases 11

3.3.1 Turning right in a quad-directional traffic light with
specific turning-lanes and signals. 11

3.3.2 Turning left in a tri-directional traffic light (T-junction)
with specific turning-lanes and signals 13
3.3.3 Traversing straight through a network of two traffic lights 15
3.4 Traffic SimulationModel o000 17
3.5 Traffic Control Algorithm 18
3.5.1 Scheduling (computing) 20
3.6 Communication 24
3.6.1 Systemarchitecture., 24
3.6.2 Communication. 29
3.7 Specificrequirements Lo oL 33
3.71 Functionality 33
372 Usability o 33
373 Reliability 33
374 Performance. 34
3.7.5 Supportability oo oo 34
4 Design and Implementation 35
41 TrafficSimulator. o0 oL 35
41.1 Traffic SimulationModel 36
412 Indepthview, 37
4.2 Traffic Control Algorithm 38

o N =W p» x

rr

Evaluation

51 Test
511 Testl
512 Test2
513 Test3
514 Test4
52 Discussion
5.3 Potential Project Extensions

Conclusion

References

Appendix

- Design Class Diagram (traffic simulator)
- Probability calculations

- Test 1 info and data

- Test 2 info and data

- Test 3 info and data

- Test 4 info and data

iii

40
40
41
42
43
44
45
47

50

51

52

53

54

55

60

65

70

1 Introduction

To give a proper introduction to this project, we are first going to answer the
following questions:

e Why are we doing this project?
e What are we trying to accomplish?
e How are we going to accomplish it?

The project motivation is going to seek to answer why we are doing this,
where the project description attempts to answer what we are actually doing,
and finally the project scope should give an idea of how this is going to be
done.

1.1 Project Motivation

When looking at urban developments today, the words traffic and conges-
tion are often used in immediate succession. The invention of the car was a
major game-changer when talking passenger transportation. During the 20th
century, it quickly changed from being a toy for the rich to a standard tool
for the everyday-citizen in most developed countries. When we think about
the amount of cars today, and the fact that most of these cars drive around
in the same small parts of the world, it comes as no surprise that a proper
infrastructure is required in order to account for the inevitable congestions
and general disturbances in the flow of traffic.

If you have ever stopped at a red light on a completely empty road, you
probably know that it can be quite frustrating, since you might have to wait
patiently until the light turns green for your lane, even though there are no
other cars around, but depending on what type of vehicle you are driving
as well as the kind of traffic light you are waiting at, it might not actually
know you are there. Some traffic lights have fixed timers, whereas others use
sensors to pinpoint where you are.

While many traffic lights still use the fixed timers to control the flow of
traffic, methods such as the so-called green wave has proven to be somewhat
successful. The green wave is essentially created on a busy road with multi-
ple consecutive traffic lights, by turning the lights green one after another in
a synchronized fashion. The idea behind this method, is that a driver should
then be able to drive fairly continuously along the road, without the need to
stop all the time. Another method involves reacting to different preset situa-
tions. An example of these situations could be: rush hour, normal traffic and
night time. In this case the traffic light would be instructed to alter its policy

Chapter 1. Introduction 2

depending on the current situation; during rush hour, two of the lanes might
tend to be especially congested compared to the rest, while night time might
only require a short burst of green in each direction.

Traffic lights using sensors do however seem to have the greatest im-
pact on the improvement of the traffic flow, as it makes the system reactive
and much more dynamic. Some typical kinds of sensors might include cam-
eras/motions sensors and underground electronics such as induction loops
or even weight sensors. Other types of hardware (other than actual sensors)
working as an interface could also include buttons for pedestrian crossings
for instance.

Sensors are great for letting the system know when an object is approach-
ing, where it is approaching from, and maybe even where it is bound to go,
depending on the types of sensors, as well as the structure and layout of the
traffic light. With all this information available to the system, the control unit
can make a better decision than the pretty much random guessing of a fixed
timer.

Regardless of the chosen current technologies and methods, there is still
much to be done in the area, to improve the overall traffic flow in urban
developments and ultimately improve the quality of life for the road users.

1.2 Project Description

Our vision involves improving the current traffic control systems, by utilising
modern technology to allow for communication between control units in a
network. We aim to prove that the efficiency of the current systems can be
improved significantly, by establishing forms of communication in a traffic
network, to share traffic information between nodes in the system.

By sharing traffic information between multiple traffic lights in a traffic
network, each individual traffic light will know about all (applicable) incom-
ing traffic, thus ultimately make a more informed decision upon deciding the
most ideal light-configuration for a particular situation.

More specifically we want to design and implement a traffic simulator that
we can use to test different traffic control algorithms, based on different types
of information inputs. We ultimately want to compare an algorithm utilis-
ing information from neighbouring traffic lights with commonly used algo-
rithms that either use fixed-timers or local sensory inputs.

1.3 Project Scope

In order to satisfy our goals for this project, we need to prove that traffic
lights that implements an algorithm that utilises information shared between
multiple independent traffic lights, shows significant improvements to the
overall traffic flow. By showing a decrease in average wait time for all cars
traversing one or more traffic lights, in a number of different scenarios, we

Chapter 1. Introduction 3

will be able to conclude that extended knowledge about traffic flows in the
network for each traffic light correlates to an improved traffic flow through
the traffic lights and the network as a whole. An overall goal would be to
improve the quality of life for the users of a traffic network, by providing
a more efficient traffic flow. An improvement to the traffic flow could ul-
timately result in shorter travel times through the network, less pollution,
quicker response times for emergency services, higher road safety and more
value for the money for the users (less fuel cost).

1.4 Report Outline

Now that we have given a short introduction to the project at hand, let us
establish a quick outline of what the rest of this report will bring.

After this introduction to the project, we are going to have a look at the state
of the art; the current relevant technologies and what has already been done
in the area in which we are going to be working.

After establishing what we want to do, and what has already been done,
we will introduce an analysis, where we begin to analyse the problem in
order to determine a suitable solution to the problem. As part of the analysis,
we first describe the overall system and then put the system into perspective
by looking at it as a user. This part includes a few use cases that aim to
ensure an understanding of the systems we have to work with, as well as
how the new system will affect the users. Still as part of the analysis, we
then analyse the product functions by breaking the project into three primary
parts to separate the theory; the traffic simulation model, the traffic control
algorithm and general communication. As the last part of the analysis, we
then establish some specific requirements for the system, to ensure we have
a complete problem before we start to actually design the system.

After analysing the entire system, we then proceed to design and imple-
mentation, where we describe how the system has been developed. This
section first outlines how the system is structured, and then proceeds into
more technical details about how it is build.

This is then followed up by an evaluation, where the system is first tested
using a few different scenarios. After the tests, the results of them are then
discussed relative to the scope of the project. Lastly a few ideas for future
development is outlined to give an idea of where this project could be headed
in the future.

As a roundup of the report, the conclusion will then summarise the work
that has been done, and conclude on whether the project as a whole was suc-
cessful or not and to what extend. At the very end of the report the appendix
is located, where diagrams, calculations and test data is stored for reference
throughout the report.

2 State of the Art

Before analysing the problem further, let us now establish the recent stage
in the development of what we aim to do; what are the newest ideas and
features regarding smart city traffic management. The purpose of this is to
outline the base of operation; the foundation upon which we are going to
build our model.

2.1 Traffic simulators

The complexity of traffic stream behaviour and difficulties involved in per-
forming experiments with real world traffic has made the use of simulators
important when it comes to analysing and testing out new ideas involving
traffic management. With the use of simulators and different traffic simula-
tion models one can simulate real world traffic problems and situations in
great detail. In a broad sense, traffic simulation models can be categorized
into 2 types: continuous and discrete, depending on how the elements de-
scribing a system change state. Discrete can then again be classified into time
and event based models. Discrete time models divides time into a fixed small
interval and then within each interval computes changes within the selected
system elements. Whereas discrete event based models computes based on
abrupt changes in the state of the system (events). Discrete event based mod-
els use less computational power compared to discrete time based models,
however discret time based models are more realistic and detailed.

Depending on the level of detail, traffic simulators are classified into 3
different categories: macroscopic, mesoscopic, and microscopic. The least
detailed: macroscopics view the traffic flow as a whole. While microscopic
models give attention to individual vehicles and their interactions. Meso-
scopic is in the middle between the two. Simulators thus enable the evalua-
tion of infrastructure changes and traffic policy before they are implemented
in the real world, thus enabling it so the changes can be optimized before
they are implemented on the road, and through this hopefully avoid the im-
plementation of bad traffic policies.

Although the ideal goal would be to implement our model onto a real-life
network of traffic lights, simulators are a great medium for testing the model
before actually playing around with real human lives. A ton of open source
traffic simulators already exists, but we are now going to focus on three of the
ones that brought the most interest to us. The three simulators that we have
primarily looked at are: SUMO (Simulation of urban Mobility), Movsim, and
OTSim (OpenTrafficSim).

Chapter 2. State of the Art 5

SUMO is an open source traffic simulation suite developed in 2001. It
is implemented in C++ and has a lot of supporting features and provides
various APIs to remotely control the simulation.

Movsim is an open source, microscopic vehicular traffic simulator devel-
oped in java.

OTSim is an open source software initiative to support research and de-
velopment of multiscale and multi modal traffic models. It is also imple-
mented in java and provides free to use knowledge and utilities.

2.2 Vehicular networks

Mobile ad hoc networks (also known as MANETSs) are wireless networks cre-
ated spontaneously with the primary intent of data exchange. Vehicular ad
hoc networks (henceforth referred to as VANETS) are created by applying the
principles of MANETSs to the domain of vehicles. While they share a great
portion of their high level design and concerns of interest, the details differ
vastly between the two. Whereas MANETs are build upon the idea that the
entities move around in a relatively random fashion, VANETs are focused
on vehicles, which tend to move in an organised fashion, as the vehicles are
usually restricted to a certain path (i.e. a road) when traversing through an
area where a need for these technologies are present. This means that com-
munication and other general interaction between stationary entities, such as
road-side units (RSUs) become fairly accurate and predictable. Contrary to
common belief, VANETs - or MANETS for that matter, are not synonymous
with inter-vehicle communication (IVC), which is a much more generic field,
focussing less on spontaneous networking, and more on the use of infras-
tructure, such as cellular networks or even RSUs.

VANETSs can technically make use of any wireless networking technol-
ogy as their basis, however some are more prominent than others. The most
used technology used in VANETSs is short range radio technologies such as
WLAN. A common implementation of this would involve standard Wi-Fi
and then some sort of high-level communication protocol (such as ZigBee) in
order to establish a wireless personal area network (WPAN) with small, low-
power digital radios. This is a very common design architecture in regards to
VANETs as it is both cheap, small, reliable, fast and very supportable (scal-
able, maintainable etc.). Other possible wireless networking technologies to
be used for VANETs include cellular or even LTE (telecommunication) net-
works.

VANETSs support a wide range of applications. An example of these ap-
plications is traffic information systems. These use VANET communication
to provide real-time traffic reports to the vehicle (e.g. via vehicle’s satellite
navigation system). If you have a navigation system in your car or even your
phone, chances are it is using VANET communication to update you in case
of traffic congestion or the like. Another example application is electronic
brake lights. This is a way to inform a driver that other vehicles are breaking,
even though the actual view of the physical brake lights might be obstructed.

Chapter 2. State of the Art 6

Lastly VANETSs can be utilized in the field platooning. This is when a
continuous line of cars are electronically coupled like a train, and it allows
for the leading car to control the speed and direction, whereas the rest of the
train will just follow autonomously.

Intelligent vehicular ad hoc networks (InVANETs) are VANETSs that use
Wi-Fi (WAVE standard) and WiMAX for easy and effective communication
between vehicles with dynamic mobility. This is primarily used for tracking
vehicles and for media communication between different vehicles. By using
a Wi-Fi based navigation system, the localisation of vehicles become faster
and supports localisation in cramped or even underground areas (e.g. cities
with tall buildings or tunnels respectively). IN'VANET can be used as part
of automotive electronics, which has to identify an optimal path for naviga-
tion with minimal traffic intensity. Thus INVANETSs serves as a modernised
alternative to standard VANETs in regards to vehicular navigation.

Regardless of the network type, the aforementioned network technolo-
gies both enables vehicles to communicate - either with each other (vehicle
to vehicle (V2V)), or with RSUs (V2R). This is a very interesting feature when
talking intelligent transport systems in general, as it potentially contributes
to safer and more effective roads by providing drivers with relevant infor-
mation in real-time.

2.3 Urban Traffic Management Control (UTMC)

The Urban Traffic Management Control programme is a British initiative for
the implementation of Intelligent Transport Systems (ITS) in urban develop-
ments. The programme is managed by a community forum, represented by
local transport authorities as well as the UK systems industry. The idea be-
hind the programme is to implement ways of communication and sharing
of information between different applications within a modern traffic man-
agement system. The applications which are able to send and/or receive in-
formation, include anything from cameras (such as Automatic Number Plate
Recognition (ANPR)) and dynamic digital signs (such as Variable Message
Signs (VMS)) to weather stations and traffic signals. The (perhaps obvious)
aim of the programme is to maximize road network potential, thus creating
a more robust and intelligent system to prepare for future management re-
quirements and general ability to handle traffic flow.

UTMC is build upon a centralised data network, where everything is con-
trolled from a single point (including a number of substations). This means
that all information has to be relayed back to the center of control, before
being analysed and ultimately acted upon by other parts of the system.

While the UTMC programme might seem as a huge source of inspiration
at first glance, the different choice of network structure makes a big difference
in the implementation of such a system, as one of the fundamental pillars of
our idea involves a more distributed structure, rather than a centralised one,
for reasons we are going to analyse later.

3 Analysis

We have now outlined the problem as well as determined where we currently
are in regards to this project; what already exists and what we can potentially
use. To start analysing the project at hand in further details, let us first de-
scribe the overall problem/task, analyse a few different solutions and then
specify the requirements of the system, as this will serve as a basis for what
to expect of the final product, and hopefully provide a better understanding
of the assignment by establishing some tangible goals.

The purpose of this project is ultimately to improve the quality of life for
as many citizens in a limited area as possible, by improving the logical con-
trol of traffic signals in said area, utilising sharing of information between the
different traffic signals.

Up until this point we have briefly discussed why we want to do this, but
exactly how we are going to fulfill that purpose, we will get into later on. For
now let us instead focus on the details of what we want to do precisely.

3.1 System overview and overall description

Traffic lights, traffic signals, signaled intersections or even traffic control sig-
nals, are used to signal users of said system at road intersections, pedestrian
crossings and other places where there is a need to control the flow of traffic.
A standard traffic light is programmed (hard-coded) to change which of its
lights are lit at preset intervals; the light will be red for a set amount of time,
before turning green for a set amount of time (disregarding the, in this con-
text redundant, yellow light).

There exists a wide variety of different types of traffic lights and two general
factors have a big impact on how the system works.

Firstly, the roads, pedestrian crossing, etc. coming into and going out
from the traffic lights area of effect; are we working with three small roads
intersecting at a Tjunction, or are we looking at four major roads - each with
several lanes of different types (cars, buses, taxis, etc.)?

Secondly, the equipment the system has to work with; does each individ-
ual light just have its own local control unit based on a simple timer, or is
the entire system controlled based on inputs from various different sensors
around the traffic light - such as cameras and induction loops. The point is
that traffic lights are not always structured the same way - in fact there can be

Chapter 3. Analysis 8

anywhere from tens to thousands of different types of traffic lights depend-
ing on how many factors you use to distinguish them. This is why there is a
need for a dynamic, reactive and adaptive solution.

To give a detailed overview of a traffic light, we ought to think about
the actual lights (including types, positions and colors), the lanes (universal
lanes, turning lanes, bus lanes etc.), the general traffic rules and regulations,
the available technology, along with many other areas of interest. Depending
on the country and even state or district of said country, the rules and overall
pattern of the traffic lights can vary greatly, as traffic regulations are national-
or even state-specific; the rules of traffic are not the same in Denmark as they
are in the United State of America for instance. If nothing else is explicitly
specified, our model will be based on Danish traffic regulations.

Consider the following visual representations of common traffic light lay-
outs, as these will act as a base of definition for future reference.

Single-lane quad-directional traffic

light (standard)
This is the most common layout of a

traffic light, as it intersect two roads ~ ------ = ------
without any special lanes or lights.

When the light i green you are al-
lowed to go all three other directions

(relative to the one you came from).

FIGURE 3.1: Stan-
dard four-way traffic

light

Quad-directional traffic light with
explicit right-turning lanes A
Turning right is usually the safest op- -
tion at an intersection like this - not a'y!
only do you take the shortest path e K
through the intersection, but it is also I S
often possible/safe to turn right even == -::
though the main light is red. This is

& & 4.

why using an additional lane along
with an associated light, can improve
the efficiency of the intersection, as it
allows cars to turn right even though
it is not possible to go straight or left.
In theory, all four direction could al-
low for turning right simultaneously.

FIGURE 3.2: four-
way traffic light with
turn-lanes

Chapter 3. Analysis

Three-way junction (a.k.a. T junction
or T intersection) with explicit right-
turning lanes

This scenario is similar to the one
above, however due to the three roads
rather than four, the arrows have been
adjusted, since you can’t go the di-
rection that doesn’t have a road. An
alternative layout to the three-way
junction/intersection, is the Y junc-
tion/intersection. There are no func-
tion differences between the T junc-
tion and the Y junction - only a visual
difference, as the two roads forming
the top part of the T-shape with a 180
degree angle between them, are ro-
tated upwards forming a sharper an-
gle, thus a Y-shape instead.

FIGURE 3.3: T-
junction with
turn-lanes

Chapter 3. Analysis 10

3.2 Product perspective and user characteristics

Now, let us briefly reiterate the overall description of the problem we are
attempting to solve. We aim to improve the overall road infrastructure of a
certain area by making its traffic signals more intelligent, thus allowing for a
more efficient traffic flow. From the user’s perspective, there might not be a
noticeable difference from what they have gotten used to, as the actual user
interface will not see much of a change at all; the physical interactions be-
tween the different parts of the system and the users will not change much.
For instance the electric lights of the traffic signal will work as they did be-
fore and remain the same as usual - only the logic controlling the lights will
essentially be altered.

The users interact with the system automatically by approaching the traf-
fic light, as it will detect an incoming relevant object using an array of differ-
ent sensors. These sensors will send a signal to the system, letting it know
that an object of a certain type has arrived at a certain position/location, so
it can include that object in its calculations, and more specifically use it when
running the algorithm that determines the next state of the traffic signal. In a
network of more than one traffic signal, each node of the network should be
able to relay information to other nodes in the network. Just like each node
may gain necessary information via its own sensors, it might also receive in-
formation from other nodes in the network. For instance, imagine a straight
road segmented by two individual traffic signals. When a car approaches the
tirst one, the sensors of the traffic signal will detect it and pass the informa-
tion onto the system itself. Once leaving the first traffic signal, the system
will be aware of its direction, and might let the second node know of the in-
coming car. That way the second traffic signal will have more time analysing
the situation and determining a suitable solution in advance. Once the user
has entered the network of traffic signals” area of effect, they will be an actor
in the system until they leave the area completely. As long as the user remain
in the particular network, it will be a subject of anonymous monitoring, as
the system will know (or have a really good qualified guess upon) where the
user is at each tick separated by a specific time interval, due to the discrete
nature of the system.

Regarding a potential user of the system, we are likely looking at the
driver of a car (henceforth referred to as a driver, a car or simply a user
depending on the context). As road-specific traffic lights usually provide
its primary service to motorised vehicles as well as bicycles and pedestri-
ans, we will be looking at these actors as individual generalisations of their
type and functionality (e.g. the actor/object car implies that it contains a
person driving said car etc.). All users will be interacting with the system
indirectly / passively, meaning that their primary goal likely is not to interact
with the traffic signals, but rather to get from point A to point B, where the
traffic signals merely acts as interruptions on the path. Therefore it is crucial
that a certain standard is achieved regarding availability, reliability, general
performance and so on, all whilst also holding up to the topical safety stan-
dards - but more on that later.

Chapter 3. Analysis 11

3.3 Use Cases

3.3.1 Turningrightin a quad-directional traffic light with spe-
cific turning-lanes and signals

The goal of this use case, is to establish a fundamental knowledge of a general traffic
light. (for reference, see fig. 3.2)

Primary actor:
e Car; A standard car including a driver.
Stakeholders and interests:

e Car: wants to turn right at the intersection with as little wait time as
possible, whilst feeling safe throughout the entire process.

Preconditions:

e The car is driving towards the intersection, thus approaching the traffic
light.

Success guarantee (postconditions):

e The car is going the desired direction, and knows that any relevant traf-
tic regulations has been adhered to.

Main success scenario:

1. The car selects the correct lane for the intended purpose; the right-
turning lane.

2. The car drives up to the stop line. [Alt1]
3. The car stops and waits for the light to change. [Alt2]

4. Assuming that the light follows a red-red and yellow-green-yellow-red
cycle, the yellow light lights up along with the red, indicating that the
light will soon turn green. The car prepares for driving.

5. The light turns green, and the car begins to drive out into the intersec-
tion itself, waiting for any other potential cars to move first.

6. The car enters the intersection and begins to turn right unto an appro-
priate lane on the new road. [Alt3]

7. The car leaves the intersection, thus the traffic light.
Alternative flows:

o Alt1: There are other cars waiting in the right-turning lane in front of the user.

— The car drives up to a position just behind the current backmost
car.

Chapter 3. Analysis 12

o Alt2: The light is not red to begin with, but instead either red and yellow, or
green.

— The car continues at a respective pace into the intersection, taking
heed of any other cars before skipping to step 6.

o Alt3: Something is obstructing the way the car is headed (e.g. a pedestrian
crossing the road)

— The car waits at an appropriate position until the path is clear, be-
fore continuing.

Exceptions:

If at any time in the use case before step 7 of the main success scenario, the
traffic light malfunctions, the intersections becomes a subject to standard
road-crossing rules and regulations (e.g. priority to the right in Denmark),
assuming there are no other indications of rules - such as signs or a directing
officer.

Chapter 3. Analysis 13

3.3.2 Turning left in a tri-directional traffic light (T-junction)
with specific turning-lanes and signals

The goal of this use case, is to establish a fundamental knowledge of a general traffic
light. (for reference, see fig. 3.3)

Primary actor:
e Car; A standard car including a driver.
Stakeholders and interests:

e Car: wants to turn left at the intersection with as little wait time as
possible, whilst feeling safe throughout the entire process.

Preconditions:

e The car is driving towards the intersection, thus approaching the traffic

light.
Success guarantee (postconditions):

e The car is going the desired direction, and knows that any relevant traf-
tic regulations has been adhered to.

Main success scenario:

1. The car selects the correct lane for the intended purpose; the left-turning
lane.

2. The car drives up to the stop line. [Alt1]
3. The car stops and waits for the light to change. [Alt2]

4. Assuming that the light follows a red-red and yellow-green-yellow-red
cycle, the yellow light lights up along with the red, indicating that the
light will soon turn green. The car prepares for driving.

5. The light turns green, and the car begins to drive out into the inter-
section itself, waiting for any other potential cars to move first (when
turning left, it is possible that cars are parked in the intersection waiting
for a clear path)

6. The car enters the intersection and begins to turn left unto an appro-

priate lane on the new road; in this case just the single lane available.
[Alt3]

7. The car leaves the intersection, thus the traffic light.
Alternative flows:

o Alt1: There are other cars waiting in the left-turning lane in front of the user.

— The car drives up to a position just behind the current backmost
car.

Chapter 3. Analysis 14

o Alt2: The light is not red to begin with, but instead either red and yellow, or
green.

— The car continues at a respective pace into the intersection, taking
heed of any other cars before skipping to step 6.

o Alt3: Something is obstructing the way the car is headed (e.g. a pedestrian
crossing the road)

— The car waits at an appropriate position until the path is clear, be-
fore continuing.

Exceptions:

If at any time in the use case before step 7 of the main success scenario, the
traffic light malfunctions, the intersections becomes a subject to standard
road-crossing rules and regulations (e.g. priority to the right in Denmark),
assuming there are no other indications of rules - such as signs or a directing
officer.

Chapter 3. Analysis 15

3.3.3 Traversing straight through a network of two traffic lights

The goal of this use case is to give an example of a common scenario using our model
implemented on a network of traffic lights (thus there will be less focus on basic and
fundamental actions, and instead more focus on the system itself).

Primary actor:
e Car; A standard car including a driver.
Stakeholders and interests:

e Car: wants to cross both traffic lights with as little wait time as possible,
whilst feeling safe throughout the entire process.

Preconditions:

e The car is driving towards the first intersection, thus approaching said
traffic light.

Success guarantee (postconditions):

e The car traverses both intersections, and knows that any relevant traffic
regulations has been adhered to.

Main success scenario:

1. The car selects the correct lane for the intended purpose; in this case the
straight lane.

2. The car is noticed by the system via one or more sensors.

3. The system incorporates the car in its calculations (along with any other
cars in other incoming lanes), and determines a fair wait time, based on
all available inputs.

4. The car waits for the light to turn green.

5. Once the light has turned green, the car traverses the first intersection
and enters the outgoing road, towards the next intersection.

6. The first traffic signal acknowledges that the car has traversed the in-
tersection in the given direction, and sends a signal to the next traffic
light in that direction.

7. The second traffic light receives the signal, and treats the car as an input
to the local system. [Alt1]

8. When the car arrives to the second intersection, the traffic light has al-
ready prepared a suitable solution, given the input from the first traffic
light as well as any standard inputs to the second.

9. The car awaits a green light, and then traverses the second intersection
as well.

Chapter 3. Analysis 16

Alternative flows:

o Alt1: There are other minor intersections between the two traffic lights.

— The second traffic light can not be 100% sure that the output from
the previous traffic light will act as an input. Therefore it either
uses an average success rate of output=input, or overlooks the
data all together - depending on the situation.

Exceptions:

Same exceptions apply as for the previous use case. If a traffic light does
not receive any data, even though it is supposed to, it may make use of its
sensors instead. If the traffic signal has not received any data nor detected
anything from its sensors, the car will not be included in the evaluation of
the situation from the system, and might have a longer wait time than the
ideal. As always, the traffic light will return to a simple timer control, in
cases where no inputs have been detected for a certain amount of time.

Chapter 3. Analysis 17

3.4 Traffic Simulation Model

In order to demonstrate our final product on a simplified and clear platform,
a traffic simulator could be used. A simulator is usually used for the imi-
tation of the operation of a real-world process or system over time, which
is exactly what we want in this case. When creating a traffic simulator, we
ought to first define and develop the model which presents the characteristics
and functions of the system and its processes. This model would present the
system itself and is a key part of the simulation, as it is the basis for the imi-
tation of the operation (the operation being a visual representation of traffic
flow).

When using a traffic simulator to demonstrate our product, we automat-
ically avoid most of the tedious and resource-consuming processes of work-
ing with active real-life systems - such as real traffic lights, and testing and
altering becomes much simpler and quicker as a result. A simulator is also
ideal for the evaluation and general demonstration of the model, as we can
design it to show exactly what we want, thus avoiding too many (if not any)
redundancies.

In order to create a suitable model for a traffic simulation, we must first
analyse the scope of the assignment carefully. Normally, a statistical theory
of traffic flow (preferably based on empirical data rather than theoretical and
conceptual data) is needed in order to estimate traffic flow, delays etc., for a
specific traffic light. When analysing the performance of a signaled intersec-
tion (often using the term Level of Service (LOS)), the model used for speci-
tying delays for instance, are described using a deterministic and stochastic
component to reflect the fluidness as well as the random aspects of the traffic
tflow.

A generally accepted observation of traffic lights, states that the cars tra-
verse the intersection in groups separated by a time factor equal to the time
the traffic light is red (also known as the platooning effect). Additionally, the
number of cars traversing the intersection during one cycle of green light,
never exceeds the throughput of the traffic light. After the intersection the
group of cars slowly spreads out due to the fact that some cars drive faster
than others - this effect is also known as platoon diffusion. We are not going
to focus too much on that however.

Other than the general parts/objects of the simulation (cars, roads, traf-
fic lights etc.), a possible addition to the model, could be the utilization of
vehicular networks, so cars travelling in the network will have the option to
themselves send data to the different nodes in the system (the traffic lights).
This would enable cars travelling in the system to add themselves to a traffic
lights inflow giving the traffic light info that it is coming towards it. This
would enable the traffic light to adjust it so that once the car reaches the traf-
tic light, the lighting is already green in the best case scenario. This would
also enable cars who have a pre-planned route to tell the system its route, en-
abling the system to make more informed decisions based on known future
traffic. This could also be used by public services such as ambulances and
fire trucks, enabling them to get through traffic easier and thus faster.

Chapter 3. Analysis 18

3.5 Traffic Control Algorithm

In order to create an optimal algorithm for each individual signaled intersec-
tion, we must seek the perfect balance between safety and efficiency. Con-
sider the quad-directional intersection with explicit right-turning lanes in
tig. 3.2. All possible/valid routes a car can take through the intersection
are marked in the figure below:

FIGURE 3.4: Valid routes through a four-way traffic light.

At an intersection where you can go all three ways from each of the four
directions, there are a total of 12 valid routes that cars can follow, which
corresponds to 12 situations we need to account for - and that is not even
considering combinations of said situations. Since each place where the lines
of different colors intersect means we have a conflict, we can infer that a set
of routes are conflict-free if (and only if) none of the lines of the members of
the set intersect (it is also important to note that routes also intersect if they
arrive at the same lane). To adhere to the standard security requirements of
signaled intersections, we must ensure that all set of routes are conflict-free,
and to achieve the most efficient intersection, the aim is to find the maximum
number of conflict-free sets of routes. There is a few exceptions to the conflict-
free rule however, as we might run into some issues when using combined
straight and left-turning lanes. The problem with these, are the fact that the
left-turning lane intersects with all the other straight lanes as well as two
of the other left-turning lanes. This means that while allowing for cars to

Chapter 3. Analysis 19

turn left from one direction, all the other three straight lanes must be held
back. This would have a huge negative impact on the efficiency - so much so
that it is commonly (at least in Denmark) accepted to allow for both left and
straight lanes at opposite directions at the same time. While this often results
in pile-ups in the middle of the intersection waiting to turn left, it has proven
to be significantly more efficient as a platoon at least get through each time.
While technically breaking the conflict-free rule, it has also proven to be a rel-
atively safe solution, as we are dealing with opposite directions, increasing
the chances of the driver acknowledging the oncoming traffic, more so than
if the traffic was coming from either side.

Let us now look at some different algorithms and analyse which might be the
better solution for what we are trying to achieve.

Randomness

The most common heuristic for signaled intersections, is randomness - as
in fixed timers, based on no knowledge of the traffic flow or infrastructure.
This method essentially provide a practically random timer, thus disregard-
ing any information about the traffic flow or even the infrastructure itself.
However since this method is so basic and simple, it is likewise really reli-
able, which is an extremely important quality for a traffic light, as we'll get
more into later. While being a reliable and generally simple solution, it is
very inefficient and far from optimal however, since it has no way of adapt-
ing to changes in the traffic flow.

Since randomness is a poor choice due to its lack of adaptability, let us in-
stead consider some adaptive heuristics. Rather than simply deciding and
hardcoding the timers into the traffic lights, we should realise that traffic
lights are there to help its users, thus we should aim to find a more dynamic
solution that continuously satisfies the users in real-time. The only way to do
that however, is to get some form of data from the infrastructure.

Highest Flow / Most Pressure

One solution could be to adjust to the highest flow of traffic (e.g. the most
pressure/cars). This is not a very common solution, even though it generally
lets the most amount of cars through, which is a good thing, since it ulti-
mately relieves the most congested lanes. When traffic lights has no form of
communication between them, it can cause even more congestion, since one
traffic light has no knowledge of how many cars there are on the output lane.

Chapter 3. Analysis 20

Longest Queue and Relative Longest Queue
Instead you could try to eliminate the longest queue of cars, as this would be
a way to avoid filling up lanes like the solution above might. It does however
not account for the length of the roads between the intersections, thus small
roads might remain congested as a result. A way to avoid that could be to
divide the length of the queue by the length of the road, ultimately getting
the relatively longest queue.

While these are arguably better solutions than the randomness, they still
only calculate one lane at a time and then compare them to each other.

Best First

A better alternative could be to sum up sets of lanes that are conflict-free
and could potentially go at the same time. This way the efficiency of the in-
tersection would be improved, as it would look at the situation as a whole,
ultimately letting more cars through.

Other than these somewhat basic methods of traffic control, there are how-
ever more advanced heuristics out there, that has the potential to improve
quality of life even further. One of them would be to give each car a value
corresponding to its priority. This priority could be based on a number of dif-
ferent things depending on the specific situation, but a general one could be
the number of passengers. Assuming that we want to move as many passen-
gers through the intersection over time as possible, the car could acknowl-
edge the number of passengers to the system (or the system could detect it
via sensors). The traffic light could then add these values to one of the above
mentioned methods, e.g. letting a car with three passengers count for three
when calculating the longest queue. This solution also has some ethical ben-
efits, as it would increase the attractiveness of carpooling, knowing that you
would have a higher priority at each traffic light, there more people you have
in the car.

3.5.1 Scheduling (computing)

In computing, scheduling is a way to assign work to resources. A common
use of scheduling is Process Scheduling, where different tasks set by different
processes are scheduled to execution by the CPU. This can very well be used
as an analogy for signaled intersections and their control of traffic; where
each lane of the intersection is a process, and its task is to relieve the con-
gestion, thus a task of a certain process is being executed when the light for
that particular lane is green, and it is waiting when the light is red. By using
this analogy, we can draw inspiration from some of the relevant and more
common scheduling algorithms used in computing. It is again important to
note, that a set of conflict-free lanes can be processed simultaneously - mean-
ing that multiple processes can be executed at the same time, as if we had
multiple CPUs, or a shared CPU using multitasking.

Chapter 3. Analysis 21

Round Robin
If we look at the real world, and imagine each lane as a process, a very com-
mon algorithm used for traffic control, is Round Robin. Round Robin is great
because it is simple, easy to implement and eliminates the risk of starva-
tion; a lane with cars that doesn’t get processed because the queue length is
too short, the priority is too low etc. (depending on the method of control).
Round Robin assigns time quanta to all processes in a system with equal/no
priority - hence the overall time quanta is divided up in equal portions. In
computing, Round Robin is a common algorithm used in process and net-
work schedulers, since it is a so-called cyclic executive, which is an arguably
good alternative to a real-time operating system. In computing Round Robin
only handles one task at a time, but all processes gets their fair share of the
CPU. This can be translated into traffic control, as each lane (or typically
conflict-free sets of lanes) are being handled one by one, with all lanes being
handled in each cycle. This means that no lanes will be skipped unless ex-
plicitly defined; once a task is completed (a lane is empty) the task (the lane)
will be removed from the scheduler. Once a car enters the lane, it will then
be created once again, to then be included in the scheduler for further cycles.
In a dynamic and adaptive traffic control system, this might prove to be
a relatively counteractive strategy however, as there is no particular use of
the information available to the system. Round Robin essentially disregards
any information given to it, and sticks to the execution time for each cycle
regardless of changes in the traffic flow (It can still change the timings, but it
would affect all the lanes, rather than just the relevant ones).

First In, First Out (FIFO)

FIFO's are very simple scheduling algorithms, and due to their somewhat
fair approach to distribution of resources, it is also quite common in comput-
ing. The essence of a FIFO is that is serves the first one to come; like a queue
of people waiting to go on a rollercoaster - this queue is commonly know as
a task queue. Because context switches can only occur when processes ter-
minate, and there are no need to reorganise the task queue at any point, the
algorithm maintains a minimal scheduling overhead. That being said, the ac-
tual efficiency (throughput) of the algorithm can be relatively low, due to the
fact that processes that require long execution time, can hold the CPU from
execution of other processes; it has to finish the process first in line before
continuing with the next. This also means, that both waiting time, response
time and potential turnaround time can be relatively high. Additionally there
are no prioritisation, as every process gets executed in order of which came
tirst. This means that meeting certain deadlines can be tricky, as there is no
way to prioritise important/urgent processes over others. However, due to
the equal or no prioritisation, there is no risk of starvation, assuming that the
CPU eventually completes the task queue.

This is not the most viable option for a traffic light control algorithm, as
there is no way of prioritising lanes (processes) with a lot of cars (long execu-
tion time), plus once a lane gets a green light, it would have to wait until all
cars had been processed before changing state, meaning that though there is

Chapter 3. Analysis 22

no risk of starvation, some lanes might have to wait a long time for the light
to turn green.

Shortest Remaining Time

This scheduling algorithm arranges processes so that the ones with the short-
est execution time left gets put first in the task queue. This is also a fairly
commonly known algorithm (however not commonly used in modern com-
puting), since it maximises the throughput in most situations, as long as some
forms of estimation of the execution time is present. While being decently
quick, starvation is possible when a lot of small processes are being queued
up; the larger processes run the risk of starving as it keeps getting interrupted
whenever a smaller one comes along. This also creates some overhead, as the
interrupted process has to be put back into the task queue. It is also bad at
meeting deadlines, as the only mean of priority is the time it would take to
execute its task. In a traffic light controller however, this strategy becomes a
bit more interesting.

Consider a situation where a quad-directional signaled intersection is ex-
periencing a constant flow of heavy traffic in both the northern and southern
direction, while only experiencing the occasional car in either the eastern of
western direction. The lights will then be green in the ‘vertical” orientation
most of the time, but when a car suddenly arrives at one of the ‘horizontal’
roads, it might be of interest to process that single car immediately, and then
continue with the standard state again afterwards. Otherwise the car might
have to wait a long time for more cars to turn up in the queue, until the point
where either traffic light controller deemed it significant or a potential time
limit was reached on the current state (to avoid starvation if a sensor failed
to detect a car). Combined with a solution where each traffic light controller
not only knows of the cars already at the traffic light, but also of the cars on
the way from a previous one, it would be possible to plan whether to process
the single car right then and there (ideally timing the green light, so it doesn’t
have to stop at all), or to wait for a few more potential cars incoming.

Fixed Priority Pre-emptive Scheduling

The idea behind this algorithm is to assign a fixed priority to each process
and the let the scheduler arrange them in the task queue depending on their
priority. The throughput of this algorithm is about the same as the FIFO, as
each process is being executed - only the order is different; imagine a FIFO
where we first order the processes according to their priority, and then let
them enter the task queue one by one in the order of priority. If there are a
limited number of priorities (rankings), it would essentially work as a num-
ber of FIFO'’s ordered after the priority of the processes they include.

Using this algorithm, both response time and wait time would depend
on the priority of the processes, as higher priority processes would have a
lower time than lower priority ones. This also means, that meeting deadlines
become more possible, as higher priority can be given to important/urgent
tasks. On the other hand, starvation of lower priority processes can occur,
as they might be continuously shifted back in the queue if there are a lot of

Chapter 3. Analysis 23

higher priority tasks incoming.

In a traffic light controller (using our model), this would mean assigning
each car a priority immediately when the car enters the area of influence for
a specific traffic light, giving each lane a sum of priorities, thus a new overall
priority. The lanes (or set of conflict-free lanes) would then be resolved in the
order of their overall priority rating.

This could be an interesting strategy when working with multiple types
of cars (e.g. standard cars vs emergency vehicles), or cars with an explicit
priority (e.g. a car with 4 passengers including a pregnant woman vs a car
with one single passenger).

Work-Conserving Schedulers

This is an overall description of a group of schedulers. These types of sched-
ulers always tries to minimize the time a resource will be unused - in other
words, it aims to keep the scheduled resourced busy.

This could correspond to a traffic light in a way where we try to always
process cars whenever the light is green; ideally a lane should never have a
green light if there are no cars in that particular lane (assuming that there are
other cars waiting in other lanes which are not green). This is an important
feature and ideal for traffic lights, as we ultimately want to process as many
cars as possible as fast as possible. Looking for the perfect algorithm might
therefore be of relevance in this category.

Multilevel Feedback Queue

This scheduling algorithm is a mix of some of the previously outlined, in an
attempt to make a more diverse and dynamic algorithm. Although it utilises
strategies and general ideas from three different scheduling algorithms, it is
in fact still a commonly known one, as it is the one used in the Windows NT,
Windows XP and Windows Vista operating systems. It is a combination of
Fixed Priority Pre-emptive Scheduling, Round-Robin and FIFO. This allows
the operating system to either increase or decrease the priority of different
threads dynamically, depending on whether it has been waiting for a long
time, or maybe already been serviced. Each rank/level of priority is rep-
resented by a different queue, and Round-Robin is then used on the high
priority threads, whereas FIFO is used on the lower ones. The result is, that
the response time is short for all threads, and that even very short threads
gets executed very quickly. Starvation is however a risk for higher prior-
ity threads, as each thread can only use one cycle of the Round-Robin at a
time, meaning that long threads with high priority run the risk of starving
since only small parts of it gets serviced every time all the other high priority
threads do.

Chapter 3. Analysis 24

3.6 Communication

While the use of network communication for sharing of information between
nodes might not be necessary for a traffic simulator running locally, it would
be a crucial part of a real life implementation, as the only way for nodes to
share information would be over some form of connection. There are many
different types of networks, as well as many different protocols, so let us take
a look at some of the possible solutions for an implementation of our model
onto a real life system.

As we are dealing with a system where all the components interact with
each other to achieve a common goal, we can safely say that we are looking
at a distributed system where the individual components communicate and
coordinate their actions by passing messages of information. This is ideal due
to the available, transparent and especially scalable nature of such systems.

3.6.1 System architecture

The architecture of a system involving multiple remote components can be
categorised into three primary types; centralised, decentralised and fully dis-
tributed.

Centralised

In a centralised network, the core of the
system is located in one central location.
This means that the central server is the

a 80
acting agent for all communication in — ol
the system; if two nodes of the network Q 8 / ALp o
wants to communicate, it has to go via = LTy P o
the central server. Depending on the o : 3 ":_: =
function of the network, the central core o pal—— ’ =
can also have different functions. o= M o

In the example above, the server s \ '

L= i o O L= L=

would act as the postoffice for the mes- _
sages. In an example where multiple ¢ o
nodes send and receive data to a main

server, thus not actually communicating

with each other, but rather just the cen- FIGURE 3.5: Centralised architecture
tral server, the server would act more

like a bank where people can either deposit or withdraw money. A cen-
tralised architecture is easy to maintain, as there only exists one major point
of failure, and is also relatively quick to implement, as only one major part
has to be created, thus it can pretty much be applied anywhere without much
effort. The architecture does have its drawbacks however. While it might be
easy to maintain a single point of a system, it proves a huge stability risk as
only that single part has to fail for the whole system to collapse. If you take
out the central point, no points will be connected. Likewise the architecture

Chapter 3. Analysis 25

is not very scalable, as it has a finite capacity that usually maxes out for really
expansive systems.

Consider a traffic network, where each node in the network graph would
represent a traffic light (controller). The central node would then function
as a primary controller, distributing the messages and relaying them to the
intentional end-points. Whenever a traffic light would sent information to a
neighbouring traffic light, the message would be sent to the central controller,
with the message header specifying the intended receiver. The controller
would first receive the message, and analyse the relevant content. Once de-
termining the intended receiver, it would proceed to sent it to that particular
traffic light. The two traffic lights would then be interacting indirectly, thus
they would not necessarily know of the other traffic light’s location and ad-
dress in the network. While each message would have to be processed by the
central control unit, thus running the risk of being delayed, assuming that the
controller receives multiple requests continuously, the message would never
have to travel on more (or less) than two links, thus only be intercepted once
(by the central controller). In a scenario where the delay from the central
control unit is minimal, and nodes have to communicate over long distances
- beyond other nodes, this could prove to be more efficient, than the message
having to traverse through multiple routers along the way. In a system like
ours however, the nodes are relatively close together - both physically and
regarding potential delay from the network layer. A centralised network ar-
chitecture would generally improve processing delay, as the maximum (but
also minimum) number of routers in the link is one. The transmission delay
would likewise be decreased, as the message would only have to be transmit-
ted twice. That being said, both the queuing and propagation delay would
be increased (relative to a decentralised architecture), as several messages
would have to go through the gap of the central control unit at the same
time, and the distance from sender A and receiver C through the control unit
B, would always be at least the distance from A to B even if A and C are right
next to each other. While the delay and latency of the network can be crucial
to the overall performance, the most prominent issue with a centralised traf-
fic network, is the single point of failure; reliability is a key requirement for
the system, and the risk of a single failure paralysing the entire system is too
high.

Decentralised

A decentralised architecture is the opposite of a centralised one, since there
is no longer a definitive single core of the system. In this type of architecture,
a node in the network can act as both a client and a server, depending on
the situation. Either some nodes are specifically chosen to be intermediate
servers (e.g. so-called super peers in P2P), or each node has the option to
do both (e.g. peers in P2P). What a decentralised architecture lacks in main-
tainability and ease of development, it makes up for in improved (relative to
centralised architectures) stability, reliability, adaptability, scalability and di-
versity. A decentralised architecture is usually great for dynamic and volatile
systems, as it easily adapts to the requirements, once it has been created to

Chapter 3. Analysis

start with.

In a traffic network, this architecture
would involve a number of groups of traffic
light controllers, that independently interact
with the central control unit. When a node
A wants to send a message to a node E, it
would first send the message to the central
router B of the local group in which the node
A i residing. The message would include
information about the receiver E, so that
routers along the way would know where
to relay the message. If we compare this ar-
chitecture to a centralised one, the distance
from the sender of the message to the re-
ceiver would be approximately the same for
longer distances, but potentially a great deal
shorter for nodes closer together, as they do

26
o oo
o o
o L] A s
) ’ [!
g e AT ~4
S0
ﬁ .,
o ’ 0
A 7
= oz o]
o F =
<! a]

FIGURE 3.6: Decentralised archi-
tecture

not necessarily have to relay their message via the central control unit, if they
are in the same group of nodes, with the same local router, thus the average
distance between nodes are shorter than that of a centralised architecture.
Consider our model of a traffic network; as the interest of each traffic light
lies solely with its neighbours, it only cares about incoming traffic from said
neighbours, connecting these in a cluster with a shared local central point
would be desired, as a route via a global (within the network) central control
unit, would be ridiculous given the distance the message should travel.

Fully Distributed

A fully distributed architecture is a vari-
ant and ultimately an extreme example of a
decentralised system. In a distributed net-
work, each component knows about only
their neighbour to start with. In the graph
to the right, each node acts as a compo-
nent in the system (e.g. a traffic light con-
troller) and each link shows the connection
between two nodes. Since each node only
knows its immediate neighbours initially,
they must exchange messages in order to ex-
plore the graph (i.e. the network). What
a decentralised architecture masters over a
centralised one, a distributed structure im-
proves even further. This does however
mean, that the disadvantages of a decen-

& [
Cn l:‘
=l -0
B ey \
d h J s
4 y
y- e
o .)
o e
k5 -::-I ; .
o [O—o— 4 o
o =
—r &

FIGURE 3.7: Distributed architec-
ture

tralised structure is even greater for a distributed one. The ultimate essence
of this, is that a distributed system can be difficult to implement and main-
tain, but is otherwise brilliant for an ever-changing large network.

Chapter 3. Analysis 27

If we once again consider our model of a traffic network, a fully dis-
tributed architecture would involve all nodes to be connected with their near-
est neighbours, ultimately creating a spider web-looking network, where all
nodes have at least two links. A route from node A to node B, would then in-
volve using a shortest path algorithm to determine the prefered route based
on minimal total delay. By utilising this layout, the queuing delay would
usually be relatively low, as the overall load of the system would be dis-
tributed out to all the different nodes - with the more central nodes carrying
a heavier load than the outer ones, due to the natural routing between nodes
(i.e. the probability of a receiving node to be located on the other side of the
general centre is greater than on the same side - disregarding the function of
the network). Assuming that the processing delay and transmission delay
of each individual router is fairly low, the propagation delay for the mes-
sage would likewise be decreased compared to the architectures described
above. When determining the route for a message, dijkstra’s algorithm is
generally a good (if not perfect) choice - depending on the situation. It usu-
ally works extremely well for a network layout like this, as the essence of the
algorithm is focused on finding the shortest path between two neighbours,
and as we have multiple neighbours for each individual node, this often is
the best choice. As the basic variant of Dijkstra’s algorithm only finds the
shortest path between two neighbours, a recursive variant where the short-
est path between two nodes in a network connected be multiple other nodes,
is often the better choice, as the path between A and C, might not always be
the same as the shortest path from A to B plus the shortest path from B to C
(mainly if something like the delay is significantly different for each link).

Now that we have established some of the primary types of architectures, let
us take a look at some of the more common architectures in (general) dis-
tributed systems that could be relevant for this type of system - more specif-
ically, there are generally four primary types of distributed architectures;
layered /multitier, object-oriented, datacentric and eventbased/eventdriven.
However, as the layered structure is a client-server architecture where each
part of different responsibilities are separated into tiers (i.e. layers), this is
not really a relevant architecture for a traffic network. We will therefore go
over the latter of the three.

Object-Oriented

An object oriented architecture, is one where objects (just like in object-oriented
programming) are distributed across different components (or address spaces)
in a network. The objective of using this architecture, is to make the location
of the objects transparent; ultimately making remote objects seems as though
they are local. This means that each distributed object is able to access data
and invoke methods on remote objects (Remote Method Invocation (RMI))
- just like remote procedure calls in object-oriented programming. The RMI
protocol usually involves message-passing, where the caller-object sends a
message to the remote object, asking for permission to access it. If permis-
sion is granted by the remote object, the result of the invocation is sent back

Chapter 3. Analysis

28

to the calling object.

In a traffic simulator, this is often how
the communication architecture is struc-
tured, if the simulator is implemented fol-
lowing an object-oriented design pattern.
Likewise this could work in a real world net-

work of traffic lights, as each traffic light (i.e.

Object

node in the network) would function as an

object, and whenever it needed a fresh por-
tion of traffic information, it would invoke a

Object

method on the object which held the infor-
mation - using RMI. This could be a decent
solution when implementing the traffic con-
trol model for a local simulation first, as the
transition onto a real world network would
be very similar, in that each procedure call
would simply be replaced by a remote pro-
cedure call.

Datacentric

A datacentric architecture, is a centralised net-
work in which the persistent data is shared be-
tween a number of components. This means
that all the eligible components are able to pub-
lish and/or request data depending on their
privileges. It is centralised in nature, as the sys-
tem data is gathered in one single place.

In a traffic network, this might be a suit-
able solution, as the individual components of
the system has a lot of data to publish - just
as they often want to receive new information
about the traffic flow. Gathering the data in the
cloud (so to say) might therefore simplify the
network structure. Each traffic light (controller)
would simply request a certain form of data
from the cloud, that had previously been pub-
lished by another traffic light, ultimately main-
taining loosely coupled components.

Method Cal

Object

Method Cal

Method Call

Method Cal

Object

| Method Ca

Object

Method Ca

Object

chitecture

Method Cal

FIGURE 3.8: Object-Oriented ar-

Component

Component

Receive

Data Space

Publish

Publish

Receive

Component

FIGURE 3.9: Datacentric ar-
chitecture

Chapter 3. Analysis 29

Eventdriven

An eventdriven architecture focuses

on interactions using events. An

event is a sudden change of state for
the system. Whether it being a com-
ponent publishing some data, or an-
other component requesting a deliv-
ery of some data, the state of the sys-
tem is altered, and an event is trig-
gered. The events are not actual ob-
jects, but rather a concept. The ac-
tual object being sent back and forth
on the event bus, would usually be messages sent asynchronously.

In a traffic network, an event could be triggered whenever a traffic light
component experienced a flow of traffic traversing the intersection, and pub-
lished this data. All other components subscribing to this type of data (e.g.
physically neighbouring traffic light components) would then receive the
data without technically knowing anything about the component that orig-
inally sent the message. This scenario will be analysed in further details in
the subsection publish and subscribe under the next section.

Publish

Receive

FIGURE 3.10: Eventdriven architecture

3.6.2 Communication

Regarding the actual form of communication over the network, there are typ-
ically three primary methods for sending messages. If a message is sent
directly from one component to another, the method of communication is
called single-cast. Similarly, multi-casting would involve the message being
sent to a specific group of components, rather than just a single one. The last
option for sending a message over a distributed network, is broadcasting. By
broadcasting a message, the message is sent out to all other components in
the network. When using a publish-subscribe pattern, the receiving compo-
nents could choose to subscribe to a certain component, or even a certain type
of message. Whenever the sender publishes a message, all subscribing com-
ponents will receive it, whereas the ones not subscribing will not. Another
variation of this could be any-casting, where a message is sent to practically
anyone - usually the nearest neighbours in the network.

Consider the following four examples - each of one of the abovementioned
methods of communicating in a traffic network. In the graphs, each node
represents a traffic light (controller) and each link represents a wired connec-
tion - possibly along with a physical road between the two relevant traffic
lights.

Chapter 3. Analysis 30

o

-0 —Q—O0—O

o 0—0—o0

0—oO 0—oO 0—0—0—0

(A) Single-cast communication (B) Multi-cast communication

(C) Any-cast communication (D) Broadcast communication

FIGURE 3.11: Different methods for communication

In the first graph (see fig. 3.11(A)), we see an example of using single-
cast communication to send a message from traffic light A to traffic light
B. By analysing the data, A realises that only B would show interest in this
data, thus sends it directly to B and no one else in the network. If A has
knowledge of the network structure, or even just its neighbours, and it knows
the direction of its processed cars, it will know exactly which traffic light will
receive the cars as input. This allows A to explicitly alert B that a certain
amount of cars are incoming, giving B time to assess the situation and adjust
its timers accordingly. If each node not only has knowledge of neighbouring
nodes, but also of the exact distance and average speed limit between them,
it would even be possible to not only alert the receiver about the amount of
traffic incoming - but also at what exact time they will arrive, allowing B to
make an even more precise decision.

In the second graph (see fig. 3.11(B)), we see an example of using multi-
cast communication to send a message from traffic light A to the group of
traffic lights B,C,D. Once again A analyses the data, and realises that not
only B, but also C and D might have interest in it. If A knows at least two
levels of neighbouring nodes (i.e. its own neighbours and their respective
neighbours), if can send the message to all nodes that are up to two links
away from itself. That way B get the information like with single-cast com-
munication, but C and D also gets information that traffic is incoming to B.
Based on a statistical analysis, both C and D might deduce that some (or all)
of that traffic may comes from B in the future. This would give C and D more
time to evaluate and though some of the data would be based on a qualified

Chapter 3. Analysis 31

guestimate based on either randomness or previous experience, the system
would have a better overall knowledge about the traffic within the network
- potentially letting each node make better decisions.

The third graph (see fig. 3.11(C)) shows an example of using any-cast
communication, where a message from A is sent to practically anyone - in
this case however the message is sent to its nearest neighbours. The message
is essentially copied and sent out four times - each with a different receiver in
mind. Consider a traffic network where each traffic light did not know where
its output was going. Sending the message to all the nodes immediately
connected to it, might be a good solution, as it would not have any way of
knowing which specific node to send the information to. This solution would
not be ideal however, as the system would start to overflow with redundant
information, due to the fact that nodes to the north, west and south of A
probably would not care much about how much traffic was going east.

An example of broadcast communication in a traffic network is shown
in the fourth graph (see fig. 3.11(D)). When using broadcast, the message is
sent from A to all other nodes in the network. Since any-casting might be
an unsuitable solution to an intelligent traffic control system, broadcasting
might at first glance seem as an even more extreme version of that, thus an
even worse solution. Broadcasting a message to an entire system can how-
ever prove fairly useful in certain situations. Assuming that each node can
handle/analyse all the received data without a significant disadvantage in
performance, a system where all nodes knows everything about all other
nodes, might be a great solution, as each node would have access to all avail-
able information in the system. Unless an extremely complicated statistical
model was implemented (for a large network of nodes), this would likewise
involve a ton of redundant information, which would mean a potential waste
of performance.

Publish and Subscribe

Publish-subscribe is based on an eventdriven architecture, and refers to a
message pattern where the components sending messages (publishers) does
not know anything about the components receiving the messages (subscribers).
When the publishers publish a message, they specify not the intended re-
ceiver of the message, but rather the topic or content of said message. The
subscribers then subscribe to a certain topic or form of content, and thereby
only receives data that is of interest to them, without necessarily knowing
anything about who originally published it. The messages is initially sent to
a so-called message broker or event bus (as the bus in fig. 3.10). It essentially
receives all the published messages, translates them from the message proto-
col of the sender to the message protocol of the receiver, and relays them to
the intended receiver.

The publish-subscribe paradigm using a message broker, is typically sup-
ported by a Message-Oriented Middleware (MOM), which functions as the
infrastructure between the publishers and subscribers. The middleware is
essentially what allows the messages to be distributed over (heterogeneous)

Chapter 3. Analysis 32

networks. MOM practically introduces a new layer to the OSI model, be-
tween the transport layer and the application layer, and basically functions
as the “to” in peer-to-peer for instance.

There are three primary variations of the publish-subscribe pattern; list-based,
broadcast-based and content-based.

In a list-based publish-subscribe pattern, a list of subscribers is main-
tained for each subject (e.g. topic) of the messages. Whenever an event occurs
(i.e. when a message is published), it goes through the list of subscribers for
that particular subject, and relays the information to those on the list. In the
traffic network, the subject could refer to the position and direction of traffic
flow, and each traffic light could then subscribe to the subjects of their respec-
tive interest. In practice, this would typically be the inputs to the traffic light,
thus the outputs from neighbouring traffic lights with direction towards it-
self. In a system where each node has the knowledge of traffic beyond their
immediate neighbours, this could quickly become a long list of subscriptions
for each subscriber.

Let us say that traffic light A has detected some traffic traversing the in-
tersection from north to south. It then publishes this information to the even
bus, where the subject is evaluated (traffic moving southbound from node
A). The message broker locates the list of subscribers for that particular sub-
ject (e.g. traffic light B that is located south of A in direct succession), trans-
lates the message (if needed) and sends it to B that process the message, thus
getting the information about the incoming traffic.

In a broadcast-based publish-subscribe pattern, the message is instead
broadcast onto the network when a message is published. All subscribers
technically receive the message, but only if the subject of the message fits
their subscription, the message is processed.

As previously mentioned, this could also work for a traffic network, as
each traffic light publishing a message to the event bus, would trigger all
subscribers to check the subject of the message and only process it if the sub-
ject matches its subscription. This could be done for groups of traffic lights
in a local area networks rather than the entire network, to reduce redundant
message being propagated.

Content-based publish-subscribe is different from the two previously men-
tioned variations, in that it focuses on the content rather than the topic of the
messages. Where the distribution of messages in a broadcast-based approach
is coupled to a multi-cast tree based on the Transmission Control Protocol
(TCP), this variation overcomes this limitation by utilizing the actual con-
tent of the messages, thus allowing for a direct route to the subscriber that
subscribes to that exact content.

In a simple traffic network the content of the messages being published
would be relatively basic, but imagine if each message included information
about how many passengers were in the cars, the type of vehicles etc. - it
would then quickly become more relevant to use this variation of the publish-
subscribe pattern.

Chapter 3. Analysis 33

3.7 Specific requirements

Up until now we have considered a general problem, for which we want
to make a solution. Let us now specify the requirements of said solution
to ensure that the goal will be met, whilst complying to any external rules.
Since we are working with real life public traffic lights, which not only holds
a risk of crippling an entire city, but is also a epicenter of risk for human
safety, areas like safety as well as reliability and performance are especially
important to address.

3.7.1 Functionality

Each node in a given network should be able to send and receive data, as
well as utilize and interpret data from either local inputs or remote signals
without any semantical differences.

The system should be able to handle large amounts of data, without any
noticeable latency and the exchange of data over a network should be secure
and reliable.

Given the relatively general problem we are attempting to solve, the sys-
tem needs to be fairly generic and adaptable; the required effort to imple-
ment the model onto any given network of traffic lights should be as low as
possible.

At any point in time, it should be possible to disable the system on either
a local or global basis, in case of malfunctions or any other situation where
it might be preferred to return to a simplified model temporarily; our model
should be implemented as an addition to the already existing model, rather
than a substitution.

In addition to previously mentioned functionality, it is to be assumed that
each traffic light as a minimum acts and functions as a standard traffic light.

3.7.2 Usability

It is important that the users does not have to alter their routine in order to
traverse the traffic lights. As previously mentioned, there does not need to be
any changes to the interfaces that the users directly and consciously interact
with - such as the actual lights and the lanes of the traffic signals. Other than
the hopefully improved traffic flow, the users should not notice any game
changing differences.

Other than that, it is to be expected that a certain standard is met when it
comes to responsiveness and aesthetics.

3.7.3 Reliability

Traffic lights are critical when it comes to the enforcement of traffic laws and
regulations, as well as general safety. Therefore it is very important to ensure
the availability of the traffic lights. Certain backup/safety measures can be
implemented to ensure acceptable availability during a technical failure. For

Chapter 3. Analysis 34

instance the traffic light could make use of a more simple form of control, in
the case of a failure to the current control unit (e.g. make use of a set timer, if
the otherwise prefered means of control are malfunctioning).

Another way to ensure as high an availability as possible, could be to alert
the relevant authority of any failures. Letting the proper technician know
if there is a technical malfunction, could bring the downtime down signif-
icantly, as the problem could be fixed right away. Regarding the physical
composition of the traffic lights, we are going to assume they are as robust
and durable as standard traffic lights.

In terms of accuracy and general correctness, it is of utmost importance
that the users are not misguided, as that could lead to a severe break of safety.
Frequent monitoring and general maintenance should prevent any malfunc-
tions or at least detect them, so any appropriate fixes can be made in time.

3.7.4 Performance

As the overall goal of this project is to improve the efficiency of traffic lights,
the performance of the actual traffic lights are also of utmost importance. Im-
plementing a new measure of control for a network of traffic signals, would
be for nothing if each traffic light is slow and sluggish, or if the communica-
tion between each node in the network is too delayed. Therefore it is crucial
that the speed and general efficiency of the system is as high as possible.

Other than being fast and efficient, it is also important that the cost of
the system is as low as possible. Just like it needs to be fast and efficient, it
also needs to limit its resource consumption; an appropriate balance must be
found between those two areas.

As an important quality of the system is its scalability, it must also be
capable of upscaling the system without any major upgrades other than of
course the upscaling itself.

3.7.5 Supportability

Serviceability, maintainability, sustainability, repair speed, testability, flexi-
bility, modifiability, configurability, adaptability, extensibility, modularity, in-
stallability and localizability.

These are all very important quality attributes, when working with a
generic and scalable solution to a dynamic problem. It makes sense that each
and every one of these qualities are in the back of our head when implement-
ing the solution. As mentioned briefly when discussing both reliability and
performance, the ability to easily implement, maintain and configure the sys-
tem is extremely important, as this will make the attractiveness of the system
skyrocket.

35

4 Design and Implementation

4.1 Traffic Simulator

As mentioned earlier, the core of any simulation is the model on which it is
build. Our model consists of, and primarily focuses on, the description of a
traffic light, as this is the primary object of interest when working with traffic
control and/or management. As we aim to demonstrate the effect of using
multiple traffic lights that all share the same knowledge, our simulation like-
wise supports the existence of multiple traffic light objects within the system.

Throughout this section, it is recommended to refer to the design class dia-
gram of the traffic simulator (including the algorithm) in appendix A, as this
gives both a general overview of the structure and more detailed information
including variables and functions.

The traffic simulator consists of a bunch of different objects, that for the most
part can be categorised into two primary types; nodes and links. Nodes in-
clude objects like Intersections and Spawn Points, and is where there is an
active form of control present. It is only within nodes, we can actively change
the outcome of the simulation; if we alter the control algorithm of the traffic
lights or decide to spawn more cars at a specific point, the result of the sim-
ulation will be different than if we had not changed anything. Links on the
other hand include objects like Roads and parts of the roads like Lanes, and
acts as connectors between nodes - just like roads are connectors between in-
tersections in the real world. Links have a passive form of control, as they
can only be interfered with indirectly; if we want to change the outcome of a
situation on a link, we have to make a change to a connected node in a way
the changes the outcome of that particular link.

With these two types of objects, it is possible to construct any traffic net-
work from a real world scenario into the traffic simulator, as long as it con-
sists of valid subcategories to either nodes or links - for instance the simulator
supports intersections like three- and four-way traffic lights among others,
but not roundabouts or traffic lights with more than four inputs and/or out-
puts. With this basic structure in mind, let us take a more indepth look at the
model on which the simulator is build.

Chapter 4. Design and Implementation 36

41.1 Traffic Simulation Model

A traffic light, in our model, acts as the base of operation for our traffic
controllers. It consists of a number of road objects, a lightController, and
a lineController. The lightController, as suggested by the name controls the
lighting patterns in the traffic light, controlling for whom the light is green /red
and for how long. As such it is in the lightController the traffic light algo-
rithm is implemented. The lineController controls the actual flow of the traf-
fic in the traffic light. It controls which lane incoming road traffic is added
to and moves traffic through the traffic light adding outgoing traffic to the
respective roads outputs. The roads represent the incoming and outgoing
roads in the traffic light, these respectively leading to a new node in the
system - typically another traffic light, and are used to determine the time
it takes to travel to the next node by using the length and speed variables.
Roads also contains the lanes which the trafficLight’s lineController uses to
control the direction of the traffic. Traffic lights and so-called Side Roads (T-
junctions) are the main building nodes the simulation program uses to sec-
tion off roads in the system. This is an important point, as one might think
of a traffic network as a collection of roads and intersections. Instead we are
using the intersections as the reference point; every object in the system ex-
ists relative to the traffic lights, rather than the whole network.

We once again refer to the design class diagram in appendix A, to give a
visual presentation of the system.

The only thing a traffic light has other than a number of functions, on
an abstract and physical level is an identifier, abbreviated id. Most of the
objects in our model holds an id, as a way to reference them from all over
the system. When dealing with a generic and expandable system, where
multiple instances of the same object can exists, it is often a good idea to give
these objects some form of uniqueness, e.g. in form of an identifier.

Within the network, multiple traffic lights can exist, and at least one must
exist - otherwise the purpose of the network is defeated, as the traffic lights
are the primary part of our model, as mentioned above; while a network of
just roads can be interesting to look at, it is not really the level of complexity
we are after, since an analysis of the network becomes extremely simple, and
alterations become more or less obsolete.

Since the traffic lights serves as the centers of attention, roads are attached
to the traffic lights - not the other way around. For a traffic light to have a
general purpose, it must have at least three connected roads.

Each section of road has a name (which is an identifier indicating the po-
sition of the road relative to the traffic light - e.g. "‘North’ or ‘South West’), a
length and a speed limit. The length and the speed limit are both common
attributes of a road and are used when calculating the time it takes a car to
traverse through the section of road (from one intersection to another). A
road also has both Ways and Lanes. These are both objects in the system,
and acts as subdivisions of a road. A way is like a direction, and since a road
is positioned relative to a traffic light, the two possible directions of a road

Chapter 4. Design and Implementation 37

(aka. the two Ways) are in and out. If a road only has one associated way, it
functions as a one-way road.

Technically a link between two traffic lights A and B, works as two indi-
vidual roads; one that acts as the output for A and input for B, and one that
acts as the output from B and input to A.

Lanes are what determines where the cars can go at the intersection. For
instance, a road can have a lane to go left and straight, one to go just straight
and one to go just right. This alleviates some of the pressure at the inter-
section, and allows for a more specific and detailed algorithm to be used for
the traffic control - which is a good thing, since each car becomes part of a
smaller group when analysing the flow /pressure, which in turn means more
focus on each individual car.

The way, or direction, is what determines the flow of traffic; number of
cars over time, whist the lane determines the line/queue of cars. The width
of the lane indicates the number of lanes of the same type, e.g. if there are
two right-turning lanes and one straight lane, there are two lanes where the
right-turning one has a width of two. The lanes is also the object that holds
the actual traffic light, as the light might be different for each type of lane. The
light object only has a state, which indicates what color is currently shown.

Since the road is the overall pathing object, it is also here the spawn nodes
are attached. The spawn nodes are what spawns the cars, since we need to
actually create cars when working with a simulation. These spawn nodes are
usually placed around the outside of the network, acting as the inputs to the
system as a whole. The spawn node dictates the flow, which indicates how
many cars are spawned over time.

4.1.2 In depth view

Now that we have established the general structure of the traffic simulation
model, let us take a closer look at what it actually does. (See appendix A for
a design class diagram over the system).

The Main class is what initiates and starts the simulation. It creates the traffic
network by initialising the objects and connecting them, and sets the various
parameters, such as which algorithm each traffic light should use, the length
of the roads etc.. As the simulator runs locally simulating a distributed net-
work, each node in the simulation (i.e. traffic light, side road or spawn node)
is started as their own thread, so they are isolated from the rest of the objects.

Once the simulation has started, cars will begin to spawn at the declared
spawn nodes. The spawn nodes makes use of the Random java class to gen-
erate traffic. It does this so as to simulate a degree of randomness to the traffic
flow since real world traffic have a certain degree of uncertainty to it, and in
this way try to mirror real world traffic a bit more. The Random class gener-
ates a stream of pseudorandom numbers (with the use of a 48-bit seed which
is modified using a linear congruential formula) which is used to determine
whether new traffic is spawned or not. If the number (which is between 0
and the max spawn value) is less than the set spawn value, then traffic is

Chapter 4. Design and Implementation 38

spawned and driven into the system. A new number is drawn every spawn
interval (msec) which controls how often a spawn node tries to generate traf-
fic. By default the spawn value is sat so there is 50.01% possibility for traffic
to spawn at each spawn interval. This means that if the spawn interval is sat
to 200 msec, the probability of one or more traffic spawning in one second
(five spawn intervals) is 96.88%. And the probability of five traffic spawning
in one second is 3.13% (for calculations see appendix B).

Each instance of a traffic light, starts both a light controller and a line
controller, each in a new thread, and then proceeds to run for the rest of the
simulation continuously yielding for other threads; essentially giving itself
lower priority for execution by the CPU, and allowing other threads to be
executed until the end of the simulation.

The light controller then decide the light configuration based on the cho-
sen algorithm for the associated traffic light, each so-called lightTime, which
is essentially the tick /refresh rate for the light signal - thus also the minimum
amount of time each light will remain on for.

The line controller essentially updates the lines on each incoming (to the
associated traffic light) road by either incrementing or decrementing each in-
dividual lane coming into the associated traffic light, based on the arriving
flow (at the edges of the network, this would be from spawn nodes exclu-
sively). The line controller can basically be seen as a policeman in the middle
of the intersection guiding the cars with his og her hand signals. The line con-
troller controls where the traffic goes, by practically moving the cars around,
whereas the light controller controls the light signals, by changing them ac-
cording to the result of the algorithm.

4.2 Traffic Control Algorithm

The system supports three different traffic control algorithms; one using fixed
timers, one using sensory inputs and one using data from neighbouring traf-
fic lights. The first two are relatively simple and is basically simplifications
of the latter. We are therefore going to describe the algorithm that was devel-
oped with communication between traffic lights in mind.

The traffic algorithm determines two things; which light is turned on and
for how long. It does this by looking at the current lines at the traffic light;
which light is currently turned on, and incoming traffic. All the traffic al-
gorithm knows about the incoming traffic is their arrival time to the traffic
light. With the data of the incoming traffic and the current lines, the traffic
algorithm tries to determine how long it will be before there is a “hole”(a pe-
riod of time with no traffic) in the traffic flow at the incoming roads, and how
long these “holes” will be. For simplicity’s sake will we call the time before
a “hole” appears on a road clear time and the duration of the hole, hole time.
The traffic algorithm then tries to avoid having a light green in any direction
where there is a hole, thus only having the light green in a direction for that
direction’s clear time. When it becomes time to change the light to the other
direction and the direction which is being changed to has a clear time of zero

Chapter 4. Design and Implementation 39

(no traffic), the traffic algorithm keeps the light green in the current direction
(doesn’t change the light) for the duration of the other directions hole time
(until there is traffic). The maximum hole time that a road can have is that
road’s travel time. Travel time is the time it takes for traffic to transverse the
road to the traffic light. This is a calculation involving the roads length and
speed. This is the maximum hole time since this is the maximum prediction
range the traffic algorithm has (it only knows what traffic is currently travel-
ling directly to it). This is possibly an area of further development. Light time
is the time the traffic algorithm determines that the light should be green for.
This is typically a directions clear time however it does have a max value that
it’s allowed to be. Lets call this max value; max light time. Max light time is
determined by the traffic light to be the max time allowed to pass before the
traffic algorithm has to recalculate and try to change the light. This is so as
to prevent the traffic algorithm from determining that there should be green
in one direction for a very long time, do to high traffic, and then not going
back to recalculate in a long time. This would result in the traffic light not
changing in a long time, ultimately resulting in starvation. Thus max light
time is the max time before the traffic algorithm as to recalculate and thus
give priority to the other directions. This however doesn’t prevent the the
traffic algorithm from not changing the light if there is no other traffic. It
does however protect against long clear times.

One limitation with the current traffic algorithm is that it doesn’t know which
way incoming traffic wants to go, and since it calculates worst time clear
times, meaning that it calculates the longest possible clear time of a road, the
predicted clear times are sometimes longer than the actual clear times. This
is primarily a deficit when incoming traffic arrives before the roads longest
line is cleared. This causes the arrived traffic to be theoretically added to
the longest line thus increasing the clear time. In practice however, the in-
coming traffic might not be going the way where the line is the longest but
a way where the line is shorter, thus not actually increasing the overall clear
time. However since the traffic algorithm doesn’t know where incoming traf-
fic wants to go, it makes predictions based on the worst case scenario.

40

5 Evaluation

Now that we have analysed the problem at hand and proposed a solution,
let us evaluate the result of the chosen solution, by evaluating tests and
discussing the results of them. The purpose of the implementation was to
demonstrate our algorithm in an environment simulated to function as a real
life traffic network. The evaluation will therefore focus on the differences be-
tween our algorithm - which supports communication between traffic lights,
and already commonly used ones, that does not.

5.1 Test

In order to measure how our developed traffic control algorithm measures up
against other implemented algorithms such as time switched based ones, and
sensor based ones, a bunch of tests simulations with the different algorithms
were run with the results measured against each other. These test simulations
were run in a bunch of different scenarios with varying traffic flows so as to
get an idea of how the different approaches handle different scenarios. Each
test is run with 100 simulations of each algorithm where the average wait
time for traffic is measured and the overall average wait time is computed
for each algorithm. It has been decided that we measure the effectiveness of
the algorithm on the user’s(traffic’s) average wait time in the system, since
the less time that the users hold still for a red light the better the experience.

The time based algorithm has no knowledge of the traffic flow through-
out the network, thus the light configuration is purely based on fixed static
timers. The sensor algorithm is based on the time based algorithm, but ad-
ditionally it utilises simulated sensors, that are able to detect cars when they
arrive at the given traffic light. This means that it knows how many cars
that are currently in the lanes for the traffic light, thus it can change the light
configuration accordingly, so as to accommodate for lanes with higher traffic
flow. Our developed algorithm, is somewhat similar to the sensor algorithm,
in that it knows about any cars that are currently in line for the intersection.
What makes it different from the other two however, is its ability to interpret
traffic data from nearby traffic lights, and thereby plan the light configura-
tion according to not only the cars already waiting, but also the cars the are
approaching the intersection.

Chapter 5. Evaluation 41

5.1.1 Test1

The graph below shows the resulted average wait times of traffic in Test 1.

Test1

1600
— Developed Alg —— Time based Alg Sensors Alg

AR

0

avg. wait Time (msec)
(=]
[]
[

A 3 -\:1| rfi_‘l rbrﬁ B B f:Tll -',EJ{'J -‘||"-fl %’\ %'CE: qﬂl

&im nr.

FIGURE 5.1: One traffic light, four roads, no turn lights and
moderate traffic flow.

Test 1 is run with 100 simulations of each algorithm with a moderate traf-
tic flow in each direction. The east and west direction has a slightly higher
traffic flow. The test involves one standard traffic light (4 roads and no turn
lights), where there is a spawn node attached to each incoming road. The
roads have varying speeds, lengths, and turn chances to each other and are
the same in all the simulations. For all the exact value specifications for the
test please refer to appendix C. The overall average wait times computed for
the three different algorithms are 495.83 msec for the developed algorithm,
1227.1 msec for the time based algorithm, and 723.6 msec for the sensor based
algorithm. This clearly shows that the average wait time at the traffic light
when a time based algorithm is implemented is nearly two and a half times
greater than when our developed algorithm was used in a standard traffic
light with moderate traffic. This indicates that with the developed algorithm
the time users(traffic) spend waiting around for a red light is significantly
lower and thus ensure a better overall user experience. The same can be said
when comparing to the sensor based algorithm. With the sensor based al-
gorithm the average wait time is nearly one and a half times greater than
with the developed algorithm, again showing an improvement in the user
experience when the developed algorithm is used.

Chapter 5. Evaluation 42

5.1.2 Test2

Test 2 is a test involving our developed traffic light algorithm against both a
standard time based and a standard sensor type algorithm in a standard traf-
tic light with spawn nodes connected to the four incoming roads. The test
looks a lot like test 1 and the network is also the same. The only difference
is that test 2 is overcrowded with traffic, so the spawn interval on the spawn
nodes are half of what they were in test 1, resulting in a lot more traffic since
traffic is being spawned more often. This is to test how the different algo-
rithms compare when there is overcrowded traffic from all directions. The
graph below shows the result of test 2:

Test2
g h M+ |

% | b (ILPNIM- \'ll Il n' | W'l-.
L ‘W et

sim nr.

FIGURE 5.2: One traffic light, four roads, no turn lights and
extreme traffic flow.

As seen above, the average wait times between the three algorithms are very
similar. This is also as expected since the test involved there being an over-
flow of traffic from all directions. This results in there constantly being long
lines in all directions, and since there is no priority on any specific thing (all
traffic has the same priority), the developed algorithm will switch between
the directions generating max light time, which is sat to be the same as light
time in the time switching one. A similar thing happens with the sensory
algorithm. This results in the average wait times being very similar which
is also evident on the overall average wait times which is 4194.62 msec for
the developed algorithm, 4160.62 msec for the time based one, and 4263.91
msec for the sensory algorithm . For the specific specifications for Test 2 see
appendix D.

Chapter 5. Evaluation 43

5.1.3 Test3

Test 3 looks at how the developed algorithm stands up to the other algo-
rithms in a traffic light with a bigger high traffic road and a smaller low traf-
tic road. This is a typical example of a main road intersecting with a smaller
road. The graph below shows the result of the test:

Test3
1200
—— Developed Alg —— Time based Alg Sensors Alg
o 900
)
L]
E
ik}
E 600
."E
o
oo MNMWJWWW/\,\JA
0

Y] ,\'1| .-f:l rﬁrfl B [-p'a"ll -;6{3 -1|'-fl %’\ %':EI c;ll

sim nr.

FIGURE 5.3: One traffic light, two big and two small roads, no
turn lights and moderate and lopsided traffic flow.

It can clearly be seen that the average wait time is significantly lower with
the developed algorithm when compared to the time based one and the sen-
sory based algorithm. This indicates that the developed algorithm performs
better in this scenario. The average wait times for the different algorithms in
this scenario is 212.74 msec for the developed algorithm, 959.95 msec for the
time based algorithm, and 578.88 msec for the sensor typed algorithm. The
difference between the time based algorithm and the other two can primarily
be accounted to the fact that the other two algorithms only changes the light
to be green for the smaller roads when there is traffic and only for the short
amount of time it would take the traffic to cross where as the time based one
changes after a specified amount of time irrelevant of actual traffic. For more
information on the specific test data and values look in appendix E.

Chapter 5. Evaluation 44

5.1.4 Test4

Test 4 looks at how the different algorithms perform when implemented in
a traffic network with moderate traffic. It was selected to use a traffic net-
work from the real world as the base for this test so as to better relate to the
results of the test. The selected traffic network is from around Glostrup, Den-
mark. The network spans from the intersection O3 (Nordre Ringvej) - 156
(Hovedvejen) to 156 (Hovedvejen) - Norre Alle, and some of the roads and
intersections around the area. The traffic network is better described by the
figure below and the test results by the graph. For additional information
about the traffic network and test data please refer to appendix F.

. Spawn node
- Traffic light
A Side road intersection

Mellemtoftevej

}

Norde Ringvej mii—

-affmmm Nerre Alle

Rishospitalet - Glostrup

Vestervej

' Hovedvejen
Glostrup Kirke '

Glostrup Shoppingcenter

t

@stbrovej

t

Glostrup Station Sydvestvej

FIGURE 5.4: Traffic network used for test 4

Chapter 5. Evaluation 45

Test04

1200

—— Developed Alg —— Time hased Alg Sensors Alg

oo N"\/\/\/ij\/'\/’\/\f‘\'d\vf\/\’\[w

BOO

avg. wait Time (msec)

300

L 2 a1 = T T SN - T < T T AN B < |

sim nr.

FIGURE 5.5: A network of multiple interconnected traffic lights
of different types

The graph shows the overall average wait time for the whole traffic network
per simulation for each algorithm. By looking at the resulting data it can
be concluded that the developed algorithm far out performed both the time
based algorithm which performed the worst and the sensor based algorithm
which is in the middle. The total average wait time for the entire test per
algorithm is 131,03 msec for the developed algorithm, 953.10 msec for the
time based algorithm, and 580.64 msec for the sensor based algorithm.

5.2 Discussion

Let us now reflect on these test results and compare them to the project scope.

The shared purpose of the four tests above, was to check the developed
algorithm against two more common traffic control algorithms, to see if the
improvement of the average wait time for each car/user was significant. The
hypothesis was tested in three different scenarios for a single traffic light, and
then once for an elaborate network of traffic lights.

In the first test, the hypothesis was tested using a standard traffic light lay-
out with four connected roads of equal size (throughput), no explicit turning
lights and a moderate traffic flow from each direction. The purpose of the
test was to measure the algorithms against each other, to ultimately test our
hypothesis against a common traffic light layout. Just as expected, our de-
veloped algorithm showed to be significantly better at handling traffic flow,
than the algorithm utilising only fixed timers and slightly (yet consistently

Chapter 5. Evaluation 46

and significantly) better than the sensor-utilising one. The sensor-utilising
algorithm showed to be an improvement over fixed timers, which makes
sense as the sensor algorithm is basically an upgrade from the the time based
algorithm.

In the second test, the hypothesis was then tested using the same layout of
the traffic light, but this time with an extreme amount of traffic. The purpose
of this test, was to show that even though our developed algorithm might be
a big improvement over the other two, it does not really matter when dealing
with a scenario where every single lane is crowded with cars. When there is
a continuous stream of traffic in each direction, the light configuration does
not matter, as the same amount of cars would go through regardless of which
direction was open. It is also due to a scenario like this, that our developed
algorithm tries to limit the average wait time. Had it tried to get as many cars
through as possible in a scenario like this, the light would never change un-
less there was a defined maximum for how long one light configuration can
remain unchanged. As expected, all three algorithms perform very similarly,
as there is no real benefit to having increase knowledge about the traffic flow
in a situation like this.

In the third test. The hypothesis was tested in a realistic situation dif-
ferent from the first two. The purpose of this test was to further confirm
the improved efficiency from implementation of our developed algorithm
compared to either sensors and/or fixed timers. The aim of the test was to
simulate a common traffic layout, where a relatively small road intersects
with a larger one. Our developed algorithm did not see much of a change
in superiority over the time based one compared to the first test, but a slight
increase in improvement over the sensor-based one. The test thereby con-
tirmed the result that we had gotten previously. An interesting added result
of this test, was that the sensor-utilising algorithm showing an even more
significant (very slight but consistent) improvement over the one only using
tixed timers compared to the first test. This is likely due to the nature of the
traffic layout, as fixed timers tend to fall short, when the two intersecting
roads are of different size - thus throughput. Fixed timers are more comfort-
able when each road has the same more or less constant throughout - which
was not the case in this example.

As each test has its own specific purpose and interesting result alongside,
the fourth test was arguably the most interesting, as it tested the hypothesis
not just for a single traffic light, but rather an elaborate network of different
types of traffic lights. The average wait time in this scenario is a result of
the average wait time for each traffic light (i.e. an average of the averages),
which is also reflected in the graph, as each curve is slightly more consistent
compared to the previous tests.

As mentioned previously, the network itself was based on a real world ex-
ample, however the actual traffic data was simulated completely. As we have
been unable to acquire any form of traffic data, the data used in the test have
been chosen carefully based on general knowledge about the area in the real
world and general logic, so as to get as close to a real life case study as possi-
ble. It is however important to note that the average wait times are not perfect

Chapter 5. Evaluation 47

reflections of wait times in the real world, as countless realism-factors could
have been added - such as yellow signal light, gradual acceleration from the
cars etc.. These are not implemented in the simulator since they do not add to
the accuracy of the tests, which is the point of the simulation; adding a yellow
light for instance, would increase the average wait times, but that would be
the case for all three algorithms, so the difference would barely be noticeable.

Overall the tests that were performed confirms our hypothesis by showing
a significant improvement in our developed algorithm over the more com-
monly used ones. This ultimately proves that traffic lights that implements
an algorithm that utilises information shared between multiple independent
traffic lights, significantly improves the overall traffic flow. The proof is based
on the fact that the relevant tests show a decrease in average wait time consis-
tently over the 100 times we ran each test. Test 2 is the only one that does not
show a significantly consistent change in the traffic flow, but as mentioned
above, this was to be expected from the test scenario, which purpose was to
simply confirm that expectation.

It is worth noting that the addition of various realism-factors probably
would have given a different result - possibly even a less significant differ-
ence. However these factors generally does not affect the outcome of the
scenarios that much and due to the massive improvement to efficiency in
the traffic networks seen above, a few minor changes would likely not have
changed the results in a degree that would have resulted in a different con-
clusion.

5.3 Potential Project Extensions

This project was done with potential extensions in mind. Both the traffic
simulation model and the traffic control algorithm could potentially be de-
velopment upon even further, to improve realism, accuracy, efficiency and
performance. We are now (in no particular order) going to list the subjects
which could be improved upon.

Further reach

In the current version, each traffic light is only capable of communicating
with its immediate neighbours. As discussed in the section regarding com-
munication, this might limit the efficiency, as the ability to gather information
from nodes beyond the first level of neighbours could improve the overall ef-
ficiency of the control algorithm. The ability to utilize data from beyond the
tirst level of connections, would however require some measures of proba-
bility and statistics to estimate the incoming traffic based on how much in-
coming traffic the node outputting the traffic was experiencing.

Imagine a network of three traffic lights in a row - let us call them A, B
and C respectively. A experiences a flow of traffic going in the direction of B.
Rather than just alerting B about the incoming traffic, A also alerts C that Bis
receiving an incoming flow of traffic. C now knows that some traffic might
be coming in the near future, but it has no way to be sure how much of it

Chapter 5. Evaluation 48

will actually turn up when the time comes. C then has to make a qualified
guess based on empirical data from previous experience, a predefined static
probability, or complete randomness. While this decreases the accuracy of
the system, it has the potential to increase the efficiency, if used correctly, as
each traffic light controller, gets more time to evaluate more data.

More user types

Currently the model only supports cars (aka. the object Automobile) as users
in the system. Possible extensions to the system, could be the support of more
types of users - as in users with different types; different attributes, priority,
size etc.. Examples of other user types could be pedestrians, trucks, buses,
emergency vehicles and bikes. While the latter four example types would
probably just alter the simple values, like priority and size, a new user type
like pedestrians would require a bit more implementation to completely sup-
port. Support for something like pedestrians, would probably involve a new
link object in the model (acting as a sidewalk), giving each four-way traffic
light an additional four-eight inputs and outputs depending on the defined
traffic rules. Regardless of the design, this would greatly complicate the sce-
narios, thus the traffic control algorithm.

Yellow Light

Right now the traffic lights only has two states; red and green. When the light
is red the cars are not allowed to traverse the intersection, and has to waitin a
line, until the light turns green, at which point they are encouraged to drive.
A possible addition to the state machine, could be a yellow light; as a state
in between the red and green. The light would then change from green to
yellow and only then to red. Likewise the light would change from red to
both red and yellow at the same time (to differentiate from the pre-red light)
and only then to green. This would improve the realism factor, as changing
the light would become slightly less desirable for the algorithm. It does not
make a very noticeable difference however, all used algorithms would be af-
fected the same way, with the same factor - the only difference would be an
increased overall clear time - thus average wait time. In the real world, the
yellow light is mostly present due to increased safety and general quality of
life in the form of additional information for the users - both things that has
no real impact in a simulation, which purpose is to test different traffic light
algorithms.

Model diversity

In the current version of the system, only the most basic forms of nodes
and links are supported, to make it possible to test algorithms on simple
(yet somewhat realistic) traffic networks. A possible extension to the model,
could be to add support for more types of both nodes and links in the model.
Examples of more types of nodes, could be five-way intersections and round-
abouts with traffic lights. Examples of more types of links, could be highways
and bus-lanes. Generally additions of objects to the model would increase its

Chapter 5. Evaluation 49

diversity and allow for more complex traffic networks.

Priority

Currently each car in the network has the same priority (i.e. none). This
means that all cars are valued equally and decisions on whether to change
the light or not is made without any differentiation between users. A possi-
ble extension to the system, could be a priority attribute on each car; either
a fixed one, or a dynamic one. Imagine if each vehicle was able to send data
to a traffic light (possibly using a VANET or InVANET), including relevant
information about the content of the vehicle. This could for instance include
the number of passengers, or if it was transporting a pregnant woman. The
controller would then give the vehicle a priority based on the data relative
to the other vehicles in the network, making vehicles with a higher prior-
ity weigh heavier when deciding which lane to clear next. Additionally this
could be combined with more user types; where emergency vehicles had a
higher priority than buses that in turn had a higher priority than cars for in-
stance.

Global Positioning System
Right now cars are detected when they enter the network by the sensors most
traffic lights in urban areas use in the real world today. The position of a car is
known by the system relative to a traffic light. To make the positioning more
precise, one could utilize the GPS that most people have active either on their
smartphone or build into their car. This would give the traffic controllers
more detailed information about each car’s position in real time, ultimately
improving the accuracy, thus the efficiency of the system.

Likewise tools like Google Maps and Bing Maps” API’s for traffic coverage
and analytics could potentially be utilised to gather additional information
about general traffic flow.

Communicating cars

As of right now, the only way to determine the current direction of a car,
is by reading the output from another traffic light in the system that is an
immediate neighbour. Consider a scenario where each car was able to com-
municate with the traffic lights (e.g. using VANETs or INVANETSs). The cars
would then be able to tell the entire system where it was going from the en-
tering of the traffic network, and the system would then be able to plan the
entire route from start to finish. This would greatly improve the efficiency
of the system, as each traffic light in theory would know when to expect any
car in the network. It would however require that the cars supported this
feature. Combined with cooperation with the navigation system of the car
or a passenger’s smartphone, this could mean greatly improved traffic flow
throughout the network, as cars could be routed based on the current traffic
situation and traffic lights would know the entire traffic situation throughout
the network in real time.

50

6 Conclusion

The result of this project is a traffic simulator that can be used to test dif-
ferent traffic control algorithms, and an algorithm that is created with the
idea of data communication between traffic lights in mind. The algorithm
serves to prove that utilising traffic information from neighbouring traffic
lights can significantly improve the overall flow in a traffic network, whereas
the sole purpose of the simulator itself is to test different algorithms against
each other, using a model that supports registration of traffic flow.

If we recall the scope of the project from the introduction, the goal of this
project was to prove that traffic lights implementing an algorithm that uses
traffic information gathered from neighbouring traffic lights, would experi-
ence an improved traffic flow - specifically classified as the average wait time
for each user.

By performing multiple tests on different scenarios, that all consistently
confirmed our hypothesis by a significant amount, we are hereby comfort-
able concluding, that by utilising information about the traffic flow from
neighbouring traffic lights in a network using our algorithm, the overall traf-
fic flow of the network is improved, by decreasing the average wait time
for users. As a result of decreased average wait times, the users of the net-
work would experience an increase in the quality of life. As a consequence
of a more efficient traffic flow, users might experience shorter travel times,
less fuel consumption (thus cost), less pollution, better road safety, better re-
sponse times for emergency services and generally a better driving and com-
muting experience.

Working on this project has been an interesting and educational journey. We
both share an interest for traffic management, and working with the improve-
ment thereof has been rather interesting. The design and implementation of
both the traffic simulator and the algorithms (especially our own) has also
proven to be relatively exciting. The model of the traffic simulation is the
perfect subject of an object-oriented approach, of which our background and
general knowledge as software developers is based, and programming in
Java is something we enjoy more so than in any other programming lan-
guage. The development of the algorithm proved to be more challenging
and entertaining than we had initially expected, but by working together
and utilising the knowledge and experience we have from our time under
education, we managed to end up with a solution that satisfy our goals and
that we are proud of.

All in all we believe that we have provided a solution to the problem at
hand, that satisfy the goals we set at the beginning of the project.

51

7 References

http:/ /www.movsim.org

http:/ /www.opentrafficsim.org

http:/ /www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-
41000/

https:/ /en.wikipedia.org/wiki/Vehicular_ad_hoc_network

e https://en.wikipedia.org/wiki/Urban_Traffic Management_and_Control

Other than the references above and our general competences, we have drawn
inspiration from course material from various related courses offered at DTU
that we have both previously attended. This includes text and figures from
lecture slides as well as course nodes, all of which has been gained through
the filesharing of https://www.campusnet.dtu.dk.

8 Appendix

52

53

A - Design Class Diagram (traffic
simulator)

Automobile

- time: Long = 0

+getiime (): Long
+ setTime (time :

Long)
+ toString (): String

0.

LightController
~id_number: Integer
- lightalg: Integer = 0 1
- north: Road
- south: Road SeawnNode
- east; Road + id_number: Integer =
- west: Road + flow; Double = 1800,0
- light: Integer = 0 + road: Road rrres
- running: Boolean = true + spawninterval: Integer = 1000
-l‘alﬁgT’A\gorllhm - - running: Boolean = true lightAlgorithm: Integer = 0 1
ime: Long = 3 -
) o E + SpawnNode (road ; Road) - 1 | runtme: LongSERie
+ (road : Road, id_number : Integer) + main (args : Strings[1): vold .
+ TightController (north Road, south : Road, east ¢ +run) o 1
;?:taar;,e\rm)es(: Road, id_number : Integer, lightalg + generateTraffic () . -
Frun Q) + spawn (): Boolean TrafficLight
+ oeinellghts 0 + endRunning () o - id_number: Integer = -1
+ lightControl (alg : Integer) - lightAlg: Integer = 2
+ changeLight () 1 Road - north: Road
+ changeLightWithFullTurnsignals () - south: Road
+ changeLightalg () - id_number: Integer - east: Road
- setlight (road : Road, drive : Integer) String - west: Road
- setCompleteLightTurn (con : Integer) -in: way - extrali Road = null
+ endRunning () - out: Way - running: Boolean = true
+ setlightalg (alghr : Integer) 1 | length: Integer = 0 + waitTimes: ArrayList<Long>
'f"t“f‘h:f‘fger ot + Trafficiant ()
N E ‘flqr:f it + TrafficLight (id_number : Integer)
- + TrafficLight (north : Road, south : Road)
. + TrafficLight (north : Road, south : Road, id_number
| - leftTurnChance: Integer = 0 [nteger)
- rightTurnChanee: Integer = 0 + TrafficLight (north : Road, south : Road, east : Road)
Algorithm + Road () + TrafficLight (north : Road, south : Road, east : Road,
+ Road (way : Way) id_number :
nerth: Road + Road (In : Way, out ; Way) -+ TrafficLight (north : Road, south : Road, east : Road,
south: Road T Road (road : Road) west ; Road)
east: Road s 3.4 1 |*TaffieLight (north : Road, south : Road, east : Road,
R i — west : Road, id_number : Integer)
dearone:jLonoftaoy 1 3.4 |4 setid_number (id_number : Integer) e e R
. maxtiantTime Lo Lico0s + getName (); String -+ TrafficLight (north : Road, south : Road, east : Road,
0. 1 [Algorithm () + setName (name : String) st : Road, extral : Road, id_number : Integer)
+ Algorithm (north : Road, south : Road, east : Road, west : Road) + getln (): Way +run ()
- travelTime (road : Road); Long + setWay1 (in : Way) + printAverageWaitTimes {)
. + longestLine (road : Road): Integer + getout (): Way + endRunning ()
0. + dearRoadTime (road : Road): Long[] setout (out ; Way) - generateDefaultRoads ()
+ dearDirectionTime (road1 : Road, road2 : Road): Long [*] 1 |+ getistraight) Lane + getld_number (): Integer
+ setLstraight (Istraight : Lane) + setld_number (id_number : Integer)
+ getlright (): Lane + getNorth (): Road
+ setLright (Iright : Lane) + setNorth (north : Road)
+ getlleft (): Lane + getSouth (): Road
1 |+ setlleft (lleft : Lane) + setSouth (south : Road)
Way + getLeftTumnChance (): Integer + getEast (): Road
1d: Integer = -1 + setLeftTurnChance (leftTurnchance : Integer) + setEast (east : Road)
_ incTraffic: ArrayList<Automobile> + getRightTurnChance (): Integer + getwest (): Road
+ setRightTurnChance (rightTurnChance : Integer) + setWest (west ; Road)
+ Way () + getlength ()2 Integer + getExtral (): Road
+ Way (Id : Integer) + setlength (meters : Integer) + setExtral (extral : Road)
+ incrementFlow () {synchronized} 1.2 + getSpeed (): Integer + setLightAlg (alg : Integer)
Hinarsmentelowl(vsUeEligtsas i mEieEscd + setspeed (kmh : Integer) + getlightalg (): Integer
1|+ decrementFlow () {synchronized}
+ decrementFlow (value : Integer) {synchronized)
+ getFlow (): Integer {synchronized) 3 3.4 1
+ setFlow (flow : Integer) {synchronized}
+ (): ArrayList: bil A
+ getArrivedFlow (travelTime : Lona) {synchronized} 1 1
g SideRoad
+ setld (id : Integer) T
- id_number: Integer = -1
- roadi: Road - id_number: Integer = -1
e - road2: Road - north: Road
- sideRoad: Road - south: Road
- laneType: Integer - le: LineController - cast: Road
- light: Integer - running: Boolean = true - west: Road
- line: ArrayList <Autorobile> = + waitTimes: ArrayList<long> - running: Boolean = true
it + SideRoad (roadl ; Road, r0ad2 ; Road, sideRoad ¢ Road) dslay: Intagereg200
S0 ? valldateRoads () - waitTimes: ArrayList<Long>
+ Lane (width : Integer) + run () 1 1 |+ LineController ()
+ incrementLine (value : Integer) - print {) + LineController (north : Road, south : Road, east :
7|+ decrementline (count : Integer, waitTimes : - incrementLines (y Road, west : Road, id_number : Integer)
|ArrayList<Long>) - decrementLines () +run ()
+ getlaneType (): Integer - holdback (road : Road): Boolean + printLines ()
+ setlaneType (laneType : Integer) S Cr O + decrementLines ()
+ getlight (): Integer B R Lt () e + sendFlow (road : Road, count : Integer)
+ setlight (light : Integer) + setld_number (id_number : Integer) + moveCount (lane : Lane): Integer
+ getline (): ArrayList<Automabile> + getRoad1 (): Road - holdBack (road : Road): Boolean
+ getWidth (); Integer + setRoad1 (road1 : Road) + incrementLines ()
+ setWidth (width : Integer) + getRoad2 (}: Road + incrementLane (road : Road)
+ setRoad2 (road2 : Road) - travelTime (road : Road): Integer

+ getsideRoad (): Road
+ setsideRoad (sideRoad ; Road)

+ endRunning (}

54

B - Probability calculations

Calculation for probability of at least one traffic spawn in one second when
spawn interval is 200 msec, spawn value is 1800, and max spawn value is
3600: 1-(17993599)50.9688 = 96.88 %

Calculation for the probability of five traffic spawns in one second when
spawn interval is 200 msec, spawn value is 1800, and max spawn value is
3600. (A spawn at each interval): (18003599)50.0313=3.13%

55

C -Test 1 info and data

Info

Spawn Interval
spawnMode (msec) Run Time (msec) SimTimes
snn 210 60000 100
=Ns 220
sne 200
=nw 200
road length (m) speed (km/h) L-turn chance (%) R-turn chance (%)
n 100 Gl 20 20
5 100 110 20 10
e 30 40 40 4
w 50 80 25 20
Algorithm lighttime (msec) maxlighttime (msec)
our alg changes 3000

time based alg 3000 3000

Appendix C. - Test 1 info and data

56

Data:

sim Mr

L= s T T =L % o B =R L R N

—_— =
=k

Developed Alg Time based Alg | Sensors Alg

368
437
448
538
539
521
476
555
403
418
423

1245
1245
1319
1338
1196
174
152
N7
1236
1221
1138

752
625
594
718
B37
659
2
710
B27
734
724

Appendix C. - Test 1 info and data

57

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
uly
41
42
43
44
45

534
530
b32
569
581
387
438
431
363
743
540
439
398
477
519
YL
439
570
473
615
GE4
Tl
47
547
324
475
456
404
535
B42
536
753
510
358

1219
1074
1245
1206
M3
1252
1218
1404
175
1161
1206
1257
1254
18
1417
183
no7
1376
1229
1239
169
1354
n73
1335
1276
N3
183
1299
1161
145
LARN
nar
1n7a
1308

5580
716
1051
627
545
739
bB&
825
b24
801
806
736
679
B28
755
735
747
B27
iz
550
743
592
695
801
736
GE4
764
829
™
914
™
941
966
612

Appendix C. - Test 1 info and data

58

45
47
48
49
50
51
52
53
b4
b5
5B
57
58
59
G0
B1
B2
63
64
G5
66
67
68
69
70
71
72
73
74
75
76
T
78
79

392
494
529
37
b72
473
BT75
459
458
421
416
348
451
539
447
393
4563
497
400
h3v
BOG
470
806
458
385
407
512
477
405
3
314
575
376
492

17s
1249
1418
182
1277
153
12599
1265
137
"7s
1114
1255
1237
1232
1441
1313
1432
1345
1370
1195
1228
1209
1289
1248
1104
10599
1161
184
1158
1372
nir
1318
102
1221

532
5B5
G15
653
800
740
763
825
B
G2
726
715
ba6
677
645
788
706
628
877
BaG
503
839
556
b4
GB7
727
624
845
862
7i2
674
924
843
795

Appendix C. - Test 1 info and data

59

&0
81
82
83
84
85
86
87
88
89
50
91
92
93
94
95
96
97
98
99
100

COverall Average

519
318
506
475
316
431
456
624
567
533
833
561
453
461
408
478
530
GG 1
629
469
538

495.83

nar
1099
1209
1246
1230
1282
kT
1300
1148
Nn7s
1226
1449
1196
1156
1280
1225
1273
"7
1212
1446
1083

12271

G0
639
624
B09
789
830
602
659
719
862
745
570
631
BE0
825
891
719
738
BE6
4
881

723.6

D - Test 2 info and data

Info
spawnMode
snn
SNs
sne

snw

road

W

Algorithm
our alg

time based alg

spawnlnteryal

length (m)

105
110
100
100

100
100
30
50

speed (km'h)
Gl
110
40
80

maxlighttime

lighttime (msec) (msec)

changes

3000

3000
3000

run time (msec)

G0000

L-turn chance
(%)

20
20
40
25

sim Times

100

R-turn chance

(%)

20
10

4
20

60

Appendix D. - Test 2 info and data

61

Data:

sim Mr

—

=== R I = I R - - R

Developed Alg Time based Alg Sensors Alg

3683
3748
4815
3955
3766
4772
4607
4099
3843

4294
3961
4000
3557
4407
4535
a7
4393
3821

3934
5069
4786
314
5427
4378
3622
3634
5144

Appendix D. - Test 2 info and data

62

10
"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
40
41
42
43

3890
3233
4613
4352
4886
4329
4228
4302
4090
4720
4527
4602
4106
4134
3328
4168
4242
4579
4021
5416
4433
4078
4202
3467
3958
3632
3635
4460
3985
3928
5249
4435
3978
4407

4416
4826
4067
42932
4131
3822
4381
44390
3937
3528
3694
3529
4609
M2
4609
h383
3324
3812
3351
4308
4108
4107
4379
3901
4559
4139
4032
5127
5035
3436
4518
3639
4852
3162

4303
3283
3491
4563
4947
3882
4955
4165
4427
4055
4679
3561
5768
3634
3985
5659
4199
4325
4294
4826
4654
4098
3518
3942
4047
4083
4934
4242
4053
4421
4663
4499
4555
5396

Appendix D. - Test 2 info and data

63

44
45
46
47
48
49
50
51
52
53
b4
b5
5B
57
58
59
G0
G1
B2
63
64
1)
66
67
it
69
70
71
72
73
74
75
76
i

3269
4592
4025
4789
5056
4001
3865
372
3542
3693
3987
4058
4468
4593
5166
3605
3460
34245
3375
3971
4558
4569
4218
3859
516
3925
4482
5499
3961
4769
4880
3637
4181
4056

4872
4369
4286
4283
5323
3748
3189
3522
3982
4952
4053
4035
5039
4149
4227
3776
4508
3798
5534
4378
3953
3463
3970
4165
3740
3865
3996
3826
3500
4055
4399
3879
3976
4114

4353
4894
3170
4150
3660
4024
4720
4173
3823
3850
4984
3330
4347
3794
3851
4724
4065
2907
4544
4203
3968
3710
4285
3813
5146
3681
5020
347
4307
4726
3470
409
4569
4265

Appendix D. - Test 2 info and data

64

78
79
80
81
B2
83
84
85
BB
8Y
88
89
50
91
92
93
94
95
96
97
98
99
100

Overall Average

4861
3921
YAV
4433
4127
3977
4469
3342
4431
3596
4031
4221
4143
4396
4702
4369
4656
3995
3534
3977
3398
4139
4104

4194.62

3944
4062
4082
4641
4096
4424
4032
372
3828
4244
5007
4221
4928
4250
3831
3802
4567
3924
4439
3683
4028
4030
4371

4160.62

3629
4023
4933
4597
k085
4449
3833
4389
5248
4357
4632
4576
4172
4045
3643
3997
3829
4763
3976
4233
4145
3766
4462

4263.91

65

E - Test 3 info and data

Info

spawnMode spawnlnteryal run time (msec) sim Times

snn 160 G0000 100
sNs 170

sne 400

snw 380

road length (m) speed (km/h) L-tum chance (%) R-turmn chance (%)
n 100 80 10 10
s 100 110 10 10
e 30 40 35 45
w 50 &0 45 45
road S-lane width

n 2

= 2

Algorithm lighttime (msec) maxlighttime (msec)

our alg changes 3000

time based alg 3000 3000

Appendix E. - Test 3 info and data

66

Data:

sim Mr

L e B = 3 B & B L =

Developed Alg Time based Alg Sensors Alg

213
182
264
217
218
225
250
181

965
946
975
876
951
982
991
952

638
543
B57
475
554
513
530
h21

Appendix E. - Test 3 info and data

67

10
"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36
37
38
39
40
41
42

221
205
224
214
232
257
238
224
142
275
278
172
223
238
212
194
267
194
218
192
215
204
211
221
178
268
243
154
207
243
180
23
174
193

949
1076
921
989
896
1019
995
998
927
903
1031
983
801
1032
914
914
992
929
940
936
940
1009
1005
909
987
949
927
1007
983
931
992
902
1065
1008

b22
487
GBE
589
47
576
523
b4
633
620
528
579
bbb
496
603
436
b47
580
635
714
GBE
569
620
LY. L
5N
700
551
524
715
B10
G41
495
540
497

Appendix E. - Test 3 info and data

68

43
44
45
46
47
43
43
50
51
b2
b3
54
b5
5B
b7
58
59
50
51
B2
63
64
65
66
67
G
69
70
71
72
73
74
75
76

223
181
220
246
185
189
172
283
212
214
259
194
283
261
161
229
224
195
249
208
206
256
217
204
238
182
134
233
191
249
222
241
209
239

984
1022
1012

962
1053

944

975
1006

918

958

B89

975

909
1029

927

940

940

977

977

913

980

994

989

966

982

908

967
1002
1039

BG5S

949

972

991

915

558
575
590
G74
b42
702
463
551
523
655
GT6
473
541
534
hev
531
514
542
bb6
464
566
486
h42
646
623
561
GB3
645
592
56T
G529
596
556
kB2

Appendix E. - Test 3 info and data

69

T
7a
79
&0
81
82
83
84
85
86
87
it
89
80
91
52
93
94
95
96
a7
98
99
100

Cwverall Average

193
156
201
185
172
269
189
27
167
172
219
254
184
196
225
212
166
176
161
158
208
20
251
188

212.74

946
960
930
929
974
929
8971
922
940
917
Bev
589
965
982
917
1009
995
956
1004
782
978
968
958
978

959 95

569
534
h65
601
599
578
G81
569
520
G78
ROV
bbb
564
53
B35
537
448
G24
h38
578
625
502
k72
kb2

578.88

F - Test 4 info and data

MNodes

Network setup

Algorithm

our alg

lighttime (msec)

time based alg

spawnModes nr

TrafficLight nr

SideRoads nr

[=T = I = - R I = RS L R R R L

sy

=~ | | e

node 1D

[T e - R N]

14
15
16
18
19

node D
3
5
10
12
13
17
20

node D
6
3
"

cha

spawninterval

road1(n)

road1(n)

190
250
800
1000
150
150
190
1000
210
400

10
18

29
34
42

30
17
25

nges
3000

road

road2(s)

road2(s)

21
41
33
39

24

road3(s)

road3(e)

maxlighttime (msec)

5

23
27
K
37
40

15
16

3000
3000

roaddiw)

12
20
26
28
36
44

70

Appendix F. - Test 4 info and data 71

links
Hoads length speed L-Turn R-Turn Ldanewidt S-anewidt R-lanewidt
nr road id (m) (keh) Chance Chance h h h
1 1 100 70 0 0 1 1 1
1 2 100 70 10 10 1 2 1
2 3 100 B0 0 0 1 1 1
2 4 100 B0 40 30 1 1 1
3 5 200 50 40 30 1 1 1
3 B 200 50 5 0 1 1 1
4 7 385 70 B0 40 1 1 1
4 8 385 70 0 0 1 1 1
5 9 50 40 20 10 1 2 1
5 10 50 40 0 10 1 2 1
B N 50 50 0 0 1 1 1
B 12 B0 50 45 b5 1 1 1
7 13 400 70 20 0 1 2 1
7 14 400 70 0 0 1 2 1
) 15 720 50 0 100 1 1 1
8 16 720 50 0 100 1 1 1
] 17 350 70 0 5 1 2 1
9 18 350 70 30 30 1 2 1
10 19 330 50 0 0 1 1 1
10 20 330 50 20 20 1 2 1
1 21 100 70 30 30 1 2 1
1 22 100 70 0 0 1 1 1
12 23 165 50 20 20 1 2 1
12 24 165 50 0 0 1 2 1
13 25 100 70 0 5 1 2 1
13 26 100 70 0 15 1 2 1
14 27 275 50 10 0 1 2 1
14 28 275 50 20 25 1 2 1
15 29 320 50 40 40 1 1 1
15 30 320 50 0 5 1 1 1

Appendix F. - Test 4 info and data

16 3 100 B0 15 10 1
16 32 100 50 0 0 1
17 33 250 50 40 45 1
17 34 250 50 50 30 2
18 35 20 30 0 0 1
18 36 20 30 50 15 1
19 37 160 50 10 50 1
19 38 160 50 0 0 1
20 39 100 B0 20 40 1
20 40 100 B0 0 40 1
21 41 360 50 B0 40 1
21 42 360 50 70 30 1
22 43 50 40 0 0 1
22 44 50 47 40 0 1
sim Nr Developed Alg Time based Alg Sensors Alg
1 171 974 519
2 129 951 596
3 123 1001 b6
4 119 871 598
5 126 956 659
B 137 994 493
T 140 969 531
B 122 1002 BBG
9 168 935 594
10 115 924 620
1 109 979 h2b
12 110 961 649
13 129 933 515
14 129 927 603

—
(%3]

129 980 588

Appendix F. - Test 4 info and data

73

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Ky
32
33
3
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49

123
122
135
121
s
154
108
121
124
122
127
145
123
147

95
125
144
123
124
105
125
134
143
126
127
142

91
160
137
129
147
105
125
151

927
910
951
964
520
950
920
967
529
933
956
923
959
970
947
965
541
525
934
841
959
959
966
987
958
884
916
962
993
996
933
935
871
958

bbd4
588
53
558
501
520
608
438
473
624
566
b44
608
53
53
Lt
604
bad
536
GBS
594
564
584
589
505
576
705
543
540
539
570
hG6
bbb
B17

Appendix F. - Test 4 info and data

74

50
51
52
53
b4
b5
5B
57
58
59
B0
51
b2
B3
64
G5
BE
67
58
59
70
m
72
73
74
75
76
i
78
79
80
81
B2
83

166
155
147
137
136
137
122
129
148
107
141
175
N5
131

95
140
13
134
126
124
120
124
134
133
158
124
141
121
155
106
159
133
18
144

987
954
906
964
994
927
931
973
963
972
955
906
953
916
909
1004
959
937
955
919
921
958
918
101
974
960
940
916
999
973
954
979
992
909

hd4
540
58T
544
G02
564
BL.
521
h24
57T
G47
599
G19
544
504
56T
G256
639
503
639
516
B05
599
563
h74
566
754
581
LBE
bb5
539
G06
5&0
559

Appendix F. - Test 4 info and data

75

84
B85
86
87
B8
89
80
9
82
93
94
95
96
a7
98
99
100

COverall Average

152
145
152
e
129
149
143
101
"9
103
132
137
151
144
"7

94
155

131.03

967
971
961
949
916
969
951
954
926
997
969
919
954
944
928
992
996

9531

501
591
591
533
bad
672
5b2
B36
Gd1
543
LY. L
528
500
604
603
538
482

580.64

	Abstract
	Introduction
	Project Motivation
	Project Description
	Project Scope
	Report Outline

	State of the Art
	Traffic simulators
	Vehicular networks
	Urban Traffic Management Control (UTMC)

	Analysis
	System overview and overall description
	Product perspective and user characteristics
	Use Cases
	Turning right in a quad-directional traffic light with specific turning-lanes and signals
	Turning left in a tri-directional traffic light (T-junction) with specific turning-lanes and signals
	Traversing straight through a network of two traffic lights

	Traffic Simulation Model
	Traffic Control Algorithm
	Scheduling (computing)

	Communication
	System architecture
	Communication

	Specific requirements
	Functionality
	Usability
	Reliability
	Performance
	Supportability

	Design and Implementation
	Traffic Simulator
	Traffic Simulation Model
	In depth view

	Traffic Control Algorithm

	Evaluation
	Test
	Test 1
	Test 2
	Test 3
	Test 4

	Discussion
	Potential Project Extensions

	Conclusion
	References
	Appendix
	- Design Class Diagram (traffic simulator)
	- Probability calculations
	- Test 1 info and data
	- Test 2 info and data
	- Test 3 info and data
	- Test 4 info and data

