
M.Sc. Thesis
Master of Science in Engineering

Context Aware Access Control
Dimitrios Iatrou (s150945)

Kongens Lyngby 2017

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet
Building 303B
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary
Logical access control aims to protect digital assets from being compromised by unau-
thorized users. While, in most cases, logical and physical access control have clear
boundaries, this is not the case when data is projected on an external device. Even
state of the art access control policies cannot ensure data confidentiality if the envi-
ronment surrounding the computer that contains the data is not secured properly. All
traditional access control models are based on the same assumption, that the system
is physically secured. However, this is not always true since data can be represented
in numerous ways and different devices. The problem becomes more distinct in cor-
porate environments with open plan offices where monitors and printers are stationed
in plain view.

In this thesis, we study the possibility of a Sensor Enhanced Access Control(SEAC)
model, which is constantly aware of its surroundings, enhancing it with contextual
awareness. The aim is to extend logical access control to physical objects with the
use of sensors providing all the required information of the system’s environment,
such as who is currently present and whether someone is approaching. The access
decisions are taking into consideration both the logical policies and the sensor readings.
The theoretical model evaluates the access levels of data represented on the monitor
with the access levels of an approaching user. If the approaching subject is not
authorized to access any of the opened files, the system proceeds to make the windows
representing them invisible.

A prototype of the model has been developed to provide proof of concept. The
prototype secures the displayed data, by modifying their windows, making them
invisible to unauthorized subjects nearby. A user tracking algorithm and a camera
track users at all times, enabling contextual awareness. The logical access control is
regulated by the Unix system and the existing access control policy. The prototype
can be extended with additional sensors, that can provide additional features and
strengthen security.

Preface
This Master thesis was prepared at the department of Applied Mathematics and
Computer Science at the Technical University of Denmark in fulfillment of the re-
quirements for acquiring a Master degree in Computer Science and Engineering.

Kongens Lyngby, July 23, 2017

Dimitrios Iatrou (s150945)

Acknowledgements
I would like to express my gratitude to everyone that contributed with one way or the
other for this project. More specifically i would like to thank my supervisor Christian
D. Jensen for all the advice and guidance through the entire project.

Contents
Summary i

Preface ii

Acknowledgements iii

Contents iv

1 Introduction 1
1.1 Context Awareness . 3
1.2 Motivation . 4
1.3 Objectives . 5
1.4 Contributions . 6
1.5 Thesis Organization . 6

2 Access Control 8
2.1 Access Control Overview . 8
2.2 Identification and Authentication . 16
2.3 Access Control . 16
2.4 Accountability . 17

3 Persistent Authentication 18
3.1 Continuous Authentication . 19
3.2 Biometrics and Facial Recognition . 21
3.3 Motion and Human Tracking . 22
3.4 Virtual Walls . 23

4 Virtual File System & FUSE 25
4.1 Kernel and User Space . 26
4.2 Virtual File System . 26
4.3 Filesystem in Userspace . 27

5 Context Aware Access Control 29
5.1 Logical Access Control . 30
5.2 Physical Access Control . 31
5.3 Reference Monitor . 32

6 Design 34

Contents v

6.1 System’s Overview . 34
6.2 Interactions Between Components . 37
6.3 Window Cover . 39
6.4 FUSE . 40

7 Implementation 41
7.1 The Virtual File System . 41
7.2 Tracking and Motion Detection . 41
7.3 Window manager . 44

8 Evaluation & Experimental Design 50
8.1 Access Control in the Virtual File System 50
8.2 Window Manager . 51
8.3 Identification and Tracking . 56
8.4 Window Manager and Motion Tracking 57

9 Conclusion 59
9.1 Future Work . 60

A An Appendix 61
A.1 Evaluation . 61

Bibliography 65

CHAPTER 1
Introduction

Information has and will always be extremely important in every business field or
aspect of life. Having more information from your corporate antagonists or enemy
nations means everything. It can provide the foundations for superiority or lead to
total collapse upon losing essential information parts. Regardless if we are referring
to personal, business or national information, information security is one of the most
important aspects of system security. Since the number of systems with access to
files keeps getting higher and higher, data confidentiality is important to preserve;
therefore, user authentication is required almost everywhere. Authentication is the
verification process to prove that the user is legitimate while also providing infor-
mation on how the user interacts with the system, for example, what time did the
employee logged in and out of the system. The authentication process which can
include a single or multiple sessions can be achieved in many ways from the stan-
dard usernames and passwords to physical authentication devices with smart cards
or remote authentication with one or more biometric experts. Most systems enforce
single authentication sessions such as the traditional password-based approach which
authenticates the user at the very begging of the session. However, after they gain
access to the system, there is no possible way to verify that it is the same user for the
rest of the session which raises serious security concerns, especially for long sessions.
For instance, in cases when the user logs in his computer and visits the bathroom
shortly after, leaving the computer exposed for someone else to take over his session.
Ideally, users will terminate their session once they leave the computer otherwise
everyone can access their logged in account.

In reality, users are not concerned enough to terminate their session and tend
to share devices with ease, without taking into consideration the security risks of
their action. Even two-factor authentication is not sufficient enough and unless the
system enforces continuous user verification sessions, there is no way to tell if the user
is the same the entire time. Extending the traditional single event authentication
models with continuous sessions is inevitable, although it is still in its early stages.
Continuous authentication can be established with various techniques according to the
business needs and budget, from face recognition to behavior and walking patterns.
The authentication system works in the background, monitoring and learning the
user’s behavior, which will allow it to identify the user through the entire session. Face
recognition or keystroke patterns are all unique user identifiers, making them ideal
solutions for the purpose of continuous authentication, since they can be continuously
monitored and take actions upon failing to identify the user.

Authenticated users are associated with every action they are authorized to per-
form along with access to files, buildings and areas for which they have rights. These

1 Introduction 2

rights are set by various predefined policies, providing Access Control that can also be
enforced in physical locations, such as computer rooms and objects, such as comput-
ers and printers. Generally, Access Control aims to selectively restrict unauthorized
users to access various resources and locations. More specifically, we can describe ac-
cess control as physical, where the access is limited in buildings, facilities, or physical
computer assets and as logical, where we focus on system files, digital information
and network connections. Access control must be transparent to the user without
interfering with his work, otherwise it will be bypassed or even compromised for their
convenience. Exchanging id tags, writing passwords on papers or leaving office doors
open are common in many cases where the users want to make things faster and easier.
Transparency requires the security mechanisms to operate calmly in the background,
which in the times of ubiquitous computing is feasible more than ever, considering
that they are located everywhere in our lives constantly collecting data. Collecting
and analyzing the data can enhance security providing continuous authentication and
combined with access control, can offer a fine-grained security system capable of en-
forcing the security measures in real time, making it an ideal solution for companies
where there are many different persons with various access levels.

Passwords, data, private calls and confidential discussions are easy to be overheard
or peeked at in small office spaces. Shoulder surfing is categorized as a type of social
engineering technique, which is used to retrieve passwords and other information
from victims by peeking at their keyboards when they type or at the information on
their screen. It is a major problem in modern businesses where offices are packed
as much as possible and especially cubicle offices that are designed without security
in mind, having small spaces and exposed screens to everyone that walks by. With
conventional means, the computer is not able to detect whether the user is the one
pretending to be, if he is alone in the room while typing his password and if an
external user is close enough to their screen to retrieve information. What is required
is a more advanced security plan where the system is aware of its surroundings, the
employees and the changes that occur in real time. To achieve these, the system
is required to be able to identify its users and their rights while it keeps track of
their position in the company. This thesis focuses on the problem of shoulder surfing
and how possible it is to provide a secure and transparent working environment for
both the users and the information they are authorized to handle. Our focus lays
on the three main topics of shoulder surfing: detect approaching users, identify them
and take appropriate measures when the user is unauthorized or has lower privileges.
We propose a context-aware access control model capable of identifying and tracking
inhabitants within a company building. When needed, the system will protect the
current user’s work by hiding or covering the current window of the specific monitor.
The model is based on the current access control techniques enhanced with various
sensors, providing context awareness and extending logical access control to physical
objects. To provide a proof of concept, a prototype has been developed that can be
integrated into any UNIX system.

1.1 Context Awareness 3

1.1 Context Awareness
As the trend of ubiquitous computing keeps expanding to more and more everyday
devices, contextual awareness is easier than ever [AlM+03]. Concerning pervasive
computing [Cov04], every smart device is capable of being aware of its location and
its surroundings. As context we adopt the definition of Anind K. Dey and Gregory
D. Abowd in [Abo+99] which is defined as any information that can be used to
characterize the situation of a person place or object which is considered relevant to
the interaction between the user and the application. The definition helps us realize
that context is more than being aware of the users location but there are parameters
that may be constantly changing over time. Therefore as described from Schilit,
Adams, & Want in 1994 [SAW94] there are three important aspects to consider:

• where you are

• who you are with

• what resources are nearby

These aspects make the adaptation of a context aware system more complex since it
eliminates the abstraction factor of the system and needs to be more precise.

The real purpose of context aware computing is to make the user’s life easier by
triggering actions or providing features according to the readings [Cov+01] and in
some cases the user’s history. There are various examples of contextual awareness
whether the system passes simple information or provokes a process. For instance,
simple interface features that provide material according to the user’s location such
as restaurants and bars nearby or automatic pairing with a Bluetooth speaker when
entering a specific room or when invoking the print command for a document the
system chooses the nearest printer according to the user’s location. Of course there
are also more complex cases where we implement conditional actions using the same
principle as an If-Else statement. For example If the user is still in the room keep
computer working Else lock the screen. Generally, for an effective context aware
system we rely upon the system’s ability to gather information from the connected
devices (cameras, printers, motion sensors etc.) comprehend the gathered information
and perform actions according to the user’s and system’s requirements.

In an office environment, we can understand how the three aspects we described
are changing. For example, at a given time the importance of information handled
by the user may change from one time to another or another user steps in the office.
Therefore we require continuous authentication for the users to be able to keep track of
their associated services and their data while protecting them from users who do not
have sufficient rights. Identifying the current user can lead the system to categorize
the resources surrounding the system at the given point thus taking appropriate
measures when and if it is needed.

A seamless persistent authentication model is required that can identify users
remotely in order to interfere as little as possible to the office’s everyday life. Biomet-
rics are currently the best candidate since they can provide remote authentication on

1.2 Motivation 4

sufficient level. Whether we use walk patterns, face recognition retina scanners, etc.
the distinguishing features are unique for every individual.

The system has to be able to keep track of the authenticated and non authenticated
users and estimate their location in the building. Having a possible location for most
of the time allows us to take appropriate measures whenever the person is in the
range of the service or leaves out of it.

1.2 Motivation
Almost every building nowadays features one or more forms of an access control
mechanism; it could be a guard at the front door checking IDs, swipe card termi-
nals, password terminals, etc. The purpose is to ensure that only authorized users
are entering the building and differentiate them from guests and other unauthorized
entities. While this form of physical access control can provide a good line of de-
fence against intruders, we also need to provide further authorization as the user
advances in other parts of the company. This can be proved challenging, since the
security policies should be transparent to the user without disturbing his everyday
life. Therefore, locking everything and everyone behind a door with PIN locks is not
a viable solution.

Once we get passed the main authentication points in every entrance, then it is
up to logical access control to grant or restrict access to data. Each user has specific
policies for the data he can access. Once the user is authenticated, the system assumes
that this is the actual user, even if he is not. The policies are enforced after a successful
login but from this point on the system cannot provide any protection in cases where
the user leaves the computer with an open session to grab a coffee for example.

In large corporate buildings, while a number of employees may work on the same
floor, it does not necessarily mean that all the users have the same privileges. A
typical office floor can contain several cubicle offices such as the one in Figure 1.1
which makes shoulder surfing a great problem. Employees passing by monitors with
open blueprints or reflections on windows with classified designs can be a major leak
of information. Even if the company operates with a great amount of trust among
its employees, there is also a chance for an authorized user to be accompanied by a
guest and it is easy to understand that trust is not an option here.

1.3 Objectives 5

Figure 1.1: Cubicle Office

There is a growing need to actively address the problem of shoulder surfing with
an effective, yet easily integrated and low-cost, solution, that will also adapt to the
employee’s habits, without forcing him to bypass the security measures for his con-
venience. Our proposal combines traditional access control policies with persistent
authentication to provide a smart and more reliable security plan for corporate build-
ings.

1.3 Objectives
Our goal is to develop a prototype nested on top an existing Unix system. We use the
current authentication criteria and techniques in the same manner with the original
operating system; therefore, every user is bound with an id and an inode number that
identifies processes executed by them and their access rights.

Access control is being handled by a virtual file system mounted on the existing
file system and is responsible for retrieving the user levels and associate them with
the current processes.

Authentication and tracking are implemented using a dome camera and a simple
motion detection algorithm. We consider every approaching user to be authenticated
upon his entrance to the corporate building and his identity is known for the whole
tracking process.

Window handling is performed with two different propositions which will be eval-
uated. The first one identifies the currently opened windows and their required access
rights and proceeds to change window’s opacity making it gradually transparent or
visible. The second one monitors all the window’s screen location, their size and their
required privileges. Then it proceeds to create a window with the same size and at
the same location as the one we are trying to cover. The cover window changes its
opacity and color gradually.

In every office, we have set visibility zones to determine the distance from the
monitor or any other output device. The visibility zones determine the changes in
opacity and color of the windows and the windows covering them.

1.4 Contributions 6

1.4 Contributions
Our contribution is the development of a context aware system that combines data
gathered from sensors to determine whether the system’s environment is safe to dis-
play information and run services. Depending on the readings the system will be
able to block content and services whenever an unauthorized user is in range. The
persistent authentication enforced by our model will enhance security in company
buildings and offices with as little hassle as possible for the users.

We could divide/summarize the contributions in the following:

• A module that extends the current version of Ubuntu Linux to provide context
aware access control. The logical access control makes use of the default access
control of UNIX with the decisions being based on the data gathered from
sensors. The module is built as a virtual file system and can be mounted on
demand using the existing policies.

• A simple motion tracking algorithm that will help us determine when a person
authenticated or not approaches or leaves a work station. Having set visibility
zones, with the user’s screen being the center, the algorithm will forward a
warning output of a possible intrusion or user absence to the window manager.

• A window manager to handle windows and files according to the predefined
access policies set by the system administrator, the data gathered from the user
tracking and the matching output from the biometric algorithm.

• Two implementations that extend the window manager and are focused on
securing the open windows. The first changes the window transparency making
them invisible when the unauthorized subject is close to the screen. The second
covers the windows with an overlay area with different transparency levels and
background color.

1.5 Thesis Organization
In this chapter, an overview of the thesis was presented along with our objectives and
contributions the remaining chapters are organized as follows. Chapter 2 provides an
introduction to access control and some of the basic models that are currently used.
Chapter 3 presents the persistent authentication model and how sensors could enhance
the traditional security models to provide a secure and smart work environment.
Chapter 4 describes the basics regarding the Unix filesystem and virtual file systems.
Chapter 5 analyzes the need for context aware access control and how to enforce
logical access control in physical objects. Chapter 6 and 7 present the design and
implementation of the prototype where the prototype’s components are identified
and how their implementation was approached. In Chapter 8 we have documented

1.5 Thesis Organization 7

all the tests we conducted to determine that all the components work as indented.
Finally, in the final chapter, we review the contributions of the thesis along with ideas
of further development for the prototype. In the appendix, there are the detailed tests
we followed for the evaluation.

CHAPTER 2
Access Control

Every organization or individual has a number of assets both physical such as a
computer with files, hard copies of information, a family relic and logical such as
sensitive information and data. These assets have a different value for each one and
their loss might cause from insignificant to catastrophic results for the owner. This is
what security is trying to achieve, the protection of the assets that matter. The cost
of the assets is purely dependant on the proprietor. Security requires careful planning
and always being up-to-date with new attacks and new technologies.

Securing assets has always been a trade-off between security and usability. A
foolproof security plan often has usability drawbacks which cause the users to bypass
it for their convenience. Storing all the organization’s files for instance on a computer
disconnected from everything and everyone is not a viable solution even though it
is secure. Disrupting the information flow of the employees will make their work
inefficient thus causing more damages to the company. Consequently, before planning
a security infrastructure, we have to conduct a net cost analysis of the organization’s
assets. There is no need for a security system which will cost more than the net cost
of the asset. Traditionally every security system focuses on addressing the following
three aspects known as CIA:

• Confidentiality: Prevent access to information from unauthorized users.

• Integrity: Prevent any data modification from unauthorized users.

• Availability: Ensure information flow to authorized users when it is required

There have been many solutions to achieve the CIA goals and many attacks to
disrupt them. One of the most common solutions and the one we will be focusing on,
is to handle access to information mandated by policies, is access control.

2.1 Access Control Overview
Access control is the security constraint responsible for restricting or permitting any
activities from authorized users, regulating each attempt for admission to a facility
or retrieve system resources. Access control systems can be implemented for any in-
frastructure with various levels and at any given point. Facilities may use guards or
swipe cards to protect physical resources. Operating systems have access policies set
for the legitimate users to protect sensitive data and directories. The primary goal
of an access control system in an operating system is to mediate how information

2.1 Access Control Overview 9

is shared with the users and the software. A fine-grained access control system can
ensure the Confidentiality, the Integrity and the Availability of the exchanged infor-
mation in a business environment, while when absent or poorly implemented could
set information in risk.

Access control could be differentiated between physical and logical. As physical
we identify the aim to protect physical assets such as hardware, hard copies and the
access in an office or building. On the other hand, logical access control focuses on the
users of the system. Whereas in most of the cases we could easily see their boundaries,
things get more complex in cases where they overlap each other. Whenever data is
projected to a monitor or an output device in general, then its protection is considered
physical.

2.1.1 Physical Access Control
In its strictest form, physical access is limited to authorized personnel who have
undergone security training and have the appropriate security clearance levels. Fur-
thermore, the asset to protect (computer, facility, computer room) must be enclosed
in a secure perimeter with additional physical security controls for further protection.
Even though at first glance this plan might fit more in a military environment, it is
not far different from a company building. In a business environment, in most cases,
we require from the users either to swipe their id cards before entering the building or
have their identity card checked from the front desk. This is also a defined perimeter.
As we advance further in the building, additional authentication stations are set such
as pin code and swipe card locks.

When planning a physical access control system, we must also take into consider-
ation the wiring and the connections used to power elements of the system. Similarly
with phone and internet lines and anything else that might disrupt the system’s op-
timal behavior. Consequently, we have to identify all elements that are part of the
system and plan accordingly.

Another important aspect is the review of the established physical access controls
for each sector. The review must be done both during operating hours and outside
the normal schedule. We need to review how effective are the established controls
to prevent unauthorized entrance to intruders and how easy is to bypass them dur-
ing ”inactive” hours. In summary, an organization’s physical access control plan is
considered effective when it can provide solutions to prevent interruptions regard-
ing services, physical damage upon assets, theft, sensitive information leak, system’s
integrity violation.

2.1.2 Logical Access Control
Logical Access Control is focused on mediating the access of every user to data whether
this includes viewing, modifying or using it. Logical access control is not only limited
to restrict the access to an asset like physical access control but also to regulate what

2.1 Access Control Overview 10

the user is allowed to do with it. The effectiveness of a Logical Access Control system
is based on the organization’s needs since the policies required for its implementation
has to balance between security and usability. A general rule of thumb is to limit
access of each employee only to the data required for their work without disrupting
the work flow.

Figure 2.1: Access Control

(revise image) In Figure 2.1 we can see a simple form of an access control system.
As a subject, we identify every active entity such as users and processes. Objects
are passive entities which can be used or access from an object and could be files
and devices such as printers. The reference monitor regulates whether the user has
rights to access the specific object according to the predefined policy. For every access
attempt, the reference monitor has to evaluate the policy to grant or reject access.

2.1.3 Planning an Access Control System
The planning of a new access control system must be based on three control ab-
stractions: access control policies, models, and mechanisms [HFK06]. Access control
policies are responsible for regulating who has access to the information and under
which conditions. The policies can be bound to a specific application or user actions
within the company. To enforce the policies, we require an implementation of a mech-
anism that will handle it upon an access request. The implementation depends on
the company’s needs and may vary from a simple hash-table stored in the system to a
database to check the access rights. Security models represent the security limitations
of a system. They are used to formally visualize the security policies enforced and
help develop access control mechanisms such as Access Control Lists (ACLs). Access
Control Matrix is one of the most common examples of an access control model which
can be used in every system. It consists of a matrix defined by a set of subjects which
are represented by every row, a set of objects represented by each column and for
every entry, there is a set of rights which define what operations can be performed
from the subjects on the objects as seen in Table 2.1. The matrix is often sparse due
to most of the objects that do not have a defined object policy. Therefore it makes

2.1 Access Control Overview 11

its storage and iteration inefficient. Access Control Lists (ACLs) is one of the most
common methods of storage which divides the matrix into columns [Lam74].

Asset 1 Asset 2 Process File
Process 1 read read,write read,write, execute, own
Process 2 read, write read read, write, execute read,write
Process 3 read, write, execute

Table 2.1: Access Matrix example

Access control systems are categorized either as discretionary or non-discretionary.
Generally, as non-discretionary we categorize those based upon a rule to decide which
users have access and as discretionary those where the owner or a specific user decides
the permissions of a file.

2.1.3.1 Discretionary Access Control (DAC)

Discretionary Access Control grants the owner of the file all the rights to decide who
can have access and what he can do with that access such as modify, read, etc. Access
Control Lists (ACLs) are the most common example of DAC which is used widely by
many operating systems. In UNIX where everything is considered a file, ACLs enforce
permissions for three different categories, owner/group/other. The permissions are
categorized as read (r), write(w) and execute(x) and in Table 2.2 there is an example
which is similar to the access matrix that was described earlier.

Although its flexibility as a policy makes it quite useful for commercial software,
there are some serious security issues. Even though the creator of the file or the
person authorized to handle it may restrict any user from modifying it and allow
them only read access, nothing can stop them from copying the file’s contents and
use them as they prefer. Then the new file can be modified and shared how it pleases
the new owner thus risking information integrity in the system. Additionally, since
every process inherits the identity of the user that triggered it, it makes it vulnerable
to Trojan attacks. For example, if a user executes a file with malicious software then
in the log files when trying to trace the attack, it would look like everything was
begun by that particular user.

User File 1 File 2 File 3 File 4
John rwx rw r
Alice rw r rwx r
Bob x rw

Table 2.2: Access Control Lists example

2.1 Access Control Overview 12

2.1.3.2 Non-Discretionary Access Control (NDAC)

Every other policy is considered as Non-Discretionary where the user is not autho-
rized to modify or grant any access rights but require administrator privileges thus
allowing the company to set universal policies according to their security needs.
We will briefly describe the most commonly used policies.

Mandatory Access Control (MAC)
MAC is one of the most common policies used both in the military and business
sector. The access control decisions are part of the system and which is decided by
a central administrative authority. Users do not have any right to the policy and
cannot change them even if they are the owners of the information. System mediates
user access and enforces the defined policies. Generally, we classify data according to
their importance and we categorize users according to their position or their security
clearance, this way we can set security levels and set policies. The military sector is the
best example where we use Secret and Top Secret levels to label information. Users
that have security clearance only for Secret cannot access Top Secret information.
Clearance levels permit users to access information with the same level or lower than
theirs and restrict the access to anything higher. An access control model that uses
levels is categorized as a multilevel security model. Bell-La Padula Confidentiality
and Biba Integrity models are the most common multilevel security models.

Within a company or the military, there are different departments which do not
share the same information. Therefore, we have to make sure that even when a user
has Secret as his clearance level, he can access information of his department only
unless other departments share the same data. The association of security clearance
and departments can be easily described in the following security lattice in Figure 2.2.
As a system high of the lattice, we assume the maximum security level and the lowest
security level as system low.

2.1 Access Control Overview 13

TopSecret(Navy, AirForce, Army)

Secret(Navy) Secret(AirForce) Secret(Army)

Confidential(Navy) Confidential(AirForce) Confidential(Army)

Public(Navy, AirForce, Army)

Figure 2.2: Security Lattice Army Example

Bell-Lapadula (BLP)
BLP is a multilevel security model which can be described as a state machine. Its
uses are mostly in the military sector. It consists of security label on the objects
and security clearance levels for the subjects. Security labels vary according to the
sensitivity of the information, from the least sensitive to the most the labels are:
”Public,”Restricted,”Confidential,”Secret,”Top Secret”. For the relation between la-
bels, the term domination has been introduced. If information flow is granted from
a label B to a label A then A dominates B. For every security level, a subject can
only access objects of the same or lower security level whilst access to higher level ob-
jects is restricted. Moreover, there is also the *(star)-property which does not permit
any modification from a higher level subject to lower level object. In sort as seen in
Figure 2.3, BLP enforces for any given security level No read-up and No read-down
properties.

Figure 2.3: Bell-Lapadula (BLP)

2.1 Access Control Overview 14

Biba Model
Whilst Bell-Lapadula focuses on data confidentiality, Biba aims to preserve the in-
tegrity of data and it is the complete opposite of Bell-Lapadula. The key difference
between the models is that Biba is more business oriented where information integrity
is the key rather than confidentiality and who is authorized to read the information.
Biba introduces integrity levels and users are allowed to modify data of the same or
lower integrity. On the contrary, users are permitted to view information with the
same or higher integrity level. Given a subject with an integrity level A the subject is
allowed to modify an object with an integrity level B only if A dominates B and the
subject can read the contents of the object only if the integrity level B of the object
dominates the integrity level A of the subject. In short, Biba enforces for any given
integrity level No read-down and No write-up. The Biba model as we can see from
the Figure 2.4 is the direct inverse from the Bell-Lapadula in Figure 2.3.

Figure 2.4: Biba Model

As an example, we could describe Biba in a business environment as the need
from every company member to be able to read the CEO’s announcements while a
simple employee is not allowed to modify them.

Chinese Wall
The Chinese Wall policy was developed from Brewer and Nash [BN89] with a more
business approach. The aim was to resolve conflicts of interests between consultants
within the banking and financial sectors. The focus is mainly on the confidentiality
of information. The basic idea is that a client is assigned to a consultant within the
company, and consequently for the consultant to do his job, he needs to have the
client’s data. These data can be considered as insider knowledge in some cases and
any potential ”leak” of these can disrupt any competitive advantage the company
may have or used for ransom.

For every company, there are many clients whose information is considered a
conflict-of-interest. The clients are divided into business categories or areas. A con-
sultant upon gaining access to a user’s data within a business category is not allowed

2.1 Access Control Overview 15

to have access to another client of the same business category otherwise we have a
conflict of interest. The policy must change dynamically at all times keeping track
of the user’s history on what information he previously had access and restricting
future access to information that may cause conflicts of interest. Any consultant can
read public information regardless of his history. Another MAC policy may also be
enforced by the Chinese Wall policy.

Role-Based Access Control (RBAC)
RBAC is considered one of the three primary policies along side with DAC and MAC
which we described earlier. Access permission or rejection is decided upon the role
of the user. Every user in the company has a specific role which is used to group up
the access policies. A user can have more than one role in the company and each
role can be assigned to different users. Granting roles to new users or revoking them
whenever the person leaves the company, allows a smooth transition of access rights
and responsibilities within the organization. Additionally, the privileges of each role
can be easily updated or changed for all the users at the same time with no need to
update each user individually making administration easier.

For example, if the organization hires a new person for the HR team then the role
of HR is assigned, hence access to the resources required for the job. If an employee is
re-positioned to another department, then the role is updated. The roles are updated
and granted from the administration or management departments. RBAC requires a
clear definition of privileges for every role since some role responsibilities may overlap
therefore each role should be restricted only to the essential responsibilities of each
job. In general, RBAC follows three primary rules.

Role assignment: The subject has to have a role assigned in order to have access
permission.

Role authorization: The active role of a subject must be authorized before it is
allocated to the subject. Thus combining this rule with the first one, we are making
sure that users get only authorized roles.

Permission authorization: Permissions are granted for each role only if they have
been authorized for that specific role. This rule combined with the earlier ones, limits
the user permissions to the ones they have been authorized.

Attribute-based Access Control (ABAC)
ABAC is one of the most complex access control models but also the most flexible.
It utilizes three different attribute types for the user, for resources and environment
changes. The evaluation of these attributes grants or restrict access to users. As
an example, a user can only access the employee database if he is employed by the
company if his department is within the HR and only between the working hours of
the company. We can see that the model supports an IF ELSE Boolean logic which

2.2 Identification and Authentication 16

is constantly evaluated, granting the system contextual awareness and a fine grained
access control model. Due to its nature, ABAC can combine numerous attributes
from different systems regardless of their diversity which makes it flexible to adapt
to every company infrastructure.

As the company expands and more users are introduced to the system, there is
no need to add more policies or modify the existing ones, as long as each user is
assigned the required attribute [Hu+14]. Although due to its complexity, in larger
scale companies the number of attribute evaluations scale according to the number
of attributes introduced thus making an impact on performance.

Other well-known access control policies include: History-Based Access Control
(HBAC) where access is decided upon user’s activity history, for example, the access
requests the user has performed in a time limit, etc. Identity-Based Access Control
(IBAC) is a more personalized model which requires each privilege to be assigned to a
user individually according to his needs. Rule-Based Access Control (RAC) in which
access is granted or restricted based on a set of rules defined by the administrator
or the company. It is similar with the Attribute-Based Access Control models and
the rules that require to be met may vary from allowed working hours to user roles.
For example, a set of files can be accessed only by teachers while others only from
students.

2.2 Identification and Authentication
The scope of authentication is to verify the identity of the user. Authentication can
have many forms and is required in various cases. Whenever we need to verify the
identity of a person requesting access to a company’s service, when we require a
person’s passport to verify that is truly the one he claims to be or when we require
to confirm the authenticity of software by reviewing its digital certificate. Usually,
authentication in access control systems may be achieved with the typical combination
of a username and password but could also be extended using external means such as
biometrics or two different steps such as requiring a smart card swipe. Generally, for
a user to be authenticated he needs to be verified using one or more of the following:

• Something he knows (PIN, password, his first dog’s name etc)

• Something he possesses (Smart card, USB token or other hardware device)

• Something he is (Fingerprint, retina scan, face etc.)

2.3 Access Control
Access control is the step after the user has successfully been verified. Whenever
there is an access request for a logical asset such as a file, a process or a physical

2.4 Accountability 17

asset such as a printer, then the system has to decide whether the authenticated user
has sufficient authorization levels to permit the access. While in authentication we
require the user’s interaction, in authorization the decision is purely from the system
and the defined policies. The authorization policies can be granted with various
techniques similar to the ones we described earlier. Commonly each system permits
three types of access. Read a file or its contents, Write which typically means modify
a file, update or change its contents and Execute in cases where users desire to launch
a process or a program.

2.4 Accountability
Using logs and various user records we can keep track of the user activity both when
accessing a file and any associations with other users within the system. The logs
help us trace security violations and possible security breaches. In cases where the
system has been infected with a malware then logs can contribute to recreating the
event gaining information on how it was begun and how it was spread. Logs can
also be used as evidence in a court case if they are handled properly. They can be
automatically generated whenever an incident occurs. For instance when a user logs
in the system outside the business working hours or from a different location.

CHAPTER 3
Persistent Authentication

User authentication has not changed much over the years even though technology has
seen groundbreaking progress especially now that everything moves towards smart
devices and pervasive computing. Most of the devices focus mostly on an authentica-
tion model that is infrequent and persistent, where the user is required to prove his
identity with a password or other similar techniques. The infrequency is a sacrifice
we are willing to make for usability since no one would be delighted to use a system
with repetitive re-authentications.

Once the initial authentication is achieved the device cannot validate whether the
user is the same user throughout the whole session or that he was the actual user in
the first place and not someone with his credentials. While in a trusted environment,
such as your family house, persistence could be proven as a minor security flaw, the
problem scales in larger environments and mobile devices. Cases where a laptop falls
into the wrong hands and the user has been logged in his usual accounts, then the
intruder gains access, without having to do anything in particular. Cases, where the
laptop was the company’s laptop, give a chance to the intruder to get his hands on
the company’s VPN information or classified data. For stationary computers, the fact
that in many cases they are in a trusted environment and their high level of physical
security can lead us to overlook the security flaws of persistent authentication.

Despite the flaws, we could not require from the user to repetitively authenticate
over short periods of time; therefore, we require a more transient authentication model
[NC02]. The transiency offered by sensor based security systems whether it is based
on biometrics [KG00], motion sensors or RFID cards offer a contextual awareness
to the systems authentication model [CN05]. Thus authentication is frequent and
requires less human interaction.

In our model, we combine persistent and transient authentication in a system
which can extend the initial user authentication session with contextual information
gathered from the user’s environment. Once the user is authenticated, the system
keeps track of the user using CCTV cameras or other sensors thus providing location
based security for the company restricting unauthorized access. The model periodi-
cally verifies the user’s identity using a simple biometric algorithm and continuously
authenticating users without interfering with their everyday company habits. An
overview of the persistent authentication model can be seen in Figure 3.1.

3.1 Continuous Authentication 19

Figure 3.1: Persistent Authentication Model

Both identity verification and location tracking offer contextual awareness to the
system which will be sensitive to possible changes to users and their environment. As
we see in the picture for persistent authentication, we take into consideration both
the sensor readings and the initial authentication session [KH08]. The sensor readings
are verified with the biometrics database and if the user is identified, then we return
his user ID. When we have the user ID, the system checks the access privileges. If
the user has the sufficient rights, then access is granted; otherwise, it is rejected.

We do not provide a new authentication model instead we merely use the exist-
ing techniques for the initial authentication while we integrate context awareness to
extend it. It is up to the company policies and the access control mechanisms to
provide data security.

3.1 Continuous Authentication
As we discussed earlier, several security problems occur due to the persistence of
the traditional authentication models; then there is not much you can do. Even
with the strongest security policies, users are still unpredictable and in a company,
it is more than common to share devices for their convenience. Therefore we need a
more transient solution to provide continuous authentication sessions. A promising
approach was proposed from Corner and Noble in [CN02] using a hardware token or a
small device. The main idea as seen in Figure 3.2 is that the user gets authenticated
with some sort of a token or identifier bound to his id. The token could be anything,
such as a RFID tag or a Bluetooth device, for instance, the user’s smartphone or a
smartwatch. As the user walks in the appropriate distance from the terminal, the
verification process begins.

Zero-Interaction Authentication (ZIA) as described by Corner and Noble requires
an authentication terminal and a token which use a short range wireless communica-

3.1 Continuous Authentication 20

tion channel, such as RFID, Bluetooth or Wi-Fi. The channel provides an encrypted
and authenticated link for exchanging messages. The messages are encrypted, but
since the token does not have the required hardware, the decryption and encryption
of the messages occur in the terminal. The token must be bound to the terminal to
be able to get authenticated. Between the terminal and the token, an encryption key
is shared for this particular session after the token’s verification. The key is bound to
the token, so only this can decrypt the messages between them. Of course, we have
to do the binding before using it for the first time. Once the token gets in range, the
terminal verifies it and the session key is exchanged. A challenge response is taking
place between the two devices to keep track whether the token is still in range or
not. Once the token is out of range, the cache files are encrypted and stored in the
terminal until it comes back in range, thus minimizing response times. The challenge
response ensures continuous authentication of the users and in the same time get
an indication of their location in the building since they have to be in range of the
terminal. The challenge response satisfies the transient authentication model since
the session is terminated if the user fails to respond or he gets out of range. ZIA
could be used for anything that could be automated, from logging in a computer to
turning on the lights of a room once your Bluetooth device has come into range.

Figure 3.2: Zero-Interaction Authentication (ZIA)

Although, ZIA by itself does not provide a secure way for authentication-verification.
If we establish a system like ZIA with tokens, for example, then, once a token falls
into the wrong hands, the intruder can enter the company building or access one
of the computers. The token is, in fact, legit and the terminal identifies it as such,
but we are not making sure that the user is the one he claims to be. Also in com-
panies is not uncommon for the employees to exchange tokens for simplicity. ZIA’s
authentication mechanism is based on ”something you have” but combining it with
an additional one, such as the ”something you are” method, then we have an even
more secure model. The authentication will be based on two factors thus harder
to exploit. Using ”something you are” as a mechanism does not limit usability and
requires no interaction [SMS16] since it can be something like user’s walking pattern
or face recognition [Raj]. In our case, we utilize facial recognition which we believe
that could cover effectively both the first authentication session of the user and the
challenge response required to verify whether the user is still in range. [KG00]

3.2 Biometrics and Facial Recognition 21

3.2 Biometrics and Facial Recognition
Biometrics is one of the best ways to achieve transparent and persistent authentication.
They could be remote and contactless like face detection or might require some sort
of interaction or active participation from the user, such as a fingerprint or retina
scanning [TLC09]. The greatest advantage of biometrics is that there will always
be there for the user, no matter what. They cannot be forgotten or exchanged,
thus making them one of the best alternatives to substitute passwords. The use
of biometric scanners could be extended in various everyday cases, besides security.
They could be used in stores, for example, to gather data about customers’ shopping
habits, which could be used in advertisement campaigns. They could also be used in
houses, to keep track of pets or elderly people in case of an accident. As the demand
rises, the technology will evolve further.

Although promising, biometrics need to be evolved further. There are many things
that need to be taken into consideration. While some characteristics might be per-
manent and withstand changes through the years, some others are not that reliable.
Fingerprints, for example, tend to change as the years pass, also depending on the sub-
ject’s type of job. Additionally, younger ages have weaker fingerprint patterns than
adults. Voice recognition or walking patterns might not be accurate, if the person
has gone through an injury, for example. These are problems that should be taken
into consideration, before deploying a biometric authentication system and keep our
authentication database up to date, by providing it with any possible new features a
user might have every once in a while. A successful biometric system is based on the
quality of the training phase where we provide a significant number of test images.
These images include both pictures with the object or entity we want to detect and
pictures where the object is absent. We use the term positive image for the images
where the object is present and as negative we classify the irrelevant pictures.

With regard to the goals we have set we require a non-invasive solution for con-
tinuous authentication hence we focused on facial recognition. The main issue with
face detection and recognition is the false positives and false negatives. Meaning, the
times when a person has mistakenly been classified as legitimate and the times when
a legitimate user has mistakenly been rejected. We are also highly dependent on the
quality of our equipment. Having high-resolution cameras improves the identification
process making it more accurate and from a longer distance.

To minimize the failure rate, an extensive training phase with all the possible
cases is required. We need pictures of all the possible angles, illuminations of the
face both when wearing an accessory like glasses and without. This is not always
possible and that is why probabilities are required. A method to enhance successful
identification rates was proposed by Mads Ingwar in [IAJ13]. He proposed the use
of multiple biometric experts whose outputs are fused and used to calculate a level
of confidence. Based on that confidence a decision is made on whether to accept or
reject it.

In summary, we could divide facial recognition into two phases. The first one
is the training phase where we have to train the system with positive and negative

3.3 Motion and Human Tracking 22

images. Every user must be registered; otherwise, he is marked as unknown. For
the registration, everyone is required to sit in front of a camera and have 20 or more
pictures of his face taken. The better the camera quality and light conditions the
better the results. All the pictures are converted to black and white. All the pictures
are stored in the database under a user’s id. Of course, all stored pictures should
be encrypted and no one should be able to access them besides the administrators.
Various security issues that might be raised here for the secure storage of data is
beyond the scope of this project.

As for the second phase, we have the authentication. The system captures video
frames of the user once he gets into range and compares each frame with the stored
picture. A rectangle is drawn over his face and if a match is found then we indicate
his id, otherwise, he is marked as unknown. There are various algorithms to chose
from for the verification. For every algorithm, a number of ’confidence’ is set which
represents the ”distance” between the test image and the closest stored set. The
value can be optimized in each case accordingly. Another value is ’threshold’ which is
passed to the algorithm and used in prediction, distances greater than the threshold
are ignored.

The actual details and technology of how face detection and recognition is per-
formed is beyond the scope of the thesis.

[KG00]

3.3 Motion and Human Tracking
Motion detection could be easily implemented in various ways and hardware. From
its simplest form with a common light sensor to more sophisticated approaches such
as weight sensitive floor tiles. As a more realistic approach, we adopt the use of
CCTV cameras for motion detection. Since it is already a requirement for our facial
recognition algorithm and in most companies, they are already installed in various
places, so no additional hardware is required. More importantly, they are relatively
easy to maintain and fairly cheap to scale.

Tracking, on the other hand, is more complicated especially when we need to
distinguish an individual inside a blob or fill the gaps through his walking path.
These gaps where the user might be lost from the tracking program could be filled
with the integration of continuous authentication. As we discussed earlier, the system
occasionally transmits a challenge response to the user to check if he is still in range.
If the user responds back, then we know he is close to the authentication point,
therefore, his location.

For the motion detection and tracking, the implementation is based on the calcu-
lation of the absolute differences between frames. This is one of the simplest imple-
mentations that do not require a training phase for the algorithm to identify persons.
Another essential point is that it requires less computation power and equipment
which could also be mounted to an external system or single-board computers (such
as Raspberry Pi, Arduino). Although simpler, it is more vulnerable to errors since it

3.4 Virtual Walls 23

requires fixed conditions such as strategic camera placement, sufficient illumination
at all times etc.As always, having a set of high-quality video feed is the key to better
results.

In short, every time we capture a new frame the image is being scaled to a smaller
size to decrease calculation time. Once it is scaled down, we convert it to grayscale
and add blur for the edges. The color here is not important since we only need to
detect the outline of the object. Therefore, color is extra information that increases
computational time. For the blurring we use the Gaussian blur [HKZ87] function to
decrease image noise and reduce detail. Smoothing the edges improves the results of
the algorithm. In Figure 3.3 is an example on how the image is converted to detect
the moving objects. The videos for the tests can be found in [PIR15].

Figure 3.3: Motion Detection

Each frame is processed with the same technique and the decision depends on
the differences between the images. The differences can be calculated by applying a
simple Background Subtraction [EHD00],[Pic04] as shown in the following equation:

P [F (t)] = P [I(t)] − P [B]

Where P[I(t)] is the frame we want to test at the time t and P[B] is the background
image used as a tester. In Figure 3.3 we can see the algorithm in action.

While tracking is essential for the contextual awareness of the system, constant
tracking of individuals is not a requirement. The points of interest are limited in
the office cubicle and more specifically the user’s monitor. Consequently, a more
sophisticated implementation will add unnecessary complexity to the system. The
basic requirement is that we need to know whenever a person enters or leaves the
cubicle.

3.4 Virtual Walls
The contextual awareness of the system combined with persistent authentication,
offer a fine grained security model that can be enforced for both logical and physical
access control. For organizations, physical access control is trickier to enforce since
you cannot lock everything behind a door. Especially for open plan and cubicle offices
where rooms are limited, shoulder surfing and unauthorized users roaming can be a

3.4 Virtual Walls 24

serious security issue. An interesting approach to enforce physical access control in
these cases is the proposal of virtual walls [Kap+07].

Figure 3.4: Visibility Zones

Virtual walls can be introduced to the system to substitute physical walls to
restrict unauthorized or unwanted users from accessing an object or area. Persistent
authentication keeps track of the residents without the need of multiple authentication
sessions thus the system can easily distinguish between the authorization levels of
each individual and unauthorized users. The concept of virtual walls is based on a
context aware system that can analyze the organization’s environment and decide
which actions should be triggered. Various areas could be set within the company
with no need of doors or walls where only authorized personnel is allowed. The system
monitors the area and the persons who enter; then the alarm is triggered.

The same principle can be used to prevent shoulder surfing and protect privacy
in cubicle and open plan offices. As seen in the Figure 3.4 visibility/readability zones
have been set instead of virtual walls. These zones are a predefined safe distance
from a computer monitor or other output device. The safe distance is such that an
intruder cannot extract information. As seen in the aforementioned the safe zone is
marked with a blue color and with red is the distance where security is enforced. The
distance, of course, is not fixed for every room but needs to be adjusted according to
the surrounding environment.

CHAPTER 4
Virtual File System & FUSE

Each operating system requires a method to organize and store data, files, and direc-
tories so that users can easily use and access. This method is widely known as file
system [Jon07] and there are many different types according to the operating system,
for instance, Windows use FAT32, NTFS Linux Ext2, Ext3, Ext4 each with its own
features and disadvantages. In this chapter, there will be a brief overview of file sys-
tems in general and FUSE which will help to understand the structure of a virtual
file system and its role in the project.

For every file in the UNIX file system, there are data that describe it, better
known as metadata. These information vary according to the file type and may
contain data about the size of the file, the owner, etc. Metadata in UNIX exist at
multiple levels of the file system. The characteristics of the filesystem it self are
contained in a superblock making it the most important container of metadata in
the system. It contains among others data about the filesystem size, the number and
location of each inode table, etc. Every request to access a file has to pass through
the superblock, meaning that if the superblock cannot be accessed either can the files.
Consequently, its preservation is crucial for the entire system, therefore, a copy is
stored in multiple locations on the hard disk and memory.

File metadata contain various blocks of information about the file’s size, type
and also the required access rights. The owner of the file is represented by an id
marked as user id and similarly for the group that has access with a unique group
ID. All these information are stored in a data structure or better known as inode
which is used for every object that resides in the file system be it a file or a directory.
For every directory in the system, there is a list that maps each file name with the
corresponding inode number an example can be seen in the following Table 4.1.

4.1 Kernel and User Space 26

foo 123
bar 345

various 678

Access control list
User ID
Group ID

Size of file
Time last accessed

Directory

/users/foobar/barfoo
inode 345

inode

Table 4.1: inode Example

The relation between the inodes and file names is handled by the directory entry
or dentry. For convenience and faster access to files, dentry is also responsible for
caching the most frequently used directories.

4.1 Kernel and User Space
The kernel is the heart of the operating system which controls everything in the
system. Every system has a certain amount of system memory that reserves for its
operations. In UNIX the memory is divided into kernel and user space. Kernel space
is the amount of memory reserved for the kernel to execute its code and provide
the required services. Kernel space requires special privileges to be accessed and
processes can access it only through system calls whenever there is a request for a
service handled by the kernel such as creating a new process.

User space is the memory reserved for user applications. The user space has access
only to its part of the system memory while the kernel can access the entire memory.
Processes operating in user space cannot directly access the kernel space thus cannot
access system resources like the memory. This limits system crashes and provides a
more stable environment to work on.

4.2 Virtual File System
Generally, a Virtual File System (VFS) provides an interface between the kernel and
a file system. A better description which is widely used, explains Virtual File System
as an abstraction layer on top of a more concrete file system. The main purpose is to
provide access to files regardless of the file system, the type of file or the Operating
System. VFS ensures that every file and its data are saved correctly, therefore, is
caches all the required information in memory when it is mounted.

4.3 Filesystem in Userspace 27

A VFS has the same structure for metadata as a normal file system with su-
perblocks, inodes and dentries. Since UNIX support multiple file systems mounted
at the same time, it keeps a list of every superblock in the system while additional
lists containing more information about the mount points and names of the mounted
file systems also reside in kernel. Both the VFS superblocks and inodes contain simi-
lar information fields as in the traditional file systems about the files and the device
identifier of the device the file system is stored.

The inodes in VFS although similar as the ones in traditional file systems, they
are in fact different since they are stored in kernel’s memory and are preserved in the
VFS cache for as long as they are required from the system.

4.3 Filesystem in Userspace
Filesystem in Userspace (FUSE) [IBM14] provides an interface that allows every
user to create a virtual file system nested in user space. The fact that the created
file system itself operates on user space makes the developed application safer to
execute since any possible bugs or crashes will have no effect on the system but only
the application. FUSE does not require any special privileges to be mounted and
provides an API to enable communication between a user application and the virtual
file system.

Figure 4.1: FUSE hello_world example

In the Figure 4.1 above there is a simple example of how FUSE works. The ls
-l/tmp/fuse command sends a request to the virtual file system (VFS) which is for-
warded to FUSE in the kernel and then to the hello_world file in user space. The

4.3 Filesystem in Userspace 28

response follows the same path from the opposite direction. The glibc in the figure
is the C standard library and libfuse is the FUSE library.

The FUSE API covers all the methods required for the virtual file system, some
examples which were also used in the prototype are the followings:

Filesystem methods

• access: access a file in a specific path.

• chmod: change the access permissions of a file.

• chown: changes the ownership of a file.

• getattr: retrieves the file’s extended attributes (uid,gid, access time etc.)

• readlink: retrieves the value of a symbolic link or canonical file name.

• mkdir: creates a new directory in a specific path.

File methods

• open: opens a file.

• write: writes data to a file.

• read: reads data from a file.

• truncate: change the size of a file.

• fsync: synchronize the current state of a file with a storage device.

CHAPTER 5
Context Aware Access Control

Every access control model has its perks and limitations. No out-of-the-box model
will work for every organization flawlessly but requires careful planning otherwise,
it will have a great impact on security and usability. Our proposition is a Sensor
Enhanced Access Control model which combines motion tracking with a traditional
logical access control model.

Currently, there are cases where the boundaries between logical and physical access
control are not quite distinct. A digital asset is protected with an access control policy,
but when the asset is projected to an output device e.g. a monitor, a speaker or a
printer, then it is up to physical access control to secure it. Therefore, a context
aware system can extend the current physical access control models lessening some
of the limitations of existing models and bridge the gap between physical and logical
access control.

The developed prototype demonstrates a proposition of a context aware system as
an extension to the embedded access control of UNIX which utilizes motion tracking
and sensor readings. The current DAC access control model of UNIX is used in
which users decide how their content is handled with no further modification upon
the logical access control. The prototype focuses on the physical access control which
makes it flexible to integrate with any access control policy that may be decided by
the organization. In this chapter, the most important components of the system will
be described along with an overview of the prototype.

5.1 Logical Access Control 30

Figure 5.1: Context Aware Access Control

A graphical representation of the model can be seen in Figure Figure 5.1 which is
inspired by previous work in [JGW13] and can be divided into two categories logical
and physical access control.

5.1 Logical Access Control
Logical access control is handled entirely by the UNIX system using the default DAC
policy. The security policy can be replaced any time from the system administrators
with no actual impact on the prototype since it requires only the output of the decision
made by the system. Regardless of the policy type, there is a set of rules to enforce
it which is decided and planned from the administrators. These rules will determine
if the system will allow or deny access to an object. The main components of the
logical access control include subjects, a reference monitor and objects.

5.1.1 Subjects-Processes
As a subject is considered every active entity that can modify an object. Subjects may
vary according to the system; they may be processes running in memory or external

5.2 Physical Access Control 31

users. Even if they may not be physical entities, they represent a user that initiated
them. Each user is associated with a unique Id which is granted upon authentication.
Each process started from the user inherits the same user Id which is used to evaluate
its access rights according to the access policy. Processes invoke all the required tasks
in the system and may use various system resources such as CPU, physical memory
or data. For every action the process invokes, the system evaluates his authorization
levels using the user Id. The access policies will reject or grant access to resources
and data. The processes represent the users within the operating system and may
indirectly use connected physical objects such as printers.

5.1.2 Objects
As an object can be considered every passive entity that can be accessed and modified
by a subject. In an operating system, objects represent files and directories which
compose a file system. Every file is bound with a unique inode number which identifies
it, while also containing the file’s attributes. The attributes contain all the required
information used to describe the file or directory e.g. size, type and group. The inode
also contains the access policy which is set by the owner of the file and is used by the
reference monitor to grant or restrict access when requested.

5.2 Physical Access Control
The second part of the prototype is the physical access control which is responsible for
handling the system’s output to physical devices. The decisions are based on sensor
readings with respect to the logical access control policies. External users, physical
objects and a reference monitor represent the physical access control part.

5.2.1 External Users
As an external user is considered every active entity that can access and modify an
object. Every user must be authenticated through an initial authentication session
in order to interact with the system. Once authenticated, the user is represented by
a unique user id which help us assign access rights and invoke processes to carry on
the desired tasks. For every user action, the system evaluates the access rights of the
specific user id.

5.2.2 Physical Objects
A physical object is every external device connected to the system that represents
a logical object. Devices such as monitors and printers convert data to perceivable
objects that require physical security. For every represented output the access control
changes from logical to physical and additional security measures must be enforced.

5.3 Reference Monitor 32

For instance, a visual representation of a top secret file on a monitor requires the
appropriate access level to be viewed, but once it is projected on the screen, then it
is visible to everyone that can see the monitor. Therefore, it is important to control
this transition from logical to physical access control.

Windows within a monitor are considered as physical objects since they provide
a visual representation of a file or process. Each window is associated with a process
and consequently an access level. The prototype analyzes all the open windows along
with their inodes, their position on the screen and their size. If an unauthorized
user is detected then the reference monitor will secure the appropriate windows by
making them transparent or covering them entirely with an overlay window. A similar
approach can be implemented to secure other output devices such as speakers and
projectors by simply interrupting the representation to users.

5.2.3 Motion Detection & Remote Authentication
Both motion detection and remote authentication provide the contextual awareness
to the system. They are categorized as sensors which are responsible to continuously
monitor the surrounding environment gathering and analyzing data. The remote
authentication can be achieved using a any biometric algorithm through multiple au-
thentication sessions. Motion detection is constantly tracking the users that approach
or leave the office.

The outputs of the sensors are combined and evaluated from the reference monitor
or window manager. Whenever a user approaching the office is detected then an
authentication is required, if the user is not authenticated then he is considered as an
unknown user with no access rights thus access is rejected. In our case we consider
that an initial authentication session has been established beforehand and follows the
user though his entire path. The prototype can be extended with additional sensors
according to the organization’s security budget and infrastructure.

5.3 Reference Monitor
The reference monitor is responsible to enforce the access control policies on subjects.
Each reference monitor has to meet some specifications:

• It must be always invoked thus enforcing complete mediation to the system.
Every process is required to have sufficient authorization levels in order to be
granted access to the object.

• It must be tamperproof which specifies that it cannot be modified by any process
so that no malicious users can modify the security policies.

• It must be small enough to be easily verified that is able to enforce the correct
access control policies.

5.3 Reference Monitor 33

Although, the reference monitor in the prototype which is identified as window
manager, does not satisfy all the aforementioned specifications, it meets the basic re-
quirement of handling access requests to the objects. The window manager combines
the data gathered from the sensors with the access policy and decides upon the ac-
cess request. The logical access control policies are handled entirely by the operating
system.

As seen in Figure 5.1 when a principal is detected the sensors forward his position
and user id to the reference monitor. The reference monitor compares the access
rights of the user id with the access rights of the open windows. If the user does not
have the required access rights for one of the windows, then the window is hidden as
the principal approaches the screen. As the unauthorized principal moves away from
the office, the windows are restored back to normal. The window manager can be
described with the following algorithm.

Algorithm 1 Window Manager
1: while sensor data do
2: Track position of principal A
3: if A approaches then
4: Check_Window_Permissions()
5: if A_Permissions < Window_Permissions then
6: Hide_Windows()
7: else
8: Do nothing
9: end if

10: if A leaves area then
11: Reveal_Windows()
12: end if
13: end if
14: end while

CHAPTER 6
Design

The previous chapter was devoted to describe the model of a context aware access
control system. The model has various sub components that need to interact and
exchange data with each other. In this chapter, the system’s components will be
described with the visualization of a component diagram. We will analyze each com-
ponent separately and discuss how they interact with the rest of the system.

The system’s functionality is based on the component’s ability to successfully
exchange data in real time for the security measures to be effective. An overview
of how the components exchange data will be presented with the help of sequence
diagrams and a discussion why Fuse was chosen as a basis for the prototype.

6.1 System’s Overview
An overview of the prototype’s architecture can be viewed in Figure 6.1. With the help
of the component diagram, there will be a more detailed view of the structure of the
context aware access control prototype and how the main components interact. The
two main components of the system are the sensor and the reference monitor which
include more sub-components that provide various services. Additional components
such as the user database and authentication component which provide services to
the sensor component.

6.1 System’s Overview 35

Figure 6.1: Component Diagram

Sensor Component
The sensor component includes the face recognition, human detection and sensor
evaluation sub-components. Face recognition and human detection components are
responsible for sending data to the sensor evaluation which exchanges data with
the reference monitor. The face recognition component has to exchange data with
the authentication component which communicates with the user database for the
authentication and verification of any detected person. The collected data from the
face recognition component include a number of pictures of each face, grabbed from
each frame of the live video feed. These pictures will be compared with the stored
images of users and attempt to authenticate the approaching individuals.

The database contains a set of images for each employee which will be used for

6.1 System’s Overview 36

face recognition. The human detection component notifies the sensor evaluation com-
ponent whenever someone is detected and returns his position from the office. The
sensor evaluation must analyze the outputs from the other components and return
data to the reference monitor containing the user id of the authenticated principal
and his position. In case the principal could not be authenticated then he is marked as
unknown and along with his position, the data is forwarded to the reference monitor.

As seen in the Figure Figure 6.1 the client-server paradigm approach was followed
for the sensor sub-components. Each sensor is considered a client who provides data
to the sensor evaluation which is the server. This allows additional sensors to be
integrated in the future making the system easier to scale as the needs expand. The
server collects the received data from the sensor clients and evaluates them before
passing them on to the window manager. Clients collect and transmit data frequently
so that the position and user id of every approaching individual is constantly updated
which makes authentication persistent. Introducing more sensors will enhance the
performance of persistent authentication and consequently system’s performance to
successfully enforcing access control.

Reference Monitor
The Reference monitor consists of various subcomponents with the main one being
the window manager that communicates with the rest. The window manager is
also connected with the sensor component in order to exchange data of the detected
principals and decide about the security actions.

User Component
The user component represents the authenticated user currently logged in in a com-
puter station. For every object, the user wants to access whether it is physical e.g.
printer or logical e.g. files an access request has to be forwarded to the window man-
ager. The window manager will decide if the request will be granted or not. Each
user has a unique user id which is used by the window manager to evaluate the access
rights. The authentication and authorization of the user are handled by external
components which will not be described since they are part of the UNIX system.

Security Policies
The security policies component is dedicated to enforce and evaluate the access rights
of users. The policies are defined from the administrators of the system and are
evaluated in every access request. For the evaluation, a user id is required in order
to verify what can be accessed by that particular user id. Besides the access control
on the registered users, the security policies component evaluate the access levels of
the principal detected and authenticated by the sensors. The results in both cases
are forwarded to the window manager.

Physical Object Service
As physical object component is denoted every asset which can be accessed from

6.2 Interactions Between Components 37

subjects/users through the window manager after the access rights have been verified
and evaluated. Access to the service can be intercepted whenever an unauthorized or
unidentified user is detected approaching the office.

Window Manager
The window manager is the main component of the prototype which is responsible
to analyze data from various components and make decisions to ensure information
security. Every access request goes through the window manager which compares the
user id with the access rights in the security policies component. In cases when an
external user is detected, the sensor component returns the user id of the detected
principal and his current position. The user id is evaluated and compared with the
access policies required to access the physical object. If the user id does not have the
required access rights, then the output of the physical object e.g. monitor is secured
as the principal approaches.

The same method is followed for the principals that have not been identified. Al-
though, failure to identify the approaching individual might also be due to insufficient
illumination in the room or not having a clear view of the face. This is where persis-
tent authentication comes in place. The authentication sessions are repeatable over
short times which is a requirement to keep track of each person’s position as they
approach. Therefore, if authentication fails for three out of 5 sessions until the person
is close enough to the office, then he has still been identified. If all the authentication
sessions fail, then he is not employed in the company thus an intruder or a customer.
In this case, the output of the physical object is completely blocked by default. Com-
munication between the sensor component and the window manager is crucial and it
should occur in real time.

6.2 Interactions Between Components
In the previous chapter, there was an overall description of the system and the main
components. In this section, there will be a more detailed analysis using sequence di-
agrams on how these components interact and in what order. The sequence diagrams
demonstrate various interactions in the system under different scenarios along with
what messages are passed through the components.

6.2.1 User Authentication
As seen in Figure 6.2, whenever an individual is detected the motion sensor notifies
the face recognition module of a person being in range. The face recognition module
sends a number of pictures along with the person’s current position to the authentica-
tion module in a first identification attempt. The authentication module will search
for a match in the user database if the individual is identified then the user.id and
position is returned to the sensor evaluation component. The authentication com-

6.2 Interactions Between Components 38

ponent returns the user.id to the face recognition module as a confirmation of the
authentication request. The user.id is also forwarded from the face recognition mod-
ule to the motion detection module to mark the person with the particular user.id.
The motion detection module performs frequent updates of the user’s position which
will trigger the authentication request again to enforce the persistent authentication.
The sensor evaluation receives every new position of the detected user.

Figure 6.2: Sequence diagram showing the interactions of the sensor components

An alternative scenario would be if the authentication component was not able to
identify the detected person. In that case, the person is marked as unknown which
is returned to the other modules instead of the user.id.

6.2.2 External User Approaching
In Figure 6.3 is the sequence diagram of the system’s behavior when an approaching
user is detected.

6.3 Window Cover 39

Figure 6.3: Sequence diagram showing the interactions when an intruder approaches

The sensor evaluation sends the user.id and position of the detected person to
the window manager. The window manager sends a request to the physical object
module to acquire the window.id of all windows currently open. Once the module
responds the window manager forwards both the window ids and the detected user
id to the access control policy module to verify the required access rights. Once the
access control module compares the access rights of every window.id with the user
id, it returns the result to the window manager. The window manager proceeds to
enforce the security policies for every window that requires higher access rights than
the user’s while the rest remain intact.

If the sensor evaluation does not forward the user.id, then the approaching user is
considered as unknown, therefore, the window manager enforces the security policies
directly when he comes in range.

6.3 Window Cover
The proposed security measures to ensure data confidentiality for all opened windows
of a monitor include two different approaches while also having in mind usability. Both
propositions aim to gradually reduce window visibility when someone approaches the
office cubicle. This way it also provides a warning to the user currently viewing the
files that someone is in range instead of instantly enforcing the measures causing
inconveniences.

Each implementation follows a similar approach that requires each window id
to be extracted and evaluate the access rights. The first implementation gradually
modifies the opacity of the window until it becomes completely invisible. The second
one creates an overlay window that covers the desired windows entirely. The overlay

6.4 FUSE 40

window will have different background colors and opacity levels which will change till
they completely hide the window behind it. The opacity and color changes for both
implementations will vary according to the distance from the office and monitor of
the approaching person.

The implementations were tested on Ubuntu-16.04.1 distribution, but their imple-
mentation is not depended on the Linux distribution. In fact, the overlaying windows
could be easily integrated into every operating system (Windows, Mac OS) if the
window privileges are passed correctly.

6.4 FUSE
The prototype resides in a virtual file system which is mounted on demand over the
existing file system. The choice of virtual file system was made solely because of
the advantages it provides in flexibility and its support of various file systems. Fuse
provides an ideal interface to create a virtual file system which will make the prototype
more stable since it operates on User space thus errors are easier to handle without
crashing the entire system. Additionally, Fuse’s versatility enables the possibility to
integrate additional access control policies and handle files in terms of security as the
company prefers.

CHAPTER 7
Implementation

This chapter is dedicated to present the implementation of the prototype along with
the libraries and algorithms used to achieve it. We start by a simple discussion about
the virtual file system and some decisions that were taken. Then the motion detection
and user tracking implementation is presented along with how these define the safe
and critical zones regarding the distance from a monitor. The rest of the sections
describe the core of the prototype and more specifically the window manager, how
the access rights are retrieved and handled and the two implemented solutions to
preserve the confidentiality of the monitors’ output. All the implementations were
made with Python 2.7.

7.1 The Virtual File System
The VFS was implemented using the fusepy [Ver] library that provides all the nec-
essaries to construct an API which was used for the implementation of the virtual
file system. All the necessary actions of a file system were included and the methods
were organized in file methods (i.e. open, create, read) and filesystem methods (i.e.
chmod,rmdir,mkdir). The method getattr is called first at least once before any other
method is executed, to verify that the file or the file path exists.

Before mounting the virtual file system, there is an option to allow access to the
files from external users. By default FUSE allows only the root user to access the
mounted files unless we change the allow_other options to True. As root is considered
the user who mounted the virtual file system.

7.2 Tracking and Motion Detection
The requirement is that an approaching person should be detected and his position
must be tracked through his path. Therefore it is crucial to have real time detection
and notification in order to trigger the security controls in time. For the implemen-
tation, we used existing computer vision algorithms and techniques with the help of
the Open Source Computer Vision Library (OpenCV) [Its15] for Python which is an
open source C++ library. The library is ideal for real time applications since it takes
advantage of the multi-core processing and if the required hardware is detected, it
supports hardware acceleration.

For motion detection, we used the background subtraction method which is a
common technique widely used in various computer vision projects. While there are

7.2 Tracking and Motion Detection 42

quite a lot of different algorithms and techniques for motion detection and some may
be in fact better in performance, we decided to follow this approach since it suited
better to the prototype in terms of simplicity and performance.

As it was already explained in section Section 3.3, generally what we need is to
model the background and then detect any changes that occur to it during the motion
of the subject. The background for the majority of the frames in the video remains
the same, therefore as the subject moves the changes in the background can be used
to detect this motion and the subject’s position in the frame. Although, in case of
minor illumination changes then there is also difference in the background which is
detected as motion.

The implementation begins with modeling the background of the first frame of the
video. This will be the base which we will compare with every new frame detecting
any differences and consequently motion. The differences are calculated with a simple
subtraction of the model frame and every new frame. An example of the algorithm
in use can be seen in Figure 7.1 and Figure 7.2 with different type of camera angles.

∆ = model_background − frame

In order to solve the problem of minor changes in the shadows and illuminations,
we have set a threshold parameter for delta. For the prototype the parameter is set
to 40 which evaluates every subtraction and compares it with the threshold, if delta
is lower than 40 then any differences are ignored, else highlight the area with white.
The exact number of the threshold varies according to the position of the camera and
the room, hence some calibrations will be required before deploying the system.

Figure 7.1: Detection in fisheye camera lenses

Once we have the moving object highlighted we just loop through every contour
to mark the outlines of the highlighted objects. The contour areas are enclosed in a
bounding rectangle and are indicated by a red dot. To minimize the false positives
we set another filter for the rectangles, only the detected rectangles that are bigger
than 20 pixels width and 20 pixels height are taken into consideration; the others are
ignored. The same rule applies for the values as previously, meaning the numbers
may vary for different offices and cameras.

7.2 Tracking and Motion Detection 43

Figure 7.2: Detection in stationary cameras

The bounding rectangle will follow the subject through his entire movement and
for as long as it meets the requirements we have set. As we have already discussed,
the subject’s distance from the point of interest is important for the security measures.
While there are a couple of solutions to calculate the distance of the camera lens from
an object with known measurements most of them are not universal solutions because
camera angles differ from fisheye cameras with ultra wide-angle lens to stationary
cameras thus different approaches are required to calculate distance.

Figure 7.3: Distance estimation in fisheye camera lenses

The prototype provides a universal solution in which instead of calculating the
distance of an object, it monitors when the object passes a specific point in the video.
More specifically, we have declared two imaginary lines which are drawn on the video,
each with different color and at a specific distance from each other. These lines are
set according to the safe distance from the monitor which are visible in Figure 7.3.
Whenever a subject crosses one of the lines, then we return a notification and the
subject’s position. Each line represents the distance to trigger a security event. The
lines are drawn with the help of the OpenCV library at specific x,y values. In Fig-
ure 7.4 because of the camera angle and the office plan we only have one line. If the
subject passes the door, then he is already tracked by the system. Additionally, as
seen in the picture, the distance from the first monitor is relatively short from the

7.3 Window manager 44

door hence why only one line is required.

Figure 7.4: Distance estimation in stationary cameras

The functionality of the motion detection could be summarized in the following
algorithm.

Algorithm 2 Motion Detection & Distance Estimation
1: while first frame is True do
2: Retrieve the current frame convert it to grey-scale and blur it frameDelta = first

Frame - current frame
3: find_Contours with threshold > 40()
4: for every Contour do
5: if width>20 and height>45 then
6: Draw rectangle around subject a and track him
7: if a crosses green line then
8: raise security warning
9: end if

10: if a crosses red line then
11: raise security event
12: end if
13: end if
14: end for
15: end while

7.3 Window manager
The window manager is the component responsible for handling the open windows and
access rights while also evaluating the output of the sensors. The primary function
of the component is to identify which files are currently open from the user, their

7.3 Window manager 45

position on the screen, their actual size and what access rights are required to view
them. The implementation is performed with the help of Pygtk [PyG11] and wnck
[Lib] libraries.

Although, Pygtk’s primary function is to provide the means for a graphical user
interface, for this component we will make use of its functions to identify events and
refresh the interface. Every window action is a separate event e.g. when a new window
is created, when it is moved around the screen or minimized and it is important to
refresh the variables containing the information about it. More specifically, the whole
process is performed in two functions the first being the events_pending() which
monitors the system for any window events and the second one is main_iteration()
which loops through the events. If no events occur then it remains inactive until one
is triggered. As a side note, the functions are also crucial during the initial execution
of the program otherwise the first open windows are not identified.

The second library, wnck provides the mechanisms required for window manage-
ment. The first step is to identify the default screen and pass it to a variable, once
the screen is identified then we identify all the open windows in the session. It is
important to have a small delay between the screen identification and the windows
otherwise the list of windows will always return zero. We iterate through each identi-
fied window and retrieve each window’s geometry including its position in the screen
saved in x,y values and its width and height in pixels. Additionally, we also keep the
window id and the title. Because the retrieved title is the full title of the window
including the application’s name e.g. test text.odt - LibreOffice Writer we split the
returned string and check if it is a file, an application or a directory. If it is a file
or a directory, then we utilize the UNIX stat command to return all the identifiers
of the file such as the st_mode for the permissions or st_ino for the inode number,
etc. These will be used to evaluate the access rights of every open file with the access
levels of the identified approaching subjects.

Since the existing file permission system of Unix is used, the access rights are
set for files and directories and not applications like Firefox thus the implementation
focuses only on handling file and directory windows with access rights. To retrieve
the access rights first, we verify that the file exists in the system which allows us
to differentiate between files and applications while also retrieving its file-path. To
find the file path we have introduced a function which walks through the directories
included in ”/home” until it matches the given file name and returns the complete
path of the file. This approach was preferred because it provides an ubiquitous and
flexible solution to identify file paths regardless of the directory they are nested,
retrieving their access rights. Additionally, it is capable to handle file names that
contain special characters (i.e. <, >, | , :, (,), &) or white spaces. The permissions
are extracted from the output of the stat() function and more specifically the st_mode
field which contains the file permissions in octal notation (i.e. 0755, 0222 as per Unix
Numeric Notation). We decided to follow two different approaches to secure windows
and let users evaluate it concerning usability and effectiveness. The two methods
are window transparency and overlays. Both allow a calm transition to the security
feature disrupting user’s work as little as possible, instead of instantly unmapping

7.3 Window manager 46

the working window

7.3.1 Window Transparency
The recent versions of Ubuntu are not flexible enough regarding window customization
and especially transparency. The current window manager in Ubuntu is Unity, and
the only window modifications it allows through scripting are changing the CSS files
directly for each desired theme. Using compositing or window managers such as
Compiz were neither reliable enough or stable for the system causing it to crash and
did not allow any scripting actions. Additionally, forcing the user to change his user
interface altogether is not a viable solution. For this purpose, since we could not find
(to our knowledge) any Python based solution that covered usability and scripting to
provide window transparency, an open source software was used named Devilspie2.

Devilspie2 is described as a window matching utility written in C++ and LUA.
The software allows scripting actions or rules that are defined in a LUA file stored
in a folder. Actions include resizing windows, moving them to specific coordinates,
changing window opacity, etc. The structure of the rules follow the LUA notation
and are applied to a given window or a number of windows passing their XIDs or
other identifiers like window or application name. By default when Devilspie is called
it searches for the file containing the rules in the /.config/devilspie2/ folder. For
every window that is required to be hidden, its XID is passed to a Python list and is
appended to the LUA file containing the rules. The rules are simple since the only
requirement is to identify all the XIDs of the open windows and look which one of
these are included in the list we have appended. The opacity rules are applied only
for the matching XIDs, and the values vary from 1.0 being completely opaque to 0.0
being completely invisible. The opacity levels can be applied gradually over time or
instantly according to approaching subjects position.

The following pictures present the effect of different opacity levels on the same
text and application window (Libre Office).

Figure 7.5: Windows with 0.2 (middle) and 0.5 (right) opacity levels with on white
background

In Figure 7.5 the opacity rules are applied on a Libre Office document which is
located on top of the Documents folder with white background. In Figure 7.5 is shown
the same window in front of the desktop image which has a purple background. The

7.3 Window manager 47

applications behind the window we need to hide and their background color, change
the visibility levels significantly.

Figure 7.6: Windows with 0.2 (middle) and 0.5 (right) opacity levels with on purple
background

7.3.2 Window Overlays
Overlaying windows offer a more flexible approach regarding Linux distributions and
operating systems in general. The implementation is purely in Python 2.7 with the
Pygtk and wnck libraries providing the main functions. Instead of tweaking Ubuntu’s
Unity window manager or relying on external applications, we create a number of
interface windows according to the files and directories that are currently open. The
software scans all the open windows and gathers all the appropriate information such
as the window size, position on the screen, the name of the open application, etc.
Then we proceed to evaluate the access rights required for the window and compare
them with the approaching subjects. For the windows the approaching subject is not
authorized to see, we create an overlaying window which changes its opacity levels as
he approaches the object.

After retrieving the information with Pgtk and wnck as we described earlier the
output includes all the identified windows including the windows created from the
system on start-up. In Table 7.1 is an example of all the identified windows including
the ones from the system e.g. XdndCollectionWindowImp, unity-launcher, Hud which
we need to distinguish from the windows created by the user. As we see the system
windows have slightly different x,y position values than the others, therefore, when
identifying and looping through them we only keep these with positive x,y values.

7.3 Window manager 48

Window ID PID (x,y) position (width,height) Window Name
46137346 1668 (-1450,-755) (1350,655) XdndCollectionWindowImp
46137349 1668 (0,24) (65 ,631) unity-launcher
46137352 1668 (0,0) (1350,24) unity-panel
46137355 1668 (-420,-300) (320,200) unity-dash
46137356 1668 (-1060,-164) (960,64) Hud
37748746 1766 (0,0) (1350,655) Desktop
29360138 2011 (569,172) (722,410) asd@ubuntu: /Desktop/python
62914983 8992 (65,24) (1285,631) test text.odt - LibreOffice Writer

Table 7.1: Window Information Output Example

The width and height will be used to create the overlaying windows in order
to cover completely the user created windows including the title bar. Although,
the returned numbers are slightly wrong for the height values because of the deco-
rations surrounding it i.e. the title bar. The surrounding decorations are defined
from _NET_FRAME_EXTENTS(CARDINAL) which includes all the values for
left, right, top and bottom frames. By default the values are as follows:

_NET_FRAME_EXTENTS(CARDINAL) = 0, 0, 28, 0

with the top bar being 28 pixels high. The heights returned from wnck are 28 pixels
higher than the original sizes. Therefore, we need to adjust the heights by subtracting
the 28 pixels from them before creating the window.

The overlaying windows are created with pygtk and are mainly graphical user
interface windows whose opacity levels and background color change according to the
parameters we set. The window we need to cover is indicated as parent window and
the overlaying as a child window. Both father and child windows are bound together
so that when the parent window is closed or minimized, the child window mimics
that particular event. The child windows must not interfere with the actions of the
user in the parent window, allowing the user to click through the child window and
passing the event to the buttons of the father window. In fact, instead of drawing
the windows on a pixmap which is defined as a rectangular array of pixel color values,
the windows are defined as regions specified by a rectangle. These regions listen for
events whenever the mouse pointer is inside the region and passes the click events
to the window bellow it. Examples of the overlaying windows can be seen in the
following images:

In Figure 7.7 we can see the different opacity levels and how the view is changed.
The first picture from the left is a normal window with no opacity levels, the middle
represents an overlay window with 0.5 opacity and the last picture with 0.8 opacity
level.

7.3 Window manager 49

Figure 7.7: Overlaying windows with 0.5 (middle) and 0.8 (right) opacity levels with
white background

Figure 7.8: Overlaying windows with 0.5 (middle) and 0.8 (right) opacity levels with
black background

In Figure 7.8 we see the difference the background color makes in terms of visibility,
while the opacity levels are the same as in Figure 7.7.

CHAPTER 8
Evaluation & Experimental

Design
The evaluation will be based on the prototype’s ability to successfully provide the
basic security criteria of an Access Control system. Starting from the virtual system
itself, we have to make sure that it behaves like a traditional system, providing all
the required functions, while also maintaining the predefined access policies. Various
users will be created with different access levels and we will proceed to set up and
access files of the same, higher and lower access rights.

As part of the virtual file system, the window manager should also be tested thor-
oughly whether its behavior is the one it is intended to be. The window manager
should be able to grab the correct access rights of all open windows, analyzing what
windows are open and which one is focused. The tests will be conducted with var-
ious applications, both individually and in numbers. The windows will differ from
Terminal Windows to File Explorer and Text Editors.

In addition, the window manager should also be tested for its ability to enforce
window transparency or window overlays, according to users’ authorization upon their
entrance or when they leave the room. Trying to keep a balance between security and
usability, various users were tested both for their ability to read information when
the window manager is active and its impact on the authorized user’s work.

One critical component of the system is tracking of the identified users. Users
are assumed to have been identified upon entering the building and their identity is
known through the entire process. Their user.id is required to determine their access
levels before reaching the visibility zone of the office. The sensors used to provide
the foretold features should be able to successfully pass the information about the
approaching users to the window manager. Therefore, various scenarios should be
considered to test its performance.

8.1 Access Control in the Virtual File System
The prototype is based on a virtual file system mounted on a traditional Unix system
to provide the desired features. To ensure that the core actions of a file system
are met, functional tests were used for the virtual file system, e.g., open file, create
and delete files. The tests include users and files of various access levels in order
to demonstrate the system’s ability to maintain and enforce the UNIX MAC when
performing actions as the ones mentioned earlier.

8.2 Window Manager 51

Other parts that were tested include user actions, such as changing or modifying
other user’s files and changing the access rights of files. The tables of the conducted
tests can be found in Appendix A.1

8.2 Window Manager
As part of the evaluation, the window manager must be able to identify the access
levels of each open window. The test cases include a number of open windows at
random positions on the screen. Every window has a specific ID in Hexadecimal digits.
These digits are used to identify the required access rights and window’s information,
e.g., position and size. The importance of this is to evaluate the prototype’s capability
to retrieve the access rights of the windows and compare them with the approaching
user. In the Table 8.1 there is an example of the expected output of the access levels.

In addition to the window rights, the size in x,y and position on the screen must
also be identified correctly.

XID (x,y) position (width,height) Window Name Access Rights
79691792 (65,24) (1301,647) Mozilla Firefox -
41945382 (306,24) (890,494) Documents 755
58720725 (724,45) (642,406) test text.odt - LibreOffice Writer 664
54526084 (65,24) (1301,647) foo.txt 740

Table 8.1: Transparent Windows User Testing

An example of the size and position output could be seen in Table 8.1, in which
the first window is in full screen, the second one has a medium size and it is located
in the middle of the screen and lastly the third one is dragged to the right of the
screen and is the smallest of the three. For this test, in order to include an element of
randomness, the windows were in various positions and the process included different
text editors and applications. The x,y location of the window is necessary for both
implementations. Keeping track of the stacked windows behind the main one when
it becomes transparent, will prevent unwanted windows to be revealed. As for the
overlays, the x,y positions alongside with the height and width of the window to be
covered, create the overlaying window.

To determine which one of the solutions, regarding the hiding of windows, was
better, a number of people who claimed to have a 20/20 or corrected to 20/20 vision,
were asked to test the application. For both implementations (window opacity and
window overlay) the users were asked to read a specific text from a screen. All the
reading tests were timed and the times were compared to see which solution had the
greatest impact on readability. In addition to the time comparison, a grading scale
system was introduced to help users grade how easily they could read the texts. The
grades used, were a 1–5 point system as the following:

1. Text was unreadable

8.2 Window Manager 52

2. Text was difficult to read

3. The text was not difficult, but it took some time

4. Text was easy to read although, it did not feel perfectly natural

5. Text was easy to read, it felt perfectly natural

The texts used were 100 words each with roughly the same reading level of 6-8
which, according to the Dale–Chall readability formula [DC48] is easy to read and
comprehend by an average 9th or 10th-grade student. The text was in Liberation
Serif font with 12-point font size. For every user there were random texts each time,
to make sure nothing was out of memory. While timed, users were asked to read
the first text from 1.15 meters distance under normal circumstances. The specific
distance was preferred after tests and user feedback and will be discussed later on.
Then they were asked to read a random text for two different opacity levels of the two
implementations. For transparent windows, the opacity levels used were 0.5 and 0.2,
with 0 being totally transparent and 1 no transparent at all. For the overlay windows
the opacity levels were 0.8 and 0.5. with 1 being a fully colored overlay window and
0 completely transparent.

User Distance Opacity 0.2 1-5 grade Opacity 0.5 1-5 grade Opacity 0.2 Time Opacity 0.5 Time No opacity Time
1 1.15m 2 out of 5 3.5 out of 5 83.712 seconds 48 seconds 45 seconds
2 1.15m 3 out of 5 4 out of 5 66.438 seconds 48.51 seconds 46.71 seconds
3 1.15m 2.5 out of 5 4 out of 5 79.764 seconds 56.69 seconds 49,62 seconds

Table 8.2: Transparent Windows User Testing

Some of the results could be seen in the table Table 8.2 and Table 8.3 for a detailed
table please refer to the appendix

User Distance Opacity 0.5 1-5 grade Opacity 0.8 1-5 grade Opacity 0.5 Time Opacity 0.8 Time No opacity Time
1 1.15m 3.5 out of 5 4.5 out of 5 49 seconds 45 seconds 45 seconds
2 1.15m 4,5 out of 5 4 out of 5 40 seconds 47,39 seconds 46.71 seconds
3 1.15m 5 out of 5 4 out of 5 38.16 seconds 42.60 seconds 49.62 seconds

Table 8.3: Overlay Windows User Testing

In both cases, there was an actual impact on the readability of the texts and in
both cases, the background color could lower or raise the readability of a window.
For instance, in the first case, when the opacity of a window was decreased it became
completely unreadable if the window behind it included other files or directories, as
seen in Figure 8.2. Similarly, as seen in Figure 8.3 and Figure 8.4, visibility varies
according to the background.

8.2 Window Manager 53

Figure 8.1: Normal Window Figure 8.2: Window Transparency
with 0.2 Opacity with Folders in the
Background

Figure 8.3: Window Transparency
with 0.2 Opacity with White Back-
ground

Figure 8.4: Window Transparency
with 0.2 Opacity with Desktop Image
in the Background

On the other hand, for the overlay windows the readability was increased if the
covering window had a white background color (Figure 8.6) and the user was moving
further away, but as he closed by, the text became blurry. Furthermore, the users
reported that a dark colored overlay window (Figure 8.7) helped to increase the
visibility in close distances, but it was reduced dramatically when you moved further
away. The distance of the approaching user is a key element to the visibility and
ideally, the overlaying windows should have different background colors, but the test
users reported that the frequent color changes while working affected their work,
which made it more annoying than useful.

8.2 Window Manager 54

Figure 8.5: Normal Window Figure 8.6: Window Overlay with 0.8
Opacity and white Background

Figure 8.7: Window Overlay with 0.8 Opacity and black Background

In the following figures, there are examples of how the window readability was
tested for both implementations. The opacity levels were chosen in such way that for
the first test they would provide a slight change to the window and for the second
test the window should become almost invisible. The first two figures present a
transparent LibreOffice Writer window with 0.5 and 0.2 opacity levels with the default
background image of Ubuntu. The bottom pictures present the overlaying windows
with 0.5 and 0.8 transparency levels while having a white background.

8.2 Window Manager 55

Figure 8.8: Window Transparency
with 0.5 Opacity

Figure 8.9: Window Transparency
with 0.2 Opacity

Figure 8.10: Window Overlay with 0.5
Opacity

Figure 8.11: Window Overlay with 0.8
Opacity

The majority of testers reported that window transparency was more effective to
hide windows than the overlaying window. As an addition to the first tests, the users
were also asked to find a specific word in a random passage for both implementations
and under normal conditions in terms of room lighting. Their attempts were timed
once more and even though the difference was not significant, their performance was
worse for the transparent windows. The distance was one of the most influential
parameters and according to users, the readability zones could be divided into three
categories. For distances up to 1 meter from the monitor, the majority of users could
read everything with no particular difficulty, unless the window was almost invisible
or covered. For distances from 1.15 to 2 meters, the readability was highly influenced
from the window’s visibility. After 2 meters very few could read the passage even
without any active implementation. Therefore, the ideal distance to activate the
security feature is once the intruder passes the 2 meters. Of course, the safe distance
will vary between monitor and font sizes, but as a basis, the 2-meter border is a
realistic distance to trigger the security features.

To determine whether or not the implementations would reduce usability and
become yet another annoying security feature, random users were asked to type a
random passage, while the implementations were active and once when they were

8.3 Identification and Tracking 56

inactive. The majority of them thought windows being transparent while working
was interfering a lot with their work. The overlaying windows, on the other hand,
offered more flexibility until the focus window was not visible at all.

The feedback received from the users is purely based on their personal preferences
e.g. font size, background colors that felt more comfortable and the environmental
conditions, e.g. screen brightness, room illumination. Consequently, before deploying
any of the implementations, we have to adapt it to the working environment and the
authorized user accordingly. While the readability of the passages was relatively easy
to test, this is not the case with pictures and images. The amount of information an
external user can gain from an image depends on many parameters that could not be
predicted. An image of a blueprint, for example, with white lines on blue background
could easily be seen from long distances, without taking under consideration cases
where the authorized user zooms in.

8.3 Identification and Tracking
Both implementations are based on the system’s effectiveness to identify and track
individuals. Since the focus of the thesis is not the evaluation of the biometric ex-
perts, it is assumed that they function as intended while passing the correct data.
The subject is assumed that is authenticated when he enters the visibility zone thus
his access levels are known. To check the security features of the implementations,
functional tests were used and different cases, such as two persons being detected
in the room or one person not having the required permissions. For the tracking
system, it is assumed that the tracking can follow users through their entire path,
while also remain authenticated. Even though tracking an individual throughout his
entire trajectory is out of scope, it is still a requirement to detect whenever someone
leaves or enters the office and handle it accordingly. The tests were focused on how
the system handles detected persons, while they close by of leave the visibility zones.

Figure 8.12: Office test

In Figure 8.12 there are two visibility zones with their boundaries drawn. The
tracking system must be able to identify whenever someone crosses the green border
and notify the system for the approaching person. If the individual gets past the red

8.4 Window Manager and Motion Tracking 57

border, then the security measures are activated. The test was divided in two phases.
The first one was to determine if the crossing users were successfully identified both
when crossing individually and in groups. The second phase was to test if the security
features were triggered correctly.

Cases Point of Crossing Green Point of Crossing Red
1 Person (149, 230) 0
2 Persons (154, 158) (199, 251)
3 Persons (196, 252) (120, 123),(188, 236)

Table 8.4: User Tracking and Visibility Zones

The Table 8.4 is a small example of the tests conducted to test the tracking system.
Whenever someone crosses one of the boundaries, then there is an output of the point
of crossing. The boundaries have different outputs to distinguish the distance of the
subject from the monitor.

8.4 Window Manager and Motion Tracking
Last but not least, the window manager was tested for all its combined features
to realize whether messages are passed correctly between the components. The tests
include various scenarios, where subjects with different access rights enter the visibility
zone, while multiple windows are open with varying access levels. The Table 8.5
contains the performed tests which follow a similar approach as in the [FW04].

8.4 Window Manager and Motion Tracking 58

Events Test Case Result Status
A person enters the
visibility zone

No open windows No actions OK

A person enters the
visibility zone

Windows with lower
access levels than the
approaching user

No actions OK

A person enters the
visibility zone

Windows with higher
access levels than the
approaching user

Windows are
covered/become
transparent

OK

The person leaves the
visibility zone

Windows with higher
access levels than the
approaching user

Windows are back to
normal

OK

Two persons enter
the visibility zone

Windows with higher
access levels from one
of the approaching
user

Windows are
covered/become
transparent

OK

Two persons enter
the visibility zone

Windows with lower
or the same access
levels from the
approaching users

No actions OK

One person leaves the
visibility zone the
other stays

Windows with higher
access levels from the
remaining user

Windows are
covered/become
transparent

OK

Table 8.5: Window Manager

The system was able to handle users entering or leaving the office area, both
individually and in pairs. As long as the users are authenticated beforehand, the
tracking system is able to retrieve their access levels successfully. Nevertheless, as
the number of people entering the room is increased, the system is more prone to
tracking errors.

CHAPTER 9
Conclusion

The primary objective of this thesis was to demonstrate an access control mechanism,
that combines logical and physical access control utilizing sensors. The proposed Sen-
sor Enhanced Access Control model aims to counter the limitations of logical access
control systems that make them insufficient when data is represented by an external
device, while also providing contextual awareness. The prototype was implemented
and tested on Ubuntu 16.04.1 but there should be no problems with other Unix
distributions, since it can be mounted as a virtual file system. The model follows
the traditional discretionary access control policy regulated by the UNIX reference
monitor.

The contributions of the system include a module that operates as a virtual file
system, which contains the rest of the components. These components include a mo-
tion tracking algorithm attached with sensors and a window manager that handles
all open windows. The motion tracking algorithm identifies any possible movement
and keeps track of any subject in the camera’s range. The algorithm evaluates the
subject’s position and the distance from the computer screen. The window manager
operates as an additional reference monitor, that relies on sensor reading provided
by the motion tracking algorithm to mediate access to an object. When the subject
proceeds towards the screen, then the window manager is responsible for securing any
open files or directories. This is achieved either by making the windows invisible or
creating an overlay window to cover them. Transparency is changed gradually to the
point when windows become invisible as the distance from the computer is decreased,
while the overlay windows follow an inverse approach. The overlay windows are cre-
ated as completely invisible and they become more opaque according to the subject’s
position. Both solutions were tested by external users, that helped to evaluate their
effectiveness in hiding the projected data and their impact on usability.

During the tests, the users provided feedback, with the majority of them reporting
that window invisibility was more successful on hiding the windows but the impact
in usability was greater, disrupting the users work. Additional, tests were performed
to evaluate the prototype’s ability to keep track of the individuals walking in the
office and if it can identify and handle the window permissions correctly. Overall,
the prototype performed well when individuals proceed in numbers of two or three
persons at a time, but it failed when more than four people entered at the same
time. On the other hand, the windows were identified correctly and access control
was enforced successfully when needed.

Either approach for securing the windows is considered viable when planned cor-
rectly. The adaptation for each environment requires proper calibration since every
environment contains different equipment, e.g. cameras and different conditions, e.g.

9.1 Future Work 60

lighting. In conclusion, the prototype by itself, provides context awareness to the
traditional access control models and can mediate access to both logical and physical
objects. When combined with persistent authentication and remote authentication
mechanisms, it can extend its capabilities further as an enhanced and ubiquitous
security model.

9.1 Future Work
Future work on the prototype will primarily be focused on remote authentication and
a state of the art tracking algorithm, that can keep track individuals and handle a
bigger number of subjects. Furthermore, there is also the need to replace the access
control model of UNIX with Role Based Access Control that can manage applications
and processes in addition to files and directories. Additionally, the model can be
integrated with more output devices such as printers or speakers providing security
functions in corporate and home environments.

APPENDIX A
An Appendix

The appendix includes all the performed tests used to evaluate the prototype and
some basic information about the UNIX permission system. To mount the prototype:
sudo python fuse_fs.py <The target directory to view at the mount point> <The
mount point to view the target directory>

A.1 Evaluation
The prototype was implemented and tested in Ubuntu version 16.04.1. Files and users
were created for the tests with different access levels to serve our purposes. There
will be an explanation of each file that describes the owner and the access rights. The
access rights follow the traditional Unix permission scheme with read, write, execute
for owner, group and other. The following tables serve as a reminder of the UNIX
permission notation.

Letter Representation Octal Representation Explanation
rwx 7 Read, write and execute
rw- 6 Read, write
r-x 5 Read, and execute
r– 4 Read
-wx 3 Write and execute
-w- 2 Write
–x 1 Execute
— 0 no permissions

Table A.1: Unix Permissions

Permissions Octal Field
rwx—— 700 User
—rwx— 070 Group
——rwx 007 Other

Table A.2: Unix Permission Scopes

A.1 Evaluation 62

A.1.1 FUSE and MAC tests
The files used have the following properties:

• foo.txt has owner the user A and its permission bits are 700 which means only
user A has permissions.

• bar.txt has owner the user B and its permission bits are 700 which means only
user B has permissions.

• test folder is created from user B with default permissions.

User Command Test Case Expected Status
A cat > foo.txt Create file Create file OK
A cat foo.txt Read File Read File OK
A rm foo.txt Delete File Delete File OK
A cat bar.txt Read File of User B Not Permitted OK
A echo ’test test’ » bar.txt Write File of User B Not Permitted OK
A rm bar.txt Delete File of User B Not Permitted OK
B link test.txt test2.txt Link File test.txt to test2.txt Permitted OK
B cp foo.txt bar.txt Copy File of User A Not Permitted OK
B mkdir test folder Create Directory Permitted OK
B unlink test2.txt Unlink a File B Permitted OK
B echo ’test test’ » bar.txt Write File of User B Permitted OK
B rm bar.txt Delete File of User B Permitted OK
root sudo chmod 700 Change File Permissions Permissions changed to root only OK
root sudo chown A bar.txt Change File Owner File new owner is A OK
root sudo rm bar.txt Delete File Permitted OK
root sudo stat bar.txt Retrieve File’s extended Attributes Permitted OK
root sudo echo ’test test’ » foo.txt Write File of User A Permitted OK
root sudo echo ’test test’ » bar.txt Write File of User B Permitted OK

Table A.3: FUSE and MAC extended tests

A.1.2 Window Manager tests
The table presents various opened windows in various positions and sizes. The per-
missions are only visible for the files and directories. The permissions are as follows:

• 755: Owner has full permissions. Group and Other can only read and execute

• 664: Owner and Group cannot execute. Other can read only

• 740: Owner has full permissions. Group can only read while Other has no
permissions.

• 600: Owner can only read and write. Group and Other have no permissions.

• 700: Owner has full permissions. Group and Other have no permissions.

A.1 Evaluation 63

XID (x,y) position (width,height) Window Name Access Rights
79691792 (65,24) (1301,647) Mozilla Firefox -
41945382 (306,24) (890,494) Documents 755
58720725 (724,45) (642,406) test text.odt - LibreOffice Writer 664
54526084 (65,24) (1301,647) foo.txt 740
56623114 (686,113) (722,438) test@ubuntu: /Desktop/foobar -
81788936 (65,24) (1301,647) test.pdf 600
41945916 (65,24) (1301,647) foobar 700
109026 65,43) (800,628) Ubuntu Web Browser -
109171 (65,24) (1200,647) Ubuntu Software -

Table A.4: Windows position and access rights testing

A.1.3 Window Overlay and Window Cover Complete tests
The tables present the user tests to determine which implementation secures windows
in the most optimal way.

User Distance Opacity 0.2 1-5 grade Opacity 0.5 1-5 grade Opacity 0.2 Time Opacity 0.5 Time No opacity Time
1 1.15m 2 out of 5 3.5 out of 5 83.712 seconds 48 seconds 45 seconds
2 1.15m 3 out of 5 4 out of 5 66.438 seconds 48.51 seconds 46.71 seconds
3 1.15m 2.5 out of 5 4 out of 5 79.764 seconds 56.69 seconds 49.62 seconds
4 1.15m 2 out of 5 3 out of 5 79.2 seconds 59.62 seconds 46.69 seconds
5 1.15m 2 out of 5 3.5 out of 5 67.72 seconds 53.54 seconds 51.65 seconds
6 1.15m 1 out of 5 3 out of 5 80.22 seconds 51.33 seconds 48.11 seconds
7 1.15m 2.5 out of 5 4 out of 5 70.83 seconds 53.05 seconds 48.34 seconds
8 1.15m 3 out of 5 3.5 out of 5 65.78 seconds 52.9 seconds 50.21 seconds
9 1.15m 2 out of 5 3 out of 5 72.61 seconds 50.47 seconds 47.3 seconds
10 1.15m 2 out of 5 3 out of 5 71.67 seconds 49.57 seconds 46.85 seconds
11 1.15m 2.5 out of 5 4 out of 5 75.05 seconds 52.21 seconds 49.23 seconds
12 1.15m 2.5 out of 5 3.5 out of 5 78 seconds 50.33 seconds 47.9 seconds
13 1.15m 3 out of 5 4 out of 5 74.5 seconds 55.12 seconds 50.06 seconds
14 1.15m 1 out of 5 3 out of 5 79.11 seconds 58.45 seconds 51 seconds
15 1.15m 2 out of 5 3 out of 5 75.9 seconds 49.5 seconds 48.03 seconds
16 1.15m 2 out of 5 3.5 out of 5 72 seconds 50.42 seconds 49.83 seconds
17 1.15m 2.5 out of 5 3.5 out of 5 70.53 seconds 48.87 seconds 46.35 seconds
18 1.15m 2 out of 5 3 out of 5 74.05 seconds 51.65 seconds 48.18 seconds
19 1.15m 2 out of 5 4 out of 5 76.28 seconds 53.09 seconds 50 seconds
20 1.15m 3 out of 5 4 out of 5 71.4 seconds 56.18 seconds 52.60 seconds

Table A.5: Transparent Windows all User Testing

A.1 Evaluation 64

User Distance Opacity 0.5 1-5 grade Opacity 0.8 1-5 grade Opacity 0.5 Time Opacity 0.8 Time No opacity Time
1 1.15m 3.5 out of 5 4.5 out of 5 49 seconds 45 seconds 45 seconds
2 1.15m 4,5 out of 5 4 out of 5 40 seconds 47,39 seconds 46.71 seconds
3 1.15m 5 out of 5 4 out of 5 38.16 seconds 42.60 seconds 49.62 seconds
4 1.15m 4 out of 5 3.5 out of 5 40.24 seconds 52.41 seconds 46.69 seconds
5 1.15m 3.5 out of 5 3 out of 5 39.17 seconds 51.02 seconds 51.65 seconds
6 1.15m 4 out of 5 3.5 out of 5 41.04 seconds 50.33 seconds 48.11 seconds
7 1.15m 4 out of 5 3 out of 5 40.33 seconds 50.15 seconds 48.34 seconds
8 1.15m 4 out of 5 3.5 out of 5 45.81 seconds 52 seconds 50.21 seconds
9 1.15m 3.5 out of 5 3 out of 5 42.01 seconds 50.47 seconds 47.3 seconds
10 1.15m 4 out of 5 3 out of 5 41.56 seconds 48.04 seconds 46.85 seconds
11 1.15m 4 out of 5 4 out of 5 42 seconds 50.11 seconds 49.23 seconds
12 1.15m 5 out of 5 3 out of 5 43.62 seconds 49 seconds 47.9 seconds
13 1.15m 4.5 out of 5 4 out of 5 41.19 seconds 48.86 seconds 50.06 seconds
14 1.15m 4 out of 5 3.5 out of 5 45.48 seconds 48.23 seconds 51 seconds
15 1.15m 4 out of 5 4 out of 5 42.86 seconds 51.68 seconds 48.03 seconds
16 1.15m 4 out of 5 3.5 out of 5 40 seconds 50.26 seconds 49.83 seconds
17 1.15m 4.5 out of 5 3.5 out of 5 39.82 seconds 45.28 seconds 46.35 seconds
18 1.15m 3.5 out of 5 3 out of 5 44.58 seconds 49.7 seconds 48.18 seconds
19 1.15m 4 out of 5 3 out of 5 46.5 seconds 53.15 seconds 50 seconds
20 1.15m 4 out of 5 3.5 out of 5 48.66 seconds 51.92 seconds 52.60 seconds

Table A.6: Overlay Windows all User Testing

Bibliography
[Abo+99] Gregory Abowd et al. “Towards a better understanding of context and

context-awareness”. In: Handheld and ubiquitous computing. Springer. 1999,
pages 304–307.

[AlM+03] Jalal Al-Muhtadi et al. “Cerberus: a context-aware security scheme for
smart spaces”. In: Pervasive Computing and Communications, 2003.(Per-
Com 2003). Proceedings of the First IEEE International Conference on.
IEEE. 2003, pages 489–496.

[BN89] David FC Brewer and Michael J Nash. “The chinese wall security policy”.
In: Security and privacy, 1989. proceedings., 1989 ieee symposium on.
IEEE. 1989, pages 206–214.

[CN02] Mark D Corner and Brian D Noble. “Zero-interaction authentication”. In:
Proceedings of the 8th annual international conference on Mobile comput-
ing and networking. ACM. 2002, pages 1–11.

[CN05] Mark D Corner and Brian D Noble. “Protecting file systems with tran-
sient authentication”. In: Wireless Networks 11.1-2 (2005), pages 7–19.

[Cov+01] Michael J Covington et al. “Securing context-aware applications using en-
vironment roles”. In: Proceedings of the sixth ACM symposium on Access
control models and technologies. ACM. 2001, pages 10–20.

[Cov04] Michael J Covington. “A flexible security architecture for pervasive com-
puting environments”. PhD thesis. Georgia Institute of Technology, 2004.

[DC48] Edgar Dale and Jeanne S Chall. “A formula for predicting readability:
Instructions”. In: Educational research bulletin (1948), pages 37–54.

[EHD00] Ahmed Elgammal, David Harwood, and Larry Davis. “Non-parametric
model for background subtraction”. In: Computer Vision—ECCV 2000
(2000), pages 751–767.

[FW04] Kristine Frank and Ida C Willemoes-Wissing. “Combining logical and
physical access control for smart environments”. Master’s thesis. Technical
University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark, 2004.

[HFK06] Vincent C Hu, David Ferraiolo, and D Richard Kuhn. Assessment of
access control systems. 2006.

[HKZ87] Robert A Hummel, B Kimia, and Steven W Zucker. “Deblurring gaussian
blur”. In: Computer Vision, Graphics, and Image Processing 38.1 (1987),
pages 66–80.

Bibliography 66

[Hu+14] Vincent C Hu et al. “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations”. In: NIST Special Publication 800 (2014),
page 162.

[IAJ13] Mads I Ingwar, Naveed Ahmed, and Christian D Jensen. “Error-rate-
based fusion of biometric experts”. In: Privacy, Security and Trust (PST),
2013 Eleventh Annual International Conference on. IEEE. 2013, pages 239–
246.

[IBM14] IBM. Develop your own filesystem with FUSE. https://www.ibm.com/
developerworks/library/l-fuse/index.html. 2014.

[Its15] Itseez. Open Source Computer Vision Library. https://github.com/
itseez/opencv. 2015.

[JGW13] Christian Damsgaard Jensen, Kristine Geneser, and Ida C Willemoes-
Wissing. “Sensor enhanced access control: extending traditional access
control models with context-awareness”. In: IFIP International Confer-
ence on Trust Management. Springer. 2013, pages 177–192.

[Jon07] Tim Jones. “Anatomy of the linux file system”. In: IBM developerWorks,
October (2007).

[Kap+07] Apu Kapadia et al. “Virtual walls: Protecting digital privacy in perva-
sive environments”. In: International Conference on Pervasive Computing.
Springer. 2007, pages 162–179.

[KG00] Andrew J Klosterman and Gregory R Ganger. “Secure continuous biometric-
enhanced authentication (cmu-cs-00-134)”. In: (2000).

[KH08] Martin Kirschmeyer and Mads Syska Hansen. “Persistent authentication
in smart environments”. PhD thesis. Technical University of Denmark,
DTU, DK-2800 Kgs. Lyngby, Denmark, 2008.

[Lam74] Butler W Lampson. “Protection”. In: ACM SIGOPS Operating Systems
Review 8.1 (1974), pages 18–24.

[Lib] Libwnck. Libwnck Reference Manual. https://developer.gnome.org/
libwnck/stable//.

[NC02] Brian D Noble and Mark D Corner. “The case for transient authentica-
tion”. In: Proceedings of the 10th workshop on ACM SIGOPS European
workshop. ACM. 2002, pages 24–29.

[Pic04] Massimo Piccardi. “Background subtraction techniques: a review”. In:
Systems, man and cybernetics, 2004 IEEE international conference on.
Volume 4. IEEE. 2004, pages 3099–3104.

[PIR15] PIROPO. PIROPO database. https : / / sites . google . com / site /
piropodatabase/. 2015.

[PyG11] PyGTK. PyGTK 2.0 Reference Manual. http : / / www . pygtk . org /
pygtk2reference/. 2011.

https://www.ibm.com/developerworks/library/l-fuse/index.html
https://www.ibm.com/developerworks/library/l-fuse/index.html
https://github.com/itseez/opencv
https://github.com/itseez/opencv
https://developer.gnome.org/libwnck/stable//
https://developer.gnome.org/libwnck/stable//
https://sites.google.com/site/piropodatabase/
https://sites.google.com/site/piropodatabase/
http://www.pygtk.org/pygtk2reference/
http://www.pygtk.org/pygtk2reference/

Bibliography 67

[Raj] Qasim Mahmood Rajpoot. “Enhancing Security and Privacy in Large-
Scale Video Surveillance through Role-Oriented Access Control Mecha-
nism”. In: ().

[SAW94] Bill Schilit, Norman Adams, and Roy Want. “Context-aware comput-
ing applications”. In: Mobile Computing Systems and Applications, 1994.
WMCSA 1994. First Workshop on. IEEE. 1994, pages 85–90.

[SMS16] Babins Shrestha, Manar Mohamed, and Nitesh Saxena. “Walk-Unlock:
Zero-Interaction Authentication Protected with Multi-Modal Gait Bio-
metrics”. In: arXiv preprint arXiv:1605.00766 (2016).

[TLC09] Massimo Tistarelli, Stan Z Li, and Rama Chellappa. Handbook of remote
biometrics. Volume 1. Springer, 2009.

[Ver] Giorgos Verigakis. Fusepy Documentation Release 2.0.2. https://media.
readthedocs.org/pdf/fusepy/latest/fusepy.pdf.

https://media.readthedocs.org/pdf/fusepy/latest/fusepy.pdf
https://media.readthedocs.org/pdf/fusepy/latest/fusepy.pdf

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Context Awareness
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Thesis Organization

	2 Access Control
	2.1 Access Control Overview
	2.2 Identification and Authentication
	2.3 Access Control
	2.4 Accountability

	3 Persistent Authentication
	3.1 Continuous Authentication
	3.2 Biometrics and Facial Recognition
	3.3 Motion and Human Tracking
	3.4 Virtual Walls

	4 Virtual File System & FUSE
	4.1 Kernel and User Space
	4.2 Virtual File System
	4.3 Filesystem in Userspace

	5 Context Aware Access Control
	5.1 Logical Access Control
	5.2 Physical Access Control
	5.3 Reference Monitor

	6 Design
	6.1 System's Overview
	6.2 Interactions Between Components
	6.3 Window Cover
	6.4 FUSE

	7 Implementation
	7.1 The Virtual File System
	7.2 Tracking and Motion Detection
	7.3 Window manager

	8 Evaluation & Experimental Design
	8.1 Access Control in the Virtual File System
	8.2 Window Manager
	8.3 Identification and Tracking
	8.4 Window Manager and Motion Tracking

	9 Conclusion
	9.1 Future Work

	A An Appendix
	A.1 Evaluation

	Bibliography

