
A framework for malware analysis
in a stand-alone email-server

Daniel Tolboe Handler

Kongens Lyngby 2017

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

Summary (English)

100,000,000,000 spam mails are sent and received every day. Even though most
email clients are equipped with spam �lters, the common user, still receives a se-
vere amount of unwanted emails every day. The problem, to spam �lters, is the
fact that the user expects the �lter to let every genuine email through. When
spam �lters lower the rate for false positives (genuine emails marked malicious)
they increase the rate for false negatives (malicious emails marked genuine).
This increases the need for user awareness, to ensure that he do not open any
unwanted email.

This project proposes a solution, to which the user can forward an email marked
genuine by the spam �lter, but looks suspecious to the user. In return, the user
receives an exhaustive analysis of the content of the email, whether the content
is a link in the email or an attached �le. The solution will be implemented as a
framework written in Python on a stand-alone emailserver. The framework will
include static and dynamic �le analysis, passive and active link analysis.

ii

Summary (Danish)

Der sendes og modtages 100.000.000.000 spammails hver dag. Selvom de �este
email klienter har indbygget spam�lter, modtager den almindelige bruger stadig
en del spammails. Problemet for spam�ltrene er, at brugeren forventer at alle
reelle emails for lov at komme igennem �lteret. Når spam�lteret dermed for-
mindsker antallet af falske positiver (reelle mails, klassi�ceret som ondsindet)
forøges antallet af falske negativer (ondsindende emails, klassi�eret som reelle).
Dette øger behovet for brugerens opmærksomhed når han modtager emails, for
at undgå at åbne ondsindende emails.

Dette projekt foreslår en løsning, til hvilken, brugeren kan videresende en mistæn-
kelig email der er sluppet igennem spam�lteret. Brugeren vil dernæst modtage
en grundig analyse af indholdet af email, hvad enten det er et link i emailen
eller en vedhæftet �l. Løsningen vil blive implementeret som et framework på
en selvstændig emailserver. Vores framework vil inkludere statisk og dynamisk
�lanalyse, samt passiv og aktiv linkanalyse.

iv

Preface

This thesis was prepared at DTU Compute in partial ful�lment of the require-
ments for acquiring an M.Sc. in Engineering.

As sophisticated modern malware scanners have become, the more sophisticated
the creators of the malware has developed, hence some malware is labelled
safe by the scanner, but contains malicious code. This is partially due to the
fact that the scanners embedded in anti-virus software or mail services has to
�nd a balance between false positives and false negatives, such that no genuine
emails are blocked. The aim of the project is to develop a stand-alone email
server, to which the user can forward suspicious emails labelled safe by the
automated malware scanner. The server will, in a closed environment, analyse
links, attached �les etc. and return the result to the user. Since the user has
already received the suspected email and forwarded it to the service, because she
found it suspect, there will be no need to either classify the email safe/unsafe,
however the server should develop a more exhaustive description of the content
of the email, without worrying about false positives or false negatives. The
outcome of the project will be a mail server and an analysing environment. It
will contain a framework for integrating scanners. It will be able to create a
report to return to the user. Finally, the server will be evaluated.

Lyngby, 28-February-2017

Daniel Tolboe Handler
s113446

vi

Acknowledgements

This project has been developed with support from my supervisor Christian
Damsgaard Jensen, DTU Compute.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 The false rate problem . 2

1.2 A question of trust . 4

1.3 The project . 4

1.4 Contributions . 5

2 State of the art 7

2.1 Malware . 8

2.2 Common infection vectors . 9

2.2.1 Web pages . 10

2.2.2 Files . 10

2.3 Static analysis . 11

2.3.1 n-gram analysis . 11

2.3.2 Embedded object analysis 12

2.4 Dynamic analysis . 13

2.4.1 Sandboxing . 13

2.5 Forensic analysis of IP address 14

2.5.1 Passive analysis . 15

2.5.2 Active analysis . 15

2.6 Summary of State of the Art . 15

x CONTENTS

3 Analysis 17

3.1 User awareness . 18

3.1.1 Phishing . 18

3.1.2 Linked software . 19

3.1.3 Drive-by downloads . 20

3.1.4 Watering hole . 20

3.2 Forensic analysis . 21

3.2.1 Suspicious �le . 21

3.2.2 Suspicious link . 22

3.3 Summary of Analysis . 23

4 Design 25

4.1 The environment . 25

4.2 The front-end . 26

4.3 The back-end . 26

4.4 Result and reporting . 29

4.5 Summary of Design . 29

5 Implementation 31

5.1 Operating system . 31

5.2 Mail server . 31

5.3 Framework . 32

5.3.1 File analysis . 33

5.3.2 Link analysis . 39

5.4 The report . 40

5.5 Summary of Implementation . 42

6 Evaluation 43

6.1 Evaluation of �le analysis . 44

6.1.1 File type analysis . 44

6.1.2 Meta data extraction . 44

6.1.3 Macro analysis . 45

6.1.4 Object analysis . 46

6.1.5 Known malicious activity 46

6.1.6 Behaviour analysis . 46

6.2 Evaluation of link analysis . 47

6.2.1 Registrant . 48

6.2.2 Geographical location . 48

6.2.3 Known malicious activity 48

6.2.4 Content . 49

6.3 Final evaluation . 49

6.4 Summary of Evaluation . 50

CONTENTS xi

7 Conclusion 51
7.1 Future work . 53

A How to run the server 55

B Example report 57

C Testing URLs 59

Bibliography 61

xii CONTENTS

Chapter 1

Introduction

The exhaustive use of email as primarily communication form in our society
today, makes the importance of working email clients clear. We send and receive
several emails per day and has to consider every single one of them. The cyber
criminals are as active as they have ever been, and use emails to attack. The
sophisticated email clients we use today are equipped with anti-spam �lters, to
sort out these malicious emails. The �lters will e.g. look into the emails for
certain string patterns and hereby detect which emails are genuine and which
emails are unwanted. Spam mails � named so, after the 1970 sketch by Monty
Python � are de�ned by the Oxford Dictionary as �Irrelevant or unsolicited
messages sent over the Internet, typically to large numbers of users, for the
purposes of advertising, phishing, spreading malware, etc.� According to resent
research, more than half of all emails received every day around the world can
be classi�ed as spam [AB17].
Throughout the report we will use the term spam as an umbrella term for any
kind of unwanted emails. We divide spam mails into following three categories:

Junk mail Any unharmful � yet annoying - mail received be a user. The
content is typically related to advertising.

Phishing mail Any mail send with the aim to harm the receiver. The content
requires the receivers interaction to be malicious, e.g. opening a link or
executing a �le.

2 Introduction

Auto-executable mail Any mail send with the aim to the receiver, which will
release the malicious content without any user interaction needed. We will
not handle this sort of mail in the project.

Spam mails represent an increasing problem, due to the amount of resources
used to �lter the spam mails from the genuine emails. According to [Fal03]
spends 60% of email users more than 5 minutes per day to �lter emails. The
�nancial cost of spam mails is not determined exactly, however [Fal03] estimates
the cost for American companies to be approximately 50$ per employee per year.

1.1 The false rate problem

As the main concern of anti-spam �lters in mail clients is to protect the user
against malware and phishing, they encounter a hurdle. The �lter should not
prevent any legitimate emails to arrive at the user. Hence the developer has
to make a well considered threshold between denying as many malicious mails
as possible, but allowing as many � preferably all � genuine mails as possible.
Due to Danish law, all authorities in Denmark have to journalise all documents
related to any proceeding, hence they have to receive and classify all incoming
mail1. This is one of many reasons to ensuring all genuine mails are allowed
through the spam �lter.
For user experience reasons the developer wants the false positive rate as low
as possible (ideally zero). But when lowering the false positive rate, the false
negative rate will increase, which means that some spam mails will be labelled
genuine, and accepted through the �lter. This means the user has to be aware
of the fact that not all emails in her mail box are to be trusted.
Figure 1.1 shows the relationship between the true positive, true negative, false
positive and false negative rates, when the error rate is distributed equally. If
this setup was adapted to the email �lters, the �lter would mark a signi�cant
amount of genuine mails as spam.

Figure 1.2 shows the relationship between true positive, true negative, false
positive and false negative rates, when the error rate is pushed, such that there
is zero error rate on false positives. It clearly shows that the amount of false
negatives has increased, hence the user will receive more spam mails, labelled
as genuine. However ideally the user will receive all genuine mails as well.

However not all users are skilled enough to decipher spam from genuine emails
and our interaction with the state, bank, hospital etc. is heavily relying on

1In Danish: Journaliseringspligt

1.1 The false rate problem 3

Figure 1.1: False positive and false negative rate, with equal distribution of
false positives (orange area) and false negatives (blue area). The
black line marks the analysis threshold.

Figure 1.2: False positive and false negative rate, with zero error rate on false
positives, however a larger amount of false negatives (blue area).
The black line marks the analysis threshold.

digital communication. Phishing campaigns against nemID2-users are common
and phishing mails pretending to be from the Danish tax authority or postal
services are not unheard of.
In a perfect world, spam �lters would sort out anything the user �nd irrelevant
or malicious, however as the world is today, the users has to be aware of the
content of the emails they are receiving in their inboxes.

2NemID is the o�cial Danish digital signature, used by banks, governmental authorities
and a number of organisations[Dig17]

4 Introduction

1.2 A question of trust

The big issue of spam mails today, is the fact that the ordinary user has a
hard time deciding whom to trust and whom not to trust. Even though the
user knows that he cannot trust everything arriving in his email inbox, human
curiosity and the fact that we still receive an increasing amount of o�cial mails,
that has to be opened, entails a risk of opening something malicious.
One thing is when the ordinary user receives an email, that claims his rich,
non-existing, American uncle has died, and he has inherited millions of dollars.
This would get most user alarmed, and they can then take necessary precautions
(probably just deleting the email).
But most user will open an email, if it contains an invoice or similar, that
might be genuine � and might risk the user to be of extra expense, if it is a
genuine invoice, and is not paid or rejected in time. Rather recently a wave
of ransomware attacks, stroke against a range of Danish companies[Dub17].
The attackers had bought .com-domains similar to the .dk-domain of a Danish
carpenter company and used this to send of fake invoices. The mails was in
perfect Danish and the only suspicious part was the .com-domain. This is a great
example of how attackers can use common obligations to target the victims.

1.3 The project

To address the problems described in Sections 1.1 and 1.2, the aim of this project
will be to design and develop an automated, user-friendly solution to investigate
and help classify email, which the spam �lter has marked as genuine, but the
user suspects belongs in the blue area of Figure 1.2.
This gives two main challenges to solve:

User awareness The solution is based on the user to detect emails, which looks
suspicious. If the user open every emails, without considering it might be
spam, the solution will be useless. The Danish national broadcaster, DR,
sent, in a internal test, 3000 fake phishing mails to the employees. Around
50% of the recipients open the mail[Boy16]. We get regular warnings from
the government, tax authorities, the mail carriers, Nets3 etc. about phish-
ing campaigns, where the attackers try to imitate the genuine institutions.
Many of these phishing campaigns are carried out poorly, such that the
users quickly notice the suspect emails. However an increasing number of

3The Nordic digital payment administrator

1.4 Contributions 5

campaigns are looking more like the original institutions, and this makes
the need for user awareness grow.

Zero error rate Due to the fact that the user already has detected the sus-
picious email, we need to ensure that the solution makes a exhaustive
analysis of the email, such that the user can rely on the answer. Whereas
standard spam mail detectors has to take the false positive and false neg-
ative rates in consideration, the solution will merely focus on lowering the
false negative rate, cf. Section 1.1. This gives the solution the advantage,
that it doesn't have to classify the email good or bad, but merely graduate
the maliciousness and help the user decide whether to trust the mail or
not.

1.4 Contributions

The project will conclude with a product, that will handle the problems stated
in Sections 1.1 and 1.3. The formal speci�cations of the product is listed in
Table 1.1.

No. Requirement Description

01 Automated analysis

The solution should automatic
receive emails, retract suspect
content and analyse the content
for malware or phishing. The ex-
amination should be exhaustive
and rely on both static and dy-
namic analysis.

02 User friendly

The tool has to be user friendly.
The user should do nothing more
than send the suspicious email to
the tool and receive the result of
the examination back.

03 Reporting

The tool should give an easy-to-
access report to the user, such
that non-technical users will be
able to decipher the result of the
examination.

Table 1.1: Product requirements

The report will discuss the current state-of-the-art development in the relevant
subjects of malware analysis and sandboxing in Chapter 2. The problem analysis

6 Introduction

can be found in Chapter 3. The design and implementation of the automated
tool is found in Chapters 4 and 5. Finally the product is evaluated in Section 6
and the report is concluded in Chapter 7.

Chapter 2

State of the art

In our digital life, emails are a very integrated part. However as the use of
emails explode[RH11] (269,000,000,000 emails are sent every day) the amount
of spam mails is increasing. The intention of spam mails can be everything
from clickbait[PKSH16] to blackmailing the user or getting classi�ed/sensitive
informations. This chapter will examine some of the most common types of
spam mails nowadays and which methods are used to limit the damages from
these.
Malicious emails can roughly be split into two main groups, namely mails with
malicious content attached, and mails with malicious content in the body of the
email. The malicious content can be divided into two groups:

Code Malicious, executable code, that is installed on the victims computer.
The code can be attached to the email as an innocent looking attached
�le or can be hosted at a webpage, to which the email has a link embedded.
The behaviour, when opened, can be everything from encrypting the vic-
tims computer (ramsomware) to information gathering (spyware). We will
discuss these types of malware and how to classify them, in Section 2.1.

Data The content of email will try to get the victim to send classi�ed infor-
mation to the sender, either by replying the email or following a link to
a malicious webpage, where the victim is encouraged to share sensitive
information, e.g. social security number, nemID or login credentials to

8 State of the art

e.g. Google or Facebook. This type of email is harder to protect against,
and depends heavily on user awareness to be discovered. The need for
user awareness is further discussed in Section 3.1.

When analysing malware, two main approaches are used: Static analysis and
dynamic analysis. These approaches will be reviewed in Sections 2.3 and 2.4.
But �rst we will brie�y review some of the current sort of malware.

2.1 Malware

A piece of software, which purpose is intentionally to harm the victim is known
as malware � short for malicious software. We de�ne the user receiving the
malware as the victim, and the user developing and distributing the malware
as the attacker. Malware is fractioned into several groups. This section will
brie�y review these by comparing propagation mechanisms and purposes of the
malware:

Propagation mechanisms

Virus A virus is a piece of code, which cannot propagate on its own. So it
has to add itself to other programs or operating systems to survive and
spread. Viruses will normally try to spread to other hosts by using shared
�les, emails or network connections.

Worm A worm is quite similar to the virus, however it is capable of propagating
independently. The worm will use �le-transport mechanisms or network
connections to infect other machines.

Trojan A trojan or a trojan horse is a piece of software that pretends to be
innocent, but performs malicious activity in the background. Trojans
include browser plugins, games etc. Unlike viruses and worms, the trojan
will not try to spread to other machines by itself.

Purpose

Spyware This type of malware spies on the infected host, by sending infor-
mation from the host to the attacker. This information can include sen-
sitive information about the user, banking information, business secrets

2.2 Common infection vectors 9

etc. Spyware is commonly seen as trojans, i.e. they propagate as innocent
looking software.

Bot A bot is a remotely controlled piece of malware. When infected, the
host can be controlled to participate in a botnet. The attacker will use
a command-and-control software to manage the botnet, which are used
for spamming, Distributed Denial of Service-attacks1 etc.

Ransomware Ransomware is a more recent type of malware. Ransomware
encrypts the victims harddrive, and then ask for an amount of money (a
ransom) to decrypt the �les again. Depending on the time period from
infection to the revelation of the ransomware, backups, �leservers and
external harddrives might be infected as well.

Doxware Doxware is a new sort of malware, which, like ransomware, requires
the victim to pay a ransom. But instead of encrypting the victims com-
puter, doxware will use spyware-like mechanisms to retrieve sensitive �les,
and use these for blackmailing the victim[Ens17].

Scareware By using the victims anxiety, scareware will lure the victim to harm
his own computer, e.g. by claim that the victim is infected, and get the
victim to delete some �les to remove the infection. Scareware is usually
found online, where the user is presented with a pop-up window, which
e.g. states the "You have been infected". This can be followed by a link
to a trojan, pretending to be a malware scanner.

The amount of malware types and versions is extensive and increasing, and the
discussed types are only a fraction of it. New editions of most malware types
are discovered frequently, as the attackers develop new ways of attacking and
infecting their victims.

2.2 Common infection vectors

To get a victim infected with malware, it usually requires the user to interact
more or less direct with the attacker. This section will review the current state
of some of the vectors, the attackers use to trick the victim.

1A Denial of Service-attack targeting a webpage, will typically sent more requests to the
webpage than it can handle, and hereby disrupting the webpage. When Distributed the attack
will have several sources to send the requests from[Wan06].

10 State of the art

2.2.1 Web pages

Compromised webpage A webpage which is partly or fully controlled by
an attacker is compromised. The attacker will either compromise the web
server to add e.g. a Javascript-plugin to the webpage, using known browser
vulnerabilities, redirect links or compromise via advertising[MC09] � only
the imagination decides what the attacker might do. If the owner of the
webpage is unable to detect the compromising, it is hard for the user to
protect against.

Fake website In opposition to compromised webpages, fake webpages are de-
signed to trick the victim. Fake webpages are widely used to lure login-
credentials from user e.g. by pretending to be a genuine log-in interface
from a wellknown service[AC09]. When the user has submitted his cre-
dentials, the fake webpage stores the credentials, and redirect the user
onto the real service. This is hard to discover by the user and is a highly
e�cient way to collects credentials. The fake webpages usually uses URL
that looks like the genuine (e.g. Google with an extra 'o' etc.).
The previous example of a compromised carpenter company in Section 1.2
is a recent example of an attack using a fake webpage.

2.2.2 Files

Microsoft O�ce Documents The Microsoft O�ce-suite is one of the most
used software package. It includes software for making documents, spread-
sheets, presentations etc. The O�ce-�les are generally objects containers,
which, apart from the standard content, can contain executable objects[LSS+07].
These executable objects are typically seen as macros. Macros are � in
Microsofts products � a set of actions, usually used to handle data, and
automate tasks done frequently. The macros lie in the data stream of the
Microsoft O�ce-�le.

Portable Document Format PDF-�les are one of the most common �letypes
today. The format was developed by Adobe in 1993[BCASMV93]. As
with Microsoft O�ce �les, the PDF format is capable of embedding ob-
jects. These objects are, by standard, listed in a cross-reference-table, in
the beginning of the document, such that the PDF reader is capable of
decoding every object correctly.

Compressed �les File-compression is widely used, when transporting digital
�les on network, to decrease the amount of network tra�c needed. File
compression uses a set of di�erent techniques to reduces the size of the
�les, e.g. replacing common strings in the original �le with a shorter

2.3 Static analysis 11

identi�er. When uncompressing, all identi�ers will be replaces with the
original string[Rob].

The importance of data stream and cross-reference table analysis will be dis-
cussed in the following sections.

2.3 Static analysis

Static analysis is where the malware is investigated as static data, hence with-
out running the code. The analysis looks at the executable binaries, to locate
malicious patterns or �le abnormalities.
One of the most common static malware analysis methods, is to check whether
the suspected �le has been reported malicious before, known as signature detec-
tion[SJ05]. This method is used by standard anti-virus software, and is collected
at web sites as virustotal.com. In practice this is done by computing the hash
of the �le2, and looking it up in a database. This method is e�cient to detect
widespread viruses, but has severe limitations: The malware has to be detected
and the classi�cation of the malware has to be stored in the anti-virus develop-
ers database, before the signature analysis will trigger, hence new or improved
pieces of malware will not be detected by the signature analysis.

2.3.1 n-gram analysis

The n-gram analysis method is based on a probability analysis method and
was initially presented as a �le type �ngerprint algorithm. It was presented
for malware analysis in 2004[KM04]. The method splits the data stream of the
executable �le into vectors of n bytes. By computing the average frequency of
each of these vectors in the analysed �le is it possible to make a classi�cation
� a �ngerprint � which is merely linked to the �letype, say it is possible to
di�erentiate �le types, based on these classi�cations[NM14a, NM14b]. When
a n-gram analysis is performed on a suspicious �le, the classi�cation of the
analysed �le is compared to the known classi�cation of the �letype, hence it is
possible to determine whether it is a genuine �le or whether it contains non-
standard data.

2The hash value of a �le is computed with a hash-function. A hash-function is a oneway
function that takes an arbitrary long input and computes a value of �xed size.

12 State of the art

2.3.2 Embedded object analysis

Malware hidden in innocent-looking Microsoft O�ce-documents, as Word or
Excel-�les, are common in phishing campaigns targeting companies, disguising
as job postings, bills or pay-checks. The malicious �le will typically contain a
macro which will automatically execute when the �le is opened.
By statically analysing the data stream is it possible to extract the macro from
the document, to detect how the macro will behave when running the �le. If
the user expects the macro to behave in a certain way, this can be compared
to the data stream analysis, and if the macro will automatically execute or
dump a �le, it will look suspicious. Microsoft has, however, taken precautions
against malicious macros: When opening a document containing a macro, the
user will be asked to "Enable macros" before the macro is run. This can prevent
automatic execution of macros in a document, the user expects to be without
macros. This feature relies, again, on user awareness, and that the user knows
the properties a macro can have.
Despite the good intentions, this is just another "click OK box", and even
though it is better than nothing, it is not much better than nothing.

The Dridex trojan An example of a widespread malicious Microsoft O�ce-
macro campaign is the Cridex/Dridex-trojan[OBr16], �rst seen in 2012 (Cridex)
and then again in 2014 (now renamed to Dridex). The Word-documents was
spread in several phishing campaings; when opening the document, a self-
executing macro would dump a �le on the computer, which would install the
trojan. The trojan would add the infected computer to a botnet and begin to
harvest banking information, and begin spreading to other computers via net-
work and USB-devices. When peaking, the trojan infected 16,000 machines a
month.

While the Microsoft O�ce applications try to enable some sort of macro security,
by blocking automated macro execution, the PDF-format is still vulnerable,
due to its open format, and huge number of readers on the market. One of
the biggest threat when handling PDF-�les is the fact that they can contain
executable Javascript-code[TSPM11]. Like Microsoft, Adobe has tried to disable
automatic macro execution in their PDF-readers. However as stated above,
Adobe is not the only developer of PDF-readers. In addition to this many PDF
readers tries to evaluate and show non-standard content of the PDF-�les. This
"extra service" is often exploited by malware. By comparing the cross-reference
table to a static analysis of the objects which are actually found in the �le,
it is possible to determine whether the �le contains hidden objects[TSPM11].
Hidden objects itself is not necessarily malicious, however it should raise some

2.4 Dynamic analysis 13

sort of concern at the user that the document tries to hide information from the
PDF-reader.

2.4 Dynamic analysis

Analysing the behaviour when a certain piece of software is run, is known as
dynamic analysis. This gives a good picture of what sort of malware the inves-
tigator is dealing with. However doing this on an open environment will give
the malware opportunity to spread or sending data, which supposedly is not the
intention of the investigator, hence protected execution environments, where the
code is con�ned and controlled are increasing.
When analysing malware dynamically the investigator will look at certain as-
pects of the environment in which, the malware is run:

Network tra�c By monitoring the network tra�c the investigator is capable
of analysing if the malware send information about the environment or the
user to the internet. In addition it will be clear if the malware downloads
more �les and install them on the computer.

Processes Monitoring the processes on the computer will give an idea of what
changes the malware makes on the infected machine.

Hard drive Monitoring changes on the hard drive will express whether the
malware writes to the disc.

As stated earlier, the dynamic analysis of a suspected piece of malware cannot
be performed in an open environment, hence the development and research in
sandboxes are increasing.

2.4.1 Sandboxing

The concept of sandboxing is when a �le is executed in a closed, virtual environ-
ment, that appears � to the software � as an ordinary execution environment.
This gives the investigator a huge advantage, because he is able to run and
observe the malware, and therefore is capable of analysing how the malware
is behaving in the environment. By monitoring network tra�c, changes in the
memory and to the hard drive, the investigator can get a comprehensive picture
of how the malware behaves.
The concept of sandboxing has been researched heavily the last decade and the

14 State of the art

research can be divided into two main groups: Sandboxes isolated totally from
the internet and sandboxes with an internet connection [YIM+09].
When using sandboxes with no internet connectivity the risk of running the mal-
ware is fairly low. However current forms of malware, like ransomware, botnets
and spyware requires an open internet connection to work, hence if no available
internet connection is present, the malware will presumably just hibernate un-
til a connection opens, which means the investigator will get nothing from the
analysis.
On the other hand, a sandbox with an open internet connection can be fairly
tricky as well. When running the malware it is important not to spread the
malware to real machines, hence a controlled internet connection is required.

2.4.1.1 Malware detects the sandbox

The problem with sandboxing is that malware developers begins to introduce
sandbox detectors in the source code of the malware[CAM+08]. By detecting
the CPUID opcode3 the malware can get an idea of whatever the execution en-
vironment is a virtual environment or a real physical machine and refrain from
malicious activities if a virtual environment is detected. In addition to this, most
virtual environments are dynamically allocating the �physical� memory, i.e. only
uses what is required at the time. This means that most virtual environments
physical memory is much lower than for a real computer. This is another fac-
tor that malware can use to determine if it is executed in a sandbox environment.

2.5 Forensic analysis of IP address

Forensic analysis of an IP address can be split into two main parts: Passive
analysis and active analysis. The passive analysis is performed by retrieving
known information about the IP address, by making queries to databases etc.
The active analysis performs a more direct retraction of the webpage, to locate
hidden objects, redirections, etc.

3The opcode can be used by software to determine some details of the CPU, e.g. the
manifacturer

2.6 Summary of State of the Art 15

2.5.1 Passive analysis

Many known organisations keep track of online activity and stores the infor-
mation, such that it is possible to query the information from their databases.
These organisations include Google, IBM, VirusTotal and Bluecoat, to mention
a few. The databases of these organisations can be queried for information
about registrants, geographical location, passive DNS' etc of IP addresses. Fur-
thermore keep many of these databases track of malicious activity, such that it
is possible to learn, if a given IP address has participated in malicious activity
before.

The passive analysis of a given IP address or domain will retrieve as many of
these information as possible to resemble a picture of the IP address, with-
out making direct contact to the IP address or domain, hence the designation
passive.

2.5.2 Active analysis

The active analysis requires direct interaction with the IP address or domain
being analysed. This includes downloading the content of the webpage to make
a analysis of objects on the page, or making a portscan of the IP, to determine
if any TCP or UDP ports are open. The latter is mostly used by attackers, to
locate any possible ways of accessing the webserver behind the IP address.

Content analysis of the webpage will determine whether the webpage contains
Javascript, used to e.g. drop a �le on the visitors computer, or using a vulner-
ability in the users browser.

2.6 Summary of State of the Art

The section has discussed the current state of the art in the subjects of malware
analysis and IP address forensic.
For malware analysis the section has discussed static analysis, where object ana-
lysis and n-gram analysis has been review and discussed, in addition dynamic
analysis has been discussed in relation to sandboxing.
For IP addresses we have discussed how passive analysis can retract information
of registrant, geographical location etc. from online databases. As supplement

16 State of the art

we have discussed how active analysis can retract malicious activity from a given
webpage.
The number of methods for malware and IP address analysis is huge and the
section has only discussed a limited set. The problem is still that the stan-
dard user is not technical capable of performing the analyses, and will rely on
automated tools if he has to conduct such an analysis.

Chapter 3

Analysis

Many users relies 100% on their anti-virus software, however not all malicious
�les are spotted by the anti-virus software (and not all anti-virus software are
good enough to keep track of the development of malware).
This means, that when the anti-virus software has labelled an email, attached
�le or webpage valid, most users trust the mail/�le/webpage and might not be
watchful enough, and thereby risk a digital infection.

As stated in Chapter 1, the big challenge for anti-virus software is that it has
to label the suspected item either good or bad. To ensure a near-to-zero false
negative rate, it has to compromise with a signi�cant false positive rate, hence
some malware will be falsely be labelled genuine. This gives the user some
responsibility, to make a second-line opinion, however many users are not tech-
nically capable of doing that, from the information they get from the anti-virus
software. So even if the user suspects an email of being malicious, he is not
capable of acting on the suspicion.
Another problem is the fact that the anti-virus software does not know what
�les the user expects to get. A PDF-�le with embedded Javascript will auto-
matically trigger most anti-virus solutions and be labelled suspicious, however
if the user is using PDF-�les with embedded Javascript, it is a problem that the
anti-virus software is declaring it bad.

18 Analysis

3.1 User awareness

One of the general problem with IT security today is the evolution of the digital
world is processing in a pace, that the common user cannot keep up with. Due
to this, the user is relying � to much � on automated solutions. And even so the
anti-virus software developers �ght to keep up with the bad guys, the malware
is almost always a step ahead.

It is assessed that between 50% and 75% of incidents regarding cyber security
in the industry originates from users inside the organisation[DHG09]. Even if
we sort out angry employees deliberately trying to harm the organisation, it is
still a signi�cant number of incidents that might be non-existing or insigni�cant
if user awareness is increased. This section will analyse how to help the user,
to be able to make a determination whether a received email is harmful or not,
and hereby decrease the number of security incidents.

3.1.1 Phishing

As mentioned in Chapter 1 the common users are targeted in phishing cam-
paigns. Phishing attacks consists of three main elements[Hon12]:

01 Fake email The �rst interaction between the user and the attacker is the
email. The attacker will try to make the email look as genuine as possible.
The subject can be e.g. be a password reset on a well known service
(Google) or topless pictures of a celebrity. The aim of the content is to
lure the victim either to go to a webpage or to open a �le.

02 Malicious content The trap is usually a webpage or a �le. In the case of
a webpage, the attacker will have to make the website look as genuine as
possible. This is achieved by using well-known logos and URLs which look
like the real one.
Alternatively the user is lured into opening a �le. This �le will � like the
webpage � look genuine (e.g. a job posting or a paycheck), but contain
malicious content.

03 Information harvest The last part of the attack is to harvest the informa-
tion from the victim. This can be done on the fake webpage by luring the
victim to enter his credentials to a known service (Google, Facebook or on-
line bank). Or if the user has opened a malicious �le, it can dump a piece
of malware on the victims computer and harvest the victims information.

3.1 User awareness 19

Phishing campaigns target users on both private matters as banking or NemID,
or corporate matters as salary or job promotions. These campaigns are of various
quality and the relevant authorities in Denmark are frequently reminding users
to be aware of phishing. However even the most aware user, can be fooled is the
phishing mail is looking genuine, are in perfect Danish (which is rarely the case)
and links to a genuine looking webpage with a genuine looking URL. In this case
the user has to make a forensic analysis of the URL if he is to determine the
genuineness of the mail. Most user are not capable of making such an analysis,
so the user need a tool for quickly analysing the link, to determine whether it
is an IP owned by the apparent sender or it is located in a suspicious location,
like Russia or Taiwan. This piece of information would help determine the
genuineness of the link.

Spear phishing

Spear phishing is targeted phishing campaigns against speci�c users, where the
attackers research the on victims to make the fake emails more believable[Par12].
The development and propagation of social media has resulted in easier access
to personal information about users, which can be used to trick them[Hon12].
An example could be a father receiving an email, which appears to come from
the daughters handball association. This looks innocent, however it is from an
attacker, who found out about the handball association from a set of pictures
on the fathers pro�le on Facebook[Had11].
Spear phishing is an increasing problem, and users need to be aware of what
attackers can used content shared on the social media for. It is hard to protect
against the phishing mail itself, however as with normal phishing campaigns, a
analysis of the genuineness of the link and web page will help the user to ensure
no personal information is given.

3.1.2 Linked software

By linked software download, some software distributors get the users to install
more software than the user intended. An annoying � however not malicious �
example of this was in 2015, when Java updates included the Ask toolbar[Kei13].
A quick �x to avoid linked software, especially in companies, is to deny down-
loads at all in the �rewall. This is standard procedure in many companies and
works well. In addition to this anti-virus will usually scan all downloaded �les
and warn the user, if the �le is known to be malicious.

20 Analysis

3.1.3 Drive-by downloads

Unwanted software from webpages is a big problem. And the problem stretches
out of the users hands.
The concept of drive-by download, is when a webpage silently dumps malware
on the victims computer, while the victim visits the webpage[EKK09]. This
concept is hard to contain just by raising the user awareness. Most drive-by
downloads are using Javascript to complete the activity. The Javascript can
end up on the webpage in two ways:

Embedded in the webpage Malicious webpages, with the only purpose to
install the malware on the victims computers. These webpages could be
part in a phishing campaign, see Section 3.1.1 or have URL that looks like
genuine, well-known URLs, but with a little change. This sort of drive-by
download can be handled by increasing the user awareness.
Another way to embed malicious content is to compromise a genuine web-
page, using e.g. a vulnerability on the webserver, and plant a piece of
malware at the server. This method is hard to protect against.

Embedded in advertising Many webpages are using advertising to raise some
money. However these adds can contain malicious code, and this can be
hard to avoid. Popular webpages like Facebook has been victims of this
malware in advertising[Con11] (known as malvertising). No matter how
much users raise their awareness, malvertising is impossible to avoid, and
the user will have to rely on the security in the browsers and anti-virus
software to catch the malware, before it is dumped on the computer

The most e�cient counteraction to drive-by-downloads is to ensure that browsers
and other software on the users computer is up-to-date.

3.1.4 Watering hole

A recent threat vector is the watering hole attack. This sort of attack is a
combination of spear phishing and drive-by-download. The attacker will identify
a third party web sites, their victims are likely to visit. The attacker will then
compromise the webpage, e.g. using vulnerabilities in browsers or similar, and
then just wait for the victim to hit the webpage[CDH14].
This attack vector is primarily targeting organisations, where the attacker can
ensure that at some point, someone in relation to the organisation will visit the
compromised webpage[Azi13]. This makes it hard to protect against and the

3.2 Forensic analysis 21

protection must rely on updated browsers, with few vulnerabilities and su�cient
anti virus software[Kin13].

3.2 Forensic analysis

Raising user awareness is probably the best way of addressing the problem of
malware. Users are in general described as the weakest link when it comes to se-
curity. However just blaming the everyday user will not raise security[SBW01].
Awareness training is a necessary way of addressing the security issues. Com-
bined with some sort of password requirements, and a solid anti-virus software
we have come a long way. The problem is what happens when these counter-
measures fail, which they surely will.
The common user is still not equipped with tools to help him analyse suspicious
content, when a �le is labelled genuine by the anti-virus software.
The tool will have to rely on the users awareness, hence it should perform the
analysis the user is not capable of making himself. The result of the analysis
should be presented to the users, such that the user is capable of deciding
whether the suspicious content is malicious or not.

The contribution of this project is to make a tool to help the user make a
forensics analysis of the suspicious content, he has received. A graphical repre-
sentation of the analysis is found in Figure 3.1.
The �rst problem to solve, is to decide whether the suspicious content is received
as attached code or a link in the body of the email. The result of this part of
the analysis will determine how the rest of the analysis will be performed. If the
content is attached, the tool will have to make a analysis using the methods de-
scribed in Section 2.3 and 2.4. If the content is a link, the tool will have to make
a forensics analysis of the domain and IP address of the link, as discussed in
Section 2.5. This gives the tool two main "analysis legs", with di�erent analysis
methods.

3.2.1 Suspicious �le

If the suspicious content of the mail is an attached �le, the �le will have to
be analysed statical and dynamically such that any malicious activity will be
discovered.

01 File type The type of the �le will have to be determined:

22 Analysis

Firstly to ensure that the �le extension match the actual �le type. If this
is not the case, the user should be warned.
Secondly the second part of the analysis will be determined by the �le
type.
Thirdly if the �le is a compressed �le, the analysis will have to include an
uncompression, and then a full analysis of the uncompressed �le(s).

02 Embedded objects If the �le is one of the �le types, which can contain
objects, these objects will have to be extracted an analysed, such that
any malicious or suspicious activity can be found. The analysis will have
to include the full behaviour of the embedded objects, such that the user
can di�erentiate between genuine objects, that he expects and malicious
objects, that he does not expect.

03 Meta-information Some meta-information about the document will be
helpful to the user. Helpful information includes author, number of pages,
�rst revision/creation date, last revision and so on. If the document states
to be a report, and it only contains of one page, the user should found it
suspicious.

04 Known malicious �le If the �le previously has been reported malicious,
the user should be warned of two reasons: If the same �le has actually
been received by many people, and it seems to be sent only to him, it
seems suspicious.
If other analyses has declared the �le malicious, the probability that the
�le is malicious is quite high.

05 Behaviour when executed The analysis will have to conclude with a be-
havioural analysis of what happens with the environment the �le is exe-
cuted in. The user will have to need if the �le dumps other �les, makes
network tra�c, changes system �les etc.

The �rst four parts are using static analysis methods, whereas the �fth part is
using dynamic analysis methods.

3.2.2 Suspicious link

The other leg of the tools analysis is performed if the content is a link to a
webpage. The analysis will have to help the user determine whether the link is
corresponds to the apparent sender of the email. This can be done by making
an analysis of the IP address behind the link.

3.3 Summary of Analysis 23

01 Registrant of IP By investigating who is the owner of the IP (and the
domain), we can help the user assess the genuineness of the webpage.
E.g. if the mail claims to be from the Danish tax authorities, Skat, and
contains a link, which is not registered by Skat, it will make the mail look
suspicious, and the user should be warned. Every IP address is linked to
a registrant, and this information is public available. It might be relevant,
as well, to know how long the given registrant has been registered to the
IP address

02 Geographical location of IP In supplement to the registrant of the IP,
the geographical location of the IP can help the user decide wether to trust
or not trust a webpage. If the apparent sender of the mail is a Danish
organisation or authority, the probability that the IP is hosted in a East
European or Asian country is tiny, hence the user should be warned if this
is the case.

03 Known malicious activity If the domain or IP is taking or has taken part
in malicious activities, it will increase the probability that the webpage is
non-genuine and the user should be warned.

04 Content of the webpage The content itself of the webpage should be
analysed to determine if any hidden scripts or redirections is present. If
the page redirects to another webpage, the analysis discussed above should
be carried out on the redirected page, such that the user is not lured onto
a malicious webpage by redirecting. If the webpage contains Javascript
hidden or not hidden, the script should be analysed, to determine whether
it is malicious.

The �rst three parts of the link analysis are using passive analysis methods,
and relies on earlier submitted data found in public databases. The fourth part
of the analysis is using active methods, and will partly be similar to the �le
analysis leg.

3.3 Summary of Analysis

The section has discussed the necessity for increased user awareness if the rate of
successful malware attacks has to be decreased. We have discussed how phishing
campaigns in various ways try to trick the victim to install malware or disclose
sensitive information, and how compromised or fake webpages, is a threat as
well.
The chapter concludes with a abstract description of a forensic tool, that is ca-
pable of making an analysis of the malware or suspicious webpage, such that the

24 Analysis

Figure 3.1: Flowchart of the analysis

user, given the information from the tool, can determine whether the malware
or website is to be trusted or not.

Chapter 4

Design

This section will describe and discuss the design choices made in the develop-
ment of the product described in Sections 1.4 and 3.2.
The goal of the tool, will be to present a service to the user, where malicious
emails, not captured by the protective mechanisms (cf. Chapter 1), can be
forwarded and exhaustively analysed. The result of this analysis should be pre-
sented to the user, without to many technical terms, such that a non-technical
user can decipher the result, and take action based on it. This chapter will de-
scribe the developing process of the product, from the design phase, through the
implementation phase. The evaluation of the product is described in Chapter 6.

4.1 The environment

The environment of the tool will be either:

Plugin to an email client This solution will rely on existing email clients.
The most widespread email clients for desktop and laptop computers are
Microsofts Outlook and Apples Mail[Lit17], and it would be obvious to
make the tool to either one or both (presumably Outlook, since it is the
most common client in organisations). The advantage of making the tool

26 Design

embedded in the email client is the user experience � if the user is in a
known environment, it will be easier to use. The disadvantage is the con-
stant development of the email clients. Especially Outlook is undergoing a
big change, when Microsoft is pushing their online O�ce-package � O�ce
365 � onto the market. This implies that the tool would have to be updated
in the same pace that Microsoft O�ce is updated. Additionally would it
require that we would integrate a sandbox environment in Outlook, for
the dynamic part of the �le analysis. This might be challenging.

Stand-alone email server This solution will rely on a dedicated email server
linked to an analysing environment. This solution is not relying on the
environment of a speci�c email client, hence it is more independent, which
is a great developmental advantage � and we do not need to choose a
platform on which the solution has to work on. The disadvantage is of
course, that it requires a dedicated email server, which is hard to �nd in a
normal household. The solution to this could be to make it possible to set
up in a virtual environment, however it still requires more from the user.
In larger organisations this should � however � not be a problem.

We have chosen to go with a stand-alone server. The biggest reason for this is
the independence from the email client providers. As stated above the solution
will rely on user to set up the server, and since it will be easier in organisations
with dedicated IT departments, some of the future design choices will be taken
according to this. The whole setup will be developed in a virtual network, which
consists of a router with a DNS-server, a mailserver and a client-machine. The
network will be connected to the real life internet through the virtual router.

4.2 The front-end

The front-end and user interaction will be fairly simple. The user will have to
forward the suspicious email to the server, including any and all attachments,
and will receive a report with the result of the analysis in a return email. This
only requires a speci�c email address to the server, which the user is provided
with, when the server is installed at the site. Hence no graphical user interface
or similar is required.

4.3 The back-end

The back-end includes the email server and the analysis framework.

4.3 The back-end 27

The email server should be fairly simple, since its only purpose is to receive and
read the suspicious email. From here the framework will analyse the email, to
detect attached �les or links in the email.
When the analysis is completed, the email server will return a result report to
the user. As stated earlier, the importance of making an understandable result
to the user must be addressed.

The framework will have to include both automated static and dynamic �le
analysis, and will integrate a selection of malware analysis tools. Since the
majority of organisations uses Microsoft Windows and our setup primarily is
targeting organisations, the framework will to a great extent analyse for this
type of malware. In addition it will use tools like VirusTotal1 and Malwr2 and
a build-in Linux AntiVirus, which to great extend will be helpful to all kind of
malware. The framework will also have to include tools for IP analysis, such
that suspicious links can be investigated.
The initial part of the analysis will be to determine whether the suspicious
content of the mail is an attached �le or a link in the content of the mail.

File analysis

If the analysis addresses an attached �le, the �rst part of the �le analysis will
be to determine which �le type is addressed:

Microsoft O�ce-�le If the �le is a O�ce �le (Word, Excel, PowerPoint etc)
the tool has to search the document for macros, since macros is the biggest
threat in malicious O�ce-�les, cf. Section 2.3.2. If the �le contains macros,
we will make an exhaustive analysis of the behaviour of the macros. The
behaviour analysis will be added to the report, which will be returned to
the user. Furthermore will we run the �le through VirusTotal and Malwr.
The �le will be dynamically analysed in the sandbox, which will execute
the �le in a Windows environment. Finally we will check the �le in the
anti-virus software embedded in the mailserver for a �nal check.

Portable Document Format, PDF If the �le is of PDF-format the tool has
to search for embedded objects, and mismatch of the cross-reference table,
cf. Section 2.3.2. If embedded objects are found, the behaviour of these
will have to be analysed in the sandbox environment and presented to the
user. Like the Microsoft O�ce-�les, we will check the �le on VirusTotal,
Malwr, in the anti-virus software and in the sandbox.

1www.virustotal.com
2www.malwr.com

28 Design

Compressed �les Compressed �les, like ZIP or TAR �les has to be uncom-
pressed, when this is done the analysis will run over again, to check which
�le types was in the compressed archive. The uncompression part will
have to handle recursively compressed �les as well.

Other �les Other �le types will be hard to make a speci�c static analysis on.
The �les will be run through VirusTotal, Malwr, in the anti-virus software.
They will be tested in the sandbox as well.

Link analysis

If the analysis addresses a link in the email, the analysis will have to determine
which IP address the domain is hosted at. When the IP address is determined, a
forensics analysis of the IP address is executed. The �rst part of the analysis is
a passive analysis, where the framework will access known databases to retract
information about the IP address:

Registrant The registrant linked to the IP address will have to be included in
the report to the user, together with the �rst registration date of the IP
address. At some hostsites is it possible to pay for anonymity, hence we
cannot ensure that the registrant is revealed.

Geographical location As with the registrant, the IP address' geographical
location is public available in online databases. These databased must be
visited by the analysis, to harvest this information.

Malicious activity Plenty online databased, e.g. Google and IBM, store data
about malicious activity linked to IP address. The �nal part of the pas-
sive analysis will collect information about the history of the IP address,
relative to previous malicious activity.

The active part of the link analysis is to download the content of the webpage
and analyse this:

Redirecting Is the webpage redirecting the user to another webpage? If this
is the case, the user should be noti�ed, and the full link analysis should
be applied recursively to the new webpage.

Malicious content If the webpage is hiding content, e.g. Javascript, this con-
tent will have to be extracted and analysed.

4.4 Result and reporting 29

4.4 Result and reporting

The �ow of the analysis can be seen in Figure 4.1.

When the analysis is completed the result will have to be sent back to the user
on the same email address the user used to forward the email from.
The report to the user will have to include the complete analysis and a abstract
of it. The abstract will be the content of the return email and the full report
will be attached to the email, such that the user can see the exhaustive analysis
if the user wants to.

The result has to be presented in such a way, that the user can use it for
comparing the behaviour of the suspicious content with his expectations, e.g.
you do not expect a pay-check to automatically execute a macro and dump a
�le, or a web page from the Danish tax authorities to be hosted in Russia, hence
this information must be presented to the user in a easy-to-read and easy-to-
understand sort of way.
This gives a merely abstract challenge of deciding what the user expects the
content to be. The analysis will have to return data, such that the user can
compare the expectation to reality, and hereby deciding to trust or not to trust
the mail.

4.5 Summary of Design

The section has taken the abstract description of the forensics tool, discussed in
Section 3.2 and have developed an overall architecture for a framework, which
solves the challenges found in Chapter 3. The framework will be integrated in
a stand-alone emailserver, to which the user can forward a suspicious mail and
receive an exhaustive analysis in return. The framework will be able to handle
suspicious link, and a wide range of suspicious �les.

30 Design

Figure 4.1: Flowchart of the framework design

Chapter 5

Implementation

This section will describe the implementation of the email server and the frame-
work used for malware analysis.

5.1 Operating system

The email server and analysis framework is developed and installed in a Ubuntu
version 12.04. Ubuntu is chosen due to its open source nature and diversity, such
that both mail server and the analysis framework can run without complications.
The virtual network we work in is presented in 5.1.

5.2 Mail server

The email server is set up using Post�x and MySQL. This make a very simple
and useful database, that ful�ls the requirement. A single user account is setup
(daniel@mailclient.example.com in our environment). The database will
have to contain:

daniel@mailclient.example.com

32 Implementation

Figure 5.1: Overview of virtual network. The framework will is developed on
the MailClient-machine.

• The forwarded email

• The attachment (if any)

• The email address of the sender

Since we don not store any sensitive information and due to the scope of the
project, we will not consider securing the email database. However MySQL has
a protective mechanism, which is used as standard, and we will use it. But
we do not encrypt content or mail addresses etc. When the analysis is done
and the report is returned to the user, the email and all associated information
should be deleted. A future implementation could contain a cache-mechanism
such that if two users receive and forward the same mail only the �rst one will
be analysed � the next one will just receive the �rst analysis. This could be
helpful if the mail server is used in a organisation where phishing campaigns
targets several users, such that the mailserver will not be overrun be requests
of the same malicious mail. However in the current implementation all relevant
data are deleted when the report has been sent.

5.3 Framework

The framework is written in Python. Python is chosen due to its very dynamic
nature and the fact that Python is easily installed in most Linux-distributions.
A lot of the tools chosen for the framework (see Sections 5.3.1 and 5.3.2) are
written in Python as well, and it makes it more cooperative to work with. The

5.3 Framework 33

framework will include a various selection of software analysis tools and will
parse the output of the various tools, into a single result report.

This section review a complete list of the tools used in the framework, both
for static analysis and dynamic �le analysis and for link/webpage analysis. A
graphical representation of the framework can be found in Figure 5.2. The im-
plementation of the framework follows the design described in Section 4.3. The
�rst thing for the framework is to analyse whether it is dealing with a attached
�le or an embedded link. The implementation of the �le analysis is documented
in Section 5.3.1. The documentation of the link analyser implementation is
found in Section 5.3.2.

5.3.1 File analysis

When the �le has been retracted from the email, the framework will begin the
analysis of the �le, following the design discussed in Section 4.3.

5.3.1.1 File type analysis

First part of the framework will analyse the type of �le, by simply checking the
�le-extension. The next part will verify the �le type, by using static analysis
methods. We have accessed a selection of pre-existing tools, for this:

TrID TrID is a �le type analysing tool, developed by Marco Pontello[Pon03].
TrID uses the �les binary signature to determine which �le type it is. The
�le is analysed using the n-gram described in Section 2.3.1 and compare
the result to a database of 10,000 �le types.

Tika Tika is another �le type analysing tool[Apa10]. Tika is developed by
Apache and uses a combination of metadata extraction and binary signa-
ture detection. The result of the analysis is compared to the Tika database
which consists of more than 1,000 �le types.

The two output from the two tools are too similar to include both tools in
the implementation, hence we will only implement TrID. TrID is merely chosen
due to the fact that it is Python-based, which makes the integration with the
framework smoother. Additionally is the output from Tika more extensive,
yet gives same amount of relevant information as TrID. This means that if the

34 Implementation

Figure 5.2: Flowchart of the framework implementation

5.3 Framework 35

implemented Tika, the framework would have to do a lot of sorting of the output,
without getting more relevant data.
The result of the TrID analysis will be compared to the �le-extension. If we
have a notable di�erence the user will be noti�ed in the report.

5.3.1.2 Meta data extraction

When the �le type has been determined, we will extract as much meta data
from the �le as possible. Again two tools have been considered for this:

Tika Apart from �le type analysis, Tika can be used for metadata extraction.

Exiftool Exiftool is an application for reading, writing and creating meta infor-
mation in a wide variation of �le types. It was developed by Phil Harvey
at Queens University in Canada[Har13].
Since we are only analysing �les, we are only interested in the reading part
of the application, hence Exiftool will analyse the meta-information of the
suspicious �le. All information found is parsed on to the report.

Due to the fact that we have already dismissed Tika once, and the extensive
opportunities in Exiftool (in a future update of the framework), we will use the
analysis from Exiftool.
All relevant metadata from the analysis is added to the report.

5.3.1.3 Macro analysis

The macro analysis will be carried out if the �le-in-analysis is a Microsoft O�ce
�le, either by �le-extension or by the TrID-analysis. There are plenty existing
tools for macro analysis. We have decided on implementing a selection of tools,
all from Python-oletools.
Python-oletools is a set of tools, which are designed to analyse the embedded
objects in Microsoft O�ce �les, developed in 2012 by Philippe Lagadec[Lag13].
The tools from the set considered in the implementation are:

OleID decides whether the document is OLE-formatted. If this is the case, the
rest of the OLE-analysis is carried out.

OLEdir analyses and displays all directory entries in the OLE-formatted doc-
ument. The analysis consists of links between the entries and size of the
individual entries.

36 Implementation

MRaptor is a tool to extract and analyse primarily malicious macros. The
outcome of MRaptor is a list of all found macros, and a quick analysis of
whether MRaptor �nds the macros suspicious.

OLEmap retracts all sectors of the OLE-�le.

OLEmeta retracts all standard properties, which are found in the OLE-formatted
�le, such as information about author, template, number of pages etc. This
information is parsed to the user.

OLEtimes collects all timestamps in the document. Timestamps include mod-
i�cation and creation time of the document itself and all the embedded
objects in the document.

OLEvba can extract macros in cleartext. This can be used for detecting
keywords in the macros, that indicates malicious activity, such as auto-
execution or �le dump. The result is parsed on to the user.

pyxswf Detects and analyses Flash objects in the document.

The implemention will include the following of the oletools:

• OleID

• MRaptor

• OLEmeta

• OLEtimes

• OLEvba

• pyxswf

Hence OLEdir and OLEmap are not included in the analysis, due to overlapping
to much with the rest of the tools. The results of these tool, will overlap as well,
hence the parsing of the output will have to take this into account, such that
the user don't receive �ve more or less equal analyses.
The macro analysis will be added to the report, such that the user gets an idea
of the behaviour when opening the document. This will make him capable of
determine if the document acts as he expect or has unexpected behaviour.

5.3 Framework 37

5.3.1.4 Object analysis

The object analysis will be carried out if the �le-extension analysis or the TrID
analysis declares the �le a PDF-�le. The following tools has been considered for
the analysis:

AnalyzePDF AnalyzePDF is a python script, developed by HiddenIllussions[Ill13].
that reviews the cross reference table of a PDF-�le and checks whether
the PDF contains Javascript not stated in the cross reference table. If any
Javascript is found in the PDF-�le, AnalyzePDF will analyse the script,
and access whether it seems malicious or not. We will pass this analyse
on to the user.

PeePDF PeePDF analyses all objects of PDF-�les, and makes and assessment
of their validity. PeePDF is developed by Jose Esparza and is written
in Python[Esp11]. The output of PeePDF is a list of objects, and the
behaviour of the object. As with AnalyzePDF, PeePDF assess the objects
and points out malicious objects or behaviour. If a known vulnerability is
found (e.g. vulnerabilities stored in the CVE-database), it will return the
CVE-indicator, to further analysis.

Origami-pdf Origami-pdf is a open source, analysing framework for PDF-�les.
It is based in Ruby, and is capable of analysing, modifying and creation
of PDF-�les. It detects embedded objects, and gives a short analysis
behaviour of the object.

pdf-parser The pdf-parser is a Python-based analysing tool, developed by Di-
dier Stevens[Ste]. The tool gives an exhaustive analysis of all objects in
the document, describing, amongst other things, size, behaviour and links.

The output from the PDF analysing tools are quite similar, and we will only
implement AnalyzePDF and PeePDF in the framework. Origimi-pdf gives al-
most same result as PeePDF and the output from pdf-parser included to much
unuseful information, which had to be sorted out, before sending it to the user.
The analyses from AnalyzePDF and PeePDF are merged and sent to the user.

5.3.1.5 Known malicious �le

To determine whether the given �le previously has been classi�ed malicious, we
will implement a anti-virus engine. Two di�erent approaches has been consid-
ered for the framework:

38 Implementation

VirusTotal API As stated earlier, VirusTotal is a online tool[Tot12], where
suspicious �les, URL or IP addresses can be uploaded and analysed be a
wide range of anti-virus engines, hence it is possible to see how many of the
most popular anti-virus software tricker on a certain �le. The framework
will use the API of VirusTotal to upload the �le. If the �le has been
scanned before by VirusTotal, we will receive the result of that scan. Else
we will allow VirusTotal to scan the �le and retract the result. The main
part of the result is the number of anti-virus engines that declares the �le
bad.

ClamAV ClamAV is a open source anti-virus engine which run on all the major
operating systems[Koj04]. The result of the analysis in ClamAV will be
presented to the user. Since signature detection, cf. Section 2.4, is a
major part of the anti-virus softwares analysis, we will have to ensure
regular update of the ClamAV database.

Both approaches will be implemented in the framework, even though ClamAV
is a integrated part of VirusTotal, however when running the �le through Virus-
Total, we only get to know if the anti-virus software classi�es it good or bad. By
running it through ClamAV, we get a more exhaustive analysis of the �le.

5.3.1.6 Behavioural analysis

The behavioural analysis will be performed exclusively in sandbox environment.
We have considered to approaches for the framework.

Cuckoo sandbox Cuckoo sandbox, is a sandbox environment developed and
maintained by the Cuckoo Foundation[GTBS12]. The sandbox contains
a malware analysis system, where virtualised environments of the most
popular operating systems can be run (including mobile operating systems
as Android). It is possible to run a malicious �le in the sandbox, and get
information about behaviour, network tra�c, memory analysis etc.
The malicious �le is run through the sandbox, and the analysis is added
to the report to the user.

Malwr.com API Malwr.com is a online version of the Cuckoo sandbox, which
is developed and maintained by the Cuckoo Foundation. As with Virus-
Total, if the �le has been analysed before, we receive the result of the
previously analysis. If this is not the case we upload the �le to Malwr.com
and receive the fresh analysis.

5.3 Framework 39

As stated both solutions use Cuckoo Sandbox. Since we already have used our
o�ine edition, this part of the analysis is only second line analysis. The chal-
lenge of the Cuckoo Sandbox is the fact that each operating system must have
it own virtual machine. This means, that if a speci�c piece of malware uses a
vulnerability on a very speci�c, patched edition of Windows, and we are not
running it through this speci�c Windows-edition, the analysis will be useless.
Hence, the Malwr.com analysis the �le through a wider range of operating sys-
tems, and this is a good way of ensuring that we get a dynamic analysis, of the
�le.
The o�ine edition of the Cuckoo Sandbox for our framework will be imple-
mented with Microsoft Windows XP, Windows 7 and Windows 10.

5.3.2 Link analysis

If the malicious content of the mail, appears to be a link, the framework will
conduct the link analysis. The framework trawls the mail and compares the
content to three di�erent regular expressions, such that links are harvested from
the email. The link analysis is implemented based on the design described in
Section 4.3. First thing is to determine the IP address behind the link. This is
done with a quick search by the traceroute-command. When the IP address
is retrieved, the analysis will focus on this.

5.3.2.1 Registrant

The registrant of the IP address or domain can be found rather simple in Linux
based system, using the whois-command. This will make a query in the RIPE-
database and return information about the registrant.

5.3.2.2 Geographical location

The geographical location of the IP can be using the geoip-lookup-command
in Linux-based systems. It only requires installation of geoip-bin on the server,
and returns the location in a simple one line answer.

40 Implementation

5.3.2.3 Known malicious activity

To make a lookup in the databases that collect information about malicious
online activity, we have considered the tool IPinfo.
IPinfo is a script developed by HiddenIllussions[Ill12], who also developed An-
alyzePDF. The scipt analysis IP addresses or URLs on a wide range of online
registers, to determine where the IP address is located, and whether it has been
reported of participate in malicious activities. In addition IPinfo retracts info
of the geographical location of the IP address, hence the queries for this infor-
mation, is handled by IPinfo in the framework, and not by the Linux-command,
described above.

5.3.2.4 Content on the webpage

LinkHunter is the tool that analyses the content of the mail for hyperlinks.
LinkHunter is a tool, developed by myself for this project.
The �rst part of the analysis is to download the content of the given webpage,
and retract redirections. If a redirection is found, the new webpage will receive
the same analysis.
Second part of the LinkHunter will determine whether the website contains
hidden objects, e.g. Javascript that performs malicious activity. This is done
by a python tool called Thug[Del12]. Thug is developed by Angelo Dell'Aera
and is a honeyclient designed to retract and analyse content and objects from
websites. Thug is assessing the objects maliciousness and gives a well-descriptive
output.

5.4 The report

Reporting is an essential part of the framework � all the information gathered
in the analysis has to be parsed, such that the user is receiving a useful report,
to help him determine whether the mail is malicious or not.
When all tools has analysed the content, the analysis will have information
about:

• Content is a �le

� Microsoft O�ce-�le

∗ Whether the �le is a genuine O�ce-�le

5.4 The report 41

∗ Whether the �le contains macros

· The behaviour of the macros

∗ Metainformation about the document

∗ VirusTotal classi�cation

∗ ClamAV classi�cation

∗ Behaviour when executed

� PDF-�le

∗ Whether the �le is a genuine PDF-�le

∗ Whether the �le contains objects (in particular Javascript ob-
jects)

· The behaviour of the objects
∗ Metainformation about the �le

∗ VirusTotal classi�cation

∗ ClamAV classi�cation

∗ Behaviour when executed

� Other �le

∗ Whether the analysed �le-type matches the �le-extension.

∗ VirusTotal classi�cation

∗ ClamAV classi�cation

∗ Behaviour when executed

• Content is a link

� Owner of IP address

� Geographical location of IP address

� Content on the webpage

� Malicious activity reporting (if any)

The framework parses the output of all the tools, such that a coherent report
is delivered to the user, with a readable analysis, such that the user has a tool
to determine whether to trust the content of the mail or to discard the mail.
An example report can be found in the Appendix B. The report consists the
exhaustive analysis of the malicious content, and will be attached as a separate
�le to the user. A brief abstract of the report will be included in the body of the
mail sent to the user, with the most relevant information. Due to simpli�cation
the report will be in .txt-format.

42 Implementation

5.5 Summary of Implementation

The sections has documented the implementation of the framework in the emailserver.
We have for each analysis part review the options and discussed which solution
has been implemented in the current version of the framework. The �nal part of
section summarises the information in the report, to ensure that all information
required for a solid analysis � discussed in Chapter 4 � is gathered and sent to
the user.

Chapter 6

Evaluation

The tool is evaluated by analysing a set of emails. To determine the �le analysis
part we have used a combination of malicious emails, received by myself on
a private email account, where my spam �lter apparently is lacking. These
mails have exclusively had Microsoft O�ce-�les attached (a combination of .xls-
�les and .doc-�les). The PDF-part of the analysis will be tested with a set of
malicious �les, produced in Metasploit1, with known vulnerabilities. We will
test if the tool is capable of detecting and uncompressing �les, if the �le receive
is compressed.
The link analysis is tested using a set of email I have received on my private
email account.
This section will evaluate each part of the analysis tool, described in Chapters 4
and 5 individual, such that we for each part of the analysis will ensure that we
get the desired information. Finally we will evaluate the report to ensure the
user experience is maintained.

1Metasploit is a penetration testing software, developed by Rapid7;
https://www.rapid7.com/products/metasploit/

44 Evaluation

6.1 Evaluation of �le analysis

If the mail has an attached �le, the �le analysis will apply, and will initially
make the �le-type analysis. We use six di�erent �les throughout the testing.
The documents are listed in Table 6.1:

No. Name Filetype Malicious content
01 Certi�cate.xls Microsoft Excel(.xls) Contains ransomware macros
02 Bestcomputers.doc Portable Document Format (.pdf) Contains malicious Javascript
03 Bestcomputers.pdf Portable Document Format (.pdf) Contains malicious Javascript
04 invoice.docx Microsoft Word (.docx) No malicious content
05 Con�dential.doc Microsoft Word (.doc) Contains malicious macros
06 nicegirl.jpeg Picture (.jpeg) Contains hidden executables

Table 6.1: Documents used for testing

6.1.1 File type analysis

TrID's �le type analysis is compared to the �le-extension. The conclusion of
the comparison is neatly added to the report. If the result is a compressed �le-
type, the framework uncompresses the �le, and restart the �le analysis. The �le
analysis works with the �les tested both on �les with correct �le-extensions and
�les with spoofed �le-extensions.
We test the �le type analysis by running it with a document with correct �le
extension and a document with wrong �le-extension. Results of the analysis is
listed in table 6.2.

File Expected output Test result
02 Warning Correct
03 Approval Correct

Table 6.2: Test results: File type analysis

6.1.2 Meta data extraction

The meta data extraction is conducted by Exiftool, and the output from is
readable, and the current version of the framework parses the whole output and
add it to the report to the user.

6.1 Evaluation of �le analysis 45

Exiftool works well, and the amount of information is highly dependent of the
�le type in analysis. The relevance of some of the informations is questionable,
however we �nd in more useful to parse all information to the user, such that
the user can make a valid decision based on whatever data he want. This part
of the analysis has been tested with a wide range of �le types. Test data and
results are found in Table 6.3.

File Expected output Test result
01 Meta data Correct
03 Meta data Correct
04 Meta data Correct
06 Meta data Correct

Table 6.3: Test results: Meta data extraction

6.1.3 Macro analysis

The macro analysis part has been tested with the genuine malicious mails I
have received, which included both .doc-�les and .xls-�les. In addition to these
malicious �les, has it been tested with some non-malicious Microsoft O�ce-�les,
to determine what the output is, if the �le contains non-harming macros. The
macro analysis is exhaustive and gives the user a wide range of information.
When a macro-containing document is analysed, the user gets information of
the amount of macros, the behaviour of the macros, and the metainformation
of the macros. MRaptor gives, in addition, a assessment of the suspiciousness
of the macros.
The test data and results is listed in Table 6.4.

File Expected output Test result
01 Macro containment Correct

Macro behaviour Correct
05 Macro containment Correct

Macro behaviour Correct

Table 6.4: Test results: Macro analysis

46 Evaluation

6.1.4 Object analysis

This part of the framework has been tested solely with malicious PDF-documents,
which I have developed myself. Due to this, the part has not been tested as
exhaustively as the macro analysis-part.
The two analysis tools, dedicated to PDF-analysis has been able to detect all
malicious objects in the tested PDF-documents. AnalyzePDF makes an as-
sessment of the maliciousness of the �le, on a scale of low-medium-high. This
assessment is forwarded to the user, with the rest of the analyses. The test data
and results is listed in Table 6.5.

File Expected output Test result
03 Object containment Correct

Object behaviour Correct
Level of suspiciousness Correct

Table 6.5: Test results: Object analysis

6.1.5 Known malicious activity

This part of the framework has been tested with a wide range of both malicious
and non-malicious �les. VirusTotal returns the number of anti-virus engines
that classi�es the �le as malicious. This result is parsed directly on to the
user. The analysis time of VirusTotal is highly depending on whether the �le
has been analysed before or not, however it classi�es the malicious �les correct
when testing.
ClamAV gives a short analysis, which determines whether it classi�es the �le
malicious or not. The analysis is supplemented with a longer analysis of what
makes the �le malicious. ClamAV catches most malicious �le when testing. The
challenge with ClamAV is the database update which has to be done frequently
to ensure freshness of the analysis. The test data and results is listed in Table 6.6.

6.1.6 Behaviour analysis

The testing of Cuckoo has been done with a range of Microsoft O�ce �les
and PDF �les. The analysis works, however the output from Cuckoo is rather
exhaustive, and it is a challenge to sort of relevant information to the user. The
result of the test is listed in Table 6.7

6.2 Evaluation of link analysis 47

File Expected output Test result
01 VirusTotal detection rate 36/56

ClamAV assessment Malicious
02 VirusTotal detection rate No data

ClamAV assessment Malicious
03 VirusTotal detection rate No data

ClamAV assessment Malicious
04 VirusTotal detection rate 0/56

ClamAV assessment Clean
05 VirusTotal detection rate 36/54

ClamAV assessment Malicious

Table 6.6: Test results: VirusTotal and ClamAV

File Expected output Test result
01 Networkdetection Detected

Harddrive changes Detected
02 Networkdetection Non detected

Harddrive changes Detected
03 Networkdetection Non detected

Harddrive changes Detected
04 Networkdetection Non detected

Harddrive changes Non detected
05 Networkdetection Non detected

Harddrive changes Detected

Table 6.7: Test results: Behaviour analysis

6.2 Evaluation of link analysis

The �rst part of the link analysis is to determine the IP address behind the
domain of the link. We are using the traceroute-command to do so. To
con�rm the IP address from traceroute, IPinfo is collecting the IP address as
well, and these are compared to ensure that the rest of the analysis will handle
the correct IP address. Two links has been used during the formal testing of the
linkanalysis. The links are found in Table 6.8. Since the both links has been
used throughout the analysis, we have collected the testresults in one table,
namely Table 6.9.

48 Evaluation

No. Host Malicious content
01 www.bla.dk Non � link to advertising related webpage
02 www.seolondon-careers.com Scamware distribution site

Table 6.8: Links used for testing. Full URLs are listed in Appendix C
.

6.2.1 Registrant

The output of the whois-command is parsed into the report, to inform the user of
the registrant of the IP address. Since the whois-command is an integrated part
of the Linux-distribution, we trust the genuineness of the information gathered.
In addition of the registrant we parse the information about the registration
date and expiration date on to the user.

6.2.2 Geographical location

IPinfo retracts the geographical location of the IP address, hence it is part
of the information parsed by this tool. In the testing phase, we supplement
the information from IPinfo with the geoip-lookup-command, to ensure the
information from IPinfo is correct.

6.2.3 Known malicious activity

IPinfo retracts information about known malicious activity from:

• Google Safebrowsing

• VirusTotal

• Netdemon

• URLvoid

This infomation is collected and parsed on to the user. The tool is tested with
a range of known malicious domains and a range of known safe domains, and
makes a good distinguishing trustworthy and untrustworthy domains. However
it is not 100% perfect, and some malicious domains is not captured by the tool.
There is a number of databases that would be obvious to include, but at the
time of writing we will stick to the four, used by IPinfo.

6.3 Final evaluation 49

6.2.4 Content

The content analysis is tested in two ways:

Redirection The redirecting analysis, will download the content of the web-
page, and look for redirecting patterns. This part of the analysis is tested
on webpages known to redirect to other pages, and it seems to work.

Malicious content Thug is tested on a couple of websites, known to contain
malicious activity. It retracts all relevant objects of the website and marks
the malicious ones. We notify the user, if at least one object has been
marked malicious.

No. Test Expected result Test result
01 Registrant Data of registration Correct

Geo location Data of geo location Correct
Known malicious activity Data of malicious activity Assessed malicious
Redirections One redirection Correct
Content No malicious content Correct

02 Registrant Data of registration Correct
Geo location Data of geo location Correct
Known malicious activity Data of malicious activity Assessed malicious
Redirections Zero redirections Correct
Content Some malicious content Correct

Table 6.9: Test result of link analysis
.

6.3 Final evaluation

Each of the tools in the framework is working as intended, and the �nal report
gives a overview of the content analysed. The report is sent in .txt-format,
which is rather simple, yet good solution. In a future edition of the framework,
it would be preferable to sent a PDF-�le to the user instead. I couple of the
output of the tools can be parsed in a more elegant way, however the output
right now is workable. The report is evaluated by presenting �ve reports to a
group of potential users. The test group will not know whether the �le linked to
each report is malicious or not. For each report they are asked to assess if they
would trust the �le or not. The result of the evaluation is listed in Table 6.10.

50 Evaluation

No. Correct classi�cation Testresults (% of right answers from test group)
01 Malicious 66%
02 Malicious 100%
03 Malicious 66%
04 Non-malicious 100%
05 Malicious 66%

Table 6.10: Evaluation of user report

6.4 Summary of Evaluation

The section has for each of the tools in the framework � both �le and link
analysis tools � made an evaluation of the testing. All tools works as intended,
however the parsing of the output from some tools � especially Cuckoo Sandbox
� can be optimised from the current version.
The testing and evaluation of the framework has concluded that it works as
intended.

Chapter 7

Conclusion

In this project, we have handled one of the challenges regarding spam mails.
Namely the problem regarding spam mails, which the spam �lter of the email
client has recognised as genuine, but which are in fact malicious.
The challenges when developing spam �lters are, that the user expect the spam
�lter to let all genuine emails through. However when lowering the rate of gen-
uine emails marked as malicious in the spam �lter (false positives), we coherent
increase the rate of malicious emails marked as genuine (false negatives).

This gives the user some responsibility for making a second-line assessment of
the email � to ensure that no malicious emails are opened. The need for user
awareness has been discussed, however no matter how aware the users are, the
common user has limited methods to make an exhaustive analysis of the sus-
picious content of a email. The contribution of this project was to design and
implement such an analysis tool, which will help the user to be able the deter-
mine if the content of the suspected email is to be trusted or not.

Based on the analysis in Chapter 3, we have determined that the tool will have
to be able to make an exhaustive analysis of any attached �le the user may
receive, and/or a forensic analysis of any link in the email. The result of the
analysis should be returned to the user. The result will not make a black and

52 Conclusion

white decision whether the content is good or bad, instead the user should com-
pare the result to his own expectations of the content, and determine if the
analysis result and his expectations is equivalent enough to trust the content.

The analysis tool is implemented as a framework on a stand-alone email server.
The user is able the forward a suspicious email to the server, which automatic
processes the email and any attachment, and return the result to the user in a
email.
The framework is written in Python, and incorporates a range of analysis tools,
some developed exclusively for the tool, and some developed by other. The
framework parses the result from the tools, and merge them all together into
the report to the user.

The evaluation of the framework shows that the majority of the embedded tools,
gives correct and useful output which is parsed on to the user. However we
encounter a challenge in the current version of the framework: The behavioural
part of the �le analysis uses Cuckoo Sandbox. The challenge of Cuckoo is that
it is hard to automate, when we are trying to expand the �le type supported as
much as possible. This means, that right now the output from Cuckoo is very
limited.
Another challenge is the report of the analysis. When evaluation the report, we
gave a group of test persons, the results of �ve di�erent analyses. The evaluation
showed some di�culty in reading the reports. One of the problems was, that
the test group was not presented with the analysed �les, only the analysis. This
means, that they did not know what to expect from the analysis. Due to this, the
report evaluation is not complete, and will require that the test group receives
some malicious emails themselves, and forwards it to the server. The report is �
in the current version of the framework � parsed and sent as .txt-�les. This has
limitation and it would be preferable to implement a more sophisticated way of
presenting the analysis results (e.g. in LATEX).

To summarise, the framework works as intended. The requirements for the tools
was listed in Table 1.1. Requirements 01 (Automated analysis) and 02 (User
friendliness) is ful�lled, with the exception of the limitations of Cuckoo Sandbox
stated above. Requirement 03 (Reporting) is partly ful�lled and will require the
implementation of a sophisticated report generation in the framework to be
ful�lled completely.

7.1 Future work 53

7.1 Future work

This section will review a list of possible future extensions of the framework:

LATEX-reporting As stated above, the report generation should be upgraded.
One of the possibilities is to generate the report with LATEX. This would
professionalise the framework, and make the report more readable. When
installing the framework on-site, the report generation should be discussed
with the users at the site, such that the report could be generated to their
need.

Relevant sandbox The current implementation of the sandbox is to broad
to work as intended. If installing the framework at a organisation, it
would be obvious to install a sandbox environment, equivalent to the real
environment used at the organisation. This would give a more specialised
analysis.

Automated output data selection In the current version of the �le analysis
in the framework, all parts of the analysis has only implemented a limited
amount of tools, to ensure that we don't get to much repeated data. The
means that the result of the analysis relies on the result of the limited
number of tools. In a future edition of the framework, a more sophisticated
sorting method could be implemented, such that if two tools produced the
same analysis, the report would not contain the data twice. This would
allow us to implement more tools, without worrying about repeated data
in the analysis result.

Mobile platform malware A SMS-receiving service to analyse Android or
iOS malware, alternatively an app. As the amount of malware for the
mobile platform is increasing, it would be obvious to implement a version
of the framework that can handle this sort of malware. The solution could
be application-based or be implemented as a SMS receiving service.

54 Conclusion

Appendix A

How to run the server

The testing environment has been handed in, in addition to this report. It is
uploaded to Google Drive, and can be downloaded from:
https://drive.google.com/file/d/0B1-QTBwJJp8IZXYwVU5nQVV4eW8/view

The environment consists of:

DNS server The DNS server acts as router in the virtual network.

Mailclient The mailserver where the framework is located

Client The machine from which emails can be forwarded to the server.

The three virtual machines are handed in as a single .ova-�le which should
be imported by a Virtual Guest Machine-manager (I have used Oracle VM
VirtualBox1).
The two client machines rely on the DNS server to be con�gured correctly. When
opened, login credentials for all machines are Username: daniel / Password:
daniel
To test the service, run the script test_example from the client. After a 30
seconds open mutt on the client and the analysis reports should appear.

1https://www.virtualbox.org/

https://drive.google.com/file/d/0B1-QTBwJJp8IZXYwVU5nQVV4eW8/view

56 How to run the server

Appendix B

Example report

Following file types is detected in the file:

--100.0% (.PDF) Adobe Portable Document Format (5000/1)

Static filetype comparison APPROVED:

The filetypes detecting in the file is equivalent to the file-extension.

Following meta-data is found in file.

Please compare to your expectations:

File Name : BestComputers.pdf

File Size : 6.4 kB

File Modification Date/Time : 2017:02:28 16:57:10+01:00

File Access Date/Time : 2017:02:28 16:59:07+01:00

File Inode Change Date/Time : 2017:02:28 16:57:10+01:00

File Permissions : rw-------

MIME Type : application/pdf

PDF Version : 1.5

Linearized : No

Analyzing PDF for suspecious objects..

MEDIUM probability of being malicious

Contains Javascript

Contains suspecious elements:

58 Example report

-OpenAction (1)

-JS (1)

-JavaScript (1)

Contains known exploitation method: CVE-2008-2992

Received and scanned on VirusTotal.com: 2017-02-04 04:33:40

Detections:

36/54 Positives/Total

Recognised as a malicious file by anti-virus engine.

Appendix C

Testing URLs

The following list is the full URL, for the links used for evaluation of the link
analysis part, c.f. Section 6.2

01 http://tj-dxxy.com/qiyueadmin/skymoneyEditor/sysimage/tree/ocmtcym/

02 http://www.seolondon-careers.com/cset/sikker-TDC

http://tj-dxxy.com/qiyueadmin/skymoneyEditor/sysimage/tree/ocmtcym/
http://www.seolondon-careers.com/cset/sikker-TDC

60 Testing URLs

Bibliography

[AB17] Mamoun Alazab and Roderic Broadhurst. An analysis of the
nature of spam as cybercrime. In Cyber-Physical Security, pages
251�266. Springer, 2017.

[AC09] Ahmed Abbasi and Hsinchun Chen. A comparison of tools for
detecting fake websites. Computer, 42(10), 2009.

[Apa10] Apache. Apache tika - a content analysis toolkit. 2010.

[Azi13] Ashar Aziz. The evolution of cyber attacks and next generation
threat protection. In RSA Conference, 2013.

[BCASMV93] Tim Bienz, Richard Cohn, and Calif.) Adobe Systems (Moun-
tain View. Portable document format reference manual. Citeseer,
1993.

[Boy16] Magnus Boye. Dr sendte falsk phishingmail til 3.000
ansatte: 1.406 gik i fælden, June 2016. [Online; retrieved
20-January-2017; https://www.version2.dk/artikel/

dr-sendte-falsk-phishingmail-til-3000-ansatte-1406-gik-i-faelden-834645].

[CAM+08] Xu Chen, Jon Andersen, Z Morley Mao, Michael Bailey, and
Jose Nazario. Towards an understanding of anti-virtualization
and anti-debugging behavior in modern malware. In 2008 IEEE
International Conference on Dependable Systems and Networks
With FTCS and DCC (DSN), pages 177�186. IEEE, 2008.

[CDH14] Ping Chen, Lieven Desmet, and Christophe Huygens. A study
on advanced persistent threats. In IFIP International Confer-

https://www.version2.dk/artikel/dr-sendte-falsk-phishingmail-til-3000-ansatte-1406-gik-i-faelden-834645
https://www.version2.dk/artikel/dr-sendte-falsk-phishingmail-til-3000-ansatte-1406-gik-i-faelden-834645

62 BIBLIOGRAPHY

ence on Communications and Multimedia Security, pages 63�72.
Springer, 2014.

[Con11] Lucian Constantin. Drive-by download attack on facebook used
malicious ads, October 2011. [Online; retrieved 31-January-
2017; http://www.pcworld.idg.com.au/article/403127/

drive-by_download_attack_facebook_used_malicious_

ads/].

[Del12] Angelo Dell'Aera. Thug: a new low-interaction honeyclient, 2012.

[DHG09] John D'Arcy, Anat Hovav, and Dennis Galletta. User aware-
ness of security countermeasures and its impact on information
systems misuse: a deterrence approach. Information Systems
Research, 20(1):79�98, 2009.

[Dig17] Digitaliseringsstyrelsen. Nemid � self-service on the internet. On-
line: https: // www. nemid. nu/ dk-en/ about_ nemid/ , 2017.

[Dub17] Dubex. Danske tømrere misbrugt i ransomware-
kampagne, February 2017. [Online; retrieved 19-
February-2017; https://www.dubex.dk/update/

danske-toemrere-misbrugt-i-ransomware-kampagne/].

[EKK09] Manuel Egele, Engin Kirda, and Christopher Kruegel. Mitigat-
ing drive-by download attacks: Challenges and open problems.
In iNetSec 2009�Open Research Problems in Network Security,
pages 52�62. Springer, 2009.

[Ens17] Chris Ensey. Ransomware has evolved, and its name is doxware.
In DARKReading. nformationWeek Business Technology Net-
work, 2017.

[Esp11] Jose Esparza. peepdf-pdf analysis and creation/modi�cation
tool. Online: https: // github. com/ jesparza/ peepdf/ wiki ,
2011.

[Fal03] Deborah Fallows. Spam: How it is hurting email and degrad-
ing life on the Internet. Pew Internet & American Life Project
Washington, DC, 2003.

[GTBS12] Claudio Guarnieri, Allessandro Tanasi, Jurriaan Bremer, and
Mark Schloesser. The cuckoo sandbox. 2012.

[Had11] Christopher Hadnagy. Social Engineering: The Art of Human
Hacking. Wiley Publishing, Inc., 2011.

http://www.pcworld.idg.com.au/article/403127/drive-by_download_attack_facebook_used_malicious_ads/
http://www.pcworld.idg.com.au/article/403127/drive-by_download_attack_facebook_used_malicious_ads/
http://www.pcworld.idg.com.au/article/403127/drive-by_download_attack_facebook_used_malicious_ads/
https://www.nemid.nu/dk-en/about_nemid/
https://www.dubex.dk/update/danske-toemrere-misbrugt-i-ransomware-kampagne/
https://www.dubex.dk/update/danske-toemrere-misbrugt-i-ransomware-kampagne/
https://github.com/jesparza/peepdf/wiki

BIBLIOGRAPHY 63

[Har13] Phil Harvey. Exiftool: Read, write and edit meta information.
Software package available at http: // www. sno. phy. queensu.
ca/ ~phil/ exiftool , 2013.

[Hon12] Jason Hong. The state of phishing attacks. Communications of
the ACM, 55(1):74�81, 2012.

[Ill12] Hidden Illusions. Ipinfo - searches various online resources to
try and get as much info about an ip/domain as possible. On-
line: https: // github. com/ hiddenillusion/ IPinfo/ blob/

master/ Readme. md , 2012.

[Ill13] Hidden Illusions. Analyzepdf - bringing the dirt up to the sur-
face. Online: https: // hiddenillusion. github. io/ 2013/

12/ 03/ analyzepdf-bringing-dirt-up-to-surface/ , 2013.

[Kei13] Gregg Keizer. Oracle will continue to bundle 'crap-
ware' with java. January 2013. [Online; re-
trieved 31-January-2017; http://www.computerworld.

com/article/2494794/malware-vulnerabilities/

oracle-will-continue-to-bundle--crapware--with-java.

html].

[Kin13] Darien Kindlund. Holyday watering hole attack proves di�cult
to detect and defend against. ISSA J, 11:10�12, 2013.

[KM04] Jeremy Z Kolter and Marcus A Maloof. Learning to detect ma-
licious executables in the wild. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and
data mining, pages 470�478. ACM, 2004.

[Koj04] Tomasz Kojm. Clamav, 2004.

[Lag13] Philippe Lagadec. Oletools - python tools to analyze ole and
ms o�ce �les. Software package available at http: // www.

decalage. info/ python/ oletools , 2013.

[Lit17] Litmus. Email client market share. January 2017. [Online;
retrieved 31-January-2017; http://emailclientmarketshare.

com/].

[LSS+07] Wei-Jen Li, Salvatore Stolfo, Angelos Stavrou, Elli Androulaki,
and Angelos D Keromytis. A study of malcode-bearing doc-
uments. In International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, pages 231�250.
Springer, 2007.

http://www. sno. phy. queensu. ca/~ phil/exiftool
http://www. sno. phy. queensu. ca/~ phil/exiftool
https://github.com/hiddenillusion/IPinfo/blob/master/Readme.md
https://github.com/hiddenillusion/IPinfo/blob/master/Readme.md
https://hiddenillusion.github.io/2013/12/03/analyzepdf-bringing-dirt-up-to-surface/
https://hiddenillusion.github.io/2013/12/03/analyzepdf-bringing-dirt-up-to-surface/
http://www.computerworld.com/article/2494794/malware-vulnerabilities/oracle-will-continue-to-bundle--crapware--with-java.html
http://www.computerworld.com/article/2494794/malware-vulnerabilities/oracle-will-continue-to-bundle--crapware--with-java.html
http://www.computerworld.com/article/2494794/malware-vulnerabilities/oracle-will-continue-to-bundle--crapware--with-java.html
http://www.computerworld.com/article/2494794/malware-vulnerabilities/oracle-will-continue-to-bundle--crapware--with-java.html
http://www.decalage.info/python/oletools
http://www.decalage.info/python/oletools
http://emailclientmarketshare.com/
http://emailclientmarketshare.com/

64 BIBLIOGRAPHY

[MC09] Tyler Moore and Richard Clayton. Evil searching: Compromise
and recompromise of internet hosts for phishing. In International
Conference on Financial Cryptography and Data Security, pages
256�272. Springer, 2009.

[NM14a] Hiran V Nath and Babu M Mehtre. Static malware analysis
using machine learning methods. In International Conference on
Security in Computer Networks and Distributed Systems, pages
440�450. Springer, 2014.

[NM14b] Hiran V Nath and Babu M Mehtre. Static malware analysis
using machine learning methods. In International Conference on
Security in Computer Networks and Distributed Systems, pages
440�450. Springer, 2014.

[OBr16] Dick OBrien. Dridex - tidal waves of spam pushing dangerous
�nancial trojan. Symantec Security Response, Tech. Rep, 2016.

[Par12] Bimal Parmar. Protecting against spear-phishing. Computer
Fraud & Security, 2012(1):8�11, 2012.

[PKSH16] Martin Potthast, Sebastian Köpsel, Benno Stein, and Matthias
Hagen. Clickbait detection. In European Conference on Infor-
mation Retrieval, pages 810�817. Springer, 2016.

[Pon03] Marco Pontello. Trid-�le identi�er. 2003.

[RH11] Sara Radicati and Quoc Hoang. Email statistics report, 2011-
2015. Retrieved May, 25:2011, 2011.

[Rob] Alexander Robertson. File compression techniques.

[SBW01] Martina Angela Sasse, Sacha Brosto�, and Dirk Weirich. Trans-
forming the `weakest link'�a human/computer interaction ap-
proach to usable and e�ective security. BT technology journal,
19(3):122�131, 2001.

[SJ05] Daniel J Sanok Jr. An analysis of how antivirus methodolo-
gies are utilized in protecting computers from malicious code. In
Proceedings of the 2nd annual conference on Information security
curriculum development, pages 142�144. ACM, 2005.

[Ste] D Stevens. Didier stevens pdf-parser. py. Online: blog.

didierstevens. com/ programs/ pdf-tools/ .

[Tot12] Virus Total. Virustotal-free online virus, malware and url scan-
ner. Online: https: // www. virustotal. com/ en , 2012.

blog.didierstevens.com/programs/pdf-tools/
blog.didierstevens.com/programs/pdf-tools/
https://www. virustotal.com/en

BIBLIOGRAPHY 65

[TSPM11] Zacharias Tzermias, Giorgos Sykiotakis, Michalis Polychronakis,
and Evangelos P Markatos. Combining static and dynamic ana-
lysis for the detection of malicious documents. In Proceedings
of the Fourth European Workshop on System Security, page 4.
ACM, 2011.

[Wan06] Wallce Wang. Steal this Computer Book 4.0. No Starch Press,
2006.

[YIM+09] Katsunari Yoshioka, Daisuke Inoue, ETO Masashi, Yuji
Hoshizawa, Hiroki Nogawa, and Koji Nakao. Malware sand-
box analysis for secure observation of vulnerability exploitation.
IEICE transactions on information and systems, 92(5):955�966,
2009.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 The false rate problem
	1.2 A question of trust
	1.3 The project
	1.4 Contributions

	2 State of the art
	2.1 Malware
	2.2 Common infection vectors
	2.2.1 Web pages
	2.2.2 Files

	2.3 Static analysis
	2.3.1 n-gram analysis
	2.3.2 Embedded object analysis

	2.4 Dynamic analysis
	2.4.1 Sandboxing

	2.5 Forensic analysis of IP address
	2.5.1 Passive analysis
	2.5.2 Active analysis

	2.6 Summary of State of the Art

	3 Analysis
	3.1 User awareness
	3.1.1 Phishing
	3.1.2 Linked software
	3.1.3 Drive-by downloads
	3.1.4 Watering hole

	3.2 Forensic analysis
	3.2.1 Suspicious file
	3.2.2 Suspicious link

	3.3 Summary of Analysis

	4 Design
	4.1 The environment
	4.2 The front-end
	4.3 The back-end
	4.4 Result and reporting
	4.5 Summary of Design

	5 Implementation
	5.1 Operating system
	5.2 Mail server
	5.3 Framework
	5.3.1 File analysis
	5.3.2 Link analysis

	5.4 The report
	5.5 Summary of Implementation

	6 Evaluation
	6.1 Evaluation of file analysis
	6.1.1 File type analysis
	6.1.2 Meta data extraction
	6.1.3 Macro analysis
	6.1.4 Object analysis
	6.1.5 Known malicious activity
	6.1.6 Behaviour analysis

	6.2 Evaluation of link analysis
	6.2.1 Registrant
	6.2.2 Geographical location
	6.2.3 Known malicious activity
	6.2.4 Content

	6.3 Final evaluation
	6.4 Summary of Evaluation

	7 Conclusion
	7.1 Future work

	A How to run the server
	B Example report
	C Testing URLs
	Bibliography

