
TECHNICAL UNIVERSITY OF DENMARK

Quality and IT Security assessment of
Open Source Software projects

by

Michael B Nielsen

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Security in Distributed Systems

Department of Applied Mathematics and Computer Science

January 2017

mrmbnielsen@gmail.com
http://www.compute.dtu.dk/

Declaration of Authorship

I, Michael B Nielsen, declare that this thesis titled, ’Quality and IT Security assessment
of Open Source Software projects’ and the work presented in it, is my own. I confirm
that:

⌅ This work was done wholly or mainly while in candidature for a research degree at
this University.

⌅ Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

⌅ Where I have consulted the published work of others, this is always clearly at-
tributed.

⌅ Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

⌅ I have acknowledged all main sources of help.

⌅ Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

22nd January, 2017

TECHNICAL UNIVERSITY OF DENMARK

Abstract

Security in Distributed Systems
Department of Applied Mathematics and Computer Science

Master of Science

by Michael B Nielsen

Trustworthiness in open source software can be evaluated on attributes of software engi-
neering. The attributes possibilities are to describe trustworthiness is vast, but security
have to be evaluated as it has always been a consideration in trustworthiness. The at-
tributes security, maintainability and team capabilities can evaluate trustworthiness as
a metric.

The trustworthiness is evaluated using a software product with information on open
source software. The software product is an assistance for people to understand the
trustworthiness of a software product. The security metric is evaluated based on vul-
nerabilities in the CVE register and open source software projects’ data from OpenHub.
Maintainability using source code data to determine understandability and maintainabil-
ity, and team capabilities are described using contributor information on their projects
contributions. The trustworthiness can thus be evaluated for any open source software
project with information contained in the sources.

Trustworthiness metric can be further expanded by new metrics, which are easily added
to the software product.

http://www.compute.dtu.dk/
mrmbnielsen@gmail.com

Acknowledgements

I would like to acknowledge Christian Damsgaard Jensen (Thesis Advisor) for his help
and guidance through the master thesis without his help I am sure the project would
not have been of the same quality and I appreciate his help greatly.

Furthermore I would like to thank my motivational coaches Signe Schønning and Freja
Maas for helping with staying focused on the thesis. Thanks for help with the editing of
the thesis to Ole Bøndergaard and Freja.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 State of the art 3
2.1 Open source software . 3

2.1.1 Open Source Definition . 4
2.1.2 Open Source Software stakeholders 5
2.1.3 Open source organisation types . 6

2.2 Software reuse . 11
2.3 Software Trustworthiness . 13
2.4 Risk assessment . 17
2.5 Vulnerabilities . 19

2.5.1 CVE . 20
2.5.2 CVSS . 20

2.5.2.1 Base Metric Group . 21
2.5.2.2 Temporal Metric Group 23
2.5.2.3 Environmental Metric . 23
2.5.2.4 Outcome of the score . 24

2.5.3 Heartbleed . 24
2.6 Vulture Mozilla project . 25
2.7 Maintainability . 27

2.7.1 Lines of Code . 27
2.7.2 Halstead formulas . 29
2.7.3 ABC Metric . 30

2.8 Dependencies . 30
2.9 Team . 32
2.10 Summary . 34

iv

Contents v

3 Analysis 36
3.1 Metrics decision . 36
3.2 The metrics . 38

3.2.1 Aggregated Security score . 38
3.2.2 Maintainability Score . 44
3.2.3 Team score . 47
3.2.4 Trustworthiness score . 49

3.3 Information sources . 50
3.3.1 National Vulnerability Database 50
3.3.2 Debian Package Manager . 51
3.3.3 OpenHub . 51

3.4 Software . 53
3.4.1 Development process . 53
3.4.2 Programming language . 54
3.4.3 Structure . 55
3.4.4 Libaries . 56

3.4.4.1 cve-search . 56
3.4.4.2 Web scraper . 57
3.4.4.3 apt-rdepends . 57
3.4.4.4 Restrictions . 58

3.5 Summary . 58

4 Design 60
4.1 Metrics . 60
4.2 Interactions between components . 62

4.2.1 Security score . 62
4.2.2 Maintainability score . 65
4.2.3 Team score . 66

4.3 Summary . 67

5 Implementation 69
5.1 Structure . 69
5.2 Components . 71
5.3 Classes . 72

5.3.1 OSSProject . 73
5.3.2 Dependencies . 75
5.3.3 WebSearch . 77
5.3.4 ProjectContributorMetric . 79
5.3.5 CVESearch . 81
5.3.6 Utilities . 82

5.4 Summary . 83

6 Evaluation 85
6.1 Aggregated Security Score . 85

6.1.1 Security score . 85
6.1.1.1 User evaluation . 87

6.1.2 Dependencies . 88

Contents vi

6.1.3 Entirety . 90
6.2 Maintainability score . 91
6.3 Team score . 92

6.3.1 Setting limits . 94
6.4 Trustworthiness score . 95

7 Conclusion 98
7.1 Future works . 99

A The 44 Trust principles 100

B Class diagram 103

C Metrics diagram 105

Bibliography 107

List of Figures

2.1 Single Vendor Open Source Projects are owned by a single organisation or
company with contributors of their own and external contributors. The
users are using the distribution of the software. 7

2.2 Developer Communities are owned by the contributors in a hierarchal
organisation with users using the software. 8

2.3 Mozilla is a large Open Source project showing the hierarchy for the con-
tributors in the project. The ball park figure tells the numbers for the
different hierarchal levels. 9

2.4 User communities are organisations owning the project and having specific
customers or users as intended users. The open source project is developed
in collaboration with the owners either in house development or purchasing
the software product from a vendor. 10

2.5 The Competence Center is in an advisor role for Open Source Software
Projects, which can get assistance in different aspects of creating a suc-
cessful project. 11

2.6 Graphic display of how [1] is considering trustworthiness and their de-
veloped 44 trust principles. Software trustworthiness is a combination of
security and software engineering matrices. The authors have then used
different methods to find the resulting trust principles. 14

2.7 The figure shows the attributes, which have been deemed of importance
in terms of trustworthiness. The attributes can be used to describe how
trustworthy a system is for a user. The attributes are sorted into a cate-
gories, which the term describes a share of. 16

2.8 From ISO27005 [2], the risk assessment process is a repeated process as
the environment or presumptions change for the IT system. The process
starts in the top and is repeated throughout the life cycle of the system. . 18

2.9 The CVSS version 3 metric groups for scoring vulnerabilities in CVE.
The Base Metric Group is required for the score, while the Temporal and
Environmental are optional depending on the vulnerability. The result is
a score based on the severity of the vulnerability ranging from 0 to 10. . . 21

4.1 The relation between the metrics can be seen in the diagram, and how the
metrics combined will describe the trustworthiness of the software. The
different metrics will have different information sources in order to find
the relevant information. For larger version see appendix C 61

4.2 The sequence diagram for calculation of the Aggregated Security score
with the calculation of the vulnerability score in steps 2-10 and the severity
score in steps 11-17. 63

vii

List of Figures viii

4.3 The User evaluation sequence diagram is simpler than the Security score
sequence diagram with the larger part not being evaluated for the User
evaluation. The User evaluation is used for the CVE annual average being
less than 5, and will thus be calculated based on the user and contributor
numbers of the project. 65

4.4 The Maintainability score sequence diagram is simple with WebSearch
delivering the data on the source code to OSSProject, which is then in
charge of evaluating the Maintainability score. 66

4.5 The Team score is mostly calculated and evaluated by the ProjectCon-
tributorMetric class, which calculates the contributor score based on the
projects of the contributors. The Team score is calculated based on the
coontributor scores and returned to the OSSProject. 67

5.1 The OSSProject component consists of the classes in this diagram(larger
version in Appendix B). The main class of the component is the OSSPro-
ject class, which is in charge of all the functionality and outsource the
tasks to create the trustworthiness metric. WebSearch searches web pages
and in currently only OpenHub.net, dependencies finds dependencies of
the OSSProject, CVESearch finds the CVE and CVSS information, Utili-
ties contains helping functions and ProjectContributorMetric is a Matrix
containing all the information about contributor and their contribution to
different projects. 70

5.2 The Component diagram shows the projects connectivity to third party
software libraries. The different libraries are used for finding information
on the OSSProject to score the project on trustworthiness. The libraries
are used and realised by different means to use the libraries as intended. . 71

5.3 The OSSProject class is the main class controlling the actions taken and
tasks performed. The class will calculate the different scores from the
metrics based on the data and scores received from the other classes. . . . 73

5.4 The Dependency class handles the data about CVE and CVSS scores to
calculate the Security score with all the information about dependencies
of the project. The Dependencies class does handle all the metric related
to the security. 75

5.5 The WebSearch class is implemented for scraping websites to provide data
from OpenHub for evaluating different scores. The WebSearch finds in-
formation about the projects source code and contributors. 77

5.6 Caption . 80
5.7 The CVESearch class is implementing the projects interaction with the

cve-search project, which provides CVE and CVSS data from the NVD to
the project. 81

5.8 The class diagram for the Utilities class, which contains assisting functions
for the scripts to use for finding specific information from their data. This
can be the CVE ids year, help assert the kind of string object and parse
to a correct int. 83

List of Tables

2.1 The combination of Likelihood and Impact scores are multiplied to give
an impression of the overall risk of a Threat Scenario. The values are
grouped to give an impression of the severity of the risk on the system
and organisation. 19

2.2 The division of severity levels based on CVSS score by FIRST 24
2.3 The Lines of Code for Mozilla Firefox found on OpenHub[3], showing the

distribution of lines of code compared to blank and comment lines. Only
72.7 % percent of the code is actual code. 28

2.4 The ranking of maintainability corresponding to the Maintainability Index 29

3.1 The limits for the scale within the code security metric Aggregated Se-
curity score. The values reachable by the metric is used to describe the
trustworthiness in the project . 44

3.2 Mostly known projects with information on how many lines of codes and
comments were written in the current product as of December 2016. The
range of the ratio lying mostly from 10% to 20% for common OSS projects,
which are well functioning and is maintained and ongoing projects. 46

6.1 The security scores results for the selected projects and shows how the
majority of the projects being in the range from 5-7, and a few projects
given a high severity score mostly because of the small project size. 86

6.2 The user evaluation data used to evaluate the projects security score with
the annually vulnerability count is below 5. The data shows contributor
count often rise above user count for not commonly known projects, and
only in very well known projects does the user number rise above the
contributor count. 87

6.3 Dependencies data for open source projects based on Linux dependencies
and their distribution of the security score in the dependencies of the
projects. 89

6.4 The maintainability score results shows how most of the projects are
within the decided range for the scale with only 3 scores being either
0 or 10. The range is found by looking at a large data set of projects and
the results shows that this is equally found to be true with these projects. 91

6.5 The overall results for the team score on various projects using a limit
of 10. The results shows the different projects are evaluated by their
contributors and projects and how the projects are distributed with their
scores. 93

ix

List of Tables x

6.6 Team score evaluation results with limitations set on contributors and
projects evaluated. The projects are quite different and does thus present
a large part of open source projects. The results shows that a limit set on
10 would not deviate the score too much but save significant time on the
projects to calculate. 95

6.7 The trustworthiness score with the major metrics to show how the result
of the trustworthiness metric is. The results are quite low for most major
projects while some of the smaller projects do have higher scores, which
is mainly caused by the trustworthy aggregated security score. 96

Chapter 1

Introduction

Trustworthiness is important for a Software Product to be successful, since most users
are easily persuaded into using another product if a product is not trustworthy. The
same applies for Open Source Software Products, which are only as popular as the users
satisfaction with the software. Open Source Software do not normally use advertisement,
and thus the reputation and recommendation of other users are the key essential in
getting users to use and eventually trust the software.

Trustworthiness is not a uniform value, which can easily be measured in software. Soft-
ware Trustworthiness is a combination of metrics, which combined can give an estimation
of how trustworthy a software product is. The metrics are not in any way standard and
academics are trying to find out how trustworthiness is best described from Software En-
gineering attributes. The project concentrates on evaluating an Open Source Software
Project in terms of Trustworthiness, since Open Source Software Projects information
is easier accessible compared to commercial software products. Security have already
been considered the main attribute for trustworthiness, but depending on the software
other parts play an essential part in trustworthiness as well. The chosen attributes for
this project is the developers contributing to software, the product’s maintainability and
naturally the security metric including the project’s dependencies as well. The chosen
metrics are just a few of available metrics for evaluating trustworthiness.

The product will be a software product evaluating the trustworthiness of software by
combining information from different sources based on the metrics previously mentioned.
The metrics will be calculated and evaluated and with all the information on the security,
team and maintainability of the project. The metrics will be combined into a score
for the overall trustworthiness of the score. The trustworthiness score can be used by
developers checking a library or users ensuring that a software product is trustworthy
before the software is used. A standardised trustworthiness score would be a great asset

1

List of Tables 2

for developers, but this thesis will try to create a measurable evaluation of Open Source
Software Projects.

Chapter 2

State of the art

The analysis encompass information on aspects important to trustworthiness in Open
source software, which includes information on the Open Source concept and aspects of
trustworthy software. Open source software has gained momentum with the start of the
Internet, which made information sharing easier with more people. A large amount of
the software is available through Open Source and almost anybody using a computer is
using a piece of software, which is Open Source.

2.1 Open source software

Open Source Software Projects[4] vary greatly from project to project, and the way
projects are organised and owned by organisations. Open Source software can be or-
ganised in many ways depending on the organisation behind the project. Open Source
projects are mostly distributed through an Open Source license for the well established
projects, while smaller projects are often distributed through Github or similar services
and just available to anybody.

The idea of Open Source has flourished with the Internet, which made the distribution
of software many times simpler than previously. Open Source creates the possibility for
anybody to contribute to a project, which is part in their interest or a focus area of theirs.
People can contribute more or less depending on the time available for the project, since
the Open Source development is all volunteer work and people use Open Source as a
hobby. Individuals contributing a greatly to projects will in communities have more
power in the community, but this depends solely on the organisational structure.

Many large software projects are in fact Open Source and created by a a few individuals
grown into a large community. The most popular browsers are Open Source projects

3

List of Tables 4

such as Mozilla’s Firefox and Google’s Chromium project. For developers several tools
and products such as Oracle’s MySQL and Git are open source for anybody to use and
possible to join. Oracle is mostly known for their database, but also owns Java and the
Open Source project MySQL, which is an industry database standard in many products.
Apache is another Open Source projects owner, which is most know for Apache Server.
Apache has a large open source community with many other Open Source Projects like
Solr and Hadoop. Solr is used for indexing and searching documents for their content,
and Hadoop is a tool to process very large data sets by using a method called MapReduce.
Oracle like many other Open Source Communities has many different projects.

2.1.1 Open Source Definition

The Open Source Definition (OSD)[5] is derived from Debian Free Software Guideline in
order to create a license enhancing the open source principles. The licenses of different
open source software products have to be accepted to become an Open Source license,
which can either be for a specific product or a distribution of software products. The
Open Source Licenses are authorized by the Open Source Initiative (OSI), which is
a Californian public benefit corporation. The distributions of software or individual
software are distributed under a license by organisations such as Apache, Apple1, and
Mozilla. The requirements of the definition can be found below, where all licenses have
to abide by all the requirements.

1. Free distribution of software

2. Available for free and well written Source Code

3. Derived works from license of original software

4. Integrity of The Author’s Source Code. The license can restrict distribution of the
software to only modified or derived work of the software, and the derived work is
required to be of a different name or a new version number.

5. License must not discriminate persons or groups.

6. License must not discriminate against field of endeavours.

7. License must apply to all the programs redistributed.

8. License must not be specific to a product or distribution, and as long as the license is
upheld the software can be redistributed with the same rights as it was distributed
within the original software distribution.

1Well known brand, but is not known for Open Source. Apple though has an Open Source License
Authorized by OSI. Project examples are WebKit, CareKit and programming language Swift

List of Tables 5

9. License must not restrict other software, which the licensed software is distributed
with.

10. License must be technology neutral in order to ensure availability software re-use.

The software should be available for anybody to read, modify and study the product’s
source code. The project should thus be available to any individual interested in the
project, whether the interest is in using the product, being part of the project, or working
with the product to create a new product. An example could be the TOR browser, which
creates a new browser on the basics of Mozilla Firefox to develop new functionality to
the browser software.

The community can limit the participation of individuals, and accepted participants will
have all their contributions examined for quality assurance. The projects are required to
develop well structured and well written source code. The OSD ensures the availability
of Open Source Software, and the availability is the main requirement of all for Open
Source Licensing.

2.1.2 Open Source Software stakeholders

Open Source projects all have certain stakeholder types, which are Contributors, Users
and Vendors. The different stakeholder types are the typical roles, which are interested or
invested individuals in the project. Any of the stakeholders can be the owner depending
on the organisation type, which is elaborated in section 2.1.3.

The owner of the project is an individual or group in charge of the development of
the project, distribution of the product and owns the copyright to the software. The
different projects’ software products are often owned by a group, which are interested
in developing software for their own usage, usage by the masses or creating a profit by
selling to paying users. The Vendor is a company payed to develop the Open Source
Software for the project and a company paying full time employees for developing the
software. Vendors are interested in creating a profit for the company by getting payed
for their services, or in some cases owning the software for selling additional services
with the product. The Contributor is an individual, who spends time developing the
software in his spare time without focusing on monetary profit. The contributor often
contributes to a project because of varying reasons of motivation. The most common
reasons of motivation are interest in the product, the goodwill purpose of the project,
or for software development experience and improvement in their skills. The User is
the individuals and/or groups using the software, which can be on a computer or other
devices, or in a product sold to other users.

List of Tables 6

The stakeholders in an Open Source Software Project can be organised in any fashion,
but the most common Open Source Projects are organised in a management scheme
presented in section 2.1.3

2.1.3 Open source organisation types

Open Source Projects are organised in a set of organisation types, but most projects are
organised in one of 4 types[6]. The biggest difference is the ownership of the source code
and management of the project.

1. Single Vendor Open Source Projects

2. Development Communities

3. User Communities

4. Open Source Competence Centers

The Single Vendor Open Source Projects are not the most commonly known kind of
Open source projects. The single vendor projects are as the name states a single company
or organisation in charge of the entire project. These projects have different contributor
types for example professional developer in their organisation, external developers and
open source contributors. The contributors for a single vendor project are required to
sign a contract, where the source code developed by contributors becomes property of the
organisation in charge of the project. Finding contributors outside of the organisation
can be a great challenge as for most Open Source Projects the source code remains the
property of the contributors and the community. The contributors normally give up the
rights to their code in order to be part of a large project, where they can contribute and
gain great experience in software development.

List of Tables 7

Figure 2.1: Single Vendor Open Source Projects are owned by a single organisation
or company with contributors of their own and external contributors. The users are

using the distribution of the software.

The Single Vendor Open Source projects are licensed under an Open Source licence,
which means the Open Source requirements are fulfilled. The source code is available to
anybody, but the distribution of the software is still the responsibility of the organisation.
An example of a Single Vendor Open Source Project is MySQL, which was owned by
the Swedish firm MySQL AB but is now owned by Oracle. MySQL like other Single
Vendor Open Source Projects are prone to be forked by teams of developers. Forking
a project means to create a new derived project or organiser split into several projects.
MySQL have been forked several times to MariaDB for example, and the developers are
allowed to create the project as Open Source with a different kind of organisation not
owned by Oracle. MySQL has been forked into several projects, but MySQL has still
remained a leading contender for database solutions. The project being forked is a great
risk for this type of Open Source organisations, where all the source code is reused by
a new organisation. The organisation type is close to the commercial software products
and does usually have a commercial extension to the Open Source product.

Developer Communities are the well known organisation type of an Open Source
project. The organisation of a development community has a large number of contrib-
utors, where the contributors are the owners of the project. The contributors and the
community are thus controlling the distribution of the software from the project and
owning the source code. This kind of Open Source project are often licensed under
either GNU Open Source License or another collective of Open Source licenses.

List of Tables 8

Figure 2.2: Developer Communities are owned by the contributors in a hierarchal
organisation with users using the software.

The internal organisation will have leaders to make executive decisions for the project.
The project leaders can either be chosen based on their contribution to the project, or
the decisions are made as a community. In the community the contributor’s level of
contribution decides how much decision power the individual contributor has. The Open
Source project will have a list of guidelines for contribution on how the code and other
contributions should be formatted to be accepted. The contributions will be checked
for correct format and if necessary the design before being accepted into the project.
An example of this organisation type is Linux or Mozilla Firefox. Mozilla has different
levels in their organisation based on contribution, and the level and ball park figure of
contributors can be seen in figure 2.3.

List of Tables 9

Figure 2.3: Mozilla is a large Open Source project showing the hierarchy for the
contributors in the project. The ball park figure tells the numbers for the different

hierarchal levels.

Developer Communities generally have a Project Core with extremely active contributors
to the project, which are in charge of the overall project from accepting contributions,
distributing tasks and decisions on the product or project. The Core are experienced
developers, system designers and have been part of the project for a long time, who will
have to provide feedback on solutions and accept the solutions with acceptable quality.
The decisions have to originate from part of the organisation, and the Core Contributors
will have more decisional powers compared to the less contributing contributors.

The User Communities are similar to the development communities, but the projects
are owned by the users of the software compared to the developers. The users or user
communities of the software, develop the software in house or pay to have the system
developed for them. The software can be developed under an Open Source License or
be released from the development into an Open Source License as the project is being
finished and distributed. The user communities are sharing the ownership of the software
and the distribution. The user communities can be an industry sharing the expenses to
develop and maintain a system with the specific requirements for similar user group.
An example could be universities collaborating in developing an intranet for information
between the students and teachers about courses and university groups.

List of Tables 10

Figure 2.4: User communities are organisations owning the project and having spe-
cific customers or users as intended users. The open source project is developed in
collaboration with the owners either in house development or purchasing the software

product from a vendor.

The Open Source Competence Centers is as the name states a competence center
for Open Source projects. The competence center shares resources, advise and informa-
tion of how to create a successful Open Source project. Activities are organised by the
competence center like conferences and workshops. The competence center role includes
creating the facilities for an Open Source project to thrive, which can be anything from
assistance or utilities for the contributors and users of the project. The competence
centers will include various organisations like small projects, Non-Governmental Organ-
isations or private companies as users. The projects can be all kinds of projects, or the
Competence center might have a specialty for a certain type of projects. The competence
centers do exist all over the world, but the Open Source Competence Centers are nor-
mally geographically restricted. The restriction are caused by the attempt to emphasise
the environment for Open Source projects within the region.

List of Tables 11

Figure 2.5: The Competence Center is in an advisor role for Open Source Software
Projects, which can get assistance in different aspects of creating a successful project.

The organisation types are oriented toward a specific Stakeholder being the owner and
another (or the same) being the developing part of the software product. The Compen-
tence Center is usually a governmental institution creating an incubating environment
for the projects. The Competence Centers are usually geographic limited to a nation
or region, and the Compentence Center helps and guides the projects to be successful.
Development Communities are contributor oriented with the contributors being both
the software Owner and Developers of the products. The User Communities are Vendor
Oriented as they are the deveelopers of the software product altough a User group is
the Owner. The Single Vendor Open Source Project is Vendor Oriented with being both
Owner and main Developer of the software, although Contributors can develop parts but
these products are challenged on finding contributors.

2.2 Software reuse

The reuse of software happens greatly in software development, where developers ex-
empted from developing system functionalities from scratch. Open Source Software
projects can reuse software internally in the project or from other Open Source Soft-
ware projects to gain functionality. Software development have a vast variety of software
development tools made available to developers for different development environment.

List of Tables 12

Software solution and Open Source Software tools are available to ease the re-use of
software such as Git.

The reuse of software can in both low and high level programming languages utilise dif-
ferent methods to include source code from other developers. The most common reuse is
the libraries included in the development environment chosen for the development of the
software, which includes general functionality by the owner and from 3rd party develop-
ers which libraries have been made available for everyone. The libraries included in the
software languages are libraries the organisation in charge of development have decided
to include and thus used correctly are safe to use. High level programming languages
have basic functionality included, but get access to more tools and often more advanced
tools. 3rd party software tools can be made available through package managers or from
version control solutions. A simple example of this can be the Python programming lan-
guages, which have many different tools, and through PIP (Pip Install Packages) many
more tools like Numpy and PyMongo. These libraries enables developers to use advanced
data processing with Numpy and to connect Python scripts with MongoDB databases.

Krueger[7] explains the view of Software Reuse as of 1992, which has a few different
methods of reusing software. Software reuse have changed since 1992, but he explains
a few methods for high level programming languages. The high level programming
languages have shifted from back in 1992 to today, where C and definitely C++ was seen
as high level programming languages. Today C++ and C are viewed as in-between high
and low level programming languages, because the developer have to take care of a few
more issues than other high level programming languages as of today. A few of these
issues are memory allocation and garbage control, where C and C++ require this from
the developer. The possibility of closer hardware interaction and speed is the advantage
of C and C++ compared to the high level programming languages. Today’s high level
programming languages, such as Python, Ruby, Java and etc., does handle these issues
and more for the developer to focus on the project.

Krueger explains the methods of Scavenging, source code components, schemas and
application generators. Scavenging code is to use duplicating code into a new project,
which can give the project new functionality in an easy way with little modification of the
original code. This is a simple way of reusing code, but require the code to be available
either through an open source project or from available source code in an organisation’s
previous projects. The idea is to add the source code with the desired functionality to
the project. This is a simple way, but should be avoided if more modern approaches are
available for software reuse.

Source Code Components are components developed usually with an object oriented
language approach, where components can be reused from other developers and have a

List of Tables 13

large set of functionalities from available library components. The components can be
generic data types as most computer scientists know such as String, Stacks, Queue, List,
Maps and etc. These components can then be reused in any system, where information
needs to be stored for data processing. The inheritance and subclass structures for
components are an advantage of re-using components, which can increase the abstraction
level for the developers of the system. Components are not only simple structures for
data handling, but can be larger components with several classes and object reused
internally in a system or in an external system. These 3rd party components can have
all kind of functionality, but can add specialized functionality for an area of expertise,
like mathematics, data mining, or another area. Using these data types or components
lets the developer work on a higher level of abstraction and not having to deal with
developing and testing the component to operate as intended.

A few less used software reused methods are Schemas and Application Generators, which
are used for a specific task. Schemas are able to create a conceptual connection between
Services and Models, which are often used in SOA. Schemas such as XML uses an XML
Schema Definition (XSD) for the service to understand and verify the XML structure.
Schemas can similarly be used to handle data objects as well with a specific structure as
a replacement for databases, but was normally done prior to this millennium as database
technologies have matured since. Application Generators are used to generate ap-
plications for a specific purpose. The application can be generated from a definition of
the task to be solved. The definition can be made in different ways, where SOA server
functionality can be generated based on XML files. Other possibilities are to generate
the application based on interaction with a simplified user interface from pictures and
drag and drop functionality, which is available in certain industries.

Today Object-Oriented software is greatly used in many software projects, but a few
other kinds are available. Krueger brings a few older examples up, which are outdated or
less frequently used today. The components describe the basics of how Object Oriented
Programming works with vast amount of libraries available with many resources and
functionalities for developer. A few package management systems make lesser tested and
known libraries available for the developer to choose from depending on the functionality
needed in his system.

2.3 Software Trustworthiness

In the history of computer science trustworthiness have been defined differently over
time, as the academic society changed from the original view of software trustworthi-
ness, only to include security[1]. Security is an important part of trustworthiness, as

List of Tables 14

insecure software will not be trusted by the users. The security is of course a simple
version of looking at trustworthiness from a computer scientist’s point of view, where
general users will have other aspects to consider as they use applications and services.
The definition of trustworthiness was extended to include the quality of software. The
quality of software have many aspects to measure just like security, for example com-
plexity, reliability, availability, or life cycle cost.

The Trusted Software Methodology (TSM) found 44 trust principles for software to rate
the quality of the software project. The principles both have aspects from security and
software engineering. In the figure 2.6 the TSM considers the relationship of software
trustworthiness and the created trust principles.

Figure 2.6: Graphic display of how [1] is considering trustworthiness and their de-
veloped 44 trust principles. Software trustworthiness is a combination of security and
software engineering matrices. The authors have then used different methods to find

the resulting trust principles.

The trust principles are in other words created from software engineering methodology,
security safeguards and countermeasures, and trustworthiness principles. These trust
principles are prone to the complete life cycle of the software development. The principles
are used in TSM to make a rating from T0 to T5 depending on the number fulfilled trust
principles.

The TSM does state that the trustworthiness of software often depends on the invest-
ment, which the stakeholders are willingly to invest in the project. To create a completely
trustworthy software product requires tightly controlled quality assurance for the soft-
ware never to fail or crash. To develop completely trustworthy software is similar to
developing complete secure software, which will be extremely expensive compared to

List of Tables 15

the level needed for the project to be sufficiently secure or trustworthy based on the
requirements. Only a few organisations are willing to invest in a completely trustworthy
or secure software, which are often organisations in the military or organisations with
high risk purpose like space travel. Space travel invest a large amount of money in the
software being reliable, since the space shuttles used are very expensive, but the space
industry have seen a few failures caused by small issues. The security aspect is a design
and development consideration for a team to improve, but most companies design suffi-
ciently secure software for the purpose of the system. All companies might not have the
same requirements to the software as military organizations have, and thus these military
or high security organizations make a larger investment in security and trustworthiness.

The trust principles can be found in Appendix A.

Trustworthiness is discussed as a concept in comparison to Socio-Technical System (STS),
which describes any humans who uses the system as means for communication[8]. The
trustworthiness is with a focus on the STS but instead of having 44 principles, the article
comes up with attributes in different aspects of the development. The STS is a limited
kind of system, but these attributes does mostly apply to any other kind of system, the
attributes are known software engineering attributes. The attributes found from the 44
trust principles and attributes are similar. The STS have a focus on the users perception
of the system, as a concept for software engineering.

STSs’ can be anything used for communication between people on any kind of platform,
which means the system can use any kind of media as well. An STS can be a service,
system, applications, or mobile apps, thus the STS definition is very versatile to use to
describe systems. The STS definition can then be used to describe a large set of Open
Source projects as well, but Open Source project will not all be part of the STS defini-
tion. The attributes can be used for systems that are not an STS, since the attributes for
most part are terms found in Software Engineering. The user perception of the system
is important for many systems, because if the system has a feeling of untrustworthy, a
reputation for sharing private information, leaks, or a bad service. The users or develop-
ers using the system will have to feel secure and be able to trust the system, otherwise
the users will find an alternative with similar functionality.

The public is becoming more aware of the security of the systems they use, and many
systems have security problems like the Heartbleed scandal. Also, user information is
being leaked in millions every year caused by security vulnerabilities. People are often
concerned with the quality of software in regards to privacy and availability. People are
being more aware than previously on the information, which they share with other people
and especially what people. Availability or lack thereof is easily noticed by the users,

List of Tables 16

when the systems are down or unavailable. The attributes do have these as a concern
along with other attributes, which can be found in figure 2.7.

Figure 2.7: The figure shows the attributes, which have been deemed of importance
in terms of trustworthiness. The attributes can be used to describe how trustworthy
a system is for a user. The attributes are sorted into a categories, which the term

describes a share of.

The figure 2.7 shows a large set of Software Engineering terms, which describes a section
of the overall trustworthiness of a system. The attributes each explains a part of the
software quality, which all contributes to an indication of the system’s trustworthiness.
Security is a category with a large set of attributes to define the security, where the CIA
attributes are represented as integrity and confidentiality. Availability is a dependability
measurement as is reliability with several others. The names with the asterisks have
been examined further in the article[8].

Surato[9] describes a few ways to evaluate the trustworthiness of a software project. A
way is an Eclipse plugin, which can evaluate and test the trustworthiness of the system
based on the architecture. The plugin is created by Immonen & Palviainen (2007)[10],
which can test an Open Source Component’s trustworthiness based on the component’s
reliability.

The product developed by Immonen and Palviainen is called Reliability Analysis Tool
or Reliability and Availability Predictor (RAP), which analyses how reliable and likely
the component is to fail. The article describes their focus on reliability of a component
as part of a trustworthiness evaluation. The authors describe critical requirements to
include security, reliability, performance and functional requirements. The developer
implementing the components in a system will have reliability requirements, since a
failure in the component will likewise result in lack of the functionality or of the entire
service depending on the criticality. The RAP tool is created as a plugin for Eclipse IDE
and utilises a model based analysis on the system.

First the tool uses the model of the system architecture for the user to create requirements
for the components. As the requirements are finished the components are then tested for
reliability of failure from a generated Markov Model. The final step of the analysis is to
test the reliability of the single component and the components integration in the overall

List of Tables 17

system. The components are tested with unit tests to check the individual requirements
to the components. The product is mostly usable for developers of a closed project
or an Open Source project with access to the source code and a system design. The
requirements of the system is to have internal knowledge of the design to use the RAP
tool to test both the design and its requirements. This information is essential and the
design is not available for most systems unless you are part of the developing process.

Another option for reusing existing software can be Commercial Off The Shelf (COTS)
solutions in order for the system to easily gain new features. The COTS is a component
that can be added to a product for the purpose of adding a service or functionality.
The difficulty with COTS is finding the best fit for the project, where no overview of
solutions and products are available. The trustworthiness solutions are not easily found
from solutions with problems.

A large number of articles covers the topic of trustworthiness, although no current in-
dustry standard in trustworthiness seems to be close. Trustworthiness is described using
attributes otherwise used in Computer Science, such attributes can be seen in Figure
2.7. Trustworthiness depends greatly on the type of product and its intended use, where
trustworthiness can be difficult to incorporate for all kinds of software.

2.4 Risk assessment

Risk assessment is a large discipline for many areas in industries and product devel-
opment. Risk assessment in Information Security is an important issue for many or-
ganisations, and the International Organisation for Standardisation (ISO) and National
Institute of Standards and Technology (NIST) have created a standardised process each
to assess the threats for an IT system. The ISO 27005[2] and NIST Special Publica-
tions 800-30[11] are both process to assess the risk on IT Security for a system. These 2
processes are similar, and although the vocabulary covers the same concepts, both organ-
isations have created their own definitions of the concepts. The NIST concepts are more
clear, simple, and hands-on, which is why it will be the one used to describe these aspects.

The process in figure 2.8 is from the ISO 27005, and shows how the process advances.
The process contains a 7 stage context establishment, risk analysis, risk assessment, risk
treatment, risk acceptance, risk communication and risk monitoring.

The process starts with the Context Establishment and iterates through the process,
and the process is a continuous process. The process is continuous and should be active
for the life time of the product. The process is thus not only needed in the beginning

List of Tables 18

Figure 2.8: From ISO27005 [2], the risk assessment process is a repeated process as
the environment or presumptions change for the IT system. The process starts in the

top and is repeated throughout the life cycle of the system.

of the project, but needs to be kept updated as the product and the context of the
product changes. The context establishment is about establishing the context of the
system, which includes the scope, assumptions and restrictions of the environment both
computational and in the organisation. Restrictions can be made in case the organisation
are obligated to report information to the public, and this should be possible for the
information from the system. The risk analysis is part of the risk assessment and is the
phase, where all possible threat scenarios are found for the systems in the organisation.
The risk analysis is about establishing a scenario that could be a risk for the system and
organisation. The Threat Scenario found consists of a Threat Source (adversary), Threat
Event, and Vulnerability. The Risk Analysis will be an iterative process with all possible
or all relevant Threat Scenarios being listed and risk assessed for the organisation. The
Threat Source is the adversary of the threat, which can be an individual, a group or
an organisation, who wishes to do harm to the organisation or system. Threat Source
will have different reasons of motivations and means for initialising an attack, where
the NSA would have more resources and thus higher likelihood of success. The Threat

Event is the specific attack the Threat Source is carrying out. The Vulnerability is
the component or part of the system used by the Threat Source to initiate the Threat
Event. The second part of the Risk Analysis is the Risk Evaluation, which is about
estimating the risk of a scenario based on Likelihood of occurrence and success. The

List of Tables 19

estimation is usually evaluated on a scale from 1 - 4 for both Likelihood and the Risk
with the combination of higher scores being more critical.

Likelihood
Impact

Low Medium High Critical

Improbable 1 2 3 4
Unlikely 2 4 6 8
Likely 3 6 9 12
Frequent 4 8 12 16

Table 2.1: The combination of Likelihood and Impact scores are multiplied to give
an impression of the overall risk of a Threat Scenario. The values are grouped to give

an impression of the severity of the risk on the system and organisation.

The Risk Treatment is how to handle and mitigate the Risks identified for the system
to a satisfactory level. The Treatment depends on the Threat Event and Vulnerability
and an example can be to implement a new level of authentication in the system, if
the problem is with the confidentiality. The Risk Acceptance is a level, where based on
the Evaluation and Risk Treatment the Risk is deemed acceptable for the system and
the organisation. The Risk Treatment can be redone in case the Risk level is still too
significant. The level of the risk is usually mitigated to an acceptable level or the best
compromise in terms of cost, since removing the risk completely can be a significant
expense for the organisation.

The vulnerabilities are the interesting aspect, since the software system should make a
risk assessment of what vulnerabilities are acceptable for the necessary level of protection.
The vulnerabilities should be minimised for the software system and should for very
confidential systems be able to protect even against an attack of any adversary. The
threat source is not of significant importance as any adversary can be motivated to
attack any system and can be difficult to rate the system on their level of confidentiality
needed. The vulnerabilities are a factor along with the threat events, which the system
should be able to resist.

2.5 Vulnerabilities

In a risk assessment process the vulnerabilities are an important factor for assessing
the software quality. Vulnerabilities is a weakness in the software for an adversary to
exploit in order to harm, alter or steal information from the system. Vulnerabilities are
entry points to a software system, and a vulnerability in a software dependency will in

List of Tables 20

most cases create the same vulnerability for the implementing system. The most famous
vulnerability as of recently is Heartbleed, which will be further discussed in section 2.5.3.

2.5.1 CVE

Common Vulnerability and Exploits (CVE)[12] is a dictionary for finding known vulner-
abilities in software systems. CVE register was created by Mitre in 1999 and have since
become the industry standard for vulnerabilities, where previously many vulnerability
databases were available but none for general systems with all vulnerabilities to become
a general reference.

The process for creating a vulnerability starts with finding a potential vulnerability in a
system. The CVE id is then created for referencing this particular vulnerability by an
authority called CVE Numbering Authority (CNA). The CVE ids are using the format
CVE-YYYY-XXXXX, where Y is the year the vulnerability was discovered and X is the
id of the vulnerability. Previously only 4 digits were used to classify the CVEs, but with
more vulnerabilities being discovered every year. The CNA changed the ids to include
as many digits as necessary with a simple expansion of a digit to include 10 times as
many ids.

The CVE dictionary is used by many organizations and various security products are
made compatible with CVE. NIST have advised the use of CVE ids for security vulner-
abilities and have made the National Vulnerability Database[13], which is synchronized
and based on the CVE register. The CVE ids are used to have a point of reference, when
talking about security vulnerabilities especially in literature and articles. The CVEs are
further investigated by Common Vulnerability Scoring System (CVSS), which evaluates
the vulnerability based on several metrics to assign a score for the severity impact on
the system.

2.5.2 CVSS

[14]The Common Vulnerability Scoring System is a third party entity for scoring the
CVEs. The score is split into 3 matrices of scoring the vulnerability, which are Base
Metric Group, Temporal Metric Group and Environmental Metric Group. The Base
Metric Group consists of Exploit metric, Impact metric and the Scope for the scoring.
The Base Metric Group is the only required group for scoring the vulnerability, while
the other metric groups depend on the vulnerability exploitation and the environment

List of Tables 21

of the system with the vulnerability. The score is a severity score for the vulnerability
ranging from 0 to 10 with 0 being a low risk vulnerability and 10 being a critical risk
for the system. The CVSS investigates the CVEs and if a vulnerability is found, the
vulnerability is given an evaluation, but the vulnerability have the possibility of being
rejected as well. A CVE being rejected means the registered vulnerability does not grant
additional access into the system and is thus not given a score.

Figure 2.9: The CVSS version 3 metric groups for scoring vulnerabilities in CVE. The
Base Metric Group is required for the score, while the Temporal and Environmental
are optional depending on the vulnerability. The result is a score based on the severity

of the vulnerability ranging from 0 to 10.

This project focuses on Open Source Software, while CVE and CVSS show an vulnera-
bility in any software system, hardware system and network resource. The vulnerability
does not have a boundary for the systems, which are scored by MITRE and can be any
kind of system including Open Source Systems.

2.5.2.1 Base Metric Group

The metric base metric group is split into 3 types of metrics, which can be seen in
figure 2.9. The Exploitability Metrics, Authorization scope and Impact Metrics, which
scores the vulnerability in different basic aspects. As previously stated these metrics are
required for an CVSS score to be assigned, as these metrics contain standard information
for a vulnerability.

The Exploitability Metrics are metrics to rate the exploit or attack, which the vul-
nerability is exposed to. The metrics are Attack Vector, Attack Complexity, Privileges
Required and User Interaction.

The Attack Vector is based on the entry point of the vulnerability. The connectivity
needed for an attacker to exploit the vulnerability. The score is evaluated with higher

List of Tables 22

severity for the access over the Internet or otherwise open network access, while lowest
score is in case a physical access is necessary to exploit the vulnerability. The Attack

Complexity describes the exploit complexity needed for a successful attack. These
complexities can be information needed about the system, the configuration of the system
or certain elements out of the attacker’s control. The lowest complexity needed results
in a higher severity score, while the more complex the attack the more unlikely the
vulnerability is to be exploited by a large number of adversaries.

Privileges Required for the exploit specifies the user privileges in the system an at-
tacker need for an attack to occur. The attacker does not have to qualify for these
privileges himself, but need to receive or attain these privileges in one way or the other.
No privileges deem the highest score, while administrative or harder user privileges re-
sult in a lower score as they are more difficult to achieve. User Interaction relates to
requiring a user’s help to exploit the vulnerability. The user might need to configure the
system in a specific way or leave the system open and vulnerable for the attacker. No
user interaction gives the highest score, while if a user is needed the score is significant
lower.

Authorization scope scores the vulnerability for a system granting access to another
system or a host system. An example could be a vulnerability in a virtual environment
granting access to the environment, which hosts the virtual environment. The change
of the environment would be a severe risk to any system as many servers hosts virtual
servers, where the hosting server should not be accessible to most of the users in the
system. The change of the system would result in a severe score.

The Impact Metrics are based on the impact of CIA principals, which stand for Con-
fidentiality, Integrity and Availability. The Impact Metrics are thus Confidentiality Im-
pact, Integrity Impact and Availability Impact, which are the factors the vulnerability
can impact on the system. Confidentiality is used to control the flow of informa-
tion only for the individuals or systems authenticated. The Confidentiality Impact is
high, when an attacker be granted access to information without having the privileges
in the system. Integrity is the trustworthiness of the information and the source of
the information. Integrity Impact is in case an attacker is able to change or destroy
information in a system and the system believing the information originated from the
original source. Availability is the information being available to the system and its
users. The Availability Impact can range from total loss of information to no impact at
all. The Availability is impacted in case the bandwidth is low from the server and the
information cannot be made available to all the users. An example of Availability Impact
can be a DDoS attack, where computers send a large number of requests to a service and
the service is not able to handle the amount of requests. The service is thus not able to

List of Tables 23

make the information available to the actual users requesting the information or not all
of them because of the server load.

2.5.2.2 Temporal Metric Group

The Temporal Metrics are a description of how well defined and exploited the vulnera-
bility is. The Temporal Metric Group consists of the elements Exploit Code Maturity,
Remediation Level and Report Confidence, which as stated earlier is not required for the
CVSS scoring but will influence it if presented.

The Exploit Code Maturity explains how mature the exploitation of the vulnerability
is developed as a piece of software. Is the exploit an automated software like a virus or
a worm, is it a script for people to use, or is it developed especially for a single purpose
of a single attack. These variable does make a remarkable difference for the severity of
the vulnerability from a conceptual idea to an autonomous worm.

The Remediation Level is the state of the software having this vulnerability. The
vulnerability is often fixed if the severity is high for the system and thus actually only a
vulnerability until the issue is fixed by the company behind the system or another entity.
The system is vulnerable in this exact version of the software and possible earlier, where
the lowest score is an official fix from the software company. The other entities of a
remediation or mitigation are a temporal fix, a workaround for the software to mitigate
the vulnerability to no fix at all, which would be the highest score for the vulnerability.

Report Confidence simply describes the confidence of the person or organization,
which found the vulnerability. The confidence can include the technical specification of
the report and the details in which the report is described.

2.5.2.3 Environmental Metric

The Environmental Metric describes the environment and organizational infrastructure
the system acts within, and the impact to the organization in regards to Confidentiality,
Integrity and Availability. The Environmental Metrics contains the Security Require-
ments and Modified Base Metrics. The Security Requirements are described in terms
of 3 factors Confidentiality Requirements, Integrity Requirements and Availability Re-
quirements, which in terms describes the severity of the vulnerability impact to the
organization by the 3 principals. The Requirements are given a score from High to Low,
depending on the impact on the individual requirement and is only taken into consid-
eration if the Modified Base Metric is not None. The specific organisation might be

List of Tables 24

responsible for many confidential documents, and the security requirements for Confi-
dentiality will be high for this organisation.

The Modified Base Metrics is used by the analyst, the person who found the vul-
nerability, to describe the environment, which the software is running in. The analyst
can be part of an organization, which uses the software and the access controls might be
configured differently from the standard product, which results in a severity score devi-
ating from the standard base metrics. The system environment can also include other
services, which mitigates the vulnerability severity for the system infrastructure.

2.5.2.4 Outcome of the score

The score given is a combination of all these variables and their rating by the First,
where the different Metrics have different constants for each possibility to result in an
overall score. The score ranges from 0 to 10, where 10 is for a critical severity. FIRST
has decided to use the severity levels in table 2.2.

Rating CVSS Score
None 0.0
Low 0.1 - 3.9
Medium 4.0 - 6.9
High 7.0 - 8.9
Critical 9.0 - 10.0

Table 2.2: The division of severity levels based on CVSS score by FIRST

The score is an easy way to find out how severe the vulnerability reported is, but how the
different factors influence the score can be seen in their Vector String. The string consists
of abbreviation and evaluation results of the different metrics for the CVSS Score. An
example could be the following Vector String for the Base Metric Group.

CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N
CVSS:2.0/AV:N/AC:L/Au:N/C:P/I:N/A:N

The string is in the same sequence as presented previously and if more information is
wanted on the CVSS Score this can be found at First’s CVSS page[14].

2.5.3 Heartbleed

Heartbleed[15] is an example of a vulnerability, which is well known from 2014 in the
OpenSSL project. Heartbleed is a vulnerability in version 1.0.1 until version 1.0.1g,

List of Tables 25

which fixed the issue. Heartbleed is a famous modern vulnerability, where most online
communities and social networks were affected by the vulnerability. All the users of the
systems had to change passwords and the media coverage was high during a period.

The National Vulnerability Database[16] contains information from CVE and CVSS on
the vulnerabilities. The CVE id for Heartbleed was CVE-2014-0160 with the CVSS score
of (5.0). The problem with Heartbleed was that hackers with network access, mostly
through the Internet, could receive the user passwords in vulnerable systems and act on
behalf of the system. The vulnerable systems were easily exploitable for hackers, and
The OpenSSL X.509 signatures used in the encryption was revealed in memory, which
meant that anybody could sign as both the user and the server. The vulnerability was
a great problem on the web, but most organisations fixed the vulnerability in a hurry
because of the severity.

The vulnerability vector for CVE-2014-0160 can be seen below:

CVSS:2.0/AV:N/AC:L/Au:N/C:P/I:N/A:N

The vector defines that Access Vector is Network exploitable, Access complexity is low
and Authentication needed is none in the Exploitability score. The score is thus 10,
as it is the easiest possible to access the system. The Impact Vector only includes the
confidentiality to be partial whereas the others principles are not impacted.

The information is thus available for anybody over a network to access confidential infor-
mation of the system impacted by the Heartbleed vulnerability. The systems impacted
quickly asked all users to change their passwords, when the vulnerability was fixed on
their system. The public was well aware of the fact that the Heartbleed vulnerability
happened to most major and minor servers.

2.6 Vulture Mozilla project

Neuhaus et al.[17] have created a data mining and machine learning implementation
called Vulture back in 2007, which can predicts vulnerable components in the Open
Source project Mozilla. The article is very well written and interesting reading on how
data mining and machine learning can be utilised within the Mozilla project. The Mozilla
project is well known for their Internet browser Firefox and mail client Thunderbird,
which in 2007 was the 2nd most used after Internet Explorer and Outlook. While Chrome
has passed Firefox, Firefox is still the 3rd most used browser accessing the Internet.
Mozilla have a core project called Mozilla Core, which contains utilities for all their

List of Tables 26

products, which is likely the most of the used source code for the data minning and
machine learning. Vulture data mines the Bugzilla database to find vulnerabilities within
the Mozilla project. The data is then used in order to find the correlation for imports
and function calls between the components and their vulnerabilities. The Bugzilla is
the Mozilla project database with all the bugs found within the Mozilla project, where
Vulture data mines the bugs with security vulnerabilities.

The Mozilla is a large project with 3,1 million lines of code for Firefox as of December
2007 and have grown to 14 million lines. The project is huge with a large community
to develop throughout their projects, which mainly consist of Firefox and Thunderbird,
but other projects are created by Mozilla too. Mozilla also have many contributions to
extensions and additional functionality added to both of their largest products from 3rd
party sources.

”Mozilla as of 4 January 2007 contains 1,799 directories and 13,111 C/C++
files which are combined into 10,452 components. There were 134
vulnerability advisories, pointing to 302 bug reports. Of all 10,452

components, only 424 or 4.05% were vulnerable.” - Neuhaus et al. page 531

The first part of the project is to discover patterns within the Bugzilla database in order
to find components, which have been vulnerable. The Mozilla project is well controlled
and the bugs are found in the source code by looking for the bug id. The bug id is given
in the source code where the fixes are classified by ”Bug #362213” or by ”fix 362213”,
which eases auditing the bugs. The bugs are with this notation assigned a component.
In the source code Vulture finds the function calls as well as the imported library in the
classes of the component. The idea is to find the security vulnerabilities in regards to
the library’s import and functions.

The components with security vulnerabilities are linked with the imported library and
used function to find support, recall and significance within the data. The support shows
vulnerable components with libraries and functions in common, which can be used to
find the components possible being vulnerable and not yet discovered.

The second part is to make a prediction based on the data, where Vulture can predict
if the component is a security risk based on the libraries used and function calls. The
prediction is done with a machine learning classification called support vector machines
(SVMs). The resulting classification is incredible fast, and the authors say that a real-
time implementation would be possible although, only possible for the systems working
with the Mozilla source code or with similar libraries. Using 2/3 of the data for training
the classification, and the last 1/3 for evaluating the classification, which is standard

List of Tables 27

for machine learning classification. Vulture is able to predict with a 45% precision for
imports, while predicting 70% function calls. Mozilla will have bugs and security issues
that have not been found, but with all the data from Vulture, Mozilla will be able to find
the most likely places with security problems. The precision can be lower caused by the
fact that not all issues have been found, but is a good result based on a single project.

The concept used in Vulture is a great and innovative way of finding libraries, which
are often faulty or incorrectly used. The requirement for creating a classification of the
libraries and functions, is the Bugzilla database. Open Source projects probably have a
database filled with bugs to correct, but the authors gained access to the database from
the community. Gaining access to bug databases in all communities would be a great
challenge for giving an evaluation on trustworthiness to any Open Source project. Vulture
could be expanded with more data from other projects for an even better indication on,
what libraries are most likely to cause a security threat. The problem is though, that
the projects are based on different programming languages, and a large data set would
be required to make a universal database with the hazardous libraries. The method is a
good example of data mining showing its usefulness within a project, but unfortunately
the method is unlikely for a general trustworthiness evaluation.

2.7 Maintainability

Maintainability is closely linked with the attribute Complexity, as more complex software
is more difficult to maintain. Complexity has an opposite correlation with Maintainabil-
ity, since a system with low Complexity has a high Maintainability. Maintainability can
be seen as the opposite of Complexity, which is an elegant way of measuring Maintain-
ability. Complexity has a large set of metrics to indicate the complexity of the software.
The metrics all have advantages and disadvantages in the usage, and how well known the
metrics are. The concerns with the metrics most often lie with the comparison between
programming languages with their different syntaxes.

Hassan Bhatti’s Master Thesis[18] gives an overview of the following complexity metrics.

2.7.1 Lines of Code

Complexity can be measured with the simple Line of Code (LOC), which is very common
and well known. The Line of Code measurement describes complexity indirectly by the
size of the overall project. The advantage of the Line of Code is the ease of computation,
which is as simple as can be with just counting the amount of lines in the source code.

List of Tables 28

The disadvantage is as well the simplicity, because in itself Line of Code describes the
size, which can increase the complexity for larger systems, but is not necessarily an exact
correlation with size.

Line of Code can vary greatly with the implementation of the software, programming lan-
guage and experience of the developer. The implementation of the Line of Code software
can choose to count the commented lines or blank lines, where other implementation
does not. The Line of Code seems simple to count, but the implementation can make
a big difference for a large project, if counted differently. An example could be Mozilla
Firefox[3] in table 2.3, which shows 72.7 % of the source code being actual code with the
rest being blank lines and comments. Leaving out the comments and comparing Lines of
Code to a similar project with the comments would reveal a significant different which is
not present. This is a huge issue, when comparing Lines of Code from different sources.

Line type Code Lines Percent Code Lines
Code Lines 14.045.424 72.7 %
Comment Lines 2.825.225 14.6 %
Blank Lines 2.452.943 12.7 %

Table 2.3: The Lines of Code for Mozilla Firefox found on OpenHub[3], showing the
distribution of lines of code compared to blank and comment lines. Only 72.7 % percent

of the code is actual code.

Line of Code in different programming languages will similarly reveal a difference. Com-
paring indentation structured programming languages like Python with normal Object-
Oriented programming language as C++ or Java using brackets, will reveal a big different
for larger projects. In Object-Oriented programming an entire line will often consist of a
curly bracket, where indentation structured programming language will not, which will
create a significant different between the programming languages.

The developer’s experience will reveal a difference, where developers with greater experi-
ence will be able to make a more compact and sophisticated solution. The novice will use
more lines of code, and seem like a more complex solution although the solution would
result in same functionality with better Maintainability.

Several extensions are possible for Lines of Code, where Effective Lines of Code,
Logical Lines of Code and Comment to Code Ratio are a few solutions. Effective
lines of code removes the lines with comments, blanks and standalone brackets, and
thus removes a few of the previously stated concerns. Logical Lines of Code counts
the amount of lines ending with a semi-colon, which makes it only applicable with some
programming languages. Comment to Code Ratio is calculated by finding the percentage
of comments compared to the Lines of Code. The extensions have a few disadvantages

List of Tables 29

as well, but tries to remove other disadvantages. The best solution for a Line of Code
metric would be Effective Lines of Code, as it removes disadvantages without creating
new disadvantages. The comment to code ratio does not create new disadvantages, but
gives a good suggestion of understandability of the code.

2.7.2 Halstead formulas

Halstead formula[18] tries to remove the factor of the programming language by using
software vocabulary and program length. These indicators can be calculated to the
volume and effort of the system’s source code. The vocabulary is the sum of distinct
operators and operands, and the program length is the total count of operators and
operands in the software. The effort indicates, how much effort is put into the system,
and from the effort a calculation of the development time is possible. These indicators
can be used to compare systems, but Halstead have academic critics with regards to a
few indicators. The indicators are thus not unilateral from all academics perspective.

Halstead formula or calculations have to be familiar with the programming language
in order to recognise the assignment and usage of variables. The implementation of
Halstead formula is thus programming language specific in order to get the calculation,
but the result will make the programming languages comparable. An implementation
would likewise be significant longer to calculate compared to Lines of Code as the code
has to be examined in more details.

Maintainability Index can be calculated as an extension of the effort and volume along
with other indicators and can be calculated from a single factor by:

MI = 125� log(avgE)

Where MI is the Maintainability Index and avgE is the average Effort per module.
The maintainability index is found in figure 2.4, which shows how the ranking of the
maintainability values is allocated. Visual Studio uses Maintainability Index to show the
developer the level of maintainability of the software.

MI value Color code Maintainability
0-9 Red Low
10-19 Yellow Moderate
19-100 Green Good

Table 2.4: The ranking of maintainability corresponding to the Maintainability Index

List of Tables 30

The Maintainability Index can be calculated from several more metrics and result in
a more specific Maintainability Index, but this would complicate the calculations even
further.

2.7.3 ABC Metric

The ABC Metric was developed in 1997 by Jerry Fitzpatrick as an alternative to the
Lines of Code approach. The ABC Metric on the programming languages’ fundamentals
of the time, which are storing data in variables, branching and test conditions of the
variables.

1. Assign data to a variable located in the memory.

2. Branching the software flow by calling functions.

3. Condition the software flow based on variable values with if-sentences.

The assignment is used in programming languages to save a value in the software and
massively used for a generic flow of the software. The assignment might vary from
programming language to programming language, but is easy to find throughout the
code. Branching is used for every function called in a program, where a piece of software
is reused for a generic functionality. The branching is part of the software principal not
to repeat code. Conditioning is used to split the software flow based on the value of a
variable, and in most programming languages an if-sentence or the alternative is used to
control the flow.

The ABC Metric is thus a 3 dimensional vector with a number for each of the counts in
the software. The length of the vector can be used as a measure of the system size. An
example of a vector could be < 5, 4, 3 >, which means 5 assignments, 4 function calls
and 3 conditions are present in the examined code. The size of the vector would be:

|ABC| =
p

52 + 42 + 32 = 7.07

2.8 Dependencies

Software re-using other software libraries or systems will have a relationship to the sys-
tems, which are used as the original system is installed. Easing the installation of software
is assisted by package managers for the different operating systems. In the Unix based

List of Tables 31

operating systems package managers are very common with the Linux distributions hav-
ing their own package manager to install all kinds of software products. MacOS similarly
have different alternatives for a package managers such as Home brew, MacPorts and Ap-
ple’s own Apple store, and Windows mostly have their own Windows Store but otherwise
the package managers have not gotten the same tracktion.

A well known package manager and one of the first package managers is Debian Package
(dpkg), which is used as inspiration for many package managers for Linux distributions.
The relations for the dependencies in dpkg is found in the Debian Policy Manual[19],
which describes all the possible relations between the systems and libraries. The relations
have been used or a modification of this relationship have been used with many of the
other package managers. The possible relationsships are Depends, Pre-Depends, Recom-
mends, Suggests, Enhances, Breaks and Conflicts to describe the different relationships.

Depends has a strong dependency to the package and will only be installed if all the de-
pendent packages are correctly installed or configured. The Depends relationship should
only be used for a dependency to a package if the package is required for a significant
set of the functionalities. The Depends relationship allows circular references to take
place between the packages, and the smallest circular reference possible is when package
1 depends on package 2, and package 2 also depends on package 1. Pre-Depends are
similar to Depends, but requires the dependent package to be fully configured before
installation to be able to install the package, where Depends otherwise can install the
packages simultaneous. The Pre-Depends does not allow circular references as Depends
does. Recommends states that the packages should be installed together, but is not a
requirement for the configuration or installation of the package. The packages with the
relationship should be installed together in most cases, but can be installed without the
Recommended package in unusual installations. Suggests will be an improvement for
the package functionality, but is not a strong relationship between the packages. Simi-
larly Enhances is the opposite relationship with the package enhancing the functionality
of another package.

Relationships which are not as productive for the package are Breaks and Conflicts.
Breaks is used to describe if a package installation will break the other package installa-
tion, and the package cannot be installed without the other package being dis-configured.
The Breaks will usually be used as it will expose a bug or interacts poorly with a specific
version of another package. The Conflicts is a stronger restriction and will not allow
the packages to be unpacked on the same system. The Conflicts can be caused by the 2
packages using the same file or similar, which can have been fixed with a later version.

The different relationships help the package manager to install all the packages available,
and other package managers have merged a few of the relation types or does not include

List of Tables 32

the Breaks or Conflicts relations. The dependencies for a software system is an easy
way to re-use others software system for functionality. The dependencies are equally
a possible security risk, as the dependencies of a software can include security issues,
which was otherwise mitigated in the design or implementation of the system. The
dependencies can thus be dangerous to use, if the package include vulnerabilities that
would create a back door in the system without mitigating actions. The CVE register
can be a place to look at for vulnerabilities, but if the system is small and seldom used,
the possibility of unknown vulnerabilities can be a risk for the developed system. The
system can mitigate a vulnerability by looking into the design and make restrictions in
the interface between the packages. Another vulnerability can be created, if the package
is used in an unintended situation or construct, which the package was not intended
for. The risk of implementing a package library should be known, when deciding on
implementing a functionality or re-using another packages for the functionality.

2.9 Team

Open source projects teams are mostly different from software companies with man-
agers utilising project management theory to create a productive environment for the
teams. The organisation of open source can vary greatly as described in section 2.1.3
with Vendors typically being software developing companies, and thus Vendor oriented
organisations develop software similar to general software companies. Contributor ori-
ented organisations cooperate more remotely with a Project Core in charge of distributing
labour with the rest of the contributors. The Core of the Project is typical the most
experienced developers, knowledgeable on the project and might have been the founder
of the OSS Project. The Core would be the more experienced and the individuals could
ask for assistance with a task. The Core will create tasks, which are either assigned or
chosen by the contributors themselves, and the tasks are created to work toward the
overall goal of the project.

Looking into Project Management People have an exceptional importance for projects,
and here is a great difference from a remote software project to team working in col-
laboration to complete the tasks. Teams and groups work together and communicate in
order to create the best solution and discuss the best architecture and design to fulfill
the requirements for the system. The tasks in the open source software project will be
assigned to an individual, which is then in charge of coming up with a design solution
and implementation. The implementation and design is then accepted or changes are
required for the solution to be of acceptable quality. The close collaboration between
colleagues result in a better outcome with input from the team. Working in teams or

List of Tables 33

groups, depending on the dynamic of the team, can be a great asset for companies, but
the organisation of an OSS Project work as individuals. Theories on team phases are
often used when creating teams, and the different phases are called Forming, Storming,
Norming, Performing and Adjourning. The processes are used to create a well function-
ing team along with choosing the team members’ personality types to create the best
performing team.

Teams are usually chosen by the manager based on personality types to create a team
with all necessary skills for the task. Personality tests are often a standard part in
the candidate selection, when hiring an individual for a job. Many different personality
tests are available for companies to use, and the well known Belbin[20] test will give an
indication of strengths and weaknesses working on a project. In open source projects
teams are not utilized to work on tasks, instead contributors are assigned tasks to work
on. All team benefits are thus lost for most open source projects.

Working remotely is a key factor for an oss project, since all or nearly all the members of
the organisation live apart and are not able to meet regularly to discuss the project. The
organisation will need a guideline of how the information is distributed to all members,
since any member might be in need of finding information on the design and implementa-
tion of a specific component. The communication guideline will need to include a system
for storing documentation correctly, storing information on the line of communication in
the organisation and who completed the different tasks in the project.

Open source projects are lacking in a few general concepts, but in case of motivation the
contributors can often be stronger. The motivation in an open source project is mostly
based on the a personal interest in the project or the product. The interest can be in the
product, and its usefulness in every day lives for the contributor or even organisations.
The contributor is often motivated by developing skills of excellence from the experience
with software development with more experienced developers. The experience gained can
be a great asset for the contributor in becoming a better developer. The contributors are
mostly developing in their spare time by interest of Software development or is already a
software developer but want more experience for their profession. The motivation of the
contributors are based on the individual, and a contributor can be busy with many other
parts in their life and only use little time on developing oss. Vendor hired developers can
be motivated by the experience gained in a project, but is mostly from interest in the
industry and the salary paid by the employer. A developer can be motivated similarly
to a contributor, but often not to the same extend.

The difference between professional developers and contributors are greatest in the ways
of collaboration, where the developers have each others experience closely for a great
solution and greater collaboration. The contributors thus can be more motivated but

List of Tables 34

this is purely based on the contributor as an individual, but the active can be very
motivated by the purpose of a project.

2.10 Summary

Trustworthiness in Software can be based on many aspects of Software engineering, but
the recurrent aspect of trustworthiness seems to be security. The security of software
and open source software as well is easily surveyed by the Vulnerabilities of the system,
which by the CVE is managed by Mitre with easy access to the Vulnerabilities discovered
in a system. Mitre have created a general way of reporting and managing vulnerabilities
in a system, while CVSS managed by FIRST is made for creating matrices for rating the
vulnerability severity. Trustworthiness can be rated by other factors seen in figure 2.7 or
in appendix A.

Open source software Projects are not managed in one fashion, but can be very different
from one another depending on the ownership of the project, and with the ownership
the way the project is organised will be quite different. The inner workings of a project
will differ from a Vendor software solution to a project with only contributions from
spare time developers. In a contributor oriented project a number of people decides
the direction of the project compared to the more general industry decisions made by a
manager just as for a Vendor oriented project.

As open source software projects are mostly done by contributors individually, many of
the team theories on project management are not as relevant for OSS Projects. This
does not mean that the team perspective is invalid for OSS project. The contributing
developers’ experience and skill in software development is still a great indicator for the
overall quality of a software product. The developer with greater experience will deliver
a better software design and implementation to the project. A key position in an OSS
project is the individual in charge of accepting the contributions, and he will most likely
have a higher standard with more experience, which results in a better product.

The product of an OSS project can easily reuse other software to gain more features
by adding a dependency. The dependency can also be a vulnerability into an otherwise
secure system, since the dependency can allow unintentional access into the system.
Dependencies are quite common for OSS projects to extend the requirements of the
project. The dependencies will have to be thoroughly examined if the dependency is of
a good quality and if specific restrictions have to be made for the implementation.

The OSS project code can be rated using several matrices to find the best complexity and
maintainability measurement. The different matrices does have both pros and cons for a

List of Tables 35

neutral rating in terms of the different programming language, although many projects
have a combination of programming languages. Data concerning comments in the code
indicates the level of understandability, as the code is thus easier to comprehend for
developers without prior experience with the code. The maintainability is influenced
by the understandability for the developers, who have to maintain, extend or update a
previous implementation.

Chapter 3

Analysis

Trustworthiness in software as found in the State of the art section 2, is not simple
to determine for all relevant aspects of software engineering. The trustworthiness will
have to be based on different aspects, which of time constraints cannot all be completely
analysed and implemented into a software trustworthiness analysis. The metrics will
have to be chosen and analysed in order to determine the relevance and usefulness in
terms of trustworthiness.

3.1 Metrics decision

Metrics have many possibilities for measuring trustworthiness, but a few metrics are
mentioned in most papers, where the top contender is security. As previously mentioned
security has been the only parameter of trustworthiness in the early years, then articles
started suggesting other aspects of software engineering. Security is then a must have
when considering trustworthiness. Security with others are mentioned below with reasons
for being chosen or discarded.

Security is an essential part of trustworthiness, where an insecure system would not be
trusted by any user. An insecure system would at worst expose their information to any
with interest. With most systems today security is essential, otherwise the media would
create a storm of bad press for the people behind the system. Security and privacy is
a great concern for most people in the modern day with all the information shared on
the Internet. A simple example of security risk is the Heartbleed vulnerability, which
showed the alertness with security vulnerabilities in larger system, where the repair was
made quickly for major systems. The users would otherwise stop using the services if
they knew none of their contents were secure and their accounts were hacked with ease.

36

List of Tables 37

Security is a problem when users are only authorized to see certain parts of the system,
which is the case for much of the Internet and many services connected to the Internet.
Security can also be the data handled in a piece of software like customers data and orders
for a company, where the data is not directly connected to the Internet, although most
computers today are connected to the Internet to communicate with other computers.
Security is thus a concern in all software and without security the trust would not exist
to a system or a piece of software. Security is thus a must in any metric for evaluating
trustworthiness.

Maintainability is linked with security in the way that for the vulnerabilities to be easily
and quickly fixed, the source code needs to be highly maintainable. With Heartbleed
the the implementation of OpenSSL needed to be fixed to re-secure the system, and
with high maintainability the fix would be easier for the developers to develop. Eas-
ily maintained code does not directly interfere with trustworthy systems, but security,
complexity and availability is connected to maintainability for fixing potential issues.
Complexity is closely connected to maintainability, since high complexity will result in
low maintainability. A well known software principle called KISS ("Keep It Simple,
Stupid") is used to keep software simple, since simpler software will work better and be
more secure. Maintainability is not the largest factor in trustworthiness, but does play
a part in developing a trustworthy software system.

The team contribution is not directly influenced by trustworthiness. The environment
software created is influenced by the collaboration and communication between the con-
tributors to the project. The organisation management does play a large part in an
successful or failing project. A well functioning team can be a resource for a project,
where Project Management have a large set of processes and models to improve the team
work in projects. The groups working on open source project mainly work individually
and thus will their experience and skill be the most valuable to the general project.
System design and requirements are essential parts in any system, where the quality of
the design is increased greatly by an experienced software developer. The developers
with greater experience will thus develop better solutions and expect the less experi-
enced to contribute with equal quality of software. The core of the project will influence
the overall quality of software and revise the other contributors’ work. The experience
and skills of developers are hard to evaluate, and their contribution individually will be
difficult to assess. The contributing parties can be scored by the portfolio of projects
by the quality of software. The overall team can be evaluated by the quality of all the
developers contributing to the project, although their portfolio can give an indication,
it might not give the entire story of the developer. The developer can have contributed
to Non Open Source projects or only have created great designs from the revisions by
other developers. The contributor might equally not have played a major part in the

List of Tables 38

development of the project, but still from the portfolio be given credit of the project’s
success.

The design and requirements of a project are hard to quantify for projects in general.
Different projects will have a design fit for the solution to specific requirements, and an
overall good design cannot be quantified without using requirements and purpose of the
project. The type of project usually plays an important part of quantifying the project
as successful in terms of their design and requirements. The quantification of the design
and requirements are difficult to determine in general for all possible systems. A model
checker can be made to check the requirement of the implementation’s success in fulfilling
the requirement, but creating general models for all thinkable requirements would be not
just another Thesis but an entire new comprehensive project.

Other aspects like performance, availability, usability and configuration management are
all specific to the OSS product and are difficult to quantify too. The performance is
specific to the individual task and current technology with what performance is accept-
able to the user at the moment of use. Performance and availability in general might
be possible to quantify for product types, but not all kind of software products have
performance and availability as a requirement, although most do to some extend.

In general many of these aspects of software engineering, are hard to quantify automat-
ically by a trustworthiness metric. Most aspects are based on the type and environment
of the product and creating an independent quantification of one of these aspects could
be quite comprehensive. The aspects would probably be enough work for another Master
Thesis or research project, and all these aspects will thus not be covered in this Thesis.

3.2 The metrics

The different metrics are created based on the State of the art section to find accurate
metrics to describe the trustworthiness of an OSS project. The different metrics will be
explained below with arguments for the choice of the metric and the calculation of the
individual score.

3.2.1 Aggregated Security score

The Aggregated Security score has several different metrics to describe the trustwor-
thiness of the project and its dependencies by examining the vulnerabilities discovered.
The Aggregated Security score is a metric describing the security aspect of the trust-
worthiness evaluation by looking at vulnerabilities using the data from CVE and CVSS’

List of Tables 39

metrics. The Aggregated Security score is aggregated with the score being described as
the lowest score found with the project itself and all its dependencies. The Aggregated
Security score was developed by Christina García[21] as a Dependency score and has
not been changed, although a few issues with the Dependency score will be described.
The Dependency score has not been changed as the development of new metrics was
prioritised. The script have been redeveloped to have a single program for the entire
evaluation and in a more academically used programming language.

The number of CVE ids represents the number of vulnerabilities found, and at any point
a low number of vulnerabilities is preferred. The criticality of a vulnerability is rated by
the organisation FIRST by CVSS on a 0 - 10 scale. On the scale 10 is a vulnerability with
critical severity and 0 has a low severity level. A large number of vulnerabilities with
low severity is preferred to a few critical vulnerabilities, as the low critical vulnerabilities
might not gain access to much information in the system, where the critical vulnerabilities
can gain access to the entire system.

The Aggregated Security score consists of the scores for the vulnerabilities and severity
and are weighted as seen in equation 3.1.

aggregated_security_score = 0.2 · vulnerability_score+ 0.8 · severity_score (3.1)

The vulnerability indicates the general amount of CVEs and the project’s ability to
create secure software with less vulnerabilities. The vulnerability score calculation is
found in equation 3.2. The severity score is an indication of how the severity levels of
vulnerabilities are progressing for the project, and the calculations are found in equation
3.6. The weight between the vulnerability score and severity score is decided as the
criticality of the vulnerabilities is more important than the amount of vulnerabilities
overall. The amount of CVEs might not explain much, whereas the severity of the
vulnerabilities in the system will indicate greatly how secure the project is. The severity
should thus be a significant higher factor in the weighting for a score of trustworthiness.

vulnerability_score = grade_ncve · grade_tcve (3.2)

The vulnerability score is examining development of the vulnerabilities for a project.
The vulnerability score is made up by the average number documented each year for the
project and is represented by the factor ncve, which is graded depending on the average
amount of vulnerabilities. The ncve calculations can be found in equation 3.3. tcve
represents a grade based on the trend of the amount of CVEs documented each year, the

List of Tables 40

calculations can be found in equation 3.5. The CVEs are all treated equally equally and
with no mind of the severity. The vulnerability score indicates how the project’s quality
is progressing.

grade_ncve =

8
>>>>>>><

>>>>>>>:

User evaluation if ncve <= 5

0.7 if 5 < ncve <= 20

0.9 if 20 < ncve <= 70

1.0 if 70 < ncve

(3.3)

The ncve is the average value of CVEs found annually from the project started or after
the MITRE started documenting the CVEs in 1999. The CVEs are simply evaluated
as one entity and the mean value is calculated for the vulnerabilities found annually.
The amount of CVEs do discriminate against larger projects, because a project with
20 million lines of code are more likely to produce a larger number of vulnerabilities
compared to a project in the tens of thousands lines of code. This can be an issue with
the evaluation being biased against larger projects receiving a worse score mainly caused
by the size of the project. Several solutions are possible with either finding a value
comparing the size of the project or separating projects into size intervals for comparison
with other projects with similar size. Similar projects are possible to compare such as
the most popular web browsers Edge, Chrome and Firefox, but projects with different
in size are more harder to compare.

The User evaluation uses user data to survey the user state of the project. The data
is taken from OpenHub, which have extensive data on a large set of OSS Projects.
OpenHub looks through the OSS projects to find data on the programming languages
used and contains data on all the different contributors found. The data on the project is
for the project available on OpenHub, while a large number of smaller Linux OSS project
is not present. The evaluation is based on the numbers of users and contributors found
on OpenHub. The contributors can be an unclaimed committer id or account holder
depending on the committer id is claimed or unclaimed. The unclaimed committer ids
are contributors, who are not active or use OpenHub, but a page on OpenHub is still
created with information of their contributions only from the various projects source
code, and the account holders are active users on OpenHub and contains additional
information on these user. The number of unclaimed committers are significantly larger
than for account holders, since OpenHub is just used and known to few compared to the
numbers of contributors to a large set of OSS projects.

List of Tables 41

aggregated_security_score

User evaluation

=

8
>>>>>>><

>>>>>>>:

0 if project not found

0 if 500 < users

0 if users < 500 and 15 < contributors

10 if users < 500 and contributors < 15

(3.4)

The idea of the user evaluation is that project with few vulnerabilities discovered annually
can be for different reasons. The projects with few CVEs can annually be either great
at developing secure software almost without creating vulnerabilities, or the project can
be of a size where the vulnerabilities are not discovered by the small amount of users
and contributors. These situations are thus handled by the user evaluation with projects
containing more than 500 users or 15 contributors are deemed as secure, while projects
with less are deemed insecure. The projects with few users and contributors are rated as
untrustworthy, because of the uncertainty in regards to the project situation. Rating a
project to be trustworthy that does not exist in OpenHub, is giving the project a benefit
of the doubt. Although it is not possible to see the difference between projects with
few CVEs and many users and the project that is unavailable in OpenHub, which can
cause confusion between the scores. The score of the unavailable projects could be a
Null value or value with neutral trustworthiness just not being a completely trustworthy
score without a doubt.

The next part of the vulnerability score is the CVE trend, which is a simple linear
regression of the CVEs for every year. The evaluation does not focus on the amount of
CVEs but the trends, which is indicated by the slope in a linear regression.

grade_tcve =

8
>>><

>>>:

4 if a < �0.2

7 if � 0.2 < a < 0.2

10 if 0.2 < a

(3.5)

The grade is then calculated with the intervals of the slope from the equation 3.5. As
previously explained the preferred trend is the decrease of CVEs for a project, which
means the project is not creating as many vulnerabilities in their product. The 7 score
is given for a stable progression in terms of vulnerabilities, which is set to be within a
range from 20 % decrease to 20 % increase annually. This is a quite large margin to set
for medium and large projects, that allows over time is allowing an up to 20 % increase
and still be considered stable. Projects of significant size would +20% change would be
a tremendous change, whereas for smaller projects a 20% change would be more closely

List of Tables 42

to a stable trend. The decrease in vulnerabilities will result in a better score as a low
score is indicating less severity.

An issue with calculating the trend as the only indicator is that looking at a project in
rapid growth will have an increasing number of vulnerabilities if the project is developing
with the same standard as before. A project in rapid growth is meant that many users
and contributors join the project, and the amount of code is growing quickly. The same
can occur with a project that is stagnating and not producing much code for any reason.
A stagnating project will not have a lot of vulnerabilities surfacing, as most vulnerabilities
are already found and a small amount of code is produced. A fix to this could be to
compare the growth of the project source code with the trend of vulnerabilities to create
a more neutral metric.

The severity score is created from data based upon the same CVE data, but separating
vulnerabilities into severity categories. The categories can be found in table 2.2, which
is the categories used by FIRST to separate the CVEs into severity levels. The severity
score, similar to the Aggregated Security score, ranges from 0 to 10 with 10 being a
critical score for the vulnerability. The higher the severity score the higher severity of
the vulnerability. The severity score includes the trends of the severity categories and
booleans for high and critical percentage of severe vulnerabilities.

severity_score =(0.6 · average_critical_percentage_great+

0.4 · average_high_percentage_great) + 0.45 · trend_critical+

0.3 · trend_high+ 0.1 · trend_medium+ 0.05 · trend_low

(3.6)

The average percentage of great variables are a boolean value indicating either the critical
or high percentage of vulnerabilities is greater than 25% on average over the project’s
lifetime. The trend is calculated by the same grade as equation 3.5. The trend grade is
more significant for the more severe vulnerabilities as they are a greater risk.

The trends of the critical vulnerabilities are the most significant values in the severity
score and thus the Aggregated Security score, because these are the vulnerabilities with
high enough severity to ruin users’ trust in the system. Thus the critical vulnerabilities
should be a score, which causes the system to be less trustworty. On FIRST’s scale the
known Heartbleed was only given a CVSS score of 5.0, which is categorised as a medium
score. Both high and critical CVSS scored vulnerabilities are significantly worse than
Heartbleed, which was fixed in no time since the users’ authorization information was
at risk. Significantly worse vulnerabilities expose IT systems a great deal more, but

List of Tables 43

medium scored vulnerabilities can be enough to cause users not to trust the system. The
worst vulnerabilities will need to be fixed quickly as the project’s system is exposed.
The status of a vulnerability is not available for all vulnerabilities, but some have text
describing a solution to fix the vulnerability. In the National Vulnerability Database[13]
some vulnerabilities contain information regarding the implicated versions, although not
all contains this information about the software fix.

Information such as the information from Firebug utilised in Vulture project would be
very helpful both for other developers using the same software libraries but also for the
software libraries to know and fix the issue if the library is at fault. The origin of the
vulnerability would be important information in most OSS projects, which could help
other projects to improve their security. The information is most likely not available since
most non-OSS will not disclose whom was at fault and what caused the vulnerability.
Vulture would have been a benefit for many developers and this kind of information
would be good, when developing software to know the risk from specific libraries.

The Aggregated Security score will look through all the dependencies of the project and
find the library with the highest score in severity. The score with the highest severity
is either a dependency or the project will be the Aggregated Security score of the entire
project. The idea is based on the weakest link in the chain is often, where an adversary
will try to attack the system.

The Aggregated Security score is the opposite of the trustworthiness and the trustwor-
thiness score for the dependency score is thus:

Trustworthiness_security_score = 10� aggregated_security_score (3.7)

The choice of the vulnerability and severity score to range from 0 being low severity
to 10 being critical, is based on the measuring of severity for vulnerabilities, and the
scoring of CVEs by CVSS metrics. In terms of trustworthiness the score would make
the most sense for the scale to be opposite with still 10 being the most trustworthy OSS
system, and this is the reason for the confusion between Aggregated Security score and
trustworthiness score.

Aggregated Security score limits

The Aggregated Security score ranges from 0 to 10, and the score 0 is given just in
case the ncve is less than 5 annually, which is assigned based on the user evaluation in
equation 3.4. The user evaluation assigns a score of 0, which means 0 is the lower range,

List of Tables 44

but what is the real range of the Aggregated Security score without including the user
evaluation. The highest possible grade is 10, which is given in the situation where the
different variables have the following combinations:

Variable Upper limits Lower limits User evaluation
Trend low 10 4 X
Trend medium 10 4 X
Trend high 10 4 X
Trend Critical 10 4 X
Avg high 1 0 X
Avg Critical 1 0 X
Severity score 10 3.6 X

Grade tcve 10 4 X
Grade ncve 1 0.7 X
Vulnerability score 10 2.8 X

Aggregated Security score 10 3.44 0

Table 3.1: The limits for the scale within the code security metric Aggregated Security

score. The values reachable by the metric is used to describe the trustworthiness in the
project

The values are calculated using the above equations to find the lower and upper limits
of the Aggregated Security score. The User evaluation is made with a project with less
than 5 CVEs annually will either receive a score of 10 or 0 depending on the users and
contributions, which can be seen in equation 3.4. The actual range of the Aggregated
Security score is thus [3.44, 10], of course specific values between 3.44 to 10 are not
obtainable since the grades are quite specific and not a range, but combined with the
scores a thorough investigation into the range would be quite time consuming. The
range is weirdly only the upper 2/3s of the scale, which could be changed by change a
few scores to accomplish this. The score is kept as is, since a change would have to be
well investigated how best design the security score, and the time was rather used for
further development of new metrics.

3.2.2 Maintainability Score

The maintainability of source code is an important aspect in order for anybody with
knowledge of the system or in possession of the documentation can maintain. The read-
ability and thus maintainability is part of the requirements for an OSS project to be

List of Tables 45

accepted as Open Source, since the code should be easy to understand and read for any-
body. The maintainability in connection to trustworthiness is important because OSS
product can have contributors, who spend their spare time in other projects or other
hobbies, then another developer will need to be able to maintain the code of another de-
veloper. Maintainability does not have the same influence on trustworthiness as security
with the Aggregated Security score, but it is still relevant. Maintainability is important
with the discovery of a vulnerability, since the contributor or another contributor will
have to find the source of the vulnerability in the code and quickly find a solution to
the issue. Code with worse maintainability will generally take longer to fix, since the
developers will use longer time examining the code for errors and find the cause of the
vulnerability.

Various metrics are possible to indicate the maintainability and other properties in source
code. The simplest metric to calculate is the lines of code to lines of comment ratio, which
describes the ratio of comments. The more comments in the code the better documented
and descriptive the code is in general. The comments will describe the implementation,
while the ideas and algorithms are described within the documentation. The comment
to code ratio is the simplest and most descriptive in terms of understandability (and thus
maintainability) in source code. The Halstead formula is able to describe maintainability,
but academics are debating if the different formulas do in fact indicate, what he claims.
The maintainability measure might not give the indication he claims, and is thus a
possibility to measure maintainability. The Halstead formulas are significantly more
difficult to calculate compared to the lines of code and comments. Another relevant
metric is the ABC metric, but this was discarded similarly as Halstead formulas, because
of the calculation of the source code. The ABC metric does give a great indication of
complexity and size, but with the lines of comment to lines of code ratio is simple and
gives a good indication of the understandability.

The maintainability factor is not as important compared to other metrics in OSS project’s
trustworthiness, and thus a simple solution is preferable. OpenHub contains data gath-
ered from OSS projects with specific data on the source code and the information about
lines of code and lines of comment are part of this data. The information is thus easily
obtainable on most known and major projects. What is then a good ratio for lines of
code to lines of comments, since too many lines of comments will have very little func-
tionality. Giving all the information in the source code instead of writing documentation
is not the best solution, but generally the more comments the better understandability.
In table 3.2 source code information is given on common OSS projects.

The comments to code ratio is calculated by the following formula:

List of Tables 46

comments_code_ratio =
lines

comments

lines

code

+ lines

comments

Project Lines of code Lines of comments comments/code ratio
Mozilla Firebug 492,181 350,235 41.6%
Apache Subversion 660,711 208,243 24.0%
MySQL 2,862,087 692,663 19.5%
Ubuntu 911,004 187,691 17.1%
Linux Kernel 18,963,973 3,872,008 17.0%
Mozilla Firefox 14,045,424 2,825,225 16.8%
Keepass 121,090 24,347 16.7%
Chromium 14,945,618 2,752,467 15.6%
Python 1,030,242 184890 15.2%
PHP 3,617,916 587,629 14.0%
Git 774,674 96,554 11.1%
Apache HTTP server 1,832,007 210,141 10.3%
neat project 23708 1695 6.67%

Table 3.2: Mostly known projects with information on how many lines of codes and
comments were written in the current product as of December 2016. The range of
the ratio lying mostly from 10% to 20% for common OSS projects, which are well

functioning and is maintained and ongoing projects.

The maintainability score seems to be in the range from 10% to 20% for most projects
with a few outliers. The lines of code and lines of comments can be affected by the
different programming languages, since the expressiveness is different for the various
programming languages, especially when having large systems. The expressiveness does
vary and the amount of comment lines will thus count more with more compact pro-
gramming languages. The comments does tend to express the language and the targeted
audience is the people with knowledge about the programming language and thus the
comments tend to be explaining why and what the code does. The maintainability will
calculate a score on the scale from 1 to 10 similar to the score created for Aggregated
Security score with a high score indicating high maintainability. The score will show
the code to comments ratio to be within a range with both good and bad maintainable
projects. The metric can be found in the equation 3.8.

Maintainability_score =
comment_code_ratio� 0.1

0.25� 0.1
· 10 (3.8)

List of Tables 47

The score will rate a higher percentage than 25% a score of 10 and lower score than 10%
a score of 0. Although a score of 5% is a score of 1 and not 0, but this is the benefit of
the doubt with the scale from 1 to 10. Although most projects lies within a range from
10% to 20%, the exceptionally and bad still lie within 5 additional percents in the top
and bottom of the ordinary range. The scale should take both the exceptional as the top
of the class and the worse than average to be in the scale. The scale could range higher
than the top of the range being 25%, as Firebug have 41% comments in their code, but
25% being the top is caused by average being from 15% to 20%, which should not get
a bad score for being average but a mediocre score instead. A score range being higher
would result in a lower score to the average maintainable projects and comments above
25% might not be an advantage.

3.2.3 Team score

As described in section 2.9 about the team behind the OSS projects, which is actually
not working as a team, but rather as a group of individuals who work towards the same
goal. The core team might work like a group and a few of available group processes from
Project Management, can be used on this group. The Core of OSS projects will need to
communicate often and make the decision on the direction of the project, which might
make it relevant. For most the Project Management theory is not as relevant to OSS
projects as the individual contributors’ experience and their portfolio.

As the design is difficult to grade on a scale for any type of OSS project, the contributors
experience and indirectly their skill to design great solutions, can be graded by their
experience. The grading of the contributors’ experience is not the most exact metric, but
the experience is definitely important to the overall project. Especially the contributors
spend a great part of their spare time developing OSS. The contribution to a system is
not equal over all the developers, where the Core group will be accepting all the designs
and implementation into the system, while the novice contributor in the project might
just contribute with a few commits and other more active contributors will contribute
with hundreds or event thousands of commits. The expert contributor’s contributions are
thus far more valuable to the project and equally his experience from previous projects.
The experience from developing industry software or closed software can be difficult to
collect into a profile for each contributor. The experience in the industry will have to be
public knowledge to incorporate in a metric, which industry software and the developers
in the projects rarely is.

List of Tables 48

The experience of a developer in OSS projects are found by looking at the quality of the
other projects the contributor have contributed to. The score of a contributor can thus
be calculated by the following equation (3.9).-

contributor_score =
commits

contributor in project

· (10� aggregated_security_score

project

)

total_commits

contributor

(3.9)

The contributor is measured by the scores of the projects he has contributed to, which
are weighted by the amounts of commits in each of the projects the contributor have
contributed to. The contributor score is thus calculated by iterating over all the contrib-
utor’s projects and dividing by the total commits of the contributor. The Aggregated
Security score is a severity score and will have to be flipped to indicate trustworthiness
instead of vulnerability severity. The Aggregated Security score will only be based on the
project itself and not all the dependencies, since the contributor have not contributed
to the dependencies and also to limit the already massive amounts of projects to be
scored. An issue with the contributor score could be, that several of the projects, the
contributor have contributed to, are small and will receive a score of either 0 or 10 by
the user evaluation. The contributor score will thus be either very high or low depending
on the projects.

The Team score name was given based on the the team even though the team might not
collaborate as a team, but the team experience and skill is still a representation of the
team. The contribution score thus indicates the overall experience of the contributors in
the project. The contribution score is the equation (3.10).

contribution_score =
contributor_commits

project

· contributor_score

total_commits

project

(3.10)

The team score for the overall project will give an indication of the contributors experi-
ence in their projects. The score will be weighted with the most contributing developers
counting more towards the score, since they will have both more decision power and
have developed more of the overall system. The decision power comes from the projects
voting on what direction and what is most important for the project, where the demo-
cratic structure might differ, but with the developers with most activity and work put
into the system should have more power in the project. The developers with the most
contributions will be more likely to be part of the Core group of a project with more
essential tasks being assigned to the most active contributor.

List of Tables 49

Calculating the data for contribution score can be a quite heavy calculation with for
example Mozilla Firefox having 4,108 contributors working on many other projects than
Firefox. I have looked into a smaller project called neat project, which is working to
create an alternative to the transport layer in the OSI-model. Neat project only has 22
developers, which is a bit more testable as a project, although even these 22 developers
have participated in 158 different OSS projects. Calculating the scores of 158 project
will by all means take a bit of time and restrictions will be necessary especially when
working with larger projects and even with the smaller ones as well.

3.2.4 Trustworthiness score

The trustworthiness score is simply a combination of all the scores before mentioned.
The trustworthiness score is the measurement of how trustworthy the OSS project is,
which is calculated by the equation 3.11.

trustworthiness_score = 0.65 · trustworthiness_security_score

+ 0.25 · team_score+ 0.1 ·maintainability_score

(3.11)

The weight of the variables are decided based on the security being the biggest concern,
when deciding to trust a software product. The team score is based on a larger set
of projects, which the contributors have contributed to with bigger and smaller contri-
butions. The security of the project and the security and dependency are the biggest
indicator, while the contributors’ experience from other contributions. The maintain-
ability is a smaller indicator of the trustworthiness of a system, but is a strong indicator
of the understandability and the ease of fixing discovered vulnerabilities. The weights
are decided based on various data, and 2/3 being influenced by the Aggregated Security
score is the clear majority. The

The weights of the trustworthiness were based from experiments with different projects
trustworthiness score. The score from the trustworthy aggregated security score (high
score for secure projects) was for larger projects often 0, and the security metric was
decided to influence 2/3s of the score, while the other metrics share the last 1/3. The
experiment showed 3/4 was too much for the security metric and less showed that it had
too little influence. The score was thus decided, although with new metrics the influence
of the different metrics should be changed, and the influence of the security score can
thus be lessened.

The scores in the Trustworthiness score will often be similar with the team score, since
the Team score will have contributors with most commits in the project, being active

List of Tables 50

in a limited amount of projects and mostly in the evaluated project. The Team score
will thus be highly influenced by the main project’s Aggregated Security score for many
projects.

3.3 Information sources

To create a trustworthiness metric the need of data regarding various OSS projects is
essential for completing a trustworthiness score of the projects. Open Source information
are not hard to find, but creating software to process all the information, is a great task
in itself. The processing of the data can occupy plenty of people along with keeping
the information updated, and the process is often time consuming with a large data set.
Developing all these processes, could occupy many academics and is not possible within
the time of a thesis. Finding reliable sources with the necessary information is thus a
key aspect for being able to create different metrics to evaluate trustworthiness. The
sources will have to contain a large data set on the topic and the individual projects.
The relevant sources for the project is CVE information contained in the National Vul-
nerability Database, dependency information from Debian Package Manager, and Open
Source project information processed and available by OpenHub.com[3].

3.3.1 National Vulnerability Database

The National Vulnerability Database[13] is a section under National Institute for Stan-
dards and Technology, which is a US governmental institution issuing standards and in
this case manages data on discovered vulnerabilities and security measurement. The
NVD contains information on vulnerabilities and the security measurements. The NVD
utilises the information from Mitre’s CVE register and thus already contains information
on a large set of vulnerabilities in software. The NVD is linked with the CVE register
for the American Government to have all the information along with vulnerabilities re-
ported to NIST as well, which are equally given an CVE id. The NVD also contains
the information by FIRST and the CVSS score along with the information on general
security measurements. The NVD seems to contain all the relevant information gathered
by different sources in a single place, and the NVD as part of NIST would be considered
a trustworthy source of information.

The CVE and CVSS information is thoroughly described in the State of the Art section
(2.5), which is the main information used from the NVD. The NVD contains all the
information, where both MITRE and FIRST have a piece of the information to create

List of Tables 51

the big picture. The information is available at different places, but the NVD data is
simple to access, and all the information is available in one place.

3.3.2 Debian Package Manager

The Debian Package Manager (dpkg) contains information on a large set of available
software products developed for the Linux distribution Debian. The package manager
is able to install the software product on the operating system on its own and keep it
updated. The Debian Package Manager is used for the Linux distribution Ubuntu, which
is one of the most popular Linux distributions. The package manager not only installs
the software product, but also the dependencies of the product to install and configure
the software correctly. The dependency information is created by the software developers
behind the individual project for dpkg to understand and install the correct dependencies
for the project. Naturally, dpkg does only work on Linux and even restricted to a limited
number of Linux distributions using the dpkg for installing packages. With Windows 10,
Microsoft allowed the use of Linux software in a Virtual Machine running a small version
of Ubuntu within Windows 10, and with this it is possible to run dpkg from Windows.
Microsoft has gotten more fond of Open Source and Linux over the last years and this
is a gesture that shows their continuous involvement in the Linux world.

3.3.3 OpenHub

OpenHub is a platform with data on a large selection of Open Source Software Projects.
OpenHub contains detailed information from the source code and the version controls
used by the Open Source Projects. OpenHub is an Open Source project helping users
to find information on Free and Open Source Software. The users are able to compare
the different Open Source projects and find all kinds of information relevant to specific
users.

The data available through the website is of a fine quality with only a few problems.
The website is fine, but an api would have been an even better alternative as with an
api of the project the information is easier accessible. The api is developed and called
Ohloh Api from their previous name, but not all the data from the website is available.
The website would be the solution for gathering the needed information for the current
metrics, but for the future the api might be an even better solution when all data is
available, if this will happen.

List of Tables 52

The information available at OpenHub can be categorized into following categories Source
Code data, Version control data and Vulnerabilities. The source code data contains in-
formation on the language distribution of the project with information of the lines of
code, comments and blanks. The source code is analysed by OpenHub themselves to
make the data available, and they regularly re-analyse the different projects to update
the project with current information. OpenHub can thus give information on the de-
velopment of the project over time. The version control data will give information on
individual contributor’s contribution to the project. OpenHub creates profiles on the
contributors to get an overview of what project the contributors have been contributing
to. Each project will show all the developers, who have contributed to the project with
information on the individual commit. The project also show the contributors with the
most commits to the project, who is the most active and has invested most time in the
project. Each developer has a profile for their contribution with statistics of what was
committed. A general profile equally exist with information on the developers contri-
butions to other projects and their activity level over the time from first commit to the
most recent commit.

OpenHub contains 2 kind of profiles either for accounts or unclaimed committer ids,
where the difference is user aliases claimed on OpenHub and unclaimed aliases. Both
profile types contain similar information on what projects the developer has contributed
to, but the account holders can possible claim more ids and will most likely have more
projects. Looking into both profiles the unclaimed committer id is more clear and easier
to see the big picture from, while the accounts are more detailed, but have mostly
the same information overall. The share of unclaimed committer ids are naturally in a
significantly larger number compared to the amount of accounts, since the committers are
aliases found in all the projects and the accounts will be people signed up for OpenHub.
The amount of users on OpenHub is 31,777 and unclaimed committers ids are 945,635,
which equally shows the difference1.

The information contained on vulnerabilities are detailed with the CVEs grouped by
the version of the software and an indicator about the security of the project. The
security of their projects are measured from the amount of vulnerabilities and based on
the recent and larger versions of the software, which might not have been found yet.
The vulnerabilities are in a list for each version of the software product, and most larger
projects do seem to be insecure. The security evaluation is interesting, but they do not
go into details about the metric used. The vulnerabilities are available at OpenHub,
but these are not available using Ohloh either, and web scraping all these vulnerabilities
would create an immense task.

1As of the time of writing (10-01-2017) these were the amount of users and committers on OpenHub

List of Tables 53

The measurement of security does seem to be fine, but it is hard to judge when all
the data is not available on their web site. The vulnerabilities are possible to get from
OpenHub and this might be useful with the data on visioning of the software grouped.
The data on severity is only available from the grouping and not the specific CVSS
score or any indicator except a low, medium and high grouping. Using the OpenHub
data would also ensure that a project is not found to have any vulnerabilities in case
of different naming with CVE and OpenHub. The projects in OpenHub seems to be
the most known OSS projects, since none of the smaller Linux libraries are available.
The missing Linux libraries can either be because of OpenHub grouping all these smaller
Libraries as part of the Linux Kernel and simply a product of them. Otherwise the
projects are missing entirely, and are missing because nobody have created them with
OpenHub and the information is thus unavailable. Many of the dependencies of the
OSS projects will then not be available to OpenHub and information on these projects
will thus be absent for a trustworthiness metric. In general the search mechanism at
OpenHub does not seem to be very successful in their search, and many queries will
give no result or complete different projects entirely. Searching for a specific name is
mostly correct, but searching with the name being a little misspelled will not even find
the project and mostly not give any results for a query. This is of course not a great
feature, but with most searches being quite precise, the search problems at OpenHub
will be limited.

3.4 Software

The software product will need to developed with similarities to a well known process in
software development and in a language well known in the academic world. The goal of
the software is to be the start of a trustworthiness score development, which will not end
with this project. The software product should thus be easily available and expandable
for other academics working with security and trustworthiness in software.

3.4.1 Development process

The software process to be used for the software development will be similar to Agile
development, although Agile development would not quite make sense for a single person
project. The meetings are thus lonesome, but the stages in the process are very useful for
software development in small to medium sized projects. The agile development process
is a repeated iteration of 4 processes, which are found below.

1. Analysis

List of Tables 54

2. Design

3. Implementation

4. Testing

The 4 stages are the default in most software development, but for Agile development the
4 stages are repeated for each task or assignment in the project. Each large component
is split into smaller tasks, which have to be accomplished in order for the component to
work as intended. Each task does then use the 4 stages to analyse, design, implement
and test a solution to the task, which is then added to the other tasks, and in the end
a fully functioning component is then implemented. The tasks can at times need to be
done sequentially for the process to work. Teams working with Agile development have
a planned cycle called sprints, which can vary but are often a week and at the end of
the week the entire team is meeting to be updated with progress on the individual tasks.
The developers will discuss the relation between the components and a new task will be
assigned, and the next sprint has started. The strength of the agile process is the tasks
and smaller components will be fully functioning and can be tested, while other parts of
the project is still under development. Unfortunately, projects in the industry can often
end up being delayed. The unfinished project will have the most important components
finished and functioning, if the project is well managed, even with the project being
delayed. Agile development is great for a certain size, but with huge projects an Agile
process can be hard to maintain, when trying to find all the correct requirements. Huge
projects can be national projects similar to Deutsche Bahn’s software infrastructure or
military projects.

The Agile development is great for small projects, which ensures all the implementations
are tested and working correctly. The testing is important, since software developers
often think that all possibilities are handled correctly, although they will often find a
problem or a result being incorrect in some way. The testing will thus ensure that the
software is working correctly and others can use these to check the implementation.

3.4.2 Programming language

The programming language is not always the simplest decision and is often made for
the reason of usage and preferences by the team. The common programming languages
are then probably going to stay as the most common, until a significant different pro-
gramming language gains ground. For example is the programming language C often
used either for performance or hardware integration, while Java is used for the Virtual
Machine to create a more versatile and cross-platform product. Perl is well known for

List of Tables 55

the ease in data mining, but has not gained much popularity with developers otherwise.
Perl is not the most used in either the industry or academics, which tend to use other
more popular choices.

A good choice for the programming language would be Python, which is popular both
for academics and developers in aspects of data mining, data manipulation and machine
learning. Python is a high level programming language and good for many aspects of
computer science with a large amount of developers developing libraries for many utilities.
Python would be a fine choice with many developers, and the academics in Computer
Security would be able to use the code and implement new metrics for trustworthiness.
Python currently exists in two different versions 2 and 3, where 2 has more libraries
integrated as not all are continued into version 3. Version 3 is thus the version, continued
into the future with new libraries being developed. Python 3 is thus the obvious choice
for a programming language of a trustworthiness system.

Other alternatives do exists like Ruby, Java or C#, which are all fine programming
languages with useful features for a trustworthiness system. Ruby unfortunately does not
have all the libraries Python has, and machine learning could be useful in trustworthiness
down the line. Java and C# would be fine solutions as well, but Python is stronger and
libraries in data mining and machine learning are kept up to date and well functioning.
Java does have a large overhead, when run and can sometimes operate slowly compared
to other programming languages, and with a large set of data, Java might not be the
best solution after all. C# does not have the libraries supported quite to the same level
as the available Python libraries.

A useful library for finding CVE information called cve-search is similarly a Python3
script, and Python3 would be needed in the project all together. A user of the soft-
ware will thus not need to install additional programming languages except the main
programming language for the entire project.

3.4.3 Structure

The software will have to be structured quite differently from the product of García
with components handling certain tasks and gathering the information for calculating
the scores from section 3.2. Most components will have the task to find information or
use a certain library, which are all used to score the project on trustworthiness. These
components will be developed similar to interface, but as Python does not use interface it
will just be scripts or classes calling each other, where the functions will return the value
for the original class. The components will work as interfaces between the components,

List of Tables 56

where functions will call each other and utilise other functions to give the intended
response.

The components will work independently from each other and have individual tests
to ensure all the components work correctly. The tests will be UnitTests to test the
functions for a correct and valid response, which in general is called white box testing.
Tests are also used during the development of the system to ensure the functions response
correctly given all possible arguments and still respond with a valid response. The Null
response in case of a bad request or if no results were found by the request. Using
tests to guarantee the functionality is called test driven development, where tests often
can be created before the actual implementation for the developer to fulfill during the
development. Test driven development is very popular and a good developing method,
as the developer is able to test all functionality in case an implementation interferes with
a previously implemented part of the system. The UnitTests can be used for external
users to validate that the overall system works as intended, and users will be able to find
the system which are not correctly setup on their system.

3.4.4 Libaries

To access the different data sources, a few libraries will have to be found and in the end
utilized. The Vulnerability data is available at NVD, and a library called cve-search is
developed to search the nvd register and find information on projects and their CVEs.
The cve-search library does take time to configure, but the configuration is simple. It is
simple to use and is able to make all the necessary information available for the security
metric. to find the dependencies of the project a Linux library called apt-rdepends is
able to find the dependencies of the different projects. To access the data from OpenHub
a web scraper will be needed in order to easily iterate over the HTML pages using the
tags to find the information needed.

3.4.4.1 cve-search

Cve-search[22] is a python programmed library, which utilises a MongoDB database to
store all the information on CVEs. Cve-search is an OSS project helping people easily
access and look up information on projects or the individual CVEs with simple command
line interface. The library uses Python3 to run, and the source code is not meant to
be run as classes or interfaces, but is just scripts for the user to find information on
vulnerabilities in the terminal. The scripts simply writes out all the information found
or is able to visualize specific information, if you use additional time to configure the

List of Tables 57

project correctly. As the project is written in Python with a MongoDB database, the
library is able to run cross-platform and is not restricted to a single OS.

The configuration of the library is explained for most parts on GitHub with all the source
code. The configuration can take a few hours, since all the information from the NVD
on vulnerabilties will have to be populated into the database. An issue with a few calls
was noticed, when switching operating system from Linux to MacOS, the output format
was chanced and instead of using JSON a simple printout was made. The difference can
thus be more greater, than would be expected and using a single OS might ease the work
with software utilising the library.

3.4.4.2 Web scraper

Web scrapers are created for mark-up languages to be easier to index compared to the
page being a single string. Web scrapers parse the HTML to find the information needed
on the web page. Available Web Scrapers for Python3 are limited with only a few well
functioning libraries. The most used one is BeatifulSoup, which parses the web page and
creates an index of the web page. BeautifulSoup needs to be given the specific HTML
code, and a library called RoboBrowser is developed on top of BeautifulSoup in order to
surf the web more easily and create requests for the mark-up code. The parsing of web
pages is not a fast process and can take a little time with many pages to browse over. The
web scrapers are useful to browse the web, but a limitation is the scraping only works
as long as the HTML is not changed. Updating a web page’s HTML and completely
restructuring, is rarely done except with a complete redesign. The web scraping function
will thus need to change in this case.

Alternatives to BeautifulSoup is quite limited in Python3, while WWW:Mechanize is
alternative if used in Python2.

3.4.4.3 apt-rdepends

Apt-rdepends is one of the few command line tools available to find the dependencies of
a project. Dependencies are only relevant when discussing OSS, since the installation of
Non-Open Source products will install and control everything and not give information
about what is used to accomplish the tasks. Apt-rdepends uses the dkpg description to
find the relation to other projects and returns the result as a string. The apt-rdepends
is simple as all the information is given by the dpkg. Unfortunately alternatives to apt-
rdepends does not quite exist currently, as this is only interesting for OSS and most of

List of Tables 58

this software is installed by executable script, which means no formal register is made
for the dependencies of OSS projects.

A limitation is that apt-rdepends only works with Linux distributions and thus will only
be useful for giving dependencies of a project with the Linux libraries. The dependencies
in other Operating Systems could probably be found with package managers in the
OSs, but Windows and Macintosh do not use a package manager at default. Windows
have executable files, but Macintosh have available package managers in order to install
different software libraries. The apt-rdepends does what it is designed for, but the
limitation of the operating system should be apparent to the user of the library.

3.4.4.4 Restrictions

The restriction of the Operating System is significant as the dependencies will only be
available for Linux OSS projects. The Linux community is the most OSS oriented, and
most of the software available in Linux will be one of the types OSS projects. Linux
will thus be a good choice for the operating system with everything being Open Source
already. It would be nice with the product of this Thesis to work on other operating
systems, but this restriction is something the users will have to live with.

Other than apt-rdepends the other libraries are available and can work in the other
operating systems. The implementation might have to change a little, if trying the
software product on another operating system, as differences can be present unexpectedly
and each functionality will need to be tested.

3.5 Summary

The metrics for creating a trustworthiness score will be to consider Security, Maintain-
ability and the Team contributions. The scores will give insight into the quality and
security of the overall project, and thus the likelihood a user would trust the system.
The Security is rated by the discovered vulnerabilities with information from CVE and
CVSS data, and how the projects overall security is over the time the project have been
active. The security is a major part in the overall trustworthiness and is the largest
concern for users. The Security metric is called Aggregated Security score, which rates
the severity of the vulnerabilities found over time, and the overall vulnerability of the
system by looking at the set of vulnerabilities annually. The Maintainability will tell
how well structured and easily understandable the source code is, which means the con-
tributors will have an easier time fixing potential vulnerabilities. The Maintainability is

List of Tables 59

rated by the amount of comments written in the source code, since the more comments
the easier the code is to understand. The last metric is the Team Contribution, which
will look into the contributors projects and these projects’ quality. The contributions by
the developer into the various projects will enrich his experience and over time improve
his skill to create better software. To attain a score of the contributor the metric uses
the overall quality of the project, he has contributed to.

The software to be created will be based on components to fulfill specific roles in the
overall metric depending on the data to gather or the library to implement. The process
will be a process similar to Agile development with analysis, design, implementation
and tests. These are key part of the software development, and these will be conducted
with each task to be developed in the software. The test development is important
for ensuring the correct functionality is intact at all times. These tests can be used to
see for other developers, if everything is configured and still working in case of further
development. The programming language to be used is Python version 3, which is
excellent at data mining and data manipulation. These attributes are essential for finding
the correct information and organising the information to be used in the trustworthiness
metric. The libraries to use are cve-search with information from NVD, RoboBrowser for
information on OpenHub and apt-rdepends to find information on what dependencies a
project consists of. The libraries are a key components for the project to be able to find
the information to rate the trustworthiness.

Chapter 4

Design

The design of the software is quite simple with different classes created to fulfill the tasks.
The overall design is simple as the product is a small project. The design is created to
be one single component called OSSProject, which is an Open Source Software Project,
which will be the project evaluated. The different metrics will be implementing with
the link to the information sources needed to conduct the evaluation of the individual
metric.

Python has created software design differences compared to other programming lan-
guages, which should be known in order to understand the design and the source code.
In Python a class does not necessary need to be a class, but can be a collection of scripts,
which in other programming languages would have been designed as a class. Python is a
high level programming languages and have made some changes compared to others to
simplify the structure of software design.

4.1 Metrics

The metrics each describe an aspect of the overall trustworthiness, which is a combination
of 3 scores Aggregated Security score, Team score and Maintainability score. How the
aspects add up can be found in the diagram 4.1.

60

List of Tables 61

Figure 4.1: The relation between the metrics can be seen in the diagram, and how
the metrics combined will describe the trustworthiness of the software. The different
metrics will have different information sources in order to find the relevant information.

For larger version see appendix C

The 3 metrics are each a combination of different information, which can be found as the
nodes of the metric structural diagram. The Maintainability score is the simplest with
only using data on the project from OpenHub, which is then easily calculated based on
the formula 3.8. The Aggregated Security score is a little more complicated with infor-
mation from all the information sources. The Security score uses the Vulnerability score
and Severity score to calculate most projects using only the data regarding CVE vulner-
abilities and CVSS score information. The User evaluation is used for smaller projects
or projects with a small number of vulnerabilities, which is then evaluated on the reason
for this small number with the information on users and contributors in OpenHub. The
dependencies are found using apt-rdepends to find the projects dependencies, and these
dependencies are equally evaluated based on the Security score. The Aggregated security
score is then finding the most untrustworthy score from the project or its dependencies.
The Aggregated Security score is thus an evaluation of the weakest link within the entire
project.

The Team score is based on the information from Openhub regarding the project’s con-
tributor and their projects of contribution. The contributors will be grade on the projects,
which they have contributed to. The projects are found from the contributor’s projects
on OpenHub, and the projects are scored by the Security score. The Contributor score
is a combination of the contributor’s contributions to the projects and from the Secu-
rity score of the project. The contributor score is calculated from the formula 3.9. The
Team score is then calculated from all these contributors to contribute to the overall
trustworthiness valuation.

List of Tables 62

4.2 Interactions between components

The different sequence diagrams shows how the scores are calculated for the final trust-
worthiness score. The sequence diagrams are split into the different scenarios of the
scores, which are done sequentially by each other and will be presented in this fashion.
The different scores are calculated as the function is called in the OSSProject class, and
it is possible to simply call for the dependency, maintainability or team score individually
without all the other scores being calculated.

4.2.1 Security score

The Security score consists of 2 different scenarios to algorithm, which depends on the
annual numbers of vulnerabilities in the project. The first is for an annual average above
5 CVEs, which is found in figure 4.2. The second is for the CVEs less than 5 annually,
which will result in a user evaluation found in figure 4.3. The regular Security score is
based on the Vulnerability score and Severity score. The user evaluation assigns a score
based on the amount of users and contributors with a score of either 0 or 10 depending
on the project’s situation.

The regular Security score is for annual CVE count above 5, which will then proceed as
followed in figure 4.2.

List of Tables 63

Figure 4.2: The sequence diagram for calculation of the Aggregated Security score
with the calculation of the vulnerability score in steps 2-10 and the severity score in

steps 11-17.

The beginning of the process will evaluate the information from CVEs by looking at
the Vulnerability score, which focuses on the general trend and numbers CVEs, and the
vulnerability score is conducted in the steps 2-10 in the sequence diagram. In step 2 the
CVESearch class finds the CVE ids as a list, which only contains the information about
the CVEs’ id without any related information. The CVEs are separated into a Map with
all the count of CVE vulnerabilities annually in step 4, which is used both in calculating
the average, and the overall trend of all the vulnerabilities. The grade for the annual
average (ncve) and the trend (tcve) are then found by the Dependencies class in step
6 and 8, which returns 2 individual grades. The 2 grades from ncve and tcve is then
combined and calculated to the vulnerability score in step 10.

List of Tables 64

The severity score is calculated by the Dependencies class for most parts, but organised
and controlled by the OSSProject. The information needed for the severity score would
be the CVSS scores of the previously found CVE ids for the vulnerability score. These
scores are found in step 11 and 12 by the CVESearch class, which returns a Map with the
CVEs and their individual CVSS score. The CVEs have to be separated by years and
severity level to calculate the severity score, which is done in step 13 by the Dependencies
class. The return in step 14 will be a Map with the year as key and another map for
the different severity levels and the count. The Severity score is then calculated by the
Dependencies class based on the data delivered by the same class. The interaction back
and forth is caused by the Dependencies class only containing scripts. The idea is for the
OSSProject to control and contain all the data, which is used for the calculation and can
easily be changed if others will change the control flow of the program at a later point.

As seen in the class diagram figure 5.1, the Dependencies was created as a script instead
of a class, since the information to return at any point is simple. The data is always
homogeneous with being a list of scores and ids. The data can thus easily be contained
within the OSSProject without being confusing and unorganised. On the other hand
the function interactions can be significantly decreased in case of Dependencies being a
class, but since this is not a problem the Dependencies will work just as well for a scripts
instead of a class.

The sequence diagram for the user evaluation is when the annual average is less than
5, which means that the overall vulnerabilities found in the software product are low.
The low vulnerability discovery can be caused by little activity from other developers as
users in the project, or that the product is of a high quality level of software. The user
evaluation is decided from equation 3.4. The control flow of the software is similar to the
Security score control flow in figure 4.2, but the difference is that before the Vulnerability
score calculations is initiated, the user evaluation will evaluate the Security score.

List of Tables 65

Figure 4.3: The User evaluation sequence diagram is simpler than the Security score
sequence diagram with the larger part not being evaluated for the User evaluation. The
User evaluation is used for the CVE annual average being less than 5, and will thus be

calculated based on the user and contributor numbers of the project.

The sequence diagram has the same initial steps with getting CVEs and creating an
annual count for the project’s CVEs. The difference is the ncve is less than 5 and thus
is the user and contributor information found in step 6. The Dependencies class find the
information on the project’s user and contributors by calling a function in WebSearch,
which the project is then evaluated on. The Security score is thus assigned based on the
user evaluation formula 3.4 by the Dependencies and returned to the main class.

4.2.2 Maintainability score

The maintainability score is simpler to calculate and currently the simplest metric, since
it is just based on the information available from OpenHub’s data. The sequence diagram
shows that OSSProject only gets the source code information and calculates the score
from this information.

List of Tables 66

Figure 4.4: The Maintainability score sequence diagram is simple with WebSearch de-
livering the data on the source code to OSSProject, which is then in charge of evaluating

the Maintainability score.

The code data is returned to the OSSProject class as a Map with all the relevant data and
used to calculate to the Maintainability score. The simplicity of the score is a strength
as the score is easy to calculate with OpenHub information from a single web page, and
time is not used to find the information from the source code itself.

4.2.3 Team score

The Team score is a heavier in calculations, since a larger set of data needs to be obtained
for the calculation. The sequence diagram is simple as only few functions are called for
the team score to be evaluated, but the different functions will process smaller or larger
data sets depending on the project to evaluate.

List of Tables 67

Figure 4.5: The Team score is mostly calculated and evaluated by the ProjectCon-
tributorMetric class, which calculates the contributor score based on the projects of
the contributors. The Team score is calculated based on the coontributor scores and

returned to the OSSProject.

The scores are evaluated by the formulas 3.9 and 3.10, which will be iterated over all
the contributors’ projects and the contributors. The evaluation of the team score is
performed by the ProjectContributorMetric class, which contain a matrix for all the
projects the contributor have contributed to. The step 3 will iterate over all the found
contributors to find all the projects contributed to and evaluate these projects by the
Security score, and these projects can be large set of data. The Team score is then
calculated by iterating overall the contributors and scoring the teams’ experience and
skills from other projects.

The class ProjectContributorMetric is able to contain information in the class instead
of just returning the data to the OSSProject, which is the case for Dependencies in the
Security score. The Dependencies could have been made as a class instead of being a
script, but this was decided as the information is significantly simpler and the OSSProject
can easily contain the data without being unorganised. In case the Security score should
be expanded to more information, a reevaluation should be made for the dependencies
to become a class. The PCM class has to keep the data on contributor, projects and the
link between them with contributions. The data is saved and organised in the class for
the project to use at any time.

4.3 Summary

The design of the software is simple with few classes with each their responsibility in
finding and evaluating the data on the Open Source Software project. The software

List of Tables 68

design consist of a single component using other third party applications to accomplish
the trustworthiness score. The component is controlled by the class OSSProject, which
then assigns tasks and controls the flow of the trustworthiness evaluation. The other
classes in the class diagram assists in their way for OSSProjects to accomplish this
evaluation of the project.

The control flows of the different metrics can be seen in the sequence diagrams, which
are more or less complicated based on the task at hand. The control flow is controlled by
OSSProject to distribute the tasks to the other class and scripts. The class is capable of
accomplishing more complicated tasks and containing the data, and the scripts simply
returns the data from a given call without storing any data. The team score evaluated
by the ProjectContributorMetric is containing a large data set in order to do the calcu-
lations, and all the data is easier contained in the class instead of returning all the data
back to OSSProject as Dependencies does, but this is the difference between classes and
scripts. The Maintainability score is easily calculated by the few function calls in figure
4.4. The Aggregated Security score is not so complicated to calculate, and the data set
is sent from Dependencies to OSSProject to evaluate the overall security of the project
and its dependencies.

Chapter 5

Implementation

In this section of the report the implementation will be described for the structure,
connectivity with other components and the individual classes. The structure will be
described based on the implementation of the third party libraries and classes containing
large amount of data. The classes are described by the individual functions and how
they are implemented.

5.1 Structure

The project consists of two classes and 4 helping scripts, which are all part of the OS-
SProject component, where the scripts will find information by implementing third party
components. The two classes OSSProject and ProjectContributorMetric are two objects,
which interacts with each other to perform the given task, while the 4 scripts or function
libraries helps to perform certain tasks and provide the data to the 2 objects. The class
diagram can be found in a larger version in appendix B.

69

List of Tables 70

Figure 5.1: The OSSProject component consists of the classes in this diagram(larger
version in Appendix B). The main class of the component is the OSSProject class,
which is in charge of all the functionality and outsource the tasks to create the trust-
worthiness metric. WebSearch searches web pages and in currently only OpenHub.net,
dependencies finds dependencies of the OSSProject, CVESearch finds the CVE and
CVSS information, Utilities contains helping functions and ProjectContributorMetric
is a Matrix containing all the information about contributor and their contribution to

different projects.

The OSSProject class is the main class of the project, which assigns tasks for the
other classes to handle. The OSSProject uses the classes WebSearch, Dependency and
CVESearch to find information to calculate the dependency and maintainability score of
the project. OSSProject has a composite relation to ProjectContributorMetric (PCM),
since OSSProject will contain a PCM object to find and organise all the information
regarding project contributors. The PCM object is not an association, since the PCM
is part of the project and would not be relevant on its own. The PCM object will find
all the contributors in a project and all the projects, which the contributors have con-
tributed to, to evaluate the team’s experience . The PCM object contains a large amount
of information on the contributors, which are available through the OSSProject. The
PCM equally has a composite relation to OSSProject as every project evaluated on the
security metric and assigned a Security score, will create an OSSProject object in order
to make this evaluation of all the OSSProject contributed to by the contributors to the
original project. The Security score is calculated based on the original project and not

List of Tables 71

using the dependencies of the project, since this would make the calculation significantly
heavier.

The classes WebSearch, Dependencies and CVESearch would have been classes in other
programming languages, but objects can be created in Python without being a class and
be a script instead. The classes are in fact more like scripts, which will run and simply
return a result based on the function. The Dependencies script will consists of script
manipulating the data on the dependencies and assist the OSSProject to organise the
CVE and CVSS data and calculate the Security score. Dependencies use the WebSearch
class to find the amount of users and contributors for the User evaluation. CVESearch
is simple and have 2 functions to find CVEs and their CVSS scores for each CVE. The
WebSeach uses the RoboBrowser component to find data on OpenHub, which have been
used for the different metrics to be calculated. The last scripting class is Utilities, which
contain functions used by the other scripts to handle data.

5.2 Components

The components collaborating to score a project based on trustworthiness, are OSSPro-
ject, apr-rdepends, RoboBrowser and cve-search, where some components are third party
application used to find relevant data. The main component of the project is the OS-
SProject, which takes charge of all the information and creates the rating based on the
information provided by the external sources.

Figure 5.2: The Component diagram shows the projects connectivity to third party
software libraries. The different libraries are used for finding information on the OS-
SProject to score the project on trustworthiness. The libraries are used and realised by

different means to use the libraries as intended.

List of Tables 72

The all components are connected to the main component OSSProject with different
relations to accomplish the tasks of the components. The components cve-search and
apt-rdepends are used by a command line library called subprocess, since the components
are intended to be used from the command line and not realised as a Python object. The
apt-rdepends is created to be a command line tool in Linux and not much information
is available on this component, but the component is written in Perl and depends on the
library libapt-pkg5.0. Libapt-pkg5.0 is used as a library for high level package managers
to manage software packages. Cve-search is written in Python and is chosen to be a
command line tool as well, although a Python class would have been nice to include
and easier to manage when using Python code. The idea was instead for everybody to
use it as a tool to find relevant information about CVEs. The library uses information
from National Vulnerability Database to find and save the information in a MongoDB
database.

The RoboBrowser is a library used in Python to scrape websites for data, and Robo-
Browser is using another Library called BeautifulSoup in order to parse the HTML into
a beautiful soup of information. The BeautifulSoup Library is able to create an overview
of HTML in an organised fashion, which RoboBrowser uses along with requesting the
HTML from a website. RoboBrowser is used to request and find information from the
website OpenHub and in a few special cases BeautifulSoup is used on its own, although
RoboBrowser might have been a possible implementation but would require more work.
The RoboBrowser is realised as an object in Python to search through the website and
look for the relevant data to the project. The relevant data in this project is data on
specific OSS Projects about the source code or the contributors.

The component diagram is simple and the project only uses a few libraries to accomplish
the task at hand to evaluate a project on trustworthiness.

5.3 Classes

The classes can be found in the class diagram figure 5.1, and the implementation con-
siderations will be described in the following section. The main class in the project is
OSSProject, since it is the class object, which can be used in other projects where a
trustworthiness score is necessary. The OSSProject will delegate the tasks in between
the classes to find all the necessary information to conduct the trustworthiness score for
a project.

List of Tables 73

5.3.1 OSSProject

The OSSProject is the main class for the entire project and have a few public functions
for the data to be returned. The OSSProject does not calculate anything that has not
been asked of the project by a get method, and the calculation is performed as the
request is made. The get methods can be seen in the diagram below in figure 5.3.

Figure 5.3: The OSSProject class is the main class controlling the actions taken and
tasks performed. The class will calculate the different scores from the metrics based on

the data and scores received from the other classes.

The get methods are either a score or a set of data, which the calculation was based
upon. The scores are calculated as the get method is called and only the necessary
score is calculated for the method, which means all the other irrelevant scores or data
will not be calculated before the data is needed. The data is thus not available, if the
necessary score using this data have been run. The data is the data available at the
moment the function is called and can be Null (None in Python) in case the data is
unavailable. The get trustworthiness method will thus calculate all the scores for the
overall trustworthiness to be evaluated.

The methods for calculating Maintainability score, Trustworthiness score and most of
Security score is implemented in the OSSProject class, while the calculation of the team
score is calculated by the ProjectContributorMetric. The Security score for the project
is calculated by the delivered data from Dependencies, and the control flow can be found
in the sequence diagram 4.2. The overall Security score with all the dependencies will
be described after the initiate dependency metric is explained. The only calculations
done for OSSProject on the Security score is the simple calculations with all the data
received, while more complicated calculations are assigned to other classes. The data
used to calculate the vulnerability score is a list of CVE ids and a list with the count

List of Tables 74

of ids into the year the vulnerability was discovered, in order to calculate the variables
in formula 3.2. The calculations for the annual average and the trend is performed
by the Numpy library, which is a mathematics library. The trend is calculated in the
Dependencies class, and the annual average is calculated by Numpy from the Map with
counts per year using the mean function. The Severity score of the Security score is
mostly calculated by the class Dependencies, since the Severity score is a collection of
different trends and other data from the CVSS scores and the severity level. The Severity
score will thus be discussed in section 5.3.2, as it is calculated by the Dependencies class.
The overall Dependencies score is then calculated by the data from Vulnerability score
and Severity score.

The general Dependencies score for the project uses the calculation of the project itself
and all the dependencies used in the project, which are using the same metric for the
original project to calculate the Security score. The dependencies of a project is all the
libraries used both for the project but equally for all the dependencies projects, and
the complete numbers of projects are all the projects used for the package manager to
have the software installed and configured. These dependencies are found by calling a
function in the Dependencies class. The dependencies are all having their Security score
calculated, and the highest security score is then used as the overall score for the project.
The highest Security score or the lowest trustworthiness score is used for the project as
this is the weakest link in the project and thus easiest for a threat source to attack to gain
access to the system. The apt-rdepends finds all these dependencies in Linux, and the
names can vary from the projects in the CVE database. The names project can exists in
the CVE register but the name might not be the same as the one used the apt-rdepends
for Linux package managers. The project will thus not with guarantee be found.

The Maintainability score is simply calculated with the data provided by OpenHub with
amounts of lines of code and comments for the calculation. The data is accessed by the
WebSearch class, which will provide the data on the project. The score is determined
by the formula 3.8. The calculations are thus quite simple and the data collecting will
be described in for the WebSearch class in section 5.3.3. The Trustworhthiness score
is simply calculated by the formula 3.11, which is a simple calculation of the already
calculated scores for Security score, Maintainability score and Team score. The scores
are calculated and in case these are not calculated the calculation will be initiated before
the Trustworthiness score is calculated.

List of Tables 75

5.3.2 Dependencies

The Dependencies class is created to assists the OSSProject in the calculation of Depen-
dencies score. The class uses the library apt-rdepends to find the Linux dependencies for
the project, and it is the projects link to this library. The Dependencies class handles
the data for OSSProject, when the data is related to the dependencies and the security
metric. The class’ available functions and thus the data can be seen in the class diagram
in figure 5.4.

Figure 5.4: The Dependency class handles the data about CVE and CVSS scores to
calculate the Security score with all the information about dependencies of the project.

The Dependencies class does handle all the metric related to the security.

The dependencies functions is assisting the main Dependency calculations for achieving
the Security score of the project. The class cooperates interact with OSSProject quite a
bit for the OSSProject class to create the evaluation of the Security score. The functions
are used for manipulating CVE data, finding the dependencies, grading an aspect of the
Security score or utilities for CVE data and dependency data.

The functions for manipulating data on vulnerabilities are count per year and separate
yearly severity level, which are used in the Security score of OSSProject. The count per
year function is used to separate a list of CVEs into a list with the counts of vulnerabilities
each year, which is used for the evaluation of the Vulnerability score to be calculated on
tcve and ncve. The result is a Map with the years of found vulnerabilities. The separate
yearly severity level is the function used in the Severity score for separating the CVEs
first into years and then into their level of severity, which will be a resulting Map with
the years and a Map with the levels of severity.

The utilities functions for CVE data are remove current year from dict and shorten string
version number, which are only used inside this class and thus not moved to the Utilities
class. The remove current year from dict is simple and just removes the current year

List of Tables 76

from the Map or Dictionary object, which is used both in the count per year function
and calculate severity score. The removal of the current year is done, since the current
year does not contain all the vulnerabilities as the year is not concluded yet. The year
will thus only contain the discovered and will depending on the date contain a fraction
of the year and this can cause a trend or average to be lowered and might even cause a
stable trend to be decreasing instead. The shorten string version number was created to
shorten the version number of the dependencies to find a project it might be related to.
The naming of the Linux libraries at times contain several version numbers and these
were removed to find the project it might belong to, but this function is not currently
used as removing the numbers of a project might result in the project being a completely
different project and not related to the original dependency project.

For the Security score the function find dependencies is used to find the dependencies in
Linux by the apt-rdepends. The apt-rdepends is a library installed in Linux and simple
need a name to find the dependencies, and the dependencies are for the project listed with
the relation to the project by the possibilities presented in section 3.3.2. The different
dependencies are then found by searching the result for Depends or Pre-Depends to find
the relevant libraries, and the other relation types in the package manager is not relevant
as the dependency is not necessary.

The functions for calculating a grade for the Vulnerability score is calculate trend grade
and calculate ncve grade. The trend grade will be using a library called Numpy, which is
a general mathematics library for Python. The trend is calculated by using the Numpy
library to calculate the Linear Regression of the annual count of CVEs and use the slope
to decide, how the development of vulnerabilities are for the project. The slope is then
given a grade based on the formula 3.5 to determine the trend grade for the overall
project and for the individual severity levels in the severity calculations. The ncve grade
is calculated from the annually average and given a grade based on the formula 3.3.
The openhub browser grade function will use information from the project to do the user
evaluation from formula 3.4. The information is found by the WebSearch class on users
and contributors, and the grade is then assigned based on the situation with users of the
project.

The calculate severity score is used to calculate the severity score, when the CVEs are
separated into severity level and year. The severity score is then calculated based on the
formula 3.6. The calculations firstly ensures that enough data is presented to conduct this
score, since a trend with only one year will not be able to present a trend. For the projects
with a single year of development will thus be evaluated as insecure and untrustworthy,
since the users and contributors does not have had enough time to find all the possible
vulnerabilities within the project. Next the project is examined to ensure that if a year

List of Tables 77

after the first evaluated year is not present in the Map a Map with 0 vulnerabilities will
be stored for this year, which is especially important for smaller project. The smaller
projects with a year without vulnerabilities would otherwise get a false calculation and a
wrong trend for their vulnerabilities, if only the years with discovered vulnerabilities are
presented. The next part will create lists for the trends to be calculated and eventually
the severity score.

5.3.3 WebSearch

The WebSearch class is the implementation of the web scrapers libraries to find the
relevant information on websites and in this project OpenHub is the only website used
to find the relevant information. The libraries used are RoboBrowser to the extend it
can be used and BeautifulSoup for the rest of the website to be accessible. The functions
in the class is presented in the figure 5.5.

Figure 5.5: The WebSearch class is implemented for scraping websites to provide
data from OpenHub for evaluating different scores. The WebSearch finds information

about the projects source code and contributors.

The website OpenHub is down for maintainance about 2-4 times a month, which has
been an annoyance in this project, and thus a function was made to check if the website
was down or functioning. A few utilities are made for the WebSearch class to assist
the other functions. These functions are openhub online, html to bytes and number of
pages. The OpenHub online function checks the website is online, but unfortunately
RoboBrowser is very unstable and can vary from a few seconds up to 30 seconds, which
means the OpenHub online is not really as useful as could have been, but the user of the
software will have to make sure the website is not down for maintenance. The html to
bytes creates a byte array of the html string, since BeautifulSoup needs the information
as a byte array or can better handle the information like this. The function is thus used
for RoboBrowser to open a website and selecting a div tag and all its content, which will

List of Tables 78

then be changed from a list of html to byte array. The number of pages is used for finding
contributors, since the contributor is presented as a set of pages with the contributors.
The numbers of pages are found from the page of contributors to iterate through all the
contributors. The number of pages is found by the links for selecting the pagenation on
the page. The pagenation is simpler found on its own compared to finding in extention
to all the contributors and was thus made into a separate function.

RoboBrowser is used by creating an object, which can then open a url. The website is
then parsed by an HTML parser and uses BeautifulSoup to iterate through the website,
which can then be used to find different tags and iterate through these. The Beauti-
fulSoup has a select method, which finds the content of a div element for example, but
unfortunately this content is not searchable, but another BeautifulSoup will have to be
created to search the HTML content. The BeautifulSoup part of the RoboBrowser can
equally find all the elements of a specific tag like links or div with a specific class or id.
The contributors or contributors’ projects are thus found by iterating the div elements
in which they are contained. Much information on OpenHub can be found by iterating
through links, since the links contain information on contributors or projects and linking
to more detailed content. RoboBrowser and BeautifulSoup are quite powerful libraries,
but the tools use time to parse the HTML and much time is used by these libraries.

The rest of the functions are used to find relevant information on the project, which
is used by the other classes to calculate their metric. The information is found by
parsing the project or contributor specific pages for the wished information using the
BeautifulSoup library. The project details are found from a search for projects and using
the first project, which is the best match for the search. The information for the project
details are available right on the searching page for the number of users, contributors and
lines of code, which is used as the basic information for a project. The project details
are also used to find the project with the best match to a search. Unfortunately the
searching can be quite insufficient and unprecise, where a search missing an letter in the
end might find another project as a better match, and many smaller projects are missing
and thus many dependencies will receive a score of 0 as they are not found in OpenHub.
An example is searching for ’firefo’ on OpenHub will give no results, but it is quite close
to a project with the name ’Firefox’. The searches will have to be spot on to find the
projects and the results can be entirely different, which is why the naming on OpenHub
are not used to determine the naming for the project.

The names used for the projects are found by using OpenHub the project name, which
is the full name, and the short name being the unique url project id used by openhub,
which are often the shortest and simplest explanation to the project. The short name
are often the one or a close name in apt-rdepends and equally used in the CVE register.

List of Tables 79

These names have thus been used although the names are not always correct for all these
instances, but this was the best names used for searching all the sources. The name is
important, but focus was used other places and the naming would have to suffice, since
the names were correct for most larger projects but can have projects where they are
not working. Especially projects where more elaborate names will have to be used to
describe the project like several of MySQL projects, where apt-rdepends would need
mysql_server or mysql_client for the specific software product. The names does suffice
for most part and works fine with most projects.

The project contributors are found by examining the contributors page for all the con-
tributors and using the number of pages function. The html is simple to search through
as the website uses div tags to separate the contributors and finding the information is
easy with the web scraping libraries. The contributors used in the projects are all the
contributors found as unclaimed committers, since these are easier searchable compared
to the accounts. The unclamined committers are most of OpenHub with less than 3%
are accounts, and this is the used implementation and with all the searches done only
very generic names will result in actual accountholders. The unclaimed committers are
thus found to be enough for the implementation.

The project of the contributors are found by searching for each contributor and finding
the exact match and on the search page all the project the contributor have contributed
to are available and easy to search for. The projects are found with the commits to every
project by the committer, which is returned to the requesting class. The project code
data is found on a page of the project, which contains the lines of comments and code
and more information on the language distribution in the project. The information is
simply found on the page using the web scraper libraries.

5.3.4 ProjectContributorMetric

The ProjectContributorMetric is a class used to keep track of contributors and their
projects. The general structure of the class is a matrix with contributors and their
amount of commits to different projects. The matrix is created similar to, when data
mining is looking into works used from different sources. The rows of the matrix is
thus a list of all the contributors and the columns are all the projects. The matrix is
thus filled with numbers, which represent the amount of commits a specific contributor
have contributed to a project. The matrix will display a large amount of 0s, since most
projects are only contributed to by a few of the contributors. A Map of the contributors
and projects are kept to make the matrix searchable for a contributor and what index in
the matrix is what contributor or project. The metric is build by requesting WebSearch

List of Tables 80

for the data about contributors and their projects to set up the matrix to contain all this
data. In the implementation a limit of commits can be set for contributors and projects
by the contributor, which will only use project with of more than the limit or only use
contributor with more commits than the limit. These limits can be used to only use the
most significant contributors or projects, since a large set of contributors will result in
an enormous set of projects, and these data sets can be significantly smaller by setting
these limits.

The ProjectContributorMetric class variables and functions can be seen the class diagram
in figure 5.6.

Figure 5.6: Caption

Calculating the contributor score will require finding scores of all the projects to find
the contributor score from formula 3.9. Is the contributor score of a single contributor
relevant or is all the contributors needed, calling the calculate contributor score can be
either and will only rate the relevant projects in case it is only one contributor of interest.
As an example with 220 contributors in the MySQL project have a set of 9592 projects
to be rated and with about a project rated each couple of seconds will take about 5
hours to rate the project and all the contributors score. A small limit can be set for
contributors and projects, and the limit reduces the run time significantly by reducing
the data set. The Team score is quickly calculated if all the projects have been scored
and the contributors too, and the Team score is calculated by the formula 3.10.

List of Tables 81

A few get methods are available, either the contributor’s project or all contributors in
a project. These get methods are get contributor projects, get contributor details or
get project contributors, which will find the relevant data. get contributor projects will
return the projects with their data based on a single contributor, and the get project
contributor will result in all the contributors contributed to a specific project within the
original project.

5.3.5 CVESearch

The CVESearch class is the connection to the cve-search application, which from the
NVD finds the vulnerabilities related to the project. The cve-search is a command
line tool, which will simply print the result for a project. The cve-search is used for 2
information in this project the CVE ids and the CVSS scores, which are found using the
functions in the class displayed in figure 5.7.

Figure 5.7: The CVESearch class is implementing the projects interaction with the
cve-search project, which provides CVE and CVSS data from the NVD to the project.

The function search cve searches for the CVEs relevant to the project name and is printed
an id per line. The string is then split by the new line character and inserted into a list.
The command line used for the cve-search from the root of the folder for searching for
the CVEs is:

./bin/search_fulltext.py -q PROJECT_NAME

For the fulltext search the MongoDB database need to be populated with all CVEs
from the NVD, which is quite time consuming in the configuration. The NVD contains
currently about 90,000 vulnerabilities, which will take approximately an hour to populate
the database. The configuration can take a few hours because of this.

The list of CVE ids is then used as the argument for the next function search cvss,
which will then find the CVSS scores for the individual CVE id. The search will return
different information available in NVD with the information related to the CVE, which
contains the same information about the cause, CVSS score and other information, but

List of Tables 82

the information used is the CVSS score for each CVE. The search is performed using the
following syntax.

./bin/search.py -c CVE -c CVE2 -c CVE3 ...

The search can be done individually for each CVE or can be performed with all the
CVEs in a single large command. Each call to the Subprocess library will take about
a second, which means a large set of vulnerabilities will take a few minutes to perform.
Using a single large command with all CVE ids is time saving although can give other
problems. The time saved is significant as the return is still about a second for return
of all the results, which is a significant time saved compared to projects with hundreds
of vulnerabilities. The result with all CVE ids at once will return each object in a curly
bracket in Linux, but with MacOS the data is presented with a line separating the 2 or
more objects. The different results caused by the operating system is a problem, since
different implementations would be needed for the operating systems, but since Linux
was chosen to be the main operating system only a Linux implementation is made. The
entities being separated by curly brackets is very similar and a few corrections to the
string would form the structure of JSON, which was then used for iterating through the
results. The function then returns a Map with the CVE id as key and the float CVSS
score as the value of the Map.

The CVESearch implementation is thus only functioning for sure in Linux distributions
as of now, since other part of the software is only working with Linux as well. The
differences with the operating systems might can be fixed, when an alternative to apt-
rdepends is available, but Linux is the working system for now with the project.

5.3.6 Utilities

The Utilities class is a class for assisting the other scripts in generic tasks. The tasks are
simple and can all be seen in figure 5.8. Most of these functions are quite simple and
not needing much of explanation, since these functions are just to simplify the general
algorithm.

List of Tables 83

Figure 5.8: The class diagram for the Utilities class, which contains assisting functions
for the scripts to use for finding specific information from their data. This can be the

CVE ids year, help assert the kind of string object and parse to a correct int.

2 of these functions are simple a test to find out if the given string represents either
a string or a date, which are the functions string is a number or string is a datetime.
The function get current year is a function to return the current year as a string using
a DateTime object to find the current year. Another function returns the year of the
vulnerability discovery, since the CVE id contain the year of the vulnerability registered
with MITRE.

The function calculating string to number is simple, but the function will equally trans-
late a number with a string containing letters for signifying thousand, million and billion.
Strings from the website OpenHub shows the lines of codes represented by for example
18M, which will be translated to 18,000,000, which this function does and also translates
numbers separated by commas. The function will equally translate a string to a float
if the string is essentially a float and not an integer. The function will try to translate
anything that it might get from OpenHub of data as a int or float.

5.4 Summary

The different classes works from the OSSProject class that is calling all the other classes
to find the information for calculating scores and evaluating a project on trustworthiness.
The OSSProject is the object to be used for creating a project object, which can provide
the information used to create the calculations. The OSSProject uses ProjectContrib-
utorMetric (PCM) to create a matrix for all the contributors and their contribution to
different projects. The projects are all evaluated to create the Team score, which will
indicate the experience and skill of the contributors contributing to the original project.

List of Tables 84

The implementation of the different libraries are created in scripts to easily provide the
necessary data for the various scores.

The scripts implementations are designed to be as simple as possible and provide the data
in an organised fashion for both the metric and an eventual user to get the overview of the
data. The scripts simply returns the requested data in Maps for simplicity. The scripts
are optimised as much as possible in order to improve the run time of the evaluation, but
with much data needing to be gathered, and the time of the program was not a focus for
the system. A few more classes such as Contributor might have been useful, but with the
system working for all the different projects and handling all possible data, this corner
was unfortunately cut and focuses on the overall score instead.

A few issues arise including search results on OpenHub and dealing with the different
names used in different systems and libraries. The search result is nothing much to do
about, but is weird the OpenHub project have not noticed the bad service. The naming
used for OpenHub, apt-rdepends and CVE are not always the same, which can cause a
problem with trying to give a single name for all the systems. A solution would be for the
user to provide all the names or creating a dictionary with all the name on open source
projects, but an automatic solution would be preferred. The automatic solution or a
dictionary would be necessary, because the dependencies are found and can not be named
by the user. An automated solution is required with all these dependencies and projects
in the team score to have names for the different information sources. Unfortunately the
issue would take up significant time to solve, and the use of OpenHubs name and unique
id was deemed fine for now.

The implementations are made as simple as possible with all the metrics being handles
by the classes with information from the sources. The implementation can take time to
be calculated with much information needing to be sought out from the sources and be
manipulated for the calculations in the end to be made.

Chapter 6

Evaluation

The evaluation will be performed in each individual metric in order to create an evalua-
tion of each, and then the trustworthiness score will be evaluated as a collection of them
all. The scores all contribute to the overall trustworthiness tool with a few metrics to use
for calculating a score, but an expansion of the metrics is encouraged and possible with
other’s take on OSS project’s trustworthiness. The evaluation will examine the results
achieved by the various metrics in order to discuss eventual improvements in the score
and in the metrics.

6.1 Aggregated Security Score

The Aggregated Security score will look into the security of the overall projects with
all the dependencies used to achieve the product. The dependencies will be equally in
importance to the general products, since these dependencies can as well be vulnerable to
intrusion into the system. The Security score will be discussed separated and in relation
to the dependencies.

6.1.1 Security score

The results of the security score is presented below with all the attributes to the metric
represented in an abbreviated form1. The formulas can be found in section 3.2.1, if a
specific calculation is of interest.

1The abbreviations are as follows ncve (average annually cve), tcve (trend cve), vs (Vulnerability
score), lt (low trend), mt (medium trend), ht (high trend), ct (critical trend), ah (average high high
criticality), ac (average high critial criticality), sev (Severity score), ss (Security score).

85

List of Tables 86

Project ncve tcve vs lt mt ht ct ah ac sev ss
Apache server 0.9 10 9 7 10 10 10 0 0 8.85 8.88
Atom editor - - - - - - - - - - 0
Chrome 1 10 10 7 10 10 4 1 0 6.55 7.24
Django 0.7 10 7 7 10 7 7 0 0 6.6 6.68
Docker - - - - - - - - - - 0
Mozilla Filezilla - - - - - - - - - - 0
Firefox 1 10 10 7 10 10 7 0 1 8.1 8.48
Keepass2 - - - - - - - - - - 10
MongoDB - - - - - - - - - - 0
MySQL 0.9 10 9 10 10 4 7 0 0 5.85 6.48
neat-project - - - - - - - - - - 0
Neo4J - - - - - - - - - - 0
OpenSSL 0.7 10 7 7 10 10 10 0 0 8.85 8.48
PHP 1 10 10 4 4 4 4 1 0 4 5.2
Python 0.7 10 7 7 7 4 7 0 0 5.4 5.72
Ruby 0.7 10 7 7 10 7 7 0 0 6.6 6.68
Ruby on Rails 0.7 10 7 7 10 7 7 0 0 6.6 6.68
Swift - - - - - - - - - - 0
tar 0.7 10 7 7 7 7 7 0 0 6.3 6.44
Tor browser 0.7 7 4.9 7 4 7 7 0 0 6 5.78
Ubuntu 0.7 7 4.9 7 7 7 7 0 0 6.3 6.02
Wordpress 1 10 10 10 10 10 7 0 0 7.65 8.12

Table 6.1: The security scores results for the selected projects and shows how the
majority of the projects being in the range from 5-7, and a few projects given a high

severity score mostly because of the small project size.

The results show a data set of open source projects being evaluated by the Trustwor-
thiness of Open Source Software (toss)[23], and the data can be split in 2 with projects
either being evaluated by their users or being evaluated by the general security score.
The user evaluation will be elaborated in section 6.1.1.1. The other evaluations are made
in the range from 3.44 to 10, and for these results the lowest score is 5.2 and highest is 8.8.
The scale for security score is based on severity and thus lowest is the most trustworthy
projects. The idea was the scale would be equal to the CVSS in the severity levels, but
seems to be quite denser compared to the CVSS severity scale.

The severity have a few problems with the scale, since the 2/3s of the scale is in use
and should have been more to compare to the severity scale. The constants will have to
be changed to cover more of the scale, instead of 0 is only obtainable when considering

List of Tables 87

user evaluation. The constants are both for the vulnerability score and severity score,
which could be changed from the grade choice in the trend evaluation. The constants for
evaluation will have to be thoroughly checked and evaluated, which can take significant
time and have been spend differently for this project. Another solution could be to
transform the limited score to the scale from 0 to 10 instead.

6.1.1.1 User evaluation

The user evaluation uses the projects evaluated using the users and contributors from
figure 6.1. The user evaluation is found by the formula 3.4 and all the security scores
calculated will thus either be 0 or 10. The score of 0 or 10 is mostly used in the user
evaluation, since a 10 score will be the equal of the project being the worst possible in
terms of security. The data used for the user evaluation is seen in figure 6.2.

Project Users Contributors Security score
Atom editor 23 822 0
Docker 104 532 0
Mozilla Filezilla 1943 1 0
Keepass2 225 2 10
MongoDB 386 106 0
neat-project 0 23 0
Neo4J 20 68 0
Swift 1 307 0

Table 6.2: The user evaluation data used to evaluate the projects security score with
the annually vulnerability count is below 5. The data shows contributor count often
rise above user count for not commonly known projects, and only in very well known

projects does the user number rise above the contributor count.

The User information is gathered from OpenHub, where the individual users claim their
use of a software project, but the contributors are automatically added from data of their
commits. The results thus shows that some projects have more contributors than users
for this reason, which is especially common for the small and medium sized projects,
whereas larger and well-established projects have a large amount of users. Considering
the use of OpenHub is known although not used by all contributors, the user data might
not be accurate and a project with 100 users are actually known and well used by many
in the open source community. KeePass is a quite known password manager in the open
source world, and 225 users are a large number for a small product, which are not used
for developing software, but as a software product for the end users.

List of Tables 88

On the other hand the contributor count being larger than 15 will result in a trustworthy
software. The neat-project is quite new and is developed by a group in Norway, and the
project is meant to change how the transport layer is for computers. The software is not
finished and only the first versions seems to be out for the public. The software can not
be known to be secure or trustworthy at this point, but the software gives a score for the
project to be undoubtedly secure. The contributors could be set a bit higher, but the
future will show if this software will be secure or not.

From the data the user evaluation seems to be working as intended for well known
projects, where OpenHub contains data on the projects. A change could be made for
the user count to be lower in the range of 100-200, and the contributors limit seems
fine with 15. The contributors in a project with 15 people is a group, which should be
able to review their own code, if the group focuses and do work on the security to be of
importance in the project.

6.1.2 Dependencies

The dependencies uses the security score for evaluating the dependencies and is with
the security score of the main project the aggregated security score. The dependencies
are found by apt-rdepends for Linux package managers and are thus used for finding
the dependencies in Linux software and will be different from other operating systems’
executables. The figure 6.3 shows all the dependencies data found and used to create a
security score for the project.

List of Tables 89

Project Dependencies 0 scores 10 scores Other scores AS score
Apache server 108 97 5 6 10
Atom editor 180 167 8 5 10
Chrome 156 146 6 4 10
Django 3 2 0 1 6.68
Docker 15 14 0 1 5.78
Mozilla Filezilla 147 140 4 3 10
Firefox 126 118 5 3 10
Keepass2 81 76 3 2 10
MongoDB 50 44 4 2 10
MySQL 91 74 12 5 10
neat-project 1 1 0 0 0
Neo4J 1 1 0 0 0
OpenSSL 18 14 1 3 10
PHP 111 103 4 4 10
Python 34 30 1 3 10
Ruby 39 33 1 5 10
Ruby on Rails 85 75 4 6 10
Swift 75 69 3 3 10
tar 9 7 0 2 6.44
Tor browser 39 33 3 3 10
Ubuntu 1 0 0 1 6.02
Wordpress 185 168 10 7 10

Table 6.3: Dependencies data for open source projects based on Linux dependencies
and their distribution of the security score in the dependencies of the projects.

The dependencies for the different projects show the amount of dependencies and how
the scores are distributed. As seen in the projects’ data many dependencies have scores
of 10, based on the user evaluations. Most of the dependencies will have a score of
0, because of either 2 cases where data is not available in the project or the project
has a good state of users and contributors. Most of the dependencies receive a 0 value
for the reason that the projects are not found in OpenHub and does not have many
vulnerabilities discovered. These dependencies with a 0 values can not be with these
situations with most being caused by the information being unavailable.

The only projects with very few dependencies does not have a Aggregated Security score
less than 10 with most having less than 9 dependencies for the project not to have a 10
score. The projects which in general have more than 18 dependencies in their project, will

List of Tables 90

thus have at least one 10 score for the project, and thus the project is completely insecure
from a security point of view. The view of the weakest link of the chain in the software
dependency chain, does make sense but most projects will receive a 10 score from the
score. The 10 score does require data from OpenHub and in that case the project has
been submitted by contributors in the project. The other scores have been assigned a
score by the general security score, which are seen in figure 6.1. The 10 score seems to be
significantly common for the Linux dependencies in the security aspect, since only few of
the list of well known projects have a score of less than 10. 3 of the 6 with a score other
than 10 is caused by no dependencies at all, where neat-project is most likely the only
where the software will have to be developed without use of dependencies. Ubuntu does
not have dependencies, as it is not part of the package library, since it cannot be installed
as a software package in Linux. Neo4J is distributed by an executable even in Linux and
does thus not exist in the same package library. The 10 score will be recommended to
be changed in a fashion in order for not most projects to be scored with a 10 score.

6.1.3 Entirety

The entirety of the aggregated security score has a few issues to work as a fully functioning
security metric for a project. The score is using much data and the idea is good, but a
few issues with security score and user evaluation will need for the security metric to be
even better.

The security score scale is a problem if it is to use the same severity scale as CVSS,
which would be the best recommendation in order not to cause more confusion about
the scale. The user evaluation should change the data not available to be another score
than entirely trustworthy, since it does actually not describe much other than the project
is of no importance and might as well not count toward the security metric. The user
evaluation could equally have different user and contribution values to count toward
different scores instead of having just a single value to determine completely trustworthy
or untrustworthy. The dependencies are actually fine as is, if the problems are changed
with the user evaluation.

The entire of the Aggregated security score is actually not of a high quality, which should
have been addressed and prioritised more in this project to improve the score. The score
did seem like it was of a good quality and did not need more improvements, and the
focus on finding other metrics should have included a more thorough examination of the
security metric. The missing parts and issues with the metric have unfortunately not
been discovered in good time to create a better metric for the project, but more with
continuous work with the metric.

List of Tables 91

6.2 Maintainability score

The maintainability score is quite simple both in the computation seen in figure 3.8.
The maintainability results are shown below in the table 6.4, which shows how these well
mostly well known open source projects current status in their maintainability with the
lines of code to comments ratio.

Project Code/Comment ratio Maintainability score
Apache server 10.29 0.19
Atom editor 8.26 0
Chrome 15.55 3.70
Django 18.23 5.49
Docker 10.93 0.62
Mozilla Filezilla 12.98 2.00
Firefox 16.75 4.5
Keepass2 16.74 4.49
MongoDB 21.29 7.53
MySQL 19.49 6.32
neat-project 6.67 0
Neo4J 19.64 6.43
OpenSSL 18.20 5.47
PHP 13.97 2.65
Python 15.22 3.48
Ruby 12.18 1.46
Ruby on Rails 16.07 4.04
Swift 20.08 6.72
tar 11.99 1.32
Tor browser 23.22 8.81
Ubuntu 17.08 4.72
Wordpress 27.49 10

Table 6.4: The maintainability score results shows how most of the projects are within
the decided range for the scale with only 3 scores being either 0 or 10. The range is
found by looking at a large data set of projects and the results shows that this is equally

found to be true with these projects.

The maintainability score shows how most of these projects is in the range from 10% to
25% ratio, which is the decided range of the scale. The scores are all within range except
3 projects, where 2 are only a few percent off and the last 3.33 percent off. The scores
seem to be fine within this range, but the average of all the scores is only 3. The range

List of Tables 92

could thus be reevaluated to only being 10-20 percent of the code, which would result in
a score with 5.9 in average. To find the best possible score for the range a large data set
is needed and it needs to be representable for the entire software industry. I have not
been able to find a number from any sources with an exact best practise limit, but with
this data the scale does seem to be a little high with 25% as the upper bar. The 25% is
thus a good goal for commenting a line for every 4 lines of code and would be necessary
for explaining all the actions in the code.

6.3 Team score

The team score is used to describe how the current contributors experience and perfor-
mance have been with their previous projects. The perfect situation would be to test
each contributors performance in their commits, but this is unfortunately not possible.
The contributors found are only the contributors currently contributing, which means
the contributors with commits during the last 12 months. The contributors are thus
evaluated on the projects which they have been part of and committed to. The data
from each project is found in table 6.5.

List of Tables 93

Project Contributors Projects 0 scores 10
scores

Other
scores

Team
score

Apache server 27 205 181 19 4 5.71
Atom editor 822 786 753 30 3 9.89
Chrome 1584 619 565 40 14 5.76
Django 369 508 489 16 3 5.42
Docker 532 1215 1131 63 21 9.91
Filezilla 1 7 7 0 0 10
Firefox 1087 1601 1479 95 27 5.14
Keepass2 2 1 0 1 0 0
MongoDB 106 118 111 4 3 9.96
MySQL 126 314 285 20 9 4.62
neat-project 23 22 18 3 1 9.87
Neo4J 68 1510 1446 53 11 9.5
OpenSSL 126 223 207 11 5 3.02
PHP 170 2776 2607 131 38 5.49
Python 47 518 472 36 10 9.08
Ruby 42 228 209 16 3 7.29
Ruby on Rails 554 1826 1740 74 12 6.29
Swift 307 287 267 16 4 9.9
tar 4 34 27 3 4 5.63
Tor browser 80 293 261 22 10 5.75
Ubuntu 25 1507 1348 130 29 7.79
Wordpress 34 96 88 8 0 3.49

Table 6.5: The overall results for the team score on various projects using a limit
of 10. The results shows the different projects are evaluated by their contributors and

projects and how the projects are distributed with their scores.

The results show the same issue with most scores being evaluated either 0 or 10 by the
user evaluation, which might be an issue with a naming convention that does not match
for all the different sources used. The projects are evaluated with a limit on projects and
contributors to 10 commits, which will be further explained in the section 6.3.1. The
contributors are weighted by their activity by commits in the project, which means a
contributor might count for 10% of a huge project with a massive amount of commits.
The novices in the projects might only have a few commits and not really count for much,
and especially setting a limit is important with larger projects as the contributors with
few commits does not play a big part in the project. The amount of evaluators are quite
varying by the smaller and bigger projects. The contributors found does have different

List of Tables 94

amount of activity and contributions to projects. A contributor in neat project have
about 130 different projects that he contributed to, while other contributors will only
have contributed to a few and might not show up in the table if they have not contributed
more than 10 commits to a project. With most of these projects the team score have a
significant amount of projects to go through, but with Filezilla, KeePass and Tar only
few contributors are actually contributing currently. These projects are thus not being
developed much further currently, and especially KeePass that the 2 contributors with
only experience in this project.

The average score for these projects are 6.8 as a score and the score seems to be dis-
tributed over most of the scores, but these projects are mostly quite successful and thus
should the score be sort of high with these projects compared to an average over all
projects in OpenHub. The projects are not too high as a limit is set, but would other-
wise be about 10 times bigger. The projects should be in the top half of the spectrum
with many 0 scores, since the 0 score will result in a score closer to 10 since the scores
are security score and thus opposed to the team score. The team score from these data
does seem to give a fine expression of how the projects’ contributors are skilled. The
weighting of the score seems fair by the most active contributors being considered more
in the score and thus will have a more important role in the project.

6.3.1 Setting limits

Setting the limit is to limit the run time and the amount of projects that have to be
iterated and scored for the team score to be calculated. A few different projects are shown
in table 6.6. The limits set for the projects, means that contributors in the project is
not considered if they have committed less than 10 commits, and the projects are not
considered from a contributor if the contributor have committed less than 10 commits.

List of Tables 95

Project Contributors Projects Team score
OpenSSL 362 2320 3.40
OpenSSL (10 limit) 30 223 3.01
Tor (no limit) 510 2114 5.81
Tor (10 limit) 190 293 5.75
Tor (25 limit) 140 151 5.72
Tor (50 limit) 108 117 5.68
Ubuntu 771 10055 7.96
Ubuntu (10 limit) 316 1507 7.79

Table 6.6: Team score evaluation results with limitations set on contributors and
projects evaluated. The projects are quite different and does thus present a large part
of open source projects. The results shows that a limit set on 10 would not deviate the

score too much but save significant time on the projects to calculate.

The projects are significantly different in both size and use, which is on purpose to show
that the projects, will have similar score even with limits and higher limits than used.
The scores are almost the same with a limit set to 10 for both contributors and projects,
which have been used for the table 6.5. By setting a limit of 10, the projects needed to be
scored can be reduced by about a factor 10. A factor 10 is significant for example with
Ubuntu where 1507 projects takes significantly less time compared to 10055 projects.
10000 projects will use about 8 hours of calculations, while 1507 is about an hour spent
on calculating, and the team score is a little off with about 4 percent with OpenSSL.
Firefox will spend about 2 hours calculating all the projects from the contributors and
have 9700 projects to evaluate.

The limit of 10 is set for the team score results shown in this section, as the limit of
10 will for most projects have less than 1 percent from otherwise calculated result. A
score being 1 percent off is fine compared to the time saved from calculating many more
projects.

6.4 Trustworthiness score

The trustworthiness score shows the overall trustworthiness based on the previously
evaluated metrics and is based on the formula 3.11. The overall trustworthiness will only
receive a high score if both the aggregated security score is low and team score is high,
which can be a problem especially for the aggregated security score for larger projects

List of Tables 96

with a single score of 10 as dependency. The results of the scores is presented in table
6.72.

Project TAS score Team score Maint score Trust score
Apache server 0 5.71 0.19 1.45
Atom editor 0 9.89 0 2.47
Chrome 0 5.76 3.7 1.81
Django 3.32 5.42 5.49 4.06
Docker 4.22 9.91 0.62 5.28
Filezilla 0 10 2 2.7
Firefox 0 5.14 4.5 1.73
Keepass2 0 0 4.49 0.45
MongoDB 0 9.96 7.53 3.24
MySQL 0 4.62 6.32 1.79
neat-project 10 9.87 0 8.97
Neo4J 10 9.5 6.43 9.52
OpenSSL 0 3.02 5.47 1.3
PHP 0 5.49 2.65 1.64
Python 0 9.08 3.48 2.62
Ruby 0 7.29 1.46 1.97
Ruby on Rails 0 6.29 4.04 1.98
Swift 0 9.9 4.23 3.15
tar 3.56 5.63 1.32 3.85
Tor browser 0 5.75 8.81 2.32
Ubuntu 3.98 7.79 4.72 5.01
Wordpress 0 3.49 10 1.87

Table 6.7: The trustworthiness score with the major metrics to show how the result
of the trustworthiness metric is. The results are quite low for most major projects
while some of the smaller projects do have higher scores, which is mainly caused by the

trustworthy aggregated security score.

Most of the data is having low scores in general, which are most likely because the
larger projects are not able to receive a score different from 0 as trustworthy aggregated
security score, as they will have at least a single score with the value 10 for AS score. The
values can thus not result in a score higher than 3.5 with team score and maintainability
score being perfect. The only scores higher than 3.5 in trustworthiness score is the 6
projects with few dependencies and thus smaller chance for having dependencies, which

2Abbreviations are as follows TAS (trustworthy aggregated security score), Maint score (maintain-
ability score) and Trust score (trustworthiness score)

List of Tables 97

are untrustworthy. The trustworthiness score’s issue is that it discriminates against larger
projects, and instead of making the projects comparable it is biased towards smaller
projects. Smaller projects are at any point easier to create trustworthy, since the goal
and the functionality is significantly smaller, but the quality of the different projects
should be comparable even with different sizes.

The overall trustworthiness metric does give a good indication of the metrics chosen for
the project. The metrics does work and describes the trustworthiness, albeit the metrics
can always be perfected to be more indicating and significant in the scoring.

Chapter 7

Conclusion

The trustworthiness of software is an important aspect of software development, since
users would otherwise find an alternative to the software product. The trustworthiness
from the users can be influenced by different attributes or a combination of these at-
tributes. Trustworthiness is difficult to find a metric to describe, since trustworthiness is
caused by many aspects of software engineering, and unfortunately have a solution not
been found for the complete assessment of trustworthiness.

The metrics that have been analysed and examined with this project is maintainability,
security and team capability. The maintainability of a software product is important
for both further development and maintaining a high quality of software. The maintain-
ability metric is the simplest metric in this project with only little details and can be
extended with further information on the complexity of the source code. The security
metric have some work to become neutral and compatible with CVSS severity levels for
easier understanding of the resulting overall security score. The security metric is of
great importance in trustworthiness with previously being the only consideration, when
judging the trustworthiness in a software project. The team capabilities are important
for open source software projects, since most projects are separated groups working to-
ward a common goal with only little interactions over a distance. The teams are by
the team metric evaluated based on their experience and resulting projects, in order to
evaluate their capabilities of creating a secure and trustworthy open source project.

The team metric indicates the portfolio of the contributors by looking at the security of
their projects. The metric can be improved by looking at less data for calculating the
score, since the data mining require a long time to evaluate larger data sets. The metric
itself is good with the score of all the contributors projects and can further be improved
by looking into the aggregated security score. The security score was determined to be
of fine quality, but at the end of the project more work on the metric was determined

98

List of Tables 99

to be needed, which would have been done if the issues was found earlier in the process.
The score is biased towards smaller projects, and the larger projects are thus evaluated
to being less trustworthy by default. The user evaluation can be confusing and could
be improved by more complex measured instead for a completely trustworthy or com-
pletely untrustworthy. The security score is although a good score for scoring security
in terms of trustworthiness, and with improvements the security score could be more
understandable and expressive. The maintainability metric can be improved with more
expressive complexity measurements, but the simplicity is equally an advantage of the
metric, which would be nice to preserve.

The metrics on security, team capabilities and maintainability each describe a few pos-
sible attributes of computer science to describe trustworthiness of a software product.
The trustworthiness score is expressive and useful in describing if users should trust the
software project or not. The attributes are chosen to create a trustworthiness score, and
these metrics are in no way all the attributes. Other attributes are possible for others
to extend the score with descriptive attributes to trustworthiness. The trustworthiness
score is a good intermediate score with the attributes examined until now, but will re-
quire more work to be useful for software developers and architects. The open source
products of most interest to these stakeholders would be smaller projects, which they
can use for their own development.

7.1 Future works

The future works are plenty and I hope other students will find the project interesting
and useful in continuing the creating of a trustworthiness metric.

The future work I see immediately ahead is to redesign parts of the Aggregated Security
score (previously dependency score) using the information presented in this project,
which are possibly a smaller task with the analysis and evaluation of this thesis. The
security metric is important for trustworthiness and an improvement would contribute
the trustworthiness score a long stride ahead.

Other future work is to find other attributes which are measurable and related to trust-
worthiness, these new attributes will require a significant workload to both find data and
a neutral evaluation of open source software. Ideas for these metrics can be found in this
thesis, but new ideas and eyes on the task can equally be a strength in the expansion of
a trustworthiness metric.

Appendix A

The 44 Trust principles

The 44 principles from [1] can be found on the following pages. The pages are an exact
copy from the article’s trust principles.

100

Appendix B

Class diagram

103

List
ofTables

104

a

Appendix C

Metrics diagram

105

List
ofTables

106

Bibliography

[1] John Watson Edwurd Amoroso, Carol Taylor and Jonathan Weiss. A process-
oriented methodology for assessing and improving software trustworthiness. Pro-
ceedings of the 2nd Acm Conference, 2(2):39–50, 1994. URL http://dl.acm.org/

citation.cfm?id=191188.

[2] ISO. Information technology - security techniques - information security risk man-
agement. Standard, International Organization for Standardization, Geneva, CH,
June 2008.

[3] Inc. Black Duck Software. Discover, track and compare open source, 2014-2016.
URL https://www.openhub.net/.

[4] OpenSource.com. General information on open source software and the community,
2016. URL https://www.opensource.com.

[5] OpenSource.org. Open source definition (annotated), 2016. URL https://

opensource.org/osd-annotated.

[6] OpenSource.com. Four types of open source communi-
ties, 2013. URL https://opensource.com/business/13/6/

four-types-organizational-structures-within-open-source-communities.

[7] CW Krueger. Software reuse. Computing Surveys, 24(2):131–83, 1992. URL https:

//dl.acm.org/citation.cfm?id=130856.

[8] Mohamed Bishr Andreas Metzger Holger Koennecke Sandro Hartenstein Nazila
Gol Mohammadi, Sachar Paulus and Klaus Pohl. An analysis of software quality
attributes and their contribution to trustworthiness. Closer 2013 - Proceedings of
the 3rd International Conference on Cloud Computing and Services Science, 3(3):
542–552, 2013. URL https://www.scopus.com/record/display.uri?eid=2-s2.

0-84884474760&origin=inward&txGid=16B7A2698DA668A530CDCB47F6A4675B.

wsnAw8kcdt7IPYLO0V48gA%3a.

107

http://dl.acm.org/citation.cfm?id=191188
http://dl.acm.org/citation.cfm?id=191188
https://www.openhub.net/
https://www.opensource.com
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
https://opensource.com/business/13/6/four-types-organizational-structures-within-open-source-communities
https://opensource.com/business/13/6/four-types-organizational-structures-within-open-source-communities
https://dl.acm.org/citation.cfm?id=130856
https://dl.acm.org/citation.cfm?id=130856
https://www.scopus.com/record/display.uri?eid=2-s2.0-84884474760&origin=inward&txGid=16B7A2698DA668A530CDCB47F6A4675B.wsnAw8kcdt7IPYLO0V48gA%3a
https://www.scopus.com/record/display.uri?eid=2-s2.0-84884474760&origin=inward&txGid=16B7A2698DA668A530CDCB47F6A4675B.wsnAw8kcdt7IPYLO0V48gA%3a
https://www.scopus.com/record/display.uri?eid=2-s2.0-84884474760&origin=inward&txGid=16B7A2698DA668A530CDCB47F6A4675B.wsnAw8kcdt7IPYLO0V48gA%3a

Bibliography 108

[9] Beni Suranto. Evaluating trustworthiness of software components. Teknoin, 21
(1), March 2015. URL https://www.researchgate.net/publication/281344524_

EVALUATING_TRUSTWORTHINESS_OF_SOFTWARE_COMPONENT.

[10] Anne Immonen and Marko Palviainen. Trustworthiness evaluation and testing of
open source components. Proceedings - International Conference on Quality Soft-
ware, 2007. URL http://findit.dtu.dk/en/catalog/6438663.

[11] National Institute of Standards and Technology (NIST). Risk management guide
for information technology systems. Standard, National Institute of Standards and
Technology, Gaithersburg, Maryland, USA, July 2002.

[12] Mitre. About cve, 2016. URL https://cve.mitre.org/about/.

[13] National Vulnerability Database. National vulnerability database, 2016. URL
https://nvd.nist.gov/home.cfm.

[14] FIRST. Common vulnerability scoring system v3.0: Specification document, 1995-
2015. URL https://www.first.org/cvss/specification-document.

[15] Codenomicon. The heartbleed bug, 2014. URL http://heartbleed.com/.

[16] National Vulnerability Database. Vulnerability summary for cve-2014-0160, 2016.
URL https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160.

[17] Thomas; Zeller Andreas Neuhaus, Stephan; Zimmermann. Predicting vul-
nerable software components. CCS ’07 Proceedings of the 14th ACM con-
ference on Computer and communications security, 14:12, 2007. URL
https://www.researchgate.net/publication/281344524_EVALUATING_

TRUSTWORTHINESS_OF_SOFTWARE_COMPONENT.

[18] Hassan Raza Bhatti. Risk management guide for information technology systems.
Master thesis, Lulå University of Technology, Department of Computer Science,
Electrical and Space Engineering, July 2010.

[19] Debian. Debian policy manual, chapter 7 - declaring relationships be-
tween packages, 1997-2016. URL https://www.debian.org/doc/debian-policy/

ch-relationships.html.

[20] Harvey Maylor. Project Management, chapter 11, pages 242–264. Pearson, 4th
edition, 2010.

[21] Cristina García García. Reputation management of an open source software sys-
tem based on the trustworthiness of its contributions. Technical report, Technical
University of Denmark & Universida de Oviedo, May 2015.

https://www.researchgate.net/publication/281344524_EVALUATING_TRUSTWORTHINESS_OF_SOFTWARE_COMPONENT
https://www.researchgate.net/publication/281344524_EVALUATING_TRUSTWORTHINESS_OF_SOFTWARE_COMPONENT
http://findit.dtu.dk/en/catalog/6438663
https://cve.mitre.org/about/
https://nvd.nist.gov/home.cfm
https://www.first.org/cvss/specification-document
http://heartbleed.com/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160
https://www.researchgate.net/publication/281344524_EVALUATING_TRUSTWORTHINESS_OF_SOFTWARE_COMPONENT
https://www.researchgate.net/publication/281344524_EVALUATING_TRUSTWORTHINESS_OF_SOFTWARE_COMPONENT
https://www.debian.org/doc/debian-policy/ch-relationships.html
https://www.debian.org/doc/debian-policy/ch-relationships.html

Bibliography 109

[22] cve search. cve-search, January 2017. URL https://github.com/cve-search/

cve-search. cve-search repository for GitHub project.

[23] Michael B Nielsen. Trustworthiness of open source software, 2016-17. URL https:

//github.com/mbnielsen/toss. Github repository for the TOSS project.

https://github.com/cve-search/cve-search
https://github.com/cve-search/cve-search
https://github.com/mbnielsen/toss
https://github.com/mbnielsen/toss

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 State of the art
	2.1 Open source software
	2.1.1 Open Source Definition
	2.1.2 Open Source Software stakeholders
	2.1.3 Open source organisation types

	2.2 Software reuse
	2.3 Software Trustworthiness
	2.4 Risk assessment
	2.5 Vulnerabilities
	2.5.1 CVE
	2.5.2 CVSS
	2.5.2.1 Base Metric Group
	2.5.2.2 Temporal Metric Group
	2.5.2.3 Environmental Metric
	2.5.2.4 Outcome of the score

	2.5.3 Heartbleed

	2.6 Vulture Mozilla project
	2.7 Maintainability
	2.7.1 Lines of Code
	2.7.2 Halstead formulas
	2.7.3 ABC Metric

	2.8 Dependencies
	2.9 Team
	2.10 Summary

	3 Analysis
	3.1 Metrics decision
	3.2 The metrics
	3.2.1 Aggregated Security score
	3.2.2 Maintainability Score
	3.2.3 Team score
	3.2.4 Trustworthiness score

	3.3 Information sources
	3.3.1 National Vulnerability Database
	3.3.2 Debian Package Manager
	3.3.3 OpenHub

	3.4 Software
	3.4.1 Development process
	3.4.2 Programming language
	3.4.3 Structure
	3.4.4 Libaries
	3.4.4.1 cve-search
	3.4.4.2 Web scraper
	3.4.4.3 apt-rdepends
	3.4.4.4 Restrictions

	3.5 Summary

	4 Design
	4.1 Metrics
	4.2 Interactions between components
	4.2.1 Security score
	4.2.2 Maintainability score
	4.2.3 Team score

	4.3 Summary

	5 Implementation
	5.1 Structure
	5.2 Components
	5.3 Classes
	5.3.1 OSSProject
	5.3.2 Dependencies
	5.3.3 WebSearch
	5.3.4 ProjectContributorMetric
	5.3.5 CVESearch
	5.3.6 Utilities

	5.4 Summary

	6 Evaluation
	6.1 Aggregated Security Score
	6.1.1 Security score
	6.1.1.1 User evaluation

	6.1.2 Dependencies
	6.1.3 Entirety

	6.2 Maintainability score
	6.3 Team score
	6.3.1 Setting limits

	6.4 Trustworthiness score

	7 Conclusion
	7.1 Future works

	A The 44 Trust principles
	B Class diagram
	C Metrics diagram
	Bibliography

