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Abstract

In this project an SD card is interfaced to the Patmos processor running on an
Altera DE2-115 FPGA board, using the slow but simple SPI mode that such
cards provide. A file system module is also built, which can access files on a
FAT32 partition. The two parts connect to form a complete system for working
with files on Patmos. An emphasis is placed on modularity and ease-of-use, as
the work is to eventually be integrated into the Patmos project. An optimal file
reading speed of 250 kB/s and writing speed of 150 kB/s has been achieved.
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1 Introduction

Patmos[1] is a 32-bit, RISC-style processor optimized for low WCET (Worst
Case Execution Time). It is at the core of the T-Crest[2] platform, which is
aimed at real-time embedded systems and is time-predictable by enabling static
analysis of the WCET.

Patmos is described in an HDL (Hardware Description Language), such that
it can be synthesized unto an FPGA (Field-Programmable Gate Array). At
the time of writing Patmos has no local, persistent storage capabilities and
this project solves that problem by interfacing the processor with an SD card
connected to an Altera DE2-115 FPGA board. Communication with the card
is done over the SPI protocol and is performed by a hardware controller and a
companion driver, which together provide a simple interface for accessing the
raw data on the card. On top of this a file system module is built, which enables
reading from and writing to files on a FAT32-formatted disk, which is the default
format of SD cards, and provides a familiar interface for accessing those files in
the C programming language.

It is the goal that the work of this thesis will be integrated into the Patmos
project, but until then the implementation can be found in a publicly avail-
able fork of the Patmos project1 on Github: https://github.com/MaxRishoj/
patmos.

This thesis is structured as follows: In the next section is given an outline of
work that relates to this project. In Section 3 is given the specific scope of this
project, followed by an analysis of the necessary components. In Section 4 the
overall design of the implementation is outlined and in Section 5 are the details
of how this design was then realized. In Section 6 the results of this project are
presented, along with a discussion of how the solution performs and in Section
7 suggestions are given to how it could be extended. Finally in Section 8 the
project is concluded.

1https://github.com/t-crest/patmos
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2 Related Work

In this short overview of the work that this project is built upon or which solved
related problems.

2.1 Patmos / T-Crest

Being an extension to the project, none of the work presented in this thesis
would be very relevant without the Patmos[1] and T-Crest[2] projects. While
these projects are aimed at time-predictability however, this project does not
touch on that subject but instead just utilizes Patmos as the executing processor.
None the less, it is the foundation upon this project was built and it is a very
interesting ecosystem.

2.2 SPI

Limited experience with hardware development, coupled with the sometimes
non-exhaustive explanations in the SD specifications[3] made initial host con-
troller design a very challenging task. The open SPI protocol is outlined in
many different forms by vendors that utilize it, but a particularly great resource
was found in the short and sweet ”SPI Implementation on FPGA”[4], in which
the authors provide great timing diagrams for the protocol.
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3 Analysis

The following section contains an analysis of the problem this project solves.
Here the scope of the problem is outlined and the details of each part are ex-
plored. After reading this section the reader should have a clear understanding
of the problem, which forms the basis for understanding the design and imple-
mentation decisions.

3.1 Notation in this thesis

To avoid any confusion for the reader, following is a brief explanation of the
notation used in this thesis.

All indices mentioned have index origin zero. Numbers appear in both deci-
mal, hexadecimal and binary formats and are written 17 = 0x11 = 0b00010001

respectively. This is the notation used in the C programming language. Oc-
casionally hexadecimal and binary ranges are represented with the use of the
wildcard token ”X” to represent ”any value”. An example of this is the inclusive
range [0xa0, 0xaf] written as 0xaX.

3.2 Problem

The basic problem of this project is to interface an SD card with Patmos. The
end result should enable programs executed on Patmos to access any files present
on a connected SD card.

To achieve this, multiple parts must come together. At the lowest level, it
is necessary to physically communicate with the SD card. That entails con-
structing a hardware controller for an SD card, such that the corrects signals
can be sent to the card. Said controller will need a driver, which facilitates
proper communication with the SD card, allowing for data be read and written.
Finally a file system module must be written, which can interpret and utilize
any FAT32-formatted partitions on the card.

This projects limits itself to supporting the SPI2 mode of the SD card, and
while all parts are developed using the standard specifications, none of them are
fully compliant. Why this scope is chosen will be made clear in the following
analysis.

3.3 Equipment

Development is done using the virtual machine image provided at the Patmos
website hosted by DTU3. It provides an Ubuntu4 installation, with all the nec-
essary tools for Patmos development already present. The project is developed
and tested on the Altera DE2-115 FPGA board, which will often just be referred
to as the board. Hardware components are connected to Patmos, which is then

2Serial Peripheral Interface
3Patmos website: http://patmos.compute.dtu.dk/
4Linux distribution. See https://www.ubuntu.com.
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synthesized unto the board using the existing Makefile-based5 build system of
T-Crest and Patmos. Some parts of the hardware development use the Altera
software ”Quartus II 14.1”, which come pre-installed on the Ubuntu image. For
the SD card a ”SanDisk Ultra 16GB MicroSDHC UHS-I Memory Card” is used,
which is placed in a MicroSD to SD adapter, allowing it to fit in the SD card
slot of the board.

3.4 SD Cards

SD (Secure Digital) is a memory card format developed by the SD Card As-
sociation (SDA). While the complete specifications for SD cards and related
components require a license, the SDA has released simplified versions of them
which are open to the public. It is the specifications for the physical layer[3]
(the card) and host controllers[5] (card slot and controller) that the following
analysis is based on.

The interface of an SD card is 9 pins present on the bottom of the card.
Four of these are for data and communication, while the rest is for clock, power
and ground. Figure 1 shows this setup. Some later models of SD cards, of
the type UHS-II (Ultra High Speed), have an additional row of pins used for
operating the card in high speed mode, but these are ignored as using that mode
is optional and the standard pins are unaffected.

Figure 1: Pin layout of an SD card. Loosely based on Figure 3-11 in ”SD
Specifications Part 1 Physical Layer Simplified Specification, Version 5.00”[3]

5See https://www.gnu.org/software/make/manual/make.html
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SD cards can store anywhere from a few megabytes to two terabytes of data
and depending on the capacity, cards are separated into three capacity classes.
In Table 1 is shown how the cards are classified. This is important to note as
the different classes operate slightly differently in some respects.

Capacity Class Card Name
≤ 2 GB Standard Capacity SDSC
2 GB - 32 GB High Capacity SDHC
32 GB - 2 TB Extended Capacity SDXC

Table 1: Capacity classes of SD cards.

3.4.1 Modes

As already mentioned, this project utilizes the SPI mode of the SD card. The
full range of modes, listed in order of decreasing data transfer speed, are: 4-bit
SD, 1-bit SD and 1-bit SPI. The ”1-bit / 4-bit” part refers to how many pins
are used for data transfer and ”SD / SPI” refers to the transfer protocol used.
While using the 4-bit SD mode can achieve must faster speeds, the protocol is
much more complex, which is why the SPI mode was chosen.

3.4.2 SPI

SPI (Serial Peripheral Interface) is a synchronous, full-duplex, serial communi-
cation protocol, meaning that transactions are synchronized to a clock signal
and data is sent one bit a time, both ways simultaneously. Table 2 shows an
overview of the signals[4].

Signal Name
SCK Serial Clock
MOSI Master-Out-Slave-In
MISO Master-In-Slave-Out
CS Chip Select

Table 2: Signals of the SPI protocol.

SD cards in SPI mode are connected to the host controller in a master/slave
fashion, where the card (slave) only reacts when commanded by the controller
(master). Every clock cycle of SCK a bit is sent from master to slave over the
MOSI signal, and from slave to master over the MISO signal. All data sent in SPI
mode is a number of whole bytes and it must be byte-aligned to the CS signal[3,
Section 7.2]. A slave will only react to the master when the CS signal is held
low, which allows multiple slaves to operate independently while connected to a
single master. While not required, it is standard to sample from MOSI and MISO

on different edges of SCK[4].
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3.4.3 Commands

A SD card is controlled with commands issued by the host controller. In SD
mode commands are sent over the dedicated command line CMD, but in SPI
mode they are sent over MOSI. SD commands are 6 bytes or 48 bits long and
they always begin with bits 01 and end with 0. The contents of a command
is then 6-bit command index (similar to an opcode), a 32-bit parameter and a
7-bit CRC[6] (Cyclic Redundancy Code) used for detecting transaction errors.
Figure 2 shows this structure.

Figure 2: Structure of an SD command

The commands used in this project will be explained as they are encoun-
tered in Section 3.4.6 and Section 3.4.7, but for a complete list we refer to the
specifications[3, Section 4.7.4]. A special type of command to note however, is
application specific commands or ACMD. This type of command requires first
sending a CMD55 (APP CMD) to indicate that the next command is an ACMD and
not a standard command. An example is ACMD41 (SD SEND OP COND), which
requires first sending CMD55 and then CMD41.

3.4.4 Responses

After a command is sent the card holds MISO high until it returns with a re-
sponse. The format of this response depends on which command it followed.
The most common response in SPI mode is a R1 response, which is a single byte
long and where the lower 7 bits indicate the status of the card. These bits must
be inspected by the driver to figure out what was wrong with the command, if
anything. The meaning of the individual bits are detailed in Table 3.

Bit Meaning if set
0 Card is in idle state.
1 An erase sequence was reset.
2 The command received was illegal.
3 The CRC check failed for the command.
4 Error occurred in erase sequence.
5 The address in the command was misaligned to the blocks.
6 Invalid parameters were provided with the command.

Table 3: Meaning of the individual bits of a R1 response

Most of the other response types are only relevant when developing a fully
compliant host controller and are ignored in this project. However, the type R7
is encountered when sending CMD8 during initialization, so it is briefly outlined
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here. Besides a large chunk of reserved bits, it contains a 3-bit voltage field
which if is set to 1 = 0b0001 indicates that the card supports the standard
voltage range 2.7V-3.6V, in which the boards default supply of 3.3V falls. The
complete structure of the response can be seen in Figure 3.

Figure 3: Structure of a R7 response. Loosely based on Figure 7-12 in ”SD
Specifications Part 1 Physical Layer Simplified Specification, Version 5.00”[3]

3.4.5 CRC

The last 7 bits an SD command is reserved for a CRC which the card can use
to detect if any errors occurred in the transmission. However these codes are
disabled per default in the SPI mode and are thus required for a few commands
when initializing the card and in those cases they can be pre-computed as the
data they cover is static. Two simple but inefficient implementations of CRC
generation can be found in Appendix A and B, both of which were developed
when attempting to understand the algorithm.

3.4.6 Card initialization

The card is powered up when voltage is supplied over the power line. At this
point the card immediately enters an idle state and before it can be used for
data transfer, it must be moved into a data transfer state. Figure 4 shows a
basic flow diagram for initialization in SPI mode. The figure is based heavily
on Figure 7-1 in the simplified specification for the physical layer[3, Figure 7-1].
Note that CMD0 (GO IDLE) must be issued while holding CS high, otherwise the
card will enter SD mode. It is always possible to get back to the idle state
by halting the power supply for at least 1 ms, which can be done manually by
simply pulling the card from the slot and plugging it back in. This is referred
to as power cycling.

The next command CMD8 (SEND IF COND) sends the voltage range of the host
to the card. For the normal range of 2.7V-3.6V the voltage index is 1, which
results in the complete command shown in Figure 5. For other values, we refer
to the specifications[3, Table 4-18]. If the card accepts the range, it responds
with a R7 response that has identical voltage index. Note that because the
argument to this command is static, the CRC can be pre-computed and after
this command succeeds the card disables CRC checking.

The next command ACMD41 (SD SEND OP COND) negotiates the capacity of the
card. Setting bit 30 in the argument indicates High Capacity Support (HCS)
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Figure 4: Basic state diagram for SPI mode initialization

Figure 5: Typical contents of CMD8. Loosely based on Figure 7-1 in ”SD Speci-
fications Part 1 Physical Layer Simplified Specification, Version 5.00”[3]

which will not succeed for SDSC cards, but should be done for SDHC and SDXC.
The card responds with an R1 response which indicates if the card has left the
idle state. This will not happen if either the card is already in the process of
initializing or if it does not support the HCS setting.

At this point the card is ready to transfer data. A compliant host controller
would issue a CMD58 (READ OCR) to verify the precise voltage support of the
card, but it is not strictly necessary. For more information see specifications [3,
Section 4.7.4].

3.4.7 Reading and writing

The memory of an SD card can be thought of simply as a large array, which
can only be accessed in blocks of bytes. The size of a block is configurable
for SDSC cards with CMD16 (SET BLOCKLEN), but SDHC and SDXC are lim-
ited to the default (for all cards) size of 512 bytes. Reading a block is done
with CMD17 (READ SINGLE BLOCK), which given a block-address returns a block
of data followed by a 16-bit CRC (see Section 3.4.5). The order of the trans-
action is Command → Response → Data. Given that only blocks are used,
it means that to read byte ibyte = 1025 (index), it requires reading block
iblock = bibyte/Sblockc = 2 where Sblock = 512 is the block size, and then the

11



byte with index i′ = ibyte mod Sblock = 1 in that block will be byte ibyte.
Writing a block to a given address is done with CMD24 (WRITE SINGLE BLOCK),

which after receiving the data responds with a ”Data Response Token”. Only
the lowest 5 bits of the token are important and the values of those are 0b100101
(data accepted), 0b01011 (data rejected because CRC checking failed) and
0b01101 (data rejected due to write error). After this token the card holds
the line high until the data has been written and the card is ready for the next
command.

Blocks are always aligned to the beginning of memory. This has the impli-
cation, that to modify only some bytes within a block, it is necessary to first
read the entire block, change the affected bytes and then write the block back.
Otherwise the non-targeted bytes within the block would simply be lost. Figure
6 shows an example of this and what approach is necessary for which blocks.

Figure 6: Illustration of actions required when altering bytes in blocks

Timing Any data of a read or a write operation must be preceded by ”Data
Start Token”, which is the value DAT START = 0xfe = 0xb11111110. Figure
7 shows timing diagrams for the read and write operations. Note that only
the order of the operations is valid in this figure, since some transmissions take
longer than other.

Figure 7: Timing diagram of SD read and write operations
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3.5 I/O devices in Patmos

Components for Patmos are written in a modern HDL called Chisel, developed
at UC Berkeley[7], which is based on the programming language Scala. I/O
(Input / Output) devices connected to Patmos are memory-mapped[8], such
that each has a dedicated range of memory addresses. Such a range contains
214 = 16384 4-byte words and where it begins is determined by the configuration
of the system. Any reads or writes to this memory segment will trigger a
transaction between the device and Patmos.

The protocol for this transaction is an adaptation of OCP (Open Core Pro-
tocol), which operates as master/slave, where Patmos is the master and the
device is the slave. Slightly different variations of this interface are available for
the devices, but for the purpose of this project only the simplest variant ”OCP-
core” is needed. Other variants are necessary if for example the device has its
own clock and clock-domain crossing is required. Table 4 shows an overview
of the signals in ”OCPcore”. The table is based on Table 3.8 in the Patmos
Reference Handbook [8, Table 3.8] as well as the source code of the interface.

Name Bits Description Possible values
MCmd 3 Command from master. IDLE, WR, RD
MData 32 Data from master. Any
MAddr 32 Address from master. 0x00000000 - 0xFFFFFFFC
MByteEn 4 Byte enable signal. Any
SResp 2 Response from slave. NULL, DVA, FAIL, ERR
SData 32 Data from slave. Any

Table 4: Signals of the ”OCPcore” interface

Sending data to a device through this interface is then done by writing to
the memory region associated with the device. As an example consider the
UART (Universal Asynchronous Receiver/Transmitter), which is per default
mapped to the region 0xf008XXXX. Sending data to this device could be done
with (volatile int *)0xf0080004 = 42, in which a transaction begins. Pat-
mos begins with setting MCmd to WR (a write command), MAddr to 0xf0080004

and MData to 42 = 0x0000002a. The UART device then inspects MAddr and
MData to determine what it must do, before responding by setting SResp to DVA

(data available), at which point the transaction is done and execution continues.
Reading data is much the same, except that MData is disregarded and the slave
must place the returning data on SData.

3.6 Master Boot Record

To locate file systems present on the card, it is necessary to consult the ”Master
Boot Record”[9]. This is located in the first logical sector (512 bytes) of the disk
and in it is found the partition table. This table is always located in bytes 446 -
509 and consists of four 16-bit partition entries. Table 5 shows an overview of
the values in such an entry. The only parts relevant to this project is the type of
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the partition, the address of the first sector of the partition and the size of the
volume. The type is used for ensuring it is a FAT32 partition and the address
together with the size denotes where the FAT32 volume resides on the disk. The
CHS (Cylinder-Head-Sector) address fields can be ignored, as they are irrelevant
for an SD card that has no heads or cylinders. Only the LBA (Logical Block
Addresssing) address of the first sector is relevant. The LBA address can be
interpreted as the absolute sector index and the supported partition types for
this project are 0x0c and 0x0b, both of which indicate FAT32.

Offset Bytes Description
0 1 Status indicating if partition is bootable. Ignored.
1 3 CHS address of first sector in partition. Ignored.
4 1 Partition type.
5 3 CHS address of last sector in partition. Ignored.
8 4 LBA address of first sector in partition.
12 4 Number of sectors in partition.

Table 5: Fields in a partition table entry of a MBR

3.7 FAT32

While there are many file systems available to choose from, SD cards come
pre-formatted with FAT32 or potentially FAT16 for SDSC cards. This project
limits itself to supporting cards already formatted to FAT32, so a user might
occasionally have to format a card before using it, but this is simple as most
operating systems provide that functionality.

FAT[10] is an acronym for ”File Allocation Table” and refers to the table
that the file system uses to organize files and folders, while 32 is reference to
the size of entries in this table. Common for all FAT file systems is that they
segment the space of a disk into clusters which in turns are divided into sectors.
For FAT32, the typical size of a sector is 512 bytes and a cluster consists of
either 1, 2, 4, 8, 16, 32, 64 or 128 sectors. Both cluster and sector addresses
begin at zero.

An important thing to note about the FAT file system is that it represent
data in little-endian format. This means that for multi-byte values, the LSB
(Least Significant Byte) is stored last in memory. That is the opposite of Patmos
which operates with the big-endian format and has the MSB (Most Significant
Byte) last. Therefore it is important that the implementation converts between
the two formats when exchanging data.

3.7.1 Structure of a FAT file system

Figure 8 shows the structure of a FAT volume. The ”Root Directory” region
does not exist on FAT32 volumes, so it will not be discussed further.
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Figure 8: General structure of a FAT volume

Reserved region At the very beginning of the volume, in the first sector of
the reserved region (and the volume) is located the ”BIOS Parameter Block”
(BPB). This sector contains information about how the volume is formatted,
including the size of clusters and sectors. Table 6 shows the most important
fields of this structure. The byte ranges are inclusive, so bytes 11 - 12 refer to a
2-byte value that occupies byte 11 and 12. Fields up to and including byte 35
are present on all FAT volumes, while the rest are present only on FAT32. For
a detailed listing of all the fields, we refer to the FAT specifications[10, Page 9].

Name Bytes Description
BytesPerSec 11 - 12 Number of bytes per sector. Usually 512.
SecPerClus 13 Number of sectors per cluster. Always a power

of two and ≤ 128.
ReservedSecs 14 - 15 Number of sectors in the reserved region.

Usually 32 for FAT32.
NumFATs 16 Number of FATs. Usually 2 to handle data

corruption in one of them.
FATSize 36 - 39 Number of sectors in a FAT.
RootCluster 44 - 47 Cluster index of the root directory.
FSInfoSec 48 - 49 Sector index of the FSInfo structure in the

reserved region. Usually 1.

Table 6: Relevant fields in the BPB
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FAT region After the reserved region is the FAT region. This contains the
FAT(s) and is located at sector ReservedSecs in the volume. Usually there are
two copies of the FAT, but this is dictated by NumFATs. How the FAT works is
explained in Section 3.7.2.

Files and directories region The last region is where file data is stored,
as well as the directory entries that make up the folders of the system. All
data here is aligned in clusters, but note that neighbouring clusters are not
necessarily related.

3.7.2 The File Allocation Table

The contents of a file in a FAT file system is stored in the clusters belonging to
that file. The clusters of a file are not (necessarily) sequential in memory, but
are chained together as a singly-linked list. If for example a file ”file0.txt”
occupies three clusters and begins at cluster 9, the chain may go 9 → 13 → 7.
The beginning of this chain is stored in the directory entry of the file (explained
in Section 3.7.3), while the links are stored in the FAT. Every entry in the FAT
is 32 bits wide and is either the index of the next cluster in the chain or a status
value. Even though the entry is 32 bits, only the 28 lowest bits should be used
as the rest are reserved. Table 7 provides an overview of the possible values.

Table Value Meaning
= 0 Cluster is free.
≥ 0x0FFFFFF8 Cluster is the last in the chain.
= 0x0FFFFFF7 Cluster is marked bad and should be avoided.
< 0x0FFFFFF7 Next cluster in the chain is in the entry value.

Table 7: Possible values of a FAT entry

The FAT is indexed simply by the index of a cluster. The entry (next cluster
or status) for cluster i is stored in the i’th entry of the FAT. If there is a next
cluster in the chain, it is simply the lowest 28 bits of the entry. A cluster being
marked free means that the cluster does not belong to any file and can freely
be claimed by new or expanding files. If a cluster is marked bad, it indicates
that the cluster is prone to read / write errors and should be ignored by the file
system.

Figure 9 shows an example of how a file could be stored in a FAT. On the
left side is a visualization of how the file contents could be stored and on the
right side an example of how the FAT could look. The ”EOF” (End Of File) is
an entry value >= 0x0FFFFFF8 and indicates that the cluster is the last in the
cluster chain. Zeroes mark free entries and three dots are entries with irrelevant
contents.
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Figure 9: Example of a file stored in a FAT

3.7.3 Directories

Directories are just like files with regard to the FAT. They have a start cluster
and may span multiple clusters linked in a chain, just like files. Instead of
file data however, the clusters contain a list of directory entries, which are also
referred to as ”short entries” in this thesis. A directory entry is a 32-bit structure
that contains information about a file or directory. Figure 10 shows the structure
of a directory entry and Table 8 contains a listing of the fields within. The table
is heavily based on the ”FAT 32 Byte Directory Entry Structure” table in the
FAT specifications[10, Page 23].

Figure 10: Structure of a directory entry

The first byte The first byte (byte 0) of a directory entry is special, in that
it informs about the entry’s status. If this byte indicates that an entry is free
then the rest of the fields must be ignored. Table 9 shows the possible values of
this byte along with their meaning.

Name The Name field in a directory entry stores the short name (see Section
3.7.4) of the file or directory it represents. The first 8 bytes are the ASCII[11]
representation of the (short) name of the file. A byte that represents an ASCII
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Name Bytes Description
Name 0 - 10 Name of the file / directory.
Attrib 11 Attribute of the file.
Res 12 Reserved and set to 0.
CTimeTen 13 Millisecond at time of creation.
CTime 14 - 15 Time of file creation.
CDate 16 - 17 Date of file creation.
LDate 18 - 19 Date of last file access.
Clusigh 20 - 21 Two most significant bytes of the files first cluster.
WTime 22 - 23 Time of last write to file.
WDate 24 - 25 Date of last write to file.
ClusLow 26 - 27 Two least significant bytes of the files first cluster.
FSize 28 - 31 Size of the file in bytes. Set to 0 for directories.

Table 8: Fields of directory entry

Value Meaning
0xE5 Directory entry is free.
0x00 Entry is free and there are no occupied entries beyond it.
0x05 A regular directory entry where the first character is 0xE5.
Otherwise A regular directory entry.

Table 9: Possible values of the first byte in a directory entry

character is from here on just referred to as a character. The last 3 bytes
are the file extension, if it exists for the file. No characters in this field are
allowed to be lower case6. The complete (short) name of the file is then the
name characters and, if the file extension exists, a dot and the file extension.
Any empty characters, including inside the file extension, are represented with
the value 0x20 which is an ASCII space7. Figure 11 shows how the file names
”file0.txt” and ”file1” would be stored. Some bytes are forbidden in any
part of the name, but for these we refer to the specifications[10, Page 24].

Figure 11: Examples of the storage of short file names

6The reason is that the lower-case representation is country-specific for some characters.
7As in what is produced by pressing the ”space bar” on a keyboard
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Attribute The Attrib field is a single byte which indicates the type of the
entry. Each bit has a specific meaning and can be set in almost any combination.
The bits and their meaning is listed in Table 10.

Bits Hex Name Meaning if set
0 0x01 AttReadOnly File is read only.
1 0x02 AttHidden File is hidden.
2 0x04 AttSystem File is a system file.
3 0x08 AttVolID Entry represents the ID of the volume.
4 0x10 AttDir Entry represents a directory.
5 0x20 AttArchive File has been modified. Used by utilities.
0, 1, 2, 3 0x0F AttLong Entry is part of a long name entry chain.

Table 10: Meaning of Attrib bits

Time and date Most of the entry consists of time related fields. Of all the
fields however, only the ”last write” fields (WTime and WDate) are required by
the specifications. The time and date format is quite interesting as it is very
compact, but it is not explained here and we refer to the FAT specifications[10,
Page 25]. This is because none of the fields are supported by the implementation
(see Section 6.3.2).

File size The last field, FSize, is 4 bytes wide and stores the size of the file,
or zero (0) in case of a directory. It must always have the correct size of the file
and must thus be updated when the file changes size. This means that even a
very small change to file, for example adding a character to the end, can require
two reads and two writes to the disk: One for the file contents and one for the
directory entry. A limit inherent to the FAT32 format, is that file sizes must fit
in these four bytes. Therefore no files larger than 232 = 4294967296 bytes or
roughly 4 GB can exist.

3.7.4 Long names

As is explained in Section 3.7.3, there are only 11 bytes available for the file
name in a directory entry. Only 8 of these are for the name itself, while the rest
are dedicated to the file extension. Furthermore, the name is always stored in
uppercase in a directory entry. To get around these limits, the FAT32 format
employs what is called ”long directory entries”, also referred to as ”long entries”.
It is a special type of directory entry that can store part of the full (long) name
of a file, while still being compatible with systems that only support short
directory entries. Table 11 shows an overview of the fields of a long entry. An
important thing to note about the long directory entries is that they store 16-bit
UNICODE[12] characters for the name, instead of 8-bit ASCII.

A short directory entry that has a long name can then have a chain of long
directory entries preceding it, which is illustrated in Figure 12. Note how the

19



Name Bytes Description
LOrd 0 Ordinal of the entry. Last in chain masked with 0x40.
LName1 1 - 10 First 5 name characters in the entry.
LAttrib 11 Attribute field of the entry. Must be AttLong.
LType 12 Must be zero, to indicate a long directory entry.
LChksum 13 Checksum of name in related short directory entry.
LName2 14 - 25 Next 6 name characters in entry.
LRes 26 - 27 Must be zero.
LName3 28 - 31 Last 2 name characters in entry.

Table 11: Fields of a long directory entry

Figure 12: Example of a chain of long directory entries

short name entry (bottom) has a shorted version of the name stored with a tail
at the end. The number on the left is the ordinal of the entry. The long entry
immediately preceding the short entry has ordinal LOrd = 1 and then it counts
up. The last entry in the chain must have its ordinal masked with 0x40. In the
example in Figure 12, the second and last entry would have stored LOrd = (2

| 0x40) = 0x42.

Short name generation In the short entry that follows long entry chain, a
short name must still be stored. This short name must be unique in the direc-
tory, which is also true for the long name. The specifications give suggestions
to how this short name should be generated and we refer to those for more
details[10, Page 30]. In List 1 is given an outline of what must be done.
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1. Strip leading periods and all spaces from the name.

2. Store the first 6 characters of the long name in uppercase. We call this
basis-name.

3. Store the first 3 characters of the extension in uppercase. We call this
basis-ext.

4. Find a number n such that the name basis-name + ∼ + n + basis-ext is
unique in the directory.

5. If n does not fit in the remaining bytes of the Name field, remove one
character from the end of basis name and search again, until a max of
n = 999999.

List 1: Outline of short name generation

An important note is, that there are no strict requirements for how the tail
number n should be selected. One might expect that it always begins with 1,
then 2 and so forth, but this is not required.

Checksum The LChksum field in a long directory entry is a 1-byte field that
must contain a checksum, calculated from the bytes in the short name of the
file. As such it is the same for all long entries in the chain. If it is not cor-
rectly calculated the file system should ignore the entries. The formula for the
checksum is:

Cshort(S) =
∑
c∈S

rrot(c) mod 255 (1)

Here S is the string in question and ”rrot” is a right-rotate operation on a
byte. Thus the checksum is simply the sum of all the bytes rotated right one
bit. A simple implementation of right-rotation of a byte in C is:
rx = (x >> 1) + (x << 7).

3.7.5 Limitations of FAT32

FAT32 being a fairly simple file system, carries some implications that might
not be immediately obvious. First of all there is the strict limit on file sizes, as
already mentioned. Secondly, there are no indices and no sorting of directory
entries in the format, which means that to find a file in a directory, all entries
in the folder will have to be checked, in the worst case. This results in a worst
case time complexity for path resolution that grows linearly with the number of
entries in the folder. Thirdly, FAT is case-insensitive which means that ”file.txt”
and ”FilE.TXT” are the same name in such a system.
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4 Design

4.1 Structure

The three parts of this project can be viewed as three stacked layers, where
each layer provides functionality to the layer above it. The bottom layer is the
physical layer, in which the host controller resides. This layer facilitates the
physical communication with the SD card. The next layer is the driver, which
interacts with the host controller to allow for transferring blocks of data to and
from the card. Above that there is the file system layer, which uses the driver
to enable writing and reading of files. It is on top of this that the application
layer resides. Figure 13 illustrates this model.

These layers are designed to be independent of each other. It is possible to
switch out the file system module for any other file system module, as long as it
can work with the generic interface specified in 4.4. This allows the individual
parts to be reused in future work, for example using the file system module for
an external USB hard-disk formatted to FAT32.

The driver and host controller are not completely independent however,
which is why they are grouped together in the figure. This is because the driver
depends on the host controller and as such, if the host controller is switched
out then so must the driver. While it is possible to decouple the host controller
and the driver by utilizing a generic interface, this is not done in this project.
It seems unlikely that a new driver will be written for the implemented host
controller, instead of designing a new host controller that supports SD mode.

Figure 13: The module layers of the project
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4.2 Host Controller

A few choices had to be made, in regard to the use of the SPI protocol in the
host controller. These are outlined in the following section.

4.2.1 Buffering

First, it should be noted that it is possible to ”bit-bang” the SPI protocol. Since
there are no requirements for the clock rate, one could just connect a register
directly to the pins and access that register from code. One would then set the
MOSI bit in the register, flip the clock bit, read out the MISO bit and flip the
clock bit again, to constitute a complete clock cycle. This is very slow however,
even for the SPI mode.

Therefore it was decided to include buffers for the host controller. Data
to be transferred is placed in an outgoing buffer register, while incoming data
is placed in another. Both these buffers are 8 bit large, since the protocol is
byte-based. Another sensible size would have been 32 bits, since that is the
default word size of Patmos and the size of MData and SData (see Table 4).
A register is then needed to keep track of which bit in the buffers is currently
being transferred. This register needs to be large enough to contain the size
of the buffer registers, which in the 8-bit case is at least 4 bits. This pointer
register then increments every SCK cycle. Figure 14 shows how this structure
looks, when the 6th bit is about to be transferred.

Figure 14: Structure of transmission buffers

4.2.2 Transferring data

The host controller has two states: ”idle” and ”active”. In the idle state it
simply waits for a data transfer to be initiated. It holds SCK low, ensuring that
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nothing happens in the slave. When a byte is received from the driver, it saves
it to the outgoing buffer register, resets the buffer pointer and enters the active
state which initiates a transmission. The transmission is performed by holding
MOSI to the value of the i’th bit of the outgoing register in the i’th cycle of SCK,
which is handled by the buffer pointer register. On the falling edge of SCK, MISO
is sampled and stored in the i’th bit of the ingoing register. The driver can then
read the value of the ingoing register.

4.2.3 Ongoing transmissions

It is important that the host controller is not interrupted while a transmission is
ongoing. That means that no new data must be written to the outgoing buffer
during a transfer. Nothing should be read from the ingoing buffer either, since
that data would be incomplete and thus meaningless.

Two approaches were considered for ensuring this. First, the OCP protocol
could be utilized. By withholding the DVA response until the transmission is
complete, the CPU can do nothing but wait. The other approach is to have an
exposed register indicate whether a transmission is ongoing, which the driver
can poll. If the next operation to be performed after writing is another write,
then the first approach would be slightly faster as the CPU could immediately
execute the write upon completion. In polling approach, the CPU would have
to first execute a read for transmission register, then a comparison and possibly
a branch instruction, before reaching the next write. If the next operation is
not a write however, the polling approach is faster, as in that case the CPU is
free to perform other instructions while the write happens.

Ultimately, the polling approach was decided upon.

4.2.4 Clock rate

The rate of SCK must be variable. During the initialization phase of the SD card,
the clock rate must not be higher than 400kHz [3, Section 4.2.1], but a higher
rate is wanted for data transfer. To allow for this the host controller permits
clock rates that are even divisors of the CPU clock rate. The host controller has
a register initialized to such a divisor and then every CPU clock cycle it counts
down in that register. Upon reaching one, SCK will switch and the counting
register will reset to the divisor. For the default clock speed of Patmos on the
Altera DE2-115 board, which is 80MHz[8, Table 2.15], this results in permitted
SCK rates:

Fsck = {r | r = (1/i) · 80 MHz, i ∈ N, i > 1} (2)

= {40 MHz, 20 MHz, ..., 400 kHz, ...} (3)

The reason that i > 1 is that the host controller updates every clock cycle of
the CPU, which at a maximum will flip clock signal every full cycle of the CPU,
resulting in half the rate of the CPU.
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4.2.5 Interface

The driver interacts with the host controller purely by reading and writing
registers. In Table 12 is listed the registers that are exposed to the driver. Note
that the offset is in 4-byte words such that offset 2 from byte 10 is byte 18.
Also note, that the buf register is actually split into two registers, bufIn and
bufOut, in the implementation.

Register Offset Value on read Action on write
buf 0 Last byte read from card Send a byte to the card
cs 1 - Set the chip select pin
en 2 Non-zero if ready for data -
clkdiv 3 - Set the clock divisor

Table 12: The exposed registers of the host controller

4.3 Driver

The driver has to interact with the host controller and provide read / write
functions to the library layer. A primary aim for its interface is for it to be
as generic as possible without being inefficient, to allow other types of disks to
adopt it.

4.3.1 Initialization

An initialization function disk init is necessary for the driver to function. It
is in this function that it must initialize the SD card if available and the user
must call this function once before using the disk, to ensure that the disk is
ready.

The function does not need to take any configuration parameters. The user
should not be required to know anything about the disk, which would need
to be passed in through arguments. If anything, information should travel
from the initialization function to the user. Therefore, the function must both
output a return value that indicates whether the initialization was a success or
not, as well as fill a DiskInfo data structure with information about the disk.
In any implementation of this interface where no initialization is necessary, the
DiskInfo struct should still be filled. The DiskInfo struct contains information
about the disk relevant to the file system. It only has one field, blocksz, but
a struct was chosen anyway to ensure type safety and to accommodate future
extensions. The field blocksz indicates the size of a block on the disk, which
is necessary information for the file system, so it can adjust how many reads or
writes it must issue.

4.3.2 Read / write

For the read and write functions disk read and disk write, some choices were
made about the parameters. The initial approach was to have them take pa-
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rameters for a byte position on the disk, a data buffer to read from / write into
and a byte count that indicates how much should be transferred. This is very
intuitive and makes it easy to write only a few bytes to the disk. If for example
the file system wanted to update the file size in a directory entry, it would be
very simple with this interface.

However that approach does not fit very well with the block based model
of an SD card and the sector based model of the FAT file system. In the case
that only part of a block needs to be written to, as in the example above, the
disk write function would have to read out the block on the card, change the
bytes and write it back, as was discussed in Section 3.4.7. It was found during
implementation, that more often than not, the file system would have already
read out the sector that the write was to happen in. When for example creat-
ing new directory entries, the sectors of the directory have just been searched
through. Therefore, having the interface method also read out and write back
the sector would be unnecessary and inefficient. To avoid having the driver re-
peat the read, the function caller would the have to align byte address with the
containing block. Instead of doing this, it was decided to modify the interface
to work on blocks instead. So instead of a byte index it takes a block index and
instead of a byte count it takes a block count. The size of blocks are then dic-
tated by blocksz field in DiskInfo, which is set upon disk initialization. This
interface forces the file system module to only read and write in blocks, which
also helps keeping the number of reads and writes low when developing, as they
are not hidden. A nice coincidence (probably not) is that the usual block size
on an SD card and the usual sector size of FAT partition is the same, 512 bytes.

4.4 Interface

The interface to the driver then looks as shown in Table 13. All functions return
an integer which indicate success and they all set errno (more on this in Section
5.1.1. Note that this interface does not expose the fact that an SD card is being
used for the disk.

Function Description
disk init(*inf) Initialize the disk and write configuration to

inf.
disk write(pos, buf, n) Write n blocks from buf to disk, starting at

block pos

disk read(pos, buf, n) Read n blocks from disk, starting at block
pos, into buf

Table 13: The interface of the driver layer
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4.5 FAT module

The FAT module must utilize the the driver to provide a pleasant-to-use inter-
face for interacting with files on the card. List 2 shows an overview of function-
ality one might expect from such a library.

1. Reading from and writing to files.

2. Creating and deleting files.

3. Creating and deleting folders.

List 2: Expected functionality of file system module

While there are a lot of ways to provide this functionality, it was decided to
attempt to mimic the interface of a subset of C standard library system calls,
as they are defined in the POSIX standard[13].

Most importantly, this should be very familiar interface for C programmers.
It can be expected that people who have written C for some time, are very used
to interacting with files using file descriptors (see Section 4.5.1). Secondly, if
the necessary system calls are in place, the ”Newlib”8 port that T-Crest uses
can be directed to use the library to provide the usual file-related functions of
the C standard library, fopen, fputs, etc. This would mean that existing code
that uses these functions could be run on T-Crest / Patmos with an SD card
attached. However this is not done in the current implementation.

Table 14 lists the set of exposed functions from the file system layer. The
function names and signatures are chosen to closely match the system calls they
mimic, except the partition and initialization functions as they have no system
call counterpart. Some terms might be unclear, like ”descriptor” and ”cursor”,
but they will be explained shortly.

4.5.1 File descriptors

The first thing to note about this interface is that everything works on file
descriptors. A file descriptor is a non-negative integer that refers to an open
file9 data structure, that contains information about the file in question.

In the C standard library there are three reserved file descriptors. The stan-
dard input pipe STDIN FILENO = 0, the standard output pipe STDOUT FILENO

= 1 and STDERR FILENO = 2, which is the standard pipe for errors. All other
positive integers below a configurable maximum, are available for file descrip-
tors.

Normally the operating system keeps track of the set of file descriptors and
open files[14]. However, in our case there is no operating system available, so
the module must handle this itself. This is one of the reasons that it is necessary
for the file system module to have an initialize function, which is not normally

8See https://sourceware.org/newlib/libc.html
9Technically also pipes and streams, but this is irrellevant for this project.
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Function Description
fat load pinfo(i) Load the i’th partition on disk.
fat load first pinfo() Load the first FAT32 partition on disk.
fat init(pinfo) Initialize the file system module using the

partition info pinfo.
fat open(path, oflag) Open the file at path according to oflag.

Returns a file descriptor on success.
fat close(fd) Close the file with descriptor fd.
fat read(fd, buf, sz) Read sz bytes from file with descriptor fd into

buf. Returns the number of read bytes.
fat write(fd, buf, sz) Write sz bytes from buf into file with

descriptor fd. Returns the number of written
bytes.

fat lseek(fd, pos, w) Set the cursor of file with descriptor fd to pos

according to w.
fat unlink(path) Delete the file at path.
fat rmdir(path) Delete the directory at path.

Table 14: Interface of the file system layer

necessary when working with files in C. The way these files are managed in the
file system module, is simply an array of open-file structures. A file descriptor is
then simply an index into this array, offset by three to account for the reserved
descriptors. This structure enforces a compile-time constant size of the array
and thus a constant maximum of open files.

4.5.2 Open files

It is not necessary for this project to support all the functionality that is nor-
mally associated with files. Following is a discussion of the information that is
/ is not associated with the open-file structure in this project.

Permissions It was decided not to implement permissions for files in this
project. Permissions allow the file system to mark files, such that some oper-
ations will fail for it, like writing to read-only file. Users can also open files
in specific modes, such as read-only or write-only. Attempting to perform an
illegal operation on a file, e.g. writing to a read-only file, would result in an
error.

While this is very useful functionality, it is not strictly necessary. Therefore,
it was decided against and could instead be an easy extension to the file system
module in future work. When it is to be implemented, such information should
be stored in the file descriptor structure, as it is necessary to consult before
every read or write.
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Availability When opening a file, the returned file descriptor should be the
lowest possible integer that is not already in use. Finding such a number is
simply a matter linearly searching from the start of the open-file array. Since the
file descriptor must not already be in use, it is necessary to mark its availability
somehow. It was chosen to simply do this by storing a free flag in the open-file
structure that is either zero (taken) or one (free).

Cursor Files in C are expected to have a cursor associated with them. A
cursor is the current position in the file, from where all reading and writing
begins. Upon reading or writing, the cursor moves forward according to the
number of bytes read or written. Figure 15 shows an illustration of this. This
model of moving forward in the file, fits well with how files are stored in a
FAT file system. As cluster are singly-linked and pointing forward, it is much
easier (faster) moving forwards than moving backwards, as that would require
searching from the start of the cluster chain.

Figure 15: Illustration of how a cursor in a file works

Position of directory entry Whenever a file changes size or is written to,
there must be written to fields in its directory entry (FSize and WTime and/or
WDate respectively). For this reason, it is necessary to store the position of its
directory entry in the structure. Since the only way to open a file is through its
directory entry, the position is known at that time.

Size The size of a file is relevant every time a read or write happens. A read
operation must not read past the end of a file and a write operation past the
end of a file requires, that the size of the file be adjusted and maybe even a new
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cluster be reserved for the file. The size of a file is stored in its directory entry
and therefore could be read from there. However, by storing it in the structure
(which is in memory) we can avoid having to read the directory entry from disk
every time. For this reason, it was decided to store the file size in the structure
as well.

First cluster When the user wants to move the cursor backwards, it is neces-
sary to begin from the first cluster in the chain and move forward. As with the
file size, the first cluster in the chain is stored in the directory entry, but it was
chosen to keep it in memory too to minimize disk reads. The case is less strong
here than for the file size, since seeking backwards in a file probably happens
much less than reading and writing, but the memory cost of 32 bits was deemed
worth it.
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5 Implementation

This section details how each part of the design was realized. See Appendix C
for an overview of all the files related to the implementation. On the Ubuntu
development image, the full implementation can be built, synthesized to the
board and run from the ”patmos” folder with the command:
make gen synth comp config download APP=sdtest BOARD=altde2-115-sd

5.1 Coding in C

Some choices in the implementation are relevant to both the driver and the file
system. Following is a short explanation of these.

5.1.1 Error Handling

When errors occur in the code they must be identified and dealt with. A dis-
tinction is made between expected errors, such as a search function not finding
its target, and errors due to user input, such as attempting to delete a file that
is not there. In the implementation, expected errors are generally indicated by
the return value of the function. The function caller then inspects this value
before interacting with any output values. This is a simple approach that is
nice to work with.

For errors occuring in the file sytem interface functions however, the imple-
mentation sets the global errno variable, which is defined in the standard library
header errno.h. This is how the system calls, that the interface is modelled on,
work. The caller is then to inspect errno after each function call, where errno

== 0 indicates success and anything else indicates failure. No other values are
used but those defined in errno.h and the interpretation of each value depends
on the context. See Appendix D for an overview.

5.1.2 Integer types

Working with FAT32 involves using a lot of unsigned integers with sizes from 8
to 32 bits. To avoid an inordinate amount of unsigned keywords in the code,
while also being strict with using the correct types, it was decided to use the
uint8 t, uint16 t and uint32 t types defined in the standard library header
file stdint.h. The interface functions still use int and off t however, to match
the system calls.

5.2 Host Controller

A Chisel component was created called SDHostCtrl, located in the code file
SDHostCtrl.scala. It has three output pins, from host controller to card port,
and two input pins. Table 15 shows an overview of the pins. Notice the direction
of data pins. The output pin on the host controller is the input pin on the card
and is named sdDatIn to match the card semantics. Also notice that the write
protection pin is ignored.
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Name Direction Description
sdClk Output Clock signal.
sdCs Output Chip select signal.
sdDatIn Output Input data signal for card.
sdDatOut Input Output data signal for card.
sdWp Input Write protection pin from card. Ignored.

Table 15: Pins for host controller component

5.2.1 VHDL / Verilog

The Chisel code is compiled by the make build system of the platform. This
generates, among other things, a Verilog file ”Patmos.v” for the complete pro-
cessor and components. In this file is found Verilog code for the SDHostCtrl

component. A VHDL file ”patmos de2-115-sd.vhdl” is present in the project
directory, which glues the components together and it is in here that the con-
nections of the Verilog file are connected to the processor.

Both of these files are referenced in the Quartus project file ”patmos.qsf”
and used when the processor, along with the SD host controller, is synthesized
to the board.

5.2.2 OCP signals

All communication between the CPU and the host controller happens through
the ”OCPcore” interface (see Table 4). The host controller, being the slave,
observes M.Cmd to await read or write commands and then inspects M.Addr to
determine which register is to be accessed, initiating a transaction if necessary.
Any read or write puts DVA (Data Available) on S.Resp the next cycle. This
includes reading and writing to invalid addresses (not associated with a register)
or writing to a read-only register.

5.2.3 Registers

Table 16 shows an overview of the registers in the host controller. The ”R/W”
describes whether the registers can be read (R) from or written (W) to by the
driver. A dash indicates that the register is internal to the component and can
not be accessed by the driver.

5.2.4 Clock signal

In Chisel there is no explicit clock signal. Updates to registers utilize the implicit
clock signal, such that an assignment to a register can be expected to have effect
the next clock cycle. The implicit clock signal in the host controller component
has the same frequency as the CPU, which is 80 MHz. As mentioned in the
design, this signal is downsampled to a variable frequency in the host controller.
This is done with three registers. First is the clkReg register, which is directly
connected to the sdClk pin. The clkDivReg register holds the divisor of the
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Name Bits R/W Description
enReg 1 R Is a transaction active?
bufInReg 8 R Buffer from card to host controller.
bufOutReg 8 W Buffer from host controller to card.
bufPntReg 8 - Points to currently transmitting bit.
clkDivReg 16 W Divisor of clock rate.
clkCntReg 16 - Counts to divisor of clock rate.
clkReg 1 - Clock signal to card.
sdCs 1 W Chip select signal to card.
ocpDataReg 32 - Holds data to be returned from reads.
ocpRespReg 2 - Holds OCP response.

Table 16: Registers in host controller

implicit clock signal and can be written to by the driver. The clkCntReg register
counts down from clkDivReg to one, updating every implicit clock cycle. When
clkCntReg reaches one it is reset to clkDivReg and clkReg is flipped. This
produces a downsampled clock rate for sdClk. If for example clkDivReg =

100 and the implicit clock rate is 80 MHz, clkReg and therefore sdClk will have
a frequency of 80 MHz/(2 ∗ 100) = 400 kHz.

This clock generation only happens when a transaction is active, which is
when enReg is not zero. If a transaction is not active sdClk is held low.

5.2.5 Transactions

A transaction is begun when the driver writes to the bufOutReg register. When
this happens, the following is done:

• Set bufOutReg = io.OCP.M.Data to prepare for sending the data.

• Set bufInReg = 0 to clear the register and prepare for receiving.

• Reset bufPntReg = 8 to prepare sending least significant bit first.

• Reset clkCntReg = clkDivReg to reset the clock signal generation.

While a transaction is active a steady clock signal is sent to the card over
sdClk. On the falling edge of sdClk, bit (bufPntReg - 1) of bufInReg is set to
the value of the sdDatOut pin, which constitutes the sampling of the card. At
all times is sdDatIn set to bit (bufPntReg - 1) of bufOutReg. When a full clock
cycle has been generated, bufPntReg is decremented by one and upon reaching
zero, the transaction is complete and enReg is set to low again.

5.2.6 Pin assignment

The pins of the boards SD card slot were assigned to the pins in SDHostCtrl.
This was done in the ”Pin Planner” tool in Quartus. They all operate with
3.3 V and 8 mA. Figure 16 shows a screenshot from the Pin Planner tool in
Quartus. Here can be seen the name of the pins on the board (Location), the
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names of the pins in the VHDL code (Node Name) as well as the voltage and
power levels. The names of the pins on the board were read from the manual
of the board[15, Table 4-31].

Figure 16: Screenshot of pin assignment in Quartus ”Pin Planner”

5.2.7 Configuration

Inside the project directory is an XML configuration file ”altde2-115-sd.xml”.
In here it is specified which devices are to be built with the processor and
how they are configured. The configuration for the SDHostCtrl component is
minimal and only specifies that it is located at offset 11 and uses the ”OCPcore”
interface. Using this offset results in the memory locations specified in Table
17.

Registers R/W Address
bufInReg R 0xf00b0000

bufOutReg W 0xf00b0000

csReg W 0xf00b0004

enReg R 0xf00b0008

clkDivReg W 0xf00b000c

Table 17: Memory locations of host controller registers

5.3 Driver

The driver is implemented in the code files sd spi.c and sd spi.h. The func-
tionality of the driver is wrapped in generic disk functions, which are imple-
mented in the code files sddisk.c and sddisk.h.

Internally in the driver errors are indicated by the return value of functions.
Functions return a SDErr value which is an enum that indicate different error
scenarios. The disk interface functions all use the errno approach however.

5.3.1 Sending bytes

The most basic operation of the driver is to send and receive a byte of data
to the card. This is performed by the spi send function, which takes a byte
as its argument and returns the received byte. Sending a byte to the card is
done by placing it in the exposed outBufReg register with a write to its memory
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location. As the byte is sent, the inBufReg is simultaneously filled with data
from the card. The host controller does not prevent a transaction from being
interrupted, so this is the responsibility of the driver. If a transaction is active,
the memory-mapped enReg register will contain a non-zero (one) value. As
such, the entirety of the function can be summed up as: Wait for transaction
to be done, write the output byte (argument), wait for that transaction to end,
read and return the input byte.

It can be argued that if this function is the only function to initiate trans-
actions, and the function waits for a transaction to be done after starting it,
then it is superfluous to wait for transactions in the beginning of the function.
However, it was chosen to leave it in since it is a minimal time loss and ensures
that no transaction is ever interrupted, even if future development breaks the
single-entry contract10.

5.3.2 Issuing commands

All interaction with the SD card happens through SD commands, which were
explained in Section 3.4.3. Sending commands and receiving responses is done
by the sd cmd function. The function takes 6 individual bytes as input: The
index of the command cmd, the chunks of the 32-bit argument arg0 - arg3

and lastly the CRC7 of the entire command structure. It returns the 8-bit R1
response of the command.

As mentioned, the function takes the command index as a one-byte argu-
ment. However, the index is actually only 6 bits and the command structure sent
must always begin with the bits 01. Therefore, before sending, the command
byte is bitwise OR’ed with 0b0100000 = 0x40.

Besides that, it simply transfers the bytes in the provided order. After
sending the command, the function waits for the card to return a response. The
card only updates when the clock signal is provided, which only happens when
a transaction is ongoing, so to receive the response the function sends dummy
bytes with the value 255 = 0xff to the card. This is the same as simply running
the clock signal while holding the sdDatIn signal high. The contents of these
dummy bytes could be anything, but holding the line high was chosen, as that
is what the card does on the sdDatOut line inbetween responses and data.

Any response by the card will arrive a few, but variable amount of transac-
tion cycles later and will always be aligned with a transaction cycle. Receiving
a response is therefore done simply by waiting for the card to respond with a
byte that is not 0xFF, which is then the response.

CRC7 It can be argued that it would be simpler or cleaner if sd cmd did not
take in the CRC7 code of the command, but instead calculated it from index
and argument. It needs to happen for every command and the current imple-
mentation requires that the function caller calculates it instead. However, this
was decided against because the SPI mode of the SD card has CRC checking

10This is an example of ”defensive programming”

35



disabled by default, and for performance and simplicity’s sake it was left dis-
abled. It is therefore only needed in a few commands when initializing the card
and there it can be (and is) statically calculated. Thus by providing the CRC7
in the argument, the caller can simply provide a dummy code when it is no
longer necessary.

Clearing buffers It was discovered during implementation, that the card
would not respond correctly when sending multiple commands in succession.
The issue seemed to be, that the internal buffers in the card would contain data
from dummy bytes of the previous command, leading the card to understand the
next command wrong. This was worked around by clearing the buffers before
every command. The function spi clear does this. It holds the sdCs signal
high (to ensure the card does not react) while transferring a dummy byte. This
function is called in very beginning of sd cmd.

5.3.3 Setting the clock rate

The rate for the cards clock signal is adjustable. This is done by writing to the
memory mapped divisor register clkDivReg. However, the host controller does
not verify if this value is valid. That is the responsibility of the driver.

Setting the clock rate is done by the function spi set clockrate, which
takes the target clock rate as its argument and returns an SDErr. The function
first retrieves the clock frequency of Patmos, using the get cpu freq function
provided by the header machine/rtc.h that works by accessing the memory
mapped CpuInfo device. It then verifies that the target rate evenly divides the
Patmos clock rate and that the target rate is at the most half the Patmos clock
rate, which is the maximum possible. If any of these criteria are not met, the
function returns an error and does not change the host controllers clock rate. If
both are met, it calculates the divisor, which is df = fcpu/(2ftarget).

5.3.4 Initialization

Being able to send commands to the card, as well as adjusting the clock rate, is
all that is necessary to operate the card. Before the card can be used it must be
initialized, which is done by the sd init function. It takes no arguments and
returns an SDErr.

The initialization process of the card is outlined in Section 3.4.6. Following
is a rundown of the implementation of this process.

1. First the clock rate is lowered to 400 kHz which is necessary during the
initialization[3, Section 4.2.1]. The specifications for the physical layer dictate
that the card should be have at least 80 clock cycles to initialize before the
process is begun, which is done simply by sending 80/8 = 10 dummy bytes,
while holding the sdCs signal high.
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2. Then the GO IDLE command is sent. It has no arguments and the CRC7
for the command is calculated to be 0x4A, which placed in the upper 7 bits give
0x94. The response is then checked and it must be 1 = 0b00000001 to indicate
it is in idle state. Anything else and the function aborts and reports the error,
which can then be checked.

3. Then the SEND IF COND command is sent. The non-zero arguments here
are arg2 = 0x01 to indicate the supported voltage range 2.7-3.6V and arg3

= 0xAA = 0b10101010 which is a constant check pattern. Again the CRC7 is
static, this time calculated to 0x86.

The response of the SEND IF COND is a R7 response. The first byte is a
regular R1 response and checked as such (0x01), while the remaining four bytes
should be the echo-back of arg0 - arg3. This is verified and if anything is
wrong, the initialization is aborted and an error reported.

4. The next step is the SD SEND OP COND command. At this point the CRC7
is no longer necessary and we just send the dummy bits 0xff instead. This is
an ACMD, which means that first a CMD55 is sent and then a ”CMD41”, which
then contains the arguments to the ACMD. The only relevant argument to
the command is whether to enable High Capacity Support or not, which is
indicated by bit 6 in arg0. A value of arg0 = 0x40 indicates HCS and arg0 =

0x00 indicates no HCS.
After the command has been issued successfully, the card will return a regu-

lar R1 response. If the initialization is complete, it will indicate that it no longer
is in the idle state (0x00). Otherwise it will that it is busy. It responds busy
if either it is already performing the final initialization process or if it does not
support HCS and it was requested in the argument. Therefore, the card simply
repeatedly sends the command a fixed number of times (AMD41 MAX TRIES =

1000, found experimentally), first with HCS requested and then without. This
happens in the function sd send op cond cmd which as its argument takes a
flag indicating HCS or not.

5. The last thing in initialization is setting the block length. This is done with
the SET BLOCKLEN command, which takes the requested block length as its 32-bit
parameter. The only supported block length in this project is 512 bytes, which
is represented across the arguments as: arg0 = 0x00, arg1 = 0x00, arg2 =

0x02, arg3 = 0x00. The response is a regular R1 which is checked. This block
length is then saved in the DiskInfo struct.

6. After initialization is done, the clock rate is increased to the maximum
allowed, which is 20 MHz.

5.3.5 Writing data

Writing is done by the function sd write single block, which writes a block
of data to the card and returns an SDErr. As its arguments it takes the target
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block address on the card and a pointer to block being written.
The SD command for writing a block of data is WRITE BLOCK, which as its

argument takes the 32-bit block address of the write destination. After verifying
the response of the card, a ”Start Block Token” is sent followed by bytes of the
data block. After the data has been sent, the driver waits for the card to respond
with a ”Data Response Token”. This takes a variable amount of time and the
driver waits (by sending dummy bytes) up to SD WRITE MAX WAIT transaction
cycles. If no response has been received by then, the function exits with a
timeout error. Otherwise the token is inspected to see if the data has been
accepted or rejected. If the data is rejected, then the function returns with
an error indicating the reason. If the data response token does not fit any of
the expected values, the functions also returns with an error indicating a bad
response. After the data response token, the card responds busy by holding the
sdDatOut line low, while the data is written to the card. The driver waits for
this up to a maximum of SD BUSY MAX WAIT transaction cycles. If this does not
time out, then the write is complete and the function returns.

5.3.6 Reading data

Reading is done by the function sd read single block. Like its writing coun-
terpart, it takes the block address to read from along with a pointer to the array
where the data is to be stored. It also returns an SDErr.

Reading is done by issuing the SD READ SINGLE BLOCK command, which like
its writing counterpart does it take a 32-bit block address as its argument.
After the command has been issued and its response verified, the driver waits
for a ”Start Block Token” up to a maximum of SD READ MAX WAIT transaction
cycles. No response here results in the function terminating with a timeout
error. Immediately following the token is the data which are then read and
stored sequentially in the output array. The data block is appended with a 16-
bit CRC16 code which is simply read and ignored. After this the read operation
is complete and the function returns.

5.3.7 Generic interface

The functions just described are not meant to be used directly. Instead, they
are utilized by the generic interface provided in sddisk.h, which the file system
then interacts with. This interface is the one described in Section 4.4. If an
error occurs in the driver functions, the interface functions set errno = EIO to
indicate an I/O error.

5.4 FAT Library

The file system library is implemented in the files fat32.h and fat32.c.
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5.4.1 Exit codes

Most functions in the file system module, both exposed and internal, return an
integer to indicate success or failure. These codes will from here be referred
to as exit codes. The meaning of exit codes are dictated by the definitions
FAT SUCCESS = 0 and FAT FAIL = -1. These values match the return values of
the system calls mimicked by the interface.

5.4.2 Handling endianness

Values in FAT partitions are stored in little-endian format, but Patmos uses the
big-endian format. This means that whenever data is read from or written to
the disk, it must be converted between the two. Converting between the formats
is achieved by reversing the byte order using bit-shifting. Extracting values is
done by the functions fat get uint8, fat get uint16 and fat get uint32,
which take a pointer to where the data begins. Inserting values is done by the
functions fat set uint8, fat set uint16 and fat set uint32, which take the
value to be inserted along with a pointer to where the data is to be stored.

Initially this functionality was contained in only two functions, which took an
extra parameter that indicated the byte size of the data. This worked and was
generic as it could handle any byte size. However, because these functions are
heavily used, making them faster should be a priority. Therefore the specialized
instances were created instead, in which the loops are unrolled and the functions
inlined. This should allow the compiler to optimize the code much better[16].

5.4.3 Data structures

The important data structures of the file system implementation are listed in
Table 18.

Name Description
FatPartitionInfo Holds information about the FAT volume.
FatDirEntryIdx An index of a directory entry. Consists of cluster,

sector and entry index.
FatFile Represents an open file. Includes cursor, file size and

location on disk.

Table 18: Central data structures of the implementation

5.4.4 Partition

Before being able to initialize the file system module, information about the
FAT partition needs to be loaded and provided. This information is stored in a
FatPartitionInfo struct and is read from the MBR on the disk (see Section
3.6). This is done by the function fat load partition info, which accepts an
index idx ∈ [0, 3] and a pointer to the FatPartitionInfo struct that must be
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initialized. It returns an exit code and if it indicates failure, any information in
the pointed-to struct should be disregarded.

The provided idx is the index of the partition table entry of the target
FAT partition. If the index is not known, the fat load first partition info

function can be used instead, which simply tries all the entries in order. If idx
is out of range the functions returns with an error. It reads the partition table
entry, verifies that it points to a FAT32 partition and finds the beginning of
the FAT32 volume. The first sector of the volume contains information about
the partition, which is read and stored in the FatPartitionInfo. Some of the
fields are not directly read from the disk, but calculated from the read values
to avoid having to calculate them later.

5.4.5 Initialization

Before the file system module can be used it must be initialized. This is done
by the function fat init, which takes a pointer to a FatPartitionInfo as its
argument and returns an exit code. In List 3 is listed the basic steps of the
function.

1. Store global partition info.

2. Initialize the open files array, marking all descriptors free.

3. Flag the module as initialized.

List 3: Steps in file system initialization

Global partition info The function takes as its argument a pointer to a
FatPartitionInfo struct fat pinfo. This struct is copied into a globally avail-
able copy, which most other file system functions rely upon. Having a global
FatPartitionInfo is necessary for the interface functions to work, without
having to pass in partition info through the arguments which would be cumber-
some.

A downside to this approach is that only one FAT partition can be active
at a time. This was deemed acceptable however, since the board only has one
card slot anyway and SD cards are rarely formatted with many partitions. If
multiple partitions were to be supported, it would be necessary to implement
some kind of mounting, akin to what an operating system would do.

Open files Open files are represented with the struct FatFile and are stored
in the array fat open files. Upon initialization, all these have their free field
set to 1 to indicate the descriptor is not taken. No other fields in the struct
needs to be modified, since they are initialized when a file is opened.

Flag as initialized Before the function returns, the global fat initialized

is set to 1. This indicates that the partition has been initialized and the data
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in fat pinfo is valid. Attempting to use any of the interface functions without
this flag set, besides the partition related ones, will result in an error.

5.4.6 Path resolution

Path resolution is done by the helper function fat resolve path. It returns
an error code indicating success or failure. As its arguments it takes the path
to resolve, a pointer to a buffer in which to read data and a pointer idx to a
FatDirEntryIdx, which will be filled with the directory entry index of the file
/ folder if found.

Searching is done simply by linearly searching all entries in the clusters
and names of the files and folders are extracted using the helper function
fat get long name uint8. As its arguments it accepts a pointer to a sector
buffer, a pointer to a FatDirEntryIdx and a pointer to where the name should
be stored. It returns an exit code determining whether a name, short or long,
was successfully retrieved.

The name contains uint8, because the function retrieves the name of an
entry, truncating the 16-bit UNICODE characters in the long name (if it exists)
to 8-bit characters. This is done because handling UNICODE characters (like
converting to upper-case for comparison) is very complicated without an oper-
ating system that provides locale support. In the case that no long name exists,
the function outputs the short name. This allows using only one function call to
retrieve the name of an entry, whether it is stored in a single or multiple entries,
which simplifies the logic when comparing names of files and directories.

The argument idx must point to the value of the directory entry index for
which the name is to be extracted. If the entry is a short entry, then the short
name is simply extracted. If the entry is the first in a long name entry chain, a
call is made to fat get long name uint16 passing along the provided.

This function traverses the entry chain to extract the long name, while also
updating the value of idx and loading any new sectors into the provided sector
buffer. The effect of this is that upon function termination, the directory index
will point to the short name entry of the file and the sector buffer will be loaded
with the containing sector. Thus when other functions are forward traversing
a directory, they can call this function on every entry to retrieve the name and
it will update the index and sector accordingly, which avoids reading any entry
twice.

An earlier implementation had the path resolution only retrieve names when
encountering a short name entry, which resulted in the name retrieval func-
tions reading many entries (and loading many sectors) that had already been
inspected in the forward traversal. Figure 17 illustrates this scenario. The num-
bers indicate the order that the entries are traversed. First the short entry is
found, then the long name is extracted and then the search continues.
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Figure 17: Illustration of the slow way to retrieve long names

5.4.7 Opening files

The way to open files is with the fat open function. The function returns the
file descriptor for the open file on success and -1 on failure. As its arguments it
takes a path to the file in question, as well as an integer oflag which indicates
how the file should be opened. The individual bits of oflag dictate what should
happen and are extracted using the masks defined in the standard library header
file fcntl.h. In Table 19 is shown an overview of the different values. Note
that the permission flags have no effect on function behaviour.

Mask Meaning
O RDONLY Open file in read-only mode. Has no effect.
O WRONLY Open file in write-only mode. Has no effect.
O RDWR Open file in read/write mode. Has no effect.
O CREAT Create the file if it does not exist.
O EXCL | O CREAT If both are set, fail if the file exists.
O TRUNC Delete all existing data in file.
O APPEND Move the cursor to the end of the file.

Table 19: Masks of oflag

The function first checks if the file already exists with fat resolve path.
If it does not, it is created, which is explained in Section 5.4.10. If the file does
exist, then the path resolution has already loaded the sector of the directory
entry, as well as saved the index, which is used by the fat load dir entry
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function to actually open the file. That consists of finding an available file
descriptor and initializing the FatFile. Any failure in this function also fails
fat open, which can happen if the maximum number of open files have been
reached or if the path points to a directory instead of a file.

At this point the file is open. If O TRUNC was set then the file contents are
deleted. This is done by setting the size to zero in the FatFile and the directory
entry (requires write to disk), as well as releasing all but the first cluster in the
files cluster chain. The details of this are explained in Section 5.4.11. Lastly the
cursor is moved to the end of the file, if that was requested. This is explained
in detail in Section 5.4.9. If any errors occurred after the file was opened, then
the file is closed again before returning.

5.4.8 Closing files

Closing an open file is done with fat close, which accepts a file descriptor and
returns an exit code. Besides validating that the file descriptor is valid (in range
and open file), the function just frees the file descriptor by setting free = 1.
Any writes or reads with the descriptor will now fail and all other fields are
reset when the file descriptor is claimed by a new call to fat open.

5.4.9 Seeking in files

Setting the cursor in a file is done with the function fat lseek. It takes a file
descriptor, a position pos and an integer whence, which dictates how pos is
interpreted. The accepted values of whence are defined in the standard library
header unistd.h and are shown in Table 20 along with their meaning.

Value Meaning
SEEK SET Absolute position. Put cursor at byte pos.
SEEK CUR Relative position to cursor. Move cursor pos bytes.
SEEK END Relative position to end of file. Put cursor pos bytes from end

of file.

Table 20: Accepted values of whence

The function returns the new absolute position of the cursor, which is relative
to the start of the file. Both the return value and the pos parameter have the
type off t which is a signed 64-bit integer type defined in sys/types.h. Besides
being the type in the corresponding system call, it is also necessary to have that
type, at least for the pos parameter. Since the maximum size of a FAT32 file
is UINT MAX = 4294967295 (defined in limits.h), but pos must be signed to
allow for negative relative positions, the pos parameter needs more than 32 bits.

The absolute position that the cursor should end up in is first calculated. If
whence is not a valid value or the calculated position is not within the file, the
function exits with an error.

Two values in the FatFile needs to be updated: pos and current cluster.
After the final position has been calculated, the number of clusters that must
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be traversed is calculated, which is also the amount of look-ups in the FAT. The
function then traverses the cluster chain using the function fat get table value,
and sets the fields after finding the last cluster. This fat get table value sim-
ply retrieves the value in the FAT for a given cluster. It outputs this value to
a pointer passed in the arguments, which allows it to return an exit code that
can indicate I/O errors.

5.4.10 Creation

Creating a file is arguably the most complicated of all the file system tasks. It
is wrapped in an internal function fat create, which returns an exit code. As
its parameters it takes:

1. The path of the file path to be created

2. A pointer to a FatDirEntryIdx pdir idx, which will be set to the index
of the parent directory

3. A pointer to a sector buffer in which data will read

4. A pointer to a file descriptor, which will be set to the descriptor for the
newly created and opened file

5. A flag isfile, which indicates whether to create a file or a folder.

The process of creating a file can be summarized as follows: Find the parent
directory, find space for the directory entries, reserve a free cluster and create
the directory entries.

Resolving the directory The first task is finding the cluster and directory
entry index of the parent directory, as it is in there that the new directory
entries must be placed. Both of these values can be found by fat resolve path,
unless the file is in the root directory in which case the values are found in the
global fat pinfo. Before this can be done, the path of the parent directory
must be separated from the file path, which is done by a linear search for path
delimiters and handled by the helper function fat idx of next path delim.
If the resolution fails for any reason, the function exits with an error code
indicating the problem.

Finding space After finding the parent directory, free space for the directory
entry / entries must be found. If the file name can fit in a short name entry,
then only a single short name entry is required, but otherwise long entries must
be created. The number of long entries required, is calculated from the length
of the name and the number of characters per long name entry.

Finding space for the entries is done by linearly searching through the entries
of the directory. That is, checking all the entries, in all the sectors of all the
clusters. A destination is found when a large enough streak of empty entries
have been located. If the last entry of the directory is encountered, it is stored
in a flag as it is then necessary to mark a new entry as ”last”, just after the
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short entry. A thing to note here is that a long name entry chain can never
cross a cluster boundary, so if the entry chain otherwise would be placed across
a cluster boundary and overwrite the previous last entry, it is necessary to mark
the last entries in the first cluster as free. Figure 18 illustrates this scenario.

Figure 18: Illustration of how a long name entry chain must be placed in clusters

Generating the short name If long name entries are to be created for the
file, then a short name must be generated to store in the short name entry.
While traversing the directory in search of space, the function also figures out
the number of the short name tail. This number must be such that the short
name is unique in the directory and, while not required, it is preferred that it
is as low as possible. One could be tempted to then simply count the number
of collisions of the name without the tail and then that would be the number.
However, every time the number increases to a new order of magnitude, it will
take up another character of the name. With fewer characters for the non-tail
part of the name, new collisions can occur.
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Table 21 illustrates this problem by providing an example of a set of file
names in a directory. Assume that the files have been created in the order they
are listed. When the last file LongFarewell9 is to be created, a naive imple-
mentation might shorten the name to LONGF∼10, since there are 10 collisions
on the first 6 characters, but that name is already taken. Because the tail now
takes up another character, one has to account for the number of collisions on
the first 5 characters. But once again, there are so many collisions that the tail
must be extended and now it is the first 4 characters that matter.

Long Name Possible short name
LongFileName0 LONGFI∼1
LongFileName1 LONGFI∼2
... ...

LongFileName9 LONGF∼10
... ...

LongFileName99 LONG∼100
LongFarewell0 LONGFA∼1
... ...

LongFarewell8 LONGFA∼9
LongFarewell9 LONG∼101

Table 21: Illustration of name collision problem when tail expands

The solution to this problem was to count the number of collisions that
happen when using any number of the name characters. This is recorded in
an array short name nums, wherein short name nums[i] is the number of col-
lisions when using i characters. The array is filled by traversing the characters
of the short name entries. The tail number can then be found by searching from
the end of the array (all characters), until a number is found which fits in the
characters then available. A number fits when n = Si < 10(|S|−2)−i, where n
is the tail number, S is the counting array, |S| = 9 is the length of the array
and i is the index in the array. If for example using 6 out of 8 characters in the
name, the number of collisions must be n < 10 = 107−6. Figure 19 shows an
example of how such an array would look, if inserting the file ”LongFaint” into
the directory of Table 21.

Cluster reservation Reserving a new cluster in the FAT is done by the
function fat acquire next cluster. This function searches for a free cluster
in the FAT and reserves it. It takes two parameters: A pointer to a cluster
index cluster and a flag indicating whether to link the current cluster to the
next. The cluster pointer must point to a valid cluster index and if linking is
requested, it must be the index of the cluster that is linked from.

The function begins in the FAT at the entry for the cluster value and
searches linearly forward, looping around to encompass the entire FAT. Upon
finding a free cluster, it stores it at the location of the cluster pointer and
marks it as a ”last” cluster (in the FAT). If no free entries exist, then the disk
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Figure 19: Example of a short name number array

is considered full and the function exits with an error. If the FAT is in a bad
state, meaning an unexpected value is encountered, then it also exits with an
error.

If linking is requested, then it links the old cluster to the new cluster, which
amounts to extending the cluster chain by inserting the index of the new cluster
in the entry of the old. If it is not, then the initial value of cluster simply
marks the beginning of the search and nothing more.

Writing the entries Finally the entries are ready to be written to the disk.
For the contents of the entries, see Section 3.7.3 and Section 3.7.4. Besides the
name entries, it might also be necessary to mark the following entry as the last
of the directory.

The entries are written in the order they appear on the disk, which is long
name entries first, then the short name entry and then maybe the ”last” entry.
To minimize disk writes, the sector buffer is only written to the disk when the
end of a sector is reached. After writing the last entry to the disk, the ”file”
creation is complete. If the creation was indeed for a file, isfile == 1, then
the file is opened and the file descriptor stored at the location of the pointer
from the arguments. If the creation was for a folder, then the cluster of the
folder is stored in the FatDirEntryIdx from the arguments.

5.4.11 File deletion

File deletion is done with the function fat unlink, which takes the path to a
file as its argument and returns an exit code.

The function begins by resolving the path to the file with fat resolve path,
which provides the directory index. Then it verifies that the file is not open
already, by comparing said directory index to open files. If the file is already
open, then the function exits with an error. It then deletes the file using the
helper function fat delete, which accepts the path of the file and a pointer to
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sector buffer as its arguments. It returns an error code indicating whether the
deletion was a success.

This function works quite similarly to the fat create function, in that it
finds the parent directory and then linearly searches forward in it, while keeping
track of some key positions. While the creation function searches for free space
and keeps track of name collisions, the deletion function searches for the target
files directory entries, while keeping track of the free entries surrounding it.
The basic task is to locate the target entries, long and short, delete them and
then free the clusters occupied by the file. However, if the entries are the last
non-empty entries in the directory, then the function should place a new ”last”
entry. If this is not done, the directory will never shrink in size and neither will
the number of entries that must be searched during name collision checking,
because that requires searching the entire directory. The correct place to put
the ”last” entry is illustrated in Figure 20, where ”before” is on the left and
”after” is on the right.

Figure 20: Illustration of where the ”last” entry should be placed

The function thus searches until it finds the entries and then continues to
search until either the end of the directory or the next non-empty entry is found
(as in that case the deleted entries were not last). If the end is found, then it
is sufficient to just place the ”last” entry. Otherwise it reverts to the beginning
of the entry chain and deletes them all.

Besides handling the directory entries, it also frees the entire cluster chain
related to the file, using the fat free cluster chain. This function takes a
cluster as its argument and returns an exit code. Beginning from the provided
cluster, it marks the cluster as free in the FAT and continues to the next cluster
in the chain, until the end of the chain is reached. Any data already in the
cluster is without importance. When the cluster is claimed by a new file, the
size field will prevent any data from being read from the cluster, before said
data has been overwritten. In the case that a folder claims the cluster, mkdir
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will ”empty” it as described in Section 5.4.12.

5.4.12 Folder deletion

Folder deletion is done by the function fat rmdir. The function takes the path
to the directory in question as a parameter and returns an exit code. It is
required that the folder to be deleted is empty and if that is not the case, the
function exits after setting errno = ENOTEMPTY. After ensuring the folder is
empty, which is done with a linear search, it is deleted with fat delete.

5.4.13 Reading

Reading from files is done with the function fat read. As its arguments it
takes a file descriptor, a pointer to where the data should be stored and then
the number of bytes to read. It returns the number of bytes read.

The functions first verifies its arguments. An invalid file descriptor or a closed
file and the function exits with an error. If the read would extend beyond the
end of the file, the number of bytes to read is reduced so that it only reads
until the end of the file. Reading is then done a sector at a time. First any odd
bytes up a sector boundary is read, then whole sectors and finally the remaining
bytes.

5.4.14 Writing

Writing to files is done by the function fat write. Similar to fat read, it
returns the number of bytes written. The arguments are a file descriptor, a
pointer to where the data to write is stored and lastly the number of bytes that
should be written. Once again the parameters are verified before the function
proceeds.

Unlike reading however, the number of bytes to write is not capped to the
end of the file, as that would mean files could never expand. The function
then uses the same logic of first writing up to a sector boundary, then whole
sectors and finally the remaining bytes. Any sectors not completely full with
new data are first read from the disk, then altered before being written back.
Upon reaching the end of a cluster, a new cluster is reserved and linked with
fat acquire next cluster. After the writing is complete, the directory entry
for the file is updated with the new size if it changed.
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6 Results

6.1 Performance

Measuring the speed of the implementation allows it to be better understood.
The actual speed of the implementation can be compared to other implementa-
tions, which can help reveal where improvements can be made.

The most fundamental area to test is the raw interaction with the SD card,
since everything else is built on top of that. Afterwards, the performance of
reading and writing to files in the file system is tested. This performance is what
really matters to the user, as they will interact with files only. The file system
module is bound to include some overhead, as besides reading and writing the
raw file data, it also maintains the structure of the file system. How much
overhead it introduces is important, as that percentage can be used to calculate
the possible speed-up if the file system module was used with another disk /
driver.

Timing is done by using the clock function in the standard library header
time.h. It returns the number of clock ticks elapsed since the beginning of
the program, which can be converted to seconds by dividing with the constant
CLOCKS PER SEC from the same header file. Thus the clock time is sampled just
before and just after the code that is timed, and afterwards the elapsed time is
converted to seconds. To achieve accurate timings it is crucial that as little as
possible is done between the time samples, other than what is being timed. For
the most part the only extra thing done in the following tests is to maintain a
counter.

All the code for testing running times can be found in the file sdtime.c.

6.1.1 Disk

Reading from and writing to the disk / SD card was timed with the test func-
tions ptest time disk read and ptest time disk write. They read or write
a given number of bytes, one sector at a time and starting from an arbitrary
sector (since that does not affect the time). The measured timings are shown
in Table 22 and are plotted in Figure 21.

Data size Time to read Time to write
1 MB 1.49 s 2.98 s
2 MB 2.29 s 5.96 s
4 MB 5.89 s 13.16 s
8 MB 11.85 s 24.78 s
16 MB 24.96 s 48.92 s
32 MB 49.47 s 101.33 s
64 MB 98.02 s 201.46 s

Table 22: Measured times of disk reading and writing

50



Figure 21: Plot of disk read and write times

The time spent for both operations grows linearly with the size of the data,
as is to be expected. This amounts to the average speeds displayed in Figure
22.

Vdisk read ≈ 0.653 MB/s ≈ 650 kB/s

Vdisk write ≈ 0.312 MB/s ≈ 300 kB/s

Figure 22: Average disk speeds

6.1.2 File System

When reading and writing to files on the file system, there are many sources
of overhead. These include resolving paths, reading and modifying the FAT or
interacting with directory entries. Following is the test results for the file system
when measuring such overhead.

Single file The first thing to test is the speed of which data can be read from
and written to files. Reading was tested by the function ptest time fat read

which reads from an existing file and writing was tested by ptest time fat write

which write data to a new file. Data was transferred in whole sectors at a time,
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aligned with the sector boundary. The results of this is shown in Table 23 and
plotted in Figure 23.

Data size Time to read Time to write
1 MB 3.71 s 3.21 s
2 MB 7.34 s 12.85 s
4 MB 15.41 s 22.95 s
8 MB 30.54 s 46.50 s
16 MB 59.03 s 97.41 s
32 MB 116.91 s 190.61 s
64 MB 236.45 s 399.46 s

Table 23: Measured times of file reading and writing sector-aligned data

Figure 23: Plot of sector-aligned reading and writing times

Once again the time grows linearly with the data size, for both operations.
This is as expected, since the overhead of finding and reserving clusters does not
change with data size. This amount to the average speeds displayed in Figure
24. Note that the writing time suffers more than the reading time, which is
because the size must be written to disk every time a sector is written, while
reading only has to resolve the cluster chain.

These are the fastest possible speeds with the current implementation. Trans-
ferring a sector at a time ensures maximum data rate and by aligning it with
the sector boundary, it is ensured that only a single read or write is required for
the file contents. If the data is not aligned, this time doubles since every write
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Vfat read ≈ 0.270 MB/s ≈ 250 kB/s

Vfat write ≈ 0.160 MB/s ≈ 150 kB/s

Figure 24: Average file system read / write speeds in optimal conditions

now affects two sectors (this was experimentally verified). If the data is less
than a sector in size, then one should expect that the time spent is scaled up
roughly by the same factor that the data size is scaled down, i.e. half as much
data at a time equals double the time spent. This could be avoided by buffering
the data. Note that this calculation is an approximation, since as the data size
shrinks, the fraction double-cost boundary-crossing transactions decrease.

Creation A significant source of overhead when working with new files stems
from file creation itself. A file here can refer to both a file and a directory, since
there is no measurable difference in speed between the two. Creating a file carries
a constant overhead of reserving a cluster and writing to the directory entry,
but more importantly it also requires searching the entirety of the directory for
any naming collisions. This means that the time spent will grow linearly with
the amount of files already in the folder, even in the best case.

Resolving the path to the parent directory also inflicts an overhead. This
overhead depends on where each part of the path is in their containing directory,
as well as how many parts there are. In the best case (each part is the first in
their directories) the overhead is small and constant and in the worst case (each
part is last in their directories) it is linearly proportional to the size of the
directory.

The last point of overhead comes from the length of the name. Since the
file name must be compared to every file name in the parent directory, the time
taken to do this comparison grows linearly with length of the shortest of the file
names being compared.

The performance of creation was tested by ptest time fat create many,
which creates a given number of files in a directory. Two runs where measured:
One where the name could fit in a single short name entry and one where the
names needed three long name entries. The measurements are shown in Table
24 and plotted in Figure 25.

Deletion The final operation of the file system that was measured is file dele-
tion. The two time consuming tasks of deletion are path resolution and the
freeing of the cluster chain. Path resolution gets slower as the directories in the
path grow, as already discussed. The freeing of the cluster chain is a constant
time operation per link in the chain, so it grows linearly with the size of the file.
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Number of files Time for short name Time for long names
1 0.036 059 s 0.037 261 s
2 0.068 453 s 0.077 058 s
4 0.137 238 s 0.157 292 s
8 0.274 601 s 0.318 329 s
16 0.611 529 s 0.645 567 s
32 1.185 676 s 1.316 568 s
64 2.409 729 s 2.731 181 s
128 4.972 075 s 6.981 452 s
256 10.663 522 s 20.050 353 s
512 27.629 904 s 66.212 767 s
1024 73.076 722 s 239.282 583 s

Table 24: Measured times for file creation

To isolate the effects of both problems, two different deletion times were mea-
sured. The timing was done with the functions ptest time deletion single

and ptest time deletion many, which delete one large file and multiple empty
files respectively. Deletion of a single large file showcases the time growth from
freeing the cluster chain, while many small files showcase the problem of path
resolution. The results are shown in Table 25 and Table 26, and are plotted in
Figure 26 and Figure 27.

File size Time
1 MB 0.290 s
2 MB 0.582 s
4 MB 1.130 s
8 MB 3.028 s
16 MB 4.443 s
32 MB 11.625 s
64 MB 23.083 s
128 MB 41.365 s

Table 25: Measured times for single file deletion

6.2 Correctness

Besides the speed, another point of interest is that the implementation works.
This was ensured by testing the functionality as it was developed. All correctness-
testing functions can be found in the code file sdtest.c.

After initial development, almost all testing was directed towards the file
system. This is because it is assumed that any errors in host controller or driver
would manifest themselves as transaction errors, which would then appear when
being used by the file system. The interface of the driver is simple enough that
the file system covers all use cases.
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Figure 25: Plot of file creation times

Number of files Time
1 MB 0.011 155 s
2 MB 0.047 123 s
4 MB 0.068 929 s
8 MB 0.145 311 s
16 MB 0.257 437 s
32 MB 0.403 303 s
64 MB 0.963 906 s
128 MB 2.148 345 s
256 MB 6.131 733 s
512 MB 20.921 028 s
1024 MB 71.415 339 s

Table 26: Measured times for deleting multiple empty files

6.3 Completeness

Both host controller, driver and the file system module were developed using
specifications. Furthermore, the interface to the file system was modelled closely
after the C standard library system calls. Therefore, to avoid any confusion, it
should be clearly stated where and how the implementation differs therefrom.
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Figure 26: Plot of single file deletion times

6.3.1 SD Host Controller and Driver

The host controller supports SDSC, SDHC and SDXC cards in SPI mode only.
It only allows a block length of 512 bytes but all cards support this.

CRC The host controller and driver does not support any form of CRC7 gen-
eration or verification. CRCs are disabled in SPI mode per default, so it is
suspected that it is less necessary when working at the lower clock frequencies.
In the process of trying to understand the algorithm however, two software im-
plementations for CRC generation were created. One is a very compact version
that only handles CRC7, found in Appendix B, and the other is a generic im-
plementation that handles any generation polynomial, found in Appendix A.
These should only serve as a reference though. If CRC was to be used for every
transaction, it should be generated in hardware for better performance.

Read / Write commands The driver only supports reading and writing a
single block at a time. An obvious extension would be to support the multiple-
block read and write commands. How much this would improve the transaction
speed is unknown, but it could be significant. It should be noted however, that
any effort to optimize for speed is almost certainly better spent implementing
support for the 4-bit SD mode of the SD card.
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Figure 27: Plot of multiple file deletion times

6.3.2 FAT File System

UNICODE characters The FAT specification dictates that file names can
contain (almost) any 16-bit UNICODE character. The implementation however
does not support this. Its not possible to create new names with UNICODE
characters, as the interface only accepts 8-bit character strings. If a UNICODE
character is encountered in a name already on the disk, it is truncated to an
ASCII value (only in memory) which could result in an invalid equality com-
parison being made. In almost all cases however, this would simply lead to a
file with such a name being unable to be opened. Handling UNICODE is not
trivial, especially not without locale support from the operating system, which
is the reason it was left unsupported.

Permissions FAT files and directories have read / write permissions attached
to them. The implementation completely ignores this however, freely allowing
a read-protected file to be written or deleted. Implementing this is not overly
complex and could probably be done in a fair amount of time, but it did not
make it into this project. It was down-prioritized because it has no effect as
long as the user avoids modifying protected files, which will most likely be the
case the vast majority of the time.

Time Files and directories have fields that specify when the file was last ac-
cessed, when it was last read and when it was created. Since Patmos without an
operating system has no concept of world time and time zones, properly setting
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these was left out. Upon creation the implementation sets the field to 00:00:00
UTC, which is the date 01/01/1970 at time 00:00:00.

Invalid characters Related to UNICODE characters is the verification of the
characters in a new file name. The implementation does not verify whether the
provided characters are legal before creating a file. Implementing this would be
fairly trivial, but did not make it in.

6.3.3 File System Interface

All of the file system interface functions set errno = EPERM if they are used
before the file system is initialized, which none of the system calls they match
do.

Seeking The system call lseek allows seeking beyond the end of a file. Any
writes to the file will then write zero (0x00) bytes instead of the data bytes, until
the file size catches up to the cursor. If fat lseek encounters a seek beyond the
file size, it sets errno = EINVAL to indicate invalid parameters. The described
functionality was left out because it was not understood until late in the project,
and it is easily replicated by the user by just writing zero bytes.

Deletion The system call unlink allows queued deletion of open files. If the
function is called on a file that is already open, it will succeed but the file will
not be deleted until the file is closed by all associated file descriptors. This
implementation simply exits with an error and sets errno = EBUSY.

7 Future work

At the time of writing, this project exists as a public fork of the T-Crest / Patmos
project on Github. The immediate next step is to get it merged upstream and
integrated.

Besides getting integrated into the Patmos project, a number of improve-
ments to the implementation could be made. First of all, implementing support
for the 4-bit SD mode of the card would likely lead to speed improvements of
at least an order of magnitude. It is also obvious to cover the points mentioned
in 6.3, as adherence to the standards will likely benefit anyone using writing
software with modules. Things behaving as one expects is rarely a bad thing.
Beyond these fairly obvious points, a few select additions to the project could
be interesting.

7.1 Newlib

As briefly mentioned in Section 4.5, T-Crest uses a port of the open-source
Newlib11 as its implementation of the C standard library. While this port has

11Newlib website: https://sourceware.org/newlib/
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the stream functions fopen, fclose, fwrite, etc., ”implemented”, they just
return with an error that indicates that the supporting system calls (open,
close, write, etc.) are not implemented. By changing this implementation to
use the file system module, it enables the use of the stream functions, which is
the ”normal” way to interact with files in C. These functions also come with the
added benefit of being buffered, which would greatly increase the speed when
transferring less than a sector of data at a time.

7.2 Threading

The current implementation has no guarding against race conditions, which
could easily happen if more than one thread operated on files simultaneously.
Securing against this would at a minimum require the file system to have mutual
exclusion in the open files array, as well as implementing locking for files. At that
point it would also be very beneficial to implement permissions for open files, as
parallel threads could then be allowed to operate on the same file simultaneously
in read-only mode, increasing overall efficiency.

7.3 WCET analysis

Patmos and the T-Crest platforms are developed such that WCET analysis is
feasible. However, such analysis was not done as part of this project and it
seems like a logical next step to ensure that especially the file system module is
WCET-analyzable.
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8 Conclusion

The aim of this project was to interface an SD card with Patmos, such that
programs executed by Patmos on an FPGA with a card attached can have
access to persistent storage in the form of files. This was achieved by designing
a host controller for an SD card in SPI mode, writing a driver that facilitates
data transactions to the card and lastly writing a file system module that can
access, create and delete files, given that the card is formatted to FAT32. Both
the driver and the file system provide generic interfaces, that do not expose the
internals, such that any of the two could reasonably be substituted by other
components, i.e. using another disk instead of an SD card. The interface to the
file system module mimics system calls in the C standard library in the hopes
of being familiar to C programmers, as well as to be easily integrated into the
Newlib port of the T-Crest platform.

The final result achieved a maximum speed of roughly 250 kB/s when reading
from files and 150 kB/s when writing to files. While this is not very impressive,
it is mostly due to the low transfer speed of the SPI-based host controller.
However, the generic interfaces allow the host controller be easily substituted
by a future solution, that can support the high-speed transfer modes of modern
SD cards.
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Appendices

A Generic CRC generation code

1 #define dat t u i n t 6 4 t
2

3 int c r c ( da t t poly , int n , da t t dat , int d a t l e n ) {
4 dat t r e s = dat << n ;
5 dat t div = poly << ( d a t l e n − 1 ) ;
6

7 dat t l im = 1 << n ;
8 do {
9 r e s = r e s ˆ div ;

10 while ( ( r e s ˆ div ) > r e s ) // Align f i r s t 1
11 div >>= 1 ;
12 } while ( r e s >= lim ) ;
13

14 return ( int ) r e s ;
15 }

B Compact CRC7 generation code

1 #define dat t u i n t 6 4 t
2

3 int crc7 compact ( da t t dat ) {
4 dat t poly = ( dat t )0 b10001001 << (40−1); // S h i f t f a r l e f t
5 dat <<= 7 ; // S h i f t f a r l e f t
6 do {
7 dat ˆ= poly ;
8 while ( ( dat ˆ poly ) > dat ) poly >>= 1 ; // Align l e f t most 1 s
9 } while ( dat >= 1 << 7 ) ; // Keep going u n t i l d iv idend i s gone

10 return ( int ) dat ;
11 }
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C Files of the implementation

patmos/

c/

sdtest.c

sdtime.c

libsd

fat32.c

fat32.h

sd spi.c

sd spi.h

sddisk.c

sddisk.h

hardware/

config/

altde2-115-sd.xml

quartus/

altde2-115-sd/

patmos.qpf

patmos.qsf

patmos.sdc

src/

io/

SDHostCtrl.scala

vhdl/

patmos de2-115-sd.vhdl
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D Values of errno

Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
ENOENT The file can not be found.
EMFILE Maximum number of files already open.
EEXIST Trying to create file that already exists.
EISDIR Path points to directory.
ENOTDIR A non-final part of path is file.
ENOSPC Not enough available disk space.

Table 27: Values of errno for fat open

Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
EINVAL File descriptor out of range.
EBADF File descriptor does not match open file.

Table 28: Values of errno for fat close

Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
EINVAL File descriptor out of range.
EBADF File descriptor does not match open file or corrupt FAT.
ENOSPC Not enough available disk space.

Table 29: Values of errno for fat write
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Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
EINVAL File descriptor out of range.
EBADF File descriptor does not match open file or corrupt FAT.

Table 30: Values of errno for fat read

Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
EINVAL File descriptor out of range.
EBADF File descriptor does not match open file.
EAGAIN Bad cluster encountered during search.
EPIPE Position is outside of the file.

Table 31: Values of errno for fat lseek

Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
ENOENT The file can not be found.
EBUSY File to be deleted is open somewhere.
EBADF Corrupt FAT.

Table 32: Values of errno for fat unlink

Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
EEXIST Name is not unique in the directory.
EBADF Corrupt FAT.

Table 33: Values of errno for fat mkdir

Value Meaning
EPERM File system module is not initialized.
EIO I/O error occured during the operation.
ENOENT The folder can not be found.
ENOTDIR Path does not point to a file.
ENOTEMPTY Folder is not empty.
EBADF Corrupt FAT.

Table 34: Values of errno for fat rmdir
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