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Summary

In inverse problems information about a physical system is achieved from observations
or measurements by reversing the effect of a model that acts on the sought information.
Often this approach leads to mathematical problems without existence or uniqueness of
a solution, or to problems with an unstable solution in the sense that small perturbations
in the observations/measurements might cause unbounded changes to the solution. This
issue is known as ill-posedness.

The concept of regularization deals with ill-posedness by replacing the original problem
with a nearby problem that is not ill-posed. Different regularization methods are useful
in different situation. If for instance a sought solution is known in advance to be an edge-
containing image, this a priori information can be included in the regularized model to
compensate for some of the ill-posedness.

The relatively new concept of curvelets provide a way to decompose L2(R2)-functions into
frame-coefficients. Much like for wavelets, the curvelet coefficients with high magnitudes
indicate a jump discontinuity at a certain translate of the decomposed function. This
feature can be included in a sparsity regularization model that promotes a solution
to have many zero-valued curvelet coefficients. The sparsity promoting feature thus
promotes a solution to contain edges.

This thesis reviews theory on curvelet based regularization in comparison with the more
well established edge-preserving methods total variation and wavelet-based regulariza-
tion. Further, two concrete inverse problems are used to demonstrate inversions using
the three different regularization methods. Namely the de-blurring of a digital image
and a computed tomography problem are considered.

The curvelet based regularization method shows result with qualities close to the results
of total variation regularization in a 2D tomography problem, and the use of sparse
expansions in regularization appears to have a promising future due to the great attention
on the subject. The computational costs and extra efforts needed to implement curvelet
based regularization compared to total variation does not justify a commercialization of
the method in its current version. By construction curvelets capture orientation in more
directions than wavelets on 2D domains and curevelets are therefore better suited than
wavelets for 2D images with singularities along curves.



Resumé (Danish)

I inverse problemer opn̊as informationer om et fysisk system fra observationer eller
m̊alinger ved at invertere effekten af en model som virker p̊a de søgte informationer.
Denne fremgangsm̊ade vil typisk føre til matematiske problemer uden eksistens eller enty-
dighed af en løsning, eller til problemer med en ustabil invers s̊aledes at sm̊a forstyrrelser
i observationerne/m̊alingerne kan for̊arsage ubegrænsede ændringer i en løsning. Dette
emne er kendt som ill-posedness.

Regularisering er en metode til at h̊andtere ill-posedness ved at erstatte problemet
med et ikke ill-posed problem som ligger tæt p̊a det oprindelige problem. Forskellige
regulariserings-metoder er brugbare i forskellige situationer. Hvis det f.eks. vides p̊a
forh̊and, at en søgt løsning er et billede med kanter, kan denne a priori oplysning ind-
drages i den regulariserede model for at kompensere for at problemet er ill-posed.

Curvelets er et relativt nyt koncept som gør det muligt at nedbryde L2(R2)-funktioner
i frame-koefficienter. I lighed med wavelets vil curvelet-koefficienter med stor værdi in-
dikere en diskontinuitet ved et bestemt translat. Denne egenskab kan inddrages i en
sparsity regulariserings model som fremmer, at løsningen har mange curvelet koeffic-
tienter med værdi nul. Dette fremmer derfor, at en løsning indeholder kanter.

Dette speciale gennemg̊ar teori om curvelet baseret regularisering i sammenligning med
de mere veletablerede kant-bevarende metoder total variation og wavelet baseret regu-
larisering. Derudover bliver to konkrete inverse problemer anvendt til at demonstrere
inverteringer ved hjælp af de forskellige regulariserings metoder. Navnligt anvendes
de-blurring af et digitalt billede og et tomografi problem.

Curvelet baseret regularisering viser resultater med kvaliteter tæt p̊a resultater fra total
variation regularisering i et 2D tomografi problem, og anvendelsen af sparse expansions
i regularisering synes at have en lovende fremtid pga. den omfattende opmærksomhed
p̊a omr̊adet. Curvelet baseret regularisering kræver mere computerkraft og er mere
kompliceret at implementere i forhold til total variation regularisering og der er derfor
ikke grundlag for at benytte metoden kommercielt i dens nuværende form. Curvelets
opfanger orientering i flere retninger end wavelets p̊a 2D domæner og curvelets er derfor
bedre end wavelets til 2D billeder med kanter langs med kurver.
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Chapter 1

Introduction

1.1 Inverse problems, regularization and curvelets

Inverse problems and regularization are widely used in different industries to extract
information of physical systems from observed measurements. Hospitals are examples
where technology uses mathematics of inverse problems on daily basis to reconstructs
images of interior regions of human bodies in different scanner techniques.

The topics of inverse problems and regularization are also currently fields subject to
intense research due to their potential and the demand of methods to obtain solutions to
inverse problems of e.g. better qualities. In particular the approach of adding constraints
in a model by knowing or assuming certain properties of a sought solution is a concept
showing interesting potentials to improve the qualities of reconstructed solutions. When
working with images such an a priori information is for instance that the sought image
contains edges to a considerable extend. By using appropriate mathematical theories a
function associated with the sought image can be required to belong to a certain function
space and thereby promoting that a solution contains edges.

The relatively new topic of curvelets, which has emerged from the more established topic
of wavelets, is another field subject to intense research. Curvelets and wavelets (and also
e.g. shearlets, ridgelets and contourlets) share the property that a mathematical function
can be represented in a reorganized matter that is associated with certain properties of
the function. As the name suggests curvelets are constructed to capture singularities in
functions along curves. This feature is therefore expected to be well suited to capture
edges in e.g. medical images.

This project reviews fundamental issues regarding inverse problems and regularization in
general, and uses a couple of specific (simulated) inverse problems to examine the utility
of a method to reconstruct solutions by combining the concept of regularization with
the concept of curvelets. The more well-established total variation and wavelet based
regularization methods which have similar applicability as the curvelet based method,
are also carried out for comparison of the different methods.
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1.2 Organization of the report

Linear inverse problems and ill-posedness of inverse problems is presented in Chapter
2, along with a few general theories and tools regarding certain operators that makes
inverse problems ill-posed.

Before turning to the concept of regularization in Chapter 4, where also the two methods
total variation and wavelet based regularization are presented, Chapter 3 comments on
assumptions when problems are discretized.

The two specific edge preserving regularization methods total variation and wavelet
based regularization are used to demonstrate reconstructions of a 1D deconvolution
problem in Chapter 5 and a 2D computed tomography problem (CT) in Chapter 6.
These two chapters also demonstrates how deconvolution and CT can be modelled both
continuously and discretely.

In Chapter 7 the second generation curvelets are reviewed, leading to the examination
of curvelet based regularization in Chapter 8.

A list of important mathematical symbols is found in Appendix A, and the fundamental
and frequently used Fourier transform is explained in Appendix B. Appendix C shows
the most important CT reconstructions carried out in Chapters 6 and 8 in full-size.
Finally all relevant MATLAB source code is attached as Appendix D.
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Chapter 2

Inverse problems and
ill-posedness

This chapter presents a definition of linear inverse problems and a general form for math-
ematically modelling a physical linear problem to be inverted. Ill-posedness of inverse
problems is reviewed and is the motivation for applying regularization, the subject in
chapter 4. Finally, two classes of operators that makes inverse problems ill-posed are
defined, and the singular value expansion is mentioned as a tool to examine ill-posedness
in the class of compact operators.

2.1 Linear inverse problems and forward modelling

The task of reconstructing information about a physical system is called an inverse
problem when the reconstruction is based on data that is modelled as relative to the
sought information. A model describing how a physical cause is mapped into some effect
as in Figure 2.1 leads to a forward model for the inverse problem.

model space 

CAUSE 
(physical quantities / properties) 

EFFECT 
(observations / measurements) 

forward 

inverse 

data space 

Figure 2.1: Forward and inverse modelling.

Consider two normed vector spaces Vm and Vd as the model space and data space in
Figure 2.1 respectively. A bounded and linear operator K : D(K) → Vd, defined on a
domain D(K) ⊂ Vm, that maps a cause into the effect is called a forward operator [32].
In practice measured effects are corrupted by errors, and with a δ > 0, a function ε
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satisfying ‖ε‖Vd ≤ δ models the errors. Then for a sought function f ∈ D(K) and an
acquired function g ∈ Vd, a forward problem is modelled as

g = Kf + ε. (2.1)

Given g and K, the recovery of some or all of f in (2.1) is an inverse problem. If the
inverse K−1 exists a naive inversion f∗ is defined as

f∗ := K−1g. (2.2)

The naive inversion is only applicable on some inverse problems. In particular, the
inversion (2.2) makes no sense if no or multiple functions f∗ exist, or if K−1 is unbounded
such that even a small δ makes f∗ differ significantly from f .

Inverse problems are categorized as being either well-posed or ill-posed. This subject is
elaborated in the following section, motivated by the fact that the deconvolution and
tomography problems considered in later chapters (and many other inverse problems)
are ill-posed.

2.2 Ill-posedness

A problem is said to be ill-posed if it is not well-posed. Formally, Hadamards condi-
tions classifies a problem to be well-posed when all of the following three conditions are
complied [32]:

· (H1) Existence (a solution exists).

· (H2) Uniqueness (the solution is unique).

· (H3) Stability (the solution is continuously dependent on the measurements).

Thus, if at least one of Hadamards conditions are not met the problem is ill-posed. In
the general inverse problem (2.1) Hadarmards conditions are then complied when K
meets the following three conditions:

· (H1) K is surjective (∀g ∈ Vd, ∃f ∈ Vm such that g = Kf).

· (H2) K is injective (∀f1, f2 ∈ Vm : Kf1 = Kf2 ⇒ f1 = f2).

· (H3) K has a bounded/continuous inverse (∀g ∈ Vd : ‖K−1g‖Vm ≤ C‖g‖Vd for a
constant C > 0).

The topic of regularization deals with ill-posedness by replacing an ill-posed problem
with a well-posed problem having a solution close to the true one. Known or assumed a
priori information about a solution can be included in a model to compensate for some
of the ill-posedness.
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2.3 Compact operators and Hilbert-Schmidt operators

A class of operators that always makes the inverse problem (2.1) ill-posed is the compact
linear operators in the following definition from [27]. Compact linear operators model a
deconvolution and tomography problem in later chapters.

Definition 2.1 (Compact linear operator) Let T : V1 → V2 be a linear, bounded operator
between two infinite dimensional and normed Banach spaces V1 and V2. For a bounded
subset U ⊂ V1 the closure T (U) ⊂ V2 of T (U) is compact if every sequence in T (U)
has a subsequence that converges in T (U) . If ∀U , T (U) is compact the operator T is
said to be a compact linear operator.

The inverse of a compact linear operator, if it exists, is unbounded [34, Prop. 5.9]. A
compact operator K in (2.1) will therefore always make the problem ill-posed by (H3).

The Hilbert-Schmidt integral operators in the next definition from [34] is a class of
operators that are always compact. A periodic convolution operator used later to model
the deconvolution problem falls in this category.

Definition 2.2 (Hilbert-Schmidt integral operator) On a bounded set Ω ⊂ R the integral
operator R : L2(Ω)→ L2(Ω), defined with f ∈ L2(Ω) and k ∈ L2(Ω× Ω) as

(Rf)(x) :=

∫
Ω
f(t) k(x, t) dt,

is a Hilbert-Schmidt integral operator if∫
Ω

∫
Ω
|k(x, t)|2 dx dt <∞.

A Hilbert-Schmidt integral operator is a compact operator [34] and an R−1 in Definition
2.2, if it exists, is therefore unbounded.

2.4 Singular value expansion

The singular value expansion gives an understanding of the ill-posedess caused by a
compact operator. Consider a compact linear operator between two Hilbert spaces
K : H1→H2 and its Hilbert adjoint K∗ : H2→H1. Let, for J ⊂ N, {λj}j∈J be a sequence
of non-negative increasing eigenvalues of the self-adjoint operator K∗K : H2→H2. Then
the singular values {µj}j∈J of K are defined in [25, 23], for each j ∈ J , as

µj :=
√
λj . (2.3)

There further exist two sequences of orthogonal functions {xj}j∈J ⊂ H1 and {yj}j∈J ⊂
H2 such that for all j ∈ J

17



Txj = µjyj .

Assume that the compact operator K and a given function g ∈ H2 makes the equation
g = Kf solvable for an f ∈ H1. With the singular system {µj , xj , yj}j∈J of K this
assumption is complied, by the Picard condition, if and only if

g ∈ N (K∗)⊥ and
∑
j∈J

(
|〈g, yj〉H2 |

µj

)2

<∞.

The solution to g = Kf is then given by

f =
∑
j∈J

〈g, yj〉H2

µj
xj . (2.4)

By considering the coefficients 〈g, yj〉H2/µj in the orthogonal basis {xj}j∈J having con-
tents of increasing frequencies with increasing j, the expansion (2.4) shows how the decay
in the magnitudes of the positive singular values µj , as j → ∞, will amplify contents
in g of higher frequencies. This amplification contributes to the ill-posedness of a given
problem in the sense that corrupting g with errors having a flat spectrum will make f
in (2.4) unstable.

18



Chapter 3

Discrete modelling

In practice solutions to inverse problems are computed digitally. The first two sections
of this chapter elaborates on assumptions when discretizing a continuum function into
a finite elements vector and properties of matrices in systems of linear equations which
are used in subsequent chapters. In the last section measures for estimating qualities of
inverted discrete functions are introduced.

3.1 Discrete functions

Continuum functions will for d ∈ {1, 2} be considered on Rd domains in following chap-
ters. Compactly supported functions can be assumed to have support in a set [0, 1[d⊂ Rd.

Functions on Ω := [0, 1[⊂ R domains are discretized at n ∈ N finite equispaced points
at xj := (j − 1)/n for j = 1, 2, ..., n. By partitioning Ω into n subsets

Ij :=


[
j−1/2
n ; j+1/2

n

[
for j = 1, 2, ..., n− 1,[

0; 1/2
n

[
∪
[

1−1/2
n ; 1

[
for j = n,

each xj is centered in Ij with periodic boundary conditions such that the point at x = 1
corresponds to the point x = 0. The motivation for the periodic boundaries is explained
later. A continuum function on Ω, discretized to f̄ ∈ Rn, is then defined component-wise
as

f̄j := f(xj) for j = 1, 2, ..., n.

Two dimensional functions on square Ω2 domains are equivalently discretized at n2 finite
equispaced points

x̄j,i :=

(
j − 1

n
,
i− 1

n

)
for j, i = 1, 2, ..., n.

By partitioning Ω2 into n2 subsets Ij,i with periodic boundary conditions in both direc-
tions, each point x̄j,i is centered in a subset. Then points on x ∈ Ij,1 corresponds to
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points on x ∈ Ij,0, points on x ∈ I1,j corresponds to points on x ∈ I0,j , and the four
corner points corresponds to each other diagonally pairwise. For practical reasons 2D
functions are in some cases discretized into a single column vector. That is, f̄ ∈ Rn2

is
defined with

f̄ji := f(x̄j,i) for j, i = 1, 2, ..., n.

3.2 Discrete operators

Discrete approximations of explicit continuum operators are defined when necessary in
later chapters.

With an explicitly defined matrix A ∈ Rm×n and two vectors ḡ ∈ Rm, f̄ ∈ Rn, where ḡ
is given and f̄ is unknown, the problem ḡ = Af̄ represents a system of linear equations
which can be written as

A1,1f̄1 +A1,2f̄2 + ...+A1,nf̄n = ḡ1

A2,1f̄1 +A2,2f̄2 + ...+A2,nf̄n = ḡ2
...

Am,1f̄1 +Am,2f̄2 + ...+Am,nf̄n = ḡm.

(3.1)

When n = m the system (3.1) has a unique solution if A has full rank. In that case A
has a unique inverse A−1 ∈ Rn×n and is called invertible [15]. A deconvolution problem
is modelled with an invertible n× n matrix in chapter 5.

The system (3.1) is said to be underdetermined if m < n and overdetermined if m > n.
These are the situations where there are respectively less and more equations than
unknowns in the system. An underdetermined system has either infinitely many solutions
or none and is consequently called consistent or inconsistent respectively. In chapter 6,
a tomography problem is modelled with an underdetermined m× n matrix.

3.3 Singular value decomposition

As for the continuum operators singular values of matrices provides a tool for investigat-
ing the condition of a system (3.1). Using the singular value decomposition an operator
A ∈ Rm×n can be factorized by two unitary matrices U ∈ Rm×m, V ∈ Rn×n and a
diagonal matrix Σ ∈ Rm×n such that

A = UΣV T , (3.2)

where for K := min(m,n) the non-negative and non-increasing sequence {sk}Kk=1 of
singular values of A constitutes the main diagonal of Σ. Using the largest and the
smallest singular values s1 and sK the condition number κ(A) of A is defined in [32],
when sK > 0, as

20



κ(A) :=
s1

sK
. (3.3)

Larger condition numbers indicate worse conditions [24], and if A is square and invert-
ible the condition number is equivalent to κ(A) = ‖A‖ ‖A−1‖. This implies that large
operator norms indicate ill conditions.

For A ∈ Rm×n let ḡ = ḡ? + ε̄ ∈ Rm be a vector containing the true function ḡ? ∈ Rm
that is perturbed by an error vector ε̄ ∈ Rm. Then for Ω := {1, 2, ..., n} the solutions
f̄?, f̄ ∈ Rn to ḡ? = Af̄? and ḡ = Af̄ comply with the bound

‖f̄? − f̄‖`2(Ω) ≤ κ(A)‖ε̄‖`2(Ω)

‖f̄?‖`2(Ω)

‖ḡ?‖`2(Ω)
. (3.4)

By [24] experience shows that the error ‖f̄?− f̄‖`2(Ω) is always close to the upper bound
in (3.4). This implies that a higher condition numbers κ(A) will amplify the effect of
‖ε̄‖`2(Ω).

Ill conditions can also be explained by considering an invertible n×n matrix A in (3.2).
The inverted A−1 consists of the inverse of the diagonal matrix Σ such that {1/sk}nk=1

appears in A−1. If the largest singular value s1 is several orders of magnitude greater
than the smallest singular value sK , truncation to finite decimals digital numbers causes
significant errors in a naive inversion.

3.4 Model performance

The qualities of regularized inversions carried out in the following chapters are estimated
using the measures presented in this section. Testing inverse models by using a known
function f̄? ∈ `2(Ω) on a set Ω := {1, 2, ..., n} satisfying ‖f̄?‖`2(Ω) > 0 provides a way to
compare a regularized solution f̄∗ ∈ `2(Ω) to the true solution. A typical measure for
the quality of an inversion is the `2-error defined as

e := ‖f̄∗ − f̄?‖`2(Ω), (3.5)

and the relative error defined as

e% :=
e

‖f̄?‖`2(Ω)

. (3.6)

The two measures e and e% are sought minimized for better qualities. For functions
representing images on R2 domains the peak signal-to-noise ratio (PSNR) is commonly
used as a quality measure. Using the mean squared error

MSE :=
1

n

n∑
k=1

|f̄∗k − f?k |2,
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when f̄? 6= f̄∗ the PSNR is defined, with 2B − 1 ≥ 1 being the maximum number of
unique values of f̄?, as

PSNR := 20 log10

(
2B − 1√

MSE

)
. (3.7)

The PSNR is sought maximized for better qualities and involves the number of unique
values of the true solution. In this measure a certain MSE therefore weights more for
fewer unique values of the solution. That is, the MSE has less negative effect if the true
solution has many unique values.

Better measures does not guarantee truer solutions (which often is also a subjective
matter), but are useful tools when testing models.
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Chapter 4

Regularization

Regularization replaces an ill-posed problem with a well-posed problem which is expected
to have a solution close to the correct sought solution. This method provides a way to
extract, ideally, as much information as possible from the true solution in an ill-posed
inverse problem. The first section of this chapter elaborates on the concept of sparsity
regularization followed, in the two last sections, by a review of the two methods total
variation and wavelet based regularization which uses this concept.

4.1 Sparsity regularization

This project focuses on regularization methods that for a finite J ∈ N promotes sparsity
of a sequence {xj}Jj=1 ⊂ R associated with the sought function. The sequence {xj}Jj=1

is called sparse in this respect if a considerable number of elements xj = 0 for j =
1, 2, ...J . The regularization methods applied in later chapters all lead to the problem of
minimizing, for f̄ ∈ Rn, the Tikhonov type functional

Φ
(
f̄
)

:=
∥∥Af̄ − ḡ∥∥2

`2({1,2,...,m}) + α
J∑
j=1

|wj xj |, (4.1)

where {wj}Jj=1 ⊂ R is a sequence of weights and the matrix A ∈ Rm×n models a discrete
forward problem corresponding to (2.1) on the form

ḡ = Af̄ + ε̄

with vectors ḡ, ε̄ ∈ Rm. The two terms of (4.1) are called the data fidelity term and the
penalty term respectively and the regularization parameter α > 0 can be chosen freely,
and is used to adjust the weight of the penalty term.

In (4.1) the penalty term corresponds to a weighted `1-norm of {xj}Jj=1 multiplied with
α. This choice of penalty term promotes sparsity of the sequence it is applied on [36, 38].
In total variation regularization the `1-norm is applied on the gradient of the sought func-
tion. In wavelet and curvelet based regularization it is applied on weighted coefficients
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from an expansion of f̄ . As explained in the following sections these sparsity promoting
methods corresponds to assuming that a sought function contains discontinuities. This
is advantageous when recovering edge-containing images.

A geometric argument for the `1-norm begin sparsity promoting follows for m,n = 2. If
a system of linear equations ḡ = Af̄ has at least one solution, the minimization of (4.1)
corresponds to minimizing the penalty term subject to ḡ = Af̄ . The situation where
this system of equations has an infinitude of solutions is shown in Figure 4.1(a). For a
small r > 0 the `1-ball Br(0, 0) has to coincide with a line of solutions, as r increases,
to find a vector f̄ ∈ R2 minimizing (4.1). In a corner point of the square, which is most
likely to coincide with the feasible region first, either of the two coordinates in R2 is zero
valued.

(a) A line of solutions to ḡ = Af̄ . (b) No solutions to ḡ = Af̄ .

Figure 4.1: Feasible region (blue) and the `1 ball (grey).

When the system of linear equations has no solutions the pseudo solution minimizing
the data fidelity term alone is shown as a dot in Figure 4.1(b) in center of the ellipses.
The elliptic contours corresponds to curves where the norms of Af̄ − ḡ are equal and
follows from writing the data fidelity term as a quadratic matrix function f̄TATAf̄ plus
a constant.

The two regularization methods presented in the next sections are both edge-preserving
methods [35, 32] where a priori information i.a. is that the sought functions contain
discontinuities. By assuming that the functions belong to certain spaces the two methods
lead to a sparsity promoting penalty term.

4.2 Total variation regularization

Total variation regularization is a well established edge-preserving method to recover
images with edges in ill-posed inverse problems. The method is used in the following
chapters to reconstruct edge containing images in ill-posed deconvolution and tomog-
raphy problems. The total variation of a sought function is used as a penalty term to
restrict the solution to functions with a sparse and bounded gradient.
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4.2.1 Continuum modelling

The total variation of a function f ∈ L1(Ω) is defined as the following in [20].

Definition 4.1 (Total variation)
Consider for d ∈ N and i = 1, 2, ..., d an open set Ω ⊆ Rd and x̄ = (x1, x2, ..., xn)T ∈ Ω,
a vector φ̄ of once continuously differentiable functions φi tending to zero outside Ω such
that φ̄(x̄) = (φ1(x̄), φ2(x̄), ..., φd(x̄))T ∈ C1

0 (Ω;Rd).
Let U =

{
φ̄ ∈ C1

0 (Ω;Rd) | ∀x̄ ∈ Ω: |φ̄ (x̄) | ≤ 1
}

be a set of test-functions. With the
divergence ∇ · φ̄ of φ̄, defined as

[
∇ · φ̄

]
(x̄) :=

d∑
i=1

∂φi (x̄)

∂xi
,

the total variation
∫

Ω |[Df ] (x̄)| dx̄ of a function f ∈ L1(Ω) is then weakly defined as∫
Ω
|[Df ] (x̄)| dx̄ := sup

φ̄∈U

{∫
Ω
f (x̄)

[
∇ · φ̄

]
(x̄) dx̄

}
. (4.2)

A function f ∈ L1(Ω) is said to have bounded variation if its total variation (4.2) satisfies∫
Ω
|[Df ] (x̄)| dx̄ <∞,

and the space of all such functions will be denoted BV (Ω) which is Banach with the
norm defined as

‖f‖BV (Ω) := ‖f‖L1(Ω) +

∫
Ω
|[Df ] (x̄)| dx̄.

The space BV (Ω) includes i.a. well defined piecewise smooth functions with their deriva-
tives which is advantageous when working with edge containing images. The Sobolev
space W 1,1(Ω), defined in [18] as the space of functions in L1(Ω) additionally having
weak first order derivatives belonging to L1(Ω), is a proper subspace of BV (Ω) and
is well suited for discretely approximating assumed piecewise constant functions, and
provides a simpler expression of the total variation of a function.

Sobolev spaces uses the weak gradient of functions. With x̄ := (x1, x2, ..., xd)
T ∈ Rd, if

for each i = 1, 2, ..., d there exists functions vi ∈ L1(Ω) satisfying for all test functions
φ ∈ C∞c that ∫

Ω
f(x̄)

∂

∂xi
φ(x̄) dx̄ = −

∫
Ω
vi(x̄)φ(x̄) dx̄

the first order gradient Df of f is defined in the weak sense as

Df := (v1, v2, ..., vd)
T . (4.3)

Using (4.3) the total variation of a function f ∈W 1,1(Ω) is defined in [22] as
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TV (f) := ‖Df‖L1(Ω) (4.4)

and a regularization method can now be defined by using (4.4) as a penalty term. With
a given bounded linear operator K : L2(Ω) → L2(Ω) with trivial null-space, a given
function g ∈ L2(Ω) and closed and convex subset V (Ω) of L2(Ω), a regularized solution
to the general inverse problem (2.1) is then defined, for α > 0, as

f∗ := arg min
f∈V (Ω)

{
‖Kf − g‖2L2(Ω) + αTV (f)

}
. (4.5)

By [1, 8] this problem has a unique minimizer when the intersection V (Ω) ∩W 1,1(Ω) is
nonempty. It follows, under the given assumptions, that (4.5) is a well-posed problem.

4.2.2 Discrete modelling

When the discrete approximation of a sough function is assumed to have constant value
on each element of a discretization grid the total variation of a discrete 2D function
in Rr×s, written with n := rs as f̄ ∈ Rn by concatenating each column s times, can
be approximated by defining component-wise, for k = 1, 2, ..., n, a discrete approximate
gradient D̃ as (

D̃f̄
)
k

:=

√
(f [k +m]− f [k])2 + (f [k + 1]− f [k])2 (4.6)

and assuming n-periodicy of f̄ . Using (4.6) as a penalizer then leads to a discrete
regularized solution to ḡ = Af̄ + ε̄ for a given A ∈ Rm×n and a given ḡ ∈ Rm defined as

f̄∗ := arg min
f̄∈`2({1,2,...,n})

{
‖Af̄ − ḡ‖2({1,2,...,m}) + α ‖D̃f̄‖`1({1,2,...,n})

}
. (4.7)

The sparsity promoting `1-norm of the gradient D̃f̄ of a sought function f̄ implies that
some or many elements of the derivatives of f̄ are zero indicating that f̄ is piecewise con-
stant. Total variation regularization will be used in the following chapters to reconstruct
edge containing images in the deconvolution and tomography problem.

4.3 Wavelet based regularization

Wavelet based regularization is used in the following chapters to reconstruct edge con-
taining images in ill-posed deconvolution and tomography problems. The concept is very
similar to the one of the main subject, curvelet based regularization, in the sense that
in both methods the `1-norm is used to promote sparsity of expansion coefficients of the
sought function. Wavelet based regularization shows edge-preserving properties similar
to total variation regularization, especially for the choice of a Haar orthonormal basis.
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4.3.1 Continuum modelling

With the Haar wavelet defined below, the magnitudes of the coefficients in a functions
expansion is related to jump discontinuities of the function. This feature, as will be
demonstrated with the deconvolution problem makes Haar wavelet based regularization
have very similar properties to total variation regularization for 1D problems. For 2D
problems the Haar wavelet only capture edges in three directions which is much less
than curvelets.

The following defines a wavelet on R as in [10].

Definition 4.2 (Wavelet) A sequence {ψj}j∈N ⊂ L2(R) is a basis for L2(R) if for all
f ∈ L2(R) there exist unique scalars {cj}j∈N such that ‖f −

∑
j∈N cjψj‖L2(R) ≤ ε for all

ε > 0. The sequence {ψj}j∈N is an orthonormal system if 〈ψj , ψk〉L2(R) = 0 whenever
j 6= k. A function ψ ∈ L2(R) is a wavelet if the sequence of functions{

2j/2ψ
(
2jx− k

)}
j,k∈Z

form an orthonormal basis for L2(R).

Thus, any function f ∈ L2(R) can be written using a ψ complying with Definition 4.2
as the infinite term expansion

f =
∑
j,k∈Z

〈f, ψj,k〉L2(R) ψj,k. (4.8)

Multi resolution analysis is a technique that can be used to generate wavelets using, as
a starting point, a scaling function φ ∈ L2(R) that captures low frequencies and meets
certain criteria. With this method and the translation operator Ta : L2(Ω) → L2(R)
defined on x ∈ R as (Taf)(x) := f(x− a) for an a ∈ R, an expansion corresponding to
(4.8) becomes

f =
∑
k∈Z
〈f, Tkφ〉L2(R)Tkφ+

∑
j∈N

∑
k∈Z
〈f, ψj,k〉L2(R)ψj,k. (4.9)

The translation parameter k shifts the wavelet and scaling function throughout R and
the scaling parameter j dilates the wavelets making their graphs taller and narrower for
increasing j. This causes the coefficients to have contents from f at higher frequencies
for increasing j.

For a compactly supported f , or compactly supported ψ and φ, the k-summations in
(4.9) reduces to finite terms. In practice an approximated or ’low-pass’-filtrated version
of f can then be reconstructed using partial sums in j. The magnitudes of wavelet
coefficients in an expansion decay with increasing j at rates dependent on the number
of vanishing moments of the used wavelet [10].
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Definition 4.3 (Vanishing moments) On R a function ψ is said to have M ∈ N van-
ishing moments if for j = 1, ...,M∫

R
xj−1 ψ(x) dx = 0.

The number of vanishing moments of a wavelet gives information about the expected
sparsity of the expansion coefficients and how much information is discarded when the
expansion (4.9) is truncated to finite termed sums.

The compactly supported and simple discontinuous Haar wavelet and scaling function,
with one vanishing moment, shown in Figure 4.2, are defined as

ψ(x) :=


1 if 0 ≤ x < 1

2 ,
−1 if 1

2 ≤ x < 1,
0 otherwise,

φ(x) := χ[0,1[(x). (4.10)

When the Haar wavelet and scaling function (4.10) are used in the expansion (4.9)
coefficients 〈f, Tkφ〉L2(R) and 〈f, ψj,k〉L2(R) of large values indicates a jump in f at a
translation k. This feature makes the Haar wavelet well suited to detect discontinuities
in a function.

0 1 2 3

−1

0

1

x

ψ
(x
)

(a) Wavelet.

0 1 2 3

−1

0

1

x

φ
(x
)

(b) Scaling function.

Figure 4.2: Haar wavelet and scaling function.

For comparison the compactly supported and continuously differentiable Daubechies
2 (DB2) wavelet, which has two vanishing moments, is considered. The family of
Daubechies wavelets is known to perform well in i.a. image compression. The DB2
wavelet and scaling function, which cannot be written explicitly in mathematical terms,
are shown in Figure 4.3. With two vanishing moments this wavelet is expected to give
rise to sparser expansions than the Haar wavelet. This is advantageous when truncating
the expansion to finite sums, but on the other hand the DB2 wavelet does not perform
as well as the Haar in edge detecting.

With regard to regularization the Besov smoothness space is an applicable space for
wavelet decomposed functions [32, 26]. For d ∈ N, on an open set Ω ⊂ Rd, the definition
of Besov spaces of functions in Lp(Ω) follows [14]. Define for a step-length h > 0 and
r ∈ N the rth order difference operator as
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Figure 4.3: Daubechies 2 wavelet and scaling function.

(∆r
hf)(x) :=

{
(f(x+ h)− f(x))r for x, x+ h, x+ 2h, ..., x+ rh ∈ Ω,

0 otherwise.
(4.11)

The rth order modulus of smoothness ωpr of a function f ∈ Lp(Ω) is defined, with a
bound t for h, as

ωpr (f, t) := sup
|h|≤t
‖∆r

hf‖Lp(Ω).

A Besov space is Banach when 1 ≥ p, q ≤ ∞ and consists of functions with common
smoothness r > s. A function f∈Bs

p,q(Ω) if f ∈ Lp(Ω) and(∫
R+
0

t−s ωpr (f, t)
q dt

t

)1/q

<∞. (4.12)

Wavelets provide a base for Bs
p,q(Ω) [11]. With the choices p = q = s = 1 the norm of

an f ∈ B1
1,1(Ω), provided that the wavelet and scaling function are once continuously

differentiable, is defined in [31] in terms of its expansion coefficients as

‖f‖B1
1,1(Ω) :=

∑
k∈Z
|〈f, Tkφ〉L2(Ω)|+

∑
j∈N

∑
k∈Z

2j/2|〈f, ψj,k〉L2(Ω)|. (4.13)

The Haar wavelet and scaling functions (4.10) are not once continuously differentiable
and does therefore not make (4.13) well defined by Meyers proofs in [31]. In spite of a
theoretical proof of when or when not the Haar wavelet is applicable to (4.13) the Haar
wavelet is used in i.a. [32, 26] as well as in this project.

Note that the norm (4.13) corresponds to a weighted `1-norm of the wavelet coefficients.
For a fixed s different values of r > s give equivalent Besov norms [14].

Using (4.13) as a regularization penalty term then restricts a sought function of an
inverse problem to be in B1

1,1(Ω). That is, the function is in L1(Ω) and have modulus of

smoothness r > s = 1. With a given bounded linear operator K : L2(Ω) → L2(Ω) with
trivial null-space, a given function g ∈ L2(Ω), and closed and convex subset V (Ω) of
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L2(Ω), a regularized solution to the general inverse problem (2.1) is defined, for α > 0,
as

f∗ := arg min
f∈V (Ω)

{
1

2σ2
‖Kf − g‖2L2(Ω) + α‖f‖B1

1,1(Ω)

}
(4.14)

with the variance σ2 > 0 of the errors ε in (2.1). By [11] this problem has a unique
minimizer when V (Ω)∩B1

1,1(Ω) is nonempty. The regularized problem (4.14) is therefore
well-posed under the given assumptions. The variance factor on the data fidelity term in
(4.14) follows from a Bayesian statistical deduction in [26] where the posterior probability
of f under condition of g is sought maximized using likelihood with a priori information
on σ.

The problem (4.14) can be expressed in terms of a wavelet decomposed function such
that an equivalent problem solves for the sought functions wavelet coefficients. Let {cφ}
denote the finite number of scaling coefficients from a wavelet decomposed compactly
supported function and let cj,k be a wavelet coefficient at translate k and scale j. Using
the infinite sequence

c := {ci}i∈N := {cφ} ∪
{
{cj,k}2

j−1
k=0

}
j∈N
∈ `2(N) (4.15)

of wavelet coefficients with the corresponding basis {ui}i∈N of functions ui ∈ L2(R) the
basis reconstruction operator R : `2(N)→ L2(R) is then defined as

Rc :=
∑
i∈N

ciui (4.16)

such that Rc by Definition 4.2 converges to f in the L2-norm. The problem (4.14) can
with R, a sequence {wi}i∈N containing the 2j/2 weights and by (4.13) be expressed in
terms of the wavelet coefficients of the sought function as

c∗ := arg min
c∈`2(N)

{
1

2σ2
‖KRc− g‖2L2(Ω) + α

∑
i∈N
|wici|

}
. (4.17)

When R in (4.16), as in practice, truncates the coefficients (4.15) after J ∈ N finite

scales j = 0, 1, ..., J −1, the functions {ui}2
J

i=1 constitutes a basis for a finite-dimensional
subspace of the Banach space L2(R) which Rc then belongs to.

4.3.2 Discrete modelling

Turning to the discrete problem a wavelet decomposition operator and reconstruction
operator is introduced. In practice the discrete wavelet transform is performed by dis-
cretely convolving the transformed function with a filter uniquely determined by the
choice wavelet. Let f ∈ L2(R) have compact support in [0, 1[⊂ R and f̄ ∈ `2(Ω) on
Ω := {1, 2, ..., n} ⊂ N denote the discretization of f . Note that the expansion (4.9) of
f in this case only gives rise to one coefficient 〈f, T0φ〉 from the scaling function. The
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discrete wavelet transform of f̄ at finite scales j = 0, 1, ..., J − 1 ⊂ N0 then gives rise to
the follow set of scalar coefficients

{ci}2
J

i=1 := {cφ} ∪
{
{cj,k}2

j−1
k=0

}J−1

j=0
,

where cφ is the single coefficient generated by the scaling function and cj,k are the

coefficients generated by the wavelets. The decomposition operator D : Rn → R2J

that maps f̄ into the sequence of coefficients {ci}2
J

i=1 at the J first scales in a wavelet
decomposition is defined implicitly such that

Df̄ = {ci}2
J

i=1 . (4.18)

Similarly, the reconstruction operator R : R2J → Rn maps coefficients {ci}2
J

i=1 into a
finite scales j reconstruction f̄J of f̄ and is defined such that

R {ci}2
J

i=1 = f̄J .

By defining the diagonal 2J × 2J weight matrix W , such that the sequence of weights
{{2j/2}2j−1

k=0 }
J−1
j=0 appears in the diagonal, as

W :=



20/2 0 0 0 · · · 0 0

0 21/2 0 0 · · · 0 0

0 0 21/2 0 · · · 0 0

0 0 0 22/2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2(J−1)/2 0

0 0 0 0 · · · 0 2(J−1)/2


, (4.19)

the Besov norm (4.13) of f̄ ∈ `2(Ω), for Ω := {1, 2, ..., n}, can be approximated, using
the `1-norm, by

‖WDf̄‖`1({1,2,...,2J}).

With a given matrix A : `2({1, 2, ..., n}) → `2({1, 2, ...,m}) and a given function ḡ ∈
`2({1, 2, ...,m}) the discrete wavelet based regularized solution f̄∗ is then defined as

f̄∗ := arg min
f̄∈`2({1,2,...,n})

{
1

2σ2
‖Af̄ − ḡ‖2`2({1,2,...,m}) + α‖WDf̄‖`1({1,2,...,2J})

}
, (4.20)

The weights W in (4.20) penalizes discontinuities (large coefficients) at higher scales
j more than at lower scales. The errors in ḡ are assumed to be approximately white
Gaussian noise and for a sought deterministic function with spectres tending to zero in
the limits, the relative noise content will be larger at higher frequencies. This favours a
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solution f̄∗ in (4.20) with less high-frequency content. This matter also indicates that a
truncation of the wavelet expansion can be justified.

On R2 domains a discrete wavelet transform is obtained by first applying the 1D trans-
form on each column of a matrix representing the discrete 2D function. The 1D transform
is then applied on each row of the resultant matrix of the first 1D transform [39]. At
each scale j this gives rise to three sets of coefficients in addition to the approxima-
tion coefficients from the scaling function. With the edge detecting feature of the Haar
wavelet, the three set of coefficients corresponds to edges in respectively the horizontal,
vertical and diagonal directions.
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Chapter 5

Deconvolution

This chapter introduces the convolution operator which is used to model a forward op-
erator for an ill-posed inverse problem of deconvolution. A composed specific inverse
problem of de-blurring a 1D digital image is considered to explore the edge-preserving
features of total variation- and wavelet based regularization and demonstrate their util-
ities.

5.1 Continuum modelling

With a given function k ∈ L1(R) the linear convolution operator Pk : L2(R)→ L2(R) is
defined for f ∈ L2(R) in [16, 10] as

(Pkf) (x) :=

∫
R
f(x− t) k(t) dt (5.1)

for almost all x ∈ R. From measure theory technicalities requires L2-functions to for
instance be piecewise continuous for the convolution to be pointwise well-defined. The
blurred version of a 1D image f can be modelled as Pkf using a point spread function
(PSF) as k. To illustrate the concept consider the δ-distribution on x ∈ R defined by
Dirac to be ∫

R
δ(x) dx := 1 and δ(x) := 0 for x 6= 0, (5.2)

and define on x ∈ R, with a spreading constant 0 < a < 1/2, a point spread function
ψa ∈ L2(R) from [32], constructed by a fourth degree polynomial, as

ψa(x) :=


(x+a)2 (x−a)2∫ a

−a(t+a)2 (t−a)2 dt
for − a ≤ x ≤ a,

0 for |x| > a,
(5.3)

and satisfying
∫
R ψa(x) dx = 1. The δ-function can in the limit of a b → 0, b > 0 be

considered as a tall and narrow rectangular shape with height 1/b and width b about
x = 0 as in Figure 5.1a.
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(a) Visualization of δ as b→0.
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(b) PSF, a := 0.04.

Figure 5.1: Distributions.

The sampling property of δ implies that
∫
R f(x) δ(x) dx = f(0) and (Pδf)(x) = f(x) for

a continuous f [28]. That is, the convolution of f with δ replicates f . The PSF in a
sense also reproduces a function which it is convolved with, but with energies of each
point spread over neighbouring points. This feature causes a blurring effect where edges
are smoothened as in Figure 5.2.

(a) Original (f). (b) Blurred (Pψaf) with a := 0.04.

Figure 5.2: Example - blurring of a 1D function.

In a convolution Pψaf the PSF distributes the content of a compactly supported f such
that Pψaf is supported on a slightly larger set on R than f is, depending on the choice of
a. To retain support of sought functions in the deconvolution model, the functions are
thought of as being 1-periodic and a cyclic convolution is considered. This way energy
distributed to domains x < 0 or x > 1 by a convolution gets its impact on domains
x < 1 or x ≥ 0 respectively.

Define for x ∈ [0, 1[⊂ R and t ∈ [0, 1[⊂ R one period of a t-translatable version of a
1-periodic version of f ∈ L2([0, 1[) as

f◦(x, t) :=

{
f(x+ 1− t) for x− t ∈ [−1, 0[,

f(x− t) for x− t ∈ [0, 1[
∈ L2([0, 1[×[0, 1[), (5.4)

satisfying that ∫ 1

0

∫ 1

0
f◦(x, t) dx dt =

∫ 1

0
f(x) dx, (5.5)

and for t ∈ [0, 1[⊂ R define one period of a 1-periodic version of the PSF as
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ψ◦a(t) :=

{
ψa(x) for t ∈ [0, 1

2 [,

ψa(x− 1) for t ∈ [1
2 , 1[

∈ L1([0, 1[). (5.6)

Then the operator K : L2([0, 1[)→ L2([0, 1[), defined as

(Kf) (x) :=

∫ 1

0
f◦(x, t)ψ◦a(t) dt (5.7)

for almost all x ∈ [0, 1[⊂ R, corresponds to a cyclic convolution of 1-periodic versions of
f and ψ, and will be used to model a continuum forward operator for the de-blurring
problem at hand with the general model (2.1).

The commutative property of the convolution of two functions in L1([0, 1[) allows the
operator K to be considered applied on the PSF. With f ∈ L2([0, 1[) the estimate∫ 1

0

∫ 1

0
|ψ◦(x− t)|2 dx dt <∞

of the PSF then implies that K in (5.7) is a Hilbert-Schmidt operator as in Definition
2.2. The forward operator K is thus expected to make an inverse problem ill-posed by
(H3).

The unbounded inverse of a convolution operator appears when considering the related

Fourier transform. With f, k ∈ L1(R) and Pk in (5.1) the Fourier transform (̂·) of Pkf
is given by

(̂Pkf)(γ) = f̂(γ) k̂(γ).

The inverse Fourier transform of f̂ , provided that it is well defined, is then naively
expressed as

f(x) =

∫
R

(̂Pkf)(γ)

k̂(γ)
e2πixγ dγ.

When k̂(γ)→ 0 for |γ| → ∞, which is the case for the PSF, this inversion is unbounded.

5.2 Discrete modelling

The circular integral (5.7) is approximated using numerical quadrature. With the PSF
and sought function discretized as explained in section (3.1), f̄ ∈ R2n denotes a vector
containing two periods of the sought function in (5.4) and ψ̄ ∈ Rn denotes the PSF in
(5.6). The discrete convolution is then defined element-wise as

(f̄ ∗ ψ̄)k :=
1

n

n∑
l=1

f [k + n− l]ψ[l] for k = 1, 2, ..., n (5.8)
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Defining a circulant n× n matrix A : Rn → Rn as

A :=
1

n


ψ[1] ψ[n] ψ[n− 1] · · · ψ[3] ψ[2]
ψ[2] ψ[1] ψ[n] · · · ψ[4] ψ[3]

...
...

. . .
...

...
...

ψ[n− 1] ψ[n− 2] ψ[n− 3] · · · ψ[1] ψ[n]
ψ[n] ψ[n− 1] ψ[n− 2] · · · ψ[2] ψ[1]

 , (5.9)

the discrete convolution (5.8) can be written as Af̄ such that the discrete forward model
corresponding to (2.1) for the deconvolution problem becomes

ḡ = Af̄ + ε̄. (5.10)

From [21] a circulant n× n matrix as (5.9) has the eigenvalues

λk =

n∑
j=1

ψ[j]e−2πkj/n for k = 1, 2, ..., n.

Since, unless ψ[k] = 0 for all k = 1, 2, ..., n,
∑n

j=1 ψ[j] > 0, the eigenvalues of A in (5.9)
must be λk 6= 0 for all k = 1, 2, ..., n. This implies that A is non-singular and invertible.

5.3 Demonstrations

Consider a testing function f? defined on x ∈ [0, 1[⊂ R for the purpose as

f?(x) :=1χ]0.1;0.2](x) + 0.3χ]0.2;0.3](x) + 0.8χ]0.35;0.4](x)+

9(x− 0.5)χ]0.5;0.6](x) + 0.6 sin(5π(x− 0.7))χ]0.7;0.9](x), (5.11)

and the PSF with spreading constant a := 0.04. Let f̄?, ψ̄ ∈ R64 be discrete versions
of f? and ψ respectively. The continuous functions are thought as being periodic and
the discrete vectors constitute one single period. Figure 5.2 shows f̄? and the discrete
convolution between f̄? and ψ̄. With n = 64 the forward operator A ∈ Rn×n from (5.9) is
used to model the 1D de-blurring problem. As expected A was verified to have full rank,
and the inverse A−1 is expected to provide unstable solutions by the continuum theory
of a compact convolution operator. The condition number (3.3) of A was computed to
be κ(A) ≈ 1/0.0016 ≈ 628.32.

Simulated measurements ḡ• are constructed consistently in all demonstrations below.
The vector ḡ• ∈ Rn is defined as one period of the convolution f̄∗ψ̄ computed with
MATLABs integral() function that approximates an analytic integral using adapted
quadrature and interpolated from n = 1000 to n = 64 discrete points. Finally, Guassian
white noise with a specified variance is added to ḡ•. The simulated data is intentionally
not computed as ḡ• = Af̄ . This is done to avoid so-called inverse crime where testing of
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inverse models is done under unrealistically good circumstances. For the same reason,
the data is interpolated, and the PSF spreading constant a used in A is not exactly equal
to the true one (|a− ã| = 0.001).

5.3.1 Naive reconstruction

The vector f̄∗ ∈ Rn is reconstructed naively using A−1 from (5.9) such that f̄∗ := A−1ḡ•.
This is done both without and with errors added to ḡ•. In the latter case the errors are
white Gaussian noise with a standard deviation corresponding to 2% ·max f̄ .
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f?[k]

(A−1m•)[k]

(a) No noise.
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f?[k]

(A−1m•)[k]

(b) 2% noise.

Figure 5.3: Deconvolution - naive reconstruction.

As a result of the inverse crime initiatives, even without errors the naive reconstruction
in Figure 5.3(a) still deviates from the true function as expected. With 2% noise, as
seen in Figure 5.3(b), the reconstruction is useless as expected.

5.3.2 Total variation regularized reconstruction

Using the finite-difference n×n matrix L corresponding to (4.6) for the 1D case, defined
as

L :=
1

∆x



−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
. . .

. . .
...

...
...

. . .
. . .

...
0 0 0 · · · −1 1
1 0 0 · · · 0 −1


, (5.12)

the total variation regularized solution (4.7) is computed using quadratic programming.
Consider the circular convolution operator A ∈ Rn×n from (5.9), the identity matrix
I ∈ Rn×n, the vectors 0̄, 1̄ ∈ Rn having all elements equal to zero or one respectively,
and a matrix ¯̄0 ∈ Rn×n having all elements equal to zero. Set v̄+ − v̄− := Lf̄ such that
v̄+, v̄− ∈ R+

0
n

and define
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x̄ :=

 f̄
v̄+

v̄−

 ∈ R3n, Q :=

2ATA ¯̄0 ¯̄0
¯̄0 ¯̄0 ¯̄0
¯̄0 ¯̄0 ¯̄0

 ∈ R3n×3n,

c̄ :=

−2AT ḡ•

α1̄
α1̄

 ∈ R3n, K :=

 L
−I
I

 ∈ R3n×n.

Then the total variation regularization problem (4.7) can be written on the form

R̄α(ḡ•) := arg min
x̄

{
1

2
x̄TQx̄+ c̄T x̄

}
(5.13)

with the two constraints

KT x̄ = 0̄ ∈ R3n, x̄ ≥

−∞1̄
0̄
0̄

 ∈ R3n.

The problem (5.13) can be solved with i.a. MATLABs quadprog() command. Using
the simulated data ḡ• with 2% noise, Figure 5.4 shows reconstructions R̄α(ḡ•) with total
variation regularization for two choices of α (high and low). Comparing to Figure 5.3(b)
it is easy to see improvements in the regularized inversion. As expected, the solution
have less total variation and tends to become more ’piecewise constant’-like for higher
α.
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(a) α := 0.001, e% ≈ 0.36.
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(b) α := 1, e% ≈ 0.51.

Figure 5.4: Total variation, low and high α.

By increasing α with 0.001 in each iteration, α = 0.0233 was found to give the smallest
error e from (3.5) in a realization of this concrete problem. The regularized solution for
this choice of α is shown in Figure 5.5 with the relative error e% from (3.6). The recon-
struction in Figure 5.5 shows much better results than the naive reconstruction in 5.3(b).
It is also evident how edges are preserved and the constant regions are reconstructed
very well. The two smooth non-constant intervals unfortunately gets a ’staircase’ shape
from total variation regularization.
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Figure 5.5: Total variation regularization, α := 0.031, e% ≈ 0.12.

5.3.3 Wavelet based regularized reconstruction

The simulated data ḡ• with 2% noise is used to reconstruct an approximate version of
the true function f? with wavelet based regularization. The known variance σ2 of the
noise added to m̄• was used as a priori information. A reformulation of the discrete
regularized solution R̄α(ḡ•) in (4.20) to quadratic programming form follows.

The number of wavelet scales was chosen to be J := 6 such that 2J = n. From (5.9)
A ∈ Rn×n is the convolution operator, the decomposition operator D ∈ Rn×n from
(4.18) maps a function into its finite sequence of wavelet coefficients at J ∈ N scales,
and W ∈ Rn×n from (4.13) is the Besov-norm 2j/2-scales weight matrix. The identity
matrix is denoted I ∈ Rn×n, the vectors 0̄, 1̄ ∈ Rn have all elements equal to zero or one
respectively, and the matrix ¯̄0 ∈ Rn×n have all elements equal to zero. Set ᾱk := α for
all k = 1, 2, ..., n, and v̄+ − v̄− := T f̄ such that v̄+, v̄− ∈ R+

0
n

and define

x̄ :=

 f̄
v̄+

v̄−

 ∈ R3n, Q :=

 1
σ2A

TA ¯̄0 ¯̄0
¯̄0 ¯̄0 ¯̄0
¯̄0 ¯̄0 ¯̄0

 ∈ R3n×3n,

c̄ :=

− 1
σ2A

T ḡ•

α1̄
α1̄

 ∈ R3n, K :=

WD
−I
I

 ∈ R3n×n

Then the problem (4.20) can be written on the quadratic programming form as

R̄α(ḡ•) := arg min
x̄

{
1

2
x̄TQx̄+ c̄T x̄

}
, (5.14)

with the two constraints

KT x̄ = 0 ∈ R3n, x̄ ≥

−∞1̄
0
0

 ∈ R3n.

Using the Haar wavelet and Daubechies 2 (DB2) wavelet the reconstructions are shown
in Figure 5.8 and Figure 5.9 with the relative error e% from (3.6). The MATLAB tool
wavedec() is used to decompose the function into its wavelet coefficients (acting as the
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(a) α := 0.01, e% > 1.
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(b) α := 100, e% ≈ 0.44.

Figure 5.6: Haar wavelet, low and high α.
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(a) α := 0.01, e% ≈ 0.76.
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(b) α := 100, e% ≈ 0.40.

Figure 5.7: DB2 wavelet, low and high α.

operator D) and for both wavelets, reconstructions with a low and high choice of α is
shown in Figure 5.6 and Figure 5.7.

The choice of α with the lowest error e in (3.5) was found iteratively at steps ∆α = 0.01
for both wavelets, and their reconstructions are shown in Figure 5.8 and Figure 5.9.

0 32 64

0

0.5

1

k

 

 
f?[k]

(¯Rα(ḡ
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Figure 5.8: Haar wavelet, α := 0.63, e% ≈ 0.21.

Both wavelets reconstructs the edges, but do not perform as well as total variation
regularization on the constant intervals. The DB2 performs best on the two smooth
non-constant intervals. The Haar wavelet tends to recover this region as staircases as
total variation regularization.

The magnitudes of wavelet coefficients of the reconstructions in Figure 5.8 and Figure
5.9 are investigated in Figure 5.10.
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Figure 5.9: DB2 wavelet, α := 6.9, e% ≈ 0.23.
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Figure 5.10: Wavelet coefficients magnitudes of regularized solutions.

The DB2 solution has sparser coefficients than the Haar solution in compliance with
the number of vanishing moments for each wavelet basis. In addition, the Haar solution
was reconstructed using a smaller regularization parameter α which causes the sparsity
promoting `1-norm of the coefficients to have less weight in the Haar case.
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Chapter 6

Computed tomography

Computed tomography (CT) reconstructs images in two or three dimensions of the in-
terior of a physical object by e.g. measuring x-ray intensity loss through the object at
different angles. Especially in the medical industry, CT is intensively used at clinics
and hospitals around the world for diagnosis and screening of patients. The following
sections presents mathematical modelling for inverting 2D tomographic images and re-
constructions are demonstrated using the edge-preserving total variation and wavelet
based regularization methods. The same CT problem is used for curvelet based regular-
ization in a later chapter.

6.1 X-rays and computed tomography

X-rays are electromagnetic waves which are explained as the result of combining an un-
steady electric field acting as a magnetic source and an unsteady magnetic field acting
as an electric source [41]. These two fields sustain each other and causes energy in the
form of electromagnetic radiation (e.g. visible light, radiowaves or x-rays) to propagate
through a medium at the speed of light. Energy of electromagnetic radiation is carried
by the elementary particles photons and the energy level of a photon is proportional
to the frequency of the radiation. X-ray photons are therefore of higher energies than
light photons, allowing x-rays to penetrate matters that are impermeable to visible light.
Different materials attenuate x-rays at different magnitudes making it possible to con-
struct an image with color intensities corresponding to materials of different attenuation
coefficients in the interior of an object.

A variety of geometric configurations of CT scanners exist for different purposes. The
parallel beam and fan beam radiations in Figure 6.1 are two examples of CT scanner
setups. In a full angle or limited angle 2D scan, the source and detectors are rotated
180◦ or less, respectively, in the circular path around the object.

Roughly speaking, higher x-ray intensity and more measured projections in a scan gives
reconstructions of higher quality. On the other hand, a patient in a medical scan is
exposed to a dose of x-ray radiation which is known to be a risk for long termed cell
changes or cancer development. This dilemma motivates the research in mathematical
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Figure 6.1: CT scanner geometries.

models that can reconstruct good quality images based on less measurements.

The MATLAB generated Shepp-Logan head phantom in Figure 6.2 represents a simple
simulated tomographic image of a cross section of a human head. The image is created
with analytic expressions of ellipses and circles, making it easy to generate phantoms in
different image sizes. The Shepp-Logan phantom will be used to test different regular-
ization methods in tomographic inverse models.

Figure 6.2: Shepp-Logan phantom.

6.2 Continuum modelling

Intensity of x-rays sent through an object is typically measured by counting photons in
small areas on a detector plate. One x-ray beam is modelled as a straight line with a
measured intensity I1 and a known source intensity I0 (I0 corresponds to the intensity
measured with no object present in the scanner). The interesting information is of course
the intensities between I0 and I1.

Consider on the unit square Ω := [0, 1[×[0, 1[⊂ R2 a function f ∈ L2(Ω) returning atten-
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uation coefficients f(x, y) of materials at different x, y-coordinates in a cross sectional
plane of an object. The transverse plane square in Figure 6.3 represents the support of
f .

3D object 

Transverse 

plane Scanner 

rotation 

path 

(a) Transverse plane.

I0 

I1 

x 

y 

θ s 

(b) Single x-ray beam at arbitrary ro-
tation and displacement.

Figure 6.3: Transverse plane of 3D object.

At a fixed ỹ and variable x the function f(x, ỹ) represents attenuation coefficients along a
straight horizontal line. With I(x) denoting the intensities along this line, the boundary
intensities are modelled as I(0) = I0 and I(1) = I1 and in between, a relative loss of
intensity at a small distance dx is modelled relative to f as

−dI(x)

I(x)
= f(x, ỹ) dx. (6.1)

Integrating (6.1) then gives a known value (by I0 and I1) of the line integral:∫ 1

0
f(x, ỹ) dx = loge(I0)− loge(I1). (6.2)

The line integral (6.2) can be defined along arbitrary lines in the xy-plane, described
by a displacement value s ∈ R (shortest distance from origin to the line) and an angle
θ ∈ [0, 2π[ (between the positive abscissa and the line with length s) as in Figure 6.3(b).
Define the set U of Cartesian points on a line on R2 as

U = {(x, y) : x cos θ + y sin θ = s}.

and a vector v̄ = (x, y) ∈ U . In [12, 7] the Radon transform defined as

(Rf)(s, θ) :=

∫
U
f(v̄)dv̄. (6.3)

is a compact operator that maps L2(Ω) into a weighted L2-space. A so-called sinogram
as in Figure 6.4 shows a function in the Radon domain. Sinograms will be used in the
following sections to depict simulated measurements from a CT scan.

The singular values (2.3) of R in (6.3) is given with j ∈ N0 by
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Figure 6.4: Sinogram of Shepp-Logan phantom in Figure 6.2.

µj,k =

√
4π

j + 1

with the multiplicity k = 0, 1, ..., j [33, 7]. This is a not a very fast decay of the singular
values, and the ideal Radon transform operator in (6.3) is therefore only expected to be
only mildly ill-posed.

Roughly speaking, the continuous Radon transform (6.3) can be seen as an ideal model
for the parallel beam setup in Figure 6.1(a). Johann Radon showed that if f is continuous
and compactly supported, then Rf is uniquely determined from a complete integration
along all lines on the support of f [13]. It has also been showed that a unique f cannot
be determined in an inversion, if the number of projections are finite.

Inverting the Radon transform is related to the two dimensional Fourier transform f̂ of
f ∈ L2(Ω) defined (with the usual extension from L1) as

f̂(ωx, ωy) :=

∫
R

∫
R
f(x, y) e−i2π(xωx+yωy) dx dy,

and the Fourier inversion

f(x, y) =

∫
R

∫
R
f̂(ωx, ωy) e

i2π(xωx+yωy) dωx dωy. (6.4)

The central slice theorem says that the Fourier transform of a projected line L(s, θ) in the
domain f equals a projected line L̂(θ) (same θ) trough origin in the Fourier transform
of f . Denote the Fourier transform of Rf with respect to s as

(̂Rf)(s, θ) :=

∫
R

(Rf)(s, θ) e−its dt.

Then the Fourier slice theorem is defined in [32] as

(̂Rf)(r, θ) = f̂(r cos θ, r sin θ). (6.5)

Using (6.5) on the inverse Fourier transform (6.4) in polar coordinates reveals an explicit
expression of f(x, y) given Rf as
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f(x, y) =

∫ π

0

∫
R

(̂Rf)(r, θ) ei2πs(x cos θ+y sin θ) |s|ds dθ. (6.6)

Considering (6.6) as Fourier transforming Rf in r, multiplying with the radial parameter
|s|, and then transforming back to the spatial domain shows that the inversion acts as
a ramp filter which amplifies higher frequencies that are oriented along straight lines
through origin. Filtered backprojection is the common name for the Radon inversion
(6.6).

Another interesting relation to the Radon transform is the backprojection/layergram
operator B which maps a radon transformed function into integrals over all lines coin-
ciding with a particular point in a polar coordinate system. With x cos(θ)+y sin(θ) = s,
the backprojection operator is defined as

(B(Rf)) (x, y) :=

∫ π

0
(Rf)(s, θ) dθ.

On R2-domains, the backprojection operator is related to the Hilbert adjoint R∗ of the
Radon transform by the identity [13]

R∗ = 2B. (6.7)

The relation 6.7 is used later to model the transpose operator of a discrete approximate
version of the Radon transform. The transpose operator is used by an iterative soft-
thresholding algorithm which has the advantage that inversion can be carried out without
defining matrices explicitly.

6.3 Discrete modelling

The following shows how a discrete approximate model can be constructed corresponding
to the parallel beam geometry considered in the continuous case. A square containing
the two dimensional object slice is considered as the area to be reconstructed as in Figure
6.5(a). This area is divided into n×n equally sized squares (pixels), each normalized to
area 12. The red cut-out, magnified in Figure 6.5(b), illustrates how a single measured
attenuation value gk can be modelled. In the ith row and the pth column, each pixel is
numbered by j = i+ n(p− 1). Assuming that each pixel represents an area of constant
x-ray attenuation (homogeneous material) or that a pixel represents an average value, fj
is the attenuation value in the jth pixel. The length that the kth x-ray beam intersects
with the jth pixel is denoted Lk,j , and gk is the measured attenuation value of the kth
beam.

If the kth beam does not intersect a pixel j, Lk,j is defined to be zero and thus each
measured attenuation value gk can be written as
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Figure 6.5: Discrete CT model.

gk =
n2∑
j=1

fjLk,j .

The values of a forward operator A in this model is therefore only dependent on the
geometric conditions between the scanner and object. Considering a vector of measure-
ments ḡ ∈ Rm and a vector f̄ ∈ Rn, a matrix A ∈ Rm×n that models an inverse problem
on the form ḡ = Af̄ + ε̄ can be defined as

A :=


L1,1 L1,2 · · · L1,n−1 L1,n

L2,1 L2,2 · · · L2,n−1 L2,n
...

...
. . .

...
...

Lm−1,1 Lm−1,2 · · · Lm−1,n−1 Lm−1,n

Lm,1 Lm,2 · · · Lm,n−1 Lm,n

 . (6.8)

6.4 Demonstrations

With n = 5122 a
√
n×
√
n pixels Shepp-Logan phantom ¯̄f? ∈ R

√
n×
√
n was generated

by MATLABs phantom() command. The vector f̄? ∈ Rn denotes a column-wise con-
catenation of ¯̄f?. For i = 1, 2, ..., 180 and j = 1, 2, ..., 724 ≈ (

√
2
√
n), the angles

θi ∈ {0, 1, ..., 179} and displacements sj ∈ {−362,−361, ..., 360, 361} was used to gen-

erate the discrete forward operator A ∈ R(724·180)×5122 in (6.8) using DTU AIRtools.
A simulated sinogram ḡ• ∈ R(724·30), shown in Figure 6.6, was generated using A on
f̄?, and for i = 1, 2, ..., 30 interpolating to angles θ̃i ∈ {0, 6, ..., 174}, and finally adding
Gaussian white noise. The 2D version of ḡ• will be denoted ¯̄g• ∈ R724×30.

This problem is underdetermined with more than twelve times more pixels to be recon-
structed than measurement values available. It becomes difficult to compute eigenvalues
and singular values when matrices are of sizes at this scale. From section 3.2, the prob-
lem ḡ = Af̄ has either zero or infinitely many solutions. Theory of the continuum full
data Radon transform suggested that the problem is mildly ill-posed [33, 7].
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Figure 6.6: Sinogram of ¯̄g• with 2% noise.

Solving the CT demonstrations in the following sections requires the forward operator
A and its transpose AT applied on a vector. The MATLAB function radon(x) is used
instead of Ax̄ from (6.8) and iradon(x) with filter ’None’ instead of AT x̄. This way,
the solver is free of using large matrices, and the reconstructions are not made with the
exact same model as the data is simulated with.

The radon() function models the problem slightly different than (6.8). Each pixel in
the reconstructed area is divided into four equally sized squared subpixels which each
either contribute fully to a single measurement (if the beam coincides with center of a
subpixel) or evenly to two neighbouring measurements.

Figure 6.7 shows the absolute difference between two sinograms computed with the two
different methods. At the 30 projection angles θ̃i the transform is done in both cases on
a 512×512 pixels Shepp-Logan phantom with no noise. The small difference in the two
methods are seen in the sinogram.
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Figure 6.7: Absolute difference in two sinograms using MATLABs radon() and
A in (6.8).

6.4.1 Filtered backprojection

MATLAB implements a discrete version of the filtered backprojection (6.6) using the
discrete fast Fourier transform. Inverting the Radon transform is in a sense a naive
approach to reconstruct CT images, but with sufficiently many x-ray projections and a
sufficiently small norm of ε in (2.1), the problem is well-posed enough to use the filtered
backprojection method. Figure 6.8 shows two reconstructions with different noise-levels
added to the simulated measurements. With a standard deviation of σ = 0.5 max ḡ, the
filtered backprojection works very well.

In practice the filtered backprojection is the first choice of method when the CT problem
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(a) e% ≈ 0.41, PSNR ≈ 29.39dB. (b) e% > 1, PSNR ≈ 16.29dB.

Figure 6.8: Filtered backprojection, (a) 0.5% noise, (b) 2% noise.

is well-posed enough. The method is easy to implement, not memory requiring, fast to
execute and reliable.

6.4.2 Total variation regularization

The total variation regularized solution (4.7) is approximated using the iterative Barzi-
lai and Borwein gradient descent method [2, 22]. This method assumes homogeneous
Neumann boundary conditions of the sought function f̄ ∈ Rn and the penalty term is
made continuously differentiable by approximating the absolute value | · | in the `1-norm
with

√
(·)2 + β for a small β > 0. With the discrete vector-gradient D̃ from (4.6), the

objective functional to be minimized takes the form

Φα,β(f̄) := ‖Af̄ − ḡ‖2({1,2,...,m}) + α
n∑
k=1

√
((D̃f̄)[k])2 + β. (6.9)

The gradient ∇Φα,β(f̄) can then be determined. From [22] the gradient of the data-
fidelity term is given by

∇
(
‖Af̄ − ḡ‖2({1,2,...,m})

)
= 2AT (Af̄ − ḡ), (6.10)

and the gradient of the penalty-term is given component-wise by
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∂

∂f̄k

(
α

n∑
k=1

√
((D̃f̄)[k])2 + β

)
=

2f̄k − f̄k+
√
n − f̄k+1√

(f̄k+
√
n − f̄k)2 + (f̄k+1 − f̄k)2 + β

+

f̄k − f̄k−√n√
(f̄k − f̄k−√n)2 + (f̄k−

√
n+1 − f̄k−√n)2 + β

+

f̄k − f̄k−1√
(f̄k − f̄k−1)2 + (f̄k+

√
n−1 − f̄k−1)2 + β

. (6.11)

For iterations i = 0, 1, ..., I, a starting guess f̄0 := 0̄ and the adaptive step sizes

λi+1 :=
(f̄ i+1 − f̄ i)T (f̄ i+1 − f̄ i)

(f̄ i+1 − f̄ i)T (∇Φα,β(f̄ i+1)−∇Φα,β(f̄ i))
,

the iterative solutions in the Borwein-Barzilai method is given by

f̄ i+1 := P (f̄ i − λi∇Lβ(f̄ i)) (6.12)

with the operator P projecting a vector to its assumed non-negative region and defined
as

(
P (f̄)

)
k

:=

{
f̄k if f̄k ≥ 0,
0 otherwise.

The iterations in (6.12) converges to a solution of the total variation regularized inverse
problem. The result of reconstructing the simulated data ḡ• with a low and high choice
of the regularization parameter α are shown in Figure 6.9. As for 1D total variation the
reconstruction becomes more ’piecewise constant’-like for higher α.

(a) R̄α,β(ḡ•), α := 0.001, e%≈0.17. (b) R̄α,β(ḡ•), α := 20, e%≈0.34.

Figure 6.9: Total variation, low and high α.
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A choice of α giving the lowest error e% is shown in Figure 6.10 together with the
absolute difference between the reconstruction and the true solution.

(a) R̄α,β(ḡ•). (b) |f̄? − R̄α,β(ḡ•)|.

Figure 6.10: Total variation, 2% noise, α := 1.48, e% ≈ 0.12, PSNR ≈ 35.42dB.

The convergence question of the Barzilai Borwein is more sophisticated than many other
iterative methods because of the variable step-sizes. The method does not guarantee a
strictly monotone decrease of the objective functional after each iteration. Figure 6.11
shows the convergence, during 200 iterations, of the regularized solution shown in Figure
6.10.
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Figure 6.11: Logarithmic convergence plot from solving R̄α,β(ḡ•) in Figure 6.10.

6.4.3 Wavelet based regularization

An iterative soft-thresholding algorithm is used on the wavelet based regularized solution
(4.20). With the tomography forward operator A ∈ Rm×n, the wavelet decomposition

operator D ∈ R2J×n from (4.18) and the Besov 2j/2 scales weight-matrix W ∈ R2J×2J

from (4.19), the objective functional takes the form

Φα

(
f̄
)

:=
1

2

∥∥Af̄ − ḡ•∥∥2

`2({1,2,...,m}) + ασ2
∥∥WDf̄

∥∥
`1({1,2,...,2J}) . (6.13)
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With the wavelet reconstruction operator R from (4.16) and the α-dependent soft-
thresholding operator, defined component-wise for a vector x̄ ∈ Rn, as

(Sτ (x̄))k :=

{
x̄k − τksign (x̄k) for |x̄k| ≥ τk,
0 for |x̄k| < τk,

(6.14)

a minimizer f̄∗ of (6.13), for τk := ασ2Wk,k, then has to satisfy [11, 37]

f̄∗ = (RSτD)
(
f̄∗ +AT

(
Af̄∗ − ḡ•

))
. (6.15)

With a step-size λ ∈ R satisfying 0 < λ < 2/‖A‖2 the iterations

f̄ i+1 = (RSασ2D)
(
f̄ i + λAT

(
ḡ• −Af̄ i

))
converges to f̄∗ in (6.15) [4]. With λ := 10−4, the Haar and DB2 wavelets are used to
reconstruct the simulated CT data f̄? ∈ Rn. Figure 6.12 shows the reconstructions with
a low and high choice of α using the Haar wavelet.

(a) R̄α(ḡ•), α := 0.001, e%≈0.18. (b) R̄α(ḡ•), α := 20, e%≈0.22.

Figure 6.12: Haar wavelet, low and high α.

In Figure 6.13 the reconstruction with the choice of α giving the lowest relative error
is shown together with the absolute difference between the reconstruction and the true
image. The convergence of the iterative algorithm from the reconstruction in Figure
6.13 is shown in Figure 6.14.

Figure 6.15 shows the reconstructions using the DB2 wavelet for a low and high choice
of α.
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(a) R̄α(ḡ•). (b) |f̄? − R̄α(ḡ•)|.

Figure 6.13: Haar wavelet, α := 0.5, e% ≈ 0.14, PSNR ≈ 36.73dB.
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Figure 6.14: Logarithmic convergence plot from solving R̄α(ḡ•) in Figure 6.13.

(a) R̄α(ḡ•), α := 0.001, e%≈0.20. (b) R̄α(ḡ•), α := 20, e%≈0.24.

Figure 6.15: DB2 wavelet, low and high α.
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(a) R̄α(ḡ•). (b) |f̄? − R̄α(ḡ•)|.

Figure 6.16: DB2, 2% noise, α := 1, e% ≈ 0.5, PSNR ≈ 35.53dB.
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Figure 6.17: Logarithmic convergence plot from solving R̄α(ḡ•) in Figure 6.16.
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Chapter 7

Curvelets

Before turning to the main subject of curvelet based regularization, this chapter reviews
the second generation curvelet transform based on the work of Candés and Donoho in
[6, 5]. The continuum curvelet transform is examined in the first section, followed by
a review of the fast discrete curvelet transform in section 7.2. Finally, some important
properties of curvelets with respect to regularization are stated in section 7.3.

7.1 Curvelet transform

The curvelet transform allows a function f ∈ L2(R2) to be expressed in terms of an
infinite linear combination of scalar coefficients and curvelet functions. Curvelets does
not constitute a basis like wavelets, but a frame for f ∈ L2(R2) as defined below from
[9].

Definition 7.1 (Frame) In a non-trivial and separable Hilbert space H an infinite se-
quence of functions {ϕi}i∈N ⊂ H is a frame for H if there exists frame bounds A,B > 0
such that for all f ∈ H

A ‖f‖2H ≤
∑
i∈N
|〈f, ϕi〉H|2 ≤ B ‖f‖2H. (7.1)

Curvelets are constructed to be a tight frame which has equal bounds B = A and
further to have the normalized bound A = 1. Therefore, for a sequence of curvelets
{ϕi}i∈N ⊂ L2(R2), (7.1) reduces to the Parseval relation∑

i∈N
|〈f, ϕi〉L2(R2)|2 = ‖f‖2L2(R2), ∀f ∈ L2(R2). (7.2)

A tight frame of curvelets {ϕi}i∈N ⊂ L2(R2) allows a function f ∈ L2(R2) to be expanded
as

f =
∑
i∈N
〈f, ϕi〉L2(R2) ϕi (7.3)

with equality meaning that for all ε > 0
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‖f −
∑
i∈N
〈f, ϕi〉L2(R2) ϕi‖L2(R2) < ε.

In contrast to an orthonormal basis of wavelets, the curvelets expansion might have
non-unique coefficients 〈f, ϕi〉L2(R2).

Curvelet functions are constructed by dividing the 2D Fourier domain into windows as
in Figure 7.1. A sequence of curvelets will from here be denoted with the indexing
{ϕj,`,k̄}j,`,k̄, where j ∈ N0 ∪ {−1} is a scaling parameter, ` ∈ N0 is a rotation parameter

and k̄ ∈ Z2 is a translation parameter.

Figure 7.1: Supports of curvelets in the 2D frequency domain.

The center circle in Figure 7.1 acts as a low-pass filter similar to the scaling function in
wavelets and is defined to at scale j = −1. Away from the center circle the frequency
domain is divided into parabolic windows (wedges) of length ≈ 2j and width ≈ 2j/2

for j ∈ N0. Each wedge is constructed mathematically by considering a radial window
W (r), r ∈ [1/2, 2] and an angular window V (t), t ∈ [−1, 1]. The windows are thought of
as smooth, real-valued and non-negative functions that satisfy the admissibility condi-
tions ∑

j∈Z
W 2

(
2jr
)

= 1, r ∈ [1/2, 2] (7.4)

and ∑
`∈Z

V 2 (t− `) = 1, t ∈ [−1, 1]. (7.5)

At each scale j ≥ 0, generating curvelets ϕ̂j,0,0̄ having support in a wedge in the frequency
domain is then defined in polar coordinates r ∈ [1/2, 2] and θ ∈ [0, 2π[, using the floor
operator b·c : R→ Z rounding down to nearest integer, as

ϕ̂j,0,0̄ (r, θ) := 2−3j/4W
(
2−jr

)
V

(
2bj/2c

θ

2π

)
. (7.6)

To avoid working with complex valued numbers the generating curvelets are thought of
as being symmetric such that ϕ̂j,0,0̄(r, θ) = ϕ̂j,0,0̄(r, θ + π).
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The generating curvelets are rotated and translated in the spatial domain. Consider the
rotation matrix Rθ defined via

Rθ :=

(
cos θ sin θ
− sin θ cos θ

)
, R−1

θ =

(
cos θ − sin θ
sin θ cos θ

)
, (7.7)

the equispaced angles {θ`}` at each j, defined with

θ` := (2π)2−bj/2c`,

and the operator Kθ`,k̄
: R2 → R2 that rotates and translates coordinates in R2 by θ`

and k̄ = (kx, ky), defined as

Kθ`,k̄
(x, y) := Rθ`

(
(x, y)−R−1

θ`

(
2−jkx, 2

−j/2ky

))
,

In terms of the generating curvelets andKθ`,k̄
a curvelet at each rotation ` and translation

k̄ is then described for j ≥ 0 by

ϕj,`,k̄(x, y) = ϕj,0,0̄

(
Kθj,`,k̄

(x, y)
)
.

At scale j = −1 the low-pass function with support in the center circle in Figure 7.1 is
constructed with a radial window W−1 in the frequency domain and defined such that

|W−1(r)|2 +
∑
j∈N0

∣∣W (2−jr)
∣∣2 = 1.

Then the generating curvelet at the coarsest scale j = −1, without orientation, is defined
in the frequency domain, as

ϕ̂−1,0,0̄(r, θ) = W−1(r).

The translates of ϕ−1,0,k̄ then complete the frame {ϕI}I when

I =
{

(−1, 0, k̄) : k̄ ∈ Z2
}
∪
{

(j, `, k̄) : j ∈ N0,−2bj/2c ≥ ` < 2bj/2c, k̄ ∈ Z2
}
.

Figure 7.2 shows examples in the spatial domain of a curvelet at different scales and
orientations. The curvelet at scale j = −1 shown in (a) stands out since the curvelet
here is without orientation. At the finer scales j ≥ 0 the curvelets have significant
support in lengths approximately equal to their width squared. This elongated shape
allows the curvelets to capture directions of discontinuities along curves. At a glance,
scaling captures different frequencies and rotation captures different directions.
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(a) ϕ
−1,0,(0,0)(x, y)
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(b) ϕ1,1,(0,0)(x, y)
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(c) ϕ3,6,(0,0)(x, y)
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Figure 7.2: Curvelets at different scales j and rotations `

7.2 Discrete curvelets

The round shapes of the wedges in Figure 7.1 and the use of angles and π does not adapt
very well to a discrete R2 domain, and in the discrete curvelet transform the frequency
domain is divided into sheared wedges instead as in Figure 7.3.

Figure 7.3: Supports of discrete curvelets in the 2D frequency domain.

A function φ : R→ R obeying that 0 ≤ φ ≤ 1 defines a window W̃j on (ωx, ωy) ∈ R2 in
the frequency domain for each scale j ≥ 0 by

W̃j(ωx, ωy) :=

√
(φ (21−jωx) φ (21−jωy))

2 − (φ (2−jωx) φ (2−jωy))
2.

With the angular window V satisfying (7.5), the window Vj(ωx, ωy) is defined for each
j ≥ 0 as

Vj(ωx, ωy) := V

(
2bj/2c

ωy
ωx

)
,

and a shear window Ũj(ωx, ωy) at scale j can then described by

Ũj(ωx, ωy) := W̃j(ωx, ωy)Vj(ωx, ωy).
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Instead of the rotation matrix (7.7) a shear matrix is used in the discrete case defined
as

Sθ :=

(
1 0

− tan θ 1

)
. (7.8)

Here the family of angles θ` are defined such that the slopes tan θ` are equispaced rather
than the angles θ`, and are defined for ` ∈ {−2bj/2c,−2bj/2c + 1, ..., 2bj/2c − 1} by

tan θ` := ` 2bj/2c.

With (7.8) and ω̄ = (ωx, ωy) the discrete windows at each scale j and shear ` then takes
the form

Ũj,`(ω̄) := W̃j(ω̄)Vj(Sθ` ω̄). (7.9)

In practice the discrete curvelet transform can be applied to a function by multiplying,
at each j and `, the discrete Fourier transform of the function with the window (7.9) on
the same discrete grid. The resulting windowed Fourier transformed is then considered
periodic and the center window is wrapped around origin as in Figure 7.4. The inverse
Fourier transform is then applied to the wrapped function at each scale and shear to
obtain the frame coefficients to be translated throughout the spatial domain.

ωx 

ωy 

(a) Before wrapping.

ωx 

ωy 

(b) After wrapping.

Figure 7.4: Wrapping of curvelets.

The MATLAB toolbox CurveLab 2.1.3 from http://curvelet.org implements the discrete
curvelet transform and is used to demonstrate curvelet based regularization numerically
in the next chapter.
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7.3 Some properties of curvelets

Curvelets posses properties that motivates their application to certain types of functions
described as functions that are C2 except for discontinuities along piecewise C2 curves.
The class of all such functions is denoted C. The Shepp-Logan phantom constructed by
ellipses and circles comply with C.

In [6] curvelets are argued to provide an essentially optimal sparse representation of
f ∈ C. In particular it is shown that for f ∈ C, a partial reconstructed approximation
fn =

∑
in
〈f, ϕi〉L2(R2)ϕi using the n largest terms in (7.3), indexed in, will approximate

the true function with an error bounded as

‖f − fn‖2L2 ≤ C · n−2 · (log n)3 as n→∞, (7.10)

for a constant C > 0. The estimate (7.10) is useful since it in practice only is possible
to deal with sums of a finite number of terms. In Figure 7.5 the error decay is compared
to the corresponding n-largest term approximation for wavelets which is of order n−1.
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Figure 7.5: Error convergence for f ∈ C using n largest terms

In (7.3) - the frame expansion of f using curvelets - the coefficients 〈f, ϕi〉L2(R2) are
the inner products between the function f and the curvelets at different parameters
i = (j, `, k). Curvelets are constructed to provide the significant coefficients in the
cases where i coincide such that at these particular scales, orientations and translations,
the curvelets are aligned with an edge of the image. Following an illustrative heuristic
argument from [6, 17] on the utility of curvelets, Figure 7.6 shows three situations of a
curvelet and an arbitrary edge in the spatial domain.

In the first situation (a) where the curvelet is aligned with the edge and its significant
support covers the edge, the coefficient will become large in magnitude. In contrast,
the other situations (b) and (c) don’t comply with the same two properties, and the
coefficients in these cases will ideally be close to zero.

Finally, for an understanding of the smoothness of curvelet decomposed functions and
comparison with the wavelet based regularization, in [3] a decomposition space consisting
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(a) (b) (c) 

Figure 7.6: Three situations of a curvelet (blue ellipse) and an edge (red curve)

of functions f ∈ C is proved embedded continuously in the Besov space Bs
p,q(R2), defined

in Chapter 4.3, with the choices p = q = 2/3 and s = 5/4 + ε for all ε > 0.
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Chapter 8

Curvelet based regularization

The curvelet based regularization method presented in this chapter is based on the work
of Jürgen Frikel in [19]. The concept is very similar to the one of wavelet based regular-
ization examined in Chapter 4.3. The article [19] focuses on discrete modelling and the
first section of this chapter presents the main topics. For ideas to continuum curvelet
regularization modelling, decomposition spaces and embeddings in Besov smoothness
spaces the reader is referred to e.g. [30, 29, 40, 3]. In the final section the curvelet based
regularization method is applied on the CT problem from Chapter 6.4.

8.1 Modelling

With a curvelet reconstruction operator R : `2({1, 2, ..., N}) → `2({1, 2, ..., n}) defined
for a sequence of curvelet coefficients c̄ := {ci}Ni=1 ∈ `2({1, 2, ..., N}) as

Rc̄ :=

N∑
i=1

ci ϕi,

a forward operator A ∈ Rm×n and a weight matrix W ∈ Rm×n having appropriate
weights in the diagonal, a curvelet based regularized solution is modelled as

f̄∗ := arg min
c̄∈`2({1,2,...,N})

{
1

2
‖ARc̄− ḡ‖2`2({1,2,...,m}) + α‖Wc̄‖`1({1,2,...,M})

}
. (8.1)

In [19] a sequence of weights τj,` depending on the curvelet scale j and rotation ` is
suggested defined as

τj,` := 2j−Jσ
√

2 logeNj,`

with J being the finest curvelet scale used (largest j) and Nj,` is the number of curvelet
coefficients at a certain scale and rotation. As in wavelet based regularization σ denotes
standard deviation of the errors.
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The problem (8.1) has by [19, 11, 37] at least one minimizer and using the soft-thresholding
operator Sτ in (6.14), the fixed point iterations

c̄i+1 = Sτ i
(
c̄i − λi(AR)T

(
ARc̄i − ḡ

))
(8.2)

for i ∈ N0 converges to a minimizer with step-sizes λi that satisfy

0 < λi < 2/‖AR‖2.

Alternatively to the soft-thresholding operator a firm-thresholding operator from [37]
is used with the advantage that a higher penalty weight α can be used. This makes
it possible to use fewer iterations. The firm-thresholding operator is defined with a
constant ρ satisfying that

0 < τ/2 ≤ ρ ≤ τ

as

(Sρ,τ (x̄))k :=



x̄k − (2ρ− τ) for x̄k ≥ τ,
2(x̄k − ρ) for ρ < x̄k < τ,

0 for − ρ ≤ x̄k ≤ ρ,
2(x̄k + ρ) for − τ < x̄k < −ρ,
x̄k + (2ρ− τ) for x̄k ≤ −τ.

(8.3)

Unlike the soft-thresholding method the firm-thresholding does not shrink expansion co-
efficients in an iteration if coefficients are sufficiently large in magnitudes. The parameter
ρ tunes this setting and is chosen to be the smallest allowed value ρ = τk/2.
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8.2 Demonstrations

In this final section the fixed point iterations (8.2) are used with both the soft- and firm-
thresholding operators (6.14) and (8.3) to reconstruct the CT problem from Chapter 6
for comparison with total variation and wavelet based regularization.

Figures 8.1 and 8.2 show reconstructions with a low and high choice of α using the soft-
and firm-thresholding operator respectively. Using the same high α := 30 with both
methods, the advantage of the firm-thresholding is evident.

(a) R̄α(ḡ•), α := 0.001, e%≈0.15. (b) R̄α(ḡ•), α := 30, e%≈0.28.

Figure 8.1: Soft-thresholding, low and high α.

(a) R̄α(ḡ•), α := 0.001, e%≈0.15. (b) R̄α(ḡ•), α := 30, e%≈0.15.

Figure 8.2: Firm-thresholding, low and high α.

Choosing α := 1 in Figures 8.3 and 8.5 the curvelet based regularization gives rise
to reconstructions that give relative errors e% that are low. Running the fixed point
algorithm for 600 iterations takes roughly twenty minutes on a standard laptop PC from
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2005, and finding the best choice of α iteratively is therefore not a good option. As
expected the reconstructions are much less pixelated than the wavelet reconstructions
due to the higher level of orientation with curvelets. The relative errors are close to the
best total variation reconstruction which was ≈ 0.12.

Convergence plots from reconstructions shown in Figures 8.3 and 8.5 are shown in Figures
8.4 and 8.6.

(a) R̄α(ḡ•). (b) |f̄? − R̄α(ḡ•)|.

Figure 8.3: Soft-thresholding, α := 1, e% ≈ 0.15, PSNR ≈ 35.47dB.
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Figure 8.4: Logarithmic convergence plot from solving R̄α(ḡ•) in Figure 8.3.
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(a) R̄α(ḡ•). (b) |f̄? − R̄α(ḡ•)|.

Figure 8.5: Firm-thresholding, α := 1, e% ≈ 0.14, PSNR ≈ 37.35dB.
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Figure 8.6: Logarithmic convergence plot from solving R̄α(ḡ•) in Figure 8.5.
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Chapter 9

Conclusions

The different regularization methods used in this project have shown to provide ways
to deal with ill-posed inverse problems of image de-blurring and computed tomography.
Properties of the operator modeling a forward problem determines to a great extend the
quality of the reconstructions.

The parameter α permits infinitely many choices of solutions to a regularized inversion.
Different suggested methods to automate a choice of α exists with different pros and
cons. The subject has not been investigated thoroughly in this project, but it is a
matter that has to be considered in any commercial usage of the regularization methods.
The complexity and scales of the different methods are also matters worth considering.
Problems in 2D or higher easily grow very large and can require major computational
power. Not all commercial situations allow a reconstruction to take several minutes.

The choice of regularization method can be based on assumptions or a priori knowledge
of a sought solution to compensate for some of the ill-posedness in inverse problems with
the intention to improve the quality of a reconstruction. Reconstructions carried out
in this project was assumed to be edge-containing images and the different regulariza-
tion methods has shown to permit a way to include this assumption by using sparsity
promoting `1-norm as a penalty term.

Uniqueness of a regularized solution is not a completely settled subject. Depending on
the null-space of the forward operator there might be infinitudes of solutions. The mat-
ters of the sparsity promoting norm discussed in Chapter 4 argues that the probability
of non-uniqueness is infinitely little, but nevertheless there is a probability. Whether the
regularizing in this case provides a well-posed problem can therefore be discussed.

A great challenge in regularization of images is the ability to reconstruct small objects.
Small objects are difficult to distinguish from high oscillatory noise which of course is
sought removed in a reconstruction. None of the three used methods where found able
to reconstruct the small objects of the Shepp-Logan phantom in a convincing way in the
specific CT problem.

The well established total variation regularization method promotes sparsity of a sought
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solutions gradient. This method gave rise to the best reconstructions in terms of the
relative error for both the 1D de-blurring problem and the 2D tomography problem.
The total variation was also the easiest method to implement and the most efficient in
terms of computation time.

In both wavelet and curvelet based regularization the expansion coefficients of a sought
function is assumed sparse which corresponds to assuming an edge containing image.
The wavelet based method is applicable to both 1D and 2D problems, but has limited
orientation properties in 2D. Curvelets apply to 2D (and 3D) problems and captures
much more orientation than wavelets. The edge preservation is evident for both methods
in the reconstructions carried out. In terms of the relative error, both the wavelet
and curvelet based methods performed close to as well as the total variation method.
Subjectively, the qualities of reconstructions using curvelets are arguably better than
the wavelet based reconstructions.

Altogether strong arguments for choosing the curvelet based regularization method over
total variation regularization has not been established in this project, but the use of
curvelets demonstrates great potential for further research and ideas in the field of reg-
ularization of edge-containing images.
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Appendix A

List of symbols

#{X} The cardinality of X (number of elements in X).
X⊥ Orthogonal to X.
D(X) The domain of X.
R(X) The range of X.
χΩ The characteristic function defined on Ω to be χΩ := 1 for x ∈ Ω

and zero otherwise.
‖ · ‖V Norm on a vector space V .
〈·, ·〉V Inner product on a vector space V .
H A Hilbert space.
A∗ The Hilbert adjoint of a bounded linear operator A : H1 → H2.
AT The transpose of matrix A.
Cr(Ω) The set of continuous and r times differentiable functions on Ω.
Lp(Ω) The norm-complete Lebesgue space, normed for 1 ≤ p <

∞ as ‖f‖Lp(Ω) := (
∫

Ω |f |
pdx)1/p, and defined as Lp(Ω) :={

f : Ω→ C |
∫

Ω |f(x)|pdx <∞
}

. Hilbert space for the choice

p = 2 with the inner product 〈f, g〉L2(Ω) :=
∫

Ω f(x)g(x)dx.

`p(N) The norm-complete discrete Lebesgue space, normed for 1 ≤
p < ∞ as ‖f̄‖Lp(Ω) := (

∑
k∈N |f̄k|p)1/p, and defined as `p(N) :={

f̄ |
∑

k∈N |f̄k|p <∞
}

. Hilbert space for the choice p = 2 with
the inner product 〈f̄ , ḡ〉`2(N) :=

∑
N f̄kḡk.

arg min
f

{Φ(f)} The element f that minimizes a functional Φ(f).

b·c The floor operator rounding a scalar down to nearest integer.
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Appendix B

Fourier transform

The Fourier transform is widely used and has been a very well established tool in engi-
neering and physics for many years. It allows a function to be represented in terms of
its frequency spectrum. On R the Fourier transform f̂ : R→ C of a function f ∈ L1(R)
is defined for ω ∈ R as

f̂(ω) :=

∫
R
f(x)e−2πixωdx,

with the inversion

f(x) =

∫
R
f̂(ω)e2πixωdω

for almost all x ∈ R. The usual extension of the Fourier transform allows continuous
and compactly supported functions to be transformed in L2(Ω) as well [10, Th.7.2.2].
The transformed function f̂ is complex-valued even though f is real. Usually this is
described as f̂ containing frequency information about magnitudes in the real part <(f̂)
and phases in the imaginary part =(f̂). In brief the magnitudes tell how much the
different frequency components are present and the phases tell where they are present.
In order to reconstruct a function from its Fourier-transform both informations are
needed. And R2 and for an f ∈ L1(R2) the Fourier transform f̂ : R2 → C2 of f ∈ L1(R2)
is for (ω1, ω2) ∈ R2 defined as

f̂(ω1, ω2) :=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2π(ω1x+ω2y)dx dy,

with the inversion

f(x, y) =

∫
R

∫
R
f̂(ωx, ωy)e

i2π(xωx+yωy)dωx dωy

for almost all (x, y) ∈ R2.

Notating the Fourier transform as an operator F : L1(Rd)→ R(F), the important trans-
lation and dilation relations can be stated. For ā ∈ Rd the translation operator Tā is
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defined for f ∈ L2(Rd) on x̄ ∈ Rd as (Tāf)(x̄) := f(x̄− ā). The translation relation [10,
Th.7.1.2]

(FTāf)(ω̄) = f̂(ω̄)e−2πiā·ω̄

says that translation of a function f changes phases in the Fourier domain. With dilation
constants c1, c2, ..., cd > 0 and the matrices C := diag(ck) and C−1 := diag(c−1

k ), the
dilation operator DC defined as (DCf)(x̄) := f(Cx̄) is related to the Fouier transform
by

(FDC−1f)(ω̄) = |
d∏

k=1

ck|f̂(Cω̄).

This relation says that scaling f to smaller sizes results in higher frequencies in f̂ (and
vice versa).
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Appendix C

CT reconstructions (full size)
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C.1 Total variation

C.1.1 Reconstruction from Figure 6.9(b)

Figure C.1: Total variation, α := 20, e%≈0.34.
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C.1.2 Reconstruction from Figure 6.10(a)

Figure C.2: Total variation, α := 1.48, e% ≈ 0.12.
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C.2 Wavelet based regularization

C.2.1 Reconstruction from Figure 6.12(b)

Figure C.3: Haar wavelet, α := 20, e%≈0.22.
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C.2.2 Reconstruction from Figure 6.13(a)

Figure C.4: Haar wavelet, α := 0.5, e% ≈ 0.14.
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C.3 Curvelet based regularization

C.3.1 Reconstruction from Figure 8.1(b)

Figure C.5: Soft-thresholding, α := 30, e%≈0.28.
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C.3.2 Reconstruction from Figure 8.2(b)

Figure C.6: Firm-thresholding, α := 30, e%≈0.15.
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C.3.3 Reconstruction from Figure 8.3(a)

Figure C.7: Soft-thresholding, α := 1, e% ≈ 0.15.
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C.3.4 Reconstruction from Figure 8.5(a)

Figure C.8: Firm-thresholding, α := 1, e% ≈ 0.14.
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Appendix D

MATLAB code

D.1 MATLAB code (deconvolution)

D.1.1 Generate deconvolution testfunction (5.11)

function [f] = testfunction(x)

% Creates 1D piecewise continuous 1−periodic function f(x)
% suitable for testing deconvolution problems.
%
% [f] = testfunction(x)
%
% Input:
% x Scalar or vector of one or more x−values.
%
% Output:
% f The function value at each x−value.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

f = zeros(1,length(x)); % Reset/preallocate variable for f.

for i=1:length(x) % Loop over number of x−values in input.

xi = x(i); % Current iteration value.

% Make function 1−periodic.
if (xi>0)

xi = xi−floor(xi);
elseif (xi<0)

xi = xi+abs(floor(xi));
end
xi=abs(xi);

% Generate output f−value dependent on x−value.
if (xi>0.1) && (xi<=0.2)

f(i) = 1;
elseif (xi>0.2) && (xi<=0.3)

f(i) = 0.3;
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elseif (xi>0.35) && (xi<=0.4)
f(i) = 0.8;

elseif (xi>0.5) && (xi<=0.6)
f(i) = 9*(xi−0.5);

elseif (xi>0.7) && (xi<=0.9)
f(i) = 0.6*sin(pi*(xi−0.7)/0.2);

else
f(i) = 0;

end

end

D.1.2 Generate point spread function (5.3)

function [psi] = psifunction(x,a)

% Creates 1D 1−periodic point spread function psi(x)
% with spreading constant a.
%
% [psi] = psifunction(x,a)
%
% Input:
% x Scalar or vector of one or more x−values.
% a Spreading constant (0<a<0.5).
%
% Output:
% psi The function value at each x−value.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

psi = zeros(1,length(x)); % Reset/preallocate variable for psi.

Ca = 15/(16*(aˆ5)); % Analytic expression for normalization constant.
% Define one period of function supported on −a<=x<=a.
psi0 = @(x) Ca*(x+a).ˆ2 .* (x−a).ˆ2;

for i=1:length(x) % Loop over number of x−values in input.

xi = x(i); % Current iteration value.

% Make function 1−periodic.
if (xi>0)

xi = xi−floor(xi);
elseif (xi<0)

xi = xi−ceil(xi);
end

% Generate output psi−value dependent on x−value.
if (xi>=−a) && (xi<=a)

psi(i) = psi0(xi);
elseif (xi>=1−a) && (xi<=1+a)

psi(i) = psi0(xi−1);
elseif (xi>=−1−a) && (xi<=−1+a)

psi(i) = psi0(xi+1);
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else
psi(i) = 0;

end

end

D.1.3 Generate simulated measurements for a deconvolution problem

function [m,sigma] = simulate convolution data(nin,nout,a,noisepct)

% Creates simulated data for a 1D deconvolution problem. The
% measurement vector m is made of a piecewise continuous function
% that is convolved with a point spread function (PSF). Then it is
% interpolated to a smaller grid and Gaussian noise is added.
%
% [m] = testfunction(nin,nout,a,noisepct)
%
% Input:
% nin Size of original generated vector m.
% nout Size of output vector m after interpolation.
% a Spreading constant in PSF
% noisepct Std. of noise added to m is noisepct/100*max(m)
%
% Output:
% m Output simulated measurement vector.
% sigma Std. of the noise added to m.

% Jacob Larsen
% May/June, 2013, DTU Compute.

dx = 1/nin;
dxout = 1/nout;
fn = testfunction(0:dx:1−dx); % Generate piecewise continuous testfunction.
M = zeros(nin,1); % Reset/preallocate measurement vector on original grid.

% Convolution, integrate once for each value of tau.
q = 1;
for t=0:dx:1−dx

tau = t;
Q = @(x)(testfunction(tau−x).*psifunction(x,a)); % Integrand.
M(q) = integral(Q,0,1); % Add to M
q=q+1;

end

% Interpolate to new grid
xold = linspace(0,1−dx,nin);
xnew = linspace(0,1−dxout,nout);
m = interp1(xold,M,xnew,'spline');

% Add noise
sigma = noisepct/100*max(m);
noise = sigma.*randn(1,nout);
m = m+noise;

D.1.4 Generate circular convolution matrix A from (5.9)

89



function [A] = circ conv matrix(m,n,p)

% Generates a circular convolution matrix of size m x n that
% acts as a convolution operator between the given point spread function
% p (size m), and a function (size n) that it is acting on.
%
% [A] = circ conv matrix(m,n,p)
%
% Input:
% m Size of vector p.
% n Size of vector to act on.
% p Vector with point spread function
%
% Output:
% A The circular convolution matrix
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

dx = 1/n;
v = (length(p)−1)/2; % Support of p.
A = zeros(m,n); % Reset/preallocate A.
prot = p(end:−1:1); % Backwards version of p.

% Generate A row−wise by circular shifting p.
pnow = zeros(n,1);
pnow(1:length(prot)) = prot;
pnow = circshift(pnow,−v);
for i=1:m

A(i,:) = pnow;
pnow = circshift(pnow,1);

end

% Multiply with discrete factor.
A = dx*A;

D.1.5 Solve 1D inverse problem using Total Variation Regularization

function [f] = tvreg1d(m,A,alpha)

% Total Variation Regularization of a 1D linear inverse
% problem on the form m=Af, using quadratic programming.
%
%
% [f] = tvreg1d(m,A,alpha)
%
% Input:
% m Measurement vector to be regularized.
% A Forward operator.
% alpha Regularization parameter.
%
% Output:
% f The regularized solution.
%

% Jacob Larsen
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% May/June, 2013, DTU Compute.

% solve argmin { (1/2)xˆT.Q.x + cˆT.x }

n = length(m);

% Reset/preallocate Q and c.
Q = zeros(n*3,n*3);
c = zeros(n*3,1);

% Set Q and C as defined.
Q(1:n,1:n) = 2*(A'*A);
c(1:n) = −2*A'*m';
c(n+1:end) = alpha;

% Define K which is the difference matrix L extended with
% the unit matrix I twice.
K = zeros(n*3,n*3);
for i=1:n−1

K(i,i) = −1;
K(i,i+1) = 1;
K(i,n+i) = −1;
K(i,2*n+i) = 1;

end
K(n,1) = 1; K(n,n)=−1;
K(n,n+i) = −1;
K(n,2*n+i) = 1;

% Define lower bound for x
lb = zeros(3*n,1);
lb(1:n) = −inf;

% Solve quadradic problem
opts = optimset('Algorithm','interior−point−convex','MaxIter',1000);
x = quadprog(Q,c,[],[],K,zeros(n*3,1),lb,[],[],opts);
f = x(1:n);

D.1.6 Generate wavelet decomposition matrix (4.18)

function [Binv] = wavedecomp(n,wavename)

% Generate wavelet decomposition (nXn) matrix Binv using MATLABs
% wavedec() command on each row.
%
% [Binv] = wavedecomp(N,wavename)
%
% Input:
% n Size of matrix.
% wavename Name of wavelet in MATLABs toolbox eg. ('haar','db2').
%
% Output:
% Binv The nXn wavelet decomposition matrix.
%

% Jacob Larsen
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% May/June, 2013, DTU Compute.

dwtmode('per'); % Assume periodic functions.
Binv = spalloc(n,n,50*n); % Preallocate sparse matrix.

% Loop over each row in matrix.
for i=1:n

% Genereate dirac−delta vector.
z = zeros(1,n);
z(i) = 1;
% Compute wavelets on dirac delta vector
[C,L] = wavedec(z,ceil(log2(n)),wavename);
% Add to matrix as one row
Binv(:,i) = C;

end

D.1.7 Solve 1D inverse problem using wavelet based regularization

function [f,C] = wavereg1d(m,A,sigma,alpha,wavename)

% Wavelet based regularization of a 1D linear inverse
% problem on the form m=Af, using quadratic programming.
%
% [f] = wavereg1d(m,sigma,alpha,wavename)
%
% Input:
% m Measurement vector to be regularized.
% A Forward operator.
% sigma Standard deviation of noise.
% alpha Regularization parameter.
% wavename Name of wavelet in MATLABs toolbox eg. ('haar','db2').
%
% Output:
% f The regularized solution.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

n = length(m);

% Reset/preallocate Q and c.
Q = zeros(n*3,n*3);
c = ones(n*3,1);

% Set Q and C as defined.
Q(1:n,1:n) = (1/(sigmaˆ2))*(A'*A);
c(1:n) = −(1/(sigmaˆ2))*A'*m;
c(n+1:end) = alpha;

% Compute weight matrix with 2ˆ(j/2) in the diagonal.
w = zeros(n,n);
w = [1];
for j=0:ceil(log2(n))−1

w = [w; 2ˆ(j/2)*ones(2ˆj,1)];
end
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W = diag(w);
clear w;

% Generate wavelet decomposition matrix.
Binv = wavedecomp(n,wavename);

% Set equality constraints and lower bound.
Aeq = [W*Binv −eye(n,n) eye(n,n)];
Beq = sparse(zeros(n,1));
lb = sparse([−inf*ones(n,1); zeros(2*n,1)]);

% Call quadprog()
opts = optimset('Algorithm','interior−point−convex','MaxIter',1000);
x = quadprog(Q,c,[],[],Aeq,Beq,lb,[],[],opts);

f = x(1:n);
C = x(n+1:2*n) − x(2*n+1:3*n);
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D.2 MATLAB code (CT)

D.2.1 Generate simulated measurements for a CT problem

function [m,sigma] = simulate ct data(n,thetain,thetaout,noisepct)

% Simulates measured data for a CT inverse problem by generating
% a nxn Shepp−Logan phantom, Radon transforming it, interpolating
% to a smaller grid, and adding Gaussian noise.
%
%
% [m] = simulate ct data(n,thetain,thetaout,noisepct)
%
% Input:
% n Size of the nxn pixels phantom image.
% thetain Original theta−grid to Radon transform on, e.g 0:1:179.
% thetaout Grid on measurements after interpolation, e.g 0:3:179.
% noisepct Std. of noise added to m is noisepct/100*max(m).
%
% Output:
% m Output simulated measurement vector.
% sigma Std. of the noise added to m.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

% Generate nxn Shepp−Logan phantom.
P = phantom(n);
% Normalize image so smallest color intensity is 0 and largest is 255.
P = 255/max(max(P))*P;
% Convert to uint8 to make sure it is only whole integer values.
P = uint8(P);
% Convert back to double with values between 0 and 1.
P = double(P)/255;

% Radon transform on P.
[mdummy,Xp]=radon(P,thetain);

A = paralleltomo(n,thetain);
mt = A*P(:);
mt = reshape(mt,length(mt)/length(thetain),length(thetain));
z = size(mdummy,1)−size(mt,1);
m = zeros(size(mdummy));
m(3:end−2,:) = mt;

% Interpolate to smaller theta−grid.
[toldx,toldy] = meshgrid(thetain,1:1:size(m,1));
[tnewx,tnewy] = meshgrid(thetaout,1:1:size(m,1));
m = interp2(toldx,toldy,m,tnewx,tnewy,'spline');

% Add noise.
sigma = noisepct/100*max(m(:));
m = m+ randn(size(m))*sigmaˆ2;
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D.2.2 Solve 2D inverse CT problem using Total Variation Regulariza-
tion

function [f,convergence] = tvreg2d(n,m,theta,alpha,beta,lambda0,f0,ite)

% Total Variation Regularization of a 2D linear inverse CT
% problem on the form m=Af, using Barzilai−Borwein iterations.
%
%
% [f,convergence] = tvreg2d(A,m,alpha,beta,lambda0,f0,ite)
%
% Input:
% n Size of nxn image.
% m Measurement vector to be regularized.
% theta CT angles (e.g. 0:1:179).
% alpha Regularization parameter.
% beta Smoothening parameter, small e.g 10ˆ(−5).
% lambda0 First step length, small e.g 10ˆ(−5).
% f0 Starting guess for a solution, e.g a zero vector.
% ite Number of iterations to run.
%
% Output:
% f The regularized solution.
% convergence Array of values of the objective functional for
% each iteration.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

% Set inital step length
lambda = lambda0;

convergence = [];

% Make 3 peroids of f to calculate gradient term.
ff = reshape(f0,n,n);
ff = repmat(ff,1,3);
f = ff(:);

% Compute gradient of penalty−term element wise.
grad = zeros(nˆ2,1);
for j = nˆ2+1:2*nˆ2

dif penalty = ( 2*f(j)−f(j+n)−f(j+1) ) / ...
(sqrt( (f(j+n)−f(j))ˆ2 + (f(j+1)−f(j))ˆ2 ) + beta ) ...
+ ( f(j)−f(j−n) ) / ...
( sqrt ( (f(j)−f(j−n))ˆ2 + (f(j−n+1)−f(j−n))ˆ2 ) + beta ) ...
+ ( f(j)−f(j−1) ) / ...
( sqrt( (f(j)−f(j−1))ˆ2 + (f(j+n−1)−f(j−1))ˆ2 ) + beta ) ;

gradnew(j−nˆ2) = alpha*dif penalty;
end

% Resize back to one period of f and set boundary
% conditions.
f = f(1:nˆ2);
f = reshape(f,n,n);
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f(:,1) = 0; f(:,end) = 0;
f(1,:) = 0; f(end,:) = 0;
f = f(:);

% Gradient of entire functional to be minimized.
%grad = alpha*grad + 2*A'*(A*f−m);
ff = reshape(f,n,n);
mr = radon(ff,theta);

% Next step
grad2 = 2*2*iradon(mr−m,theta,'Linear','None',1,n);
grad2 = grad2(:);
grad = grad + grad2;
clear grad2;
fold = f;

P = phantom(512);
P(P<0)=0;

% Look ite times
for it=1:ite

% Next f (next iteration).
f = fold−lambda*grad;

% Set f elementwise to feasible region (f>=0).
f(f<0)=0;

% Make 3 periods of f.
ff = reshape(f,n,n);
ff = repmat(ff,1,3);
f = ff(:);

% Compute gradient of penalty term using new f.
gradnew = zeros(nˆ2,1);
for j = nˆ2+1:2*nˆ2

dif penalty = ( 2*f(j)−f(j+n)−f(j+1) ) / ...
(sqrt( (f(j+n)−f(j))ˆ2 + (f(j+1)−f(j))ˆ2 ) + beta ) ...
+ ( f(j)−f(j−n) ) / ...
( sqrt ( (f(j)−f(j−n))ˆ2 + (f(j−n+1)−f(j−n))ˆ2 ) + beta ) ...
+ ( f(j)−f(j−1) ) / ...
( sqrt( (f(j)−f(j−1))ˆ2 + (f(j+n−1)−f(j−1))ˆ2 ) + beta ) ;

gradnew(j−nˆ2) = alpha*dif penalty;
end

% Resize f to one period.
f = f(1:nˆ2);
f = reshape(f,n,n);
f(:,1) = 0; f(:,end) = 0;
f(1,:) = 0; f(end,:) = 0;
f = f(:);

% Gradient of entire functional to be minimized.
ff = reshape(f,n,n);
mr = radon(ff,theta);

% Next step
grad2 = 2*2*iradon(mr−m,theta,'Linear','None',1,n);
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grad2 = grad2(:);
gradnew = gradnew + grad2;
clear grad2;

% Compute step−length lambda for next iteration.
lambda = ((f−fold)' * (f−fold)) / ((f−fold)' * (gradnew−grad) );

% Save objective functional value for current iteration.
convergence = [convergence; norm(mr−m,2)ˆ2 + alpha*norm(diff(ff),1)];

% Set new iteration.
grad = gradnew;
fold = f;

end

D.2.3 Solve 2D inverse CT problem using Wavelet Regularization

function [f,C,convergence] = wavereg2d(n,m,theta,alpha,lambda ...
,f0,ite,wavename,sigma)

% Wavelet Based Regularization of a 2D linear inverse CT
% problem on the form m=Af, using soft−thresholding iterations.
%
%
% [f,C,convergence] = tvreg2d(A,m,alpha,beta,lambda0,f0,ite)
%
% Input:
% n Size of nxn image.
% m Measurement vector to be regularized.
% theta CT angles (e.g. 0:1:179).
% alpha Regularization parameter.
% lambda Step−size, small e.g 10ˆ(−5).
% f0 Starting guess for a solution, e.g a zero vector.
% ite Number of iterations to run.
% wavename Name of wavelet to use (eg. 'haar' or 'db2').
% sigma Std. of noiselevel.
%
% Output:
% f The regularized solution.
% C Wavelet coefficients of f.
% convergence Array of values of the objective functional for
% each iteration.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

convergence = [];
% Set wavelet settings: Periodic
dwtmode('per');

% Number of max wavelet scales j.
J = wmaxlev([n n], wavename);

% Coefficients of starting guess.
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[COld,S] = wavedec2(f0,J,wavename);

% Generate weight vector.
w = [ones(S(1,1)*S(1,2),1)];
for j=2:length(S)−1

le = S(j);
tau = (2ˆ(j/2));
w = [w; tau.*ones(3*(leˆ2),1)];

end
w = (alpha).*w;

% Set first f to starting guess.
f = f0;

for it=1:ite

% One iteration step.
fold = waverec2(COld,S,wavename);
mr = radon(fold,theta);
BP = 2 * iradon((m−mr),theta,'Linear','None',1,n);
ftemp = fold + lambda*BP;
ftemp(ftemp<0)=0;
[CNew,S] = wavedec2(ftemp,J,wavename);

% Run soft−thresholding.
for j=1:length(CNew)

CNew(j) = max(0, abs(CNew(j))−(lambda/(sigmaˆ2))*w(j) ) ...

* sign(CNew(j));
end

% Set new coefficients
COld = CNew;

% Save objective functional value for current iteration.
convergence = [convergence; norm(mr−m,2)ˆ2 + norm(w'.*CNew,1)];
it

end

% Output
C = CNew;
f = waverec2(C,S,wavename);
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D.3 MATLAB code (curvelets)

D.3.1 Solve 2D inverse CT problem using Curvelet Regularization
with Soft Thresholding Algorithm

function [f,C,convergence] = curvereg2d(n,m,theta,alpha,lambda ...
,f0,ite,sigma)

% Curvelet Based Regularization of a 2D linear inverse CT
% problem on the form m=Af, using soft−thresholding iterations.
%
% REQUIRES Curvelab−2.1.3 (download from http://www.curvelet.org)
%
%
% [f,C,convergence] = tvreg2d(A,m,alpha,beta,lambda0,f0,ite)
%
% Input:
% n Size of nxn image.
% m Measurement vector to be regularized.
% theta CT angles (e.g. 0:1:179).
% alpha Regularization parameter.
% lambda Step−size, small e.g 10ˆ(−5).
% f0 Starting guess for a solution, e.g a zero vector.
% ite Number of iterations to run.
% sigma Std. of Gaussian noise in m.

%
% Output:
% f The regularized solution.
% C Curvelet coefficients of f.
% convergence Array of values of the objective functional for
% each iteration.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

convergence = [];
is real = 1;

% Coefficients of starting guess.
COld = fdct wrapping(f0, is real);

% Multiply with step−length.
alpha = alpha*lambda;
rho = rho*lambda;

% Number of scales j=1,2,...,J.
J = length(COld);

% Set first f to starting guess.
fold = f0;

% Loop for each iteration
for it=1:ite
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% One iteration step.
mr = radon(fold,theta);
BP = 2 * iradon((m−mr),theta,'Linear','None',1,n);
ftemp = fold + lambda*BP;
ftemp(ftemp<0)=0;
CNew = fdct wrapping(ftemp, is real);

cc = [];

%Run soft−thresholding.
for scale=1:J

for rot=1:length(CNew{scale})
tau = alpha*2ˆ(scale−length(CNew))* ...
sigma*sqrt(2*log(length(CNew{scale}{rot}(:))) );
CNew{scale}{rot}(:) = max(0, abs(CNew{scale}{rot}(:)) ...
− tau ) .* sign(CNew{scale}{rot}(:));
cc = [cc; CNew{scale}{rot}(:)];

end
end

% Reconstruction of f from coefficients.
fnew = ifdct wrapping(CNew, is real);
fold = fnew;

% Save objective functional value for current iteration.
convergence = [convergence; norm(mr−m,2)ˆ2 + norm(cc,1)];
if it >= 2

% Output convergence during iterations
it
convergence(end)−convergence(end−1)

end

end

% Output
C = CNew;
f = ifdct wrapping(C, is real);

D.3.2 Solve 2D inverse CT problem using Curvelet Regularization
with Firm Thresholding Algorithm

function [f,C,convergence] = curvereg2d(n,m,theta,alpha,lambda ...
,f0,ite,sigma,rhofact)

% Curvelet Based Regularization of a 2D linear inverse CT
% problem on the form m=Af, using firm−thresholding iterations.
%
% REQUIRES Curvelab−2.1.3 (download from http://www.curvelet.org)
%
%
% [f,C,convergence] = tvreg2d(A,m,alpha,beta,lambda0,f0,ite)
%
% Input:
% n Size of nxn image.
% m Measurement vector to be regularized.
% theta CT angles (e.g. 0:1:179).
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% alpha Regularization parameter.
% lambda Step−size, small e.g 10ˆ(−5).
% f0 Starting guess for a solution, e.g a zero vector.
% ite Number of iterations to run.
% sigma Std. of Gaussian noise in m.

%
% Output:
% f The regularized solution.
% C Curvelet coefficients of f.
% convergence Array of values of the objective functional for
% each iteration.
%

% Jacob Larsen
% May/June, 2013, DTU Compute.

convergence = [];
is real = 1;

% Coefficients of starting guess.
COld = fdct wrapping(f0, is real);

% Multiply with step−length.
alpha = alpha*lambda;

% Number of scales j=1,2,...,J.
J = length(COld);

% Set first f to starting guess.
fold = f0;

% Loop for each iteration
for it=1:ite

% One iteration step.
mr = radon(fold,theta);
BP = 2 * iradon((m−mr),theta,'Linear','None',1,n);
ftemp = fold + lambda*BP;
ftemp(ftemp<0)=0;
CNew = fdct wrapping(ftemp, is real);

cc = [];

% Run firm−thresholding.
for scale=1:J

for rot=1:length(CNew{scale})
tau = alpha*2ˆ(scale−length(CNew))* ...
sigma*sqrt(2*log(length(CNew{scale}{rot}(:))) );
rho = tau*rhofact;

for k1=1:size(CNew{scale}{rot},1)
for k2=1:size(CNew{scale}{rot},2)

x = CNew{scale}{rot}(k1,k2);
if x >= tau

CNew{scale}{rot}(k1,k2) = x − (2*rho−tau);
elseif (x > rho) && (x < tau)

CNew{scale}{rot}(k1,k2) = 2*(x−rho);
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elseif (x >= −rho) && (x <= rho)
CNew{scale}{rot}(k1,k2) = 0;

elseif (x > −tau) && (x < −rho)
CNew{scale}{rot}(k1,k2) = 2*(x+rho);

elseif (x <= −tau)
CNew{scale}{rot}(k1,k2) = x + (2*rho−tau);

end
end

end
cc = [cc; CNew{scale}{rot}(:)];

end
end

% Reconstruction of f from coefficients.
fnew = ifdct wrapping(CNew, is real);
fold = fnew;

% Save objective functional value for current iteration.
convergence = [convergence; norm(mr−m,2)ˆ2 + norm(cc,1)];
if it >= 2

% Output convergence during iterations
it
convergence(end)−convergence(end−1)

end

end

% Output
C = CNew;
f = ifdct wrapping(C, is real);
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[11] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint. Communications
on Pure and Applied Mathematics, 57:1413–1457, 2004.

[12] M. E. Davison. A singular value decomposition for the radon transform in n-
dimensional euclidean space. Numerical Functional Analysis and Optimization,
3:321–340, 1981.

103



[13] S.R. Deans. The Radon Transform and Some of Its Applications. Krieger Publishing
Company, 1993.

[14] Ronald A. Devore and Robert C. Sharpley. Besov spaces on domains in r d, 1993.

[15] Jens Eising. Lineær ALGEBRA. Danmarks Tekniske Universitet, 1999.

[16] R. Ellis and I. Gohberg. Orthogonal systems and convolution operators. Operator
Theory: Advances and Applications Series. Birkhauser Verlag GmbH, 2003.

[17] Brian Eriksson. The very fast curvelet transform.

[18] L. C. Evans. Partial Differential Equations. AMS, 2010.

[19] Jurgen Frikel. Sparse regularization in limited angle tomography. Technical Report
arXiv:1109.0385, Sep 2011.

[20] Giusti. Minimal Surfaces and Functions of Bounded Variation. Monographs in
Mathematics. Birkhäuser Boston, 1984.
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[26] V. Kolehmainen, K. Niinimäki M. Lassas, and S. Siltanen. Sparsity-promoting
bayesian inversion. Inverse Problems, Volume 28, Number 2, 2012.

[27] E. Kreyszig. Introductory Functional Analysis with Applications. Wiley Classics
Library. Wiley, 1989.

[28] B.P. Lathi. Signal processing and linear systems. Berkeley Cambridge Press, 1998.

[29] Guojun Liu and Xianchu Feng. Curvelets-based iterative regularization and inverse
scale methods. Chinese Journal of Electronics, 2009.

[30] Guojun Liu, Weiwei Wang, and Xianchu Feng. Curvelets shrinkage and variational
method dependend on decomposition spaces. Chinese Journal of Electronics, 2010.

[31] Y. Meyer and D.H. Salinger. Wavelets and Operators:. Number vb. 1 in Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1995.

104



[32] Jennifer L. Mueller and Samuli Siltanen. Linear and Nonlinear Inverse Problems
with Practical Applications, volume 10 of Computational science and engineering.
SIAM, 2012.

[33] Frank Natterer. The Mathematics of Computerized Tomography. SIAM, 1990.

[34] M. Pedersen. Functional analysis in applied mathematics and engineering. Studies
in Advanced Mathematics Series. Chapman & Hall/CRC Press, 2000.

[35] David Strong and Tony Chan. Edge-preserving and scale-dependent properties of
total variation regularization. Inverse Problems, 19(6):S165, 2003.

[36] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, 58:267–288, 1996.

[37] Sergey Voronin and Hugo J. Woerdeman. A new iterative firm-thresholding algo-
rithm for inverse problems with sparsity constraints. Applied and Computational
Harmonic Analysis, 35:151–164, 2013.
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