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Abstract

This thesis presents a solution of an inverse boundary value problem for harmonic functions

arising in Eletrical Impedance Tomography. The concerned problem is regarding shape optimization

of perfectly conducting circular inclusions using B-splines. In the thesis a representation of the

harmonic electrical potential using boundary integrals is set up as to make a Neumann to Dirichlet

(current to voltage) map on the outer boundary, represented by the unit circle. The Cauchy data

obtained is hereby associated with the shape and location of the perfectly conducting inclusion.

The geometry and governing functions have been approximated by B-splines and the Boundary

Element Method (BEM) has been used to discretize the equations with regards to implementation

in matlab.

The forward problem has been set up, as to given the boundary of the perfectly conducting

inclusion and an applied current obtain the voltage distribution on the outer boundary. The

algorithm has been tested using a solution obtained from separation of variables and seen to

approximate the analytical solutions for both a concentric and a non-concentric circular inclusion.

The Cauchy data for the non-concentric case have been found using a conformal map from the

concentric to the non-concentric case.

The inverse problem of optimizing the shape of the inclusion, that is optimizing the control

points for the boundary, represented by B-splines, has seen to satisfactory detect and approximate

the circular boundary, when applying curve speed regularization. For this purpose the Interior-point

algorithm has been used from matlabs optimization framework.

ix
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Chapter 1
Introduction

This chapter will give an account for the motivation, goals and outline regarding the topic of

the thesis, namely shape optimization for electrical impedance tomography (EIT).

1.1 Motivation

Electrical Impedance Tomography is an experimental imaging technique, where electrical

impedance is a reference to the complex ratio of the voltage to current in an alternating cur-

rent (AC) curcuit [24], i.e. the imaging part is by evaluating the voltage and current to get an

idea of different conductivities in the domain of interest. In medical imaging there are numerous

different imaging tools for physicians to apply, these consists of nuclear imaging tools such as

X-ray CT (computed tomography), SPECT (single photon emission computed tomography) and

PET (positron emission tomography), also non-nuclear, such as MR (magnetic resonance) imaging

and ultra sound are some of the most used in practic. So with so many different choices why is it

necessary to study and obtain methods for a new one, such as EIT?

One reason is that different imaging devices illustrates different properties, e.g. X-Ray CT is

highly applicable for imaging of the spatial distribution, whereas other nuclear imaging techniques

are better illustrating the biological differences in tissues. EIT images are based on biological

tissues different ability to conduct an electric current. This means that there are other available

medical imaging techniques for illustrating the same properties. However EIT is a noninvasive

procedure which means that it is not invading healthy tissue, furthermore it does not need any big

machinery since it at most requires some electrodes, a battery, and a computer to run reconstruction

algorithms on the data. Therefore it would be very usefull in the ICU (intesive care unit), where

some patients probably cannot be moved to be put in an X-ray CT scanner or be recipients of some

ionization radiation for imaging. Dräger as one of the first has made a commercialised EIT system

called PulmoVista® 500 for lung monitoring of ICU patients with Acute Lung Injury (ALI) where

this is used to monitor the mechanical ventilation of the diseased lung as to make sure it does not

overinflate the lung, which could lead to damage of cellular structure [8]. An image of the output

of such a device is seen in figure 1.1.

Measurements of the system is obtained by putting on a belt of 16 electrodes, combined with a

computer and then recursively induce current at two electrodes and measure the corresponding

voltages at the rest of the electrodes, after which current is induced through the next pair of

electrodes and so forth. They are using the Finite Element Method for the image reconstruction,

and can quickly measure and obtain the images.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The image of the lungs from the EIT machine called PulmoVista® 500 from Dräger[8].

Something else to image could be cancer tumours, since cancer tissue has a higher conductivity

than normal tissue. For the destruction of this malicious tissue in a best way, done by laser or

ultrasound, the shape of the tumour would be of importance as to not affect healthy tissue.

Shape optimization is how to find the optimal shape of a given object, and in this thesis it will

be to find the optimal shape of an inclusion, i.e. a domain with different conductivity compared to

the background conductivity. In practice it could be used to determine the shape of a cancer knot,

to properly remove this without ruining healthy tissue.

For shape optimization and isogeometric analysis the building blocks are the B-splines, Basis

splines or spline, which are piecewise polynomial curves and can take an arbitrarily polynomial

degree over an interval, and change the degree locally which for the right information should be

able to represent any simple curve.

1.2 Goals

The goal of this thesis is to combine these topics, e.g. to use knowledge of the equations of EIT

to mathematically formulate at first a forward problem, on how to obtain the map from current

to voltage given that the conductivity distribution is known, thereafter the inverse problem on

shape optimization from the knowledge of boundary current and voltage. Mathematical theory for

Boundary Integral Equation (BIE), B-splines and usage of the Boundary Element Method (BEM)

will be utilized and implemented in matlab as the used programming language.

1.3 Outline

The outline of this thesis will initially in Chapter 2 give some preliminaries as the toolbox for

further reading, it will explain the governing equations, the simplification of the problem related

to this work and describe the tools for the isogeometric analysis of B-splines with regards to the

shape optimization problem. Chapter 3 will introduce the Neumann function as a kernel for the

constructed boundary integral equations, which will be set up for the problem of an annular domain,

i.e. where the inclusion is a concentric circle. Chapter 4 will generalise the described integral

equations and the discretization and implementation of the forward problem, which will be tested

with a solution for the concentric circle inclusion found by separation of variables, done in Appendix

A.2. In Chapter 5 some theory from Complex Analysis will be explained in the context of the

usage in this work. Here the concentric circle is mapped conformally to a non-concentric circle to

obtain Cauchy-data (both Neumann and Dirichlet, e.g. the current and voltage distribution at the

boundary) to obtain other test data. In Chapter 6 the inverse problem of the shape optimization is

explained with corresponding noise and regularization. At last Chapter 7 and 8 will discuss the

work with future extensions and conclude on the thesis.



Chapter 2
Preliminaries

In this chapter mathematically and physical preliminaries will be set up. First a brief introduction

to the governing equations of EIT with a simplification of the equations corresponding to the usage

in this thesis. Secondly, theory of the properties of B-splines will be treated and finally some

extensions of the goals described in the introduction chapter.

2.1 Electrical Impedance Tomography

As explained in the introduction EIT is an experimental technique for medical imaging, where

either current or voltage is applied to a number of electrodes on the boundary of a body and then

the corresponding voltage or current are measured on adjacent electrodes.

Figure 2.1: Electrodes on a chest for lung monitoring. [25]

The imaging part of the problem is to recover the conductivity distribution from the interior,

since different tissue have different conductivity. Examples of different conductivities of tissue are

shown in table 2.1.

Tissue: Fat Bone Blood Lung (inflated) Heart
σ [S/m] 0.22-0.4 0.01-0.06 0.43-0.07 0.024-0.09 0.06-0.4

Table 2.1: Specific Conductivities σ for different tissue. [17]

3



4 CHAPTER 2. PRELIMINARIES

2.1.1 Derivation of equations

In this project 2-dimensional domains are considered, i.e. bounded domains B ⊂ R
2, where C

is associated with R
2. This is by relating a belt of electrodes around a body, which is certainly

bounded and 2-dimensional. The outside of the domain R
2 \ B is defined as an electrical insulator.

It has been chosen in this project to evaluate the case where the measurements are the voltages

with regards to the applied current, which are the more common in medical EIT, since control of

the maximum applied current can be desirable for safety reasons. An assumption is that the applied

current is alternating, since the direction of the current has to be reversed within a sufficiently

short time, otherwise it could result in transportation of ions, which could mean stimulation of

nerves [20]. Another consequence could be electrode degredation from build up of charge. Simple

EIT systems operates within a fixed frequency using an oscillator to produce a sinusoidal current.

The measurement then starts when the transient part has decayed so it becomes negligible which is

hereby assumed in the next derivation. [20] The time harmonic electric and magnetic vector fields

E(x, t) = Re
(

E(x, ω)eiωt
)

, (2.1.1)

H(x, t) = Re
(

H(x, ω)eiωt
)

, (2.1.2)

where Re(f) denotes the real part of the complex function f . (2.1.1)-(2.1.2) satisfies Maxwell’s

equations, at a fixed angular frequency ω, given by

∇ × E = −iωB (2.1.3)

∇ × H = J + iωD, (2.1.4)

where J is the current density, D is the electric displacement and B is the magnetic flux which

relates by the material properties

J = σE, D = ǫE, B = µH, (2.1.5)

for conductivity σ, permittivity ǫ, and permeability µ. Plugged into (2.1.3)-(2.1.4) yields

∇ × E = −iωµH (2.1.6)

∇ × H = σE + iωǫE. (2.1.7)

Setting up the non-dimensional form for the problem to evaluate parameter scale, i.e. set E = [E] Ẽ,

H = [H] H̃, x = [x] x̃ and ∇× = [x]
−1 ∇̃×, where the values in brackets are scalars carrying

the units and the parameters with tilde are the nondimensional equivalence. Now (2.1.6)-(2.1.7)

evaluates to

∇̃ × Ẽ = −i
ωµ [x] [H]

[E]
H̃ (2.1.8)

∇̃ × H̃ = σ
[x] [E]

[H]
Ẽ + iωǫ

[E] [x]

[H]
Ẽ, (2.1.9)

and choosing [E] and [H] such that σ [x][E]

[H]
= 1 gives

∇̃ × Ẽ = −iωµσ [x]
2

H̃ (2.1.10)

∇̃ × H̃ = Ẽ + iωσ−1ǫẼ. (2.1.11)
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From [4] normal EIT systems work in a range where ωµσ [x]
2

is negligible, hence neglecting the

right hand side in (2.1.10) corresponds to neglecting right hand side in (2.1.3). Hereby concluding

that the electric field is the gradient of a scalar potential, e.g.

E = −∇u, (2.1.12)

where u is the electrical potential. The equation

∇(σ + iǫω)∇u = 0, (2.1.13)

comes from taking the divergence on both sides in (2.1.7) and inserting (2.1.12), here η = σ + iωǫ

is the complex conductivity. Now reviewing the applied current to the equations, which is adding

an additional electric field as

Etot = Eapp + E0 (2.1.14)

where Eapp = η−1Japp. Thus the equation for the magnetic field H now yields

∇ × H = Japp + ηE0, (2.1.15)

here E0 is relating to the previous derivation and hence using (2.1.12) and taking the divergence

on both sides, gives

0 = ∇(Japp − η∇u) ⇔ ∇ · η∇u = ∇Japp,

integrating on both sides over a square Ωδ with side length δ containing a part of the boundary

∂B, and using the divergence theorem yields when δ → 0,

∫

Ωδ

∇ · η∇udx =

∫

Ωδ

∇Jappdx ⇒

lim
δ→0

∫

∂Ωδ

η∇u · νdS = lim
δ→0

∫

∂Ωδ

Japp · νdS ⇒

ηout∂νu − ηin∂νu = J
app
out · ν − J

app
in · ν,

here ν is the unit normal and ∂ν the normal derivative. Assuming now that the conductivity

ηout is negligible and no internal current sources. From this, with abuse of notation ηin = η and

J
app
out = Japp, it follows

η∂νu = −Japp · ν = g, (2.1.16)

where g is defined as the function for the applied current, which is one of the important parameters

in this problem. From the conservation of charge, which tells that there is no build up of charge in

the body, and must therefore satisfy
∫

∂Ω

gds = 0. (2.1.17)

The equations are now, given a potential u ∈ H1(B) and induced current g ∈ H−1/2(∂B)

∇ · η∇u = 0, x ∈ B

η∂νu = g, x ∈ ∂B,
(2.1.18)

where the Sobolev function spaces are described in Appendix A.1. The problem of obtaining the

conductivity distribution from boundary measurements is in mathematical speaking a severely

ill-posed problem. Hadamards three criteria defining a well-posed problem

1. For all admissible data, a solution exists.
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2. For all admissible data, a solution is unique.

3. The solution depends continuously on the data.

For the existence of solutions to a non-linear problem like this. From the assumption of applied

current to a conducting medium, which means that there must exist some potential which can be

measured, corresponding to some conductivity distribution. The third criteria is what makes the

problem severely ill-posed, since low-frequency electrical imaging can have difficulty measuring

large changes in conductivity as explained in [12]. Since the main problem of this project is to try

to implement shape optimization of an inclusion with different conductivity than the background.

Therefore the non-linear partial differential equation has been simplified to a linear partial differential

equation with assumptions on the conducting inclusion, which makes the problem more well-posed.

2.1.2 Simplification of the problem

The main simplification in this project has been to make an assumption on the complex

conductivity η, which is assumed to only get contribution from the real conductivity part σ and for

an inclusion U , where ∂B ∩ Ū = ∅, the conductivity is defined as

σ(x) =







1, x ∈ B \ Ū

∞, x ∈ U.
(2.1.19)

Setting the conductivity to infinity corresponds to saying that the inclusion is perfectly conducting,

i.e. the difference in potential across any path I through this inclusion gives

u2 − u1 = −
∫

EdI = −
∫

σ−1JdI = 0 ⇔ u2 = u1 = c, (2.1.20)

here c is a constant. To ground the potential or make a reference potential is like setting this

constant to zero, i.e. corresponds to setting a boundary condition on ∂U = Σ as

u|Σ = 0. (2.1.21)

The equations with ∆ acting as Laplace operator in 2-dimensions ∆ = ∂2

∂x2 + ∂2

∂y2 . Setting ∂B = Γ

and defining Ω = B \ U , with boundary ∂Ω = ∂B ∪ ∂U = Σ ∪ Γ gives

∆u(x) = 0, x ∈ Ω (2.1.22)

∂νu(x) = g(x), x ∈ Γ (2.1.23)

u(x) = 0, x ∈ Σ. (2.1.24)

The problem is shown in figure 2.2.

The trace of the function u to the boundary Γ corresponds to the measured voltage distribution

on the outer boundary, i.e.

u|Γ = f, (2.1.25)

where the trace f ∈ H1/2(Γ) as u ∈ H1(Ω). The following proves uniqueness for the simplified

problem

Theorem 2.1.1 (Uniqueness) The solution u ∈ H1(Ω) to (2.1.22)-(2.1.24) is unique.
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Figure 2.2: The simplified problem, with an inclusion.

Proof Let w = u − v and assume that u, v ∈ H1(Ω) both solves (2.1.22)-(2.1.24), then since ∆ is

a linear operator and using the boundary conditions gives

∆w(x) = ∆u(x) − ∆v(x) = 0, x ∈ Ω (2.1.26)

∂νw(x) = ∂νu(x) − ∂νv(x) = g(x) − g(x) = 0, x ∈ Γ (2.1.27)

w(x) = u(x) − w(x) = 0, x ∈ Σ. (2.1.28)

Now take (2.1.26) and multiply w on both sides and integrate over the domain Ω then use Green’s

first theorem, (theorem 6.3 in [15]) together with the boundary conditions (2.1.27) and (2.1.28)

gives

0 = −
∫

Ω

∆w(x) · w(x)dx =

∫

Ω

∇w(x) · ∇w(x)dx −
∫

∂Ω

w(x)
∂w

∂ν
(x)ds(x) ⇔ (2.1.29)

0 =

∫

Ω

|∇w(x)|2dx −
∫

Γ

w(x)
∂w

∂ν
(x)ds(x) −

∫

Σ

w(x)
∂w

∂ν
(x)ds(x) ⇔ (2.1.30)

0 =

∫

Ω

|∇w(x)|2dx. (2.1.31)

Now this implies for a.e. x ∈ Ω that for a constant C

∇w(x) = 0 ⇔ w(x) = C, (2.1.32)

and from the boundary condition (2.1.28) this implies w(x) = 0 ⇔ u(x) = v(x) for a.e. x ∈ Ω.

The existence of solutions have been shown for an annular region in Appendix A.2 by separation

of variables.

2.2 B-splines

In this section B-splines or Basis-splines and their basic properties are described with regards to

the usage, which will relate to domain approximation and approximation of the governing functions.

For further reading the reader is refered to [19].
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A general curve on parametric form γ : R → R
2 can be described by n+ 1 control points pi ∈ R

2

and n + 1 degree d, with order k = d + 1, basis splines N k
i : R → R, i.e.

γ(t) = (x(t) , y(t)) =
n

∑

i=0

piN k
i (t). (2.2.1)

The values of t = t0, t1, . . . , tm are called the knots and the vector Ξ = [t0, t1, . . . , tm] is called the

knot vector, where {ti} is a monotonically increasing sequence. The B-spline is therefore defined for

t ∈ [t0, tm]. Furthermore the functions N k
i (t) are functions with minimal support and continuity

properties corresponding to the degree, e.g. a degree d = 2, order k = 3 would have C1 continuity

at the knots and C∞ continuity everywhere else. Now definitions and some important properties of

the B-splines will be treated, along with the definition of the space of linear combinations of the

B-splines. First the B-splines is defined by a recursion formula given by

Definition 2.2.1 (Cox-de Boor algorithm) The definition of the B-splines as polynomials can be

done by a recursion formula, where they are defined with regards to a strictly increasing sequence of

knots {ti}, e.g.

N k
i (t) =







1 if t ∈ [ti, ti+k)

0 otherwise
,

here for the order k = 1, and for higher orders of k = 2, 3, . . .

N k
i (t) = αk−1

i N k−1

i (t) +
(

1 − αk−1

i+1

)

N k−1

i+1
(t)

with parameter αk−1

i which describes the support of N k−1

i (t) given as

αk−1

i =
t − ti

ti+k − ti
.

The following important properties of the B-splines as seen in [19] for a given knot vector Ξ are

1. The B-splines forms a partition of unity

n
∑

i=0

1 · N k
i (t) = 1, for t ∈ [tk−1, tn+1] . (2.2.2)

2. The B-splines are positive over the interior of their support

N k
i (t) > 0, for t ∈ (ti, ti+k) .

3. The B-splines have compact support

supp N k
i = [ti, ti+k] .

4. Any segment of a spline curve γ(t), t ∈ [ti, ti+1] lies in the convex hull of its k control points

pi−k, . . . , pi.

The definition of the space of linear combination of the B-splines are

Definition 2.2.2 Let Ξ =
{

t0, . . . , tncp+k−1

}

be the knot vector, for ncp B-splines and control

points, then the linear combinations S
Ξ

k of all such B-splines of order k, is defined by

S
Ξ

k = span
{

N k
0

(t), . . . , N k
ncp

(t)
}

=

{

ncp
∑

i=0

piN k
i (t) | pi ∈ R

2, for 0 ≤ i ≤ ncp

}

.
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An element in this space is a spline curve in R
2 of order k. The B-splines N k

i (t) can over each

knot interval compute any polynomial of the same degree. Since they are linearly independent, i.e.

a spline function is only 0 if all the coefficients are zero vectors, they form a basis for the space

of polynomials of degree k − 1 over each knot. From Weierstrass approximation theorem [5] any

continuous function on a closed interval can be uniformly approximated by polynomials, which

means that B-spline approximation to a given boundary curve of a certain regularity will also be

a uniform approximation. Now for the purpose of simple connected inclusions, some theory for

periodic B-splines is examined.

2.2.1 Uniform periodic B-splines

A knot vector for a B-spline is said to be uniform if the knots are uniformly distributed i.e.

t0 < t1 < t2 < · · · < tm with equal spacing in between. For the meaning of periodicity of a B-spline

is that the B-spline curve end-points are connected. Looking at a B-spline of order k = 3 degree

d = 2 with uniform knot distribution, i.e.

γ(t) =

ncp
∑

i=0

piN 3

i (t) (2.2.3)

as shown in figure 2.3.

Figure 2.3: B-spline of order 3 with 7 basis functions and control points and uniform knot vector

with 11 elements.

Evaluating the case above for number of

Control points : 0 . . . ncp (ncp + 1)

Basis functions : ncp + 1 (using k + 1 = 4 knots each)

Total knots : ncp + k + 1 = ncp + 4.

Seeing that between each pair of knots (bays) there are a different number of basis functions defined.

Over the first and last k − 1 = 2 bays there are fewer basis functions, which imply that the spline

is not defined over these bays as seen in figure 2.4, where the fully defined domain is highlighted.

This corresponds to

Defined Knots : (ncp + 4) − 2(k − 1) = ncp

Defined Bays : ncp − 1

Parameter t : t2 ≤ t ≤ tncp+2.

(2.2.4)
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Figure 2.4: Fully defined area of B-spline curve with corresponding knots.

From (2.2.4) and figure 2.4 it is evident that the B-spline does not start at the first control

point or end at the last point. When creating a periodic B-spline curve this has to be accounted

for, and can be accomplished by input of socalled phantom control points.

The phantom control points are named as such, since they are normally not shown in graphical

interpretations. The method is simply if the goal is to create a periodic spline curve of order 3, the

requirement is that the first and last two control points are the same. This will relate to the defined

area of the knots for the curve. An example for a periodic spline curve, setup with the matlab

function spmak from [6], which will be further discussed in the implementation part of the report.

Example Consider the inclusion as a circle with radius 0.5 approximated by B-splines of order

k = 3 degree d = 2, with a regular control polygon with ncp = 4 coefficients. Since it is supposed to

be periodic, it is not going through the first or last control point, which is overcome by repeating

it, so for this problem, there will be ncp = 6 control points, but will only be defined in 4, that is

coefs =

[

0.5 0.5 −0.5 −0.5 0.5 0.5

−0.5 0.5 0.5 −0.5 −0.5 0.5

]

.

The same for the knot vector which will have 4 phantom knots and the B-spline will be defined for

t2 ≤ t ≤ t6, the knot vector is therefore

knots =
[

−0.5 −0.25 0.0 0.25 0.5 0.75 1.0 1.25 1.5
]

,

which is obviously uniformly spaced. Now in matlab taking sp = spmak(knots,coefs) and

using the plot function, in the interval [0, 1] e.g. fnplt(sp,[0 1]) is seen in figure 2.5.

In figure 2.5 is seen a periodic spline curve, which has 4 polynomial pieces. Now some tools for

the shape optimization has been seen, and a reformulation of the goals stated in the introduction

can be done.
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Figure 2.5: The order 3 uniform periodic B-spline (blue) with corresponding control polygon

(red).

2.3 Specification of goals

The previously stated goals were a little bit vague formulated, since a limited knowledge of

the equations and the tools were known. Now with the simplification of the problem along with

the knowledge of B-splines, the goals can be further specified. In this project the main and only

problem discussed is the linear partial differential equation (2.1.22)-(2.1.24) with the perfectly

conducting inclusion, this simplification has been determined since the main focus will lie on the

aspect of optimizing the shape of an inclusion and not to determine the conductivity distribution,

the approximation will be with regards to third order, second degree periodic B-splines with uniform

knots. The goal is hereby to obtain a map from Neumann data (current) to Dirichlet data (voltage)

with respect to a perfectly conducting inclusion, which is the forward problem. Then set up the

problem of determining the shape of the boundary of the inclusion from the Cauchy-data, which is

the socalled inverse problem.





Chapter 3
Concentric Inclusion

In this chapter the Boundary Value Problem (BVP) is set up for an annular region. The

Neumann function for the unit disc is derived and used as a kernel for a Boundary Integral Equation

(BIE) representation of the harmonic function. Green’s identities will be used for this setup.

Furthermore the socalled jump relation coming from the fundamental solution of Laplace equation

will be treated. The reason for this setup has been to represent the harmonic function by the

boundaries of the domain, since the inverse problem will consist of detecting and approximating

such boundary. The domain now considered is an annulus where Da := {x ∈ C | ri ≤ |x| ≤ 1} and

ri is the inclusion radius as shown in figure 3.1.

Figure 3.1: The problem where the inclusion is a circle with radius ri.

The setup for the problem is

∆u = 0, x ∈ Da

u = 0, x ∈ ΓI, (ΓI := {x ∈ C | |x| = ri})

∂u

∂ν
= g, x ∈ ΓII, (ΓII := {x ∈ C | |x| = 1}).

(3.0.1)

the functions are defined in the function spaces u ∈ H1(Da), g ∈ H−1/2(ΓII) respectively. The

following sets are defined as ∂Da := ΓI ∪ ΓII, for ΓI ∩ ΓII = ∅.

3.1 Neumann function for the unit disc

The Neumann function used for (3.0.1) is with respect to the Neumann part of the problem,

and can be interpreted as a problem for the unit disc. Hence it is supposed to, for a fixed

13
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y ∈ D := {x ∈ C | |x| < 1}, to satisfy

∆N(x, y) = δ(x − y), x ∈ D

∂N(x, y)

∂νx
= C, x ∈ ∂D := {x ∈ C | |x| = 1} ,

(3.1.1)

where δ is the dirac delta measure and ∂
∂νx

is the normal derivative w.r.t. the x-variable. C is a

constant, which comes from the solvability condition from Green’s identity using u ≡ 1 and N

defined as in (3.1.1)

∫

D

u∆N − N∆udx =

∫

∂D

u
∂N

∂ν
− N

∂u

∂ν
ds ⇔

∫

D

δ(x − y)dx =

∫

∂D

∂N

∂ν
ds ⇔

1 =

∫

2π

0

Cdη ⇔

1 = 2πC. (3.1.2)

This is satisfied if and only if C =
1

2π
or more generally if C = |∂Ω|−1

, where Ω is the given domain.

Theorem 3.1.1 (Neumann function) The function satisfying (3.1.1) with (3.1.2) is given by

N(x, y) =







1

2π (log (|x − y|) + log (|y||x − y∗|)) : y ∈ D \ {0}
1

2π log (|x|) : y = 0
(3.1.3)

where y∗ is the reflection of y through the boundary ∂D.

Proof : The first part of the Neumann function is the fundamental solution for the Laplace

equation in 2D: Φ(x, y) =
1

2π
log|x − y|, which satisfies

∆Φ(x, y) = δ(x − y), x ∈ D,

∂Φ(x, y)

∂νx
=

(x − y) · x

2π|x − y|2
, x ∈ ∂D,

(3.1.4)

for a fixed y ∈ D.

In the unit disc the normal w.r.t. x is just the vector x, since it has length 1 and points outwards

of the unit circle. The second part of N(x, y) is found by the method of reflection as shown in

figure 3.2.

Figure 3.2: The method of reflection, y = ryeiη and y∗ = 1

ry
eiη.
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The reflections satisfies |y||y∗| = 1, y∗ =
1

r2
y

y. Let x = reiθ and define ρ = |x−y|, ρ∗ = |x−y∗|,
then for x ∈ ΓII ⇒ ryρ∗ = ρ, for further convincing that this holds the reader is refered to [22],

where the corresponding Green’s function for the unit disc is derived. Hence the Neumann function

is given as

N(x, y) = Φ(x, y) + H(x, y) (3.1.5)

where

H(x, y) =
1

2π
log(|y||x − y∗|) =

1

2π
(log|x − y∗| + log|y|) ,

which is harmonic in D, since

∆xH(x, y) = ∇ · (x − y∗)

2π|x − y∗|2
=

1

2π

(

2

|x − y∗|2
− 2

|x − y∗|2

|x − y∗|4

)

= 0.

Now it is checked that the boundary condition in (3.1.1) is fulfilled, by using polar coordinates

|x| = r, |y| = ry.

The first part, where y ∈ D and x ∈ ∂D and knowing that the outward normal derivative is

given by the radial derivative in polar coordinates, yields

∂Φ

∂νx
(x, y)

∣

∣

∣

|x|=1

=
1

2π

∂

∂νx
log|x − y|

∣

∣

∣

|x|=1

=
1

4π

∂

∂r
log(r2 + r2

y − 2rry cos(θ − η))
∣

∣

∣

r=1

(3.1.6)

=
1

2π

r − ry cos(θ − η)

ρ2

∣

∣

∣

r=1

=
1

2π

1 − ry cos(θ − η)

ρ2
. (3.1.7)

Second part

∂H

∂νx
(x, y)

∣

∣

∣

|x|=1

=
1

2π

∂

∂νx
(log|x − y∗| + log|y|)

∣

∣

∣

|x|=1

(3.1.8)

=
1

4π

∂

∂r
log(r2 + 1

r2
y

− 2r 1

ry
cos(θ − η))

∣

∣

∣

r=1

=
1

2π

r − 1

ry
cos(θ − η)

ρ∗2

∣

∣

∣

r=1

(3.1.9)

=
1

2π

1

r2
y
(r2

y − ry cos(θ − η))

1

r2
y
ρ2

=
1

2π

r2

y − ry cos(θ − η)

ρ2
. (3.1.10)

The normal derivative of the Neumann function is therefore

∂N

∂νx
(x, y)

∣

∣

∣

|x|=1

=
∂Φ

∂νx
(x, y) +

∂H

∂νx
(x, y)

=
1

2π

(

1 − ry cos(θ − η)

ρ2
+

r2

y − ry cos(θ − η)

ρ2

)

=
1

2π

1 + r2

y − 2ry cos(θ − η)

ρ2
=

1

2π
.

The constant is C =
1

2π
which satisfies (3.1.2).

3.2 The boundary integral equation for the annulus

The next step is, using the Neumann function for the unit disc, to setup the integral equations

for the annular region. The representation formula for the solution of the Laplace equation in an

annulus, given u a solution to (3.0.1), is given by

u(x) =

∫

∂Da

(

u(y)
∂N

∂νy
(x, y) − ∂u

∂νy
(y)N(x, y)

)

ds(y)

=

∫

ΓII

(

u(y)
∂N

∂νy
(x, y) − ∂u

∂νy
(y)N(x, y)

)

ds(y)

+

∫

ΓI

(

u(y)
∂N

∂νy
(x, y) − ∂u

∂νy
(y)N(x, y)

)

ds(y).
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Using the boundary conditions from (3.0.1) gives

u(x) =

∫

ΓII

[

u(y)
1

2π
− g(y)N(x, y)

]

ds(y) −
∫

ΓI

∂u

∂νy
(y)N(x, y)ds(y) ⇔

u(x) =
1

2π

∫

ΓII

u(y)ds(y) −
∫

ΓII

g(y)N(x, y)ds(y) −
∫

ΓI

∂u

∂νy
(y)N(x, y)ds(y). (3.2.1)

Now setting ϕ(x) =
∂u

∂νx
(x)

∣

∣

∣

x∈ΓI

and inserting into (3.2.1) gives

u(x) − 1

2π

∫

ΓII

u(y)ds(y) = −
∫

ΓII

g(y)N(x, y)ds(y) −
∫

ΓI

ϕ(y)N(x, y)ds(y). (3.2.2)

For x away from ΓII the first integral on the RHS is well-defined and therefore is a function of x, i.e.

h(x) =

∫

ΓII

g(y)N(x, y)ds(y), x ∈ Da. (3.2.3)

The second integral is a Single layer potential [15] with the Neumann function as a kernel, and is

defined as

(SN ϕ)(x) :=

∫

ΓI

ϕ(y)N(x, y)ds(y), x ∈ Da. (3.2.4)

Whenever x ∈ ΓI this integral exists as an improper integral with a weakly singular kernel from

[15], the kernel is defined and continuous for all x, y ∈ ΓI, x Ó= y, and there exists positive constants

M and α ∈ (0, 2] such that

|N(x, y)| ≤ M |x − y|α−2
, x, y ∈ ΓI, x Ó= y.

This holds since if x is away from y, α = 2 and the logarithm is bounded by the linear curve. If

x is close to y, α can be set to 1 and the logarithm will be bounded by the reciprocal function.

The integral operator with a weakly singular kernel is proved in [15] to be compact. The case of

evaluating the normal derivative in the point x, is well-defined in a principal value approach and

this boundary behaviour will lead to a socalled jump relation.

Theorem 3.2.1 Let Da ⊂ R
2 be a bounded C2-domain and ϕ a continuous function on ΓI. Then

(SN ϕ)(x) is harmonic in R
2\ΓI, continuous across ΓI and the following jump relations holds for

every x ∈ ΓI, and a given z = x − ǫνx, ǫ > 0

lim
ǫ→+0

∂

∂νx
(SN ϕ)(z) =

∫

ΓI

∂

∂νx
N(x, y)ϕ(y)ds(y) − 1

2
ϕ(x), x ∈ ΓI (3.2.5)

Proof Let x ∈ ΓI and z = x − ǫνx ∈ Da such that |x − z| = |x − x + ǫνx| = ǫ, now let Bǫ(x) be

a circle with center in x and radius ǫ, hence formulating a new domain D′
a = Da \ Bǫ(x) with

boundary ∂D′
a = ΓII ∪ Γ′

I where Γ′
I = ΓI\ǫ ∪ Γǫ, ΓI\ǫ = ΓI \ (ΓI ∩ Bǫ(x)) and Γǫ = ∂Bǫ(x) ∩ Da as

illustrated in figure 3.3.

Consider the integral
∫

Γ
′
I

ϕ(y)N(x, y)ds(y) =

∫

ΓI\ǫ

ϕ(y)N(x, y)ds(y) +

∫

Γǫ

ϕ(y)N(x, y)ds(y).

Since x is not in the domain of integration these are well-defined integrals, and therefore the normal

derivative w.r.t. x is taken and trying to evaluate the integrals when ǫ → +0, i.e. first evaluating

the second integral

lim
ǫ→0

∂

∂νx

∫

Γǫ

ϕ(y)N(x, y)ds(y) = lim
ǫ→0

∫

Γǫ

ϕ(y)
∂

∂νx
N(x, y)ds(y), (3.2.6)
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Figure 3.3: The indented annulus D′
a, where x is the point of interest.

where

∂

∂νx
N(x, y)

∣

∣

∣

y∈Γǫ

=
1

2π
∇x (log(|x − y|) + log(|x − y∗|) + log|y|)·νx =

1

2π

(

(x − y) · νx

|x − y|2
+

(x − y∗) · νx

|x − y∗|2

)

.

For the dot product, the angle between the vectors x−y and νx are orientated in opposite directions,

inverting the vector x − y = −(y − x), the vector y − x gives the same direction as the normal

vector νx, when ǫ goes to zero. Therefore (x − y) · νx = −(y − x) · νx = −|y − x| = −ǫ, which

inserted into (3.2.6) yields

lim
ǫ→0

∫

Γǫ

ϕ(y)
∂

∂νx
N(x, y)ds(y) = lim

ǫ→0

1

2π

(

∫

Γǫ

ϕ(y)
−|y − x|
|x − y|2

ds(y) +

∫

Γǫ

ϕ(y)
(x − y∗) · νx

|x − y∗|2
ds(y)

)

= lim
ǫ→0

1

2π

(

−1

ǫ

∫

Γǫ

ϕ(y)ds(y) +

∫

Γǫ

ϕ(y)
(x − y∗) · νx

|x − y∗|2
ds(y)

)

.

From the Mean Value Theorem the first integral can be evaluated together with the arclength of Γǫ

which can be found from the equation for a corde of a circle K = 2r sin(v/2) = ǫ, where the angle

is between the two endpoints of the corde, i.e. looking at isosceles triangles, the arclength of the

boundary is ℓ (Γǫ) = ǫ
(

π + 2 arcsin
(

ǫ
2ri

))

, which leads to

lim
ǫ→0

1

2π

(

−1

ǫ
ǫ

(

π + 2 arcsin
(

ǫ
2ri

))

ϕ(x) +

∫

Γǫ

ϕ(y)
(x − y∗) · νx

|x − y∗|2
ds(y)

)

, (3.2.7)

because the functions in the integral in (3.2.7) are bounded, it will go to zero when ǫ → 0. The

limit is

lim
ǫ→0

− 1

2πǫ
ǫ

(

π − 2 arcsin
(

ǫ
2ri

))

ϕ(x) = −ϕ(x)

2
. (3.2.8)

Since the boundary is smooth and the functions are well-defined away from x, the other integral,

when taking the normal derivative and letting ǫ → 0, the boundary ΓI\ǫ will go towards the

boundary of the original inclusion ΓI, i.e.

lim
ǫ→0

∂

∂νx

∫

ΓI\ǫ

ϕ(y)N(x, y)ds(y) =

∫

ΓI

ϕ(y)
∂

∂νx
N(x, y)ds(y). (3.2.9)
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Combining (3.2.8) and (3.2.9), the jump relation for the single layer potential is given by

lim
ǫ→0

∂

∂νx
(SN ϕ)(z) =

∫

ΓI

∂

∂νx
N(x, y)ϕ(y)ds(y) − 1

2
ϕ(x),

where
∂

∂νx
(SN ϕ)(z) = ∇x(SN ϕ)(x − ǫνx) · νx.

The second jump relation, which is when z is in the inner circle, is derived in a similar way.

Considering the integral equation given by

u(x) − 1

2π

∫

ΓII

u(y)ds(y) = −h(x) − (SN ϕ)(x). (3.2.10)

Using the limit and the normal derivative w.r.t. x on the inner boundary on both sides in (3.2.10)

and Theorem 3.2.1, where z = x − ǫνx gives

∂u

∂νx
(x)

∣

∣

∣

x∈ΓI

= − ∂h

∂νx
(x)

∣

∣

∣

x∈ΓI

− lim
ǫ→0

∂

∂νx
(SN ϕ)(z)

∣

∣

∣

x∈ΓI

⇔

ϕ(x) = − ∂h

∂νx
(x)

∣

∣

∣

x∈ΓI

−
(

∫

ΓI

∂

∂νx
N(x, y)

∣

∣

∣

x∈ΓI

ϕ(y)ds(y) − 1

2
ϕ(x)

)

⇔

1

2
ϕ(x) = − ∂h

∂νx
(x)

∣

∣

∣

x∈ΓI

−
∫

ΓI

∂

∂νx
N(x, y)

∣

∣

∣

x∈ΓI

ϕ(y)ds(y) (3.2.11)

On the right hand side the two integrals w.r.t. the normal derivatives can be expressed explicitly,

since the domain and the Neumann function are known. Here the inner radius is defined as

|x| = |y| = ri, and now the two normal derivatives can be derived first for y ∈ ΓI

∂

∂νx
N(x, y)

∣

∣

∣

x∈ΓI

= − 1

4π

∂

∂r

(

log(r2 + r2

i − 2rri cos(θ − η)) + log(r2 + 1

r2
i

− 2r 1

ri
cos(θ − η)) + log(ri)

)∣

∣

∣

r=ri

= − 1

2π

(

r − ri cos(θ − η)

r2 + r2

i − 2rri cos(θ − η)
+

r − 1

ri
cos(θ − η)

r2 + 1

r2
i

− 2r 1

ri
cos(θ − η)

)

∣

∣

∣

r=ri

= − 1

2π

(

ri(1 − cos(θ − η))

2r2

i (1 − cos(θ − η))
+

ri − 1

ri
cos(θ − η)

r2

i + 1

r2
i

− 2 cos(θ − η)

)

= − 1

2π

(

1

2ri
+

ri − 1

ri
cos(θ − η)

r2

i + 1

r2
i

− 2 cos(θ − η)

)

seeing that the singularity is eliminated.

And now for y ∈ ΓII ⇒ y = eiv = y∗

∂

∂νx
N(x, y)

∣

∣

∣

x∈ΓI

= − 1

4π

∂

∂r

(

log(r2 + 1 − 2r cos(θ − η)) + log(r2 + 1 − 2r cos(θ − η))
)

∣

∣

∣

r=ri

= − 1

π

(

r − cos(θ − η)

r2 + 1 − 2r cos(θ − η)

)

∣

∣

∣

r=ri

= − 1

π

(

ri − cos(θ − η)

r2

i + 1 − 2ri cos(θ − η)

)

inserting into (3.2.11) gives

1

2
ϕ(x) =

1

π

∫

ΓII

g(y)
ri − cos(θ − η)

r2

i + 1 − 2ri cos(θ − η)
ds(y)

+
1

2π

∫

ΓI

ϕ(y)

(

1

2ri
+

ri − 1

ri
cos(θ − η)

r2

i + 1

r2
i

− 2 cos(θ − η)

)

ds(y),
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and the boundary integral equation on operator form is hereby
(

1

2
I − KN

)

(ϕ) =
1

π

∫

ΓII

g(y)
ri − cos(θ − η)

r2

i + 1 − 2ri cos(θ − η)
ds(y), (3.2.12)

where

(KN ϕ)(x) =
1

2π

∫

2π

0

ϕ(y)

(

1

2ri
+

ri − 1

ri
cos(θ − η)

r2

i + 1

r2
i

− 2 cos(θ − η)

)

ridη

=
1

2π

∫

2π

0

ϕ(y)

(

1

2
+

r2

i − cos(θ − η)

r2

i + 1

r2
i

− 2 cos(θ − η)

)

dη,

using the Jacobian to change the integration variables to polar coordinates, |J | = ri.

3.3 Verification of the BIE

In this section a known solution to the problem will be plugged into the equations to verify

that these are satisfied for the true circular inclusion. A function which satisfy the true inclusion is

taken as one of the solution derived in Appendix A.2, i.e. a function in polar coordinates

u(r, θ) =

((

r

ri

)n

−
(ri

r

)n
)

(cos(nθ) + sin(nθ))

which satisfy

∆u = 0, x ∈ Da,

u(ri, θ) = 0, x ∈ ΓI,

∂u

∂r
(ri, θ) = −2n (cos(nθ) + sin(nθ))

ri
= ϕ(θ), x ∈ ΓI,

u(1, θ) =

(

1

rn
i

− rn
i

)

(cos(nθ) + sin(nθ)) = f(θ), x ∈ ΓII,

∂u

∂r
(1, θ) =

(

1

rn
i

n + rn
i n

)

(cos(nθ) + sin(nθ)) = g(θ), x ∈ ΓII.

(3.3.1)

Now matlab is used for the comparison of LHS and RHS in (3.2.12). The numerical integration is

done using the trapezoidal rule, which is implemented in the function trapezrule from [9]. The

function uses the integrands as function handles, the implementation of the integrand functions in

matlab are seen below

1 function y = intTrialK(phi_handle,t,s,ri)

2 % Integrand for LHS integral with phi(theta)

3 y = phi_handle(t).*(1/2+(ri^2-cos((s-t)))./(ri^2+(1/ri^2)-2*cos((s-t))));

1 function y = intTrialH(g_handle,t,s,ri)

2 % Integrand for RHS integral, with g(theta)

3 y = g_handle(t).*((ri-cos((s-t)))./(ri^2+1-2*ri*cos((s-t))));

Setting up the LHS and RHS with K and H (RHS integral) found using the trapezoidal rule

LHS:
1

2
ϕ(x) − 1

2π
(KN ϕ)(x),

RHS:
1

π
H.

Computing the infinity-norm of the difference between LHS and RHS, using 100 discretization

points and different values of n results in the following table
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n 2 4 6 8 10

‖LHS − RHS‖∞ 8.88e-15 3.02e-14 1.29e-13 1.20e-12 4.41e-12

this is almost the machine number 2.22e-16, which is interpreted as 0, which shows that the

boundary integral equations is set up correct.

3.4 Conclusion

The scope of this project is to try to evaluate u on the outer boundary with regards to an

approximation of the inner boundary using B-splines. This chapter was an overview of the setup

of the equations and to verify that they are correct, if the true inclusion is a circle. Therefore a

generalized system of equations has to be set up, where it is taken into account that the inner

boundary is approximated using B-splines.



Chapter 4
General Inclusion

In this chapter the generalized problem is set up using the theory from [15], for the setup of

the boundary integral equations to use in the boundary element method. To remember which

boundaries the variables in the integrals are over respectively, the following single and the normal

derivative of the single layer potential are introduced

(S
(Φ,Ψ)

N u)(x) :=

∫

Φ

u(y)N(x, y)ds(y), x ∈ Ψ

(K
(Φ,Ψ)

N u)(x) :=
∂

∂νx
(S

(Φ,Ψ)

N u)(x) =

∫

Φ

u(y)
∂

∂νx
N(x, y)ds(y), x ∈ Ψ,

where the pair Φ, Ψ ∈ {ΓI, ΓII} according to which boundary the density function u is integrated

over.

When Φ Ó= Ψ the integrals are bounded and therefore continuous. When Φ = Ψ the notation

will be for the two respectively, with regards to jump relations as explained in the previous chapter,

that is

(S
(Φ)

N u)(x) :=

∫

Φ

u(y)N(x, y)ds(y), x ∈ Φ

lim
ǫ→+0

∂

∂νx
(SΦ

N u)(z) = (K
(Φ)

N u)(x) − 1

2
u(x) :=

∫

Φ

u(y)
∂

∂νx
N(x, y)ds(y) − 1

2
u(x), x ∈ Φ,

where z = x − ǫνx, ǫ > 0.

4.1 Setup of the general boundary integral equations

The forward problem is stated as follows. Given an induced current g ∈ H−1/2(ΓII) on the

outer boundary
∂u

∂ν
(x) = g(x), x ∈ ΓII,

as u ∈ H1(Ω), where Ω denotes the open domain between ΓI and ΓII. Solve the generalized

boundary integral equation, x ∈ ΓI

(

1

2
I + K

(ΓI)

N

)

(ϕ)(x) = −
(

K
(ΓII,ΓI)

N g
)

(x) (4.1.1)

for ϕ(x) ∈ H−1/2(ΓI) and K
(ΓII,ΓI)

N : H−1/2(ΓII) → H−1/2(ΓI), K
(ΓI)

N : H−1/2(ΓI) → H−1/2(ΓI)

and let the inner boundary be approximated by B-splines. Then the representation formula (3.2.1)

is used, to find an approximation to the measured voltage distribution f ∈ H1/2(ΓII). That is to

find an approximation

u(x) = f(x), x ∈ ΓII,

21
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using the formula for x ∈ ΓII

u(x) − 1

2π

∫

ΓII

u(y)ds(y) = −
(

S
(ΓII)

N g
)

(x) −
(

S
(ΓI,ΓII)

N ϕ
)

(x).

The LHS is the function minus the average value of the function on the outer boundary, and letting

this be defined as

f̂(x) := u(x) − 1

2π

∫

ΓII

u(y)ds(y).

The problem is now, find ϕ in (4.1.1) to obtain f̂ from

f̂(x) = −
(

S
(ΓII)

N g
)

(x) −
(

S
(ΓI,ΓII)

N ϕ
)

(x). (4.1.2)

The equations (4.1.1) and (4.1.2) can be set up as a linear system of boundary integral equations,

using the following matrix notation





1

2
I + K

(ΓI)

N 0

S
(ΓI,ΓII)

N I





[

ϕ

f̂

]

=

[

−K
(ΓII,ΓI)

N g

−S
(ΓII)

N g

]

, (4.1.3)

where I is the identityoperator and 0 is the null operator. This relation can be used when the

integrals and domains have been discretized. A discretization is necessary to evaluate this, since I

is only compact if it maps finite dimensional spaces.

4.2 Discretization of the geometry

The geometry is discretized by letting the inner boundary ΓI be approximated by a B-spline

curve

ΓI :=
{

γ(t) ∈ S
Ξ

k | t ∈ [0, 1]
}

,

where the curve is defined by a number of control points pi, knot vector Ξ and B-spline pieces

N k
i (t) of order k, e.g.

γ(t) =
∑

i

piN k
i (t).

Using this in (4.1.1) and letting x = γ(s) for some fixed s ∈ [0, 1], and evaluating the normal

derivative of the Neumann function for an arbitrary regular inner boundary and for the circular

outer boundary, where x ∈ ΓI, i.e.

∂

∂νx
N(x, y) =

1

2π

(

x − y

|x − y|2
+

x − y∗

|x − y∗|2

)

· νx, y ∈ ΓI

∂

∂νx
N(x, y) =

1

π

(

x − y

|x − y|2

)

· νx, y ∈ ΓII. (4.2.1)

The Jacobian for the integral on the inner boundary is |J | = |γ̇(t)| and for the outer boundary

|J | = 1. The normal vector w.r.t. x is therefore νx =
ˆ̇γ(s)

|γ̇(s)| , the first part of the system of

equations is now for x ∈ ΓI

(

1

2
I + K

(ΓI)

N

)

(ϕ)(x) = −
(

K
(ΓII,ΓI)

N g
)

(x)

1

2
ϕ(x) +

∫

ΓI

ϕ(y)
∂

∂νx
N(x, y)ds(y) = −

∫

ΓII

g(y)
∂

∂νx
N(x, y)ds(y)
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where the approximated spline γ is included and this evaluates to

1

2
ϕ(γ(s)) +

1

2π

∫

1

0

ϕ(γ(t))

(

γ(s) − γ(t)

|γ(s) − γ(t)|2
+

γ(s) − γ∗(t)

|γ(s) − γ∗(t)|2

)

·
ˆ̇γ(s)

|γ̇(s)| |γ̇(t)|dt

= − 1

π

∫

ΓII

g(y)

(

γ(s) − y

|γ(s) − y|2

)

·
ˆ̇γ(s)

|γ̇(s)|ds(y).

(4.2.2)

The second part, where x ∈ ΓII, is given by

f̂(x) = −
(

S
(ΓII)

N g
)

(x) −
(

S
(ΓI,ΓII)

N ϕ
)

(x) (4.2.3)

= − 1

π

∫

ΓII

g(y) log|x − y|ds(y) − 1

2π

∫

1

0

ϕ(γ(t)) (log|x − γ(t)| + log(|γ(t)||x − γ∗(t)|)) dt.

The boundary has now been discretized by piecewise polynomials which the B-spline curve are.

The outer boundary is fixed and this is discretized by

ΓII :=
{

z(t) = ei2πt | t ∈ [0, 1]
}

,

or using corresponding R
2 terminology as z(t) = (x(t), y(t)) = (cos(2πt), sin(2πt)). The boundary

element method is now, to take a finite number of control points, which approximates the inner

boundary by polynomial pieces and then evaluate the functions on each of these pieces using a

discretization scheme. In this project quadratic polynomial pieces are used.

4.3 Boundary Element Method

The Boundary Element Method is used for solving these kinds of integral equations as seen in [3].

It is done here by a collocation scheme, where the functions are evaluated on a finite set. This means

to project the problem of functions in infinite dimensional Hilbert spaces to a finite dimensional

space and require that equality of the functions are satisfied on this finite set. As explained for the

geometry γ ∈ S
Ξ

3
. Now choose collocation points uniformly {0 = t1 < t2 · · · < tnel−1 < tnel

= 1}
and t = (t1, . . . , tnel

)
T

. Like the geometry also the functions ϕ and f̂ can be discretized using

B-splines. In this case the approximation is done with piecewise constant functions ϕ, f̂ ∈ S
t

1
, where

the constant coefficients ϕ(γ(si)) = ϕ̃i and f̂(z(si)) = f̂i with si =
ti + ti+1

2
is taken as the value

at the midpoint between two discretization points and hence

ϕ(x) = ϕ(γ(t)) =

nel−1
∑

i=1

ϕ̃iN 1

i (t) =

nel−1
∑

i=1

ϕ̃i1[ti,ti+1](t)

f̂(x) = f̂(z(t)) =

nel−1
∑

i=1

f̂iN 1

i (t) =

nel−1
∑

i=1

f̂i1[ti,ti+1](t).

(4.3.1)

Using (4.3.1) on the integral equations for a fixed x = γ(si), the first integral equation gives

1

2
ϕ̃i +

1

2π

nel−1
∑

j=1

ϕ̃j

∫ tj+1

tj

(

γ(si) − γ(t)

|γ(si) − γ(t)|2
+

γ(si) − γ∗(t)

|γ(si) − γ∗(t)|2

)

·
ˆ̇γ(si)

|γ̇(si)|
|γ̇(t)|dt

= −2

∫

1

0

g(y(t))

(

γ(si) − y(t)

|γ(si) − y(t)|2

)

·
ˆ̇γ(si)

|γ̇(si)|
dt.
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The second integral equation is given by

f̂i = −2

∫

1

0

g(y(t)) log|x(si) − y(t)|dt − 1

2π

nel−1
∑

j=1

ϕ̃j

∫ tj+1

tj

log|x(si) − γ(t)| + log(|γ(t)||x(si) − γ∗(t)|)dt ⇐⇒

1

2π

nel−1
∑

j=1

ϕ̃j

∫ tj+1

tj

log|x(si) − γ(t)| + log(|γ(t)||x(si) − γ∗(t)|)dt + f̂i = −2

∫

1

0

g(y(t)) log|x(si) − y(t)|dt.

(4.3.2)

The above two equations can be set up as two coupled linear system of equations as

(

1

2
I +

1

2π
K

)

ϕ̃ = −2H,

1

2π
Sϕ̃ + f̂ = −2G,

(4.3.3)

which can be combined using matrix notation as





1

2
I +

1

2π
K 0

1

2π
S I





[

ϕ̃

f̂

]

=

[

−2H

−2G

]

(4.3.4)

where I is the identitymatrix and 0 the null matrix of only zeros, which both are of size (nel − 1) ×
(nel−1), ϕ̃ = (ϕ̃1, . . . , ϕ̃nel−1)

T
, f̂ =

(

f̂1, . . . , f̂nel−1

)T

. K, S are matrices of size (nel−1)×(nel−1)

and H, G are vectors sized (nel − 1) × 1 with elements given by

Ki,j =

∫ tj+1

tj

(

γ(si) − γ(t)

|γ(si) − γ(t)|2
+

γ(si) − γ∗(t)

|γ(si) − γ∗(t)|2

)

·
ˆ̇γ(si)

|γ̇(si)|
|γ̇(t)|dt (4.3.5)

Si,j =

∫ tj+1

tj

log|x(si) − γ(t)| + log(|γ(t)||x(si) − γ∗(t)|)dt (4.3.6)

Hi =

∫

1

0

g(y(t))

(

γ(si) − y(t)

|γ(si) − y(t)|2

)

·
ˆ̇γ(si)

|γ̇(si)|
dt (4.3.7)

Gi =

∫

1

0

g(y(t)) log|x(si) − y(t)|dt. (4.3.8)

When i = j in (4.3.5) some problems, related to singularities in the integral, might occur. Therefore

some singularity evaluation must be taken into account, but as seen in the previous chapter and from

[15] improper integrals are in fact compact and therefore bounded, implying that the singularity

can be evaluated.

4.3.1 Singularity evaluation

The above mentioned singularity for K occurs si ∈ [tj , tj+1] which means sj and comes from

the part of the integral related to the fundamental solution of Laplace equation.

∫ tj+1

tj

(

γ(sj) − γ(t)

|γ(sj) − γ(t)|2
+

γ(sj) − γ∗(t)

|γ(sj) − γ∗(t)|2

)

·
ˆ̇γ(sj)

|γ̇(sj)| |γ̇(t)|dt ⇔

∫ tj+1

tj

(

γ(sj) − γ(t)

|γ(sj) − γ(t)|2

)

·
ˆ̇γ(sj)

|γ̇(sj)| |γ̇(t)|dt +

∫ tj+1

tj

(

γ(sj) − γ∗(t)

|γ(sj) − γ∗(t)|2

)

·
ˆ̇γ(sj)

|γ̇(sj)| |γ̇(t)|dt

This corresponds to the first integral, since the second is bounded and therefore continuous. In

order to evaluate the singularity a Taylor expansion is performed around the source point sj , 〈·, ·〉
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and · will be used to represent the same inner product in R
2. The little "o" notation is used. For

simplicity s is now written instead of sj

γ(t) = γ(s) + γ̇(s)(t − s) +
1

2
γ̈(s)(t − s)2 + o

(

(t − s)
3

)

⇔

γ(s) − γ(t) = γ̇(s)(s − t) − 1

2
γ̈(s)(s − t)2 + o

(

(s − t)
3

)

⇔

(γ(s) − γ(t)) · ˆ̇γ(s) = −1

2
γ̈(s) · ˆ̇γ(s)(s − t)2 + o

(

(s − t)
3

)

(4.3.9)

Taking the norm squared on both sides and using the inner product rules for R
2 gives

|γ(s) − γ(t)|2 =
〈

γ̇(s)(s − t) − 1

2
γ̈(s)(s − t)2 + o

(

(s − t)
3

)

, γ̇(s)(s − t) − 1

2
γ̈(s)(s − t)2 + o

(

(s − t)
3

)〉

= |γ̇(s)|2(s − t)2 +
〈

γ̇(s)(s − t), −1

2
γ̈(s)(s − t)2

〉

+
〈

−1

2
γ̈(s)(s − t)2, γ̇(s)(s − t)

〉

+ o
(

(s − t)
4

)

= |γ̇(s)|2(s − t)2 − γ̇(s) · γ̈(s)(s − t)3 + o
(

(s − t)
4

)

. (4.3.10)

Combining (4.3.9) and (4.3.10), the following holds

(γ(s) − γ(t)) · ˆ̇γ(s)

|γ(s) − γ(t)|2
=

− 1

2
γ̈(s) · ˆ̇γ(s)(s − t)2 + o

(

(s − t)
3

)

|γ̇(s)|2(s − t)2 − γ̇(s) · γ̈(s)(s − t)3 + o
(

(s − t)
4

)

=
− 1

2
γ̈(s) · ˆ̇γ(s)(s − t)2 + o

(

(s − t)
3

)

|γ̇(s)|2(s − t)2

(

1 − γ̇(s)·γ̈(s)(s−t)3

|γ̇(s)|2
(s−t)2 + o

(

(s − t)
2

)) (4.3.11)

using the geometric sequence
∑

i

xi−1 =
1

1 − x
, where |x| < 1, for the expansion in (4.3.11)

(γ(s) − γ(t)) · ˆ̇γ(s)

|γ(s) − γ(t)|2
= −1

2

γ̈(s)ˆ̇γ(s) + o ((s − t))

|γ̇(s)|2

(

1 +
γ̇(s)γ̈(s)(s − t)

|γ̇(s)|2
+ o

(

(s − t)
2

)

)

= −1

2

γ̈(s)ˆ̇γ(s)

|γ̇(s)|2
+ o ((s − t)) ⇔

(γ(s) − γ(t)) · ˆ̇γ(s)

|γ(s) − γ(t)|2|γ̇(s)|
= −1

2

γ̈(s) · ˆ̇γ(s)

|γ̇(s)|3
+ o ((s − t)) . (4.3.12)

The last term in the kernel is

|γ̇(t)| = |γ̇(s) + γ̈(s)(t − s) + o
(

(t − s)
2

)

|

≤ |γ̇(s)| + |γ̈(s)||s − t| + o
(

|s − t|2
)

, (4.3.13)

from triangle inequality, which combined with (4.3.11) gives the following constant approximation

to the kernel whenever s is in the domain of integration, i.e.

(γ(s) − γ(t))

|γ(s) − γ(t)|2
·

ˆ̇γ(s)|γ̇(t)|
|γ̇(s)| = −1

2

γ̈(s) · ˆ̇γ(s)|γ̇(s)|
|γ̇(s)|3

+ o ((s − t))

= −1

2

γ̈(s) · ˆ̇γ(s)

|γ̇(s)|2
+ o ((s − t)) (4.3.14)

The consideration here is that the approximation of the function ϕ and f̂ is by piecewise constant

functions, which means that it should be reasonable to approximate the kernel by a constant as

well. When x is in the domain of integration the computation of the matrix K is given by

Kj,j = Cj(tj+1 − tj) +

∫ tj+1

tj

(

γ(sj) − γ∗(t)

|γ(sj) − γ∗(t)|2

)

·
ˆ̇γ(sj)

|γ̇(sj)| |γ̇(t)|dt (4.3.15)
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where Cj is the constant coming from the RHS in (4.3.14). The next section shows the implemen-

tation of the forward problem.

4.4 Implementation of the Forward problem

In this section the matlab implementation of the forward problem is described. To simplify and

evaluate the validicity of the equations set up, there has been used already implemented methods

for numerical integration and use of matlab’s spline Toolbox [6].

For the implementation of the geometry the function spmak is used to make the spline

approximation of the boundary. The function takes as inputs a matrix with coefficients for the

control polygon and a knot vector, where the knots are specified for the spline, it returns a struct

form which specifies the form as basis form, the knot vector, the coefficient matrix, the number of

polynomial pieces, the order of the spline and the corresponding dimensions. For evaluating the

derivative of the spline curve the function fnder is used, which takes as input a spline, created

by spmak and gives out the corresponding differentiated spline curve of degree one less than the

original.

The implementation of the forward problem, is to set up the system of linear equations based

on the discretization of the integral equations. First the integrands are set up in different matlab

functions, which is done for the matrix system given in (4.3.4). The implementation and relation

for the integrands to the implemented solver is seen in figure 4.1.

Figure 4.1: The implemented solver and relation to the integrands.

A matlab function has been implemented and called ForwardProblemSolver to solve the

forward problem as suggested by the name. The full code can be reviewed in Appendix B.2 and

it is described in Algorithm 4.1. It takes as input the function g(t) as a function handle for the

induced current, it then takes either a coefficient matrix p of control points and a knot vector Ξ

for creation of the spline inclusion otherwise the values for number of control points ncp, the order

k of the spline and the radius ri of the circular inclusion. It also takes the number of discretization

points nel and the outer boundary in a function handle z(t).

In Algorithm 4.1 use of the backslash operator \ implemented in matlab to solve the linear

system of equations to get the vector ϕ̃ and f̂ of constants. The next section describes the results

of the implementation.



4.5. RESULTS 27

Algorithm 4.1 Forward Problem Solver

Require: g(t), knots Ξ, coefs P , points nel

1: Create spline boundary using spmak and discretization points t and s

2: Setup of the splines and the constant C derived from Taylor expansion (4.3.14)
3: γ(s), γ̇(s), γ̈(s), ν(γ(s)), |γ̇(s)|, C
4: Compute H and G using (4.3.7),(4.3.8) and trapezrule

5: Allocate full arrays K and S

6: for j=1 to length(s) do

7: Compute K(j,j) for x in domain of integration using (4.3.15) and trapezrule

8: Compute K(i,j) i Ó= j using (4.3.5) and trapezrule

9: Compute S(:,j) using (4.3.6) and trapezrule

10: end for

11: Setup A = [1/2I + 1/(2π)K, 0; 1/(2π)S, I] and b = [−2H; −2G]
12: c = A\b

13: ϕ̃ = c(1 : nel − 1)

14: f̂ = c(nel : end)

4.5 Results

The first example is regarding knowledge of the inclusion as a circle, which is approximated

by order k = 3 B-splines pieces like example 2.2.1 where like previous example using the function

coming from separation of variables found in Appendix A.2, therefore it is possible to compare to

the real values of ϕ and f from (3.3.1). For reminder the Cauchy-data and calculated values for ϕ

and f are given by

g(θ) = n

(

1

rn
i

+ rn
i

)

(cos(nθ) + sin(nθ))

f(θ) =

(

1

rn
i

− rn
i

)

(cos(nθ) + sin(nθ))

ϕ(θ) = −2n (cos(nθ) + sin(nθ))

ri
,

(4.5.1)

where θ ∈ [0, 2π]. The integral of f over the outer boundary is 0, so no information of the signal

is lost in the approximation, when comparing with the approximated f̂ . Setup of the spline by

making 4 and 12 control point as the corners of a regular polygon where the incircle corresponds to

the true inclusion, there will therefore be 4 and 12 polynomial pieces which will not be an exact

circle, but an approximation using quadratic B-splines. Using ForwardProblemSolver to solve

with nel = 40 discretization points, gives the following piecewise constant approximation ϕ̃ and f̂

with the relative error for f̂ evaluated in the discretization points.

Figure 4.2 shows the approximations of ϕ. It is seen that it approximates the analytical solution

better as the number of control points increases, which is because the inclusion spline is closer to

the real circle. The corresponding approximate f̂ of f is seen in figure 4.3

Figure 4.3 again shows a close approximation to the real values. To get an idea of how close a

plot of the relative error in each discretization point is shown in figure 4.4

From figure 4.4 it is seen that the relative error from the use of 4 control points is between

2.7 · 10−2 and 4.5 · 10−2, when the number of control points are increased the error is between

1.8 · 10−5 and 6.5 · 10−3, the difference in the error between the number of control point suggests a

closer approximation of the circle will decrease the corresponding error. Actually after a certain

number of control points the error is not decreasing anymore and the sum of the errors will be

steady at around 10−4, which could suggest that a less simplified method could be better.
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Figure 4.2: The piecewise constant function ϕ̃ and the analytical ϕ for 4 and 12 control points
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Figure 4.3: The piecewise constant function f̂ and the analytical f for respectively 4 and 12
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4.6 Conclusion

A method of obtaining the Neumann to Dirichlet map using boundary integral equations, with

the boundary element method, has been set up and examined using the solution obtained from

separation of variables. It should be mentioned that the linear system of equations is close to

singular, from the matrix
1

2
I, since the determinant of this is det

(

1

2
I

)

=
1

2nel−1
, which means

that when more elements is added the determinant of the full matrix will get closer to zero. The

condition number of the matrix is though stable at around 2. The almost singular matrix, could

imply that it would get wrong solutions or none at all, but theory from [15] states that these kind

of operators has in fact a compact inverse, and therefore continuing with the solutions given from

this, without making any regularization of the matrix. The method of integration is chosen, since

the already implemented quadrature rules were not satisfying for a periodic function. A method

where the quadrature is based on fourier series or from new research of quadrature of potentials

[14], could have been a better choice, but this is left for discussion. The equations has been set up

and implemented as given any type of spline inclusion and an induced current it will return the

dirichlet data minus the average value of it. Since test Cauchy data is only analytically found for a

concentric circular inclusion, it is necessary to find a way to determine Cauchy data for other types

of inclusions.





Chapter 5
Conformal mapping

In this chapter theory from complex analysis will be utilized, with regards to the previously

calculated annular domain. The goal of this chapter is to find a way to obtain Cauchy-data

representing other types of inclusions. The annulus has an important property coming from the

Riemann mapping theorem for doubly connected domains, which states that any doubly connected

domain are conformally equivalent to the annulus. This means that given an inclusion of arbitrarily

shape there exists a conformal map which takes the boundary of the inclusion to a concentric circle.

First some preliminaries of complex funtion theory, where the text book used is [21].

5.1 Analytic functions

There exists some of the same properties for complex valued functions as for real valued function,

i.e. same reasoning for continuity and differentiability, there are though some additional properties.

For example with differentiability a complex valued function f on an open set Ω of complex numbers

is said to be holomorphic (or analytic) at the point z0 ∈ Ω if the limit of the qoutient

f ′(z0) = lim
h→0

f(z0 + h) − f(z0)

h
,

exists, here h ∈ C, h Ó= 0 and z0 + h ∈ Ω. The difference from real valued functions are here

that h is a complex number and can approach zero from any direction. Let z = x + iy with

i =
√

−1, be a complex number and z̄ = x − iy denoting the complex conjugate for x, y and

f(z) = f(x, y) = u(x, y) + iv(x, y) where u, v are real functions, if f is holomorphic the important

Cauchy-Riemann equations are given by

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= − ∂v

∂x
.

Then defining two differential operators

∂

∂z
=

1

2

(

∂

∂x
+

1

i

∂

∂y

)

and
∂

∂z̄
=

1

2

(

∂

∂x
− 1

i

∂

∂y

)

.

Now proving exercise 12, chapter 2 in [21] which states that any real-valued twice differentiable

harmonic function defined in the unit disc D := {z ∈ C | |z| < 1} is the real part of a holomorphic

function in the same region.

Theorem 5.1.1 Let u ∈ C2(D) be harmonic, where D is the unit disc, that is

∆u(x, y) = 0,

for all (x, y) ∈ D. Then ∃f holomorphic on D s.t.

Re(f) = u.

31
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Proof : Using the two differential operators

∂

∂z̄

∂

∂z
=

1

2

(

∂

∂x
− 1

i

∂

∂y

)

1

2

(

∂

∂x
+

1

i

∂

∂y

)

(5.1.1)

=
1

4

(

∂2

∂x2
+

∂2

∂y2

)

. (5.1.2)

Now let g(z) = 2 ∂u
∂z then ∂g

∂z̄ = 2 ∂
∂z̄

∂
∂z u = 0, since u is harmonic. From theorem 2.4 in [21] shows

that g is holomorphic in the disc, since it satisfies Cauchy-Riemann equations. Hence from theorem

2.1 in [21], which states that a holomorphic function in an open disc has a primitive in that disc,

e.g. ∃F s.t. F ′ = g. Then
∂Re(F )

∂z
=

1

2

F

∂z
=

1

2
g =

∂u

∂z
, (5.1.3)

by proposition 2.3 on page 12 [21]. From (5.1.3) Re(F ) differs from u by a constant u0, then if

f(z) = F (z) − u0, f is holomorphic and the real part Re(f) = u.

This shows that any harmonic function is the real part of a holomorphic function, which can be

utilized for the problem in this project.

Now what is interesting is conformal mappings or biholomorphic mappings. Which is defined as

a bijective holomorphic mapping f : U → V is called a conformal map or a biholomorphism.

5.2 Automorphisms of the unit disc

In this project the outer boundary has been assumed to be ∂D. To move the inclusion to either

a non-concentric circle or an inclusion of another shape, considering the conformal mappings known

as automorphisms Aut(D) which are conformal mappings which maps the open disc to itself. For

the unit disc there is obviously the identity map z Ô→ z but also rotations of the form z Ô→ eiθz

with inverse z Ô→ e−iθz. For not so simple mappings, consider the group of Möbius transformations,

given by

Definition 5.2.1 (Möbius Transformation) Let CP = C ∪ {∞}, and Φ : CP → CP, then Φ is a

Möbius transformation if it has the form with corresponding matrix formulation

Φ(z) =
az + b

cz + d
∼

[

a b

c d

] [

z

1

]

=

[

az + b

cz + d

]

, (5.2.1)

where a, b, c, d ∈ C and det

([

a b

c d

])

= ad − bc Ó= 0.

The Möbius transformation given by

Ψα(z) =
α − z

1 − ᾱz
, (5.2.2)

where α ∈ C with |α| < 1 is of special interest. Here it is not apparent that Ψα ∈ Aut(D) but as a

short explanation from the book if |z| = 1, then z = eiθ and

Ψα(eiθ) =
α − eiθ

1 − ᾱeiθ
= e−iθ α − eiθ

e−iθ − ᾱ
= e−iθ w

w̄
⇒ (5.2.3)

|Ψα(eiθ)| = |e−iθ w

w̄
| = 1. (5.2.4)

From the maximum modulus principle, concluding that |Ψα(z)| < 1 for all z ∈ D, which means

that it maps D → D. Furthermore it is self-inverse, here another approach compared to the book,
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where the matrix representation of the Möbius transform is observed, where the first row are the

values to the nominator a, b and the second row b, d correspond to the denominator

Ψα(z) =
α − z

1 − ᾱz
∼

[

−1 α

−ᾱ 1

] [

z

1

]

=

[

α − z

1 − ᾱz

]

(5.2.5)

and by matrix multiplications, this leads to

Ψα(Ψα(z)) =

[

−1 α

−ᾱ 1

] [

α − z

1 − ᾱz

]

=

[

z − α + α − |α|2z

−|α|2 + ᾱz + 1 − ᾱz

]

=

[

(1 − |α|2)z

1 − |α|2

]

=

[

z

1

]

= z. (5.2.6)

This shows that Ψα is an automorphism of the unit disc with itself as inverse. From Theorem 2.2

in [21] it is shown that if f is an automorphism of the disc then ∃θ ∈ R and α ∈ D s.t.

f(z) = eiθ α − z

1 − ᾱz
. (5.2.7)

A property of the Möbius transformations are that they map circles to circles and lines to lines.

Lemma 5.2.2 Möbius transformations maps circles to circles.

Proof The lemma is proven by a direct computation. The equation for a circle in the plane is

given by

x2 + y2 + ax + by + c = 0,

for some choices of a, b and c. Now set z = x + iy Ó= 0 and 1

z = u + iv, then

u = Re

(

1

x + iy

)

= Re

(

x − iy

x2 + y2

)

=
x

x2 + y2

x = Re

(

1

u + iv

)

= Re

(

u − iv

u2 + v2

)

=
u

u2 + v2

v = Im

(

1

x + iy

)

= Im

(

x − iy

x2 + y2

)

=
−y

x2 + y2

y = Im

(

1

u + iv

)

= Re

(

u − iv

u2 + v2

)

=
−v

u2 + v2
,

which is inserted into the equation for a circle, e.g.

u2

(u2 + v2)
2

+
v2

(u2 + v2)
2

+
au

u2 + v2
+

−bv

u2 + v2
+ c = 0 ⇔

u2 + v2 + au(u2 + v2) − bv(u2 + v2)

(u2 + v2)
2

+ c = 0 ⇔

1 + au − bv

u2 + v2
+ c = 0 ⇔

1 + au − bv + c(u2 + v2) = 0,

which is again a circle if c Ó= 0, if c = 0 this is a line, but saying that lines equal circles connected

at ∞. This means that the Möbius transform z Ô→ 1/z maps circles which does not pass through

the origin to circles and circles which goes through the origin to lines.

5.3 Relation to the forward problem

The previously observed problem of an inclusion which is a concentric circle is of special

importance, since the Riemann mapping theorem for doubly connected domains (Theorem 1.2 in
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[23]) states that any doubly connected domain can be conformally mapped to an annulus. This

can be used to map our previously annular problem to a problem with a different inclusion if the

conformal map is known. Let Da denote the annulus Da := {z ∈ C | ri < |z| < 1} and set the two

circles CI := {z ∈ C | |z| = ri} and CII := {z ∈ C | |z| = 1} as the boundaries of the annulus. Let ΓI

and ΓII denote the boundaries of another doubly connected domain, then there exist a conformal

map Ψ, which maps CI to ΓI and CII to ΓII. Now let Ψα ◦ θ = γ ◦ ψ, where θ is w.r.t. CII, i.e.

given by θ(t) :=
{

eit | t ∈ [0, 2π]
}

and γ relates to the boundary of ΓII, since from the previous

section Ψα maps the boundary of the unit disc to itself, or can equivalently be set as θ, therefore

eiψ(t) = Ψα(eit) ⇔ ψ(t) =
1

i
log

(

α − eit

1 − ᾱeit

)

. (5.3.1)

Now let α = ρeis where 0 ≤ ρ < 1 and s ∈ [0, 2π] and plug in, with some none trivial calculations

using trigonometric equations, this evaluates to

ψ(t) = s + 2 arctan

(

1 + ρ

1 − ρ
tan

(

1

2
(t − s)

))

, (5.3.2)

with corresponding derivative

ψ′(t) =
1 − ρ2

1 + ρ2 − 2ρ cos (t − s)
. (5.3.3)

Now if u is the real part of a holomorphic function h, which is harmonic in the annulus and satisfying

the boundary conditions and it is conformally mapped to another domain, then k = Ψα ◦ h will

be holomorphic in this region, where v = Re(k) will be a harmonic function, which satisfies the

transfered boundary conditions. The new Cauchy-data f̃ = f ◦ ψ and g̃ = (g ◦ ψ)ψ′, which comes

from the chain rule combined with Cauchy-Riemann equations as explained in [1]. This mapping

is uniquely determined up to rotation for this non-concentric circle inclusion, the new problem is

shown in figure 5.1.

Figure 5.1: The mapping of the annular problem to the problem with a non-concentric circle

inclusion.

Regarding this transformed problem, it is possible to solve the forward problem with this new

inclusion and see how the corresponding Cauchy-data will interact compared to the analytically

derived.
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5.4 Results

The forward problem is transfered from the domain of an annular region to a region with a

non-concentric circle. This is done as in figure 5.1, as a solution to the annular region, using (3.3.1)

for f and g, e.g. the transfered Cauchy-data are given by

f̃(θ) = f(ψ(θ)) =

(

1

rn
i

− rn
i

)

(cos(nψ(θ)) + sin(nψ(θ))) (5.4.1)

g̃(θ) = g(ψ(θ))ψ′(θ) = n

(

1

rn
i

+ rn
i

)

(cos(nψ(θ)) + sin(nψ(θ))) ψ′(θ), (5.4.2)

where ψ and ψ′ are as defined in (5.3.2) and (5.3.3) and ri are the radius of the inclusion of the

inclusion of the annular domain. In matlab the first thing is to transform the control points of

the B-spline curve γ(t), since R
2 are associated with C the control points can be changed with a

function handle, first define α = ρeis and then set up the function handle as

1 alpha = rho*exp(1i*s);

2 psi_alpha = @(z)(alpha*ones(length(z),1)-z)./(1-conj(alpha)*ones(length(z),1).*z);

Example Let α = 0.6eiπ/2 and make 6 control point as a hexagon, where the incircle is the circle

of radius ri = 0.3, can be done with the implemented matlab function regPol(p,ri), where

p = 6 here. The corresponding control points including phantom control points are now

coefs =

[

0.3000 0.3000 0.0000 −0.3000 −0.3000 0.0000 0.3000 0.3000

−0.1732 0.1732 0.3463 0.1732 −0.1732 −0.3463 −0.1732 0.1732

]

,

with corresponding knot vector for uniform knots with 10 knots

knots =
[

−0.3333 −0.1667 0.0000 . . . 0.5000 . . . 1.000 1.1667 1.3333
]

.

The transformation of this example is shown in figure 5.2.
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Figure 5.2: The mapping of 6 control points by α = 0.6eiπ/2, where γ(t) is the quadratic B-spline

representation of ΓI.
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Now to the solution of the forward problem, with these new control points, knot vector and g̃

defined as in (5.4.2) along with a number of discretization points here nel = 80 and choose a n = 1.

Then as explained in the chapter of the generalised inclusion, the f̂ which is computed is actually

f̂(x) = u(x) − 1

2π

∫

ΓII

u(x)ds(x),

where x is the restriction of u to ΓII. Which means that the comparison is between this and the

difference, with abuse of notation

f̃(t) = f̃(t) −
∫

1

0

f̃(t)dt,

where t ∈ [0, 1] and the integral is computed using the trapezoidal rule. This is implemented in

matlab as

1 %The angular transformation

2 phi =@(t)s+2*atan((1+rho)/(1-rho)*tan(pi*t-1/2*s));

3 dphi = @(t)(1-rho^2)./(1-2*rho*cos((2*pi*t)-s)+rho^2);

4 % Induced current and analytical voltage on outer boundary

5 n1 = 1;

6 g = @(t,ri) (1/(ri^(n1))*n1+ri^n1*n1)*(cos(n1*phi(t))+sin(n1*phi(t)))*dphi(t);

7 f =@(t,ri)(1/(ri^(n1))-ri^n1)*(cos(n1*phi(t))+sin(n1*phi(t)));

8 % Taking integral using trapezrule to evaluate

9 intf = trapezrule(@(t)real(f(t,ri)),0,1,1000);

10 freal = real(f(tm1,ri))-intf;

The piecewise constant approximation f̂ and f̃ are plotted in figure 5.3(b) and the 2-norm difference

in the evaluated points are shown in figure 5.3(a).
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Figure 5.3: Comparing the computed f̂ and the corresponding f̃ for α = 0.6eiπ/2 and 80

discretization points n = 1.

The biggest difference comes when the function changes the most, and the maximal norm

difference is 6.37 · 10−3, which can have something to do that the B-spline curve does not make a

perfect circle and integration errors.
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The next is a collage with different transformations, i.e. for different choices of α and n holding

ri = 0.3 and nel = 80 constant.
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Figure 5.4: Transformed annulus for different values of α
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Figure 5.5: Transformed problem α = 0.5eiπ for n = 1, 3 in (5.4.2)
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Figure 5.6: Transformed problem α = 0.3ei7π/4 for n = 1, 3 in (5.4.2)

The figures 5.5 and 5.6 shows the approximation computed by the ForwardProblemSolver

for different transformations and different chosen frequencies. When n gets higher the function

values are becoming higher and higher, this is with regards to the part 1

rn
i

, where ri < 1 for n = 1

the function values are in the first case between 3 and −6 where in the other case are between

5 and −5 going further to the case where n = 3 the values are between 60 and −60 for both of

them, which is ten times higher. Which will say that high frequent signals will give a high valued

function, which will therefore also enhance noise a lot more than low-frequent signals.

5.5 Conclusion

The conformal mapping of an annulus to another domain to present new Cauchy-data is seen to

be working. Another combination with a holomorphic map could determine Cauchy-data for other

types of inclusions. A holomorphic map, since it is holomorphic can be evaluated in a power series,

and to get some sort of other inclusion, it would be possible to do the same thing as was done in

this chapter for different inclusions. Now there are Cauchy-data corresponding to non-concentric

circle inclusions. This will now lead to the inverse problem of given the data, find the inclusion and

shape of the inclusion, which will be considered in the next chapter.



Chapter 6
Inverse problem

In this chapter the inverse problem of detecting and approximating by B-splines the boundary of

the perfectly conducting inclusion from measurements of boundary potentials. First a simple case

when the known inclusion is a concentric circle, where the minimizer is the radius of the B-spline

approximation to the circle given a fixed number of control points. Further investigations leads to

minimization of control points for concentric and non-concentric circular inclusions, both examples,

with and without a certain noise ratio on the measurement. For computing the optimal shape

matlabs built in solver fmincon, has been used, for non-linear programming which is from the

Optimization framework [13]. The functions for comparison has been chosen for the optimization

of radius and control points as the solution to the solution of the annular problem from Appendix

A.2 used for the concentric case and for the non-concentric case the functions found in the chapter

of conformal mappings. For the concentric case

f(θ) =

(

1

rn
i

− rn
i

)

(cos(nθ) + sin(nθ)) (6.0.1)

g(θ) = n

(

1

rn
i

+ rn
i

)

(cos(nθ) + sin(nθ)) , (6.0.2)

and for the non-concentric case

f̃(θ) = f(ψ(θ)) =

(

1

rn
i

− rn
i

)

(cos(nψ(θ)) + sin(nψ(θ))) (6.0.3)

g̃(θ) = g(ψ(θ))ψ′(θ) = n

(

1

rn
i

+ rn
i

)

(cos(nψ(θ)) + sin(nψ(θ))) ψ′(θ), (6.0.4)

where ψ and ψ′ are given by (5.3.2) and (5.3.3). And since the setup of boundary integral equations

finds the dirichlet data minus the average, the function compared with are

f̌(θ) = f̃(θ) − 1

2π

∫

2π

0

f̃(θ)dθ.

It is known that for the concentric case the integral is zero, but for the non-concentric case this are

taken into account. First part of this chapter is the introduction to noise in the system, which is

highly likely in a problem like this.

6.1 Noise

In empirical experiments, measurements of the potential difference will be affected by an amount

of noise, where three of the main sources of signal variability [16] are

(i) current drive random noise

39
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(ii) measurement amplifier random noise

(iii) transimpedance flunctuations-dominated by physiological signals and noise

where the current drive can be represented by a constant current generator Ik, k denotes the

electrode number and a noise current generator In, and similarly for the measurement amplifier

can be represented by an additional voltage source Vk. The transimpedance R is the convertion

from current to voltage by Ohm’s law w.r.t. the domain, i.e. the observed potential difference can

be expressed as

Vobs = (Ik + In)R + Vk

Assuming the induced current is noiseless, and then assuming that the noise Vk can be interpreted

as gaussian noise and should be compared to the signal. So mathematically speaking the noise can

be interpreted as

fobs = f real + fnoise,

where fnoise is a noise vector with the size of f real, which is the real measurements taken in an

amount of collocation points. First let e be a vector of gaussian noise, and normalize it to e1 = e

‖e‖ 2

then scale it compared to the norm of the real signal by a scaling factor β so that the desired

measure of the noise is given by

fnoise := β‖f real‖2

e

‖e‖
2

,

so the observed signal is given by

fobs = f real + β‖f real‖2

e

‖e‖
2

, (6.1.1)

where the scaling factor is a measure of the relative error of the observed signal and the real signal,

which can be seen by this short computation

‖f real − fobs‖2
= ‖β‖f real‖2

e

‖e‖
2

‖ = β‖f real‖2
⇔ β =

‖f real − fobs‖2

‖f real‖2

.

This is implemented in matlab using the function randn for computing of e.

6.2 Optimization of radius

In this section considering knowing that the inclusion is a concentric circle with radius 0 < ri < 1

then defining the functional

J(ri) =

∫

ΓII

|f − f̂(ri)|2ds → inf (6.2.1)

where f are the measured voltages at the surface and f̂(ri) is the computed voltage distribution,

which comes by solving the forward problem with a circle inclusion approximated by second degree

B-splines for a fixed number of control points. As explained the problem is solved using matlabs

function fmincon, which takes as input a number of different variables, first it takes in an objective

function, which is here implemented as objfunri, which is a function of the objective of the

minimization and is seen in appendiks B.2. Since the collocation scheme is over a certain amount

of discretization points the functional (6.2.1) is discretized so the evaluation of the real function

and computed function is over an amount of elements nel as

J(ri) ≈
nel−1
∑

j=1

∫ tj+1

tj

|f(sj) − f̃(ri, sj)|2dt =

nel−1
∑

j=1

|f(sj) − f̃(ri, sj)|2hj (6.2.2)
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where sj =
tj+1 + tj

2
and hj = tj+1 − tj , since hj = hj+1 = · · · hnel−1 = h, and the minimization

is over the midpoint sum of the squared absolute values of the difference in the same points. Start

by setting the options of the minimization algorithm to the interior-point method, then setting an

initial guess, i.e. it is reasonable to set the inclusion within the unit disc, therefore this is set as

r0

i = 0.7. Furthermore no constraints are utilized, neither equality nor inequality constraints, only

constraints is for the variable set as

0.1 ≤ ri ≤ 0.9.

The following matlab code run the minimization algorithm

1 options = optimset('Algorithm','interior-point');

2 rimin = fmincon(@objfunri,0.7,[],[],[],[],0.1,0.9,[],options);

The algorithm runs and stops saying it has reach a local minimum. The plot for no noise and an

inclusion with radius ri = 0.3 for respectively 40 discretization points and 4 and 12 control points

is displayed in figure 6.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

50

||f − f̂ ||2
min||f − f̂ ||2

(a) ncp = 4, β = 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

40

45

50

||f − f̂ ||2
min||f − f̂ ||2

(b) ncp = 12 β = 0

Figure 6.1: For 4 control points r∗
i = 0.2972 and for 12 control points the minimal r∗

i = 0.2999.

Trying with different values of β and nel is seen in table 6.1, to see how much the noise affect

the result

β, nel 1%, 40 5%, 40 5%, 80 10%, 80
r∗

i : ncp = 4 0.2972 0.2975 0.2957 0.2942
r∗

i : ncp = 12 0.2999 0.3002 0.2983 0.2968

Table 6.1: Minimum r∗
i found for different β and nel.

To visualise the effect of the noise, the corresponding B-spline curves are plotted with respect

to the radius found by 10% noise and nel = 80, shown in figure 6.2

Figure 6.2 shows that even with a lot of noise, the final inclusion is really close to the exact,

which suggests that the optimization of radius is really stable with regard to noise, which is probably

because of the simplicity of the optimization over just one variable. The next section shows the

more abstract problem of optimization with regards to the control points, which will bring more

difficulties, since there are 2 · ncp amount of variables.
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Figure 6.2: The inclusions depicted by 10% noise and 80 points.

6.3 Optimization of control points

The optimization of control points, can be introduced as the minimization of the functional

J(p) =

∫

ΓII

|f̌ − f̂(p)|2ds → inf (6.3.1)

where p is a vector of the control points. For the optimization there has again been used fmincon

with the interior-point algorithm. The input is again an initial guess, the objective function here

implemented in objfun which is a function of the control points. The constraints of the control

points is set so that they do not go out of the unit disc, and chosen to

− 0.8 ≤ pi,x ≤ 0.8

− 0.8 ≤ pi,y ≤ 0.8.

The initial guess will be regular polygon, where the incircle is of radius r0

i = 0.7, i.e. the initial

guess of control points will be for 6 control points

p
0

=

[

0.7000 0.7000 0.0000 −0.7000 −0.7000 0.0000

−0.4041 0.4041 0.8083 0.4041 −0.4041 −0.8083

]

.

Here is neglected the phantom control points but they will be added in the objective function, when

the spline is created, since the spline has to be periodic, this seems reasonable, and exclude 4 variables

in the minimization. So the first part of the objective function adds these phantom control points

and makes the uniform knot vector for order 3 spline curve to use in the ForwardProblemSolver,

then it defines the real Cauchy data and solves the forward problem, then it compares the two

functions as explained in the optimization of the radius by

J(p) ≈
nel−1
∑

j=1

∫ tj+1

tj

|f̌(sj) − f̃(p, sj)|2dt =

nel−1
∑

j=1

|f̌(sj) − f̃(p, sj)|2hj , (6.3.2)

where the sj and hj is defined as in the previous section. without any regularization or definition

of gradient the optimization is tried for ncp = 6, nel = 40 for respectively a concentric and

non-concentric circle inclusion.

As seen in figure 6.3, the inclusions boundary has been approximated, but since there is no

restrictions on where the approximated gradient will go, the behaviour of the control points are

uncontrollable in the algorithm, and for the non-concentric case the optimization ends with an

output of too many function evaluations (3000), which means that there has to be done some

regularization of the spline curve, in order to control it.
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(a) Concentric inclusion ri = 0.2 with ncp = 6
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Figure 6.3: The finalized control points p∗ for a concentric and non-contric circle inclusion.

6.3.1 Curve regularization

As seen in figure 6.3 there is no restriction for the control points to make a selfintersecting curve

or a curve where the control points are extremely close to each other. A regularization term for the

speed of the curve, compared to the mean value of the speed that is the curve length

L(γ) =

∫

1

0

|γ′(t)|dt. (6.3.3)

Taking the squared difference between this and the speed and integrate

|γ′(t)| − L(γ) ⇒ (|γ′(t)| − L(γ))2 ⇒
∫

1

0

(|γ′(t)| − L(γ))2dt ⇔ (6.3.4)

∫

1

0

|γ′(t)|2 + L(γ)2 − 2|γ′(t)|L(γ)dt =

∫

1

0

|γ′(t)|2dt − 2L(γ)

∫

1

0

|γ′(t)|dt + L(γ)2 ⇔ (6.3.5)

∫

1

0

|γ′(t)|2dt − 2L(γ)2 + L(γ)2 =

∫

1

0

|γ′(t)|2dt − L(γ)2 =

∫

1

0

|γ′(t)|2dt −
(

∫

1

0

|γ′(t)|dt

)2

.

(6.3.6)

This is implemented in the objective function using a function determining the integrand called

intL

1 % Create spline for curve regularization

2 sp = spmak(knots,coefs);

3 s1 = fnder(sp);

4

5 L = quadl(@(t)intL(t,s1,0),0,1,1e-6);

6 S = quadl(@(t)intL(t,s1,1),0,1,1e-6);

7 K = S-L^2;

8 lambda = 1e-3;

9

10 function y = intL(t,s1,bool)

11 dgammat = fnval(s1,t);

12 if bool == 1

13 y = dgammat(1,:).^2+dgammat(2,:).^2;
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14 else

15 y = sqrt(dgammat(1,:).^2+dgammat(2,:).^2);

16 end

where the numerical integration used is quadl, which is Gauss-Lobatto quadrature, which can

evaluate polynomials exact. s1 is the derivative of the spline curve and fnval evaluates the spline

at t.

Adding this to the objective function, and with a regularization parameter λ our functional is

now

J(P ) =

∫

ΓII

|f̌ − f̂(P )|2ds + λ

(

∫

1

0

|γ′(t)|2dt −
(

∫

1

0

|γ′(t)|dt

)2
)

→ inf (6.3.7)

The regularization parameter will be estimated by a trial and error approach.

The effect of the regularization with respect to the previous two figures 6.3 is seen in the figures

6.4
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Figure 6.4: The finalized control points p∗ for a concentric and non-concentric circle inclusion

with λ = 10−3.

As seen in figure 6.4 the curves do not selfintersect, neither is the control points too close, and

the determined circular inclusion γ∗(t) and exact ΓI is approximately equal. Further experiments

with different noise levels will now be evaluated. First β = 1% noise and the corresponding circle

with the same choice of λ = 10−3 as in figure 6.4(a) is shown for nel = 40, then trying to up the

regularization and the number of elements to nel = 80 is shown in figure 6.5

For even higher noise β = 5% and a non-concentric circle, there is seen to start self-intersecting,

even with the regularization and number of elements as in figure 6.5(b). The corresponding figure

is shown, where there again has been setup of the regularization parameter λ

The figures shows that, the optimal point is not so robust to noise, but by enhancing the

regularization parameter and number of elements, can yield a better approximation to the inclusion,

where the curve do not selfintersect nor does the control points get too close. Another way to

stop selfintersecting could be done as in [18], where a nonlinear constraint can be set up using

Bernstein polyomials. This has not been introduced, since the minimization already is a very slow

process since the function needs to approximate the gradient for each step to determine in which

direction the step should be performed. Furthermore it can be ended prematurely by the criteria
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−3, nel = 40
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Figure 6.5: The finalized control points p∗ for a concentric circle ri = 0.2, with 1% noise and

different λ and nel.
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−2, nel = 80
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Figure 6.6: The finalized control points p∗ for a non-concentric circle α = 0.6e3π/4, with 5%

noise and different λ.

of exceeding the maximum function evaluation (default 3000), so even if the forward problem is

solved fast, the optimization will still be slow.
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6.4 Conclusion

The shape optimization with regards to the simple case of the inner radius is seen to be very

stable to noise and finds a close approximation to the inclusion even with 10% noise. The shape

optimization of control points even if it is inefficient and takes a long time to compute, the problem

of blindly plug in the objective function, shows that the curve is finding the area of the inclusion,

but do not compute the shape in a good way. With the regularization the curve is seen to be

more stable and the control points is seen to not get too close or make a selfintersecting curve,

this has been tested with different noise levels and different inclusions. The problem gets more

unstable when more noise is added to the system, but some countermeasures can be taken into

account from upping the regularization and number of elements. The choice of the degree of the

B-splines approximating the inclusion, has been set to quadratic polynomial pieces with uniform

knot vector, which is a fine choice for circle approximation, even if there is numerous of different

ways to evaluate and change the splines.



Chapter 7
Discussion

In this chapter the results will be analysed and future extensions and outlook will be discussed.

7.1 Discussion of results

The problem stated in the preliminaries is at first a really simplified case of the true non-linear

severely ill-posed problem, which is suggesting that this could be an over simplification of the

problem and that the true problem will require a different approach. But from the commercialized

EIT system PulmoVista [8], they have been seen to use a lot of a priori information regarding the

conductivity distribution from empirical experiments. A socalled reference map, which relates in a

small way to the a priori knowledge of the conductivity distribution in this project.

The simplification of a perfectly conducting inclusion is for the mathematical purpose good,

but in real measurements probably not something which occur on a day-to-day basis. However the

scope has been to implement a shape optimization process. The result has been a way to determine

circular shaped inclusion in the unit disc, which have been seen to be succesfull for a regularized

functional even with different amount of noise, this again is probably not what happens in practical

scenaries, unless a person swallowed a perfectly conducting coin. The important example of an

annulus has been seen to be conformally mapped for determination of the Cauchy data related to

non-concentric circular inclusions, this has been a way to obtain different test data, which could

also have been done using a finite element solver.

The boundary integral equations has been set up to find the trace of the function withdrawn

the average value on the outer boundary, which is in fact another simplification. This could result

in loss of data. However the signal still yields the information needed to obtain the geometry of the

inclusion, which means one of two, one, the signal could have been luckily chosen as to not lose

data, when withdrawn the average value or two, the average value are insignificant for the signals

knowledge of the geometry.

One way to correct the data withdrawal can be to instead of grounding the potential on the

inner boundary, then grounding it on the outer boundary making the integral 0 over the outer

boundary. Then keep the constant potential on the inner boundary, this will result in a little bit

different setup of the integral equations, where the normal derivative has to be taken over a point,

which is reflected through the boundary.

7.2 Extensions and outlook

Future extensions can be to look at other holomorphic maps, which can map the annulus

to different domains to obtain Cauchy data for other shaped inclusions, this could be done as
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in [2], where they setup an algorithm to determine the unique conformal radius of the annulus

corresponding to the domain of interest. Another way could be to try the Kohn-Vogelius functional,

which is the same type of problem, but the PDE is separated into two parts, a part for the Dirichlet

problem and one for the Neumann problem, which has proven to be more stable compared to

the least-squares functional [10]. It could also be extended to a less simplified problem known as

the transmission equation using boundary integral equations as in [7]. To implement it in 3D an

extension by surface patches could be obtained again using B-splines as Tensor Products. For the

slow optimization an aspect of isogeometric analysis like Shape Calculus and finding derivates of

the functional, would also enhance the optimization, such that the optimization algorithm does not

approximate the gradient in each step. Regarding setting the B-splines to only look at quadratic

uniform periodic B-spline curves is something which can easily be extended to higher or lower degree

polynomials, which means that there can be implemented some optimization process regarding the

B-splines for adjusting the control points and knots for B-spline curve approximation as done in

[26]. Recent progress in quadrature for potentials could also have significant upside to evaluate the

BIE [14].



Chapter 8
Conclusion

In this chapter the partial conclusions throughout the chapters will be combined and the main

questions from introduction and preliminaries will be answered.

The main goal of combining the different mathematical fields has been accomplished using the

theory of linear integral equations with the Neumann function as kernel to obtain a forward map

from Neumann to Dirichlet data minus the average value. The optimization process of determining

the shape of an inclusion has been done for circular inclusions by using conformal mapping to

get Cauchy-data for the non-concentric case. Then optimize a least squares functional, using the

interior-point method. First with respect to the inner radius of a circular approximated B-spline

curve, which has seen to be really robust to noise. Secondly by optimizing the control points with

respect to the B-spline approximation of a circular inclusion, which has also seen to work, when

applied curve speed regularization.

Throughout the chapters there have been done some partial conclusions, where the main aspects

has been as regarding the choices made in this thesis. First choice has been to only look at quadratic

uniformly periodic B-spline approximation of the geometry whereas the governing functions has

been approximated by piecewise constant functions. This has seen to satisfy the set up of the

boundary integral equations and evaluated close to the analytical solution obtained from separation

of variables. The choice of using a conformal map to map the annular region to a region with the

unit disc and a non-concentric circle has also been shown to approximate the analytical functions.

Further investigations has led to the optimization problem, where a least squares functional has

been set up using a regularization for the curve speed of the B-spline curve. This method has

seen to find the circular inclusions even with added gaussian random noise, and approximate the

boundary well which was the main goal of this thesis.
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A. Mathematical Theory

A.1. Function spaces

In this appendix section some important function spaces and properties is explained to the

extend of the usage in this thesis. First let Ω be a bounded, open set in R
2 equivalent with

C then C(Ω) is the space of continuous function in Ω, hence C∞
0 (Ω) is the space of infinitely

continuously differentiable functions with compact support. For the Lebesgue measurable function

spaces 1 ≤ p < ∞

Lp(Ω) :=

{

u(x) : u Lebesgue measurable,

∫

Ω

|u(x)|pdx < ∞
}

, (.0.1)

with norm

‖u‖LpΩ =

(
∫

Ω

|u(x)|pdx

)1/p

. (.0.2)

Where, in this report, the most used is the Hilbert space L2(Ω).

A short introduction to Sobolev spaces as the function spaces used in this thesis for functions

which does not have too great smoothness properties the results are taken from [11] and [15], and

for further study the reader is refered to these. The Sobolev spaces seen in this report is H1(Ω),

H1/2(Γ) and H−1/2(Γ), where Ω is an open bounded domain in R
2 with boundary ∂Ω = Γ of

class C1, then H1(Ω) is defined as the completion of the space C1(Ω̄) of continuously differentiable

functions with respect to the norm

‖u‖H1(Ω) :=

(
∫

Ω

|u(x)|2 + |∇u(x)|2dx

)1/2

.

From [15] since each Cauchy sequence w.r.t. H1-norm is also a Cauchy sequence w.r.t. the L2-norm,

interpreting H1(Ω) as a subspace of L2(Ω) holds. For a harmonic function the Dirichlet integral
∫

Ω

|∇u|2dx,

represent the energy of the potential u and should be finite, when solving a BVP like the one in

this thesis. Therefore u should belong to H1(Ω). The connection between Sobolev spaces in the

domain and on the boundary can be evaluated in the trace sense, i.e. if a function is defined on

the closure Ω̄ and the restriction to the boundary is called the trace. The operator mapping the

function to its trace is called the trace operator. From Corollary 8.16 in [15] stating that the trace

operator can be uniquely extended as a continuous operator from H1(Ω) into H1/2(Γ).

This leads to a weak formulation of the interior Neumann problem as to for each solution

u ∈ C2(Ω) ∪ C1(Ω̄) to the Neumann problem ∆u = 0 with ∂u
∂ν = g on Γ by the Green’s identity

∫

Ω

∇u · ∇vdx =

∫

Γ

gvds
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for all v ∈ C1(Ω̄). The duality pairing, combined with the trace theorem, given by
∫

Γ

gvds := g(v),

where the integral for all g ∈ H−1/2(Γ) and v ∈ H1(Ω) is well defined. This means that the weak

formulation of the Neumann problem is given as find a function u ∈ H1(Ω) that satisfies
∫

Ω

∇u · ∇vdx =

∫

Γ

gvds

for all v ∈ H1(Ω), given g ∈ H−1/2(Γ). The solution of this problem as the one explained in

preliminaries can differ only by a constant and like in preliminaries setting the trace of the inner

boundary to 0 yields a unique solution. This has been a short explanation on where the Sobolev

spaces arises and for questions about weak derivatives, distribution theory and other Sobolev spaces

the reader is refered to the described literature.

A.2. Laplace equation in an Annulus

In this appendix section the method of separation of variables has been used to show existence

of a solution to the problem of an annulus for the Laplace equation.

Figure A.1: The domain Ω and assertions.

The problem asserted is find a harmonic function u ∈ C2(Da) ∪ C1(D̄a) satisfying Laplace

equation as shown in figure A.1

∆u(x) = 0, x ∈ Da

which satisfies the following boundary conditions

u(x) = 0, x ∈ ΓI

∂u

∂ν
(x) = g(x), x ∈ ΓII,

where ν is the normal to the boundary ΓII.

The Laplace equation in cylindrical coordinates are given by

∆u(x) = urr +
1

r
ur +

1

r2
uθθ = 0.

Trying a product solution on the form u(x) = R(r)Θ(θ), inserting into Laplace equation yields

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0.

Separate variables by dividing with R(r)Θ(θ) which gives

R′′

R
+
1

r

R′

R
+
1

r2
Θ′′

Θ
= 0 ⇔ r2

R′′

R
+ r

R′

R
= −Θ

′′

Θ
.
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Because R and Θ are independent of each other, these will equal a constant µ, i.e.

r2
R′′

R
+ r

R′

R
= −Θ

′′

Θ
= µ.

Hence there are two differential equations given by

Θ′′(θ) + µΘ(θ) = 0 (.0.3)

r2R′′(r) + rR′(r)− µR(r) = 0. (.0.4)

The differential equation (.0.3) must have periodic boundary conditions given by

Θ(0) = Θ(2π)

Θ′(0) = Θ′(2π).

First case µ = β2 where β > 0 the characteristic polynomium given by λ2 + µ = 0 ⇔ λ2 = −β2 ⇔
λ = ±iβ gives the following solution to the ODE

Θ(θ) = c1 cos(βθ) + c2 sin(βθ).

Using the periodic BC’s gives

Θ(0) = c1 = c1 cos(β2π) + c2 sin(β2π) = Θ(2π)

Θ′(0) = c2 = −c1 sin(β2π) + c2 cos(β2π) = Θ
′(2π).

Since in both cases sine needs to be zero implying β = n = 1, 2, . . . .

Second case µ = −β2 where β > 0 the characteristic polynomium given by λ2 + µ = 0 ⇔ λ2 =

β2 ⇔ λ = ±β gives the following solutions to the ODE

Θ(θ) = c1 cosh(βθ) + c2 sinh(βθ).

Using the periodic BC’s gives

Θ(0) = c1 = c1 cosh(β2π) + c2 sinh(β2π) = Θ(2π)

Θ′(0) = c2 = c1 sinh(β2π) + c2 cosh(β2π) = Θ
′(2π).

Since sinh is only 0 at sinh(0) these values of µ can be rejected.

Third case µ = 0 which gives the ODE Θ′′(θ) = 0 has solution Θ(θ) = c1θ + c2 and for the

periodic BC’s the only solution is Θ(θ) = c1 a constant, i.e. the full solution of the ODE with

periodic BC’s are given by

Θn(θ) = An cos(nθ) +Bn sin(nθ), n = 0, 1, . . . . (.0.5)

For the ODE (.0.4) inserting the values of µ = n2 n = 1, 2, . . . gives

r2R′′(r) + rR′(r)− n2R(r) = 0,

which is identified as an Euler type ODE, where it’s reasonable to try a solution on the form

R(r) = rα, e.g.

r2α(α − 1)rα−2 + rαrα−1 − n2rα = 0 ⇔ (α(α − 1) + α − n2)rα = 0 ⇔ (α2 − n2)rα = 0,

since r > 0 the condition α2 − n2 = 0 ⇔ α = ±n must be satisfied and since they are distinct real

roots, the solution of the Euler type ODE is hereby

R(r) = c1r
n + c2r

−n, n = 1, 2, . . . .
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For the case where n = 0 the ODE takes the form r2R′′ + rR′ = 0 ⇔ r(rR′′ + R′) = 0 implying

rR′′ + R′ = (rR′)′ = 0 integrating on both sides and moving constant and r over gives R′ =
c1

r
and integrating again gives R(r) = c1 log(r) + c2.

The full solution for (.0.4) are therefore

Rn(r) =

{

Cnrn +Dnr−n, n = 1, 2, . . .

C0 +D0 log(r), n = 0.
(.0.6)

Combining (.0.5) and (.0.6) for all the product solutions, i.e.

un(r, θ) = Rn(r)Θ(θ) =

{

A0(C0 +D0 log(r))

(An cos(nθ) +Bn sin(nθ))(Cnrn +Dnr−n)

for n = 0, 1, . . . . The full solution comes from summing over every n-solutions and by abusing

notation setting An = AnCn, Bn = AnDn, Cn = BnCn and Dn = BnDn e.g.

u(r, θ) = A0 +B0 log(r) +

∞
∑

n=1

(Anrn +Bnr−n) cos(nθ) + (Cnrn +Dnr−n) sin(nθ). (.0.7)

Use orignial BC’s on (.0.7) which gives for first one

u(ri, θ) = A0 +B0 log(ri) +

∞
∑

n=1

(Anrn
i +Bnr−n

i ) cos(nθ) + (Cnrn
i +Dnr−n

i ) sin(nθ) = 0

which gives coefficients

A0 +B0 log(ri) = 0 ⇔ B0 = − A0

log(ri)

Anrn
i +Bnr−n

i = 0 ⇔ Bn = −Anr2n
i

Cnrn
i +Dnr−n

i = 0 ⇔ Dn = −Cnr2n
i .

(.0.8)

Inserting into (.0.7) gives

u(r, θ) = A0

(

1− log(r)

log(ri)

)

+
∞

∑

n=1

ri
n

((

r

ri

)n

−
(ri

r

)n
)

(An cos(nθ) + Cn sin(nθ)) . (.0.9)

Using the second BC, where ∂u
∂ν =

∂u
∂r gives

∂u

∂r
(1, θ) = −A0

1

log(ri)
+

∞
∑

n=1

nrn
i

((

1

ri

)n

+ rn
i

)

(An cos(nθ) + Cn sin(nθ) = g(θ)) ,

from the full Fourier series on the right the coefficients can be determined

−A0
1

log(ri)
=

1

2π

∫ 2π

0

g(ϕ)dϕ ⇔ A0 = − log(ri)

2π

∫ 2π

0

g(ϕ)dϕ

Annrn
i (r

−n
i + rn

i ) =
1

π

∫ 2π

0

g(ϕ) cos(nϕ)dϕ ⇔ An =
1

nπrn
i (r

−n
i + rn

i )

∫ 2π

0

g(ϕ) cos(nϕ)dϕ

Cnnrn
i (r

−n
i + rn

i )) =
1

π

∫ 2π

0

g(ϕ) sin(nϕ)dϕ ⇔ Cn =
1

nπrn
i (r

−n
i + rn

i )

∫ 2π

0

g(ϕ) sin(nϕ)dϕ.

Inserting the coefficients and exploiting the relation cos(x) cos(y) + sin(x) sin(y) = cos(x − y) the

solution becomes

u(r, θ) = log

(

r

ri

)

1

2π

∫ 2π

0

g(ϕ)dϕ+

∞
∑

n=1

((

r

ri

)n

−
(ri

r

)n
)

1

nπ(r−n
i + rn

i )

∫ 2π

0

g(ϕ) cos(n(ϕ−θ))dϕ.
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Now let g be given by

g(θ) = m(r−m
i + rm

i ) (cos(mθ) + sin(mθ)) .

Then the first integral is zero, and the second is only different from 0, since these are orthogonal

eigenfunctions, when m = n and is

∫ 2π

0

(cos(mϕ) + sin(mϕ)) cos(m(ϕ − θ))dϕ = π (cos(mθ) + sin(mθ)) ,

therefore the function satisfying the problem for this particular g and some fixed m ∈ Z is

u(r, θ) =

((

r

ri

)m

−
(ri

r

)m
)

(cos(mθ) + sin(mθ)) . (.0.10)





B. Matlab

B.1. Scripts

1 % Script to implement the Boundary Element Method for Laplace equation

2 % using spline boundary.

3 clear all; close all; clc;

4

5 % Setting up the induced current on the outer boundary

6 n1 = 1;

7 ri = 0.5;

8 g = @(t,ri) ((1/ri)^n1*n1+ri^n1*n1)*(cos(n1*2*pi*t)+sin(n1*2*pi*t));

9

10 z1_cir = @(t)[cos(2*pi*t);sin(2*pi*t)];

11 % Making the inclusion boundary spline:

12 % Number of edges in the circumscribed polygon

13 p = 12;

14 % Coefficients of the edges of the polygon with incircle radius ri =0.5

15 [coefs, a] = regPolygon(p,ri);

16 % Making phantom coefficients for periodic spline

17 coefs = [coefs coefs(:,2)];

18 [l,n] = size(coefs);

19 k = 3; % Order of the basis functions (degree + 1)

20 % Knot vector [0,1] with phantom knots

21 knots = linspace(-2/p,(p+2)/p,n+k);

22 points = 40; % Number of discretization points

23

24 % Discretizing the spline into number of points

25 t = linspace(0,1,points);

26

27 % Find midpoint between each t and create gamma(tm)

28 tm = .5*(t(1:end-1)+t(2:end));

29

30 % Use ForwardProblem to solve for phi and f

31 [fhat phi Anew tid] = ForwardProblemSolver(g,[],[],knots,coefs,points,ri);

32

33

34 % Plot phi as a piecewise constant function and the real phi(x)

35 phi_spline = spmak(t,phi);

36 fhat_spline = spmak(t,fhat);

37

38 %real values of f and phi

39 ri_real = ri;

40 fhat_real =@(t)((1/ri_real)^n1-ri_real^n1)*(cos(n1*2*pi*t)+sin(n1*2*pi*t));

41 phi_real = @(t)-2*n1*(cos(n1*2*pi*t)+sin(n1*2*pi*t))/ri;
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42

43 %Plotting the two figures

44 h = figure;

45 plot(linspace(tm(1),tm(end),100),...

46 phi_real(linspace(tm(1),tm(end),100)),'-r','linew',2), hold on

47 fnplt(phi_spline,[0 1])

48 %axis([0 1 min(c) max(c)])

49 hl = legend('real $\varphi$','approx $\tilde{\varphi}$');

50 set(hl,'interpreter','latex','fontsize',16)

51 % print(h,'-depsc','..\Images\General\cirincphi40poly12.eps');

52

53 h1 = figure;

54 plot(linspace(tm(1),tm(end),100),...

55 fhat_real(linspace(tm(1),tm(end),100)),'-r','linew',2), hold on

56 fnplt(fhat_spline,[0 1])

57 hl1 = legend('real $\hat{f}$','approx $\hat{f}$');

58 set(hl1,'interpreter','latex','fontsize',16)

59 % print(h1,'-depsc','..\Images\General\cirinc03fhat80poly12.eps');

60

61 hdiff = t(2)-t(1);

62 h2 = figure;

63 plot(tm,sqrt(abs((fhat_real(tm))-(fhat)).^2*hdiff)./sqrt(abs(fhat_real(tm)).^2*hdiff),'linew',2), hold on

64 hl2 = legend('$\frac{||f-\hat{f}||_2}{||f||_2}$');

65 set(hl2,'interpreter','latex','fontsize',20)

66 % print(h2,'-depsc','..\Images\General\cirincrelerrordiff40poly12.eps');

67

68 h3 = figure;

69 plot(tm,sqrt(abs((phi_real(tm))-(phi)).^2*hdiff)./sqrt(abs(phi_real(tm)).^2*hdiff),'linew',2), hold on

70 hl3 = legend('$\frac{||\phi-\tilde{\phi}||_2}{||\phi||_2}$');

71 set(hl3,'interpreter','latex','fontsize',20)

72 % print(h3,'-depsc','..\Images\General\cirincrelerrorphidiff40poly12.eps');

1 % Script for the forward problem for a non-concentric circle

2 clear all;close all; clc;

3 % Normal unit disc setup of circular inclusion spline of radius ri

4 p = 6;

5 ri = .3;

6 [coefs, a] = regPolygon(p,ri);

7 % Making phantom coefficients for periodic spline

8 coefs = [coefs coefs(:,2)];

9

10 % Conformal mapping of unit disc and control points with psi_alpha

11 rho = 0.3; s = -pi/4;

12 alpha = rho*exp(1i*s);

13 psi_alpha = @(z)(alpha*ones(length(z),1)-z)./(1-conj(alpha)*ones(length(z),1).*z);

14 %psi_alpha = @(z)(z-alpha)/lambda;

15 % Transform of control points

16 coefs_complex = coefs(1,:)+1i*coefs(2,:);

17 coefs_new = psi_alpha(coefs_complex(:));

18 coefs_new = [real(coefs_new)';imag(coefs_new)'];

19 [l,n] = size(coefs_new);

20 k = 3; % Order of the basis functions (degree + 1)

21 % Knot vector [0,1] with phantom knots

22 knots = linspace(-2/p,(p+2)/p,n+k);

23 points = 80;
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24 % Generation of spline

25 sp = spmak(knots,coefs_new);

26 t1 = linspace(0,1,points);

27 tm1 = ((t1(2:end)+t1(1:end-1))/2)';

28

29 % Transformed values of the true problem

30 z_cir = @(t)exp(1i*t(:)*2*pi);

31 z = ri*exp(1i*t1*2*pi);

32 z1 = psi_alpha(z(:));

33 z1_cir = @(t)[real(psi_alpha(z_cir(t)))';imag(psi_alpha(z_cir(t)))'];

34 pl_cir = z1_cir(t1);

35

36 % Figure of the originally annular region

37 h1 = figure;

38 plot(coefs(1,:),coefs(2,:),'og','linew',2), hold on

39 plot(real(z),imag(z),'-r','linew',2)

40 plot(real(z_cir(t1)),imag(z_cir(t1)),'k','linew',2), axis equal

41 hl1 = legend('Control points','$C_{I}$','$C_{II}$');

42 set(hl1,'interpreter','latex','fontsize',14)

43 % print(h1,'-depsc','..\Images\annulw6CPri03.eps');

44

45 % Figure of the transformed disc with inclusion

46 h2 = figure;

47 plot(coefs_new(1,:),coefs_new(2,:),'og','linew',2), hold on

48 fnplt(sp,[0 1],'-b'),

49 plot(real(alpha),imag(alpha),'or','linew',2),

50 plot(real(z1),imag(z1),'-r','linew',2),

51 plot(real(z_cir(t1)),imag(z_cir(t1)),'k','linew',2), axis equal

52 % hl2 = legend('Control points','$\gamma(t)$',...

53 % '$\alpha=\rho e^{i s}$','$\Gamma_{I}$','$\Gamma_{II}$');

54 % set(hl2,'interpreter','latex','fontsize',14)

55 % print(h2,'-depsc','..\Images\transfannulw6CPri03r03sminpi4.eps');

56

57 alpha1 = alpha;

58 %The angular transformation

59 phi =@(t)s+2*atan((1+rho)/(1-rho)*tan(pi*t-1/2*s));

60 dphi = @(t)(1-rho^2)./(1-2*rho*cos((2*pi*t)-s)+rho^2);

61 % Induced current and analytical voltage on outer boundary

62 n1 = 1;

63 g = @(t,ri) (1/(ri^(n1))*n1+ri^n1*n1)*(cos(n1*phi(t))+sin(n1*phi(t)))*dphi(t);

64 f =@(t,ri)(1/(ri^(n1))-ri^n1)*(cos(n1*phi(t))+sin(n1*phi(t)));

65

66 % Taking integral using trapezrule to evaluate f minus average of f

67 intf = trapezrule(@(t)real(f(t,ri)),0,1,1000);

68 freal = real(f(tm1,ri))-intf;

69

70 % Solve the forward problem and plot w.r.t. the analytical voltage minus

71 % average

72 [fhat phi1] = ForwardProblemSolver(g,[],[],knots,coefs_new,points,ri);

73 fhatapp_spl = spmak(t1,fhat);

74 h3 = figure;

75 plot(tm1,freal,'-r','linew',2), hold on

76 fnplt(fhatapp_spl,[0 1]),

77 hl3 = legend('$\tilde{f}$','$\hat{f}$');

78 set(hl3,'interpreter','latex','fontsize',16)

79 % print(h3,'-depsc','..\Images\transfannulw6CPri03fhat80r05spin5.eps');

80
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81 h4 = figure;

82 plot(tm1,sqrt(abs((freal)-(fhat')).^2*(t1(2)-t1(1))),'linew',2), hold on

83 hl4 = legend('$||\tilde{f}-\hat{f}||_2$');

84 set(hl4,'interpreter','latex','fontsize',16)

85 % print(h4,'-depsc','..\Images\transfannulw6CPri03n2fhatftilde80r05spin5.eps');

1 % Minimization of the radius

2 clear all; clc;

3

4 % Setup the minimization algorithm

5 options = optimset('Algorithm','interior-point');

6 rimin = fmincon(@objfunri,0.7,[],[],[],[],0.1,0.9,[],options);

7

8 % Calculate differences for plot

9 ri =linspace(0.1,0.9,20);

10 n2new = zeros(1,length(ri));

11 for i = 1:length(ri)

12 n2new(i) = objfunri(ri(i));

13 end

14

15 h2 = figure;

16 plot(ri,n2new,'-b','linew',2), hold on

17 plot(rimin,objfunri(rimin),'or','linew',2)

18 hl = legend('$||f - \hat{f}||_2$','min$||f - \hat{f}||_2$');

19 set(hl,'interpreter','latex','fontsize',16)

20 print(h2,'-depsc','..\Images\Optim\Jri80poly12beta010.eps');

1 % Minimization of control points with fmincon

2 clear all; close all; clc;

3 p = 6;

4 x0 = regPolygon(p,0.7); x0 = x0(:,1:p); %x0(1,:) = x0(1,:)-0.3;

5 lb = -0.8.*ones(size(x0)); ub = 0.8.*ones(size(x0));

6 options = optimset('Algorithm','interior-point');

7 tic;

8 x = fmincon(@objfun,x0,[],[],[],[],lb,ub,[],options);

9 tid = toc;

10 x = [x x(:,1:2)];

11

12 % Setup of values for plotting

13 [l,n] = size(x);

14 k =3; points = 80;

15 knots = linspace(-2/p,(p+2)/p,n+k);

16 ri = .2;

17 t = linspace(0,2*pi,100);

18 z_inc = ri*exp(1i*t);

19

20 % Noncontric spline

21 rho = 0.6; s = 3*pi/4;

22 alpha = rho*exp(1i*s);

23 psi_alpha = @(z)(alpha*ones(length(z),1)-z)./(1-conj(alpha)*ones(length(z),1).*z);

24 z1 = psi_alpha(z_inc(:));

25

26 % Make the minimal spline

27 sp = spmak(knots,x);
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28 % Make the spline start quess

29 x0 = [x0 x0(:,1:2)];

30 sp0 = spmak(knots,x0);

31

32 %plot the figure

33 h1 = figure;

34 fnplt(sp,[0 1],'-g'), hold on

35 fnplt(sp0,[0 1],'-r'), hold on

36 plot(x0(1,:),x0(2,:),'or')

37 plot(x(1,:),x(2,:),'og')

38 plot(real(z1),imag(z1),'-k','linew',2)

39 % plot(real(z_inc),imag(z_inc),'-k','linew',2)

40 plot(cos(linspace(0,2*pi,100)),sin(linspace(0,2*pi,100)),'-k','linew',2), axis equal,

41 hl = legend('$\gamma^*(t)$','$\gamma_0(t)$','$p_0$','$p^*$','$\Gamma_{I}$','$\Gamma_{II}$');

42 set(hl,'interpreter','latex','fontsize',14)

43 % print(h1,'-depsc','..\Images\Optim\CP6optR06s3pi4p80ri02l1e2b5e2.eps');

B.2. Implemented functions

1 function [fhat phi] = ForwardProblemSolver(g,p,k,knots,coefs,points,ri,z1_cir)

2 % Setup of the Forward problem in a linear system of equations which

3 % is solved to get phi and fhat which is piecewise constant

4 % function, and is solved from Ac=b <=> c=A\b, where c is equal to

5 % [phi;fhat] in the midpoint of the discretization interval and assumed

6 % constant over the interval.

7 %

8 % input:

9 % g : Induced current as function handle

10 % p : Number of control points for the B-spline

11 % k : Order of the B-spline

12 % knots : Knot vector for B-spline

13 % coefs : Coefficient matrix for Control points [xi;yi]

14 % points : Number of discretization points

15 % ri : Inner radius of inclusion

16 % z1_cir : function handle of the outer circle

17 %

18 % output:

19 % fhat : The trace of u to the outer boundary size(points-1)x1

20 % phi : The trace of the normal derivative of u

21 % to the inner boundary size(points-1)x1

22 tic

23 if nargin < 5

24 %set default values

25 points = 40;

26 ri = .5;

27 end

28 % Make circular inclusion with p CP's and of order k B-spline

29 % if knot and coefficient vectors are not provided. Otherwise make spline.

30 if nargin < 4 || (~isempty(p) && ~isempty(k))

31 coefs = regPolygon(p,ri);

32 % Making phantom coefficients for periodic spline

33 coefs = [coefs coefs(:,2)];

34 [l,n] = size(coefs);

35 knots = linspace(-2/p,(p+2)/p,n+k);
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36 sp = spmak(knots,coefs);

37 else

38 sp = spmak(knots,coefs);

39 end

40 % Setup outer boundary

41 if nargin < 8

42 z1_cir = @(t)[cos(2*pi*t);sin(2*pi*t)];

43 end

44 % Discretization parameter

45 t = linspace(0,1,points);

46

47 % Find midpoint between each t

48 tm = .5*(t(1:end-1)+t(2:end));

49

50 % spline values

51 gammas = fnval(sp,tm);

52 % Setting up the discretization for the outer boundary

53 gamma_outers = z1_cir(tm);

54

55 % first derivative,

56 s1 = fnder(sp);

57 % second derivative

58 s2 = fnder(s1);

59

60 % Absolute value of gamma

61 absgammas = sqrt(gammas(1,:).^2+gammas(2,:).^2);

62

63 % Finding derivative and make it unitary

64 dgammas = fnval(s1,tm);

65 ddgammas = fnval(s2,tm);

66 absdgammas = sqrt(dgammas(1,:).^2+dgammas(2,:).^2);

67 unidgammas(1,:) = dgammas(1,:)./absdgammas;

68 unidgammas(2,:) = dgammas(2,:)./absdgammas;

69

70 % Normal derivatives for gammas

71 nux = -[unidgammas(2,:); -unidgammas(1,:)];

72

73 % Constant from Taylor expansion

74 % -1/2*y''(s)yh'(s)/||y'(s)||^2

75 C = -1/2*(((ddgammas(1,:).*nux(1,:)+ddgammas(2,:).*nux(2,:)))./(absdgammas));

76

77 % Initialising of matrix K and Phi

78 K = zeros(points-1);Phi = zeros(points-1);

79 % solve the two integrals on the RHS

80 H = trapezrule(@(t)intH(g,t,gammas,nux,ri,z1_cir),0,1,1000);

81 G = trapezrule(@(t)intG(g,t,gamma_outers,ri,z1_cir),0,1,1000)';

82 % Evaluating at singularity point

83 epsilon = eps/2;

84 G(points/2)=(trapezrule(@(t)intG(g,t,gamma_outers(:,points/2),ri,...

85 z1_cir),0,tm(points/2)-epsilon,10000)+trapezrule(@(t)intG(g,t,...

86 gamma_outers(:,points/2),ri,z1_cir),tm(points/2)+epsilon,1,10000));

87

88 %Solve the integrals used on LHS

89 for j = 1:length(tm)

90 Phi(:,j) = trapezrule(@(t)intPhi(t,gamma_outers,sp,s1),t(j),t(j+1),1);

91 % If x is in the domain of integration

92 K(j,j) = C(j)*(t(j+1)-t(j))+...
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93 trapezrule(@(t)intKs(t,gammas(:,j),sp,s1,nux(:,j)),t(j),t(j+1),1);

94 k = j+1;

95 %If x is not in the domain of integration

96 K(1:j-1,j) = trapezrule(@(t)intK(t,gammas(:,1:j-1),sp,s1,...

97 nux(:,1:j-1)),t(j),t(j+1),1);

98 K(k:end,j) = trapezrule(@(t)intK(t,gammas(:,k:end),sp,s1,...

99 nux(:,k:end)),t(j),t(j+1),1);

100 end

101

102 % Setup A and b

103 A = 1/2*eye(size(K))+1/(2*pi)*K;

104 b = -2*H; b = b(:);

105

106 % Setting up the linear system

107 Anew = [A zeros(points-1,points-1);1/(2*pi)*Phi eye(points-1)];

108 bnew = [b;-2*G];

109

110 % Solve it

111 c = Anew\bnew;

112 phi = c(1:points-1)';

113 fhat = c(points:end)';

114 tid = toc;

1 function y = intK(t,gammas,gamma,dgamma,nux)

2 % Function within the first integral in the BIE. Setup such that it can be

3 % used as a function handle in quadl

4 %

5 % input:

6 % t : Function variable

7 % gammas : Vector of the x-point

8 % gamma : B-spline approx to the inner boundary in B-form

9 % dgamma : Derivative of gamma also in B-form

10 % nux : Normal vector to x point (gammas)

11 %

12 % output:

13 % y : Output function

14

15

16 % Get values for y(t) and y'(t)

17 gammat = fnval(gamma,t);

18 dgammat = fnval(dgamma,t);

19

20 % Find the reflected y*(t) = y(t)/||y(t)||^2

21 regammat = [gammat(1,:)./(gammat(1,:).^2+gammat(2,:).^2);

22 gammat(2,:)./(gammat(1,:).^2+gammat(2,:).^2)];

23

24 % The two difference vectors x-y and x-y*

25 diff1 = [gammas(1,:)-gammat(1,:);

26 gammas(2,:)-gammat(2,:)];

27 diff2 = [gammas(1,:)-regammat(1,:);

28 gammas(2,:)-regammat(2,:)];

29

30 % ||x-y||^2 and ||x-y*||^2

31 n2diff1 = diff1(1,:).^2+diff1(2,:).^2;

32 n2diff2 = diff2(1,:).^2+diff2(2,:).^2;
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33

34 % ||y'(t)||

35 n2dgammat = sqrt(dgammat(1,:).^2+dgammat(2,:).^2);

36

37 % calculating the function

38 % y = ((x-y)/||x-y||^2+(x-y*)/||x-y*||^2)*v(x)*Jacobian

39 y = ((diff1(1,:)./n2diff1+diff2(1,:)./n2diff2).*nux(1,:)+...

40 (diff1(2,:)./n2diff1+diff2(1,:)./n2diff2).*nux(2,:)).*n2dgammat;

1 function y = intKs(t,gammas,gamma,dgamma,nux)

2 % The Neumann function without the fundamental solution to Laplace

3 % Equation, to setup the part when x is inside the domain of integration.

4 %

5 % input:

6 % t : Function variable

7 % gammas : Vector of the x-point

8 % gamma : B-spline approx to the inner boundary in B-form

9 % dgamma : Derivative of gamma also in B-form

10 % nux : Normal vector to x point (gammas)

11 %

12 % output:

13 % y : Output function

14

15 % Get values for y(t) and dy(t)

16 gammat = fnval(gamma,t);

17 dgammat = fnval(dgamma,t);

18

19 % Find the reflected y*(t)= y(t)/||y(t)||^2

20 regammat = [gammat(1,:)./(gammat(1,:).^2+gammat(2,:).^2);

21 gammat(2,:)./(gammat(1,:).^2+gammat(2,:).^2)];

22

23 % The two difference vectors x-y and x-y*

24 diff = [gammas(1,:)-regammat(1,:);

25 gammas(2,:)-regammat(2,:)];

26

27 % ||x-y||^2 and ||x-y*||^2

28 n2diff = diff(1,:).^2+diff(2,:).^2;

29

30 % ||y'(t)||

31 n2dgammat = sqrt(dgammat(1,:).^2+dgammat(2,:).^2);

32

33 % calculating the function y

34 y = (diff(1,:).*nux(1,:)+...

35 (diff(2,:)).*nux(2,:))./n2diff.*n2dgammat;

1 function y = intH(g_handle,t,gammas,nux,ri,z1_cir)

2 % Function within the RHS integral in the BIE. Setup such that it can be

3 % used as a function handle in quadl

4 %

5 % input:

6 % ghandle : Induced current input as function handle

7 % t : Function variable

8 % gammas : Vector of the x-point

9 % nux : Normal vector to x point (gammas)
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10 %

11 % output:

12 % y : Output function

13

14 % Setup of the outer known boundary as the unit disc t in [0,1]

15 % var = [cos(2*pi*t);sin(2*pi*t)];

16 var = z1_cir(t);

17

18 % finding x-y = gamma(s)-y

19 diff = (gammas(1,:)-var(1)).^2+(gammas(2,:)-var(2)).^2;

20

21 % Output function

22 y = real(g_handle(t,ri)).*((gammas(1,:)-var(1))./diff.*nux(1,:)+...

23 (gammas(2,:)-var(2))./diff.*nux(2,:));

1 function y = intG(g_handle,t,gamma0s,ri,z1_cir)

2 % Function within the RHS integral in the BIE. Setup such that it can be

3 % used as a function handle in quadl

4 %

5 % input:

6 % ghandle : Induced current input as function handle

7 % t : Function variable

8 % gamma0s : Vector of the x-point

9 %

10 % output:

11 % y : Output function

12

13 % Setup of the outer known boundary as the unit disc t in [0,1]

14 % var = [cos(2*pi*t);sin(2*pi*t)];

15 var = z1_cir(t);

16

17 % finding |x-y|

18 diff = sqrt((gamma0s(1,:)-var(1)).^2+(gamma0s(2,:)-var(2)).^2);

19

20 % Output function

21 y = real(g_handle(t,ri)).*(log(diff));

1 function y = intPhi(t,gamma0s,gamma,dgamma)

2 % Function within the RHS integral in the BIE. Setup such that it can be

3 % used as a function handle in quadl

4 %

5 % input:

6 % phihandle : Induced current input as function handle

7 % t : Function variable

8 % gamma0s : Vector of the x-point

9 %

10 % output:

11 % y : Output function

12

13 % Get values for y(t) and y'(t)

14 gammat = fnval(gamma,t);

15 dgammat = fnval(dgamma,t);

16

17 % Find the reflected y*(t) = y(t)/||y(t)||^2
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18 regammat = [gammat(1,:)./(gammat(1,:).^2+gammat(2,:).^2);

19 gammat(2,:)./(gammat(1,:).^2+gammat(2,:).^2)];

20

21 % The two difference vectors x-y and x-y*

22 diff1 = [gamma0s(1,:)-gammat(1,:);

23 gamma0s(2,:)-gammat(2,:)];

24 diff2 = [gamma0s(1,:)-regammat(1,:);

25 gamma0s(2,:)-regammat(2,:)];

26

27 % ||x-y|| and ||x-y*||

28 n2diff1 = sqrt(diff1(1,:).^2+diff1(2,:).^2);

29 n2diff2 = (sqrt(diff2(1,:).^2+diff2(2,:).^2))...

30 .*(sqrt(gammat(1,:).^2+gammat(2,:).^2));

31

32 % ||y'(t)||

33 n2dgammat = sqrt(dgammat(1,:).^2+dgammat(2,:).^2);

34

35 % calculating the function

36 % y = phi*(log |x-y|+log|x-y*|)*||y'||

37 y = (log(n2diff1)+log(n2diff2)).*n2dgammat;

1 function [coefs, a] = regPolygon(n,r)

2 % Create coefficients for edge values at the circumscribed regular polygon

3 % of order n and inradius of the circle is r

4

5 % derive circumradius R

6 R = r*sec(pi/n);

7 % derive side length a

8 a = 2*r*tan(pi/n);

9 % derive interior and exterior angle

10 alpha = (n-2)/n*pi;

11 beta = 2*pi/n;

12 % Derive x and y values on the circle

13 x = cos((0:n)*beta-pi/n);

14 y = sin((0:n)*beta-pi/n);

15 coefs = [R*x;R*y];

1 function f = objfunri(ri)

2

3 % Setting up the induced current on the outer boundary

4 n1 = 1;

5 g = @(t,ri) ((1/ri)^n1*n1+ri^n1*n1)*(cos(n1*2*pi*t)+sin(n1*2*pi*t));

6

7 % Quadratic B-spline curve

8 k = 3;

9 % Number of discretization points

10 points = 80;

11 % Number of control points for the circumscribed polygon

12 p = 12;

13

14 % Solve the forward problem for a given radius

15 [fhat phi] = ForwardProblemSolver(g,p,k,[],[],points,ri);

16

17
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18 % Discretization points

19 t = linspace(0,1,points);

20

21 % Find midpoint between each t and create gamma(tm)

22 tm = .5*(t(1:end-1)+t(2:end));

23

24 % real radius of inclusion

25 ri_real = .3;

26 fhat_real =@(t)((1/ri_real)^n1-ri_real^n1)*(cos(n1*2*pi*t)+sin(n1*2*pi*t));

27

28 % Noise generation

29 randn('seed',41997);

30 e1 = randn(size(fhat_real(tm)));

31 e2 = e1./norm(e1,2);

32 beta = 1e-1;

33 e = beta*norm(fhat_real(tm),2).*e2;

34 fhat_realn = fhat_real(tm)+e;

35

36 % Step size

37 h = t(2)-t(1);

38

39 %objective function

40 f = sum(h.*abs(fhat_realn-fhat).^2);

1 function f = objfun(x)

2 % Objective function for fmincon

3 p = 6; k =3; points = 80;

4 coefs =[x x(:,1:2)];

5 ri = 0.2;

6 [l,n] = size(coefs);

7 knots = linspace(-2/p,(p+2)/p,n+k);

8

9 % % concentric circular inclusion functions

10 % n1 = 1;

11 % g = @(t,ri) ((1/ri)^n1*n1+ri^n1*n1)*(cos(n1*2*pi*t)+sin(n1*2*pi*t));

12 % fhat_real =@(t,ri)((1/ri)^n1-ri^n1)*(cos(n1*2*pi*t)+sin(n1*2*pi*t));

13

14 % nonconcentric calculated functions

15 rho = 0.6; s = 3*pi/4;

16 % alpha = rho*exp(1i*s);

17 %The angular transformation

18 phi =@(t)s+2*atan((1+rho)/(1-rho)*tan(pi*t-1/2*s));

19 dphi = @(t)(1-rho^2)./(1-2*rho*cos((2*pi*t)-s)+rho^2);

20 % Induced current and analytical voltage on outer boundary

21 n1 = 1;

22 g = @(t,ri) (1/(ri^(n1))*n1+ri^n1*n1)*(cos(n1*phi(t))+sin(n1*phi(t)))*dphi(t);

23 f =@(t,ri)(1/(ri^(n1))-ri^n1)*(cos(n1*phi(t))+sin(n1*phi(t)));

24 % fhatint = trapezrule(@(t)real(fhat_real(t,ri)),0,1,1000);

25

26 % Solve the forward problem

27 fhat = ForwardProblemSolver(g,[],[],knots,coefs,points,ri);

28

29 % Discretization points

30 t = linspace(0,1,points);

31 tm = .5*(t(1:end-1)+t(2:end));
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32

33 % Noise generation

34 randn('seed',41997);

35 e1 = randn(size(fhat_real(tm,ri)));

36 e2 = e1./norm(e1,2);

37 beta = 5e-2;

38 e = beta*norm(fhat_real(tm,ri),2).*e2;

39 fhat_realn = fhat_real(tm,ri)+e;

40 fhat_realn1 = fhat_realn-sum(fhat_realn*(t(2)-t(1)));

41

42

43 % Create spline for curve regularization

44 sp = spmak(knots,coefs);

45 s1 = fnder(sp);

46

47 L = quadl(@(t)intL(t,s1,0),0,1,1e-6);

48 S = quadl(@(t)intL(t,s1,1),0,1,1e-6);

49 K = S-L^2;

50 lambda = 5e-2;

51

52 h = t(2)-t(1);

53 %objective function

54 f = sum(h.*abs(fhat_realn1-fhat).^2)+lambda*K;

55

56 function y = intL(t,s1,bool)

57 dgammat = fnval(s1,t);

58 if bool == 1

59 y = dgammat(1,:).^2+dgammat(2,:).^2;

60 else

61 y = sqrt(dgammat(1,:).^2+dgammat(2,:).^2);

62 end

[9]

1 function T = trapezrule(f,a,b,m)

2 % Approximate integral by trapezoidal rule

3

4 % Version 4.06.2004. INCBOX

5

6 x = linspace(a,b,m+1); % grid points

7 T = (feval(f,a) + feval(f,b))/2; % endpoint contrib.

8 for i = 1 : m-1

9 T = T + feval(f,x(i+1)); % interior point contrib.

10 end

11 T = (b-a)/m * T; % multiply by h
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