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Preface

This thesis was prepared at the department of Applied Mathematics and Computer
Science at the Technical University of Denmark (DTU) in the fulfilment of the
requirements for acquiring an M.Sc. in Mathematical Modelling and Computation.
It represents the completion of my honors master programme at DTU and the
workload corresponds to 30 honors ECTS. The work was conducted from May 2014
to November 2014, under the supervision of Associate Professor Kim Knudsen at
DTU Compute.

The thesis deals with the solution of reconstruction problems such as medical imag-
ing through either regularization methods or non-linear di↵usion processes and the
relation between those solutions. The main theorems and proofs about existence of
solutions are based on [1] and [2].

The prerequisites for reading this thesis is a basic understanding of the theory of
inverse problems, minimization problems, and partial di↵erential equations. A more
profound understanding of functional analysis is required. Familiarity with Sobolev
spaces and their role with regard to partial di↵erential equations and their weak
form is recommended. In Chapter 2 we introduce the space of functions of bounded
variation as it will play an important role in the study of minimization problems.
Finally, knowledge about measure theory and semi-groups might be helpful, but is
not strictly necessary in order to understand the material. Appendix A includes some
useful definitions and results regarding Sobolev spaces and their duals, minimization
problems and some properties of subdi↵erentials.

Marie Foged Schmidt
November, 2014
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Abstract

The purpose of this thesis is to investigate two di↵erent approaches for solving
reconstruction problems. Reconstruction problems arise in, for example, medical
imaging, satellite imaging, data compression, fingerprint analysis, and much more. A
reconstruction problem may be seen as an inverse problem for which regularization
methods are applied in order to obtain a reasonable and satisfactory reconstruction.
This approach leads to the formulation of a minimization problem for which exis-
tence and uniqueness results are proven. The minimization problem turns out to be
associated with an Euler-Lagrange equation in distributional sense for the minimizer.
This Euler-Lagrange equation is turned into a non-linear di↵usion problem for which
the existence of a solution to the problem in its strong formulation is studied.

The thesis gives an introduction to regularization methods and minimization prob-
lems, followed by a study of the related non-linear di↵usion problems and their
solutions. The proofs of the existence results for the minimization problem and the
non-linear di↵usion problem are based on [1] and [2], respectively.

In order to investigate the di↵usion problems in greater detail, numerical experiments
are performed. The discretized iteration schemes for the di↵usion problems are
implemented in MatLab [33]. The experiments show that one needs an optimal way
of choosing the time step length for the discretized di↵usion problem and an optimal
stopping criteria for the iteration process.
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Notation and Symbols

Throughout the report the notation and symbols defined in this section will be used.

Function and measure spaces

For an open and bounded subset ⌦ ⇢ Rn we define the real-valued function spaces:

BV (⌦) Space of functions of bounded variation.
Cp

c

(⌦) Space of real-valued functions, p continuously di↵erentiable
with compact support.

C1
c

(⌦) Space of real-valued functions, infinitely continuously di↵eren-
tiable with compact support.

Lp(⌦) Space of Lebesgue measurable functions for 1  p  1.
M(⌦) Space of Radon measures.
W 1,p(⌦) Sobolev space for 1  p  1.
B(X, Y ) Space of bounded linear operators from X to Y .

The spaces defined above can be regarded as vector-valued spaces as well, and we
will write for example W 1,p(⌦,Rn) meaning the vector valued Sobolev space in Rn.

For a functional F : X !]�1,+1] where X is a Banach space we define:

argmin F {u 2 X : F (u) = inf
X

F (v)}.
l.s.c. Lower semi-continuous



Measures

For a Radon measure µ we define:

µ-a.e. x For almost every x regarding the measure µ.
|µ| Total variation of the measure µ. If µ is vector-valued, then

|µ| = |µ
1

|+ |µ
2

|+ ...+ |µ
n

|.
dx Lebesgue measure in Rn.
L(⌦) One-dimensional Lebesgue measure of ⌦.
Ln(⌦) n-dimensional Lebesgue measure of ⌦.

Functions

For a function f : ⌦ ⇢ Rn ! R and a sequence of functions (f
n

)
n2N, fn : ⌦ ⇢ Rn !

R we define:

supp(f) The support of f .
Df Distributional gradient of f .
�
E

Characteristic function on the set E.

Convergences

Let X be a normed space. We define:

x
n

! x in X Strong (norm) convergence on X.
x
n

* x in X Weak convergence on X (f(x
n

) ! f(x) for all f 2 X 0).
x0
n

⇤
* x0 in X 0 Weak* convergence on X 0 (x0

n

(x) ! x0(x) for all x 2 X).

Miscellaneous notation

| · | Euclidean norm in Rn.
B

r

(x) ⇢ Rn Ball of center x and radius r in Rn.
R

+

Positive real axis.
R�0

R
+

[ {0}.
(·, ·)

X,X

0 Pairing between X 0 and X. Often we leave out the lower-case
text X,X 0.

G�1(D) Pre-image of D under G unless otherwise stated.
⇤ Convolution.
I Identity operator.
2U The set of all subsets of the set U .
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1

Introduction and Motivation

Reconstruction problems arise in many di↵erent industry areas. For example, they
are widely implemented in image analysis. Images are used to express physical
situations worldwide. They may be used in medical imaging, satellite images, old
movie restoration, 3D reconstructions of scenes or objects from images, robotics,
character recognition, data compression, industrial quality control, fluids motion
analysis, fingerprint analysis, and much more. The huge range of applications
makes it important to be able to produce good quality images. That is, to be able
to recover details in images from possibly noisy data containing information about
the image. In medical imaging or tomography one wants to produce an image of
the inner structure of the body using e.g. ultrasound, X-rays, or electrical currents
or voltages. Sending such signals through the body and measuring the resulting
signals gives information about the body’s inner structure due to, for example,
di↵erent attenuation coe�cients for di↵erent tissues. The recovered image will
be deteriorated due to possible defects of the imaging system and noise coming
from any signal transmission. That is, the data for the reconstruction is not exact
and leads to artifacts in the reconstructed image. Since even tiny details in, for
example, medical imaging, are important, it is of great interest to remove noise
from the given data while reconstructing the image of the body’s inner structure.

The image recovering problems may be formulated as reconstruction problems in
a continuous setting. Three examples of reconstruction problems are denoising,
deblurring, and computed tomography. In a denoising problem we are given noisy

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

data, for example, a noisy image as seen in Figure 1.1b. From the noisy image we
then want to reconstruct the clean image, seen in Figure 1.1a as good as possible.
That is, we want to remove the noise. There are more questions arising when
trying to solve such a problem. Since in practice we do not know the clean image,
we cannot really tell from the noisy image which pixel values are correct and which
are not. Hence in order to remove the noise we would somehow like to smoothen
the image. But if we just smoothen in all areas of the image, we will destroy the
edges in the image. Another approach is to just smoothen in isotropic areas and
not across edges. All such considerations arise when trying to reconstruct the image.

(a) Clean image. (b) Image with 5% Gaussian noise.

(c) Motion blurred image. (d) Motion blurred image (1% noise).

Fig. 1.1: Degradation of image.

Another kind of problem is a deblurring problem. For this we are given, for
example, a blurred image as seen in Figure 1.1c and it may even be noisy too, as
seen in Figure 1.1d. Now there are two things we need to do in order to get a good
reconstruction of the original clean image. We need to remove noise, but we also
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need to deblur the image, that is, to remove the blurring and make the edges sharp.
Of course this is a more complex problem than the denoising problem and again
more questions arise when trying to solve this kind of problem. Can we deblur the
image and remove noise simultaneously? What knowledge do we need to obtain in
order to deblur the image?

Finally, in a computed tomography problem, the available data is a sinogram, as
seen in Figure 1.2a. The sinogram stems from measurements with a computed
tomography imaging system. By sending X-rays through a body at di↵erent angles
and measuring the corresponding signals, that is, the projected intensity data
along straight lines through the body, one can obtain the sinogram. The first axis
represents the angles at which the measurements are made and the second axis
represents the projection displacement. Due to possible defects of the imaging
system and noise coming from the signal transmission, the sinogram may contain
noise and even missing angles. In this thesis, though, only the case of a sinogram
with Gaussian additive noise is considered (see Figure 1.2b).

(a) Clean data. (b) Noisy data (5% noise).

Fig. 1.2: Computed tomography sinograms.

From the noisy sinogram we should be able to reconstruct the inner structure of
the body from which the measurements come. The true inner structure we should
obtain is seen in Figure 1.3. In order to be able to reconstruct this phantom from
the data in Figure 1.2b, we need some kind of model for the problem. In the next
section we will see how we can model problems like denoising, deblurring, and
computerized tomography.

1.1 Deriving a Mathematical Model

In order to solve problems like denoising, deblurring, and computerized tomography,
we need a mathematical model describing these. The reconstruction problems are
formulated in a continuous setting as follows: For the denoising problem, let u
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Fig. 1.3: Shepp-Logan phantom.

denote the clean data and let � denote the added noise. Then the noisy data is
given by

u
�

= u+ �.

The problem of reconstructing the original clean data then reads: From knowledge
of u

�

, reconstruct u (without knowing �). This is what we call an inverse problem.
Similarly for the deblurring problem, let u denote the function of interest, i.e. the
function we want to reconstruct. Let K denote an operator representing the blur
(this could, for example, be a convolution operator) and let � denote the added
noise. The noisy data is then given by

u
�

= Ku+ �.

Again the inverse problem of reconstructing the original function is then: From
knowledge of u

�

(and K), reconstruct u (withouth knowing �). Finally for the
computed tomography problem, let u denote a function representing the inner
structure of a body. Then the sinogram data is obtained by Ru, where R is the
Radon transform which exactly represents the intensity projection of u along lines.
Let � denote the noise in the sinogram data. The given data u

�

is then

u
�

= Ru+ �.

The inverse problem of reconstructing the image of the body’s inner structure is
then: From knowledge of u

�

(and R), reconstruct u (without knowing �).

From the above, we see that in general we can formulate reconstruction problems
as inverse problems:
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From knowledge of u
�

and the model u
�

= Fu+ �, reconstruct u.

Here F is a known operator and � is the unknown added noise. How should we
approach such a problem? If we had no noise we would try to minimize the norm

ku
�

� Fuk
X

, (1.1.1)

where the normed space X is chosen in a feasible way. If F is linear then a
minimizer u satisfies the normal equation

F#u
�

� F#Fu = 0

where F# is the adjoint operator of F . Hence we could try to find a solution to
the normal equation in order to find a minimizer of (1.1.1). But since F#F is
not always injective, we cannot be sure that the above equation admits a unique
solution. Furthermore if, for example, F is a convolution operator, then F#F
admits small eigenvalues causing numerical instabilities. Finally, if noise was
actually present, we would fit the solution to noise, which we definitely do not want
to do. The problem is what we call ill-posed and needs some kind of regularization.
That is, we add a regularizing term to the functional in (1.1.1), which should make
the minimization problem well-posed such that it admits a unique solution which
is stable with respect to small perturbations in the initial data. In this thesis,
only a generalized Tikhonov regularization will be considered. That is, we want to
minimize

⌧
u� ,↵

(u) = ku
�

� Fuk2
X

+ ↵kg(x, u,Du)k2
Y

, ↵ > 0.

Here the spaces X and Y and the function g need to be chosen according to
knowledge about the noise model and a priori information.

The first term

ku
�

� Fuk2
X

of the Tikhonov functional is called the fidelity term and tells something about
the noise in the given data. Hence the space X should reflect the noise model.
In the discrete case where u

�

is actually sampled in a finite number of points N ,
we restrict ourselves to a Gaussian additive noise model. Then � will consist of
N realizations of independent Gaussian distributed random variables. It can be
shown that for such a noise model, X should be L2(⌦) in the continuous setting
(see [18, pp. 46-47]). Hence we will use an L2-norm for the fidelity term:

1

2

ˆ
⌦

|u
�

(x)� Fu(x)|2 dx,

where ⌦ ⇢ Rn is the domain of u and u
�

.



6 CHAPTER 1. INTRODUCTION AND MOTIVATION

The second term

kg(x, u,Du)k2
Y

is called the penalizing term and should reflect the prior knowledge. Hence g and
Y should be chosen according to prior information. Here we restrict ourselves to
terms of the form ˆ

⌦

g(x, u(x), Du(x)) dx,

where g then reflects the prior information, that could be e.g. that u is smooth
or u has jumps. When g satisfies certain conditions, the minimization of the final
generalized Tikhonov functional

⌧
u� ,↵

(u) =
1

2

ˆ
⌦

|u
�

(x)� Fu(x)|2 dx+ ↵

ˆ
⌦

g(x, u(x), Du(x)) dx

is then well-posed and admits a unique solution which will be our guess for the
original function or image u. But in which space should we look for a solution?
In Section 3 we show that it is important that the solution space is a reflexive
Banach space. It will turn out that a natural choice of solution spaces is W 1,p(⌦)
for 1 < p < 1. In some problems we would like to set p = 1. Since W 1,1(⌦) is
not reflexive we introduce in Chapter 2 an extension of W 1,1(⌦), namely the space
of functions of bounded variation BV (⌦), which is a Banach space and satisfies
the needed properties of a reflexive space. The chapter is self-contained and may
be skipped if the reader is already familiar with the BV space. In Chapter 3 the
minimization of the Tikhonov functional will be discussed for 1  p < 1. It will
be proved that there exists a unique minimizer under certain restrictions on g and
some well-known examples will be proved to satisfy these restrictions.

The formulation of the reconstruction problems given above is called the variational
formulation and is well-known in, for example, tomography. However, it turns
out that the reconstruction problems can be formulated in a completely di↵erent
setting. Writing down what it means for a function u to be a minimizer of the
Tikhonov functional ⌧

u� ,↵
it turns out that u actually satisfies an Euler-Lagrange

equation in distributional sense, which can be turned into a non-linear di↵usion
problem as shown in Chapter 4. This opens up for a completely di↵erent way
to analyse the reconstruction problems. In some cases, we can even make sense
of the di↵usion problem in its strong formulation. In Chapter 5 and 6 it will be
proven under which conditions the non-linear di↵usion problem admits a strong
solution, that is, a solution to the strong formulation of the di↵usion problem.
It will also be discussed how the conditions for the existence of a solution to a
non-linear di↵usion problem for a reconstruction problem relates to the conditions
for existence of a minimizer for the corresponding variational formulation. The
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variational formulation can now be set aside, as the reconstruction problems can
at this point be solved using non-linear di↵usion processes. Solving the non-linear
di↵usion problem for the function u will lead to the construction of a family of
restored functions {u(t, x)}

t>0

. The idea is that as t increases, the function u(t, x)
should be a more and more simplified version of u

�

but should still preserve certain
structures, such as jumps, i.e. edges in an image. Moreover, no new structures
should be created. For this reason t may be regarded as a scale variable instead of
as a time variable. Choosing homogeneous Neumann boundary conditions implies
that no new information is put into the system and no information leaves the system.

The di↵usion process formulation for the reconstruction problems leads to possibly
new “regularization” techniques which may not have a corresponding variational
formulation. Keeping in mind that a di↵usion process is smoothing, then for the
denoising and deblurring problems for instance, we would like di↵usion to take
place in isotropic areas only and not across edges. These thoughts can be built
into a non-linear di↵usion process which then serves as the regularization of the
problems.

In order to solve a non-linear di↵usion problem, the partial di↵erential equation
(PDE) needs to be discretized. The most straightforward discretization model is
the finite di↵erence method, which is used in this thesis. Now the question of how
to choose the time step size arises. If we choose the step size too small, then the
iteration process is very slow, which means that the reconstruction process may
require a huge amount of iterations. If we choose the time step size too large, we
may skip the steps where noise is actually removed or diminished and then we will
end up fitting data to noise. Hence there should be a balanced way of choosing the
time step size. In Chapter 7 these considerations are discussed through numerical
experiments. Still keeping in mind that the di↵usion process is smoothing and as
time evolves we will obtain a more and more simplified version of u

�

we have to
stop the di↵usion process before the details in u

�

that we actually need to keep are
removed or diminished. This suggests that there is an optimal stopping criteria
for the iteration process. In the numerical experiments of this thesis, however, the
stopping time is chosen by trial and error.

1.2 Problem Formulation

The main goal of this thesis is to study the variational formulation and the non-
linear di↵usion method and their relation for general reconstruction problems. The
noise model will be assumed to be additive and in the discrete case restricted
to Gaussian additive noise. For the variational formulation the existence and
uniqueness of a minimizer will be investigated and for the non-linear di↵usion
method only the existence will be examined. Di↵erent di↵usion filtering methods
and their strengths will be examined through numerical experiments for denoising,
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deblurring and computed tomography examples.



2

BV Space

1As described in Chapter 1, sometimes we want to be able to preserve features
such as jumps in function values under the reconstruction of a function. For an
image that would be edges. Hence the solution space of our problem must permit
discontinuous solutions. The first distributional derivative of a function can be
regarded as a measure which may charge zero Lebesgue measure sets. For example
an edge in a two dimensional image will have 0 Lebesgue measure, but we may
want to assign a “size” to it through the distributional derivative measure in order
to distinguish it from isotropic areas. The solution of such a problem cannot be
found in classical Sobolev spaces. Thus we introduce the new space of functions of
bounded variation BV (⌦) and show that it is an extension of the Sobolev space
W 1,1(⌦). The BV (⌦) space then completes the classical theory of Sobolev spaces.

2.1 Definition and properties

In this first section we define the BV space and equip it with a norm making it
a Banach space. Then we show that the first distributional derivative of a BV -
function can be regarded as a measure and show that the Sobolev space W 1,1(⌦) is
a subset of BV (⌦). Finally we state an important lemma replacing the reflexivity
of the Sobolev spaces W 1,p(⌦) for 1 < p < 1. This lemma makes the BV space

1
This Chapter is based on [20, ch. 10-11].

9
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useful in minimization problems.

Throughout the section we let ⌦ denote a bounded open subset of Rn. For a
function u 2 L1(⌦) we define the total mass |Du|(⌦) by

|Du|(⌦) = sup

⇢ˆ
⌦

u div� dx : � 2 C1

c

(⌦,Rn), k�k
L

1
(⌦)

 1

�
,

where dx is the Lebesgue measure. Then the space of bounded variation is defined
by

Definition 2.1.1 (BV (⌦)). The space of functions of bounded variation
BV (⌦) is defined by

BV (⌦) =
�
u 2 L1(⌦) : |Du|(⌦) < 1

 
.

In order to be able to define convergence properties in BV (⌦) we need to define a
norm. BV (⌦) is equipped with the norm given by

kuk
BV (⌦)

= kuk
L

1
(⌦)

+ |Du|(⌦).

It can be shown that the BV space equipped with this norm is a Banach space
(see [20, Thm. 10.1.1]).

We now show that if u 2 BV (⌦) then the distributional derivative Du of u can be
identified with a vector-valued Radon measure2. This allows for giving a possibly
zero Lebesgue measure set a size using the distributional derivative measure instead.
Letting L : C1

c

(⌦,Rn) ! R be the functional defined by

L(�) =

ˆ
⌦

u div� dx.

Then L is clearly linear and since u 2 BV (⌦) then

sup
�
L(�) : � 2 C1

c

(⌦,Rn), k�k
L

1
(⌦)

 1
 
= c < 1,

where c is a constant only depending on ⌦ and u. Hence for all � 2 C1

c

(⌦,Rn) we
have

|L(�)|  ck�k
L

1
(⌦)

. (2.1.1)

2
A Radon measure on Rn

is a measure that is finite in each compact set K ⇢ Rn
.
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Let K ⇢ ⌦ be a compact set and � 2 C
c

(⌦,Rn) with supp(�) ⇢ K. Then for
�
"

= ⌘
"

⇤ � where ⌘
"

is the standard mollifier (see [27, pp. 713-716]) we have
�
"

2 C1

c

(⌦,Rn) and

�
"

! � uniformly as " ! 0,

k�
"

k
L

1
(⌦)

 k�k
L

1
(⌦)

, 8".

From inequality (2.1.1) and the above we see that the sequence (|L(�
"

)|) is uniformly
bounded and hence the limit L(�) = lim

"!0

L(�
"

) exists, and is independent of the
choice of the sequence �

"

. Then L uniquely extends to a linear bounded functional

L : C
c

(⌦,Rn) ! R.

From the Riesz representation theorem (see [31, Section 1.8, Thm. 1, Cor. 1])
there exists a Radon measure µ and a µ-measurable function � such that

|�(x)| = 1 µ� a.e. x,ˆ
⌦

u div� dx = �
ˆ
⌦

� · � dµ, 8� 2 C1

c

(⌦,Rn).

This means that Du = � dµ is a vector-valued Radon measure. For this reason we
also denote |Du|(⌦) by

´
⌦

|Du|.

Using that for u 2 BV (⌦) then Du is a Radon measure we can show that W 1,1(⌦)
is a subset of BV (⌦): Since Du is a vector-valued Radon measure, there exists a
Lebesgue decomposition (see [31, Section 1.6, Thm. 3]):

Du = ruLn|
⌦

+D
s

u,

where ru 2 L1(⌦,Rn) and D
s

u is singular with respect to the n-dimensional
Lebesgue measure Ln|

⌦

restricted to ⌦. This shows that W 1,1(⌦) is a subspace
of BV (⌦) since if u 2 W 1,1(⌦) then u 2 L1(⌦) and Du 2 L1(⌦,Rn). Hence
u 2 BV (⌦) since for D

s

u = 0 we have Du = ru 2 L1(⌦,Rn).

For u 2 BV (⌦) we can now interpret Du as a Radon measure which leads to the
following concept of weak convergence in the BV (⌦) space:

Definition 2.1.2 (Weak convergence). A sequence (u
n

)
n2N ⇢ BV (⌦)

converges weakly to u 2 BV (⌦) written u
n

* u if and only if the two
following convergences hold:

1) u
n

! u strongly in L1(⌦)

2) Du
n

* Du weakly in M(⌦,Rn) (the space of all Rn-valued Borel
measures).
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Remark 2.1.3. In Definition 2.1.2,Du
n

* Du inM(⌦,Rn) means that
´
⌦

u
n

div� !´
⌦

u div� for all � in C
c

(⌦,Rn).

The weak convergence leads to the following lower semi-continuity result (see
definitions in appendix A.2):

Proposition 2.1.4. Let (u
k

)
k2N be a sequence in BV (⌦) converging

strongly to some u in L1(⌦) and satisfying sup
k2N

´
⌦

|Du
k

| < +1. Then

i) u 2 BV (⌦) and |Du|(⌦) =
´
⌦

|Du|  lim inf
k!+1

´
⌦

|Du
k

| (l.s.c.
property).

ii) u
n

weakly converges to u in BV (⌦).

Proof. Since u
k

2 BV (⌦) then for all � 2 C1

c

(⌦,Rn) with k�k
L

1
(⌦)

 1 we have

ˆ
⌦

u div� dx =

ˆ
⌦

lim
k!+1

u
k

div� dx = lim
k!+1

ˆ
⌦

u
k

div� dx

 lim
k!+1

ˆ
⌦

|Du
k

| = lim inf
k!+1

ˆ
⌦

|Du
k

|.

Taking the supremum on the left over all � 2 C1

c

(⌦,Rn) with k�k
L

1
(⌦)

 1 we
obtain

ˆ
⌦

|Du|  lim inf
k!+1

ˆ
⌦

|Du
k

| < 1

which proves assertion (i).

In order to prove assertion (ii) we use the strong convergence of u
n

to u in L1(⌦).
The strong convergence implies that Du

k

converges to Du in distributional sense,
i.e.

(�, Du
k

) = �
ˆ
⌦

u
k

div� dx ! �
ˆ
⌦

u div� dx = (�, Du), 8� 2 C1
c

(⌦,Rn).

Using that C1
c

(⌦,Rn) is dense in C
c

(⌦,Rn) for the L1-norm and using the
assumption of boundedness of (Du

k

)
k2N we conclude that the sequence (Du

k

)
k2N

converges weakly to Du in M(⌦,Rn).

Using the lower semi-continuity property from proposition 2.1.4 the following
compactness result for the BV space can be proved:
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Lemma 2.1.5. Let ⌦ ⇢ Rn be bounded, open, connected, and Lipschitz.
Then every sequence (u

k

)
k2N in BV (⌦) satisfying sup

k

ku
k

k
BV (⌦)

< +1
has a subsequence weakly converging to some function u 2 BV (⌦).

Proof. See [28, Prop. 3.13].

The above lemma is essential for reconstruction problems in W 1,1(⌦) ⇢ BV (⌦)
as described in Chapter 1. In Chapter 3 it is shown that we need bounded sets
in the solution space of the reconstruction problem to be pre-compact. This
property is satisfied by reflexive Banach spaces and therefore we can use W 1,p(⌦),
1 < p < 1, for the reconstruction problems. However, if we want to use W 1,1(⌦)
for a reconstruction problem we need to extend the space to BV (⌦) since W 1,1(⌦)
is not reflexive. Lemma 2.1.5 then replaces the reflexivity of the Sobolev spaces
W 1,p(⌦) for 1 < p < 1 since it states that all bounded sets in BV (⌦) are
pre-compact.

2.2 Structure of BV functions

The structure of a BV function u is naturally inherited from the level sets [u > t],
t 2 R. In order to motivate the structure theorem for BV functions we first look at
a real-valued function u of bounded variation on an interval I ⇢ R. It can be shown
that such a function is the di↵erence between two monotonous functions and there-
fore possesses two limits lim

�!0

u(x
0

+ �) and lim
�!0

u(x
0

� �) at each point x
0

2 I
(see [20, Section 10.3]). We define the jump set to be the set of all points where
the two limits are di↵erent, S

u

:= {x 2 I : lim
�!0

u(x
0

+ �) 6= lim
�!0

u(x
0

� �)}.
In this section we show that this notion of a jump set can be generalized to any
dimension. This is exactly the property we want in order to operate with jumps in
function values and in particular edges in images.

In order to be able to define the jump set in any dimension, we need the notion
of density points, rarefaction points, and approximate limits. The density and
rarefaction points are generalizations of the well-known interior and exterior points
of subsets in Rn:
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Definition 2.2.1 (Density Points and Rarefaction Points). Let E be a
Borel subset of Rn. A point x

0

2 Rn is a density point of E if and only if

lim
⇢!0

Ln(B
⇢

(x
0

) \ E)

Ln(B
⇢

(x
0

))
= 1.

A point x
0

is a rarefaction point of E if and only if

lim
⇢!0

Ln(B
⇢

(x
0

) \ E)

Ln(B
⇢

(x
0

))
= 0.

The set of all density points and all rarefaction points of E are respectively
called measure theoretical interior and measure theoretical exterior of E
and denoted by E⇤ and E⇤.

In order to get an intuitive idea of the above definitions we give an example.
Consider the example in Figure 2.1. Let E be the Borel subset of R2 consisting of
the union of the two open white disks. Then all points in E are density points of
E and all points in R2\E are rarefaction points of E. But anything can happen at
the boundary @E. Take for example x⇤ seen in the figure. x⇤ is a density point of
E but is a rarefaction point of Ec (the complementary of E).

x⇤

Fig. 2.1: x

⇤
is a density point of the union of the two open white disks, but is a rarefaction

point of the complementary of the union.

Next we define the approximate limit, the approximate limit superior, and the
approximate limit inferior for a function f : Rn ! R:
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Definition 2.2.2 (Approximate Limits). Let f : Rn ! R be a measurable
function and x

0

2 Rn. A real number ↵ is the approximate limit of f at
x
0

if and only if

8" > 0, x
0

is a density point of the set [|f � ↵| < "]

or equivalently

8" > 0, x
0

is a rarefaction point of the set [|f � ↵| > "].

We then write ↵ = ap lim
x!x0 f(x).

More generally we define in R the appproximate limit supremum and the
approximate limit infimum of f at x

0

by

ap lim sup
x!x0

f(x) = inf

⇢
t 2 R : lim

⇢!0

Ln(B
⇢

(x
0

) \ [f > t])

Ln(B
⇢

(x
0

))
= 0

�

and

ap lim inf
x!x0

f(x) = sup

⇢
t 2 R : lim

⇢!0

Ln(B
⇢

(x
0

) \ [f < t])

Ln(B
⇢

(x
0

))
= 0

�
.

Again looking at the example in Figure 2.1 and defining f
1

= �
E

where � is the
characteristic function, then for all 0 < " < 1 we have [|f

1

� 1| < "] = E. Hence
1 is the approximate limit of f

1

for all points in E [ {x⇤}. On the other hand,
defining f

2

= �
E

c then for all 0 < " < 1 we have [|f � 0| > "] = Ec. Hence 0 is the
approximate limit of f

2

for all points in E [ {x⇤}.

Before we define the generalized jump set we need the notion of a representative of
a function f 2 L1(⌦). For the representative of f , still denoted f , we choose the
one that satisfies f(x

0

) = ap lim
x!x0 f(x) at every point x

0

2 ⌦ of approximate
limit. Using the representative described above for every function u 2 BV (⌦) we
can define the generalized jump set in any dimension:

Definition 2.2.3 (Jump set). The jump set of a function u 2 BV (⌦)
whose representative satisfies the above convention is defined by

S
u

= {x 2 ⌦ : u�(x) < u+(x)},

where u�(x) = ap lim inf
y!x

u(y) and u+(x) = ap lim sup
y!x

u(y).

We consider again the example in Figure 2.1 with u = �
E[{x⇤}. Here we have
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defined u to be 1 at the point x⇤ because then it satisfies the convention that
u(x

0

) = ap lim
x!x0 u(x) at every point x

0

of approximate limit. Then for every
point x

0

2 E we have

u+(x
0

) = ap lim sup
x!x0

u(x) = inf{t 2 R : t � 1} = 1,

u�(x
0

) = ap lim inf
x!x0

u(x) = sup{t 2 R : t  1} = 1.

This shows that no point in E is part of the jump set. Next, for every point
x
0

2 R2\E we have

u+(x
0

) = ap lim sup
x!x0

u(x) = inf{t 2 R : t � 0} = 0,

u�(x
0

) = ap lim inf
x!x0

u(x) = sup{t 2 R : t  0} = 0.

This shows that no point in R2\E is part of the jump set. The only points left are
those on the boundary of E. For x

0

2 @E\{x⇤} we have

u+(x
0

) = ap lim sup
x!x0

u(x) = inf{t 2 R : t � 1} = 1,

u�(x
0

) = ap lim inf
x!x0

u(x) = sup{t 2 R : t  0} = 0.

Hence every point in @E\{x⇤} is part of the jump set. Finally for x⇤ we have

u+(x⇤) = u�(x⇤) = ap lim
x!x

⇤
u(x) = 1

which shows that x⇤ is not part of the jump set. If we regard Figure 2.1 as an
image, then we would call @E for an edge except maybe at the point x⇤ where
we do not have an actual edge. Hence the jump set describes exactly what would
be considered as edges in the image. This makes the BV (⌦) space good for the
representation of images with sharp edges.

2.3 Minimization Problems in BV

Recovering of a function from noisy data can be formulated as a minimization
problem as described in Chapter 1;

inf{F
0

(u) : u 2 C}.

Here C is a constraint under which we want to minimize the functional F
0

: X ! R.
That is, C is either X or a subset hereof. Introducing a metric d : X ⇥X ! R�0

on the space X we can rewrite the minimization problem as

inf{F
0

(u) + kd(u, C) : u 2 X, k 2 R
+

},
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where

d(u, C) = inf{d(u, v) : v 2 C}.

Introducing F
k

(u) = F
0

(u) + kd(u, C), the minimization problem can be written

inf{F
k

(u) : u 2 X, k 2 R
+

}.

Letting k ! 1, the sequence of functionals (F
k

)
k2N increases to the functional

F : X ! R [ {+1} defined by

F (u) =

⇢
F
0

(u), u 2 C,
+1, otherwise.

Now F is an extended real-valued functional and the minimization of F
0

under the
constraint C is equivalent to the minimization problem

inf{F (u) : u 2 X}

without any constraint. For minimization problems in BV (⌦) we often want to
minimize a functional F

0

under the constraint u 2 W 1,1(⌦). This leads to the
minimization problem

inf{F (u) : u 2 X}

where

F (u) =

⇢
F
0

(u), u 2 W 1,1(⌦),
+1, u 2 BV (⌦)\W 1,1(⌦).

In the next chapter we will analyse minimization problems in both W 1,p(⌦) for
1 < p < 1 and in BV (⌦). We will see that we actually cannot just use W 1,1(⌦)
in order to say something about the existence and uniqueness of a minimizer and
we will need the extension to BV (⌦).
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3

Variational Formulation

1In this Chapter, reconstruction problems such as denoising, deblurring, and CT
are formulated as inverse problems. As described in Chapter 1 the problems then
read: From noisy data u

�

, reconstruct u knowing the model

u
�

= Fu+ �,

where F is a known operator and � is the noise. To obtain a satisfactory recon-
struction of u we then apply a generalized Tikhonov regularization. In fact, we
restrict ourselves to the minimization of functionals of the form

⌧
↵,u�

(u) =
1

2

ˆ
⌦

|u
�

(x)� F(u)(x)|2 dx+ ↵

ˆ
⌦

g(x, u(x), Du(x)) dx. (3.0.1)

Here ⌦ ⇢ Rn is the domain of u. The above functional is of the form

F (u) =

ˆ
⌦

f(x, u(x), Du(x)) dx (3.0.2)

where f : ⌦⇥R⇥Rn ! R[{+1} is a function. Here f is an extended real-valued
function due to the possibility of minimizing F under a constraint as explained
in Section 2.3. To begin with we therefore analyse the problem of minimizing F
in (3.0.2). It turns out that we will need F to be defined on a reflexive space an

1
This Chapter is based on [1, pp. 3-6], [25, pp. 74-76], and [27, pp. 465-472].

19
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we will need x 7! (u(x), Du(x)) to be Lebesgue measurable. A natural choice of
solution space for the minimization problem is therefore W 1,p(⌦). These spaces are
reflexive for 1 < p < 1 and if u 2 W 1,p(⌦) then x 7! (u(x), Du(x)) is measurable.
For W 1,1(⌦) though we will need to use the BV (⌦) space in order to analyse the
problem since W 1,1(⌦) is not reflexive. In the following we will give results for the
well-posedness of the minimization problem

inf{F (v) : v 2 W 1,p(⌦)} (3.0.3)

for di↵erent values of 1  p < 1. For p = 1 we will need to extend the problem to
BV (⌦) as described in Section 2.3.

According to Hadamard, the well-posedness of a problem requires the following
three conditions:

1) existence of a solution,

2) uniqueness of the solution,

3) stability of the solution regarding small perturbations in the data.

In the following the two first items are treated for the problem in (3.0.3).

3.1 Existence

Before considering the minimization problem in (3.0.3) for the integral functional in
(3.0.2), we first consider the minimization of a general functionalG : X ! R[{+1}
on a normed space (X, k·k). Then we can use the results for G to give restrictions
on f in (3.0.2) in order for F to attain its minimum. To motivate the resulting
theorem for general functionals, we begin with a simple example explaining what
is needed to have existence of a minimizer. First note that even for a function
h : R ! R that is bounded from below we cannot be sure that it attains its
minimum. Consider, for example, the function

h(y) = ey, y 2 R.

Then h is bounded from below by 0 but the infimum 0 is not attained for y 2 R.
Hence we need to control the function values as |y| ! +1. Here we require h to
be sequentially coercive. That is,

lim
|y|!1

h(y) = +1.

Now a coercive function h : R ! R which is bounded from below will indeed attain
its minimum, but in general this is not the case. Consider the function

h(y) = ey, y 2 (0,+1).
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Then h is bounded from below and coercive. But the infimum

inf{h(y) : y 2 (0,+1)} = 1

is obtained as y ! 0, but 0 in the domain of definition. This suggests that we
need some kind of compactness result. We require h to be inf-compact, i.e. we
require that the level sets of h are relatively compact in the domain of definition.
However, this is still not enough. Consider the function

h(y) =

⇢
ey, y 2 (0,1),
2, y = 0.

Then h is bounded from below, coercive, and inf-compact. But still the infimum is
not attained since

inf{h(y) : y 2 [0,1)} = 1

is obtained as y ! 0, but h(0) = 2. This suggests that we need some kind of
continuity result. We do not need h to be continuous though since if we choose
h(0) = 0 in the above instead then h attains its minimum. We therefore require
h to be lower semi-continuous, i.e. for any sequence (y

n

)
n2N in the domain of h

converging to y we have

h(y)  lim inf
n!1

h(y
n

).

The considerations above are gathered in Theorem 3.1.1 below which gives the least
requirements for a proper functional G : X ! R [ {+1} to attain its minimum
(here proper means that there exists an element u 2 X such that G(u) < +1):

Theorem 3.1.1. Let G : X ! R [ {+1} be a lower semi-continuous,
inf-compact, and proper functional. Then G attains a minimizer in X.

Proof. Define

m = inf{G(v) : v 2 X}.

We need to show that there exists an element u 2 X such that G(u) = m. Since G
is proper we know that there exists at least one element in X for which the value
of G is less than +1. This implies that m < +1. Also since G is inf-compact
then m > �1. Together these two properties imply that there exists a minimizing
sequence (u

k

)
k2N ⇢ D(G) for G, i.e.

lim
k!1

G(u
k

) = m.
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Since G is inf-compact then by definition every level sets of G are sequentially
pre-compact. Since (u

k

)
k2N is a minimizing sequence then sup

k

G(u
k

) = a
1

< +1
and therefore (u

k

)
k2N is part of the level set level

a1(G). Since every level set is
pre-compact there exists a subsequence (u

kn)n2N converging to some u 2 X. The
lower semi-continuity of G then implies

G(u)  lim inf
n!1

G(u
kn) = m.

By the definition of m we can conclude G(u) = m. This shows that u 2 X is a
minimizer of G and thus G attains a minimizer in X.

Instead of general functionals we now consider integral functionals F : W 1,p(⌦) !
R [ {+1}, 1  p < 1, of the form

F (u) =

ˆ
⌦

f(x, u(x), Du(x)) dx, (3.1.1)

where f : ⌦ ⇥ R ⇥ Rn ! R [ {+1} is a function. In order to be sure of the
existence of a minimizer we need F to be inf-compact and lower semi-continuous.
In the following we give necessary and su�cient restrictions on the function f such
that the integral functional F is well-defined and attains a minimizer.

We define two di↵erent integrand types. The first type is called normal integrand
and ensures that the integral functional in (3.1.1) is well-defined:

Definition 3.1.2 (Normal Functional). Let ⌦ ⇢ Rn be an open set, and
let f : ⌦ ⇥R⇥Rn ! R [ {+1} be a functional. Then f is called normal
if

(i) f(x, ·, ·) is lower semi-continuous for all x 2 ⌦.

(ii) f(·, u, ⇠) is Borel measurable for all (u, ⇠) 2 R⇥ Rn.

Assuming that the integrand f is normal ensures that the integral functional
defined in (3.1.1) is well-defined. Here we give a proof in the case when f(x, ·, ·)
is continuous and refer to a proof in [4] in the case when f(x, ·, ·) is lower semi-
continuous:
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Theorem 3.1.3. Let ⌦ ⇢ Rn be open, f : ⌦ ⇥R⇥Rn ! R [ {+1} be a
normal functional and u : ⌦ ! R and v : ⌦ ! Rn be Lebesgue measurable.
Then the function g : ⌦ ! R [ {+1} defined by

g(x) = f(x, u(x), v(x))

is Lebesgue measurable. In particular, if u 2 W 1,p(⌦) with p � 1 then the
functional F defined in (3.1.1) is well-defined.

Proof. We proof the theorem only in the case when f(x, ·, ·) is continuous. We
start by proving the result for simple functions u and v. Hence let u and v be
given by

u(x) =
nX

i=1

↵
i

�
Ai(x) and v(x) =

mX

j=1

�
j

�
Bj(x)

where ↵
i

2 R, �
j

2 Rn, A
i

⇢ ⌦ are mutually disjoint, B
j

⇢ ⌦ are mutually disjoint
and

n[

i=1

A
i

= ⌦ and
m[

j=1

B
j

= ⌦.

The function �
C

(x) for a set C ⇢ RN is the characteristic on C. Now let a 2 R.
Then

{x 2 ⌦ : g(x) < a} =
m[

j=1

n[

i=1

{x 2 A
i

\ B
j

: f(x,↵
i

, �
j

) < a}.

Since f(·, u, ⇠) is Borel measurable for each fixed (u, ⇠) 2 R⇥Rn, then each of the
sets

{x 2 A
i

\ B
j

: f(x,↵
i

, �
j

) < a}

are measurable and hence also the finite union
m[

j=1

n[

i=1

{x 2 A
i

\B
j

: f(x,↵
i

, �
j

) < a}

is measurable. That is,

{x 2 ⌦ : g(x) < a}

is measurable for each a 2 R. Hence g�1(D) (the pre-image) is measurable for
all sets D of the form D = (�1, a), a 2 R, and since the set of all such sets is a
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generator for the Borel-algebra, we conclude that g is measurable by [23, Lemma
4.7].

Now we move on to the case in which u and v are not simple functions. Since every
measurable function is the pointwise limit of simple functions, we can then find
sequences (u

k

)
k2N and (v

l

)
l2N such that u

k

(x) ! u(x) as k ! 1 and v
l

(x) ! v(x)
as l ! 1 pointwise (see [23, Cor. 5.17]) By assumption f(x, ·, ·) is continuous and
hence

g(x) = f(x, u(x), v(x)) = lim inf
k!1

f(x, u
k

(x), v
k

(x)).

Since for each k 2 N the functions u
k

and v
k

are simple, then by the above
f(x, u

k

(x), v
k

(x)) is measurable. By [23, Lemma 5.5] also the function

x 7! lim inf
k!1

f(x, u
k

(x), v
k

(x))

is measurable. This proofs the result in the case where f(x, ·, ·) is continuous. For
the proof when f(x, ·, ·) is lower semi-continuous see [4, Corollary 2B].

In particular, for u 2 W 1,p(⌦), 1  p < 1, the functions x 7! u(x) and x 7! Du(x)
are measurable and hence the function g(x) = f(x, u(x), Du(x)) is measurable by
the above. By [23, Lemma 7.2] the integral functional in (3.1.1) is well-defined
under the convention that if |f | is not summable then we set F (u) = +1.

In order for F in (3.1.1) to attain a minimizer we need it to be lower semi-continuous
in some topology. It turns out that the weak topology is favourable. In order for
F to be weakly lower semi-continuous we need the integrand f to be weakly lower
semi-continuous. Therefore we require f(x, ·, ·) to be convex since this together
with the lower semi-continuity of f(x, ·, ·) implies the weak lower semi-continuity
of f(x, ·, ·) (see Theorem A.2.11 in Appendix A.2):

Definition 3.1.4 (Convex Integrand). Let ⌦ ⇢ Rn be open. We say that
f : ⌦ ⇥ R⇥ Rn ! R [ {+1} is a convex integrand if for every x 2 ⌦ the
function (u, ⇠) 7! f(x, u, ⇠) is convex.

With the definitions above we are ready to state the following theorem about the
lower semi-continuity of integral functionals of the form (3.1.1):



3.1. EXISTENCE 25

Theorem 3.1.5. Let ⌦ ⇢ Rn be open and let f : ⌦⇥R⇥Rn ! R�0

[{+1}
be a normal and convex integrand. Then for all sequences (u

k

)
k2N ⇢ Lq(⌦)

norm converging to u and (v
k

)
k2N ⇢ Lr(⌦,Rn) weakly converging to v with

q � 1 and 1  r  p, we have

lim inf
k!1

ˆ
⌦

f(x, u
k

(x), v
k

(x)) dx �
ˆ
⌦

f(x, u(x), v(x)) dx. (3.1.2)

In particular for 1  p  n and 1  q < np/(n � p) the functional F
defined in (3.1.1) is weakly sequentially lower semi-continuous in W 1,p(⌦).
Similarly for n < p < 1 and 1  q < 1 the functional F is weakly
sequentially lower semi-continuous in W 1,p(⌦).

Proof. By assumption f(x, ·, ·) is lower semi-continuous and convex and by Theorem
A.2.11 in Appendix A.2 this implies that f(x, ·, ·) is weakly lower semi-continuous.
Since u

k

converges to u in the norm topology on Lq(⌦) then also u
k

converges
weakly to u in Lq(⌦) as well as v

k

converges weakly to v in Lr(⌦,Rn) and we
obtain

lim inf
k!1

f(x, u
k

(x), v
k

(x)) � f(x, u(x), v(x)). (3.1.3)

Since f is normal then by Theorem 3.1.3 the functions

x 7! f(x, u
k

(x), v
k

(x)), k 2 N and x 7! f(x, u(x), v(x))

are all measurable and therefore integrable under the convention that if the integral
of the absolute value is not finite we set the integral equal to +1. Hence by
Fatou’s Lemma (see [23, Lemma 6.25]) and (3.1.3) we getˆ

⌦

f(x, u(x), v(x)) dx 
ˆ
⌦

lim inf
k!1

f(x, u
k

(x), v
k

(x)) dx

 lim inf
k!1

ˆ
⌦

f(x, u
k

(x), v
k

(x) dx.

Regarding the last part of the theorem, let (u
k

)
k2N ⇢ W 1,p(⌦) be a weakly

convergent sequence with u
k

* u 2 W 1,p(⌦) as k ! 1. Then for 1  p  n
the mapping i : W 1,p(⌦) ! Lq(⌦) defined by i(u) = u is a compact imbedding
for 1  q < np/(n � p) and likewise for n < p < 1 the mapping is a compact
imbedding for 1  q < 1. Hence i is continuous with respect to the weak topology
on W 1,p(⌦) and the norm topology on Lq(⌦) so that

i(u
k

) ! i(u) in Lq(⌦).

That is, u
k

! u in Lq(⌦). Furthermore since u
k

* u in W 1,p(⌦) then by the
characterization of the dual space (W 1,p(⌦))0 given in Theorem A.1.2 in Appendix
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A.1 we conclude that Du
k

* Du in Lp(⌦,Rn). Hence because (Lr(⌦,Rn))0 ✓
(Lp(⌦,Rn))0 for all 1  r  p then Du

k

* Du in Lr(⌦,Rn). So the conditions for
using inequality (3.1.2) are satisfied and we obtain

lim inf
k!1

F (u
k

) = lim inf
k!1

ˆ
⌦

f(x, u
k

(x), Du
k

(x)) �
ˆ
⌦

f(x, u(x), Du(x)) = F (u).

This shows that F is weakly sequentially lower semi-continuous in W 1,p(⌦).

Now that we know that F is weakly sequentially lower semi-continuous, we just
have to prove that F is weakly inf-compact in order to use Theorem 3.1.1 to prove
the existence of a minimizer. In order to show that F is weakly inf-compact we
need a lower bound condition on the integrand f which controls the growth of F
as kuk

W

1,p
(⌦)

! 1:

Corollary 3.1.6. Let 1 < p < 1. Let ⌦ ⇢ Rn be open, bounded and
connected and assume that f : ⌦ ⇥ R ⇥ Rn ! R�0

[ {+1} is a normal
and convex integrand satisfying the lower bound condition

f(x, u, ⇠) � c
1

+ c
2

(|u|p + |⇠|p)

for some c
1

2 R and c
2

> 0. Let F : W 1,p(⌦) ! R [ {+1} be defined as
in (3.1.1), and let X ✓ W 1,p(⌦) be a closed and convex subset. If there
exists u 2 X with F (u) < +1, then F |

X

attains a minimizer in X.

Proof. In order to be able to use Theorem 3.1.1 we need to show that F is lower
semi-continuous and inf-compact in some topology on X. Since we can use Theorem
3.1.5 to conclude that F is weakly sequentially lower semi-continuous in W 1,p(⌦),
we show that it is weakly inf-compact. That is, we need to show that every level
set level

a

(F |
X

) is weakly sequentially pre-compact in X. From the lower bound
assumption it follows that

F (u) � c
1

Ln(⌦) + c
2

ˆ
⌦

(|u(x)|p + |Du(x)|p) dx = c
1

Ln(⌦) + c
2

kukp
W

1,p
(⌦)

.

Hence for a 2 R the inequality

F (u)  a

implies

c
1

Ln(⌦) + c
2

kukp
W

1,p
(⌦)

 a.
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By the definition of the level sets we then have

level
a

(F |
X

) ⇢ X \
⇢
u 2 W 1,p(⌦) : kukp

W

1,p
(⌦)

 a� c
1

Ln(⌦)

c
2

�
.

Since X is a convex and closed subset of W 1,p(⌦) it is also weakly closed, see [20,
theorem 3.3.2]. On the other hand for p > 1, W 1,p(⌦) is a reflexive and separable
Banach space and hence the unit ball in W 1,p(⌦) is weakly sequentially compact,
see [20, theorem 2.4.2]. Since the set

⇢
u 2 W 1,p(⌦) : kukp

W

1,p
(⌦)

 a� c
1

Ln(⌦)

c
2

�

is simply a scaled unit ball in W 1,p(⌦) it is also weakly sequentially compact. Hence
the level set level

a

(F |
X

) is contained in the intersection between a weakly closed
set and a weakly sequentially compact set. This implies that the level set itself is
weakly sequentially pre-compact and hence F is weakly inf-compact.

Since f is a non-negative normal and convex integrand, then f satisfies the
assumptions of Theorem 3.1.5. Hence it follows that F is weakly sequentially lower
semi-continuous. By assumption F |

X

is also proper and then by Theorem 3.1.1
there exists a minimizer of F |

X

in X.

In the proof of Theorem 3.1.6 we needed the space W 1,p(⌦) to be reflexive. Since
the space W 1,1(⌦) is not reflexive, Theorem 3.1.6 does not hold for p = 1.
In order to extend the theorem to p = 1 we need to extend the functional
F : W 1,1(⌦) ! R[{+1} defined in (3.1.1) to the Banach space BV (⌦) � W 1,1(⌦)
in which bounded sets are weakly sequentially pre-compact by Lemma 2.1.5. Note
also that the space BV (⌦) allows discontinuities across edges in images which is
actually a good a priori model.

The extension of F to BV (⌦) is carried out as described in Section 2.3. Since we
want to minimize F in BV (⌦) under the constraint u 2 W 1,1(⌦), F is extended in
the following way:

F (u) =

⇢
F (u), u 2 W 1,1(⌦),
+1, u 2 BV (⌦)\W 1,1(⌦).

(3.1.4)

Since Theorem 3.1.5 holds for p = 1 we can still conclude that F (u) is weakly
sequentially lower semi-continuous in W 1,1(⌦) and we reach the final theorem for
p = 1:
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Corollary 3.1.7. Let ⌦ ⇢ Rn be open, bounded, connected and Lipschitz,
and assume that f : ⌦ ⇥ R⇥ Rn ! R�0

[ {+1} is a normal and convex
integrand satisfying the lower bound condition

f(x, u, ⇠) � c
1

+ c
2

(|u|+ |⇠|)

for some c
1

2 R and c
2

> 0. Let F : BV (⌦) ! R[ {+1} be defined as in
(3.1.4), and let X ✓ BV (⌦) be a closed and convex subset. If there exists
u 2 X with F (u) < +1, then F |

X

attains a minimizer in X.

Proof. Since F is proper then any minimizing sequence will eventually enterW 1,1(⌦)
on which F is definitely lower semi-continuous by Theorem 3.1.5 which applies
to p = 1. As in the proof of Corollary 3.1.6 we then want to show that the
level sets level

a

(F |
X

) are weakly sequentially pre-compact in X. But since every
minimizing sequence eventually enters W 1,1(⌦) we just need to show that the level
sets level

a

(F |
X\W 1,1

(⌦)

) are weakly sequentially pre-compact in X. From the lower
bound assumption we obtain

level
a

(F |
X\W 1,1

(⌦)

) ⇢ X \
⇢
u 2 BV (⌦) : kuk

BV (⌦)

 a� c
1

Ln(⌦)

c
2

�
.

Again since X is a convex and closed subset of BV (⌦), it is weakly closed. Now
since the set

⇢
u 2 BV (⌦) : kuk

BV (⌦)

 a� c
1

Ln(⌦)

c
2

�

is a closed ball in BV (⌦) it is bounded and then by Lemma 2.1.5 it is weakly
sequentially pre-compact. Hence the level set level

a

(F |
X\W 1,1

(⌦)

) is contained in
the intersection between a weakly closed set and a weakly sequentially pre-compact
set. This implies that the level set itself is weakly sequentially pre-compact and
hence F is weakly inf-compact on W 1,1(⌦).

By Theorem 3.1.1 there exists a minimizer of F |
X\W 1,1

(⌦)

in X \W 1,1(⌦). This
implies that there exists a minimizer of F |

X

in X.

3.2 Uniqueness

For the uniqueness of solutions to the minimization problem we need a slightly
more strict condition for the integrand f . We need it to be strictly convex instead
of just convex in the last two components. This is reasonable since considering the



3.2. UNIQUENESS 29

generalized Tikhonov functional in (3.0.1) we have

f(x, u(x), Du(x)) =
1

2
|u

�

(x)� F(u)(x)|2 + ↵g(x, u(x), Du(x)).

If we want to penalise for solutions having large L2-norm, i.e. we want a smooth
solution, we will choose g(x, u(x), Du(x)) = 1

2

|u(x)|2. If we want to penalise for
solutions having large oscillations we will choose g(x, u(x), Du(x))) = 1

2

|Du(x)|2.
These are two often used regularization methods and since | · |2 is strictly convex
then f would be strictly convex if the operator F is linear and bounded. Requiring
that f is strictly convex we obtain the following uniqueness result:

Corollary 3.2.1. Let ⌦ ⇢ Rn be bounded, open, connected, and Lipschitz
and assume that f : ⌦⇥R⇥Rn ! R�0

[{+1} is a normal integrand and
that (u, ⇠) 7! f(x, u, ⇠) is strictly convex. Assume further that f satisfies
the lower bound condition

f(x, u, ⇠) � c
1

+ c
2

(|u|p + |⇠|p)

for some c
1

2 R and c
2

> 0. Let F : W 1,p(⌦) ! R [ {+1} and
F : BV (⌦) ! R [ {+1} be defined as in (3.1.1) and (3.1.4), respectively,
and let X ✓ W 1,p(⌦) respectively X ✓ BV (⌦) be closed and convex. If
there exists u 2 X with F (u) < +1, then there exists a unique minimizer
of F |

X

in X.

Proof. The existence follows from Corollaries 3.1.6 and 3.1.7, respectively. Re-
garding the proof of uniqueness, assume that u and v are two minimizers of
F in X with u 6= v. Observe that for the BV -functional we can have neither
u 2 BV (⌦)\W 1,1(⌦) nor v 2 BV (⌦)\W 1,1(⌦) since then u and v could not be
minimizers.

Since u and v are both minimizers of F then F (u) = F (v) and by the strict
convexity of (u, ⇠) 7! f(x, u, ⇠) it follows that

F

✓
1

2
u+

✓
1� 1

2

◆
v

◆
<

1

2
F (u) +

1

2
F (v) =

1

2
(F (u) + F (u)) = F (u) = F (v)

This leads to a contradiction, since u and v are minimizers and hence

F (u) = F (v)  F

✓
1

2
u+

1

2
v

◆
.

Hence the assumption that u 6= v must be wrong and we conclude u = v.
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3.3 Stability

Regarding the stability there is a result in [18, Thm. 3.23]. This is outside the
scope of this thesis and will not be discussed further.

3.4 Examples

In this section we give three examples of generalized Tikhonov regularization
methods and show that all of them satisfy the conditions for the existence of
a (unique) minimizer to the corresponding optimization problems. The first
method is the standard Tikhonov regularization which penalises for functions
having large L2-norm. This is a smoothing regularization method. We can as
well use the L2-norm of the distributional derivative instead, in order to penalize
for solutions having large oscillations. In the second example, we consider the
total variation regularization which penalises for big total variations. This method
reduces unwanted details in the data while preserving important details as for
example jumps seen as edges in an image. This will also be seen from numerical
experiments in Chapter 7. In the third and final example we consider a slightly
changed Tikhonov functional penalising for solutions having large oscillations.

3.4.1 Standard Tikhonov Regularization

Let ⌦ ⇢ Rn be bounded, open, connected, and Lipschitz and let F : L2(⌦) ! L2(⌦)
be linear, bounded, and injective. F could for example be a convolution operator
or the Radon transform in the case of computed tomography data. The standard
Tikhonov functional ⌧Tikh

↵,u�
: L2(⌦) ! R�0

[ {+1} is defined by

⌧Tikh

↵,u�
(u) =

1

2

ˆ
⌦

|u
�

(x)� Fu(x)|2 dx+ ↵
1

2

ˆ
⌦

|u(x)|2 dx.

We define f : ⌦ ⇥ R ! R�0

[ {+1} by

f(x, u(t)) =
1

2
|u

�

(t)� Fu(t)|2 + ↵
1

2
|u(t)|2.

By the continuity of F and | · |, f(x, ·) is continuous and in particular lower semi-
continuous. Furthermore f(·, u(t)) is a Borel function since it is actually constant
for fixed t 2 ⌦ and hence f is a normal integrand.

We show that f(x, ·) is strictly convex. Hence let 0 < � < 1 and u
1

, u
2

2 L2(⌦)



3.4. EXAMPLES 31

with u
1

6= u
2

. Then

f(x,�u
1

(t) + (1� �)u
2

(t)) =
1

2
|u

�

(t)� F(�u
1

(t) + (1� �)u
2

(t))|2

+ ↵
1

2
|�u

1

(t) + (1� �)u
2

(t)|2

=
1

2
|�(u

�

(t)� Fu
1

(t)) + (1� �)(u
�

(t)� Fu
2

(t))|2

+ ↵
1

2
|�u

1

(t) + (1� �)u
2

(t)|2. (3.4.1)

Using that | · |2 is strictly convex, u
1

6= u
2

, and Fu
1

6= Fu
2

since F is injective, we
obtain

f(x,�u
1

(t) + (1� �)u
2

(t)) < �
1

2
|u

�

(t)� Fu
1

(t)|2 + (1� �)
1

2
|u

�

(t)� Fu
2

(t)|2

+ �↵
1

2
|u

1

(t)|2 + (1� �)↵
1

2
|u

2

(t)|2

= �f(x, u
1

(t)) + (1� �)f(x, u
2

(t)).

This shows that f(x, ·) is strictly convex. Finally, f satisfies the lower bound
condition since

f(x, u(t)) =
1

2
|u

�

(t)� Fu(t)|2 + ↵
1

2
|u(t)|2 � ↵

1

2
|u(t)|2.

If we leave out the dependence on the third variable in the proofs of Theorem
3.1.5, Corollary 3.1.6 and Corollary 3.2.1, and use the space L2(⌦) which is a
Hilbert space and therefore reflexive, we can conclude that the standard Tikhonov
functional attains a minimizer on X ✓ L2(⌦) whenever X is closed and convex
and u

�

2 L2(⌦).

If we consider instead the functional ⌧Tikh2

↵,u�
: W 1,2(⌦) ! R�0

[ {+1} defined by

⌧Tikh2

↵,u�
(u) =

1

2

ˆ
⌦

|u
�

(x)� Fu(x)|2 dx+ ↵
1

2

ˆ
⌦

|Du(x)|2 dx,

then we can use the same argumentation as above to conclude that the function
f : ⌦ ⇥ R⇥ Rn ! R�0

[ {+1} defined by

f(x, u(x), Du(x)) =
1

2
|u

�

(x)� Fu(x)|2 + ↵
1

2
|Du(x)|2

is a normal integrand and that it is strictly convex. Furthermore we see that f
satisfies the lower bound condition

f(x, u(x), Du(x)) =
1

2
|u

�

(x)� Fu(x)|2 + ↵
1

2
|Du(x)|2 � 1

2
↵|Du(x)|2.
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In the proof of Corollary 3.1.6 we can use Poincaré’s inequality

ku� (u)
⌦

k
L

2
(⌦)

 CkDuk
L

2
(⌦)

, (u)
⌦

=

 
⌦

u(y) dy =
1

Ln(⌦)

ˆ
⌦

u(y) dy

to obtain

kuk
L

2
(⌦)

 c
1

+ CkDuk
L

2
(⌦)

.

Here c
1

2 R stems from the average constant (u)
⌦

that we subtract from u. Then

kuk
W

1,2
(⌦)

= kuk
L

2
(⌦)

+ kDuk
L

2
(⌦)

 c
1

+ (1 + C)kDuk
L

2
(⌦)

for c
1

2 R and C > 0 and then we see that the above lower bound condition for f
is enough to ensure the existence of a unique minimizer in X ✓ W 1,2(⌦) whenever
X is closed and convex and u

�

2 L2(⌦).

3.4.2 Total Variation Regularization

Let ⌦ ⇢ Rn be bounded, open, connected and Lipschitz and let F : BV (⌦) ! L2(⌦)
be linear, bounded, and injective. For example the embedding I : BV (⌦) !
Lp(⌦) is continuous for 1  p  n/(n � 1). So in two dimensions for example
I : BV (⌦) ! L2(⌦) is bounded. The generalized Tikhonov functional ⌧TV

↵,u�
:

BV (⌦) ! R�0

[ {+1} with a total variation regularization penalization term is
defined by

⌧TV

↵,u�
(u) =

1

2

ˆ
⌦

|u
�

(x)� Fu(x)|2 dx+ ↵|Du|(⌦).

We see that the functional is not of the form (3.0.1) and we cannot define our
integrand f as in the standard Tikhonov functional example. Instead we show
directly that ⌧TV

↵,u�
satisfies the conditions of Theorem 3.1.1. By Proposition 2.1.4

in Chapter 2, we know that |Du|(⌦) is lower semi continuous. Using the definition
of the total mass |Du|(⌦), we can show that it is also convex: For � 2 [0, 1] and
u, v 2 BV (⌦) we have

|D(�u+ (1� �)v)|(⌦)

= sup

⇢ˆ
⌦

(�u+ (1� �)v) div� dx,� 2 C1

c

(⌦,Rn), k�k
L

1
(⌦)

 1

�

= � sup

⇢ˆ
⌦

u div� dx,� 2 C1

c

(⌦,Rn), k�k
L

1
(⌦)

 1

�

+ (1� �) sup

⇢ˆ
⌦

v div� dx,� 2 C1

c

(⌦,Rn), k�k
L

1
(⌦)

 1

�

= �|Du|(⌦) + (1� �)|Dv|(⌦).
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Since |Du|(⌦) is both lower semi-continuous and convex then by Theorem A.2.11
in Appendix A.2, |Du|(⌦) is weakly lower semi-continuous.

We show directly that ⌧TV

↵,u�
is inf-compact. Using an extended Poincaré inequality

for BV (⌦) (see [17, Thm. 3.2]) we get for u 2 BV (⌦):

ku� (u)
U

k
L

1
(⌦)

 C|Du|(⌦), (u)
⌦

=

 
⌦

u(y) dy =
1

Ln(⌦)

ˆ
⌦

u(y) dy.

From this we obtain

kuk
L

1
(⌦)

 c
1

+ C|Du|(⌦),

where c
1

2 R stems from the average constant (u)
⌦

that we subtract from u. This
implies

kuk
BV (⌦)

= kuk
L

1
(⌦)

+ |Du|(⌦)  c
1

+ (1 + C)|Du|(⌦).

Since for a 2 R

a � ⌧TV

↵,u�
(u) � ↵|Du|(⌦) � ↵

kuk
BV (⌦)

� c
1

1 + C

implies

kuk
BV (⌦)

 ↵�1(1 + C)a+ c
1

we can use this to show that ⌧TV

↵,u�
is weakly inf-compact as in the proof of corollary

3.1.7. Since ⌧TV

↵,u�
is also proper (take for exampe u = 0) then by Theorem 3.1.1

the total variation functional attains a minimizer in a closed and convex subset
X ✓ BV (⌦) whenever u

�

2 L2(⌦).

3.4.3 Non-Convex Regularization

This final example deals with a slightly changed generalized Tikhonov functional
used when the noise model is a sampling error model, see [18, pp. 47-48]. Let
⌦ ⇢ Rn be bounded, open, connected, and Lipschitz and let F : W 1,2(⌦) ! L2(⌦)
be a linear, bounded, and injective operator. Then we want to minimize the
functional ⌧NC

↵,u�
: W 1,2(⌦) ! R [ {+1} defined by

⌧NC

↵,u�
(u) =

ˆ
⌦

|u
�

(x)� Fu(x)|2

2|Du(x)|2 dx+ ↵
1

2

ˆ
⌦

|Du(x)|2 dx.

We observe that this functional is the standard Tikhonov functional where we
regularize for large oscillations except that we divide by the length of the squared
weak derivative of u in the fidelity term. Why would we want to do this? The
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fidelity term stems from a di↵erent discrete noise model (see [18, pp. 47-49])
called sampling errors. Intuitively we see that when |Du(x)| is much larger than
|u

�

(x) � Fu(x)| we see that the fidelity term becomes small. This leaves the
regularizing term as the leading term, when minimizing the functional. On the
other hand, when |Du(x)| is much smaller than |u

�

(x)� Fu(x)|, the fidelity term
becomes the leading term when minimizing ⌧NC

↵,u�
. Hence the change in the fidelity

term ensures that we do not make any new jumps in Fu that are not already in
u
�

and the regularizing term still ensures that u does not have large oscillations.

We define the funtion f : ⌦ ⇥ R⇥ Rn ! R [ {+1} by

f(x, u(x), Du(x)) =
|u

�

(x)� Fu(x)|2

2|Du(x)|2 + ↵
1

2
|Du(x)|2.

The first thing we notice is that f is not defined for |Du(x)| = 0. Hence we need
to define the value in this case. The next thing we notice is that f is not convex in
its third variable. Hence we cannot use the results in Corollaries 3.1.6 and 3.2.1.
Instead we use a convexification of f , that is, the convex hull of f . We will not go
into detail about what the convex hull of a function is, but just state that it is a
convex function that somehow relates to f itself. The convexification of f is given
by (see [18, lemma 5.12])

f
c

(x, u(x), Du(x)) =

8
<

:

|u�(x)�Fu(x)|2
2|Du(x)|2 + ↵ 1

2

|Du(x)|2,
p
↵|Du(x)|2 > |u

�

(x)� Fu(x)|,

p
↵|u

�

(x)� Fu(x)|,
p
↵|Du(x)|2  |u

�

(x)� Fu(x)|.

Instead of integrating over f and minimizing the functional ⌧NC

↵,u�
we integrate over

f
c

and minimize the approximated functional

⌧NCapp
↵,u�

(u) =

ˆ
⌦

f
c

(x, u(x), Du(x)) dx.

We see that f
c

is well-defined also when |Du(x)| = 0. It turns out that the function
f
c

(x, ·, ·) is convex and continuously di↵erentiable for almost every x 2 ⌦, see [18,
lemma 5.13]. This implies that f

c

is a normal integrand almost everywhere which
is su�cient, see [18, Chap. 5]. Observing that

f
c

(x, u(x), Du(x)) � ↵
1

2
|Du(x)|2,

we see that f
c

satisfies the conditions of Corollary 3.1.6, if we in the proof use that

kuk
W

1,2
(⌦)

 c
1

+ (C + 1)kDuk
L

2
(⌦)

for some constant C > 0 (as shown for the standard Tikhonov regularization).
Hence the approximated functional ⌧NCapp

↵,u� attains a minimizer in X ⇢ W 1,2(⌦)
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whenever X is a closed and convex subset. The main result here is that every
minimizer of the approximated functional ⌧NCapp

↵,u� is the limit of a minimizing
sequence for the original functional ⌧NC

↵,u�
(see Theorem A.2.16 in Appendix A.2).

This suggests that instead of minimizing ⌧NC

↵,u�
, we minimize ⌧NCapp

↵,u� .
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4

An associated Di↵usion Filtering
Method

1In this section we consider the optimization problem of minimizing the generalized
Tikhonov functional ⌧

↵,u�
: X ! R [ {+1} defined by

⌧
↵,u�

(u) =
1

2

ˆ
⌦

|u
�

(x)� F(u)(x)|2 dx+ ↵

ˆ
⌦

g(x, u(x), Du(x)) dx, (4.0.1)

where F : X !  L2(⌦) is an operator. The space X is either W 1,p(⌦) for 1 < p < 1
or BV (⌦). Assuming that there exists a minimizer of ⌧

↵,u�
, we can show that the

minimization problem is associated with an optimality condition equation for u.
In special cases the optimality condition can be turned into a non-linear di↵usion
problem for u. Solving this problem using a finite di↵erence method corresponds
to iteratively regularizing the reconstruction problem and solving minimization
problems. In the first section below we introduce derivatives of operators, which
will be the main ingredient in the formulation of the optimality condition.

4.1 Derivatives of Operators and the Subdi↵erential

In order to turn the minimization problem for the functional in (4.0.1) into a
optimality condition for a minimizer u

↵

, we need to be able to take the derivative
1
This Chapter is based on [5], [18, Chap. 10], and [29, Chap. 4].

37
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of ⌧
↵,u�

in some way. In this section we define di↵erent notions of derivatives of
operators. First we define the one-sided directional derivative of an operator:

Definition 4.1.1 (One-sided Directional Derivative). Let F : U ! V be
an operator between normed spaces U and V . Then F admits a one-sided
directional derivative F 0(u;h) 2 V at u 2 U in direction h 2 U if

F 0(u;h) = lim
t&0

F (u+ th)� F (u)

t
. (4.1.1)

If F : U ! R [ {+1} is an extended real-valued functional then we extend
the definition of the one-sided directional derivative by replacing the limit above
by a limit superior. Then the directional derivative exists for every u 2 D(F )
but may take the values ±1. Next we define the Gâteaux derivative and the
Fréchet derivative of an operator under the condition that the one-sided directional
derivative exists for all elements in the domain:

Definition 4.1.2 (Gâteaux and Fréchet Derivatives). Let F : U ! V
be an operator between normed spaces U and V and assume that the
one-sided directional derivative F 0(u;h) exists for u 2 U and for all h 2 U .
If there exists a linear and bounded operator denoted by F 0(u) 2 B(U, V )
such that

F 0(u;h) = (h, F 0(u)) = F 0(u)(h), 8h 2 U,

then F is Gâteaux di↵erentiable at u and F 0(u) is called the Gâteaux
derivative of F at u. If further the convergence in (4.1.1) is uniform with
respect to h 2 B

⇢

(0) for some ⇢ > 0 then F is Fréchet di↵erentiable at u
and F 0(u) is called the Fréchet derivative of F at u.

Remark 4.1.3. Note that the Gâteaux derivative do not need to be linear and
bounded, but for the sake of convenience we use this definition here. Note also
that the definition of the Fréchet derivative above is not the usual definition, but
we do not need the usual definition here.

It is worth mentioning that if U , V , and W are Banach spaces and F : U ! V
and G : V ! W are two Fréchet di↵erentiable operators, then the composition
G � F : U ! W is Fréchet di↵erentiable and

(G � F )0(u) = G0(F (u)) � F 0(u). (4.1.2)
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Finally we define the subdi↵erential of a proper convex functional on a normed
space X. The subdi↵erential replaces the Fréchet derivative of a functional and is
defined by

Definition 4.1.4 (Subdi↵erential). Let � : X ! R [ {+1} be a proper
and convex functional on a normed space X. Then the subdi↵erential
@�(v) of � at v 2 X is defined by

@�(v) = {v0 2 X 0 : �(v)  �(w) + (v � w, v0), 8w 2 X}.

Furthermore an v0 2 @�(v) is called a subgradient of � at v.

If v0 2 @�(v) is a subgradient of � at v we see that

�(v + th)� �(v)  (v + th� v, v0) = t(h, v0), 8h 2 X, 8t > 0.

Assuming that � is Gâteaux di↵erentiable, we can divide by t and take the limit
as t & 0 in order to obtain

�0(v)h = lim
t&0

�(v + th)� �(v)

t
 (h, v0), 8h 2 X.

where �0(v) is the Gâteaux derivative of � at v. Using �h instead of h we obtain

�0(v)h � (h, v0), 8h 2 X.

In total we have

�0(v)h = (h, v0), 8h 2 X.

This shows that if � is Gâteaux di↵erentiable at v with Gâteaux derivative �0(v)
and v0 2 @�(v) then v0 = �0(v) in distributional sense so that the subdi↵erential
contains only one element which is equal to the Gâteaux derivative.

In the following we define the duality mapping associated with a weight function.
The duality can be used to express the subdi↵erential of integral functionals as we
will see:

Definition 4.1.5 (Weight Function and associated Duality Mapping).
Let U be a Banach space. A continuous and strictly increasing function
� : [0,1) ! [0,1) satisfying �(0) = 0 and lim

t!1 �(t) = 1 is called a
weight function. The duality mapping according to the weight function �
is the set-valued mapping J : U ! 2U

0
defined by

J (u) = {u0 2 U 0 : (u, u0)
U,U

0 = kuk
U

ku0k
U

0 , kU 0k
U

0 = �(kUk
U

)} .
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The next theorem relates the subdi↵erential of the primitive of a weight function
to the duality mapping according to the same weight function:

Theorem 4.1.6 (Asplund’s Theorem). Let U be a Banach space and
� : [0,1) ! [0,1) a weight function. Set �(t) =

´
t

0

�(s) ds. Then

J (u) = @�(kuk
U

), u 2 U,

where @� denotes the subdi↵erential of �.

Proof. See [26, Chap. 1, Thm. 4.4]

Apslund’s theorem will be important in the formulation of the di↵usion filtering
methods in the next sections. It will help us define the problems such that they
make sense even in there strong formulation.

4.2 Optimality Condition and Di↵usion Filtering

We turn our attention to the minimization of ⌧
↵,u�

defined in (4.0.1) onX = W 1,p(⌦),
1 < p < 1 or X = BV (⌦). Assume that there exists a minimizer u

↵

of ⌧
↵,u�

.
Then

⌧
↵,u�

(u
↵

)  ⌧
↵,u�

(u
↵

+ th), 8h 2 X.

This implies

1

2

ˆ
⌦

(u
�

� F(u
↵

+ th))2 � (u
�

� F(u
↵

))2) dx

+ ↵

ˆ
⌦

(g(x, u
↵

+ th,Du
↵

+ tDh)� g(x, u
↵

, Du
↵

)) dx � 0. (4.2.1)

Note that in this section we skip the dependence on x in for example u(x). If
g(x, u, ⇠) is twice di↵erentiable in both u and ⇠, then we have the Taylor series
expansion

g(x, u
↵

+ th,Du
↵

+ tDh)

= g(x, u
↵

, Du
↵

) + g
u

(x, u
↵

, Du
↵

) · th+r
⇠

g(x, u
↵

, Du
↵

) · tDh+O(t2).

Similarly if we assume that F is twice Fréchet di↵erentiable then we have the
Taylor series expansion

(F(u
↵

+ th)� u
�

)2 = (F(u
↵

)� u
�

)2 + 2t(F 0(u
↵

)h) · (F(u
↵

)� u
�

) +O(t2).
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Using the Taylor series expansions and (4.2.1) we obtain

0  1

2

ˆ
⌦

(2t(F 0(u
↵

)h) · (F(u
↵

)� u
�

) +O(t2)) dx

+ ↵

ˆ
⌦

(g
u

(x, u
↵

, Du
↵

) · th+r
⇠

g(x, u
↵

, Du
↵

) · tDh+O(t2)) dx.

Dividing by t and letting t & 0 we get

0 
ˆ
⌦

((F 0(u
↵

)h) · (F(u
↵

)� u
�

)) dx

+ ↵

ˆ
⌦

(g
u

(x, u
↵

, Du
↵

) · h+r
⇠

g(x, u
↵

, Du
↵

) ·Dh) dx.

Repeating the above with �t instead gives

0 �
ˆ
⌦

((F 0(u
↵

)h) · (F(u
↵

)� u
�

)) dx

+ ↵

ˆ
⌦

(g
u

(x, u
↵

, Du
↵

) · h+r
⇠

g(x, u
↵

, Du
↵

) ·Dh) dx.

In total we therefore obtain

0 =

ˆ
⌦

((F 0(u
↵

)h) · (F(u
↵

)� u
�

)) dx

+ ↵

ˆ
⌦

(g
u

(x, u
↵

, Du
↵

) · h+r
⇠

g(x, u
↵

, Du
↵

) ·Dh) dx.

Using integration by parts we finally get

0 =

ˆ
⌦

F 0(u
↵

)#(F (u
↵

)� u
�

) · h dx+ ↵

ˆ
⌦

h · g
u

(x, u
↵

, Du
↵

) dx

� ↵

ˆ
⌦

r · (r
⇠

g(x, u
↵

, Du
↵

)) · h+ ↵

ˆ
@⌦

h ·r
⇠

g(x, u
↵

, Du
↵

) · ⌫, 8h 2 X.

Here ⌫ is the outward pointing unit normal vector to @⌦ and F 0(u
↵

)# : L2(⌦) ! X 0

denotes the dual adjoint of F 0(u
↵

), i.e.

(!,F 0(u
↵

)#(v)) = (F 0(u
↵

)(!), v), 8v 2 L2(⌦), 8! 2 X. (4.2.2)

The above shows that we obtain a optimality condition for the minimizer u
↵

of
⌧
↵,u�

given by

F 0(u
↵

)#(F(u
↵

)� u
�

) = ↵ (r · (r
⇠

g(x, u
↵

, Du
↵

))� g
u

(x, u
↵

, Du
↵

)) in ⌦,
(4.2.3)
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with boundary condition

@r
⇠

g(x, u
↵

, Du
↵

)

@⌫
= 0 on @⌦. (4.2.4)

Observe that the optimality condition and the boundary condition is to be under-
stood in a distributional sense. However, if we consider the optimality condition
in its written form, we see that on the left hand side we obtain an element in
the dual space X 0. Hence the operator on the right hand side should be inter-
preted as an element inX 0 too in order to make sense to the PDE in its written form.

In the case of noise-free attainable data u
�

= u
0

= F(u†) the optimality condition
reads as

F 0(u
↵

)#
✓
F(u

↵

)� F(u†)

↵

◆
= r · (r

⇠

g(x, u
↵

, Du
↵

))� g
u

(x, u
↵

, Du
↵

).

Setting ↵ = �t, u(0) = u†, and u(�t) = u
↵

and using (4.1.2) we obtain

F 0(u)#F 0(u)
@u

@t
= r · (r

⇠

g(x, u,Du)� g
u

(x, u,Du)) .

Hence the solution to the optimality condition above together with its boundary
condition is equivalent to the finite di↵erence solution to the PDE problem

F 0(u)#F 0(u)
@u

@t
= r · (r

⇠

g(x, u,Du)� g
u

(x, u,Du)) in (0,1)⇥ ⌦,

@r
⇠

g(x, u,Du)

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = u† on ⌦.

In general though, we will not be able to solve the equation F(u†) = u
0

since we
will be given noisy data u

�

and not exact data u
0

. Hence the above considerations
are not in general useful. Instead, if we use any Fréchet di↵erentiable operator F
and set g(x, u,Du) = 1

2

u2 then the optimality condition is

F 0(u
↵

)#(F(u
↵

)� u
�

) = �↵u
↵

.

That is,

↵u
↵

= �F 0(u
↵

)#(F(u
↵

)� u
�

).

Setting ↵ = 1

�t

, u(�t) = u
↵

, and u(0) = 0 the solutions (u
�t

, u
2�t

, ...) to the above
equation are equivalent to the finite di↵erence (in time) solutions (u(�t), u(2�t), ...)
to the PDE problem

@u

@t
= �F 0(u)#(F(u)� u

�

), (4.2.5)

u(0) = 0. (4.2.6)
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Observe that there is no easy way to directly interpret this equation in its written
form, since on the right hand side we obtain an element in X 0 whereas that is not
necessarily the case for the left hand side. Hence this equation is meant to be
interpreted in a distributional sense as mentioned earlier.

The idea of solving the di↵usion problem in (4.2.6) applying a finite di↵erence
method is actually equivalent to iteratively solving the minimization problems

P
k

: inf

⇢
1

2

ˆ
⌦

|u
�

� F(u)|2 dx+ ↵
k

1

2

ˆ
⌦

|u� uk�1|2 dx
�

for u, where u(k) is the solution to the P
k

’th minimization problem and u(0) = 0.
Letting �t

k

= t
k

� t
k�1

be the time steps for the finite di↵erence method then ↵
k

=
1/(t

k

� t
k�1

). The process is called iterative Tikhonov-Morozov regularization and
could lead to a possibly better solution than the solution to the single minimization
problem

inf

⇢
1

2

ˆ
⌦

|u
�

� F(u)|2 dx+ ↵
1

2

ˆ
⌦

|u|2 dx
�
.

Of course there are more issues involved with the iterative regularization. We need
a rule of how to choose ↵

k

. Here we can use one of the already known rules, for
example, the Morozov discrepancy principle, or other more complex methods. We
also need a stopping rule for terminating the iteration process. It could also asked
if the ↵

k

s converge to zero or if there is some other limit that we can determine.
These questions will not be answered here, but are definitely questions that could
be interesting to answer. Finally, it could be considered if the solutions of the
iterative regularization process converge to a solution u 2 X.

In the above calculations we assumed that g was twice di↵erentiable in both u
and ⇠. This is not necessarily the case. If we instead let g be proper and convex
in the last two components, then we can use the subdi↵erential of g in these to
components to obtain similar results. We start by proving a general result for the
subdi↵erential of a functional at its minimizer:

Lemma 4.2.1. Let F : X ! R[{+1} be convex. Then u
↵

is a minimizer
of F if and only if 0 2 @F (u

↵

).

Proof. Proof of ”)”: Let u
↵

be a minimizer of F . Then

F (u
↵

)  F (v), 8v 2 X. (4.2.7)

By definition we have

@F (u
↵

) = {x0 2 X 0 : F (u
↵

)� F (v)� (u
↵

� v, x0)  0, 8v 2 X}.
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Setting x0 = 0 and using (4.2.7) we get

F (u
↵

)� F (v)� (u
↵

� v, 0) = F (u
↵

)� F (v)  0

for all v 2 X. This shows that 0 2 @F (u
↵

).

Proof of ”(”: Let 0 2 @F (u
↵

). By definition of @F (u
↵

) we then have

F (u
↵

)  F (v) + (u
↵

� v, 0) = F (v)

for all v 2 X. This shows that u
↵

is a minimizer of F .

Next we consider the minimization of the functional F : X ! R [ {+1} defined
by

F (u) =

ˆ
⌦

f(x, u(x), Du(x)) dx

where f : ⌦ ⇥ R ⇥ Rn ! R [ {+1} is a normal, proper, and convex integrand,
and X is either W 1,p(⌦) for 1 < p < 1 or BV (⌦) for p = 1. In case X = BV (⌦)
we extend the functional as described in Section 2.3 and we note that a minimizer
is an element of W 1,1(⌦). Since f is a convex integrand, it is convex in the last
two components, which implies that F is convex. Hence by Lemma 4.2.1 u

↵

is a
minimizer of F if and only if 0 2 @F (u

↵

). Denote by j : X ! Lp(⌦)⇥ Lp(⌦;Rn)
the operator

j(u) = (u,Du).

Then

F = G � j

where

G(ṽ, v) =

ˆ
⌦

f(x, ṽ(x), v(x)) dx

for (ṽ, v) 2 Lp(⌦)⇥Lp(⌦,Rn). From Lemma A.3.1 in Appendix A.3 it follows that

@F (u
↵

) = @(G � j)(u
↵

) = j#@G(u
↵

, Du
↵

). (4.2.8)

Using Theorem A.3.2 in Appendix A.3 we obtain

@G(u
↵

, Du
↵

) = (@
u

f(x, u
↵

, Du
↵

), @
⇠

f(x, u
↵

, Du
↵

)) (4.2.9)

where @
u

and @
⇠

denotes the subdi↵erential with respect to the second variable u of
f respectively the third variable ⇠ of f . The subdi↵erential @

⇠

will be computed as
a gradient. The adjoint j# : (Lp(⌦)⇥ Lp(⌦,Rn))0 ! X 0 is defined by the equation

(u, j#(ṽ, v)) = (j(u), (ṽ, v))
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where u 2 X and (ṽ, v) 2 (Lp(⌦)⇥ Lp(⌦,Rn))0. By definition of the pairing we
have

(j(u), (ṽ, v)) = ((u,Du), (ṽ, v)) = (u, ṽ) + (Du, v)

and using Theorem A.1.2 we obtain

(u, j#(ṽ, v))
W

1,p
(⌦)⇥(W

1,p
(⌦))

0

= (u, j#(ṽ, v))
L

p
(⌦),(L

p
(⌦))

0 + (Du,Dj#(ṽ, v))
L

p
(⌦,Rn

),(L

p
(⌦,Rn

))

0 .

The two above equalities and the definition of j# then implies

(u, j#(ṽ, v))
L

p
(⌦),(L

p
(⌦))

0 + (Du,Dj#(ṽ, v)� v)
L

p
(⌦,Rn

),(L

p
(⌦,Rn

))

0 = (u, ṽ)

Using integration by parts, this implies that ! = j#(ṽ, v) is a solution to the
equation

! �r · (D! � v) = ṽ in ⌦,

i.e.

�! � ! = r · (v)� ṽ in ⌦

with boundary condition

@

@⌫
(D! � v) = 0 on @⌦.

Both the PDE and the boundary equation should be interpreted in distributional
sense. Formally denoting j#(ṽ, v) = (� � I)�1(r · (v)� ṽ) we obtain from (4.2.8)
and (4.2.9) that the optimality condition 0 2 @F (u

↵

) reads as

0 2 (� � I)�1 (r · (@
⇠

f(x, u
↵

, Du
↵

))� @
u

f(x, u
↵

, Du
↵

))

or simplified as what we call the Euler-Lagrange equation:

@
u

f(x, u
↵

, Du
↵

) 2 r · (@
⇠

f(x, u
↵

, Du
↵

)). (4.2.10)

Now if we let F = ⌧
↵,u�

as defined in (4.0.1) in the above, then

f(x, u, ⇠) =
1

2
|u

�

� Fu|2 + ↵g(x, u, ⇠).

Assuming that F is linear and bounded and that u
↵

is a minimizer of F and by
using Lemma A.3.1 in Appendix A.3 again, we get

@
u

f(x, u
↵

, Du
↵

) = @F(u
↵

)#(Fu
↵

� u
�

) + ↵@
u

g(x, u
↵

, Du
↵

).



46 CHAPTER 4. AN ASSOCIATED DIFFUSION FILTERING METHOD

and

@
⇠

f(x, u
↵

, Du
↵

) = 0 + ↵@
⇠

g(x, u
↵

, Du
↵

).

The Euler-Lagrange equation (4.2.10) then reads as

@F(u
↵

)#(Fu
↵

� u
�

) + ↵@
u

g(x, u
↵

, Du
↵

) 2 ↵r · (@
⇠

g(x, u
↵

, Du
↵

)) .

Actually since F is linear and bounded it is Gâteaux di↵erentiable and hence
@F(u

↵

) = F 0(u
↵

) contains only one element so that the above equation becomes

F 0(u
↵

)#(Fu
↵

� u
�

) 2 ↵ (r · (@
⇠

g(x, u
↵

, Du
↵

))� @
u

g(x, u
↵

, Du
↵

)) . (4.2.11)

Comparing the above optimality condition (4.2.11) with the optimality condition
in (4.2.3) we see that they are actually the same except that in the above we
use the subdi↵erential of g instead of the strong derivatives of g. Hence g needs
not be twice di↵erentiable, but just proper and convex, in order to formulate an
Euler-Lagrange equation associated with the minimizer of F . Note also that the
above optimality condition can be analysed in its written form since both the left
hand side and the right hand side are subsets of X 0.

4.3 Examples

In this section we give concrete examples of what the optimality condition and the
associated di↵usion problem looks like for di↵erent choices of F and g. We will
observe that more of the di↵usion problems make sense in their strong (written)
formulation, i.e. they can be analysed directly in their written form. Therefore the
next chapter will deal with non-linear di↵usion problems and their strong solutions.

4.3.1 Denoising

When F : L2(⌦) ! L2(⌦) is the identity mapping

F(u) = u

the problem of minimizing the functional ⌧
↵,u�

defined in (4.0.1) is called denoising.
This is because we want to reconstruct u from noisy data u

�

. The way we compare
these two quantities is through the identity mapping, so we actually want to remove
the noise from u

�

. In this case the optimality condition in (4.2.11) reads as

u
↵

� u
�

↵
2 r · (@

⇠

g(x, u
↵

, Du
↵

))� @
u

g(x, u
↵

, Du
↵

).
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Letting ↵ = �t, u(�t) = u
↵

and u(0) = u
�

then the solutions (u
�t

, u
2�t

, ...)
to the above equation are equivalent to the finite di↵erence (in time) solutions
(u(�t), u(2�t), ...) to the non-linear di↵usion problem

@u

@t
2 r · (@

⇠

g(x, u,Du))� @
u

g(x, u,Du) in (0,1)⇥ ⌦,

u(0) = u
�

on ⌦.

If we want to penalise for solutions having large L2(⌦)-norm we let g(x, u,Du) =
1

2

|u|2 and X = L2(⌦). This is the standard Tikhonov regularization. We replace
the original boundary condition by a homogeneous Neumann boundary condition
for u. This implies that no new information can be put into the system and no
information leaves the system. This is a reasonable assumption for reconstruction
problems. The choice of g leads to the ODE problem in L2(⌦):

@u

@t
+ u = 0 in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = u
�

on ⌦.

Here both @u

@t

2 L2(⌦) and u 2 L2(⌦) and in this case we can make sense to the
di↵usion problem in its written (strong) form.

If we instead want to penalise for solutions having large oscillations then we can
set g(x, u,Du) = 1

2

|Du|2 and X = W 1,2(⌦). The corresponding PDE problem is
then

@u

@t
� �u = 0 in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = u
�

on ⌦.

In this case the di↵usion problem can be analysed in its written form as well.

Finally, if we want to penalise for solutions having large total variation, that is, we
want to have sharp edges in an image for instance, then we let the penalization
term be |Du|(⌦) =

´
⌦

|Du|. This looks like we could set g(x, u,Du) = |Du|. We
let X = BV (⌦). The associated PDE problem reads as (see [24, Chap. 1])

@u

@t
�r ·

✓
1

|Du|Du

◆
= 0 in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = u
�

on ⌦.



48 CHAPTER 4. AN ASSOCIATED DIFFUSION FILTERING METHOD

In contrary to the two other regularisation methods and their associated di↵usion
problems, the above problem cannot be analysed in its written (strong) form. Here
we need to interpret it in its distributional sense.

Actually let us go one step back and try to calculate directly the subdi↵erential
of ⌧

↵,u�
for F = I : W 1,1(⌦) ! L2(⌦) (note that we need ⌦ to be at least two

dimensional in order for F to be bounded) and penalization term |Du|(⌦). Using
Asplund’s Theorem 4.1.6 we obtain

@⌧
↵,u�

(u) = @
u

✓
1

2
ku

�

� uk2
L

2
(⌦)

◆
+ ↵@

u

(|Du|(⌦))

= J (u� u
�

) + J
1,1

(u),

where J : W 1,1(⌦) ! (W 1,1(⌦))0 is the duality mapping according to the weight
function �(t) = t, i.e.

J (u) =
�
u0 2 X 0 : (u, u0) = ku0k2 = kuk2

 
.

and J
1,1

: W 1,1(⌦) ! (W 1,1(⌦))0 is the duality mapping according to �(t) = 1
given by

J
1,1

(u) = �r ·
✓

1

|Du|Du

◆
,

see [18, pp. 280-281]. In this case the final optimality condition for a minimizer u
↵

of ⌧
↵,u�

is

0 2 J (u
↵

� u
�

)� ↵r ·
✓

1

|Du
↵

|Du
↵

◆
.

Setting ↵ = �t, u(�t) = u
↵

and u(0) = u
�

and applying a Neumann boundary
condition the di↵usion filtering method is

J
✓
@u

@t

◆
�r ·

✓
1

|Du|Du

◆
3 0 in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = u
�

on ⌦.

The above non-linear di↵usion problem makes sense in its written form as both
terms on the left hand side of the di↵usion inclusion are subsets of (W 1,1(⌦))0.
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4.3.2 Bounded Linear Operator

Whenever F : X ! L2(⌦) is a bounded linear operator, it is Fréchet di↵erentiable.
Hence we can use the considerations of this chapter to write up an associated
non-linear di↵usion problem to the minimization problem of ⌧

↵,u�
defined in (4.0.1).

If we use the standard Tikhonov regularization as described above and apply a
homogeneous Neumann boundary condition for u, we get the associated di↵usion
problem

@u

@t
= �F 0(u)#(Fu� u

�

) in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = 0 on ⌦.

This problem should be interpreted in a distributional sense, but we can still try to
solve it directly using a finite di↵erence method. As for the denoising problem we
can try to calculate the subdi↵erential of ⌧

↵,u�
directly. Using Asplund’s Theorem

4.1.6 again we reach at the non-linear di↵usion filtering problem

J
✓
@u

@t

◆
3 �F 0(u)#(Fu� u

�

) in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = 0 on ⌦,

where J : X ! X 0 is the duality mapping defined by

J (u) =
�
u0 2 X 0 : (u, u0) = ku0k2 = kuk2

 
.

This di↵usion problem can be analysed in its written form both the left hand side
and the right hand side of the PDE are subsets of X 0.

A final example is that of a general linear, bounded operator F : W 1,1 ! L2(⌦)
and penalization terme |Du|(⌦). Using Asplund’s Theorem to calculate the
subdi↵erential of ⌧

↵,u�
we get

@⌧
↵,u�

(u) = @
u

✓
1

2
ku

�

� Fuk2
L

2
(⌦)

◆
+ ↵@

u

(|Du|(⌦))

= F 0(u)#(Fu� u
�

) + ↵J
1,1

(u)

where again J
1,1

: W 1,1 ! (W 1,1(⌦))0 is the duality mapping according to the
weight function �(t) = t. The optimality condition for a minimizer u

↵

of ⌧
↵,u�

is
therefore

0 2 F 0(u
↵

)#(Fu
↵

� u
�

) + ↵J
1,1

(u
↵

).
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Setting ↵ = 1/�t, u(�t) = u
↵

and u(0) = 0 an applying a Neumann boundary
condition the corresponding di↵usion filtering method is

F 0(u)#(Fu� u
�

) + ↵J
1,1

✓
@u

@t

◆
3 0 in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = 0 on ⌦

or using the definition of J
1,1

:

F 0(u)#(Fu� u
�

)� ↵r ·
✓

1

|Du
t

|Du
t

◆
3 0 in (0,1)⇥ ⌦,

@u

@⌫
= 0 on (0,1)⇥ @⌦,

u(0) = 0 on ⌦.

This is a di↵usion problem in the dual space X 0. However, for this problem the
time and spacial derivatives are mixed and the discretization of the problem would
lead to an implicit scheme.

It is worth mentioning some examples of bounded linear operators that actually
could occur in practice. If, for example, we use a camera for taking a picture and
make a motion blur by moving the camera while taking the picture. Then we
can set up a minimization problem where F is a blurring operator, that could be
a convolution, representing the motion blur. Reconstructing the picture is then
called a deblurring process. The blur could also occur according to a lens out
of focus. Another very interesting application is in tomography. In computed
tomography, F would be the Radon transform which is a bounded linear operator
from L2(⌦) to L2(⌦). Numerical experiments for these problems will be carried
out and discussed in Chapter 7.

We see that in all cases above, we need to analyse problems of the form

@u

@t
+ A(u) 3 0, u(0) = x.

where the time derivative u
t

is regarded either as an element of X or as an element
of X 0 depending on wether A : X ! X or A : X ! X 0. In Chapter 5 we deal with
problems where A : X ! X. The problems are analysed in their written (strong)
form and it is shown that there exists a solution under certain conditions on A. In
Chapter 6 we return to the case in which A : X ! X 0 and set up a conjecture for
the existence of a solution, based on the results of Chapter 5.



5

Non-linear Di↵usion Methods

1In this chapter we analyse the non-linear di↵usion filtering method for reconstruc-
tion problems. As we saw in Chapter 4, the method consists in solving a Cauchy
problem:

@u

@t
+ A(u) 3 0, u(0) = u

0

, (5.0.1)

where A is an operator on X and may be non-linear and unbounded. We use the
’2’ symbol instead of ’=’ because A can be multivalued. As seen in Chapter 4 the
di↵usion problems of interest can either include an operator A : X ! X or an
operator A : X ! X 0. In this section we treat only the case in which A maps X
into X. In the case X is a Hilbert space we can of course include the problems in
which A maps X into X 0 by identifying X 0 with X. Hille and Yosida described
the case in which A is a linear operator; see [10] or [9]. Here we want to extend
the case to non-linear operators on Banach spaces. This makes the situation much
more complicated. The theory of semi-groups will be needed as we will show that
a solution to the Cauchy problem can be written as the evaluation of a semi-group
at time t operating on the initial condition. The semi-group theory will be covered
in the first section of this chapter.

1
This chapter is based on [2] and [7].

51
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5.1 Semi-Group Theory

In this section we set up the necessary definitions and state the necessary theorems
in order to analyse the non-linear di↵usion based methods. Throughout the chapter
X will denote a Banach space. We begin by defining a semi-group on a Banach
space:

Definition 5.1.1 (Semi-Group). Let C ⇢ X. A semi-group on C is a
function S on [0,1) such that S(t) maps C into C for each t � 0 and the
following two conditions hold:

(i) S(t+ ⌧) = S(t)S(⌧) for t, ⌧ � 0,

(ii) lim
t&0

S(t)v = S(0)v = v for v 2 C.

Whenever the values of a semi-group S are linear bounded operators, then S(t)u
0

solves the Cauchy problem (5.0.1) if A is what we call the infinitesimal generator
of S and u

0

2 D(A). The infinitesimal generator of a semi-group is defined as:

Definition 5.1.2 (Infinitesimal Generator). Let S be a semi-group on
X for which the values are linear bounded operators. The infinitesimal
generator of S is the operator A : D(A) ! X defined by

D(A) =

⇢
v 2 X : lim

t&0

S(t)v � v

t
2 X exists

�
,

and

Av = � lim
t&0

S(t)v � v

t
, v 2 D(A).

It turns out that every infinitesimal generator A of a semi-group S is a closed
operator and has dense domain in X. Furthermore if we set u(t) = S(t)u

0

whenever
u
0

2 D(A) then u solves the Cauchy problem in (5.0.1):

Proposition 5.1.3. Let S be a semi-group on X for which the values
are linear bounded operators and let A : D(A) ! X be its infinitesimal
generator. Then the set D(A) is dense in X and A : D(A) ! X is
closed. Furthermore for u

0

2 D(A) let u(t) = S(t)u
0

. Then the function
u : [0,1) ! X is continuously di↵erentiable and

@u

@t
(t) = �Au(t) = �S(t)Au

0

.
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Proof. See [30, Chap. 1, Prop. 3.1].

The Hille-Yosida theorem characterizes those As which are actually infinitesimal
generators of uniquely defined semi-groups. That is, the theorem actually states
under which conditions the Cauchy problem (5.0.1) has a solution whenever A is
linear. The corresponding semi-group is given by the exponential formula

S(t) = lim
n!1

✓
I +

t

n
A

◆�n

:= e�tA.

In this chapter we will extend the notion of infinitesimal generator to the non-linear
case and in this way prove under which conditions the Cauchy problem in (5.0.1)
has a solution.

We will sometimes need a semi-group to be Lipschitz continuous on its domain for
each t > 0. We define the notion of such semi-groups:

Definition 5.1.4 (Q
⇢

(C)). If S is a semi-group on C and there exists a
real number ⇢ such that

kS(t)v � S(t)wk  e⇢tkv � wk, for t � 0, v, w 2 C

we write S 2 Q
⇢

(C).

Since we are going to describe situations in which the value S(t) of a semi-group S
at a point t > 0 is a non-linear operator we need the notion of multivalued operators
A : X ! X. These can be viewed as subsets of X ⇥X, and we write A ⇢ X ⇥X.
Then we can define

1. A(v) = {w : [v, w] 2 A}

2. D(A) = {v : A(v) 6= ;},

3. R(A) =
S

v2D(A)

A(v),

4. A�1 = {[w, v] : [v, w] 2 A}.

Furthermore if both A,B ⇢ X ⇥X and � 2 R then

5. A+B = {[v, w + z] : w 2 A(v), z 2 B(v)},

6. �A = {[v,�w] : w 2 A(v)}.

Finally we need the notion of an accretive operator:
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Definition 5.1.5 (Accretive Operator or Set). Let B ⇢ X ⇥X. Then B
is accretive if (I + �B)�1 is a single-valued operator for � > 0 and

k(I + �B)�1(v)� (I + �B)�1(w)k  kv � wk, for v, w 2 D((I + �B)�1).

Let us try to understand what it means for an operator to be accretive. Let � > 0
and let B be linear and accretive. Then

(I + �B)�1 =

✓
�

✓
1

�
I +B

◆◆�1

=
1

�

✓
B � 1

��
I

◆�1

exists. Also by the second condition of B being accretive we obtain

k(I + �B)�1k =

�����
1

�

✓
B � 1

��
I

◆�1

����� =
1

�

�����

✓
B � 1

��
I

◆�1

�����  1

so that
�����

✓
B � 1

��
I

◆�1

�����  �

for each � > 0. Hence the operators
�
B � 1

��

I
��1

exist and are bounded. If further
the domain D((I + �B)�1) is dense in X then we see that � 1

�

< 0 is exactly a
regular value of the resolvent operator of B and this shows that the resolvent set
of B contains the negative real axis.

A simple example of an accretive operator is B = �� : W 1,2(Rn) ⇢ L2(Rn) !
L2(R2) defined on H2(Rn) = W 2,2(Rn). Since the resolvent set of �� is the
negative real axis (see [14, Section 12.3]), then for ⇢ < 0 the resolvent operator

(B � ⇢I)�1

exists and is bounded. Rewriting the operator expression we get

(B � ⇢I)�1 =

✓
�⇢

✓
I � 1

⇢
B

◆◆�1

= �1

⇢

✓
I +

1

�⇢
B

◆�1

Letting � = 1

�⇢

> 0 this shows that

(I + �B)�1

exists for all � > 0. That is (I + �B)�1 is a single-valued operator for � > 0. Now
we need to show that the operator is bounded. For this we use the Fourier transform
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to rewrite the expression for ! = (I + �B)�1v for v 2 D((I + �B)�1) ⇢ L2(Rn).
First we see that

(I + �B)! = v.

Now v 2 L2(Rn). Letting F or ·̂ denote the Fourier transform we get

F((I + �B)!) = F((I � ��)!) = F(v).

This implies that

(1 + �|⇠|2)!̂(⇠) = v̂(⇠).

This leads to the expression for (I + �B)�1v:

(I + �B)�1v = ! = F�1

✓
v̂(⇠)

1 + �|⇠|2

◆
.

This shows that (I + �B)�1v is a bounded linear operator in L2(⇢) with

k(I + �B)�1vk
L

2
(R2

)

= kF�1

✓
v̂(⇠)

1 + �|⇠|2

◆
k

=
1

1 + �|⇠|2
1p
2⇡

kv̂k
L

2
(R2

)

=
1

1 + �|⇠|2

p
2⇡p
2⇡

kv̂k
L

2
(R2

)

 kvk
L

2
(⇢)

.

From this we conclude that B is accretive.

5.2 Extension of the Hille-Yosida Theorem

The Hille-Yosida theorem characterizes those S 2 Q
⇢

(X) for which the values of S
are linear operators and X is a Banach space, see [30, Thm. 3.1]. In this section we
want to give a complete characterization of those S 2 Q

⇢

(C) and their infinitesimal
generators for which the values of S are non-linear operators,nen and C is a subset
of a Banach space X. In a Hilbert space the situation is simpler because we have
the notion of an inner product. A characterization in the non-linear case where X
is a Hilbert space is given in the appendix of [15]. However, when X is a Banach
space the situation is much more complex, and we need a similar notion of an inner
product.
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5.2.1 The Exponential Formula

In this section we show that if A+ ⇢I is accretive for some ⇢ 2 R and the domain
of A is dense in the range of I + �A for su�ciently small � > 0, then A is the
“infinitesimal generator” of a semi-group S, which has an exponential formula. Note
that here the definition of an infinitesimal generator is used even though A is
non-linear. Throughout the rest of this chapter we fix A ⇢ X ⇥X and ⇢ 2 R such
that A+ ⇢I is accretive. In case A is linear, all µ < �⇢ are part of the resolvent
set of A as long as the domain of the resolvent operator of A+ ⇢I is dense in X.
Next we define the set

J
�

:= (I + �A)�1

for all � 2 R and let D
�

= D(J
�

) be its domain. Finally we define

|A(v)| = inf{kwk : w 2 A(v)}

for v 2 D(A).

The first thing we need is some elementary facts about J
�

:

Lemma 5.2.1 (Elementary Facts about J
�

). Take � � 0 so that �⇢ < 1.
Then the following four statements hold:

(i) J
�

is a function and for v, w 2 D
�

we have

kJ
�

(v)� J
�

(w)k  (1� �⇢)�1kv � wk.

(ii) For v 2 D
�

\D(A) we have

kJ
�

(v)� vk  �(1� �⇢)�1|A(v)|.

(iii) If n is a positive integer, v 2 D(J
�

n) and �|⇢| < 1 then

kJ
�

n(v)� vk  n(1� �|⇢|)�n+1kJ
�

(v)� vk.

(iv) If v 2 D
�

, � > 0, and µ 2 R, then

µ

�
v +

�� µ

�
J
�

(v) 2 D
µ

and J
�

v 2 J
µ

✓
µ

�
v +

�� µ

�
J
�

(v)

◆
.

Proof. By assumption A+⇢I is accretive so for t � 0 the operator (I+ t(A+⇢I))�1

is a single-valued operator and has Lipschitz constant 1. Now for 1 + t⇢ 6= 0 we
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have

✓
I +

t

1 + t⇢
A

◆�1

=

✓
1

1 + t⇢
((1 + t⇢)I + tA)

◆�1

= (1 + t⇢)(I + t(A+ ⇢I))�1.

This shows that

✓
I +

t

1 + t⇢
A

◆�1

is a single valued operator and has Lipschitz constant |1 + t⇢| for t � 0 and
1 + t⇢ 6= 0. Setting � = t(1 + t⇢)�1 and using the restrictions t � 0 and �⇢ < 1 we
find that J

�

= (I + �A)�1 is a single-valued operator and has Lipschitz constant

|1 + t⇢| = |((1 + t⇢)�1)�1| = |((1 + t⇢)(1 + t⇢)�1 � t⇢(1 + t⇢)�1)�1|
= |(1� t(1 + t⇢)�1⇢)�1| = |(1� �⇢)�1| = (1� �⇢)�1.

This proves assertion (i).

To prove assertion (ii) take [v
1

, w
1

] 2 A and [v, w] 2 A such that v
1

+ �w
1

= v.
This is possible simply because X is a vector space. Using the fact that J

�

is
single-valued, and that v + �w 2 J�1

�

(v) we obtain

J
�

(v + �w) = v.

Using assertion (i) we obtain

kJ
�

(v)� vk = kJ
�

(v
1

+ �w
1

)� J
�

(v + �w)k
 (1� �⇢)�1k(v

1

+ �w
1

)� (v + �w)k
= (1� �⇢)�1kv � v � �wk
= �(1� �⇢)�1kwk.

Since w 2 A(v) was arbitrary we can take the infimum over all w 2 A(v) on the
right side of the inequality and obtain

kJ
�

(v)� vk  �(1� �⇢)�1|A(v)|

which is assertion (ii).
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In order to prove assertion (iii) we use assertion (i):

kJ
�

n(v)� vk = k
n�1X

i=0

(J
�

n�i(v)� J
�

n�(i+1)(v))k 
n�1X

i=0

kJ
�

n�i(v)� J
�

n�(i+1)(v)k

(i)


n�1X

i=0

(1� �⇢)�1kJ
�

n�(i+1)(v)� J
�

n�(i+2)(v)k
(i)

 ...

(i)


n�1X

i=0

(1� �⇢)�n+(i+1)kJ
�

(v)� vk


n�1X

i=0

(1� �|⇢|)�n+(i+1)kJ
�

(v)� vk

0<(1��|⇢|)<1


n�1X

i=0

(1� �|⇢|)�n+1kJ
�

(v)� vk

= n(1� �⇢)�n+1kJ
�

(v)� vk.

Finally we prove assertion (iv). If v 2 D
�

then by definition there exists [v
0

, w
0

] 2 A
such that v

0

+ �w
0

= v. Since v
0

+ �w
0

2 J�1

�

(v
0

) and since J
�

is single-valued
then

J
�

(v) = J
�

(v
0

+ �w
0

) = v
0

and we get

µ

�
v +

�� µ

�
J
�

(v) =
µ

�
(v

0

+ �w
0

) +
�� µ

�
v
0

= v
0

+ µw
0

.

Since [v
0

+ µw
0

, v
0

] 2 J
µ

by the definition of J
µ

then

µ

�
v +

�� µ

�
J
�

(v) 2 D
µ

.

We also see that

J
�

(v) = v
0

2 J
µ

(v
0

+ µw
0

) = J
µ

✓
µ

�
v +

�� µ

�
J
�

(v)

◆
.

This proves assertion (iv).

Since we actually want to say something about the existence of lim
n!1 J

t/n

n(v) for
v 2 D(A) we need an estimate for the norm-di↵erence between Jn

µ

(v) and Jm

�

(v):
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Lemma 5.2.2. Let � � µ > 0, ⇢� < 1, and v 2 D(J
�

m) \D(Jn

µ

), where
m and n are positive integers satisfying n � m. Then

kJ
µ

n(v)� J
�

m(v)k  (1� ⇢µ)�n

m�1X

j=0

↵j�n�jB(n, j)kJ
�

m�j(v)� vk

+
nX

j=m

(1� ⇢µ)�j↵m�j�mB(j � 1,m� 1)kJ
µ

n�j(v)� vk,

where ↵ = µ

�

, � = ��µ

�

, and B(k, l) are the binomial coe�cients

B(k, l) =
k!

l!(k � l)!
for 0  l  k.

Proof. For integers j and k satisfying 0  j  n and 0  k  m we define the
numbers

a
k,j

= kJ
µ

j(v)� J
�

k(v)k.

Then if j, k > 0 we can use Lemma 5.2.1 assertions (i) and (iv) to obtain

a
k,j

(iv)

=

����Jµ
j(v)� J

µ

✓
µ

�
Jk�1

�

(v) +
�� µ

�
Jk

�

(v)

◆����
(i)

 (1� µ⇢)�1

����J
j�1

µ

(v)�
✓
µ

�
Jk�1

�

(v) +
�� µ

�
Jk

�

(v)

◆����

= (1� µ⇢)�1

����
µ

�
J j�1

µ

(v) +
�� µ

�
J j�1

µ

(v)�
✓
µ

�
Jk�1

�

(v) +
�� µ

�
Jk

�

(v)

◆����

 (1� µ⇢)�1

✓
µ

�
kJ j�1

µ

(v)� Jk�1

�

(v)k+ �� µ

�
kJ j�1

µ

(v)� Jk

�

(v)k
◆
.

This shows that for j, k > 0 we have

a
k,j

 ↵
1

a
k�1,j�1

+ �
1

a
k,j�1

(5.2.1)

with

↵
1

= (1� µ⇢)�1

µ

�
and �

1

= (1� µ⇢)�1

�� µ

�
.
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Now using inequality (5.2.1) multiple times for a
m,n

we obtain

a
m,n

 ↵
1

a
m�1,n�1

+ �
1

a
m,n�1

 ↵
1

(↵
1

a
m�2,n�2

+ �
1

a
m�1,n�2

) + �
1

(↵
1

a
m�1,n�2

+ �
1

a
m,n�2

)

= ↵2

1

a
m�2,n�2

+ 2↵
1

�
1

a
m�1,n�2

+ �2

1

a
m,n�2

 ↵2

1

(↵
1

a
m�3,n�3

+ �
1

a
m�2,n�3

) + 2↵
1

�
1

(↵
1

a
m�2,n�3

+ �
1

a
m�1,n�3

)

+ �2

1

(↵
1

a
m�1,n�3

+ �
1

a
m,n�3

)

= ↵3

1

a
m�3,n�3

+ 3↵2

1

�
1

a
m�2,n�3

+ 3↵
1

�2

1

a
m�1,n�3

+ �3

1

a
m,n�3

 ...

Continuing this process we see that we will get a sum with n+ 1 terms in all. In
the first n�m+ 1 we will drive m to zero so that we will have n�m+ 1 terms
with a constant times a

0,n�l

for some l 2 [m,n]. In the last m terms we will drive
n to zero before m so that we will have m terms with a constant times a

m�l,0

for
some l 2 [0,m� 1]. In total we get

a
m,n


nX

l=m

↵m

1

�l�m

1

B(l � 1,m� 1)a
0,n�l

+
m�1X

l=0

↵l

1

�n�l

1

B(n, l)a
m�l,0

. (5.2.2)

The binomial coe�cients simply come from the way we combine the multiplications
of ↵

1

and �
1

. In the first sum we have the first ↵
1

from the beginning, so we can
take that out of the sum. Then we need to combine in total l � 1 multiplications.
Since these multiplications have to appear before we have driven m to zero there are
m�1 ways to combine the l�1 multiplications. In the second sum we have to com-
bine n multiplications and since each ↵k

1

�j�k

1

a
m�k,j

will never appear again when
using inequality (5.2.1) for a

m�k,j

then the nmultiplications can only appear l times.

Now inequality (5.2.2) is exactly the inequality we wanted to prove.

Finally we want to get rid of the binomial coe�cients occurring in Lemma 5.2.2.
For this we have the following lemma:

Lemma 5.2.3. Let n � m > 0 be integers, and let ↵, � be positive numbers
satisfying ↵ + � = 1. Then the two following inequalities are satisfied

(i)
P

m

j=0

B(n, j)↵j�n�j(m� j) 
p

(n↵�m)2 + n↵�

(ii)
P

n

j=m

B(j � 1,m� 1)↵m�j�m(n� j) 
q

m�

↵

2 +
�
m�

↵

+m� n
�
2
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Proof. To obtain assertion (i) we first use the Schwartz inequality to do a simple
estimation:

mX

j=0

B(n, j)↵j�n�j(m� j)


mX

j=0

B(n, j)↵j�n�j|m� j| 
nX

j=0

B(n, j)↵j�n�j|m� j|

=
nX

j=0

(B(n, j)↵j�n�j)1/2(B(n, j)↵j�n�j)1/2|m� j|


 

nX

j=0

B(n, j)↵j�n�j

!
1/2

 
nX

j=0

B(n, j)↵j�n�j(m� j)2
!

1/2

.

By definition of the binomial coe�cients we have

nX

j=0

B(n, j)↵j�n�j = (↵ + �)n,

nX

j=0

jB(n, j)↵j�n�j = n↵(↵ + �)n�1,

nX

j=0

j2B(n, j)↵j�n�j = ↵2n(n� 1)(↵ + �)n�2 + ↵n(↵ + �)n�1.

Using the above considerations together with ↵ + � = 1 we obtain

mX

j=0

B(n, j)↵j�n�j(m� j)  1 ·
 

nX

j=0

B(n, j)↵j�n�j(m2 + j2 � 2mj)

!
1/2

=
p
m2 + ↵2n(n� 1) + ↵n� 2mn↵

=
p
(n↵�m)2 + n↵(1� ↵)

=
p
(n↵�m)2 + n↵�.

This is the first estimate.
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For the second assertion we use the the Schwartz inequality again to obtain

nX

j=m

B(j � 1,m� 1)↵m�j�m(n� j)


1X

j=m

B(j � 1,m� 1)↵m�j�m|n� j|


 

nX

j=m

B(j � 1,m� 1)↵m�j�m

!
1/2

 
nX

j=m

B(j � 1,m� 1)↵m�j�m(n� j)2
!

1/2

.

Again by definition of the binomial coe�cients we have

1X

j=m

B(j � 1,m� 1)�j�m =
1

(1� �)m

for |�| < 1. Di↵erentiating the above we get

1X

j=m

B(j � 1,m� 1)�j�m�1(j �m) =
m

(1� �)m+1

.

Multiplying by � on both sides we then get

1X

j=m

B(j � 1,m� 1)�j�m(j �m) =
�m

(1� �)m+1

.

Di↵erentiating again we obtain

1X

j=m

B(j � 1,m� 1)�j�m�1(j �m)2 =
m

(1� �)m+1

+ �
m(m+ 1)

(1� �)m+2

.

Again multiplying by � we get the equality

1X

j=m

B(j � 1,m� 1)�j�m(j �m)2 =
�m

(1� �)m+1

+
�2m(m+ 1)

(1� �)m+2

.

Finally we will need the following rewriting

(n� j)2 = (n�m+m� j)2 = (n�m� (j �m))2

= (n�m)2 + (j �m)2 � 2(n�m)(j �m).



5.2. EXTENSION OF THE HILLE-YOSIDA THEOREM 63

Collecting the above considerations and using ↵ + � = 1, we obtain the second
assertion by

nX

j=m

B(j � 1,m� 1)↵m�j�m(n� j)


r

↵m

↵m

 1X

j=m

B(j � 1,m� 1)↵m�j�m

�
(n�m)2

+(j �m)2 � 2(n�m)(j �m)
�
!

1/2

=

r
(n�m)2

↵m

↵m

+
�m↵m

↵m+1

+
�2m(m+ 1)↵m

↵m+2

� 2(n�m)
�m↵m

↵m+1

=

r
(n�m)2 +

�m

↵
+

�2m2

↵2

+
�2m

↵2

� 2(n�m)
�m

↵

=

s✓
m�

↵
� (n�m)

◆
2

+
�2m+ ↵�m

↵2

=

s✓
m�

↵
+m� n

◆
2

+
�m(� + ↵)

↵2

=

s✓
m�

↵
+m� n

◆
2

+
�m

↵2

.

Now we are ready to prove the main result of this section, namely that if A+ ⇢I
is accretive for some ⇢ 2 R and D(A) ⇢ R(I + �A) for su�ciently small � > 0
then A is the ”infinitesimal generator” of a semi-group which has an exponential
formula. Here the notion of an infinitesimal generator is extended to the case
where A is non-linear. In order to motivate why the formula for the semi-group
should be exponential, let first A be a square matrix. Then for u

0

2 D(A) the
matrix exponential e�tA satisfies

� lim
t&0

e�tAu
0

� u
0

t
= Au

0

so that A is the infinitesimal generator of S(t) = e�tA. Moreover if we set
u(t) = S(t)u

0

then

du

dt
(t) =

d

dt
(e�tAu

0

) = �Ae�tAu
0

= �Au(t)
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and

u(0) = u
0

.

Hence in this case S(t)u
0

would satisfy the Cauchy problem (5.0.1). The idea is to
prove in which cases the operator exponential

e�tA = lim
n!1

✓
I +

t

n
A

◆�n

exists for general non-linear operators A:

Theorem 5.2.4. Let A ⇢ X ⇥X and ⇢ 2 R such that A+ ⇢I is accretive.
If R(I + �A) � D(A) for all su�ciently small positive �, then

lim
n!1

✓
I +

t

n
A

◆�n

(v) (5.2.3)

exists for v 2 D(A) and t > 0. Moreover, if S(t)v is defined as the limit
in (5.2.3) then S 2 Q

⇢

(D(A)).

Proof. Let v 2 D(A) and assume that � � µ > 0, n � m and �|⇢| < 1. By
assumption D(A) ⇢ R(I + �A) and by Lemma 5.2.1(iv) we then conclude v 2
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D(Jm

�

) \D(Jn

µ

). Then Lemma 5.2.1(ii) and (iii) and Lemma 5.2.2 implies

kJn
µ (v)� J

m
� (v)k (5.2.4)

5.2.2
 (1� ⇢µ)�n

m�1X

j=0

↵

j
�

n�j
B(n, j)kJm�j

� (v)� vk

+
nX

j=m

(1� ⇢µ)�j
↵

m
�

j�m
B(j � 1,m� 1)kJn�j

µ (v)� vk

5.2.1(iii)
 (1� ⇢µ)�n

m�1X

j=0

↵

j
�

n�j
B(n, j)(m� j)(1� �|⇢|)�(m�j)+1kJ�(v)� vk

+
nX

j=m

(1� ⇢µ)�j
↵

m
�

j�m
B(j � 1,m� 1)(n� j)(1� µ|⇢|)�(n�j)+1kJµ(v)� vk

5.2.1(ii)
 (1� ⇢µ)�n

m�1X

j=0

↵

j
�

n�j
B(n, j)(m� j)(1� �|⇢|)�(m�j)+1

�(1� �⇢)�1|A(v)|

+
nX

j=m

(1� ⇢µ)�j
↵

m
�

j�m
B(j � 1,m� 1)(n� j)(1� µ|⇢|)�(n�j)+1

µ(1� µ⇢)�1|A(v)|

 (1� µ|⇢|)�n
m�1X

j=0

↵

j
�

n�j
B(n, j)(m� j)(1� �|⇢|)�m+1

�(1� �|⇢|)�1|A(v)|

+
nX

j=m

(1� µ|⇢|)�j
↵

m
�

j�m
B(j � 1,m� 1)(n� j)(1� µ|⇢|)�(2n�j)+1

µ(1� µ|⇢|)�1|A(v)|

=

2

4(1� µ|⇢|)�n(1� �|⇢|)�m
�

mX

j=0

B(n, j)↵j
�

n�j(m� j)

+ (1� µ|⇢|)�2n
µ

nX

j=m

B(j � 1,m� 1)↵m
�

j�m(n� j)

3

5 |A(v)| (5.2.5)

where ↵ = µ

�

and � = ��µ

�

. We want to approximate the constants (1� µ|⇢|)�n,
(1 � �|⇢|)�m, and (1 � µ|⇢|)�2n by exponential functions: For t 2

⇥
0, 1

2

⇤
and

f(t) = e2t(1� t)� 1 we have

f 0(t) = 2e2t(1� t)� e2t = e2t(1� 2t) � 0.

Hence for t 2
⇥
0, 1

2

⇤
we have

0 = f(0)  f(t) = e2t(1� t)� 1 , (1� t)�1  e2t , (1� t)�n  e2nt.

If µ|⇢|  �|⇢|  1

2

and since ↵ + � = 1 then inequality (5.2.5) and Lemma 5.2.3
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imply

kJn

µ

(v)� Jm

�

(v)k 
"
e2n|⇢|µe2m|⇢|��

mX

j=0

B(n, j)↵j�n�j(m� j)

+e4n|⇢|µµ
nX

j=m

B(j � 1,m� 1)↵m�j�m(n� j)

#
|A(v)|

5.2.3



2

4�(n↵�m)2 + n↵�
�
1/2

�e2|⇢|(nµ+m�)

+

 
m�

↵2

+

✓
m�

↵
+m� n

◆
2

!
1/2

µe4|⇢|nµ

3

5 |A(v)|.

Inserting ↵ = µ

�

and � = ��µ

�

and rewriting we then aim at

kJn

µ

(v)� Jm

�

(v)k 
h�
(nµ� �m)2 + nµ(�� µ)

�
1/2

e2|⇢|(nµ+m�)

+
�
m�(�� µ) + (m�� nµ)2

�
1/2

e4|⇢|nµ
i
|A(v)|. (5.2.6)

Setting µ = t/n and � = t/m where n and m are integers with n � m in the above
inequality we obtain

kJ
t/n

n(v)� J
t/m

m(v)k 
"✓

(t� t)2 + t2
✓

1

m
� 1

n

◆◆
1/2

e2|⇢|·2t

+

✓
t2
✓

1

m
� 1

n

◆
+ (t� t)2

◆
1/2

e4|⇢|t
#
|A(v)|

= 2te4|⇢|t
✓

1

m
� 1

n

◆
1/2

|A(v)|. (5.2.7)

This shows that (J
t/n

n(v))
n2N is a Cauchy sequence in X and hence converges in

the Banach space X, so that lim
n!1 J

t/n

n(v) exists. So now we have shown the

existence for v 2 D(A). Next we will extend the result to v 2 D(A).

By Lemma 5.2.1(i), J
t/n

n has (1� ⇢t/n)�n as Lipschitz constant. Since

lim
n!1

✓
1� t⇢

n

◆
n

= e�t⇢

then

lim
n!1

✓
1� t⇢

n

◆�n

= et⇢
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and we see that S(t)(v) = lim
n!1 J

t/n

n(v) is Lipschitz continuous in v and has
Lipschitz constant e⇢t. Hence we can extend S(t) to an operator with Lipschitz
constant e⇢t on D(A) in the following way: Let (v

n

)
n2N ⇢ D(A) be a sequence

converging to v 2 @D(A) and let (ṽ
n

)
n2N ⇢ D(A) be another sequence converging

to the same v. Since S(t) is Lipschitz continuous on D(A) then (S(t)(v
n

))
n2N ⇢ X

and (S(t)(ṽ
n

))
n2N ⇢ X are both Cauchy sequences in X and hence converges. Let

S(t)(v
n

) ! w and S(t)(ṽ
n

) ! w̃. We show that w = w̃:

kw � w̃k = kw � S(t)(v
n

) + S(t)(v
n

)� S(t)(ṽ
n

) + S(t)(ṽ
n

)� w̃k
 kw � S(t)(v

n

)k+ kS(t)(v
n

)� S(t)(ṽ
n

)k+ kS(t)(ṽ
n

)� w̃k
 kw � S(t)(v

n

)k+ e⇢tkv
n

� ṽ
n

k+ kS(t)(ṽ
n

)� w̃k
 kw � S(t)(v

n

)k+ e⇢t (kv
n

� vk+ kv � ṽ
n

k) + kS(t)(ṽ
n

)� w̃k.

Since S(t)(v
n

) ! w, v
n

! v, ṽ
n

! v, and S(t)(ṽ
n

) ! w̃ we conclude from the
above that w = w̃. Hence defining S(t)(v) = w we have extended S(t) to a an
operator with Lipschitz constant e⇢t on D(A). Now we have shown the existence of
the limit lim

n!1 J
t/n

n(v) for all v 2 D(A) and t > 0. Now we have to show that

S 2 Q
⇢

(D(A).

We have already shown that S(t) has Lipschitz constant e⇢t. So we just need to
show that S satisfies the semi-group properties. First of all it is clear that S(t)
maps D(A) into D(A) since J

t/n

n leaves D(A) invariant. Let ⌧ > t � 0. Then if
we put n = m, µ = t/n and � = ⌧/n in 5.2.6 we obtain

kJ
t/n

n(v)� J
⌧/n

n(v)k 
"✓

(t� ⌧)2 +
t

n
(⌧ � t)

◆
1/2

e2|⇢|(t+⌧)

+
⇣⌧
n
(⌧ � t) + (⌧ � t)2

⌘
1/2

e4|⇢|t
�
|A(v)|.

Taking the limit as n ! 1 on both sides in the above inequality we obtain

kS(t)(v)� S(⌧)(v)k 
�
e2|⇢|(t+⌧) + e4|⇢|t

�
|A(v)|(⌧ � t).

This shows that S(t)(v) is Lipschitz continuous in t on bounded t-sets for v 2 D(A)
and hence S(t)(v) is continuous in t. Setting t = 0 in the above and letting ⌧ ! 0
we obtain lim

⌧&0

S(⌧)(v) = S(0)(v) = v.

Finally we have to show that S(t+ ⌧ ) = S(t)S(⌧ ) for t, ⌧ � 0. We use the operator
convergence

S(t) = lim
n!1

J
t/n

n
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and the uniform Lipschitz continuity of (J
t/n

n)
n>N

for su�ciently large N to
conclude that

(S(t))m =
⇣
lim
n!1

J
t/n

n

⌘
m

= lim
n!1

��
J
t/n

n

�
m

�
= lim

n!1

��
J
t/n

m

�
n

�
.

This implies that for an integer m

S(mt) = lim
n!1

�
J
mt/n

n

�
= lim

k!1

�
J
mt/(mk)

mk

�
= lim

k!1

⇣�
J
t/k

m

�
k

⌘
= (S(t))m .

Now if we let l, k, r, and s be positive integers. Then using the above we obtain

S

✓
l

k
+

r

s

◆
= S

✓
ls+ rk

ks

◆
=

✓
S

✓
1

ks

◆◆
ls+rk

=

✓
S

✓
1

ks

◆◆
ls

✓
S

✓
1

ks

◆◆
rk

= S

✓
l

k

◆
S
⇣r
s

⌘
.

This shows that the property S(t+ ⌧) = S(t)S(⌧) holds for rational t and ⌧ . Now
for general t > 0 and ⌧ > 0 we can approximate both t and ⌧ by sequences of
rationals. Hence let (t

n

)
n2N ⇢ Q and (⌧

n

)
n2N ⇢ Q be such that t

n

! t and ⌧
n

! ⌧ .
Then since S(·)v is continuous for all v 2 D(A) we obtain

S(t+ ⌧)v = lim
n!1

S(t
n

+ ⌧
n

)v = lim
n!1

S(t
n

)S(⌧
n

)v = S(t)S(⌧)v

for all v 2 D(A). This shows that S(t+ ⌧) = S(t)S(⌧) for all t > 0, ⌧ > 0.

5.2.2 The Cauchy Problem

In this section we consider the existence of a solution to the Cauchy problem

0 2 @u

@t
+ Au, u(0) = u

0

(5.2.8)

for an operator A ⇢ X⇥X and a given u
0

2 D(A). In order to discuss the existence
of solutions, a reasonable notion of a solution is required. Here we motivate the
definition of a strong solution to the problem: First of all, a solution to the Cauchy
problem should of course satisfy u(0) = u

0

and the di↵erential equation should be
satisfied at least for almost every t 2 [0, T ) for some T > 0. Finally it would be
nice to be able to write an expression for u. Therefore we require u to be able
to be written as an integral expression and furthermore to be continuous. Note
that since u takes on values in the Banach space X then writing u as an integral
expression requires the ability to integrate over values in X. Here we use the
Bochner integral which is defined in the same way as the Lebesgue integral but for
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values in a Banach space instead. It can be shown that a function v : [0, T ) ! X
is Bochner integrable (strongly integrable) if and only if

ˆ
T

0

kv(t)k
X

dt < +1,

see [29, Section 3.3.1]. Hence we require u to be able to be written as an integral
over a Bochner integrable function:

Definition 5.2.5 (Strong Solution). Let 0 < T  1 and u : [0, T ) ! X.
Then u is a strong solution of the Cauchy problem (5.2.8) on [0, T ) if

(i) u is continuous,

(ii) u is the indefinite integral of a function which is Bocher integrable
(strongly integrable) on compact subsets of (0, T ),

(iii) u(0) = u
0

,

(iv) u0(t) 2 �A(u)(t) for almost all t 2 [0, T ).

For the rest of this section fix A ⇢ X ⇥X and ⇢ 2 R such that A+ I⇢ is accretive.
Then the following equivalent formulation of a strong solution can be proved:

Lemma 5.2.6 (Strong Solution). Let A ⇢ X ⇥X and ⇢ 2 R be such that
A + I⇢ is accretive and let u

0

2 D(A). Then a function u : [0, T ) ! X
is a strong solution of the Cauchy problem (5.2.8) if and only if u is
Lipschitz continuous on compact subsets of [0, T ), u is di↵erentiable almost
everywhere on [0, T ) and (5.2.8) is satisfied almost everywhere.

Proof. See [12, lemma 6.2].

In order to prove the existence of a strong solution to the Cauchy problem (5.2.8)
we need some preliminary results. Since X is a Banach space it does not necessarily
have an inner product. But we need some kind of “inner product” notion. In order
to be able to define such a notion on a Banach space we first define the duality
mapping. The duality mapping J : X ! X 0 associates with each v 2 X one or
more duals v0 2 X 0 in the following way

J (v) =
�
v0 2 X 0 : (v, v0) = kvk2 = kv0k2

 

where the pairing (v, v0) is the value of v0 2 X 0 at v 2 X. Now if X is a Hilbert
space we can identify X 0 with X and then the pairing (v, v0) can be identified with
an inner product between v and v0 on X. Hence for a Hilbert space the duality
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mapping J is essentially the identity mapping. In a general Banach space X
we know that J (v) is non-empty for each v 2 X by the geometric Hahn-Banach
Theorem (see [22, Thm. 4.3-3]): For any v 2 X with v 6= 0 there exists w0 2 X 0

such that kw0k = 1 and (v, w0) = kvk. Let v0 = kvkw0 2 X 0. Then

kv0k = kvkkw0k = kvk

and

(v, v0) = (v, kvkw0) = kvk(v, w0) = kvk2.

This shows that v0 2 J (v). For v = 0 we have 0 2 J (v). This shows that J (v) is
non-empty for each v 2 X. We also see that J (v) is bounded since

diam(J (v)) = sup
v

0
1,v

0
22J (v)

kv0
1

� v0
2

k  sup
v

0
1,v

0
22J (v)

kv0
1

k+ kv0
2

k

= sup
v

0
1,v

0
22J (v)

2kvk = 2kvk < 1.

Finally we show that J (v) is weak* compact: Take a sequence (v
n

0)
n2N ⇢ J (v)

and assume that v
n

0 ⇤
* v0 2 X 0 as n ! 1, i.e.

(v, v
n

0) ! (v, v0), 8v 2 X.

Then by the lower semi-continuity of the norm on X 0 (see [20, Prop. 2.4.12]), and
using v

n

0 2 J (v) we get

kv0k  lim inf
n!1

kv
n

0k = kvk.

On the other hand

kvk2 = (v, v
n

0) ! (v, v0)  kvkkv0k.

Using the above and v
n

0 2 J (v) we then have

(v, v0) = kv0k2 = kvk2.

This implies that v0 2 J (v) and hence J (v) is closed in X 0 for the weak* topology.
Finally, since the unit ball in X 0 is weak* compact (see Banach-Alaoglu-Boubaki
Theorem in [20, Thm. 2.4.7]), then so is J (v) because J (v) is contained in a
scaled unit ball and is closed in the weak* topology.

We are now ready to define what should be the alternative to an inner product on
a Banach space X. With the above observations about the duality mapping J
the functions h·, ·i

i

: X ⇥X ! R and h·, ·i
s

: X ⇥X ! R defined below are both
well-defined and finite-valued. For v, w 2 X we define

hv, wi
i

= inf{(v, w0) : w0 2 J (w)} and hv, wi
s

= sup{(v, w0) : w0 2 J (w)}.
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By the definition of supremum and infimum we have the relation

hv, wi
s

= �h�v, wi
i

.

First we list and prove some elementary properties of the functions h·, ·i
i

and h·, ·i
s

.
For the proofs of property (e) and (f), though, we just refer to an article containing
the proofs:

Lemma 5.2.7 (Elementary properties of h·, ·i
i

and h·, ·i
s

). Let v, w 2 X.
Then

(a) h↵w + v, wi
j

= ↵kwk2 + hv, wi
j

for ↵ 2 R and j = i or j = s.

(b) h�v, �wi
j

= �� hv, wi
j

for �� � 0 and j = i or j = s.

(c) hz + v, wi
j

 kzkkwk+ hv, wi
j

for z 2 X and j = i or j = s.

(d) h·, ·i
s

: X ⇥X ! R is upper semi-continuous.

(e) B ⇢ X ⇥X is accretive if and only if

hw
1

� w
2

, v
1

� v
2

i
s

� 0 for [v
i

, w
i

] 2 B, i = 1, 2.

(f) If v : (a, b) ! X then

d

dt
kv(t)k2

���
t=t0

= 2 hDv(t
0

), v(t
0

)i
s

= 2 hDv(t
0

), v(t
0

)i
i

at each point t
0

at which kv(t)k2 is di↵erentiable and v(t) is weakly
di↵erentiable.

Proof. Proof of (a): Let v, w 2 X and ↵ 2 R. Then

h↵w + v, wi
i

= inf{(↵w + v, w0) : w0 2 J (w)}
= inf{↵(w,w0) + (v, w0) : w0 2 J (w)}
= inf{↵kwk2 + (v, w0) : w0 2 J (w)}
= ↵kwk2 + inf{(v, w0) : w0 2 J (w)}
= ↵kwk2 + hv, wi

i

.

The same proof goes for j = s.
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Proof of (b): Let v, w 2 X and �� � 0. Then

h�v, �wi
i

= inf{(�v, w0) : w0 2 J (�w)} = inf{�(v, w0) : w0 2 J (�w)}
= inf{�(v, �w0) : w0 2 J (w)} = inf{��(v, w0) : w0 2 J (w)}
= �� inf{(v, w0) : w0 2 J (w)} = �� hv, wi

i

.

The same proof goes for j = s.

Proof of (c): Let v, w, z 2 X. Then

hz + v, wi
i

= inf{(z + v, w0) : w0 2 J (w)}
= inf{(z, w0) + (v, w0) : w0 2 J (w)}
 inf{kzkkw0k+ (v, w0) : w0 2 J (w)}
= inf{kzkkwk+ (v, w0) : w0 2 J (w)}
= kzkkwk+ inf{(v, w0) : w0 2 J (w)} = kzkkwk+ hv, wi

i

.

The same proof goes for j = s.

Proof of (d): We want to show that if v
n

! v
0

and w
n

! w
0

then

lim sup
n!1

hv
n

, w
n

i
s

 hv
0

, w
0

i
s

.

Hence let v
n

! v
0

and w
n

! w
0

. Since J (w
n

) is weak* compact there exists a
⇣
n

0 2 J (w
n

) such that

hv
n

, w
n

i
s

= (v
n

, ⇣
n

0).

Let

�
n

= sup
N>n

hv
N

, w
N

i
s

.

Then

lim
n!1

�
n

= lim
n!1

sup
N>n

hv
n

, w
n

i
s

= lim sup
n!1

hv
n

, w
n

i
s

= lim sup
n!1

(v
n

, ⇣
n

0)

exists. Since k⇣
n

0k = kw
n

k ! kw
0

k as n ! 1, the sequence (k⇣
n

0k)
n2N is

bounded,now which implies that (⇣
n

0) is weak* convergent. Hence let ⇣
0

0 be any
weak* limit point of (⇣

n

0)
n2N . Since the norm on X 0 is weak* lower semi-continuous

(see [20, Prop. 2.4.12]) we obtain

k⇣
0

0k  lim inf
n!1

k⇣
n

0k = lim inf
n!1

kw
n

k = kw
0

k
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and using that ⇣
n

0 is bounded for each n we also have

kw
0

k2 = lim
n!1

kw
n

k2 = lim
n!1

(w
n

, ⇣
n

0) = (w
0

, ⇣
0

0).

since w
n

! w
0

in the norm topology. Finally we obtain from the above

kw
0

k2 = (w
0

, ⇣
0

0)  kw
0

kk⇣
0

0k.

Together the three above (in)equalities imply

(w
0

, ⇣
0

0) = kw
0

k2 = k⇣
0

0k2

so that ⇣
0

0 2 J (w
0

). Now, since v
n

! v
0

in the norm topology then

lim
n!1

�
n

= lim sup
n!1

hv
n

, w
n

i
s

= lim sup
n!1

(v
n

, ⇣
n

0) = (v
0

, ⇣
0

0)  hv
0

, w
0

i
s

.

This was exactly what we wanted to show.

The proofs of (e) and (f) can be found in [11].

Remark 5.2.8. Note that assertions (e) and (f) of Lemma 5.2.7 are well-known
results in Hilbert spaces. An accretive operator in a Hilbert space is a monotonic
operator which is exactly defined by the property in (e). For assertion (f) the
definition of h·, ·i

s

is essentially equal to the inner product on a Hilbert space and
here we have seen the result before.

In the end we would like to show that

S(t)(u
0

) = lim
n!1

J
t/n

n(u
0

)

is a strong solution to the Cauchy problem in (5.2.8). In order to show this we
first approximate the Cauchy problem by some similar problems. Hence let S

�

be
the semi-groups on D(A) defined by

d

dt
S
�

(t)(v) + A
�

S
�

(t)(v) = 0 (5.2.9)

for t � 0 and 0 < �  �
0

, where

A
�

(v) = ��1(v � J
�

(v)).

Note that here A
�

is single-valued and hence we can use the equality sign in
(5.2.9). The existence of S

�

satisfying the approximate Cauchy problem (5.2.9) is
a consequence of the assumption

R(I + �A) � D(A)

and is proved in [7, pp. 246-248]. The next thing we need to know is how well
S
�

(t) approximates S(t). For this we have the result:



74 CHAPTER 5. NON-LINEAR DIFFUSION METHODS

Lemma 5.2.9. Let A ⇢ X⇥X and ⇢ 2 R be such that A+⇢I is accretive.
Assume that R(I + �A) � D(A) for su�ciently small � > 0, and that A
is a closed subset of X ⇥X. Take v 2 D(A), 0 < �  �

0

, and �|⇢| < 1/2.
Then

kS
�

(t)(v)� S(t)(v)k 

e2t|⇢|�(1� �⇢)�1 + 2e4t|⇢|

p
t�+

e4t|⇢|
�
4(t|⇢|)2�+ 2t|⇢|�+ t

�
1/2

p
�(1� �⇢)�1 + et|⇢|�

i
|A(v)|.

Proof. Choosing the integer m such that t = m� + � and 0  � < � we use the
triangle inequality to estimate

kS
�

(t)(v)� S(t)(v)k  kS
�

(t)(v)� S
�

(m�)(v)k+ kS
�

(m�)(v)� J
�

m(v)k
+ kJ

�

m(v)� S(m�)(v)k+ kS(m�)(v)� S(t)(v)k.
(5.2.10)

Now we estimate each of the four norms in the inequality above. Using S 2 Q
⇢

(D(A)
and using properties (ii) and (iii) in Lemma 5.2.1 the last term can be estimated
by

kS(m�)(v)� S(t)(v)k = kS(m�)(v)� S(m�+ �)(v)k
= kS(m�)(v)� S(m�)S(�)(v)k
 e⇢m�kv � S(�)(v)k = e⇢m�kv � lim

n!1
J
�/n

n(v)k

= e⇢m� lim
n!1

kv � J
�/n

n(v)k

(iii)

 e⇢m� lim
n!1

 
n

✓
1� �

n
|⇢|
◆�n+1

kJ
�/n

n(v)� vk
!

(ii)

 e⇢m� lim
n!1

 
n

✓
1� �

n
|⇢|
◆�n+1 �

n

✓
1� �

n
⇢

◆�1

|A(v)|
!

 e⇢m��|A(v)| lim
n!1

 ✓
1� �

n
|⇢|
◆�n+1

✓
1� �

n
|⇢|
◆�1

!

= e⇢m��|A(v)| lim
n!1

✓
1� �

n
|⇢|
◆�n

= e⇢m��|A(v)|e�|⇢|

 e|⇢|(m�+�)�|A(v)| < et|⇢|�|A(v)|.

The first term admits a similar estimate. Using Lemma 5.2.7 and Lemma 5.2.1 we
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can estimate

d

dt
kS

�

(t)(z)� S
�

(t)(w)k2

5.2.7(f)

= 2

⌧
d

dt
S
�

(t)(z)� d

dt
S
�

(t)(w), S
�

(t)(z)� S
�

(t)(w)

�

s

= 2 hA
�

S
�

(t)(w)� A
�

S
�

(t)(z), S
�

(t)(z)� S
�

(t)(w)i
s

= 2
⌦
��1(S

�

(t)(w)� J
�

S
�

(t)(w))� ��1(S
�

(t)(z)� J
�

S
�

(t)(z)),

S
�

(t)(z)� S
�

(t)(w)
↵
s

5.2.7(b)

= 2��1 h(S
�

(t)(w)� S
�

(t)(z)) + (J
�

S
�

(t)(z)� J
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By the above inequality we get
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Rearranging and using �|⇢| < 1/2 we reach at
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Multiplying both sides of the above inequality by e�2⇢t, we obtain
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Integrating from 0 to t we then get
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(D(A)). Also using Lemma 5.2.1(ii) we have
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�(1� �⇢)�1|A(v)| = (1� �⇢)�1|A(v)|.

So that (1 � �⇢)�1|A(v)| is a Lipschitz constant (in t) for S
�

(t)(v). The above
considerations lead to the final estimate for the first norm term in (5.2.10):
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= e2t|⇢|�(1� �⇢)�1|A(v)|.

The third norm term is estimated via (5.2.7) in the proof of Theorem 5.2.4:
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This gives
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p
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Finally, we estimate the second norm term by using Lemma 4’ in the appendix of
[8]. The lemma states that
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(5.2.11)

Using �|⇢| < 1/2 we observe that

m
�
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< 2|⇢|t.

As shown in the proof of Theorem 5.2.4, for �⇢  �|⇢| < 1/2 we have

(1� �⇢)�m  e2m�⇢  e2(m�+�)|⇢| = e2t|⇢|.

Applying the two above considerations and Lemma 5.2.1(ii) in (5.2.11) the following
estimate for the second norm term is obtained:
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Collecting the four norm estimates gives us exactly the final desired estimate.
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From Lemma 5.2.9 we see that S
�

(t)(v) ! S(t)(v) as � & 0. The next and final
lemma of this section will be the main step in the proof of the existence of a
solution to the Cauchy problem and will be used to show that S(t)(u

0

) satisfies
the Cauchy problem whenever it is strongly di↵erentiable:

Lemma 5.2.10. Let A ⇢ X ⇥ X and ⇢ 2 R be such that A + ⇢I is
accretive. Assume that R(I + �A) � D(A) for su�ciently small � > 0
with �⇢  1, and that A is a closed subset of X ⇥X. Put
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t
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Proof. Having chosen [v
0

, w
0

] 2 A we set

v
�

= v
0

+ �w
0

.

Then using the properties in Lemma 5.2.7 we obtain

d

dt
kS

�

(t)(v)� v
�

k2 = 2

⌧
d

dt
S
�

(t)(v), S
�

(t)(v)� v
�

�

i

= 2 h�A
�

S
�

(t)(v), S
�

(t)(v)� v
�

i
i

= 2 h�A
�

S
�

(t)(v), S
�

(t)(v)� v
�

i
i

+ 2 hA
�

(v
�

), S
�

(t)(v)� v
�

i
i

� 2 hA
�

(v
�

), S
�

(t)(v)� v
�

i
i

= �2 hA
�

S
�

(t)(v), S
�

(t)(v)� v
�

i
s

� 2 h�A
�

(v
�

), S
�

(t)(v)� v
�

i
s

+ 2 h�A
�

(v
�

), S
�

(t)(v)� v
�

i
s

= �2 hA
�

S
�

(t)(v)� A
�

(v
�

), S
�

(t)(v)� v
�

i
s

+ 2 hA
�

(v
�

), v
�

� S
�

(t)(v)i
s

.

Recalling that A
�

= ��1(I � J
�

) and that J
�

has (1� �⇢)�1 as Lipschitz constant
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and using �⇢  1 we obtain
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Multiplying both sides of the above inequality by e�2⇢t/(1��⇢), we obtain
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Integrating from 0 to t we get
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Note that the integral on the right hand side above is well-defined since the
integrand is upper semi-continuous by Lemma 5.2.7(d) and hence measurable and
integrable. Now v

�

= v
0

+ �w
0

! v
0

as � & 0 and Lemma 5.2.9 implies that
S
�

(t)(v) ! S(t)(v) as � & 0 (both convergences in the norm topology). Using
Lemma 5.2.7(d) and the reverse Fatou’s Lemma, we can take the limit superior on
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both sides as � & 0 in the above inequality and obtain
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Finally if ⇣ 0 2 J (v � v
0

) then

2(S(t)(v)� v, ⇣ 0) = 2(S(t)(v)� v
0

+ v
0

� v, ⇣ 0)

= 2(S(t)(v)� v
0

, ⇣ 0)� 2(v � v
0

, ⇣ 0)

 2kS(t)(v)� v
0

kk⇣ 0k � 2kv � v
0

k2

= 2kS(t)(v)� v
0

kkv � v
0

k � 2kv � v
0

k2

 kS(t)(v)� v
0

k2 + kv � v
0

k2 � 2kv � v
0

k2

= kS(t)(v)� v
0

k2 � kv � v
0

k2

so that

kS(t)(v)� v
0

k2 � kv � v
0

k2 + 2(S(t)(v)� v, ⇣ 0).

Using the above inequality and inequality (5.2.13) we obtain

✓
e�2⇢t � 1

t
(v � v

0

) + 2e�2⇢t

S(t)(v)� v

t
, ⇣ 0
◆

=
e�2⇢t � 1

t
(v � v

0

, ⇣ 0) +
e�2⇢t

t
2(S(t)(v)� v, ⇣ 0)

=
e�2⇢t

t

�
kv � v

0

k2 + 2(S(t)(v)� v, ⇣ 0)
�
� 1

t
kv � v

0

k2

 e�2⇢t

t
kS(t)(v)� v

0

k2 � 1

t
kv � v

0

k2

=
1

t

�
e�2⇢tkS(t)(v)� v

0

k2 � kv � v
0

k2
�

 2

ˆ
1

0

hw
0

, v
0

� S(t⌧)(v)i
s

e�2⇢t⌧ d⌧.

Taking the limit superior on both sides as t & 0 in the above inequality and
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applying Lemma 5.2.7(d) again gives
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Finally taking the supremum over all ⇣ 0 2 J (v � v
0

) on the left side of the above
inequality we obtain the desired inequality
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We are now ready to prove the following main result of this section concerning the
existence of a solution to the Cauchy problem (5.2.8):

Theorem 5.2.11. Assume that X is a real Banach space. Let A ⇢ X⇥X
and ⇢ 2 R be such that A+⇢I is accretive. Assume that R(I+�A) � D(A)
for su�ciently small � > 0, and that A is a closed subset of X ⇥X. If
u
0

2 D(A) and 0 < T  1 then condition (i) below implies condition (ii)
on a function u : [0, T ) ! X:

(i) u(t) = lim
n!1

�
I + t

n

A
��n

(u
0

) for t 2 [0, T ) is strongly di↵erentiable
almost everywhere

(ii) u is a strong solution to the Cauchy problem

0 2 @u

@t
+ A(u), u(0) = u

0

on [0, T ).
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Proof. Suppose
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This will prove that u is a strong solution since we have already shown in the
proof of Theorem 5.2.4 that S(t)z is Lipschitz continuous on bounded t-sets for
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almost everywhere.
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as � & 0. Since ⌘0 2 J (v
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In order to use Theorem 5.2.11 we need to know that the function
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is strongly di↵erentiable almost everywhere. Here we note that if X is reflexive
then each Lipschitz continuous X-valued function is strongly di↵erentiable almost
everywhere, see [2, p. 282]2. Since for u

0

2 D(A) the function S(t)(u
0

) = u(t) is
Lipschitz continuous on bounded t-sets as shown in the proof of Theorem 5.2.4,
then we see that if we assume that X is reflexive, then u as defined above is a
strong solution to the Cauchy problem (5.2.8).

2
Note that the reference does not give a proof. It is, though, the only reference found yet that states

this.
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5.3 Examples

We look at two examples of di↵usion problems for which we can use the above
results to conclude that there exists a solution. The first example is the di↵usion
problem on X = L2(⌦) given by

u
t

+ u = 0, u(0) = u
�

. (5.3.1)

This problem stems from a denoising problem with standard Tikhonov regulariza-
tion function g(x, u,Du) = 1

2

|u|2 and initial noisy data u
�

. Using the notation of
this chapter we then have A = I : L2(⌦) ! L2(⌦). Clearly I is accretive since for
� > 0 the operator

(I + �I)�1 = ((1 + �)I)�1 =
1

1 + �
I

is single-valued and

k(I + �I)�1(v � w)k =
1

1 + �
kv � wk  kv � wk.

The identity operator is also closed and satisfies the range condition

L2(⌦) = D(I) ⇢ R(I + �I) = L2(⌦)

for all � > 0. Hence A = I : L2(⌦) ! L2(⌦) satisfies all the conditions of Theorem
5.2.11 and since L2(⌦) is reflexive, the di↵usion problem in (5.3.1) has a strong
solution given by

u(t) = lim
n!1

✓
I +

t

n
I

◆�n

u
�

.

The second example is the Cauchy problem

u
t

� �u = 0, u(0) = u
�

(5.3.2)

on L2(⌦). The problem stems from a denoising problem with standard Tikhonov
regularization function g(x, u,Du) = 1

2

|Du|2 and initial noisy data u
�

. We have
already shown as an introductory example that the operator A : W 1,2(Rn) ⇢
L2(Rn) ! L2(Rn) defined by A = �� is accretive. If we restrict A to a closed
subset C of W 1,2(Rn) then A is closed by [22, Lemma 4.13-5] and

C ⇢ R(I � ��).

for su�ciently small � > 0. Hence A = �� on L2(Rn) satisfies all the conditions of
Theorem 5.2.11 and since L2(Rn) is a Hilbert space it is reflexive and the di↵usion
problem in (5.3.2) admits a strong solution given by

u(t) = lim
n!1

✓
I � t

n
�

◆�n

u
�

.
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Note that we can restrict the spacial domain to an open, bounded, connected and
Lipschitz domain ⇢ ⇢ Rn by setting u

�

= 0 outside the domain.

In Chapter 6 we will return to the general Cauchy problem in which A maps X
into X 0 and the time derivative u

t

is interpreted as an element of X 0.
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6

Non-linear Di↵usion Methods in
Dual Space

1In this chapter we return to the general Cauchy problem

J
✓
@u

@t

◆
+ A(u) 3 0, u(0) = u

0

, (6.0.1)

in which A : X ! X 0 is a possibly non-linear operator, X is a Banach space and
J is the duality mapping according to the weight function �(t) = t as described
in Chapter 4. We set up a conjecture about the existence of a solution to this
kind of Cauchy problem based on the results in Chapter 5. Then we show that
all A operators stemming from a minimization problem as described in Chapter
4 satisfies the conditions of the conjecture and in particular the conditions of
Theorem 5.2.11 whenever X is a Hilbert space and we can identify X 0 with X.

All the operators A : X ! X 0 of interest are actually the subdi↵erential of lower
semi-continuous and convex functionals, as seen in Chapter 4 (we will return to
this statement). The first section below is therefore concerned with properties of
such kind of subdi↵erentials. We will see that the properties somehow relates to
the conditions of Theorem 5.2.11 about the existence of a solution to the Cauchy

1
This chapter is based on [19, Chap. 2] and [18, Chap. 7].
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problem when A maps X into X. This leads to the formulation of the conjecture
regarding the existence of a solution to the Cauchy problem (6.0.1).

6.1 Properties of the Subdi↵erential

In this section we prove some general properties of the subdi↵erential of a lower
semi-continuous, convex, and proper functional on a Banach space X. The main
result is that the subdi↵erential of such a functional is what we call a maximal
monotone operator.

The first important thing we observe for the subdi↵erential @� of a function
� : X ! Y , is that it is what we call monotone. That is, for v

1

, v
2

2 D(@�) and
z
1

2 @�(v
1

), z
2

2 @�(v
2

) we have

(v
1

� v
2

, z
1

� z
2

) = (v
1

� v
2

, z
1

)� (v
1

� v
2

, z
2

)

= (v
1

� v
2

, z
1

) + (v
2

� v
1

, z
2

)

� �(v
1

)� �(v
2

) + �(v
2

)� �(v
1

)

= 0. (6.1.1)

The set of all monotone operators can be ordered by graph inclusion. That is, for
two monotone operators A

1

and A
2

on X we say that A
1

 A
2

if A
1

(v) ⇢ A
2

(v) for
all v 2 X. By Zorn’s lemma (see [22, 4.1-6]) we then obtain at least one maximal
element, which we will call a maximal monotone operator on X. In practice,
to show that an operator is maximal monotone it is easier to use the following
characterization of maximal monotone operators:

Theorem 6.1.1 (Maximal Monotone Operator). Let X be a reflexive
Banach space and let X be strictly convex. Then a monotone operator
A : X ! X 0 is maximal monotone if and only if for any � > 0 (equivalently,
for some � > 0) we have

R(A+ �J ) = X 0,

where J is the duality mapping of X.

Proof. See [19, theorem 2.2].

Sometimes we also consider an operator A : X ! X 0 as a subset of X ⇥X 0 and if
A is a maximal monotone operator then we call A ⇢ X ⇥X 0 a maximal monotone
set. Since we have shown that the subdi↵erential @� : X ! X 0 of a functional
� : X ! R [ {+1} is monotone, we would like to show that in special cases it is
actually maximal monotone:
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Theorem 6.1.2. Let X be a reflexive real Banach space and let � : X !
R[{+1} be a lower semi-continuous, convex and proper functional. Then
@� : X ! X 0 is a maximal monotone operator.

Proof. We have already shown that @� is monotone in (6.1.1). In order to prove
that @� is maximal monotone, we fix z 2 X 0 and consider the equation

J (v) + @�(v) 3 z.

Let f : X ! R [ {+1} be defined by

f(v) =
1

2
kvk2 + �(v)� (v, z).

Since k·k2, �(·) and (·, z) are all lower semi-continuous and convex functions then
also f is lower semi-continuous and convex. By Proposition A.2.5 in Appendix A.2
used for � we get

f(v) � 1

2
kvk2 + (v, v0) + � � (v, z) =

1

2
kvk2 + � � (v, z � v0)

� 1

2
kvk2 + � � kvkkz � v0k,

where � 2 R and v0 2 X 0. Hence if we let kvk ! 1 we obtain

lim
kvk!1

f(v) = +1.

This shows that f is coercive and by Theorem A.2.12 in Appendix A.2 there exists
a minimizer v

0

2 X of f , that is,

f(v
0

) = inf{f(v) : v 2 X}.

Since v
0

is a minimizer of f then we have the following inequality:

1

2
kv

0

k2 + �(v
0

)� (v
0

, z) = f(v
0

)  f(v) =
1

2
kvk2 + �(v)� (v, z), 8v 2 X.

This implies

�(v
0

)� �(v)  (v
0

� v, z) +
1

2
(kvk2 � kv

0

k2). (6.1.2)

For ! 2 J (v) we can estimate the last term by

(v � v
0

,!) = (v,!)� (v
0

,!) � kvk2 � kv
0

kk!k

= kvk2 � kv
0

kkvk � kvk2 � 1

2

�
kv

0

k2 + kvk2
�

=
1

2

�
kvk2 � kv

0

k2
�
.
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Using this in (6.1.2) we obtain

�(v
0

)� �(v)  (v
0

� v, z) + (v � v
0

,!). (6.1.3)

Set v = tv
0

+ (1 � t)u for 0 < t < 1 and u 2 X. Then by the convexity of � we
obtain

�(v
0

)� �(tv
0

+ (1� t)u) � �(v
0

)� t�(v
0

)� (1� t)�(u)

= (1� t)(�(v
0

)� �(u)).

By inequality (6.1.3) we then obtain

�(v
0

)� �(u)  1

1� t
((v

0

� (tv
0

+ (1� t)u), z) + (tv
0

+ (1� t)u� v
0

,!
t

))

=
1

1� t
((1� t)(v

0

� u, z) + (1� t)(u� v
0

,!
t

))

= (v
0

� u, z) + (u� v
0

,!
t

),

where !
t

2 J (tv
0

+ (1� t)u). Letting t ! 1 then tv
0

+ (1� t)u ! v
0

so that

k!
t

k = ktv
0

+ (1� t)uk ! kv
0

k.

This shows that the sequence of norms (k!
t

k) is bounded. This implies that !
t

weakly* converges in X 0. Since J (v
0

) is weak* compact then !
t

! !
0

2 J (v
0

) as
t ! 1. Hence we obtain

�(v
0

)� �(u)  (v
0

� u, z) + (u� v
0

,!
0

)

= (v
0

� u, z � !
0

), 8u 2 X.

This inequality shows that z � !
0

2 @�(v
0

), that is, v
0

is solution to

J (v) + @�(v) 3 z.

Since z 2 X 0 was arbitrary we have thus shown that for each such z we can find a
solution to the above equation. This implies that

R(J + @�) = X 0.

Since X is a reflexive Banach space then by [13, Corollary 1(i)], X has an equivalent
strictly convex norm. This implies that we can use Theorem 6.1.1 with � = 1 to
conclude that @� is maximal monotone.

We have not yet discussed the domain on which @� is defined. It turns out that in
special cases @� is actually densely defined on D(�):

Proposition 6.1.3. Let � : X ! R [ {+1} be a lower semi-continuous,
convex, and proper functional. Then D(@�) is a dense subset of D(�).
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Proof. Let v 2 D(�) and let v
�

be the solution to the equation

J (v
�

� v) + �@�(v
�

) 3 0.

Pairing the equation with v
�

� v (and by misuse of notation) we obtain

0 2 (v
�

� v,J (v
�

� v)) + � (v
�

� v, @�(v
�

))

= kv
�

� vk2 + � (v
�

� v, @�(v
�

))

� kv
�

� vk2 + � (�(v
�

)� �(v)) , 8� > 0.

This implies

kv
�

� vk2 + � (�(v
�

)� �(v))  0, 8� > 0.

By Proposition A.2.5 in Appendix A.2 we then obtain

kv
�

� vk2 + � ((v
�

, v0) + � � �(v))  0, 8� > 0,

where v0 2 X 0 and � 2 R. Since v 2 D(�) and hence �(v) < 1 then the above
shows that

lim
�!0

v
�

= v.

As v 2 D(�) was arbitrarily chosen and v
�

2 D(@�) we have thus shown

D(@�) = D(�).

Finally we show that in the case of a lower semi-continuous functional � the
subdi↵eretial @� is a closed subset of X ⇥X 0:

Proposition 6.1.4. Let X be a reflexive Banach space and let � : X !
R [ {+1} be a lower semi-continuous, convex, and proper functional.
Then @� is a weak-weak* closed subset of X ⇥X 0.

Proof. We have to show that if [v
n

, w
n

] 2 @� are such that v
n

* v in X and
w

n

⇤
* w in X 0 as n ! 1 then [v, w] 2 @�. By Theorem 6.1.2, @� is maximal

monotone. By the monotonicity we have

(v
n

� y, w
n

� z) � 0, 8[y, z] 2 @�.

Using v
n

* v and w
n

⇤
* w we then obtain

(v � y, w � z) � 0, 8[y, z] 2 @�.

Since @� is maximal monotone then we must have [v, w] 2 @�.
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6.2 Cauchy Problem in Dual Space

In the above we have shown that the subdi↵erential @� of a lower semi-continuous,
convex and proper functional � : X ! R [ {+1} defined on a reflexive Banach
space X is maximal monotone, densely defined on D(�) and closed. If we let X
be a Hilbert space then we can identify X 0 with X. Using Lemma 5.2.7(e) and
the monotonicity of @�, we conclude that @� is accretive. Since @� is maximal
monotone then

D(@�) ⇢ X ' X 0 = R(�I + @�) = R(�(I + ��1@�))

= �R(I + ��1@�)) ⇢ R(I + �@�))

for su�ciently small � > 0. Here ' emphasizes that we have identified X and X 0.
Finally, @� is a weak-weak* closed subset of X ⇥X 0 ' X ⇥X. The conditions
of Theorems 5.2.4 and 5.2.11 are therefore satisfied for A = @� and since X is
reflexive then

u(t) = lim
n!1

✓
J +

t

n
@�

◆�n

(u
0

), t 2 [0, T )

is a strong solution to the Cauchy problem

0 2 @u

@t
+ @�(u), u(0) = u

0

(6.2.1)

for u
0

2 D(@�) and 0 < T  1.

In the case X is not a Hilbert space we would like to say something about the
existence of a solution to the Cauchy problem

J
✓
@u

@t

◆
+ A(u) 3 0, u(0) = u

0

,

where again J is the duality mapping according to �(t) = t. Here we give the
conjecture:
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Conjecture 6.2.1. Assume that X is a real and reflexive Banach space.
Let A ⇢ X ⇥ X 0 and ⇢ 2 R be such that A + ⇢I is maximal monotone.
Assume that R(J + �A) � R(A) for su�ciently small � > 0, and that
A is a closed subset of X ⇥ X 0. If u

0

2 D(A) and 0 < T  1 then
u : [0, T ) ! X defined by

u(t) = lim
n!1

✓
I +

t

n
A

◆�n

(u
0

0)

for t 2 [0, T ) and u
0

0 2 J(u
0

) is a strong solution to the Cauchy problem

0 2 J
✓
@u

@t

◆
+ A(u), u(0) = u

0

on [0, T ).

We have shown that the subdi↵erential @� of a lower semi-continuous, convex, and
proper functional � is maximal monotone, weak-weak* closed and satisfies

R(@�) ⇢ X 0 = R(@�+ �J ) = �R(J + ��1@�) ⇢ R(J + �@�)

for su�ciently small � > 0. The subdi↵erential therefore satisfies the conditions of
Conjecture 6.2.1 and according to this there should exist a solution to the Cauchy
problem in the dual space X 0.

Returning to section 4 we see that the di↵usion problems of interest deals with
two kinds of operators. Either

A(u) = @
u

✓ˆ
⌦

u� u
�

dx

◆

or

A(u) = @
u

✓ˆ
⌦

g(x, u,Du) dx

◆

where g : ⌦ ⇥ R ⇥ Rn ! R�0

[ {+1} is a normal and convex integrand. In
either case A is the subdi↵erential of a lower semi-continuous, convex and proper
functional if X = W 1,p(⌦) for 1 < p < 1 or X = BV (⌦) (see Theorem 3.1.5) and
therefore satisfies the conditions of Conjecture 6.2.1. Note that since BV (⌦) is not
reflexive then we it should be proven that every Lipschitz continuous BV (⌦)-valued
function is strongly di↵erentiable almost everywhere. The relations between the
conditions of Corollaries 3.1.7 and 3.1.7 and Theorem 5.2.11 and Conjecture 6.2.1
has become clear through this chapter by relating the subdi↵erential of a lower
semi-continuous, convex and proper functional to maximal monotone and closed
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operators.

In Chapter 7 numerical experiments are performed in order to investigate the
convergence and the e↵ect of the di↵usion filtering method for specific examples.



7

Numerical Experiments

In this chapter numerical experiments for the di↵usion methods, discussed in
Chapter 4, are set up and solved using finite di↵erence methods in MatLab. Some
of the problems have not been proved to admit a solution as discussed in Chapter
6. Here we try to solve them anyway using a finite di↵erence method. We will see
that there is a di↵erence in how ill-posed the problems are comparing denoising
problems, deblurring problems and computed tomography problems. It will also
be seen that the time step parameter for the finite di↵erence methods has a huge
impact on whether we obtain a reasonable solution Ne or not.

7.1 Denoising with Standard Tikhonov Regularization

Let ⌦ = (0, 1) ⇢ R. We want to reconstruct the function given by

u
exact

(x) =

⇢
1, 0.1  x  0.4 or 0.6  x  0.9,
0, else,

from noisy given data. Dividing ⌦ into 100 equidistant points, u
exact

can be rep-
resented by the function values at these points. To all the function values 7%
Gaussian distributed additive noise is added in order to obtain simulated noisy
data. In Figure 7.1 the discretized clean data u

exact

(x) is seen in blue to the left
and the noisy data u

�

(x) in red to the right.

95
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(a) Clean data. (b) Noisy data in red (7% Gaussian noise).

Fig. 7.1: Denoising 1D: Data for reconstruction.

Now we want to use a standard Tikhonov regularization with regularization function
g(x, u,Du) = 1

2

|Du|2 for this problem. The corresponding di↵usion problem is

u
t

= u
xx

, u(0) = u
�

.

As described in section 4 a homogeneous Neumann boundary condition is applied.
We use a finite di↵erence method with time step �t and discretize the problem
using a spacial step length �x = 1

100

. Letting un

j

denote the value of u at time
step t = n�t and point x = j�x and using a forward di↵erence approximation of
u
t

and a second order central di↵erence approximation of u
xx

we then obtain the
finite di↵erence scheme

un+1

j

� un

j

�t
=

un

j+1

� 2un

j

+ un

j�1

�x2

, j = 2, ..., 99

or simplified as

un+1

j

= (1� 2r)un

j

+ r(un

j+1

+ un

j�1

), j = 2, ..., 99

where r = �t/�x2. Using the homogeneous Neumann boundary condition we
obtain

un

0

= un

1

and un

101

= un

100

and hence at the endpoints we have

un+1

1

= (1� r)un

1

+ run

2

and un+1

100

= (1� r)un

100

+ run

99

.

Implementing the iteration scheme in MatLab, see Appendix B, and choosing
�t = 10�5 by trial and error we obtain the reconstructions at di↵erent time steps
seen in Figure 7.2. Here the dashed blue line is the original exact data. The green
curve is the reconstruction at time t = �t, the black at time t = 10�t and the
magenta at time t = 100�t. We see that the reconstructions become smoother and
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smoother as time evolves. Hence if we continue the process for too long we will just
get approximately a constant reconstruction which is equal to the average value of
u
exact

on ⌦. This suggests that we should have a stopping criteria. Furthermore
�t is just chosen by trial and error which is not optimal. Finally we could actually
change the time step length �t in each iteration in order to optimize the algorithm.
We can imagine that smaller time steps are needed at the beginning in order to
obtain an approximate reconstruction and then we can use greater and greater
time step lengths.

Fig. 7.2: Denoising 1D: Standard Tikhonov reconstructions at di↵erent times. Blue

(clean data), green (iteration 1), black (iteration 10), magenta (iteration 100).

Now we move on to a two-dimensional case. In this case we want to reconstruct
an image from a degraded one. The degradation is due to Gaussian additive noise.
In Figure 7.3 the clean image and a noisy image with 2% additive Gaussian noise
are seen.

The idea is now to use the di↵usion problem

u
t

= �u, u(0) = u
�

with homogeneous Neumann boundary conditions to remove the noise and recover
the clean image. As in the one dimensional case, we use a finite di↵erence method
with time step �t and discretize the problem using the spacial step lengths �x in
the x-direction and �y in the y-direction. Again letting un

j,k

denote the value of u
at time step t = n�t and point (x, y) = (j�x, k�y) we use a forward di↵erence
approximation of u

t

and a second order central di↵erence approximation of u
xx

and u
yy

. Like in the one dimensional case, we fix the boundary values using
the homogeneous Neumann boundary condition. Since the image we use is a
512⇥ 512 pixel image, then �x = �y = 1

512

. Implementing the iteration scheme in
MatLab, see Appendix B, and choosing �t = 10�7 by trial and error we obtain the
reconstructions at di↵erent time steps seen in Figure 7.4. Iteration n corresponds
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(a) Clean image. (b) Noisy image (2% Gaussian noise)

Fig. 7.3: Denoising 2D: Data for reconstruction.

to time t = n�t. We see that at early time steps there is still noise in the image.
As time evolves the noise is removed by smoothening the data. At iteration 100 we
see that the picture is actually smeared because of too much smoothening. Again
there should be a stopping rule for when to stop the iteration.

Trying to increase the time step length to �t = 5 · 10�7 we obtain the reconstruc-
tions in Figure 7.5. Due to the larger time step the smoothening went much faster
for this iteration process. Choosing the time step parameter too large we may
obtain no good reconstruction because of a too fast smoothening process.

Denoising with a standard Tikhonov regularization is not the best way to obtain
good results for functions or images with sharp edges. In the next section we use a
total variation regularization and it is seen that we obtain much better results for
the two examples above.

7.2 Denoising with Total Variation Regularization

We use the same clean data and noisy data as in Figure 7.1. Instead of using
a standard Tikhonov regularization we use a total variation regularization term
given by |Du|(⌦). The corresponding di↵usion problem is

u
t

= r ·
✓

1

|u
x

|ux

◆

with a homogeneous Neumann boundary condition. We have actually not estab-
lished an existence result for a solution to this problem but here we try to solve it
using a finite di↵erence method anyway. And we see that we obtain good results.



7.2. DENOISING WITH TOTAL VARIATION REGULARIZATION 99

(a) Iteration 10. (b) Iteration 20.

(c) Iteration 50. (d) Iteration 100.

Fig. 7.4: Denoising 2D: Standard Tikhonov reconstructions at di↵erent times with

�t = 10�7

.

For the finite di↵erence method (in time) we use the time step �t and discretize
the problem using the spacial step length �x = 1

100

. As above we let un

j

denote
the value of u at time step t = n�t and point x = j�x. This time we use first a
central di↵erence approximation for u

x

:

un

j+1

� un

j�1

2�x
.

Then using a forward di↵erence approximation of u
t

and a central di↵erence
approximation for r · (·) we arrive at the finite di↵erence scheme

un+1

j

� un

j

�t
=

sgn(un

j+2

� un

j

)� sgn(un

j

� un

j�2

)

2�x
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where r = �t/(2�x). This scheme su↵ers from an odd-even decoupling. We
remove this by decreasing the width of the di↵erences:

un+1
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= un

j

+ r(sgn(un
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)� sgn(un

j
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(a) Iteration 10. (b) Iteration 20.

(c) Iteration 50. (d) Iteration 100.

Fig. 7.5: Denoising 2D: Standard Tikhonov reconstructions at di↵erent times with

�t = 5 · 10�7

.

where r = �t/�x. Using the homogeneous Neumann boundary conditions we
again obtain

un

0

= un

1

and un

101

= un

100

and hence at the endpoints we have

un+1

1

= un

1

+ r · sgn(un

2

� un

1

) and un+1

100

= un

100

� r · sgn(un

100

� un

99

).

Implementing this iteration scheme in MatLab, see Appendix B, and choosing
�t = 10�5 by trial and error we obtain the reconstructions seen in Figure 7.6.
Again the dashed blue line is the original exact data, the green curve is the recon-
struction at iteration 1, the black at iteration 10, and the magenta at iteration
100. We see that the recovering of u

exact

is much better than for the standard
Tikhonov regularization. This is because the total variation regularization tends to
preserve sharp edges. We also see the drawback from the total variation method;
the staircase e↵ect. Because TV regularization insists on preserving the sharp
edges, it sometimes makes new edges based on the noise in the data. This is seen
in Figure 7.6 in the reconstructions for example between 0.3 and 0.4 at the x-axis.
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Fig. 7.6: Denoising 1D: Total variation reconstructions at di↵erent times. Blue (clean

data), green (iteration 1), black (iteration 10), magenta (iteration 100).

In order to investigate the method in further detail we move on to the two dimen-
sional example seen in Figure 7.3. As for the one dimensional case we use a finite
di↵erence scheme implemented in MatLab, see Appendix B, in order to obtain the
results in Figure 7.7. The time step size is set to �t = 1/2�x by trial and error.
We see that at early stages there is still noise in the picture. During the iteration
process the edges are kept sharp and a smoothing between edges occurs. Turning
our attention to iteration 150 we see that we obtain an almost cartoon like figure.
Hence the iteration process should have been stopped before this stage.

Increasing the time step size parameter to �t = �x we see that the smoothing in
isotropic areas becomes too dominating (see Figure 7.8).

7.3 Deblurring with Standard Tikhonov Regulariza-
tion

In this section we add a blur to the problems of section 7.1. In one dimension we
use again the clean data from Figure 7.1. This time we blur the data using the
convolution operator

Ku(x) =

ˆ
⌦

k(x� y)u(y) dy, k(x� y) =
1p
2⇡�

exp

✓
�(x� y)2

2�2

◆

where � 2 R. In practice we multiply the data vector

U = (u
exact

(0), u
exact

(�x), ..., u
exact

(100�x))0

by the matrix A stemming from a convolution operator and given by

A
ij

=
�xp
2⇡�

exp

✓
�(i�x� j�x)2

2�2

◆
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(a) Iteration 20. (b) Iteration 50.

(c) Iteration 100. (d) Iteration 150.

Fig. 7.7: Denoising 2D: Total variation reconstructions at di↵erent times with �t =
1/2�x.

where � = 0.05. To the blurred version of u
exact

we then add 2% Gaussian additive
noise in order to obtain simulated noisy data. The clean data is the blurred version
of u

exact

and the noisy data is the blurred version with 2% Gaussian additive noise.
In Figure 7.9 the cyan clean data is seen to the left and the noisy red data is seen
to the right.

Let K denote the convolution operator that gives rise to the matrix A. Then the
di↵usion problem associated with the standard Tikhonov regularization for this
problem reads as

u
t

= �K0(u)#(Ku� u
�

), u(0) = 0

with homogeneous Neumann boundary conditions (see Chapter 4). Here u
t

should
be regarded as an element in the dual. We have not yet proved the existence of a
solution for this problem but here we solve it using a finite di↵erence method (in
time) anyway. Again u

�

is the noisy given data. Discretizing the problem as for
the denoising problem we let

Un = (un

1

, un

2

, ...., un

100

).
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(a) Iteration 20. (b) Iteration 50.

(c) Iteration 100. (d) Iteration 150.

Fig. 7.8: Denoising 2D: Total variation reconstructions at di↵erent times with �t = �x.

(a) Clean data in cyan. (b) Noisy data in red (2% Gaussian noise).

Fig. 7.9: Deblurring 1D: Data for reconstruction.

Observing that the discrete version of F 0(u)# is simply AT and using a forward
finite di↵erence approximation of u

t

we obtain the finite di↵erence scheme

Un+1 = Un � �tAT (AUn � u
�

), U1 = (0, 0, ...., 0). (7.3.1)

Using the Neumann boundary conditions we set

un+1

1

= un+1

2

and un+1

100

= un+1

99

.
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Implementing the scheme in MatLab, see Appendix B, and choosing �t = 6 · 10�6

by trial and error we obtain the reconstructions seen in Figure 7.10. Here the
blue dashed line is the actual function we want to reconstruct. Then the green is
the reconstruction after iteration 50000, the black after iteration 200000, and the
magenta after iteration 1100000. We see that we need quite a lot of iterations in
order to obtain a reconstruction that looks like the actual function u

exact

. There are
several reasons for this. For the reconstruction method our initial guess is 0. This
is far from the true solution. Hence we need a lot of iterations in order to obtain
just a rather rough reconstruction. Furthermore the problem is extremely ill-posed
which makes it even more di�cult to obtain a good reconstruction. And finally
the standard Tikohonov regularization method is not the most optimal method
for this kind of problem since it is a smoothing reconstruction method and we are
trying to reconstruct sharp edges. So far though this is the only regularization
method for which we can formulate an easy solvable di↵usion problem.

Fig. 7.10: Deblurring 1D: Standard Tikhonov reconstructions at di↵erent times with

�t = 6 · 10�6

. Blue (actual function), green (iteration 50000), black (iteration 200000),

magenta (iteration 1100000).

Increasing the time step size to �t = 5 · 10�4 we obtain the reconstructions seen in
Figure 7.11. It is seen that we actually obtain as good results with this choice of
time step length. The process is just running faster.

For the deblurring problem in one dimension we have now seen that it is di�cult
to obtain a good reconstruction. This is due to the extreme ill-posedness of the
deblurring problem, but it might also be due to a poor choice of time step parame-
ter. Moving on to a two dimensional problem we will see the same di�culties in
obtaining a good reconstruction. Once again we use the clean image in Figure 7.3
to the left. Instead of just adding noise we first do a motion blur to the image
using the motion blur matrix generated by the mblur-function in the AIR tools

package in MatLab, see [34]. To the blurred image 1% Gaussian additive noise is
added in order to construct simulated noisy data. The clean data (the blurred
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Fig. 7.11: Deblurring 1D: Standard Tikhonov reconstructions at di↵erent times with

�t = 5 · 10�4

. Blue (actual function), green (iteration 100), black (iteration 7000),

magenta (iteration 20000).

image) and the noisy data (the blurred image with noise) are seen in Figure 7.12.

(a) Clean data. (b) Noisy data (1% Gaussian noise).

Fig. 7.12: Deblurring 2D: Data for reconstruction.

We use again the finite di↵erence scheme in (7.3.1) where now the matrix A is the
motion blur matrix. For the deblurring problem it is very di�cult to choose the
right time step size. Due to the extreme ill-posedness of the problem we need a
large �t in order to deblur the given blurred data. On the other hand the time
step size should be small in order to remove noise. Choosing �t = 0.2 by trial
and error we obtain the reconstructions seen in Figure 7.20 (the figure is made the
last figure of this Chapter since it is a one page figure). Again we see that it is
di�cult to obtain good reconstructions. At the beginning the noise is removed,
but the blur is not removed. At some point the blur is removed and then we
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start fitting to noise. Again we need a criteria of how to choose the time step size
and when to stop the iteration process. Setting �t to a large value means that
we do not really want to use the regularizing term, since then the regularization
parameter ↵ = 1/�t becomes small (see Chapter 4). In order to remove the
noise even better it may be necessary to set a smaller value for �t but because of
the extreme ill-posedness of the deblurring problem we would then have to run a
huge amount of iterations, which is time consuming. This is not optimal in practice.

Using a too small time step parameter �t = 0.05 leads to the results in Figure
7.13. We see that we obtain no good results in this case. The noise is removed,
but we never obtain the deblur of the image.

(a) Iteration 2. (b) Iteration 8.

(c) Iteration 14. (d) Iteration 20.

Fig. 7.13: Deblurring 2D: Standard Tikhonov reconstructions at di↵erent times with

�t = 0.05.

Using a too large time step parameter �t = 1 leads to the results in Figure 7.14.
We see that we obtain no good results in this case either. Now the blur in the
image is removed but we fit to noise and the noise is never removed.
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(a) Iteration 2. (b) Iteration 8.

(c) Iteration 14. (d) Iteration 20.

Fig. 7.14: Deblurring 2D: Standard Tikhonov reconstructions at di↵erent times with

�t = 1.

7.4 Computed Tomography with Standard Tikhonov
Regularization

In computed tomography (CT) one wants to reconstruct an image of the body’s
inner structure. Sending X-rays through the body at di↵erent angles one can
measure the corresponding damped signals on the opposite side of the body as-
suming that the X-rays go straight through the body. The damping is due to
an attenuation coe�cient µ(⌘) depending on the travelled distance ⌘ along the
straight line, see Figure 7.15. The given data for CT problems are the projections
of the signal intensity along each line for di↵erent angles. Due to the di↵er-
ence in attenuation coe�cient for di↵erent tissues we are then able to reconstruct
an image of the body’s inner structure by reconstructing the attenuation coe�cient.

To obtain an analytical reconstruction formula for CT scanning we start by
parametrising each line L along which the intensity is projected. Using the
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I0

X-ray

Material constant, µ(⌘) = µ

Damped signal

I(⌘)

⌘ ⌘ +�⌘

I(⌘ +�⌘)

Fig. 7.15: CT: X-ray going straight through domain with attenuation constant µ(⌘) = µ.

coordinates ⇢ (distance) and ✓ (angle) the parametrisation of the line L is

L = {⇢v + sv?|s 2 R}, v = (cos(✓), sin(✓)), v? = (� sin(✓), cos(✓)).

The Radon transform of an attenuation coe�cient represented by f is defined by

Rf(⇢, ✓) =

ˆ
R
f(⇢v + sv?) ds or simply Rf(L) =

ˆ
L

f ds.

Hence Rf(L) exactly represents the intensity projection of f along the line L.
That is, Rf(L) is the data from which we want to reconstruct the body’s inner
structure, or simply the attenuation coe�cient function f . Assuming that there is
also Gaussian additive noise � in the data we have the following problem

f
�

= Rf + �.

The known data is f
�

from which we want to reconstruct f . Using the fanbeamtomo-
function in the AIR tools package in MatLab we can generate simulated data for
the CT problem for a reconstruction of the inner structure seen in Figure 7.16.
The image is a 150⇥ 150 pixel image and hence in this case �x = �y = 1

150

.

Fig. 7.16: CT: Shepp-Logan phantom.
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The fanbeamtomo-function generates a matrix representing the discretized Radon
transform and a vector containing the projected data. To the data vector we add
2% Gaussian additive noise. The data can be shown in a sinogram as seen in
Figure 7.17. Here the first-axis represents the angles and the second-axis represents
the travelled distance. In this case we have used 360 di↵erent angles.

(a) Clean data. (b) Noisy data (2% Gaussian additive noise).

Fig. 7.17: CT: Data for reconstruction.

Again we use the iteration scheme in (7.3.1) where now the matrix A is replaced
by the matrix representing the Radon transform. Choosing �t = 2 · 10�5 by
trial and error we obtain the reconstructions of the phantom seen in Figure
7.18. We see that we obtain a quite good reconstruction even of the small details
in the phantom. We also notice that we begin fitting to noise at the 200th iteration.

Especially for this problem we see the importance of the choice of time step size.
Increasing the size of the time step to �t = 4 · 10�5 we obtain the completely
unreasonable results seen in Figure 7.19.

We complete this chapter with the open question of how to choose the time step
parameter and when to stop the iteration.
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(a) Iteration 1. (b) Iteration 70.

(c) Iteration 150. (d) Iteration 200.

Fig. 7.18: CT: Standard Tikhonov reconstructions at di↵erent times with �t = 2 · 10�5

.
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(a) Iteration 1. (b) Iteration 5.

(c) Iteration 15. (d) Iteration 20.

Fig. 7.19: CT: Standard Tikhonov reconstructions at di↵erent times with �t = 4 · 10�5

.
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(a) Iteration 1. (b) Iteration 2. (c) Iteration 4.

(d) Iteration 6. (e) Iteration 8. (f) Iteration 10.

(g) Iteration 12. (h) Iteration 14. (i) Iteration 16.

(j) Iteration 18. (k) Iteration 20.

Fig. 7.20: Deblurring 2D: Standard Tikhonov reconstructions at di↵erent times with

�t = 0.2.
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Discussion and Conclusion

Reconstruction problems like denoising, deblurring, computed tomography and
other such issues can be analysed and solved through two di↵erent settings; the
variational formulation or the non-linear di↵usion method. For the variational
formulation the reconstruction problem is seen as an inverse problem which is
solved using a regularization method. In order to obtain a satisfactory solution
we have to solve a minimization problem for the regularizing functional. We have
proven a general theorem about the existence and uniqueness of such a minimizer.

Observing that the subdi↵erential of a functional at its minimizer contains the null
element, the minimization problem can be turned into an Euler-Lagrange equation
or an optimality condition for which the minimizer is a solution in distributional
sense. The Euler-Lagrange equation can then, in the case of either denoising or in
the case of standard Tikhonov regularization, be turned into a non-linear di↵usion
problem for which the solutions at di↵erent times correspond to the minimizers
of an associated iterative regularization for the variational formulation. It can
be discussed why we would like to use one or the other method for obtaining a
reconstruction. The minimization problems obtained through the variational for-
mulation are well-known and there exist lots of methods for solving such problems.
Di↵erent penalization terms are well-studied and many regularization functions
are already known to provide good reconstruction results. On the other hand,
the non-linear di↵usion process is very easy to implement using a finite di↵erence
scheme (in time). The PDE formulation might also give rise to new and better

113
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reconstruction methods and regularization techniques. For this method we can
think of the reconstruction process as a smoothing process retaining specified
features and structures in the given data. For example we could specify that we
want di↵usion to take place in isotropic areas and not across edges in images for
denoising problems.

In the case of a standard Tikhonov regularization, we ended up with a non-linear
di↵usion equation in the dual space of the solution space. There is still an open
question about how to solve this problem. A conjecture about the existence of a
solution has been stated and may be investigated further. For a general regular-
ization function and a general reconstruction problem we have not yet been able
to turn the optimality condition for a minimizer for the variational formulation
into a di↵usion process. Maybe it can be turned into a di↵usion process for an
operator evaluated at the sought solution or the evaluated at the time derivative of
the sought solution from which the reconstruction can be generated. This is also
still an open question.

For the implementation of the non-linear di↵usion processes a finite di↵erence
method has been used. For this method we have seen that the time step size plays
an important role. An optimal way of choosing this parameter should therefore be
developed. Since there is a direct relation between the time step parameter for the
discretized di↵usion process and the regularization parameter for the variational
formulation it could be possible to use methods like Morozov’s discrepancy principle
to choose the time step size. This is open for further investigation. In the numerical
experiments the time step parameter is set to the same value in all iterations. This
works fine, but is not optimal regarding time consumption. In tomography, for
example, we would like to obtain a good reconstruction as fast as possible, so the
time step parameter should be chosen optimally in each iteration. At first the
parameter should be chosen small, in order to give priority to removing noise from
the data. But as soon as almost all noise is removed and a more or less good
reconstruction is obtained, the time step parameter should be increased in order to
speed up the reconstruction process. This leads to the question of when to change
the size of the time step size. Finally, we have seen that in order to obtain a good
reconstruction the di↵usion process has to be stopped at some kind of optimal
time. If the di↵usion process is continued for too long we obtain an extremely
simplified version of the actual function we want to reconstruct. Therefore the
di↵usion process requires an optimal stopping criteria.

8.1 Future Work

As there are a lot of open questions in relation to this thesis, there is room for
future work on the subject. The future work could consist of formulating non-linear
di↵usion processes for general reconstruction problems and penalization terms and
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investigating the solvability of these. From the formulation of such non-linear
di↵usion processes, the aim is to be able to formulate new and possibly better
regularization techniques. For the discretized non-linear di↵usion processes it is
important to understand how the time step parameter influences the iteration
process and when the iteration process should be stopped in order to obtain an op-
timal numerical solution as fast as possible. For this, an algorithm for choosing an
optimal time step parameter and an optimal stopping criteria should be suggested.
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A

Theory

A.1 Sobolev Spaces and their Duals

In this section we characterize the dual spaces (W 1,p(⌦))0. The section is based
on [32, pp. 62-63]. First we introduce the notion of multi-indices. Given integers
n � 1 and m � 0, let N = N(n,m) be the number of multi-indices ↵ = (↵

1

, ...,↵
n

)
such that |↵| = ↵

1

+ ... + ↵
n

 m. For each multi-index ↵ let ⌦
↵

be a copy of
⌦ ⇢ Rn in a di↵erent copy of Rn such that each of the N domains ⌦

↵

are mutually
disjoint. Finally let ⌦(m) be the union of these N domains; ⌦(m) =

S
|↵|m

⌦
↵

. We
further need the definition of the pairing:

(u, v) =

ˆ
⌦

u(x)v(x) dx

for any functions u and v for which the integral makes sense. Note that the paring
makes sense for u 2 Lp(⌦) and v 2 (Lp(⌦))0 = Lp

0
(⌦) where

p0 =

8
<

:

1, p = 1,
p/(p� 1), 1 < p < 1,
1, p = 1.

Now we first give a characterization of the dual spaces (Lp(⌦(m)))0:
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Theorem A.1.1 (Characterization of (Lp(⌦(m)))0). To every L 2
(Lp(⌦(m)))0, where 1  p < 1, there corresponds a unique v 2 Lp

0
(⌦(m))

such that for every u 2 Lp(⌦(m)) we have

L(u) =

ˆ
⌦

(m)

u(x)v(x) dx =
X

|↵|m

ˆ
⌦↵

u
↵

(x)v
↵

(x) dx =
X

|↵|m

(u
↵

, v
↵

),

where u
↵

and v
↵

are the restrictions of u and v, respectively, to ⌦
↵

.

Proof. See [32, Thm. 2.44].

Finally we give the characterization of the dual spaces (W 1,p(⌦))0:

Theorem A.1.2. Let 1  p < 1. For every L 2 (W 1,p(⌦))0 there exist
elements v 2 Lp

0
(⌦(m)) such that if the restriction of v to ⌦

↵

is v
↵

, we
have for all u 2 W 1,p(⌦)

L(u) =
X

0|↵|m

(D↵u, v
↵

).

Proof. See [32, Thm. 3.9].
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A.2 Minimization Problems

In this section we introduce minimization problems and give necessary and su�cient
conditions for the existence of solutions. The section is based on [20, Chap. 3],
[21, pp. 30-40] and [18, Chap. 10]. All proofs of the theorems, which are not given
here, can be found in these books.

A.2.1 Minimization Problems

Any minimization problem can be formulated as

inf{F (u) : u 2 X}

where X is the space in which we want to minimize F and F : X ! R [ {+1}
is an extended real-valued functional. The solution set for a given minimization
problem for a functional F : X ! R [ {+1} is defined by

arg minF = {u 2 X : F (u) = inf
X

F (u)}.

A.2.2 Lower Semi-Continuous Functionals

In the problem of minimizing an extended real-valued functional the concept of
lower semi-continuity plays an important role. In order to introduce the concept
of lower semi-continuous functionals and their properties we need to introduce the
epigraph and lower level sets of extended real-valued functionals.

The definition of the epigraph and the lower level sets of an extended real valued
functional is given by

Definition A.2.1 (Epigraph and Lower Level Sets). Let F : X ! R [
{+1} be an extended real-valued functional. The epigraph of F is defined
by

epiF = {(u,�) 2 X ⇥ R : � � F (u)}

and the lower �-level set is defined by

lev
�

F = {u 2 X : F (u)  �}.

Note that the solution set of a minimization problem can be expressed by the lower
level sets as

arg minF =
\

�>infX F

lev
�

F
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and the lower level sets can be expressed by the epigraph as

lev
�

F ⇥ {�} = epiF \ (X ⇥ {�}).

Hence the epigraph plays an important role in minimization problems.

Now we introduce the concept of lower semi-continuity of an extended real-valued
functional:

Definition A.2.2 (Lower Semi-Continuity). Let (X, ⌧) be a topological
space and denote by N

⌧

(u) the family of neighbourhoods of u for the
topology ⌧ . The functional F : X ! R [ {+1} is said to be ⌧ -lower
semi-continuous (⌧ -lsc) at u if

8� < F (u)9N
�

2 N
⌧

(u) : F (v) > � 8v 2 N
�

.

If F is ⌧ -lsc at every point ofX, then F is said to be ⌧ -lower semi-continuous
on X.

In order to show that a functional is lower semi-continuous we can use the following
proposition:

Proposition A.2.3. Let (X, ⌧) be a topological space and F : X ! R [
{+1} an extended real-valued functional. Then the following statements
are equivalent:

(i) F is ⌧ -lower semi-continuous.

(ii) epiF is closed in X ⇥ R (where X ⇥ R is equipped with the product
topology of ⌧ on X and of the usual topology on R).

(iii) 8� 2 R, lev
�

F is closed in (X, ⌧).

(iv) 8� 2 R, {u 2 X : F (u) > �} is open in (X, ⌧).

(v) 8u 2 X, F (u)  lim inf
v!u

F (v) := sup inf
N2N⌧ (u),v2NF (v).

Proof. See [20, Prop. 3.2.2].

For a functional consisting of more terms, we can use the following proposition

Proposition A.2.4. Let F,G : (X, ⌧) ! R [ {+1} be two lower semi-
continuous functionals. Then F +G is still lower semi-continuous.
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Proof. See [20, Prop. 3.2.4]

Finally a lower semi-continuous functional is bounded from below in the following
way:

Proposition A.2.5. Let F : X ! R [ {+1} be a proper and lower
semi-continuous functional. Then F is bounded from below by an a�ne
functional. That is, there are u0 2 X 0 and � 2 R such that

�(u) � (u, u0) + �, 8u 2 X.

Proof. See [30, Prop. 1.1].

A.2.3 Inf-Compact Functionals and Coercivity

The second important concept in minimization problems is the inf-compactness
property which can be shown to be equivalent to the coercivity of a functional.

The definition of an inf-compact functional is:

Definition A.2.6 (Inf-Compactness). Let (X, ⌧) be a topological space
and let F : X ! R [ {+1} be an extended real-valued functional. The
functional F is said to be ⌧ -inf-compact if for any � 2 R

lev
�

F = {u 2 X : F (u)  �}

is relatively compact in X for the topology ⌧ .

A coercive functional is defined by

Definition A.2.7 (Coercivity). Let X be a normed linear space. A
functional F : X ! R [ {+1} is said to be coercive if limkuk!+1 F (u) =
+1.

Now the relation between inf-compactness and coercivity can be explained through
the following proposition

Proposition A.2.8. Let X be a normed space and F : X ! R [ {+1}.
Then the following conditions are equivalent:

(i) F is coercive.

(ii) For any � 2 R, lev
�

F is bounded.
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Proof. See [20, Prop. 3.2.8].

Recalling that in a normed space the bounded sets are relatively compact if and
only if the space is finite dimensional, we see that in the finite dimensional case
coercivity and inf-compactness are equivalent conditions. In the infinite dimensional
case bounded sets are relatively compact for the weak topology if X is a reflexive
Banach space. Hence in this case coercivity is equivalent to weak inf-compactness.

A.2.4 Minimization Theorems

With the above definitions we are ready to state Weierstrass theorem which gives
necessary and su�cient conditions for the existence of solutions to minimization
problems:

Theorem A.2.9 (Weierstrass theorem). Let (X, ⌧) be a topological space
and let F : X ! R [ {+1} be an extended real-valued functional which
is ⌧ -lower semi-continuous and ⌧ -inf compact. Then, inf

X

F > �1 and
there exists some u 2 X which minimizes F on X:

F (u)  F (u), 8u 2 X.

Proof. See [20, Thm. 3.2.1].

According to proposition A.2.8, in the finite dimensional case we can just choose
the usual topology on X = Rn and then show that F is lower semi-continuous
and coercive. In the infinite dimensional case we can use the weak topology if X
is a reflexive Banach space and then show that F is coercive and weakly lower
semi-continuous. In order to show that F is weakly lower semi-continuous we need
the concept of convexity. A convex functional is defined as:

Definition A.2.10 (Convexity). Let X be a linear space and let F : X !
R [ {+1}. Then F is said to be convex if for each u, v 2 X and each
� 2 [0, 1] we have

F (�u+ (1� �)v)  �F (u) + (1� �)F (v).

It can be shown that for a convex functional, lower semi-continuity and weak lower
semi-continuity are equivalent conditions:
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Theorem A.2.11. Let X be a normed linear space and F : X ! R[{+1}
a convex proper functional. Then the following conditions are equivalent:

(i) F is lower semi-continuous for the norm topology on X.

(ii) F is lower semi-continuous for the weak topology on X.

Proof. See [20, Thm. 3.3.3].

This equivalence and Weierstrass theorem leads to the following convex minimiza-
tion theorem in reflexive Banach spaces:

Theorem A.2.12 (Convex Minimization Theorem). Let (X, k·k) be a
reflexive Banach space and F : X ! R [ {+1} a convex, lower semi-
continuous, and coercive functional. Then inf

X

F > �1 and there exists
some u 2 X which minimizes F on X:

F (u)  F (u), 8u 2 X.

Proof. See [20, Thm. 3.3.4].

In the case that F is strictly convex the solution of the minimization problem is
actually unique.

Sometimes we can express a functional as the supremum over a sequence of
functionals for which we can prove lower semi-continuity and convexity results. In
this case we have the following lemma:

Lemma A.2.13. Let X be a normed space and (F
n

)
n2N a family of func-

tionals on X with values in R [ {+1}. Denote by F = sup
n2N Fn

their
pointwise supremum. Then the following two assertions hold

1) If every functional F
n

is (strictly) convex, then F is (strictly) convex.

2) If every functional F
n

is lower semi-continuous, then F is lower semi-
continuous.

Proof. See [20, Prop. 3.2.3].
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A.2.5 Relaxed Minimization Problems

In general, inf-compactness and lower semi-continuity are two proporties which are
antagonist. That is, if ⌧

1

> ⌧
2

, i.e. the topology ⌧
1

is stronger than the topology
⌧
2

, then

F is ⌧
1

� inf-compact ) F is ⌧
2

� inf-compact

while

F is ⌧
2

� lsc ) F is ⌧
1

� lsc.

Hence it can be di�cult to choose a ”good” topology for a minimization problem.
A good topology might even not exist and in this situation we consider instead a
relaxed minimization problem.

If the functional F to minimize fails to be lower semi-continuous for a topology ⌧
which makes F ⌧ -inf-compact, then we introduce instead the ⌧ -relaxed functional
R

⌧

F which leads to a relaxed minimization problem:

Definition A.2.14 (Lower Envelope). Given the topological space (X, ⌧ )
and F : X ! R [ {+1}, the ⌧ -relaxed functional of F is the greatest
⌧ -lsc functional which minorizes F :

R
⌧

F = sup{G : X ! R [ {+1} : G is ⌧ � lsc and g  F}.

It can be proven that R
⌧

F has the following sequential formulation if (X, ⌧) is
metrizable:

Proposition A.2.15. Let (X, ⌧) be a metrizable topological space and
F : X ! R [ {+1}. Then for any u 2 X

(R
⌧

F )(u) = lim inf
v!u

F (v) = min{lim inf
n

F (u
n

) : u
n

! u as n ! 1}.

Proof. See [20, Prop. 3.2.6].

It can be shown that the relaxed functional satisfies the following properties:
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Theorem A.2.16. Let F : (X, ⌧ ) ! R[{+1} be an extended real-valued
functional. Then

inf
X

F = inf
X

R
⌧

F.

More generally for any ⌧ -open subset C of X

inf
C

F = inf
C

R
⌧

F.

Moreover,

arg min F ⇢ arg minR
⌧

F.

And finally if (u
n

)
n2N is a minimizing sequence for F containing a conver-

gent subsequence u
nk

⌧ -converging to some u 2 X then

(R
⌧

F )(u)  (R
⌧

F )(u), 8u 2 X,

that is, u is a minimum point for R
⌧

F .
Assume further that X is a reflexive Banach space and F is coercive. Then

(i) R
⌧

F is coercive

(ii) R
⌧

F has a minimum point in X

(iii) Every minimum point for R
⌧

F is the limit of a minimizing sequence
for F .

Proof. See [20, Prop. 3.2.7] and [21, Thm. 2.1.6].

Theorem A.2.16 suggests that instead of considering the original minimization
problem

inf{F (u) : u 2 X}

we should consider the relaxed minimization problem

min{RF (u) : u 2 X}.

This relaxed problem satisfies the conditions for the existence of a minimizer and
therefore admits a solution even in the case where F is not lower semi-continuous.
In case F is actually lower semi-continuous the relaxed functional coincides with
F .
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A.2.6 The Direct Method of the Calculus of Variations

The direct method of the calculus of variations is a method for solving minimization
problems. Considering the minimization of F : X ! R [ {+1} the steps are:

1) Construct a minimizing sequence (u
n

)
n2N ⇢ X, i.e. a sequence such that

lim
n!1 F (u

n

) = inf
u2X F (u).

2) Establish that the sequence (u
n

)
n2N is relative compact w.r.t. some topology ⌧ .

Here the topology ⌧ is chosen as strong as possible. The relatively compactness
follows if F is coercive. From the relative compactness of (u

n

) it follows that
there exists a subsequence u

nk
⌧ -converging to some u 2 X.

3) Prove that u is a minimum point of F . This follows if F is ⌧ -lower semi-
continuous.

Hence as soon as we have established the ⌧ -inf-compactness and ⌧ -lower semi-
continuity of F we only need to find a minimizing sequence of F in order to obtain
a subsequence converging to a minimum point of F .
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A.3 Properties of Subdi↵erentials

In this section we state some properties of the subdi↵erential of an operator. The
section is based on [18, Chap. 10]. The first lemma states some calculation rules
for the subdi↵erential:

Lemma A.3.1. Let F : X ! R [ {+1} be convex and � > 0. Then

@(�F )(u) = �@F (u), u 2 X.

Let F,G : X ! R [ {+1} be convex and assume that there exists v 2
D(F ) \D(G) such that F is continuous in v. Then

@(F +G)(u) = @F (u) + @G(u).

Let X and Y be locally convex spaces, L 2 B(X, Y ), and G : Y !
R [ {+1} convex. Assume that there exists v 2 Y such that G(y) < 1
and G is continuous in v. Then

@(G � L)(u) = L#(@G(Lu)), u 2 X.

Here L# : Y 0 ! X 0 is the dual-adjoint of L.

The next theorem gives a characterization of the subdi↵erential in special cases:

Theorem A.3.2. Let f be a normal integrand on ⌦ ⇥ Rm such that
F : Lp(⌦;Rm) ! R [ {+1}, 1  p < 1, defined by

F (v) =

ˆ
⌦

f(x, v(x)) dx

is proper. Then

@F (v) = {v0 2 Lq(⌦;Rm) : v0(x) 2 @f(x, v(x))a.e.}.

Here 1/p+1/q = 1 and the subdi↵erential of f is understood to be computed
only with respect to v(x).
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B

MatLab Implementation

In this chapter the code for the implementation of the di↵usion processes for the
numerical experiments is seen. The code is written in MatLab [33].

B.1 Denoising 1D

1 clear all; close all; clc;

2

3 % Initializing random generators

4

5 randn('state',sum(100

*

clock))

6 rand('state',sum(100

*

clock))

7

8 % Generating true unknown f

9

10 J = 100;

11 a = 0;

12 b = 1;

13 x = linspace(a,b,J)';

14 f exact = double(x � 0.1 & x 0.4) + double(x � 0.6 & x  0.9);

15

16 % Plotting true unknown

17

18 figure(1)

133
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19 plot(x,f exact,'��b','linewidth',2)
20 axis([0 1 �0.2 1.2]);

21

22 % Generating noisy data

23

24 eta = 0.07;

25 e = randn(size(f exact));

26 e = eta

*

norm(f exact)

*

e/norm(e);

27 f noise = f exact + e;

28

29 % Plotting noisy data

30

31 figure(2)

32 plot(x,f noise,'�r','LineWidth',2)
33 hold on

34 plot(x,f exact,'��b','linewidth',1.5)
35 hold off

36

37 %% FDM for standard Tikhonov regularization with g(x,u,Du) = 1/2|Du|ˆ2.
38

39 % Initialization

40

41 Delta t = 0.000003;

42 N = 100; % Number of time steps

43 h = (b�a)/J;
44 r = Delta t/hˆ2;

45 F = zeros(J,N+1);

46

47 F(:,1) = f noise;

48

49 for n = 1:N

50

51 % Fixing boundary conditions

52

53 F(1,n+1) = r

*

F(2,n) + (1�r)
*

F(1,n);

54 F(J,n+1) = r

*

F(J�1,n) + (1�r)
*

F(J,n);

55

56 % Reconstruction

57

58 for j = 2:J�1
59 F(j,n+1) = (1�2

*

r)

*

F(j,n) + r

*

F(j�1,n) + r

*

F(j+1,n);

60 end

61

62 end

63

64 % Plotting reconstructions

65

66 figure(3)

67 plot(x,F(:,2),'�g','LineWidth',2)
68 hold on

69 plot(x,F(:,11),'�k','LineWidth',2)
70 hold on

71 plot(x,F(:,101),'�m','LineWidth',2)
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72 hold on

73 plot(x,f exact,'��b','LineWidth',1.5)
74 hold off

75

76 %% FDM for TV regularization with g(x,u,Du) = |Du |(omega)
77

78 % Initialization

79

80 Delta t = 0.00001;

81 N = 150; % Number of time steps

82 h = (b�a)/J;
83 r = Delta t/h;

84 F = zeros(J,N+1);

85

86 F(:,1) = f noise;

87

88 for n = 1:N

89

90 % Fixing boundary conditions

91

92 F(1,n+1) = F(1,n) + r

*

csgn(F(2,n)�F(1,n));
93 F(J,n+1) = F(J,n) + r

*

(�csgn(F(J,n)�F(J�1,n)));
94

95 % Reconstruction

96

97 for j = 2:J�1
98 F(j,n+1) = F(j,n) + r

*

(csgn(F(j+1,n)�F(j,n))�csgn(F(j,n)�F(j�1,n)));
99 end

100

101 end

102

103 % Plotting reconstructions

104

105 figure(4)

106 plot(x,F(:,2),'�g','LineWidth',2)
107 hold on

108 plot(x,F(:,61),'�k','LineWidth',2)
109 hold on

110 plot(x,F(:,151),'�m','LineWidth',2)
111 hold on

112 plot(x,f exact,'��b','LineWidth',1.5)
113 hold off

B.2 Denoising 2D

1 clear all; close all; clc;

2

3 % Initializing random generators

4

5 randn('state',sum(100

*

clock));

6 rand('state',sum(100

*

clock));
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7

8 % Importing image

9

10 load('lena512.mat')

11 f exact = lena512;

12

13 % Plotting image

14

15 figure(1)

16 imagesc(f exact);

17 colormap(gray);

18 axis image off

19 axis equal

20

21 % Adding 2% Gaussian noise

22

23 eta = 0.02;

24 e = randn(size(lena512));

25 e = eta

*

norm(f exact)

*

e/norm(e);

26 f noise = f exact + e;

27

28 % Plotting noisy image

29

30 figure(2)

31 imagesc(f noise)

32 colormap(gray)

33 axis image off

34 axis equal

35

36 %% FDM for standard Tikhonov regularization with g(x,u,Du) = 1/2|Du|ˆ2.
37

38 % Initialization

39

40 J = size(f noise,1);

41 K = size(f noise,2);

42 N = 100; % Number of time steps

43 h1 = 1/J;

44 h2 = 1/K;

45 Delta t = 0.0000001;

46 r1 = Delta t/h1ˆ2;

47 r2 = Delta t/h2ˆ2;

48 F = zeros(J,K,N+1);

49

50 F(:,:,1) = f noise;

51

52 for n = 1:N

53

54 % Fixing boundary conditions

55

56 % Corners

57

58 F(1,1,n+1) = r1

*

(F(2,1,n)+F(1,1,n))+r2

*

(F(1,2,n)+F(1,1,n))...

59 +(1�2
*

r1�2
*

r2)

*

F(1,1,n);
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60 F(1,K,n+1) = r1

*

(F(2,K,n)+F(1,K,n))+r2

*

(F(1,K,n)+F(1,K�1,n))...
61 +(1�2

*

r1�2
*

r2)

*

F(1,K,n);

62 F(J,1,n+1) = r1

*

(F(J,1,n)+F(J�1,1,n))+r2
*

(F(J,2,n)+F(J,1,n))...

63 +(1�2
*

r1�2
*

r2)

*

F(J,1,n);

64 F(J,K,n+1) = r1

*

(F(J,K,n)+F(J�1,K,n))+r2
*

(F(J,K,n)+F(J,K�1,n))...
65 +(1�2

*

r1�2
*

r2)

*

F(J,K,n);

66

67 % Edges

68

69 for j = 2:J�1
70

71 F(j,1,n+1) = r1

*

(F(j+1,1,n)+F(j�1,1,n))+r2
*

(F(j,2,n)+F(j,1,n))...

72 +(1�2
*

r1�2
*

r2)

*

F(j,1,n);

73 F(j,K,n+1) = r1

*

(F(j+1,K,n)+F(j�1,K,n))+r2
*

(F(j,K,n)+F(j,K�1,n))...
74 +(1�2

*

r1�2
*

r2)

*

F(j,K,n);

75

76 end

77

78 for k = 2:K�1
79

80 F(1,k,n+1) = r1

*

(F(2,k,n)+F(1,k,n))+r2

*

(F(1,k+1,n)+F(1,k�1,n))...
81 +(1�2

*

r1�2
*

r2)

*

F(1,k,n);

82 F(J,k,n+1) = r1

*

(F(J,k,n)+F(J�1,k,n))+r2
*

(F(J,k+1,n)+F(J,k�1,n))...
83 +(1�2

*

r1�2
*

r2)

*

F(J,k,n);

84

85 end

86

87 % Reconstruction

88

89 for k = 2:K�1
90 for j = 2:J�1
91 F(j,k,n+1) = r1

*

(F(j+1,k,n)+F(j�1,k,n))...
92 +r2

*

(F(j,k+1,n)+F(j,k�1,n))+(1�2
*

r1�2
*

r2)

*

F(j,k,n);

93 end

94 end

95

96 end

97

98 % Plotting reconstruction

99

100 figure(3)

101 imagesc(F(:,:,101))

102 colormap(gray);

103 axis image off

104 axis equal

105

106 %% FDM for TV regularization g(x,u,Du) = |Du |(omega)
107

108 % Initialization

109

110 J = size(f noise,1);

111 K = size(f noise,2);

112 N = 150; % Number of time steps
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113 h1 = 1/J;

114 h2 = 1/K;

115 Delta t = 1/2

*

h1;

116 r1 = Delta t/(2

*

h1);

117 r2 = Delta t/(2

*

h2);

118 F = zeros(J,K,N+1);

119 F12 = zeros(J,K,N);

120

121 F(:,:,1) = f noise;

122

123 for n = 1:N

124

125 % Computing next step in F12

126

127 % Fixing boundary conditions in x�variable
128

129 for k = 1:K

130

131 F12(1,k,n) = F(1,k,n) + r1

*

csgn(F(2,k,n)�F(1,k,n));
132 F12(J,k,n) = F(J,k,n) + r1

*

(�csgn(F(J,k,n)�F(J�1,k,n)));
133

134 end

135

136 % Setting up middle of matrix

137

138 for k = 1:K

139 for j = 2:J�1
140

141 F12(j,k,n) = F(j,k,n) + r1

*

(csgn(F(j+1,k,n)�F(j,k,n))...
142 �csgn(F(j,k,n)�F(j�1,k,n)));
143

144 end

145 end

146

147 % Computing next step in F

148

149 % Fixing boundary conditions in y�variable
150

151 for j = 1:J

152

153 F(j,1,n+1) = F12(j,1,n) + r2

*

csgn(F12(j,2,n)�F12(j,1,n));
154 F(j,K,n+1) = F12(j,K,n) + r2

*

(�csgn(F12(j,K,n)�F12(j,K�1,n)));
155

156 end

157

158 % Reconstruction

159

160 for k = 2:K�1
161 for j = 1:J

162

163 F(j,k,n+1) = F12(j,k,n) + r2

*

(csgn(F12(j,k+1,n)�F12(j,k,n))...
164 �csgn(F12(j,k,n)�F12(j,k�1,n)));
165
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166 end

167 end

168

169 end

170

171 % Plotting reconstruction

172

173 figure(7)

174 imagesc(F(:,:,101))

175 colormap(gray);

176 axis image off

177 axis equal

B.3 Deblurring 1D

1 clear all; close all; clc;

2

3 % Initializing random generators

4

5 randn('state',sum(100

*

clock))

6 rand('state',sum(100

*

clock))

7

8 % Generating true unknown f

9

10 J = 100;

11 a = 0;

12 b = 1;

13 x = linspace(a,b,J)';

14 f exact = double(x � 0.1 & x 0.4) + double(x � 0.6 & x  0.9);

15

16 % Plotting true unknown

17

18 figure(1)

19 plot(x,f exact,'��b','linewidth',2)
20 axis([0 1 �0.2 1.2])

21

22 % Generating blurred f

23

24 beta = 0.05;

25 A = zeros(J,J);

26 h = x(2)�x(1);
27

28 for k = 1:J,

29

30 A(:,k) = h/sqrt(2

*

pi

*

betaˆ2)

*

exp(�1/(2
*

betaˆ2)

*

(x � x(k)).ˆ2);

31

32 end

33

34 f blur = A

*

f exact;

35

36 % Plotting blurred f
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37

38 figure(2)

39 plot(x,f exact,'��b','linewidth',2)
40 hold on

41 plot(x,f blur,'��c','linewidth',2)
42 axis([0 1 �0.2 1.2])

43 hold off

44

45 % Adding 2% Gaussian noise

46

47 eta = 0.02;

48

49 e = randn(size(f blur));

50 e = eta

*

norm(f blur)

*

e/norm(e);

51 f blur noise = f blur + e;

52

53 % Plotting noisy data

54

55 figure(3)

56 plot(x,f exact,'��b','linewidth',2)
57 hold on

58 plot(x,f blur noise,'��r','linewidth',2)
59 axis([0 1 �0.2 1.2])

60 hold off

61

62 %% Asymptotic Tikhonov�Morozov filtering technique

63

64 Delta t = 0.005;

65 N = 20000; % Number of time steps

66 F blur = zeros(J,N+1);

67

68 for n = 1:N

69

70 % Reconstruction

71

72 F blur(:,n+1) = F blur(:,n)�Delta t

*

A'

*

...

73 (A

*

F blur(:,n)�f blur noise);

74

75 % Fixing boundary conditions

76

77 F blur(1,n+1) = F blur(2,n+1);

78 F blur(J,n+1) = F blur(J�1,n+1);
79

80 end

81

82 % Plotting reconstructions

83

84 figure(4)

85 plot(x,f exact,'��b','linewidth',2)
86 hold on

87 plot(x,F blur(:,501),'�g','linewidth',2)
88 hold on

89 plot(x,F blur(:,7001),'�k','linewidth',2)
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90 hold on

91 plot(x,F blur(:,20001),'�m','linewidth',2)
92 axis([0 1 �0.2 1.2])

93 hold off

B.4 Deblurring 2D and Computed Tomography

1 clear all; close all; clc;

2

3 % Initializing random generators

4

5 randn('state',sum(100

*

clock));

6 rand('state',sum(100

*

clock));

7

8 % Importing Lena image

9

10 load('lena512.mat')

11 f exact = lena512;

12

13 % Plotting image

14

15 figure(1)

16 imagesc(f exact);

17 colormap(gray);

18 axis image off

19 axis equal

20

21 % Generating blurred image

22

23 N = size(f exact,1);

24 Tm = mblur(N,6); % motion blur matrix

25

26 f m = Tm

*

f exact(:);

27 f m = reshape(f m,N,N);

28

29 % Plotting blurred image

30

31 figure(3)

32 imagesc(f m)

33 colormap(gray)

34 axis image off

35

36 % Generating computed tomography data

37

38 [A b tomo theta] = fanbeamtomo(150); % tomography test problem

39

40 % Plotting sinogram

41

42 figure(7)

43 image(reshape(b,size(b,1)/size(theta,2),size(theta,2)));

44 axis image off
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45

46 % Adding 2% Gaussian noise

47

48 eta = 0.05;

49

50 e m = randn(size(f m));

51 e m = eta

*

norm(f m)

*

e m/norm(e m);

52 f m noise = f m + e m;

53

54 e tomo = randn(size(b));

55 e tomo = eta

*

norm(b)

*

e tomo/norm(e tomo);

56 tomo noise = b + e tomo;

57

58 % Plotting noisy data

59

60 figure(5)

61 imagesc(f m noise)

62 colormap(gray)

63 axis image off

64

65 figure(8)

66 image(reshape(tomo noise,size(tomo noise,1)/size(theta,2),size(theta,2)));

67 axis image off

68

69 %% Asymptotic Tikhonov�Morozov filtering technique

70

71 % Initialization

72

73 J = size(f m noise,1);

74 K = size(f m noise,2);

75 Delta t tomo = 0.00004;

76 Delta t blur = 0.5;

77 N = 200; % Number of time steps

78 F m vector = zeros(J

*

K,N+1);

79 F m = zeros(J,K,N+1);

80 f m noise vector = f m noise(:);

81 Tomo vector = zeros(150

*

150,N+1);

82 Tomo = zeros(150,150,N+1);

83 tomo noise vector = tomo noise(:);

84

85 for n = 1:N

86

87 % Reconstruction

88

89 F m vector(:,n+1) = F m vector(:,n)�Delta t blur

*

Tm'

*

...

90 (Tm

*

F m vector(:,n)�f m noise vector);

91 F m(:,:,n+1) = reshape(F m vector(:,n+1),J,K);

92

93 Tomo vector(:,n+1) = Tomo vector(:,n)�Delta t tomo

*

A'

*

...

94 (A

*

Tomo vector(:,n)�tomo noise vector);

95 Tomo(:,:,n+1) = reshape(Tomo vector(:,n+1),150,150);

96

97 % Fixing boundary conditions
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98

99 F m(1,:,n+1) = F m(2,:,n+1);

100 F m(J,:,n+1) = F m(J�1,:,n+1);
101 F m(:,1,n+1) = F m(:,2,n+1);

102 F m(:,K,n+1) = F m(:,K�1,n+1);
103

104 Tomo(1,:,n+1) = Tomo(2,:,n+1);

105 Tomo(150,:,n+1) = Tomo(150�1,:,n+1);
106 Tomo(:,1,n+1) = Tomo(:,2,n+1);

107 Tomo(:,150,n+1) = Tomo(:,150�1,n+1);
108

109 end

110

111 % Calculating minimum error

112

113 error m = zeros(1,N+1);

114 error tomo = zeros(1,N+1);

115

116 for j = 1:N+1

117 error m(j) = norm(f exact � F m(:,:,j),2);

118 error tomo(j) = norm(reshape(tomo,150,150) � Tomo(:,:,j),2);

119

120 end

121

122 % Determining time step of minimum error

123

124 index m = find(error m==min(error m));

125 index tomo = find(error tomo==min(error tomo));

126

127 % Plotting minimum error image reconstruction

128

129 figure(12)

130 imagesc(F m(:,:,index m))

131 colormap(gray);

132 axis image off

133 axis equal

134

135 % Plotting minimum error tomography reconstruction

136

137 figure(13)

138 imagesc(Tomo(:,:,index tomo))

139 axis image off

140 axis equal
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