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Abstract

In this paper, a new technique for volumetric CSG
is presented. The technique requires the input vol-
umes to correspond to solids which fulfill a voxeliza-
tion suitability criterion. Assume the CSG operation
is union. The volumetric union of two such volumes
is defined in terms of the voxelization of the union of
the two original solids.

The theory behind the new technique is discussed,
the algorithm and implementation are presented. Fi-
nally, we present images and timings.

1 INTRODUCTION

Many techniques in volume graphics are easily de-
signed for binary volumes, but turn out to be quite
difficult to generalize to grey-level volumes. A good
example of this is Constructive Solid Geometry. Con-
structive solid geometry (CSG) [1] is a powerful
paradigm for composing more complex shapes from
simpler ones, and at first sight it seems to be very
simple to use this paradigm in volume graphics. In-
deed, for binary volumes, it is simple, since a CSG
operation can be implemented as a block operation
between the two input volumes. For each voxel lo-
cation the new voxel value is calculated as a boolean
operation between the old values.
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For volumes where the voxel values are scalar and
not boolean, CSG has, so far, also been implemented
using block operations, but it is less clear what op-
erations should be used to combine two voxels. In
fact, it is not clear that it is at all possible to de-
fine a block traversal based CSG operation on scalar
volumes. To clarify where the problem lies, consider
the case where the voxel value represents the geo-
metric distance to the solid. The distance to two
objects from a given voxel location is not always in
itself enough to estimate the distance to the new solid
which results from the CSG operation.

Although it may be perfectly feasible to visualize
the resulting object, it is problematic that most of
the voxels in the resulting object will have a value
that corresponds to a geometric property while others
will not. Put differently, the problem is that no volu-
metric CSG operation has so far been proposed that
ensures consistency with respect to the type of 3D
scalar function from which the original volumes were
sampled. This may not be a problem in some of the
application areas of volumetric CSG (e.g. for high-
lighting regions of interest in medical volume data),
but for volumetric CSG in the context of shape mod-
eling, it is a problem.

In this paper, we present a new technique for volu-
metric CSG. The input is two volumes which must
be voxelized from solids that fulfill the openness—
closedness criterion [2]. This criterion (which is de-
fined in terms of mathematical morphology) can be
explained, intuitively, to mean that it must be possi-



ble to roll a sphere on both the interior and exterior of
the surface of a solid. Features such as sharp edges,
corners and surface components that are too close
together make it difficult to sample and reconstruct
the solid with adequate precision. If the openness—
closedness criterion is fulfilled, we know that these
features are not present.

We surmise that a volumetric CSG operation must
be as close as possible to a CSG operation on the
reconstructed solids (i.e point sets). Hence, the fol-
lowing operation, would yield the desired result: (a)
Reconstruct the original solids from their volumet-
ric representation, (b) perform the CSG operation
on the reconstructed solids (¢), modify the result to
ensure that the result fulfills the openness-closedness
criterion, and then (d) voxelize once more to obtain
a volumetric representation. This scheme cannot be
implemented directly, though, and, consequently, our
technique operates quite differently, but produces the
same result as the above.

1.1 Notation and definitions

In the following, S, will denote solids. 0S5, the
boundary of a solid, G, will denote voxel grids. The
word volume will be used interchangeably with voxel
grid. G, [p] where p € N? is the value of G at a grid
point, i.e. a voxel value. vu means voxel unit — the
smallest distance between two voxels.

For the sake of brevity, we shall discuss only one
CSG operation, namely union. We are also interested
in CSG difference and intersection, but these may be
defined in terms of union and complement: Sy () S2 =

(S§1USE)° and S1\S2 = (S§ U S2)°.

A V-model [3] of a solid S is a function that is
smooth in a transition region on both sides of the
boundary 8S. In addition to smoothness, we require
of a V-model that it should contain the boundary
of the solid as an iso—surface. The operator V will
be used to denote voxelization, and G = V (S) means
that the volume G is sampled from the V—model of S.
The un-sampled V-model of a solid is denoted V(S).

2 PREVIOUS WORK

Previous approaches to volumetric CSG [4, 5, 6, 7]
have in common that they are block operations where
the new value at each grid point is calculated using
only the voxel values for this grid point from each of
the volumes being combined. This mode of operation
is sometimes called vozblt (Voxel Block Transfer) [8].

(1)

Where G, are volumes and p is a grid point in Gy -
In some of the approaches the voxel grids on the right
hand side (rhs) of (1) may themselves be defined by
the same equation [5, 6]. In this way, the recursive
application of (1) defines a CSG tree where the leaf
nodes are volumes. To evaluate the value at a given
grid point, we traverse the CSG tree, performing bi-
nary per—voxel operations at each node until we reach
a leaf.

Other authors [4, 7] let one of the volumes on the
rhs be object and the other tool, and let the value of
(1) be assigned to the object volume.

The approaches also differ in the exact nature of
the U, operator. Some authors [9, 10, 11, 7] prefer to
use min:

Gnew [p] = GO [p] Uy Gl [p]

Go[p] Uy G1 [p] = min(Go [p], G1[P])  (2)

Figure 1: Closest points on S; |JS2 using min dis-
tance.

If the V-model represents the signed shortest dis-
tance to the solid [2, 12] (where the sign is negative in
the interior), (2) yields the correct shortest distance
to the surface of the union in most cases. In fact (2)
only fails to yield correct results for some points that
are interior with respect to both solids, because in



this case, the point which corresponds to the mini-
mum of the distances to either solid, may be an inte-
rior point in the combined solids. This is illustrated
in figure 1 where p’ is the point corresponding to the
minimum of the distances from p to the boundaries
of the two solids. We see that p’ is interior in the
combined solid.

It is worth noting that it is not possible to bound
the error: A CSG operation according to (2) might
yield a value that is very close to 0 (i.e. the point
should be close to the surface) while the point is in
fact very far from the surface. An extreme example is
the union of two half spaces delimited each by a plane
of infinite extent. If the planes are parallel, point
towards each other, and if the half spaces overlap,
then the union is all of space, and the distance to
the surface should be —oo everywhere. Hence, (2)
is wrong everywhere — except infinitely far from the
original planes.

In [4] the authors argue that the following operator
is better

Go [P]Uy G1 [P] = Go [p] + G1 [P] — Go [P] G1 [P] (3)

(largely) because the result is smoother. Unfortu-
nately, this version of U, is not perfect, either, since
GUG # G. By design, this operator does not
yield the distance to the union but rather a smooth
“pseudo—distance”.

To sum up, (3) and (2) both fail to produce sen-
sible results in some cases. At this point it is useful
to consider what we should demand from a correct
technique for volumetric union. The ideal is obvi-
ously that

V(Sl)UvV(S2) = V(Sl U52) (4)

where |J, and |J denote union of voxel grids and
solids, respectively. Unfortunately, Si|JS2 will, in
general, contain sharp edges. Such features cannot
be represented volumetrically. To remedy this fact,
we propose, as an attainable goal that

Vs, V(s =v(FsiJs)) ()

where F is a shape filtering operator. F changes a
solid so that it becomes representable, i.e. so that

its V-model can be sampled and reconstructed with
adequate precision.

3 THEORY

In [2] the authors propose a criterion for determining
whether solids are suitable for voxelization. The cri-
terion assumes the clamped signed distance V-model.
This V-model is a function V : R® — R associ-
ated with a solid S which yields the signed shortest
distance to 0S from its argument p. The value is
clamped to the interval [—r,r]. Formally,

V(5)(p) = min(max(ds(p), —7),7) (6)
where
—miny.eps(lp —al) p € S\0S
ds(p) =4 0 p€ds (M)
miny,eas(|p — ql) pP¢s

The authors show, that if a solid is voxelized using
this V-model, it is possible to bound the trilinear
reconstruction error, provided that the solid fulfills a
suitability criterion.

The essence of this criterion is that it must be pos-
sible to roll a sphere of a given radius on the surface of
the solid (both inside and outside). Formally, we can
state this criterion as the simple condition that the
solid must have the openness and closedness proper-
ties. This means that the operations open and close
do not change the solid:

S=0(S,s,) NS =C(S,s,) (8)
where s, is the structuring element, and, conse-
quently, the smallest representable sphere. The ra-
dius r of s, is also the thickness of the transition re-
gion, and the value of the V-model, (6), is clamped
to [—r,r].

The value of r should be chosen according to the
desired tolerance. If r is large relative to the grid, the
smallest representable “blob” is also relatively large.
If r is small, more detail can be represented but the
reconstruction errors will be greater. Usually, it is
desirable that r > /6. The reader is referred to [2]
for the details.



Solids that do not fulfill (8) need to be changed,
for instance by actually applying open and close:

Sgood = C(O(Sbad; 57")7 Sr) (9)

Unfortunately, for some solids, close will ruin open-
ness and vice versa. For instance, in some cases where
two solids are separate but very near each other, close
will bridge the gap and the bridge will be removed
by open. This means that such configurations are
not representable and that there is no obvious way
to change them so that they will conform to (8).

3.1 Definition of volumetric union

Figure 2: Closest points on surfaces of dilated solids.

Figure 3: 0S and 9(S & s,)

We shall develop an algorithm for |, that adheres
to (5) using (9) as the shape filter F. Thus, the
U, operation should take as input two volumes that
both correspond to solids which have the openness
and closedness properties. The output is a new volu-
metric model which also corresponds to a solid which
has the openness and closedness properties.

Until section 4 the approach will be discussed theo-
retically and only in terms of un—sampled V—models.
Hence, the operands of | J,, are V-models (e.g. V(S1)
and V(S>)). It is assumed that these V—models cor-
respond to two solids (e.g. S1 and S») which fulfill
(8).

The union of these two solids S; | JS2 might not,
however, fulfill the criterion. Hence, we need to filter
the rhs using (9) before V-model construction

V(sylJ V(s2) = V(0SS 50),8))  (10)

Since it is easy to show that union preserves openness

V(S V(S2) = V(€S (S s0)8)  (11)

and using the facts that close is dilation followed by
erosion and that dilation distributes over union [13],
we obtain

VS, V(S2) = V((S1 @ 5) [ J(S2 @ 50) © 51)
v

(12)
The principle behind the algorithm is to reconstruct
the dilated solids from the V-models (on the lhs)
and subsequently to construct the V—-model of their

eroded union — which is tantamount to the rhs of
(12).

3.2 Finding the value of V(5,)J,V(5>)
at a point

It is clear from the definition of dilation (see appendix
A) that when dilating with a spherical structuring
element s, of radius r, the distance from a point on
9S to the closest point on 9(S @ s,.) is always r (see
figure 2). Consequently, for any point in a distance
field V-model (6), we can find the closest point on the
surface of the dilated solid using the simple equation:
p'=(r—dn+p (13)
where d is the distance to the (un-dilated) surface,
and n is the normal direction. This is illustrated in
figure 2.
The above equation can be used to generate points
on the boundary of the dilated solids 0S; and 0Ss.



If we throw away points that are in the interior of
the other dilated solid (such as pj in figure 3), the
remaining generated points must belong to the set D
of surface points defined by:

Su = (S1@s)J(S2®5,) (14)
D = 0Su (15)
Siua = Sua—D (16)

D is shown as a heavy curve in figure 6. Now, we
can use the fact that points on the surface of a solid
eroded with s, are at a distance r from the closest
point on the surface of the original solid (just like in
the case of dilation). The surface D of the original
solid Suq in this case. Assuming we have a means
of finding dg,,, we can find the distance function be-
longing to ((S1 ® s») J(S2 @ s,)) © s, and, conse-
quently, we have obtained the V-model on the rhs of
(12)

V(S| V(S2)(p) = min(max(ds,, (p) + 7, —7),7)
(17)
Fortunately, it is not necessary to generate a repre-
sentation of D in order to compute (17) for a given
point.

e For points where V(S1) = —r VV(S2) = —r it
follows that V(S1)U,V(S2)(p) = —r because the
union operation cannot cause the distance from
an interior point to the boundary of the solid
to decrease. Furthermore, the V-model dictates
that the value should be clamped to the interval
[—7, 7], so no more work is needed.

e For points where V(S1) = rAV(Sy) = r it follows
that V(S1)U,V(S2)(p) = r. This is clear be-
cause the distance to the union cannot be smaller
than the distance to either solid. Again, due to
clamping, no more work is needed.

e For the remaining points, we know that either
—r < V(S1) < r and V(S1) < V(S2) or —r <
V(S2) < r and V(S2) < V(S1). Say V(S1) <
V(Ss2) and the point p’ we find using (13) in
conjunction with V(S1) turns out to belong to
D (i.e. p' ¢ Sia), then dg  (P) = |Ip — P'||-

This is (nearly) trivial, because p’ is already the
closest point belonging to 9(S1 @ s,) and there
can be no closer point in D since union cannot
cause the distance to the boundary to decrease.

Briefly put, the only hard case occurs for a voxel
where both the points on the surfaces corresponding
to the respective dilated solids turn out to be inside
the union S,4 of the dilated solids. To compute ds,,
in this case, we need a theorem, but first (in order to
simplify notation) we need some definitions

Dy = 39S ®s,) (18)
Dy = 0(S2®sy) (19)
di = dses(P)=V(S1)P)-r (20
dy = ds,es.(P) =V(S2)(p) —T (21)

(The point sets are illustrated in 4)

Theorem 1. Given a point p where —2r < d; < 0
and dy < ds <0 and the point pj € D; so that

di = —|lpy - pll-
If p| ¢ D then either ds ,(p) < —2r or
ds..(p) = —||p" — p|| where p" € I and

I=0(S1®s,)[)0(S2@s,) CD (22)
Swap 1 and 2 if dy < d; .

D1

Figure 4: D, Dl, Dg, Siud; I

Proof: To prove this, we need 2 lemmas.



Lemma 1. Given the same conditions as in the the-

orem. In addition, let ||p — p5|| = d2 where p, € Ds.
p1¢D = py¢D

Swap 1 and 2 if dy < d;.

Proof: Since di > —2r, p does not lie on the
medial surface of S1 @ s, (see (23)). Consequently,
p has a single closest boundary point, namely pj.
It follows that we can construct a sphere of radius
—d; centered at p that is completely interior to S;
except at pj where it touches the boundary. Because
dy < dy <0, we know that p) lies inside or on the
boundary of this sphere. Hence, p} can only belong
to D if p, = pi, but then p},p} € I. O

Lemma 2. Given a solid S, its medial surface M (S),
a continuous curve C C S\M(S) and a function
B : S\M(S) — 0S which maps a point to the closest
point on 0S.

C' = B(C) is continuous.

Proof: First of all, we need to show that B is con-
tinuous. B has a domain which does not include the
medial surface. Hence B is single valued. Let there
be given an infinite sequence of point {p; € S\M(S)}
converging on p € S\M(S) we observe that the se-
quence of mappings lim; .., B(p;) — B(p) due to
the fact that p has a single closeset boundary point.
Therefore, B is continuous. C' is continuous by con-
struction. Hence, C' = B(C) is continuous. [ The
first part of this proof is inspired by a proof in [14].

Now, assume that the closest point in D also be-
longs to D;. Let the surface D; be divided into two
parts D¢ C D and D% C Siyq. p} clearly belongs to
D!. Let p"” € D{ be the point in D¢ closest to p.
We note that I C Df and that I delimits D¢ and D?.
(See figure 5)

In order to use the second lemma, associate C with
the line segment pp”. We need to analyse two cases.
In the first case, assume that C' does not cross a me-
dial surface. In that case, according to the second
lemma, there is a continuous curve C’ on the surface
D, connecting p} and p”. C' must intersect I. The
point x' = C'(I corresponds to a point x on the
line segment C. Clearly, pxx’ is the shortest path to
D$. Hence, p" =x'=C'"N1I.

Figure 5: D{,D},1,p,p},p"

On the other hand, if C' intersects the medial sur-
face at a point x € C, we know that from x to D;
there is a distance of at least 2r. This is seen as fol-
lows: S; has the openness closedness property, i.e.
S1 = (51 © s,) ® s, and it follows that

S1 ® s, = (51 ©5) ® s2r (23)
In other words, S; corresponds to a solid that has
been dilated with a sphere of radius 2r '. Conse-
quently, no point on the medial surface can be closer
to the surface than 2r.

In the above, we assumed that the closest point
belonged to D;. This need not be the case, but the
first lemma tells us, that there is some symmetry in
the situation. If pj does not belong to D, then nei-
ther does p). This means that we could repeat the
proof for the case where p”’ € D,. Repeating the
steps above while swapping the numerals 1 and 2,
completes the proof O

The theorem is complicated, but its application is
simple. For each voxel, we simply check whether the
point p’ corresponding to the shortest distance and
computed according to (13) belongs to D. If that is
the case, the voxel is unchanged. Otherwise, we find
the closest point in I.

In general, I is a curve?. In fact, we can view
the entire process of performing the close operation
as adding constant curvature blending to the CSG

1Tt is well known that X @ s, ® s, = X @ s2,
2In 2D, I is one or more points. I is shown in figure 4



operation. If we see the operation as a blending, we
can construe the curve I as the locus of the centre of
the blending sphere.

3.3 Examples

In order to find the value of V(S1)|J,V(S2) at a given
point, p, the first step is to classify p according to
the rules in table 1. Any point whose signed distance
to the (un—dilated) solid is greater than r is called
exterior. Any point whose distance is smaller than
—r is called interior. As the table indicates, points

state | 1 T E
I I I I I=interior
T I| T|I| T|I || T=transition
E I| T|I E E=exterior

Table 1: Transition rules for volumetric union

that are exterior to both solids remain exterior, and
points that are interior with respect to either solid
become interior. For these points the value of (17) is
unchanged. For instance, ps and ps in figure 6 are
exterior and interior, respectively. The values of the
V-model at these points are V(S1)J,V(S2)(p2) =r
and V(51)U,V(S2)(ps) = —7-

For points in the transition region of one solid
which are simultaneously in the transition region or
exterior to the other solid, more work is required.
If the corresponding point on the surface of the
dilated solid (say Si) is exterior to the other di-
lated solid (S2), we simply use the value of V(S1).
This case is exemplified by po in figure 6 where
V(S1)U,V(S2)(Po) = V(S1)(Po)-

If the corresponding point on the surface of the
dilated solid is an interior point in the other dilated
solid, the problem is less trivial. We will call such
points (or voxels) inconsistent in the following (in
figure 6 p; is inconsistent). For inconsistent points,
we need to find the distance to I C D according to
our theorem.

In summary, our algorithm should work like previ-
ous volume CSG algorithms based on (2), except that
for some points we need to estimate the distance to

Figure 6: Point classification

I. Hence, the main difficulties lie in representing I
and finding the inconsistent points.

4 ALGORITHM

In the previous sections, we ignored the fact that we
are dealing with discrete voxel grids, but now we shall
look at how the algorithm actually operates. First
of all, the algorithm works on two operands: The
voxel grid being modified, G = V(S1), and the tool,
V(S2), which is an un-sampled V-model since sam-
pling it before the CSG operation would only com-
plicate matters®. The result of the CSG operation is
assigned to the grid:

G« G| V(Sy) (24)

v

The algorithm works in two passes, and both passes
traverse all voxels.

First pass For each voxel two operations are per-
formed during the first pass:

It is determined which solid has the smallest dis-
tance d to the voxel and then the corresponding point
pi on the dilated solids surface is found using (13).
Our volume representation contains gradient infor-
mation, which speeds up this process, although the
gradient could also have been estimated. If p} is an

3 Although it would, of course, be useful for cut and paste
operations.



interior point in (S; @ s,-) |J(S2 @ s.), d is no longer
correct, and the voxel is tagged as being inconsistent.

The point p} € 9(S1 @ s,) closest to the voxel is
found. If p{ is within % vu distance to 052 @ s,
we estimate the closest point in I by assuming that
(51 & s,) and 8(S2 @ s,) are planes and finding the
point on the intersection of these plans that is closest
to p}. The point is added to a set of points that make
up our estimate of 1.

Second pass We loop once more over all voxels
and perform a case analysis according to table 1. For
voxels that are in the transition region of one solid
and either exterior or in the transition region of the
other, we check if they are tagged as inconsistent.

For untagged voxels the new value is simply the
minimum of the V-models V(S;) and V(S5).

For inconsistent voxels, the closest point in the set
of points representing I C D is found, and the dis-
tance to that point is used to calculate the new voxel
value according to (17).

Estimating the closest point in I is one of the trick-
iest parts of the algorithm, and it cannot be done
simply by finding the closest point in the set of I—
estimate points generated during the first pass, be-
cause these estimates may be as far apart as 1 vu if
the surfaces of both S; and S» are parallel to coor-
dinate axes in the grid. Hence, the distance to an
I-estimate would sometimes deviate too much from
the true distance to I. To solve this problem, we store
an estimated tangent direction vector with (nearly)
all points in the point set representing I. To estimate
the distance from a voxel to I, we find the closest I—
estimate and the projection of the voxel onto the line
defined by the I-estimate and the associated direc-
tion vector. The projected point is used as the esti-
mate of our closest point in I, and this point is used
to update both the distance and normal direction of
the voxel.

In some cases, the union of two solids may contain
a corner. In these cases, I bends sharply and the
direction vector associated with the I-estimate at the
bend would be misleading. The solution is to find
the closest I-estimate before and after any given I
estimate. If the angle defined by a given estimate and

its two neighbours is above a given threshold (set to
0.52 rad) we assign the null-vector to the direction
vector of the I-sample.

It should be observed that in places where the angle
between S; and Ss is too small, we do not find I-
estimates. Since there are no inconsistent voxels in
regions where 0S5 and 0S5, are parallel, this is not a
problem.

While the distance between I—estimates can be
great, there are also cases where the I—estimates
cluster. To speed up searching for the nearest I-—
estimates these clusters are merged.

5 IMPLEMENTATION

It is obvious that this algorithm is a great deal more
complex than previous methods for volume CSG, but,
fortunately, most of the complexity only pertains to
relatively few voxels - those that are close to the sur-
face of both solids. Thus, the implementation con-
sists of two loops over all voxels, and for most voxels
very simple and fast operations are performed. This
means that for certain choices of primitives and radii
r, the algorithm is fast enough for interactive pur-
poses.

The algorithm has been implemented in C++ on a
Linux platform and incorporated in a framework for
voxelization, volume manipulation and visualization.

In the following, implementation specific details
will be discussed. These pertain mostly to data struc-
tures and methods of visualization.

Voxel grid representation The volume is stored
in a two-level hierarchical grid. For each voxel, the
distance is stored as a two byte fixed point number.
The unit length gradient is stored as two angles, each
coded using two bytes. An additional flag byte is
used to store information about whether the voxel is
interior, transitional, or exterior, and whether it is
tagged. Alignment causes the total size of a voxel to
be eight bytes.

CSG intersection and difference To keep the
implementation simple, only CSG union has been im-
plemented directly, but, as previously mentioned, in-



tersection and difference can be expressed in terms of
union and complement. Therefore, a voxel inversion
function has been implemented. If flips the direction
of the normal and the sign of the distance, and using
this function the two other operations are possible.

Bounding box By its nature, the intersection op-
eration can change the volume far from the solid used
as CSG tool. Fortunately, the same is not true in the
case of union and subtraction. This is utilized by re-
stricting the effect of the CSG operation to a region
of effect about the CSG tool. The size of this re-
gion depends on the value of r. For intersection, the
region of effect is simply the entire volume.

Representation of I The representation of I is
simply a set of points and associated tangent direc-
tion vectors. Since we need to search for the closest
I-estimate, we have elected to store the I—estimates
in a k-d tree, k-d trees being well suited to nearest
neighbour queries [15].

Rendering Two methods for visualization have
been implemented. An OpenGL based point render-
ing technique allows for fast rendering while sculpt-
ing. An image order iso—surface renderer has also
been implemented. This renderer is too slow for inter-
active purposes, but produces images of higher qual-

ity.

Applications

e A command line tool that generates CSG mod-
els. The purpose of this tool is to generate solids
that can serve as starting points for interactive
sculpting. In addition, this tool is useful for tim-
ing voxelization and CSG operations.

e A tool for volume visualization and sculpting.
So far this tool only enables the user to add or
subtract spheres, but many other features are
envisaged.

6 RESULTS

The voxelization tool has been used to generate the
following solids:

e SpheresA (Colour plate a) is a model consisting
of a sphere of radius 80 from which a sphere of
radius 66 has been subtracted, forming a bowl-
like shape.

e Ellipsoid (Colour plate b) is an ellipsoid z2 /a® +
y?/b% + 22/c®> — 1 = 0 where a = 80, b = 60 and
¢ = 20. A plane cuts off part of the ellipsoid.

e Cube (Colour plate c) is constructed from a vox-
elized plane. By taking the intersection of this
model and five additional planes, the cube is cre-
ated.

e SpheresB (Colour plate e) is a the union of a
sphere of size 50 and a sphere of size 15.

The timings were performed on an 800MHZ Intel PIIT
based system running Linux. The voxelization tim-
ings are summarized in table 2. Note that the last
column contains the sum of the times spent in both
passes of the CSG operation.

A few of the details in table 2 are noteworthy. First
of all, it is obvious that the run-time of the algorithm
depends heavily on the choice of r. The CSG opera-
tion for the solid SpheresA takes almost twice as long
for r = 6 as for r = 2.5.

Note also that a simple operation like adding a
small sphere (SpheresB) takes less than a second.
This is important, since the CSG operations have
been implemented in an interactive system.

In the colour plate, a number of ray traced images
are shown. Most of these have already been men-
tioned, except d and f which show sculpted models
generated using our interactive program. The d im-
age is also shown in figure 7 along with an image
of the I—curves that were generated during the first
passes of the CSG algorithm.

In some cases the implicit close in the volumetric
union operation creates an object that does not have
the openness property. In this case, the algorithm
produces an object that looks correct until the sur-
face collapses (see figure 8). The main problem is



that such objects do not have the required volumet-
ric properties to be used in further volumetric CSG
operations.

a

Figure 7: Sculpted models

Figure 8: Objects produced by |J, that do not have
openness property

7 CONCLUSIONS

A new technique for volumetric CSG has been pro-
posed. The technique assumes that the clamped
signed distance V-model is used and that the input
solids both have the openness and closedness prop-
erties. If these conditions are met, the openness and
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closedness properties are preserved in the combined
solid.

The only exception is when the combination of two
solids yields a new solid that cannot at once be open
and closed. This problem pertains to the V-model
(and the volumetric representation in general), rather
than to this technique for volumetric CSG.

For reasonable tool sizes and choices of r, the CSG
operation is easily fast enough for interactive changes
to the volume, and an interactive sculpting tool based
on the CSG operations has been developed.

8 FUTURE WORK

As mentioned, the tool operand in a volumetric CSG
operation is a V-model and not another volume. In
general, this is advantageous, because voxelizing the
tool before the operation would only complicate mat-
ters and add overhead. It would, however, be nice to
be able to do cut and paste operations and in that
case, the tool must be a volume.

Another area of future endeavour is automatic cor-
rectness control. It has been mentioned that the re-
sult of a CSG operation is not necessarily a legal solid.
We believe that these cases could be detected by an-
alyzing the I-estimates. Then we would be able to

warn the user that the result of such an operation is
ill-defined.
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Intuitively, the open operation corresponds to moving
the structuring element b around inside the set S.
The result of the operation is the subset of S where
b fits. The little protrusions where b does not fit are
cut off. Similarly, the close operation fills out the
cavities where b does not fit.

Still assuming that we are dealing with a sym-
metrical structuring element, open and close may be
rewritten

0(S,b) = (Seb) @b (29)
C(S,b) = (S@b)ob (30)

One of the important properties shared by both
open and close is idempotency:

0(0(S,b),b) = O(S,b) (31)
C(C(S,b),b) = C(S,b) (32)

The medial surface

Let p € S. If there is more than one point p; € 95 so
that ||p; — p|| = ds(p) we say that p is in the medial
surface. More intuitively, if p is the centre of a sphere
Sq, and there is no sphere of greater radius s; which
properly includes s, whilst itself being included in S,
then p belongs to the medial surface.
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