
Linearized Acousto-Electric
Impedance Tomography

Christina Berndt Hildebrandt

M.Sc.Thesis

Kongens Lyngby 2015

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Linearized Acousto-Electric
Impedance Tomography

Author:
Christina Berndt Hildebrandt, s103234

Supervisor:
Associate Professor Kim Knudsen

Co-supervisor:
PhD Student Henrik Garde

Project period: January 26th 2015 - June 19th 2015
Workload: 30 ECTS
Degree: M.Sc.in Engineering
Programme: Matematical Modelling and Computation (Honors)

Summary

The purpose of the thesis is to investigate the linearisation of Acousto-Electric Impedance
Tomography as well as explaining the behaviour and characteristics of the reconstruc-
tions by use of singular value decomposition.

The thesis consists of an introduction to the model of Acousto-electric Impedance To-
mography followed by a linearisation of the model by use of Fréchet derivatives. In
order to do analysis of the system for the reconstruction the linearisation is then decou-
pled. The system is implemented numerically in Python using FEniCS, [1], to create
reconstructions. To improve the reconstructions Tikhonov regularization is introduced
as well as truncated singular value decomposition to get rid of artefacts appearing in
the reconstructions. The concept of noisy measurements is also investigated by adding
Gaussian noise to the electrical power density distribution, where we again get im-
proved reconstructions by use of regularization.

To examine the effectiveness, when access to the boundary is restricted, we investi-
gate what happens with the reconstructions when part of the boundary is set to have
a homogeneous Dirchlet boundary condition. Here it is clear that areas close to these
boundaries gives unreliable reconstruction and we need regularization to get better so-
lutions. However when doing regularization we lose information about the unreliable
areas and when we have elements hidden behind each other these are lost before the
artefacts are removed.

ii

Preface

This thesis was prepared at the department of Applied Mathematics and Computer
Science at the Technical University of Denmark in fulfilment of the requirements for
acquiring an M.Sc. in Engineering: Mathematical Modelling and Computing. It rep-
resents the completion of my honors master program at DTU and a work load of 30
ECTS points. The thesis was conducted in the Spring 2015 with Associate Professor
Kim Knudsen as supervisor and PhD student Henrik Garde as co-supervisor.

The thesis examines the model for the hybrid tomography method known as Acousto-
Electric Impedance Tomography. It treats the linearisation of the model and the imple-
mentation to do reconstructions. Furthermore it investigates the solution using singular
value decomposition as well as improving reconstructions by means of regularization.
Lastly the model of Limited-View is treated.

The prerequisites for reading this thesis is a basic understanding of inverse problems
and partial differential equations as well as a more profound understanding of func-
tional analysis including Sobolev spaces.

One thing to note is that several of the images of reconstructions looks better in the
electronic copy than when printed. The reader is encouraged to check out the images
on a computer if one wants to see the best images.

Christina Berndt Hildebrandt
Kongens Lyngby, June 19th 2015

iv

Acknowledgements

First and foremost I would like to thank my supervisor and honors mentor, Associate
Professor Kim Knudsen for providing guidance and help when needed and taking the
time to meet with me on a regular basis as well as providing me with the subject of this
thesis.

I would also like to thank PhD student Henrik Garde for help with Python and FEniCS,
when my knowledge was lacking, and Postdoc Kaloyan Dimitrov Marinov for taking
the time to talk to me about the subject of the thesis.

Lastly I would like to thank my fellow student Katrine Wittenhoff Kristensen and my
boyfriend Kasper Lüthje Jørgensen for listening to me ramble on about subjects they
knew nothing about while still providing helpful inputs and helping me keep my focus.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Interior data . 3
1.2 Model . 6
1.3 Reading guide . 6

2 Linearization 9
2.1 Uniqueness and stability of the system . 16
2.2 Decoupling the system . 17

3 Setting up numerical problem 19
3.1 Green’s function on the unit disk . 20

3.1.1 Green’s function - numerically . 22
3.2 Problem Data . 24

3.2.1 Check of Green’s function solution 26

4 Numerical results in FEniCS 29
4.1 Phantoms . 29
4.2 Solutions . 32

4.2.1 Simple discontinuous conductivity 33
4.2.2 Mollifier . 35
4.2.3 Low contrast . 36
4.2.4 Near boundary . 37
4.2.5 Three discontinuities . 39

viii CONTENTS

4.2.6 Conclusion of the initial solutions 41
4.3 Measurements with noise . 41

4.3.1 Simple discontinuous conductivity 43
4.3.2 Low contrast . 45
4.3.3 Mollifier . 46
4.3.4 Three discontinuities . 47
4.3.5 Conclusion of noisy solutions . 48

4.4 Regularization . 49
4.4.1 Noise free measurements . 50
4.4.2 Noisy measurements . 53
4.4.3 Conclusion to regularization . 56

5 Limited-view data 57
5.1 Half of the boundary . 58

5.1.1 Mollifier . 58
5.1.2 Three discontinuities . 59
5.1.3 Near boundary . 60

5.2 One quarter of the boundary . 62
5.2.1 Mollifier . 62
5.2.2 Simple conductivity . 63
5.2.3 Three discontinuities . 64

5.3 Conclusion to limited-view . 64

6 Singular Value Decomposition (SVD) 65
6.1 Truncated singular value decomposition (TSVD) 66
6.2 Mollifier . 67

6.2.1 TSVD . 70
6.3 Three discontinuities . 73

6.3.1 TSVD . 74
6.4 Simple discontinuity . 76

6.4.1 TSVD . 76
6.5 Conclusion to SVD . 77

7 Discussion and Conclusion 79
7.1 Future work . 81

A Lax-Milgram 83

B FEniCS/Python code 87
B.1 Mesh Generation . 87

B.1.1 Simple conductivity and small contrast 87
B.1.2 Near boundary 1 . 87
B.1.3 Near boundary 2 . 88
B.1.4 Three discontinuities . 88

B.2 Definition of Conductivity . 89

CONTENTS ix

B.2.1 Simple conductivity . 89
B.2.2 Mollifier . 89
B.2.3 Small contrast . 89
B.2.4 Near boundary 1 . 90
B.2.5 Near boundary 2 . 90
B.2.6 Three discontinuities . 90

B.3 Computation of Data . 91
B.3.1 Gradient of Green’s function,∇G 91
B.3.2 Setting up the system . 91
B.3.3 Check of Green’s solution . 94

B.4 Noisy measurements . 96
B.5 Partial boundary . 97

B.5.1 Half of the boundary . 97
B.5.2 One quarter of the boundary . 97
B.5.3 Change to the boundary condition in the code 97

B.6 TSVD . 97

Bibliography 99

x CONTENTS

CHAPTER 1

Introduction

Acousto-Electric Impedance Tomography (AET) also known as a Ultrasound Modu-
lated EIT (UMEIT) is a hybrid inverse problem. A hybrid inverse problem is a com-
bination of multiple modalities, that complement each other to increase the contrast,
resolution and stability of the reconstruction.

Medical ultrasound is a well-known imaging method. Here ultrasonic waves penetrate
the medium. As they propagate through the medium some are scattered and some
are reflected at the interior interfaces. The wave response is measured and provides
information about the structure of the medium. This is an inverse scattering problem,
which is generally ill-posed.

In Electrical Impedance Tomography (EIT) one applies voltage to the boundary of a
domain and then measure the resulting current. The conductivity is then recovered
from a boundary data mapping, which relate the applied voltage to the resulting current
a so called Dirichlet-Neumann-mapping. One thing to note is that the inverse problem
of EIT is severely ill-posed.

AET uses the acousto-electric effect that describes the conversion of acoustical energy
into electrical energy. High intensity acoustic pressure waves create a local deformation

2 Introduction

of the electronic structure which changes the electrical properties.

Figure 1.1: Ultrasound scanning causes change in the conductivity and this causes a
change in boundary measurements, [9]

The idea is to conduct classical EIT measurements, while a known ultrasonic waves
travels through the object. Due to the acousto-electric effect changes in the electrical
properties will be recorded. This is then done for a family of ultrasonic waves, where
we have different interior conductivity perturbations.

The boundary value problem for EIT resulting from Maxwell’s equation under the as-
sumption of low frequency is given as{

∇ · σ∇u = 0 in Ω

u = f on ∂Ω
, (1.1)

where u ∈ H1
0 (Ω) is the electrical potential, σ ∈ L∞+ (Ω) the conductivity and f ∈

C∞(∂Ω) boundary potential i.e. the voltage applied to the boundary on a domain Ω.

Definition 1.1 (L∞+ (Ω))
L∞+ (Ω) consists of the functions σ ∈ L∞(Ω), which are each bounded below by a some positive
constant, Kσ i.e.

Kσ ≤ σ(x) for a.e. x ∈ Ω,

so Kσ is the essential infimum of σ.
‖σ‖L∞(Ω) i.e. the essential supremum is denoted by Mσ .

This is a very simplified model of the real experiment. Another model is the complete

1.1 Interior data 3

electrode model, where it is taken in to account that we have a finite amount of elec-
trodes and that we have a surface impedance between the medium and the electrodes.

1.1 Interior data

The ultrasonic signal is assumed to be a plane wave with a chosen amplitude and with
constant wave speed. In accordance with [2], [8] one can determine a mathematical
expression of the interior from boundary measurements.
The acousto-electric effect can be modelled by the relation (See for example [8], [9])

σε(x) = σ(x)
(

1 + εei(k·x)
)
, (1.2)

where ε � 1 is a product of a measure of the acousto-electric coupling between the
wave and the electrical conductivity and the amplitude of the wave. σ−ε can be found
by shifting the phase of the wave (i.e. changing k).

uε is defined as the solution to{
∇ · σε∇uε = 0 in Ω

uε = f on ∂Ω
. (1.3)

Now using the integration by parts we get∫
Ω

(σε − σ−ε)∇uε·∇u−εdx

=

∫
Ω

σε∇uε · ∇u−εdx−
∫

Ω

σ−ε∇uε · ∇u−εdx

=

∫
∂Ω

σεu−ε∂νuεds−
∫

Ω

u−ε∇ · σε∇uε︸ ︷︷ ︸
=0

dx

−
∫
∂Ω

σ−εuε∂νu−εds+

∫
Ω

uε∇ · σ−ε∇u−ε︸ ︷︷ ︸
=0

dx

=

∫
∂Ω

σεu−ε∂νuε − σ−εuε∂νu−εds,

(1.4)

where ν is the unit outer normal and ∂νu = ν · ∇u.

The right-hand side can be calculated by the measured EIT boundary data for different

4 Introduction

values of ε and therefore we can make a polynomial expansion in ε∫
∂Ω

σεu−ε∂νuε − σ−εuε∂νu−εds = εJ1(k) + ε2J2(k) +O(ε3), (1.5)

by changing the amplitude of the wave. Here J1(k) and J2(k) are the coefficients of the
polynomial expansion.

We want to determine an expression for the first order coefficients J1(k).
We look at σε∇uε and use the definition of σε from (1.2) and uε = u + dε, where dε is
the difference between the two solutions

σε∇uε = σ
(

1 + εei(k·x)
)
∇ (u+ dε)

= σ∇u+ σ∇dε + σεei(k·x)∇u+ σεei(k·x)∇dε,

which gives us
σ∇u = σ

(
1 + εei(k·x)

)
∇uε +O(ε), (1.6)

if dε = O(ε).
Thus we take a look at the PDE for dε,

∇ · σ∇dε = ∇ · σ∇ (uε − u)

= ∇ · σ∇uε

= ∇ · (σ − σε)∇uε

= −∇ · σεei(k·x)∇uε.

This gives me a boundary value problem{
∇ · σ∇dε = −∇ · σεei(k·x)∇uε in Ω

dε = 0 on ∂Ω
.

By Theorem A.2 one can show that

‖dε‖H1
0 (Ω) ≤ C

‖σεei(k·x)‖L∞(Ω)

Kσ
‖uε‖H1(Ω) ≤ εC̃‖uε‖H1(Ω), (1.7)

where the constant, C̃, depends on the bounds of σ.
Thus to have dε = O(ε) we need to ensure that uε does not depend on ε reciprocally.
To do this we start by analysing the boundary value problem for u (1.1) by use of the
Theorem A.2 (See Appendix A for the analysis). In (A.4) we get

‖u‖H1
0 (Ω) ≤ c(Ω)

(
Mσ

CKσ
+ 1

)
‖f‖H1/2(∂Ω),

1.1 Interior data 5

for
Kσ < σ(x) < Mσ, for a.e. x ∈ Ω

and some positive constant C independent of σ.
For ε � 1 we can do similar calculations for uε since the perturbation is assumed to be
small

‖uε‖H1
0 (Ω) ≤ c(Ω)

(
M̃σ

CK̃σ

+ 1

)
‖f‖H1/2(∂Ω),

for M̃σ, K̃σ > 0, which are the bounds on σε, which means that dε = O(ε).

From this we get that uε = u+O(ε). Now using (1.6) and uε = u+O(ε) implies that

∇uε = ∇u− εei(k·x)∇u+O(ε). (1.8)

Looking at the left-hand of (1.4) we can plug in the expression for σε and σ−ε∫
Ω

(σε − σ−ε)∇uε · ∇u−εdx

=

∫
Ω

(
σ
(

1 + εei(k·x)
)
− σ

(
1− εei(k·x)

))
∇uε · ∇u−εdx

=

∫
Ω

(
2σεei(k·x)

)
∇uε · ∇u−εdx.

(1.9)

Using the expression from (1.8) we can rewrite∇uε · ∇u−ε

∇uε · ∇u−ε =
(
∇u+ εei(k·x)∇u+O(ε)

)(
∇u− εei(k·x)∇u+O(ε)

)
= ∇u · ∇u− ε2ei(k·x)∇u · ∇u︸ ︷︷ ︸

=O(ε2)

+O(ε)

= ∇u · ∇u+O(ε).

(1.10)

Plugging (1.10) in to (1.9) we get that the first order term of (1.5) is given by∫
Ω

2σεei(k·x)∇u · ∇udx = εJ1(k).

Thus 1
2
J1(k) is the Fourier transform of σ|∇u|2 extended to zero outside Ω. In theory

we can measure J1(k) for all values of k and then by the inverse Fourier transform this
will correspond to interior knowledge of σ|∇u|2.

The inverse problem of AET is then to reconstruct σ from the knowledge of the electrical
power density distribution, σ|∇u|2 for a chosen set of boundary conditions {fj}Jj=1.

6 Introduction

1.2 Model

The hybrid inverse problem for AET can be formulated as

Let Ω be open, bounded subset of R2 with a sufficiently smooth boundary ∂Ω and let
σ ∈ L∞(Ω) and bounded from below by a positive constant in Ω. Consider the set of
PDEs {

∇ · σ∇uj = 0 in Ω

uj = fj on ∂Ω
(1.11)

and the interior data of the type

Hj = σ|∇uj |2 in Ω. (1.12)

For a chosen set of boundary conditions {fj}Jj=1 and knowledge of the corresponding
interior data {Hj}Jj=1 we want to reconstruct σ.

It is also possible to use focused and spherical waves instead of plane waves to recover
the electrical power density distribution by a similar construction, [10].

By [4, Theorem 3.2] it is known that for the interior power density of the form Hij =

σ∇ui · ∇uj there is global uniqueness and stability in dimension n = 2 for J = 2.
For J = 2 we will then get the measurements H11, H22 and H12, however in our set-
up we will not directly have knowledge of H12. By use of the polarization identity for
real-valued entries on H12 we get that

H12 = H21 = σ∇u1 · ∇u2 =
1

4

(
σ|∇(u1 + u2)|2 − σ|∇(u1 − u2)|2

)
.

Hence by use of 4 measurements (J = 4) in our set-up it will be possible to get the 3
measurements needed for the Hij-model. Thus it is possible to find a unique and stable
solution to the non-linear AET model.

1.3 Reading guide

In Chapter 2 we will explain the concept of linearising the model to get a linear system
of PDE problems. After linearising the model we explain what results there exists for
uniqueness and stability after which we decouple the system.

1.3 Reading guide 7

After this Chapter 3 introduces how the system is handled and implemented numeri-
cally and we look in to one of the errors we make in the implementation.

We then do reconstructions in Chapter 4 for a selected variety of phantoms. We inspect
the reconstructions visually as well as numerically, where we compare it to the true
solution by use of their difference in 2-norm. We then add gaussian noise to the interior
data to see the effects of noisy data and then lastly try to improve the solutions by
Tikhonov regularization.

In Chapter 5 we see what happens when we only have access to do measurements on
part of the boundary. We use the boundary condition on either half or a quarter of
the boundary and the other part of the boundary will have a homogeneous Dirichlet
condition.

Lastly in Chapter 6 we turn our attention to singular value decomposition. We analyse,
whether the systems are ill-posed by use of the singular values as well as examining
the structure of the reconstructions by looking at the singular vectors. After this we use
truncated singular value decomposition to get rid of the artefacts in the solutions.

8 Introduction

CHAPTER 2

Linearization

To solve and analyse the problem we want to linearise the boundary value problem.
We consider the non-linear interior data map defined by

Hj : σ 7→ σ|∇u|2. (2.1)

Hj can be considered as a mapping

Hj : L∞+ (Ω)→ L1(Ω).

σ ∈ L∞+ (Ω) and observing that u ∈ H1
0 (Ω) we get that ∇u ∈ L2(Ω), which means that

∇u · ∇u ∈ L1(Ω).

We want to derive a linear approximation of this operator to arrive at a linear inverse
problem for AET expressed as a linear system of PDE problems.

For the linearisation we need the definition of a Fréchet derivative.

Definition 2.1 (Fréchet derivative)
Let V and W be Banach spaces and U ⊂ V be open. A map F : U → W is called Fréchet

10 Linearization

differentiable at k ∈ U if there exists a bounded linear operator dF|k : V →W such that

lim
h→0

‖F(k + h)−F(k)− dF|k(h)‖W
‖h‖V

= 0.

The linear map dF is called the Fréchet derivative of F at k and its value in the direction h ∈ V
is denoted by dF|k(h). F is Fréchet differentiable in an open domain, if it is differentiable at
every point in this domain [8].

Definition 2.2 (C∞+ (Ω̄))
C∞+ (Ω̄) consists of the functions σ ∈ C∞(Ω̄), which are each bounded below by a some positive
constant, Kσ i.e.

Kσ ≤ σ(x) for a.e. x ∈ Ω,

i.e. Kσ is the essential infimum of σ.

Remark Note that for functions σ ∈ C∞+ (Ω̄), we also have that σ ∈ L∞+ (Ω)

We denote σ0 ∈ C∞+ (Ω̄) as the reference conductivity and the corresponding reference
potential by u0

j ∈ H1(Ω), which is the solution to (1.11) when σ is replaced by σ0. The
reference interior data is defined as H0

j = σ0|∇u0
j |2.

The map (2.1) relates the difference between σ − σ0 to the corresponding difference in
the interior data

Hj(σ)−Hj(σ0) = Hj −H0
j .

The Fréchet derivative (Definition 2.1) ofHj at σ0 evaluated at σ− σ0 is an approxima-
tion toHj(σ)−Hj(σ0) to the first order.

We considerHj as a two-step mapping

Hj : σ 7→ {σ, uj} 7→ σ|∇uj |2.

We start by analysing the first step, where we linearise the solution operator

Uj : σ 7→ uj(σ),

for the problem (1.11) at the reference conductivity σ0 ∈ C∞+ (Ω̄).

Lemma 2.4 The solution operator Uj : σ 7→ uj(σ) for the problem (1.11) is Fréchet differen-
tiable as an operator from L∞+ (Ω)→ H1

0 (Ω) at σ0 ∈ C∞+ (Ω̄).

11

The Fréchet derivative in the direction δσ ∈ L∞(Ω) is given by

dUj |σ0(δσ) = δuj , (2.2)

where δu ∈ H1
0 (Ω) is the unique weak solution to{

∇ · σ0∇δuj = −∇ · δσ∇u0
j in Ω

δuj = 0 on ∂Ω
, (2.3)

where u0
j ∈ H1(Ω) is the solution to (1.11), when σ is replaced by σ0.

PROOF. We need to show that dUj |σ0 given by (2.2) is a bounded linear operator from
L∞+ (Ω)→ H1

0 (Ω) satisfying

lim
δσ→0

‖Uj(σ0 + δσ)− Uj(σ0)− dUj |σ0(δσ)‖H1(Ω)

‖δσ‖L∞(Ω)

= 0, (2.4)

Linearity of dUj |σ0 comes from (2.3), where it can be seen that δuj is linear in δσ. This
can be proven by taken the conductivities δσA and δσB and the corresponding solutions
δuA,j and δuB,j

−∇ · (δσA + δσB)∇u0
j = −∇ · δσA∇u0

j −∇ · δσB∇u0
j

= ∇ · σ0∇δuA,j +∇ · σ0∇δuB,j

= ∇ · σ0∇(δuA,j + δuB,j).

To prove boundedness, note that δσ ∈ L∞(Ω), σ0 ∈ C∞+ (Ω̄) and ũ ∈ H1(Ω). By
Theorem A.2 this is sufficient to conclude that δuj ∈ H1

0 (Ω) i.e. dUj |σ0 is bounded.

We are left to show that (2.4) is satisfied. We consider the weak form of (2.3)∫
Ω

σ0∇δuj · ∇φdx = −
∫

Ω

δσ∇u0
j · ∇φdx, ∀φ ∈ H1

0 (Ω).

Choosing δuj ∈ H1
0 (Ω) as the test function gives∫

Ω

σ0|∇δuj |2dx = −
∫

Ω

δσ∇u0
j · ∇δujdx.

We take the absolute value on both sides. Note that the left-hand side consists of strictly

12 Linearization

positive terms ∫
Ω

σ0|∇δuj |2dx =

∣∣∣∣∫
Ω

δσ∇u0
j · ∇δujdx

∣∣∣∣
≤
∫

Ω

|δσ|
∣∣∇u0

j · ∇δuj
∣∣ dx

≤ ‖δσ‖L∞(Ω)‖∇u0
j · ∇δuj‖L1(Ω).

Since σ0 ∈ C∞+ (Ω̄) we know that σ0 is bounded from below by Kσ0 (See Definition 2.2)
thus

1

Kσ0

∣∣∣∣∫
Ω

σ0|∇δuj |2dx
∣∣∣∣ ≥ ‖∇δuj‖2L2(Ω).

Thus we have that

‖∇δu‖2L2(Ω) ≤
1

Kσ0
· ‖δσ‖L∞(Ω)‖∇u0

j · ∇δuj‖L1(Ω)

for some positive constant Kσ0 .
Using Hölder inequality and that u0

j ∈ H1
0 (Ω) we get that

‖∇δu‖2L2(Ω) ≤
1

Kσ0
· ‖δσ‖L∞(Ω)‖∇u0

j‖L2(Ω)‖∇δuj‖L2(Ω)

≤ C · ‖δσ‖L∞(Ω)‖∇δuj‖L2(Ω)

for some positive constant C i.e.

‖∇δuj‖L2(Ω) ≤ C · ‖δσ‖L∞(Ω). (2.5)

By definition of Uj we get the following relation in the weak form (where we use that
σ0 + δσ = σ)

∇ · (σ0 + δσ)∇ (Uj(σ0 + δσ)− Uj(σ0)− dUj |σ0(δσ)
)

=∇ · (σ0 + δσ)∇
(
uj − u0

j − δuj
)

=∇ · σ∇uj︸ ︷︷ ︸
=0

−∇ · σ0∇u0
j︸ ︷︷ ︸

=0

− ∇ · δσ∇u0
j︸ ︷︷ ︸

=−∇·σ0∇δuj

−∇ · σ0∇δuj −∇ · δσ∇δuj

=−∇ · δσ∇δuj

Here uj is the solution to (1.11) with σ = σ0 + δσ. Thus we get a boundary value

13

problem where Ej = Uj(σ0 + δσ)− Uj(σ0)− dUj |σ0(δσ) is the weak solution{
∇ · (σ0 + δσ)∇Ej = −∇ · δσ∇δuj in Ω

Ej = 0 on ∂Ω
. (2.6)

By the remark after Theorem A.2 we get

‖Ej‖H1
0 (Ω) ≤ C

‖δσ‖L∞(Ω)

Kσ
‖∇δuj‖L2(Ω)

with σ = σ0 + δσ. Using (2.5) we get

‖Uj(σ0 + δσ)− Uj(σ0)− dUj |σ0(δσ)‖H1
0 (Ω) ≤ C̃‖δσ‖

2
L∞(Ω)

where C̃ is independent of δσ, which proves (2.4).

�

We now turn out attention toHj .

Theorem 2.5 Let σ0 ∈ C∞+ (Ω̄) and denote u0
j ∈ H1(Ω) as the solution to (1.11), when σ is

replaced by σ0. Also let |∇ũ| be bounded from below by a positive constant in Ω.

Hj : σ 7→ σ|∇uj |2

is then Fréchet differentiable as an operator from L∞+ (Ω) → L1(Ω) at σ0 and the Fréchet
derivative in the direction δσ ∈ L∞(Ω) is given by

dHj |σ0(δσ) = δσ|∇u0
j |2 + 2σ0∇u0

j · ∇δuj , (2.7)

where δu ∈ H1
0 (Ω) is defined as in Lemma 2.4.

PROOF. We need to show that dHj |σ0 given by (2.7) is a bounded linear operator from
L∞+ (Ω)→ L1(Ω) satisfying

lim
δσ→0

‖Hj(σ0 + δσ)−Hj(σ0)− dHj |σ0(δσ)‖L1(Ω)

‖δσ‖L∞(Ω)

= 0. (2.8)

The linearity of dHj |σ0 is obvious since by Lemma 2.4, δuj is linear in δσ.

14 Linearization

We now take the L1-norm of dHj |σ0(δσ) and use the triangle and Hölder inequality

‖dHj |σ0(δσ)‖L1(Ω) =
∥∥δσ|∇u0

j |2 + 2σ0∇u0
j · ∇δuj

∥∥
L1(Ω)

≤
∥∥δσ|∇u0

j |2
∥∥
L1(Ω)

+ 2
∥∥σ0∇u0

j · ∇δuj
∥∥
L1(Ω)

≤‖δσ‖L∞(Ω)

∥∥∇u0
j · ∇u0

j

∥∥
L1(Ω)

+ 2‖σ0‖L∞(Ω)

∥∥∇u0
j · ∇δuj

∥∥
L1(Ω)

≤‖δσ‖L∞(Ω)

∥∥∇u0
j

∥∥
L2(Ω)

∥∥∇u0
j

∥∥
L2(Ω)︸ ︷︷ ︸

=c1

+ 2‖σ0‖L∞(Ω)‖∇u0
j‖L2(Ω)︸ ︷︷ ︸

=c2

‖∇δuj‖L2(Ω)

≤c1‖δσ‖L∞(Ω) + c2 ‖∇δuj‖L2(Ω) .

Using the inequality from (2.5) we get that

‖dHj |σ0(δσ)‖L1(Ω) ≤ c‖δσ‖L∞(Ω)

for some constant c independent of δσ and i.e. dHj |σ0(δσ) is bounded.

We now look atHj(σ0 + δσ)−Hj(σ0)

Hj(σ0 + δσ)−Hj(σ0) = (σ0 + δσ)|∇(u0
j + δuj)|2 − σ0|∇u0

j |2

= σ0|∇u0
j |2 + δσ|∇u0

j |2 + σ0|∇δuj |2 + δσ|∇δuj |2

+ 2σ0∇u0
j · ∇δuj + 2δσ∇u0

j · ∇δuj − σ0|∇u0
j |2

= δσ|∇u0
j |2 + 2σ0∇u0

j · ∇δuj +O(|δσ|2).

Here O(|δσ|2) means that the remainder converges to 0 faster than ‖δσ‖2L∞(Ω). The
result is evident by use of (2.5), since we have by this that∇δuj = O(δσ).

Thus
‖Hj(σ0 + δσ)−Hj(σ0)− dHj |σ0(δσ)‖L1(Ω) ≤ ‖δσ‖

2
L∞(Ω),

which proves (2.8).

�

From the Theorem 2.5 we have that the Fréchet derivative in the direction δσ ∈ L∞(Ω)

is given by
dHj |σ0(δσ) = δσ|∇u0

j |2 + 2σ0∇u0
j · ∇δuj ,

15

where δu ∈ H1
0 (Ω) is the unique weak solution to{

∇ · σ0∇δuj = −∇ · δσ∇u0
j in Ω

δuj = 0 on ∂Ω
(2.9)

By definition of the Fréchet derivative it follows that the solution δσ ∈ L∞(Ω) to

dHj |σ0(δσ) = Hj −H0
j (2.10)

is a first order approximation to σ − σ0.

The equations (2.9) and (2.10) form a system of linear PDE’s for
{
δσ, {δuj}Jj=1

}
. In

matrix form this can be expressed as a boundary value problem{
Lu = f in Ω

Bu = 0 on ∂Ω
(2.11)

Here L is a 2J × (J + 1) matrix defined as

L =

∇ · ([·]∇u0
1) ∇ · (σ0∇[·]) · · · 0

...
...

. . .
...

∇ · ([·]∇u0
J) 0 · · · ∇ · (σ0∇[·])

|∇u0
1|2 2σ0∇u0

1 · ∇[·] · · · 0
...

...
. . .

...
|∇u0

J |2 0 · · · 2σ0∇u0
J · ∇[·]

.

B is a boundary operator and defined as

B =

0 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

16 Linearization

The solution and the right-hand side is defined as

u =

δσ

δu1

...
δuJ

 and f =

0
...
0

H1 −H0
1

...
HJ −H0

J

.

We then have a boundary value problem (2.11) that is a PDE formulation of the lin-
earised inverse problem.

2.1 Uniqueness and stability of the system

In [3] Bal investigates the conditions to ensure stability and uniqueness in the linear
system.

First off he concludes, when the system will be elliptic

Theorem 2.6 In dimension n = 2, J ≥ 2 is necessary for A to be elliptic. J = 2 is sufficient
for n = 2 if∇u1 and∇u2 are nowhere parallel or orthogonal.
Moreover J = 3 is sufficient for A to be elliptic in all dimensions n ≥ 2 by choosing the
boundary conditions (f1, f2, f1 + f2) provided that∇u1 and∇u2 are nowhere parallel.

When a system is elliptic it is stable in the sense that there will not be more singularities
in the solution than in the data i.e. the system is "good". This can be seen in relation to
for example hyperbolic systems, where we might have propagation of singularities. If
the reader wants to learn more about elliptic systems [6, Chapter 6] would be a place to
start.

Next of Bal looks into the question of when the system will be injective i.e. when it will
have a unique solution

Theorem 2.7 A system A is injective if the system is elliptic.

2.2 Decoupling the system 17

2.2 Decoupling the system

We look at the system for a Dirichlet boundary condition fj . This gives us the coupled
system of equations {

∇ · σ0∇δuj = −∇ · δσ∇u0
j in Ω

δuj = 0 on ∂Ω
(2.12)

δσ|∇u0
j |2 + 2σ0∇u0

j · ∇δuj = Hj −H0
j , (2.13)

where everything but δσ and δuj are theoretically known quantities.

We now want to decouple the system such that we only get a system for δσ. This is
done for a reference conductivity σ0 = 1.

Looking at (2.12) for σ0 = 1{
∆δuj = −∇ · δσ∇u0

j in Ω

δuj = 0 on ∂Ω
.

By [11, Section 7.3, Theorem 2] we know that this has the solution

δuj(x0) = −
∫

Ω

G(x,x0)∇ · δσ(x)∇u0
j (x)dx,

where G(x,x0) is the Green’s function for the operator ∆ on the domain Ω.

Using Green’s first identity and the fact that G is 0 on the boundary ∂Ω we get that

δuj(x0) =

∫
Ω

∇G(x,x0) · δσ(x)∇u0
j (x)dx. (2.14)

Defining this relation between δuj and δσ as δuj = Mjδσ, for some matrix Mj . We
can plug this in to (2.13) and get a system only depending on δσ (Again for σ0 = 1)

δσ|∇u0
j |2 + 2∇u0

j · ∇Mjδσ = Hj −H0
j .

So to analyse this we write it in the weak form for test functions v ∈ L∞(Ω)∫
Ω

[
δσ|∇u0

j |2 + 2∇u0
j · ∇Mjδσ

]
· vdx =

∫
Ω

[
Hj −H0

j

]
· vdx.

18 Linearization

By use of the basis {φk} of the space we can get the problem on a matrix form

Ajδσ = bj ,

where we have that

Aj [i, k] =

∫
Ω

[
φk|∇u0

j |2 + 2∇u0
j · ∇Mjφk

]
· φidx (2.15)

and
bj [i] =

∫
Ω

[
Hj −H0

j

]
· φidx. (2.16)

Now for each j we will get a system and all of these can be combined to one big system
for δσ

Aδσ = b (2.17)

with

A =

A1

...
AJ

and

b =

b1

...
bJ

 .

CHAPTER 3

Setting up numerical
problem

For the numerical implementation the problem is implemented in FEniCS, [1], and
Python. The FEniCS Project is a collection of free software with an extensive list of
features for automated, efficient solution of differential equations, which uses the Finite
Element Method.
We choose the domain, Ω, to be the unit circle and here we generate a mesh. The mesh
will be generated differently for each conductivity such that the boundary of internal
discontinuities will be well defined. To compute the mesh we define the domain as a
unit circle by

domain = Circle(Point(0, 0), 1, 150)

Here 150 means that the boundary of the circle is to be approximated by 150 points.

Subsets of the domain where we want sharp edges can then be defined as

domain.set_subdomain(1, Rectangle(Point(-0.2,-0.2), Point(0.2, 0.2)))

20 Setting up numerical problem

which then means that we define the first subdomain as a rectangle with the lower left
corner as (−0.2,−0.2) and the upper right corner as (0.2, 0.2).

Running the following line of code

mesh = generate_mesh(domain, N)

for N = 20 gives the following mesh, see Figure 3.1, where it is clear that the boundary
of the inner domain is clearly defined.

Figure 3.1: Example of mesh

In the implementation the Green’s function for the domain is needed.

3.1 Green’s function on the unit disk

To construct Mj we need to find the Green’s function for the domain. Now for the unit
disk we get from [11, Section 7.4] that

G(x,x0) =
1

2π
[log ρ− log (r0ρ

∗)] (3.1)

with ρ = |x− x0|, r0 = |x0|, ρ∗ = |x− x∗0| and x∗0 = x0/|x0|2.

Clearly there will be a problem for x0 = 0, since then x∗0 is not well-defined. We start
by looking at the case where x0 6= 0

3.1 Green’s function on the unit disk 21

For the implementation we need the gradient of the Green’s function. To find this we
look at

ρ2 = |x− x0|2.

Differentiating this w.r.t. x gives

2ρ∇ρ = 2|x− x0|,

which gives us

∇ρ =
|x− x0|

ρ
. (3.2)

For ρ∗ we can do the same thing and get

∇ρ∗ =
|x− x∗0|
ρ∗

. (3.3)

Thus using (3.2) and (3.3) the gradient of the Green’s function is defined as

∇G(x,x0) =
1

2π

[
x− x0

ρ2
− x− x

∗
0

(ρ∗)2

]
=

1

2π

[
x− x0

|x− x0|2
− x− x∗0
|x− x∗0|2

]
.

(3.4)

For x0 = 0 we need to check what happens as x0 → 0.

The first term of (3.1) is well defined for x0 = 0 so we focus on the second term

log (r0ρ
∗) = log

(
|x0| ·

∣∣∣∣x− x0

|x0|2

∣∣∣∣) = log

(∣∣∣∣x · |x0| −
x0

|x0|

∣∣∣∣)

Looking at the interior part of the logarithm we can make an upper and a lower bound

1− |x| · |x0| =
|x0|
|x0|

− |x| · |x0| ≤
∣∣∣∣x · |x0| −

x0

|x0|

∣∣∣∣ ≤ |x| · |x0|+
|x0|
|x0|

= |x| · |x0|+ 1

As x0 → 0 both the upper and lower bound tends to 1 thus

log (r0ρ
∗)→ 0 as x0 → 0.

Thus the Green’s function for x0 = 0 is defined as

G(x, 0) =
1

2π
log |x|, (3.5)

22 Setting up numerical problem

which gives us that

∇G(x, 0) =
1

2π

x

|x|2 . (3.6)

3.1.1 Green’s function - numerically

Green’s function and the gradient is singular as x → x0 so this need to be handled in
the implementation.

In Python the gradient is set to 0 whenever x = x0 to avoid any problems in the imple-
mentation.

We need to ensure that this is not a big error to make, so the singularity needs to be
investigated. If we look at the gradient, it goes like 1

|x−x0|
, thus we integrate this∫

Ω

1

|x− x0|
dx.

To integrate we make a small epsilon ball around the singularity B(x0, ε), see Figure
3.2, ∫

Ω

1

|x− x0|
dx =

∫
B(x0,ε)

1

|x− x0|
dx+

∫
Ω\B(x0,ε)

1

|x− x0|
dx.

The area away from the singularity is no problem so we look at the small ball and

Figure 3.2: Small ball around the singularity

3.1 Green’s function on the unit disk 23

switch to polar coordinates∫
B(x0,ε)

1

|x− x0|
dx =

∫ 2π

0

∫ ε

0

1

r
rdrdθ = 2πε,

thus ∫
Ω

1

|x− x0|
dx = 2πε+

∫
Ω\B(x0,ε)

1

|x− x0|
dx.

Thus the contribution of the small ball to the integral converge to 0 as ε → 0, thus the
finer the mesh the better the implementation

Thus in implementation ∇G(x,x0) is computed by setting the singularities to 0. The
code is seen below

cord = mesh.coordinates()
K = mesh.num_vertices()
NabGarray = np.zeros((K,K,2))

Compute x-x_0/|x-x_0|
def xx0absgrad(x,x0):

y = (x-x0)
return y/(y[0]**2+y[1]**2)

Compute |x-x_0|
def xx0abs(x,x0):

y = (x-x0)
return (y[0]**2+y[1]**2)

Compute the gradient of G
for i in range(K):

x1 = cord[i]
for j in range(K):

if (j<>i):
x2 = cord[j]
if (x2[0]**2+x2[1]**2==0):

NabGarray[i,j,:] = (1/(2*math.pi)*
x1/(x1[0]**2+x1[1]**2))

else:
x2star =x2/(x2[0]**2+x2[1]**2)
NabGarray[i,j,:] = (1/(2*math.pi)*
(xx0absgrad(x1,x2)-xx0absgrad(x1,x2star)))

24 Setting up numerical problem

3.2 Problem Data

In FEniCS we need to compute all the needed data for the linearised problem. Thus we
need Hj , u0 and H0

j .
This is easily done in FEniCS seeing as we can solve (1.1) in the variational form for a
given conductivity, σ ∫

Ω

σ∇u∇v = 0

with the given Dirichlet boundary condition.
This is solved both for the reference conductivity σ̃ = 1 and a chosen conductivity σ.
To solve this we use finite element method, so we need a function space to solve it
on. Here the choice falls on "CG", which stands for Continuous Galerkin, which is
the standard Lagrange family of elements. This is the standard choice when doing
finite element method, where we approximate everything by use of continuous basis
functions.

The function space, given the mesh, is defined as

V = FunctionSpace(mesh,"CG",1)

Initialy the problem is solved for the given reference and the given conductivity on the
function space

u = TrialFunction(V)
v = TestFunction(V)

lhs of the weak formulation
a = sigma*inner(grad(u),grad(v))*dx # sigma given earlier
aref = inner(grad(u),grad(v))*dx #reference sigma = 1

rhs of weak formulation
uleft = Constant("0.00")
L = uleft*v*dx

Boundary condition
f = Expression("x[0]") #cos(theta)
bcs = DirichletBC(V,f,"on_boundary")

u = Function(V)
uref = Function(V)

Solve weak formulation
solve(a == L,u,bcs)
solve(aref == L,uref,bcs)

3.2 Problem Data 25

Here the weak formulation has a left hand-side however this is just an integral over 0
i.e. it is the 0 functional. The reason for doing this, is that we need everything in the
solver on functional form, so we can’t just write

a == 0

From this we can compute the interior data by

Interior data
H = sigma*inner(grad(u),grad(u))
Href = inner(grad(uref),grad(uref))

Now using the computed interior data and the reference potential one can set up the
system by first making a function that computes the matrix Mj , see (2.14)

For handling gradient, vector space
parameters.reorder_dofs_serial = False
Vvec = VectorFunctionSpace(mesh,"CG",1)
dof0 = Vvec.sub(0).dofmap().dofs()
dof1 = Vvec.sub(1).dofmap().dofs()

Function for computing M
def Gint(dsigma):

I = Function(V)
NabG = Function(Vvec)
Iarray = np.zeros((K))
for i in range(K):

nabarray = NabG.vector().array()
nabarray[dof0] = NabGarray[:,i,0]
nabarray[dof1] = NabGarray[:,i,1]
NabG.vector()[:] = nabarray
Iarray[i] = assemble(inner(NabG,dsigma*grad(uref))*dx)

I.vector()[:] = Iarray
return I

Here the first line of code ensures that the numbering of vertices will be the same for
both the computed matrix for∇G and the mesh. The vector space, Vvec, is used for∇G
and dof0 and dof1 are pointers to the vertices in the mesh.

Now we can compute Aj and bj by use of the basis vectors, see (2.15) and (2.16)

A = np.zeros((K,K))
b = np.zeros((K))

26 Setting up numerical problem

Compute A and b
for i in range(K):

ibasis = Function(V)
ibasis.vector()[i] = 1
delu = Gint(ibasis)
for j in range(K):

jbasis = Function(V)
jbasis.vector()[j] = 1
A[j,i] = (assemble((ibasis*inner(grad(uref),grad(uref))+
2*inner(grad(uref),grad(delu)))*jbasis*dx))

b[i] = assemble(inner(H-Href,ibasis)*dx)

Aj and bj is then saved for later use and they are also computed for several other
boundary conditions.

The entire code put together can be seen in Appendix B.

3.2.1 Check of Green’s function solution

We want to check that the solution we get using (2.14) is actually a close representation
of the solution to (2.12) with σ0 = 1.

We do this for three different δσ’s, one smooth and two discontinuous,

δσ1(x) =

{
3e

1
|x|2−1/2 for |x|2 < 1/2

0 elsewhere

and

δσ2(x, y) =

{
0.5 for (x, y) ∈ [−0.2, 0.2]× [−0.2, 0.2]

0 elsewhere

σ3(x, y) =

0.9 for (x, y) ∈ [−0.2, 0.1]× [−0.5,−0.2]

0.6 for (x, y) ∈ [−0.5,−0.2]× [0.2, 0.4]

−0.3 for (x, y) ∈ [−0.5,−0.2]× [−0.2, 0.0]

0 elsewhere

We compute the solution using (2.14) and using FEniCS we compute the solution to
(2.12) for f = cos θ. This is done on an circular mesh with no subdomains.

3.2 Problem Data 27

In Figure 3.3, 3.4 and 3.5 the solutions are plotted. First the one using the Green’s func-
tion and then the true one computed using FEniCS.

Figure 3.3: Green’s function solution and FEniCS solution for δσ1

Figure 3.4: Green’s function solution and FEniCS solution for δσ2

Figure 3.5: Green’s function solution and FEniCS solution for δσ3

The difference
‖δugreen − δu‖2

‖δu‖2
is computed both for f = cos θ, f = sin θ and f = cos θ + sin θ

cos θ sin θ cos θ + sin θ

δσ1 0.0182 0.0185 0.0188

δσ2 0.0378 0.0396 0.0403

δσ3 0.0529 0.0536 0.0499

28 Setting up numerical problem

It is clear that there is an error however it is not that big, less than 6%. It is clear that the
more discontinuous and complex δσ gets the bigger the error is.

The two solutions are both finite element solutions however one is approximated by use
of a Green’s function, where we set the gradient to 0 whenever x = x0, which results
in a difference. The difference between the two are however not that big, so we can
assume that our numerical method is descent.

The code for this can be seen in Appendix B.

CHAPTER 4

Numerical results in FEniCS

After having computed Aj and bj for j ∈ [1, J], where each j corresponds to a certain
boundary condition the problem, (2.17) can be solved to find δσ using the least squares
method.

Here we find the solution δσ that minimizes

‖Aδσ − b‖22 (4.1)

For J ≥ 2 we will have an overdetermined system and thus we will have a unique
least squares solution. Seeing as our discretization is evenly spaced one area will not be
weighted more than another, thus the least squares method will be a reasonable to use.

4.1 Phantoms

We start by finding the linear solution for different types of conductivity. As stated
earlier the mesh generated will depend on the conductivity to be able to generate sharp

30 Numerical results in FEniCS

edges around discontinuities. The code for all the meshes and the conductivities can be
seen in Appendix B.

Also it should be worth nothing that the color bar is fitted to each example to get the
best visualisation, but the color bar however will be consistent throughout one example.

We start by looking at a simple discontinuous conductivity

σ1(x, y) =

{
1.5 for (x, y) ∈ [−0.2, 0.2]× [−0.2, 0.2]

1 elsewhere
.

For this we use the mesh, see Figure 4.1, that has a sharp edge at the boundary of the
discontinuity (This is the same mesh as generated earlier), which results in the following
conductivity plot

Figure 4.1: Mesh and simple discontinuous conductivity

Next we turn our attention to a continuous conductivity a so called mollifier. Here the
choice falls on

m(x) =

{
e

1
|x|2−1 for |x| < 1

0 elsewhere
. (4.2)

Seeing as we want the background to be 1 and the area different from 1 being away
from the boundary the mollifier is changed to the following conductivity

σ2(x) =

{
1 + 3e

1
|x|2−1/2 for |x|2 < 1/2

1 elsewhere
.

4.1 Phantoms 31

The mollifier is multiplied with 3 to get a larger contrast. The mesh choosen is just a
circular domain with no subdomain and this gives the following plots, see Figure 4.2

Figure 4.2: Mesh and conductivity for mollifier

Then we look at a conductivity similar to the one in the first example. Here however we
use a lower contrast to see if we will have trouble if the difference between background
and discontinuity is small

σ3(x, y) =

{
1.1 for (x, y) ∈ [−0.2, 0.2]× [−0.2, 0.2]

1 elsewhere
,

which plotted looks like, see Figure 4.3.

Figure 4.3: Conductivity with low contrast

After this we look at a conductivity which has a discontinuity that is close to the bound-
ary to see if there will be any difference, when we place our discontinuity here.

σ4(x, y) =

{
1.5 for (x, y) ∈ [0.6, 0.9]× [−0.1, 0.1]

1 elsewhere
,

which gives the following plot, see Figure 4.4

32 Numerical results in FEniCS

Figure 4.4: Mesh and conductivity with discontinuity near the boundary

As the final example we try to compute the solutions for a conductivity with several
different discontinuities to check if we will have some difficulties with the areas in-
between elements.

σ5(x, y) =

1.9 for (x, y) ∈ [−0.2, 0.1]× [−0.5,−0.2]

1.6 for (x, y) ∈ [−0.5,−0.2]× [0.2, 0.4]

0.7 for (x, y) ∈ [−0.5,−0.2]× [−0.2, 0.0]

1 elsewhere

,

which visually looks like, see Figure 4.5.

Figure 4.5: Mesh and conductivity with 3 discontinuities

4.2 Solutions

We then start computing the solutions for the different phantoms.
Other than inspecting the solutions visually we investigate the norm difference between

4.2 Solutions 33

the true, σ and the approximative solution, σ̃

‖σ̃ − σ‖2
‖σ‖2

=
‖δσ + σ0 − σ‖2

‖σ‖2
.

This is normalized by dividing with the norm of the true solution to be able to compare
all the phantoms.

4.2.1 Simple discontinuous conductivity

We start by computing the solution using combinations of the following 4 different
boundary conditions

f1 = cos θ = x

f2 = cos θ + sin θ = x+ y

f3 = sin θ = y

f4 = cos(2θ) = x2 − y2

If we only use one boundary measurement the result is very unstable and does not give
a valid approximation. This is also in accordance with the results in Section 2.1, where
it is clear that the solution will not be stable for just one measurement. An example of
the solution can be seen in Figure 4.6, where the used boundary condition is f1.

Figure 4.6: Solution with f1 as the boundary condition

Next we compute the solution for different combinations of the boundary conditions
for J = 2, 3, 4, see Figure 4.7 and 4.8

The computed norm differences are

34 Numerical results in FEniCS

(a) f1 and f2 (b) f1 and f4 (c) f1 and f3

(d) f2 and f3 (e) f2 and f4 (f) f3 and f4

Figure 4.7: Solutions for J = 2

(a) f1, f2 and f3 (b) f1, f2, f3 and f4

Figure 4.8: Solutions for J = 3, 4

Norm difference

J = 2

f1, f2 0.0323

f1, f3 0.0242

f1, f4 0.0360

f2, f3 0.0343

f2, f4 0.0364

f3, f3 0.0375

J = 3 f1, f2, f3 0.0262

J = 4 f1, f2, f3, f4 0.0253

4.2 Solutions 35

From the norm differences it is clear that f4 is the one resulting in the worst recon-
structions for J = 2. Thus this boundary condition will be ignored in the following
examples also as it seems that the reconstruction does not get much better from using a
4th boundary conditions.
Surprisingly the best reconstruction is at J = 2 with f1 and f3, since these bound-
ary conditions gives rise to perpendicular solutions, which according to Theorem 2.6,
should not be the optimal for J = 2, if we want stability and uniqueness.

4.2.2 Mollifier

The used boundary conditions for this and the following examples will be

f1 = cos θ = x

f2 = cos θ + sin θ = x+ y

f3 = sin θ = y

as said in the previous example. This results in the following solutions, see Figure 4.9

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.9: Solutions for J = 2, 3

36 Numerical results in FEniCS

with the following norm differences

Norm difference

J = 2

f1, f2 0.0232

f2, f3 0.0240

f1, f3 0.0146

J = 3 f1, f2, f3 0.0164

Again we get the same tendency as in the previous example. The best one is the one
with f1 and f3 closely followed by the one with J = 3, while both f1, f2 and f2, f3 give
somewhat the same results in norm difference. However visually they look different
seeing as the parallel artefacts are at different angles.

4.2.3 Low contrast

Again here we use the first three boundary conditions as stated in the previous example
and this results in the following solutions, see Figure 4.10

Visually the solutions look better in the sense that the parallel anomalies are not as
dominant even though we fitted the colour bar to have a very limited range. Thus it
seems that the intensity of the anomalies depend on the intensity of the reconstruction.
By intensity we mean the difference between the maximum and the minimum value
i.e. the intensity of Figure 4.3 is 1.1 − 1 = 0.1 whereas the one in Figure 4.1 will be
1.5− 1 = 0.5.

The computed norm difference is then

Norm difference

J = 2

f1, f2 0.00490

f2, f3 0.00546

f1, f3 0.00253

J = 3 f1, f2, f3 0.00325

Again the same pattern arises where the best solution is the one with f1 and f3. Also
as we normalise the norm difference by dividing by the norm of the true reconstruction

4.2 Solutions 37

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.10: Solutions for J = 2, 3

we can also see that our visual observation is evident in the norm difference as well.
The anomalies are less dominant.

4.2.4 Near boundary

Computing the different solutions gives the following reconstructions, see Figure 4.11,
and the following norm differences

Norm difference

J = 2

f1, f2 0.0359

f2, f3 0.0238

f1, f3 0.0229

J = 3 f1, f2, f3 0.0218

As with all the other examples the best is with f1 and f3 but it is also clear that using
f3 is way better than f1 so the idea is that this has something to do with the placement

38 Numerical results in FEniCS

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.11: Solutions for J = 2, 3

of the discontinuity compared to the boundary condition. Thus to check this we do a
similar computation but where the discontinuity is then placed at the top of the domain
instead, which gives the following expression for the conductivity

σ4a(x, y) =

{
1.5 for (x, y) ∈ [−0.1, 0.1]× [0.6, 0.9]

1 elsewhere
.

This results in the following mesh and conductivity, see Figure 4.12

Figure 4.12: Mesh and another conductivity with discontinuity near the boundary

4.2 Solutions 39

The reconstructions can be seen in Figure 4.13 and the norm difference can be seen
below

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.13: Solutions for J = 2, 3

Norm difference

J = 2

f1, f2 0.0290

f2, f3 0.0369

f1, f3 0.0240

J = 3 f1, f2, f3 0.0252

Here we clearly see what was expected. Now f1 is a better choice than f3, so the place-
ment of the discontinuity clearly has something to say.
Another thing that is evident is that the anomalies are more dominant close to the dis-
continuity.

4.2.5 Three discontinuities

Again we compute the reconstructions for the same boundary conditions and get the
following results, see Figure 4.14 and the table below

40 Numerical results in FEniCS

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.14: Solutions for J = 2, 3

Norm difference

J = 2

f1, f2 0.0809

f2, f3 0.0778

f1, f3 0.0613

J = 3 f1, f2, f3 0.0637

Again it is the same combination of boundary conditions that are the best however if
we look at the difference in percent the difference is actually small.

The best in this example is 21 % better than the second best however in the first example
the difference between the best and second best is 31 %. Also in general this conductiv-
ity is harder to reconstruct, seeing as the normalised norm difference is bigger here than
in the previous examples. Visually however it is rather easy to see where the disconti-
nuities are placed, so if used for example in medical diagnostics it still seems viable.

4.3 Measurements with noise 41

4.2.6 Conclusion of the initial solutions

In general the solution we get are rather good. It is clear to distinguish the areas different
from the background and the contrast and the placement are in general quite good.

It is clear that all the different conductivities results in the same type of anomalies for
the reconstruction. The same combination of boundary conditions results in the exact
same errors in the background. There are these clear lines, artefacts, that is repeating
across the domain.

Also it is very notable that the best reconstruction in all examples is the one for J = 2

with f1 and f3, which is very peculiar seeing as these will result in parallel solutions,
which by Section 2.1 should be problematic.

The question is now will it be the same when we turn our attention to measurements
that have noise.

4.3 Measurements with noise

As we don’t live in a perfect world there will always be some sort of noise that is affect-
ing our measurements. We already have a linearisation error that we get from linearis-
ing the model.

If we look at σ1 we can calculate the linearisation error, ‖Aδσ1,true − b‖2, for a couple
of the boundary condition combinations and get that

Linearization error for σ1

J = 2

f1, f2 0.005

f2, f3 0.002

f1, f3 0.004

J = 3 f1, f2, f3 0.005

for the last conductivity, σ5, which is the most complex we get

42 Numerical results in FEniCS

Linearization error for σ5

J = 2

f1, f2 0.012

f2, f3 0.007

f1, f3 0.012

J = 3 f1, f2, f3 0.013

So in general the linearisation error will be at most 1.3%.

In practise the noise in measurements will naturally affect the boundary measurements,
which then affects the interior data and then the reconstruction, see Figure 4.15.

Boundary
measurements Interior data Reconstruction

Noise

Figure 4.15: Noise in problem

The numerical implementation does not include the first step, where the boundary mea-
surements are done, and analysing how the noise in boundary measurements will ap-
pear as noise in the interior data is not simple. Thus noise will instead be added directly
to the interior data, see Figure 4.16.

Boundary
measurements Interior data Reconstruction

Noise

Figure 4.16: Noise in implementation

The noise is added to the interior data as Gaussian additive noise such that we go from

4.3 Measurements with noise 43

Hj → Hε
j , where

Hε
j = Hj + ε

Here ε is normal distributed with mean 0 and standard deviation I · τ , where I is the
intensity of the image and τ is the desired noise level.

The code for making the noisy data can be seen in Appendix B, where we then in the
original code have to change H to Hnoise.

4.3.1 Simple discontinuous conductivity

We start by looking at what happens to the solution, when we add noise to the interior
data for the first simple example. This is done for noise levels 1, 5, 10% and for the
boundary conditions f1, f2 and f3.

For 1% noise we get the reconstructions that are not so different from the original ones,
which can be seen on the norm difference.

Norm difference for 1% noise

J = 2

f1, f2 0.0350

f2, f3 0.0367

f1, f3 0.0251

J = 3 f1, f2, f3 0.0279

Visually this level of noise doesn’t seem to affect the solution much either, which is
consistent with it not being that much higher than the linearisation error for this case.

For 5% noise we get the reconstructions in Figure 4.17

Norm difference for 5% noise

J = 2

f1, f2 0.0657

f2, f3 0.0664

f1, f3 0.0371

J = 3 f1, f2, f3 0.0489

44 Numerical results in FEniCS

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.17: Solutions for J = 2, 3 with 5% noise

Here the noise is clearly visible both visually and in the norm difference. f1, f3 still
gives the best reconstruction and it is very clear in the plot of the solution that noise
isn’t as prominent.

Finally for 10% the results are, see Figure 4.18

Norm difference for 10% noise

J = 2

f1, f2 0.116

f2, f3 0.117

f1, f3 0.0600

J = 3 f1, f2, f3 0.085

Now the noise is quite dominant. For f1, f2 and f2, f3 the discontinuity nearly mingles
in with the rest and is thus far less clear. It is hard to see where the discontinuity actu-
ally is if we had no prior knowledge.
For the other two cases we are still able to see a clear distinction between the back-
ground and the discontinuity. This might have to do with the fact that the difference
between the background and the discontinuity are quite prominent. However the noise

4.3 Measurements with noise 45

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.18: Solutions for J = 2, 3 with 10% noise

level is created depending on the intensity of Hj and one would imagine that the inten-
sity of this would also vary depending on the intensity of σ.

4.3.2 Low contrast

To check that we get similar results depending on the intensity we compute reconstruc-
tions with noisy data for the example with lower contrast, see Figure 4.19.

Norm difference for 10% noise

J = 2

f1, f2 0.1041

f2, f3 0.1046

f1, f3 0.1015

J = 3 f1, f2, f3 0.1025

Here the we get quite similar solutions to the ones with higher contrast, but other than
that the difference between the solutions numerically are not that far apart it just looks

46 Numerical results in FEniCS

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.19: Solutions for J = 2, 3 with 10% noise

worse for f1, f2 and f2, f3. The reason for that is that the background have some sort of
pattern,which disturbs the eye.

4.3.3 Mollifier

Next we add noise to the example of the mollifier to look at another type of example,
where there is no sharp edges. Here 10% noise is added, which gives the following
reconstructions, see Figure 4.20

Norm difference for 10% noise

J = 2

f1, f2 0.0481

f2, f3 0.0524

f1, f3 0.0337

J = 3 f1, f2, f3 0.0358

Here it is clear, that the true conductivity is quite unclear, and that the area gets really
smeared. If we had no prior knowledge it would be hard to tell how the true conduc-

4.3 Measurements with noise 47

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.20: Solutions for J = 2, 3 with 10% noise

tivity looks exactly.

4.3.4 Three discontinuities

As a last noise example we add 5 and 10% noise to the example with the three disconti-
nuities. This gives the following reconstructions, see Figure 4.21 and 4.22

Norm difference for 5% noise

J = 2

f1, f2 0.1042

f2, f3 0.0977

f1, f3 0.0766

J = 3 f1, f2, f3 0.0801

48 Numerical results in FEniCS

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.21: Solutions for J = 2, 3 with 5% noise

Norm difference for 10% noise

J = 2

f1, f2 0.1559

f2, f3 0.1426

f1, f3 0.1086

J = 3 f1, f2, f3 0.1149

It is clear, that the higher the noise the more the anomalies are intensified, and again the
best reconstructions are for f1, f3 and f1, f2, f3, where the background is more evenly
noisy compared to the other two, where there are certain lines/directions.

4.3.5 Conclusion of noisy solutions

Again it is the same boundary conditions, that result in the best reconstructions but it
is clear that with quite noisy data it is needed to do something to be able to actually get
a view of the true conductivity. But in general we are actually still able in some manor
to distinguish which areas, that are different from the background, but if clear edges is
needed then it can be hard to tell exactly, where they are in some cases.

4.4 Regularization 49

(a) f1 and f2 (b) f2 and f3 (c) f1 and f3

(d) f1, f2 and f3

Figure 4.22: Solutions for J = 2, 3 with 10% noise

The question is now: "Is there something that can be done to get a more even recon-
struction with clear discontinuities?"

4.4 Regularization

To stabilize the solution an idea is to introduce regularization. Regularization is nor-
mally added, when we have an ill-posed problem, but we start out with using regular-
ization to see if something can be gained before looking in to the matter of ill-posedness.
This means that we add another term, when we compute the solution, in the following
manor

‖Aδσ − b‖22 + α2‖δσ‖22,

which corresponds to Tikhonov regularization with a Tikhonov matrix αI . α controls
the trade off between fitting to the data and ensuring a small solution. This is used espe-
cially in noisy data, where fitting to the exact data would result in a wrong solution, but
hopefully it could also be used to dampen some of the anomalies seen in the previous
examples.

50 Numerical results in FEniCS

Numerically this is handled by changing the system to

Aα =

[
A
αI

]

bα =

[
b

0

]
,

and then finding the least squares solution to

‖Aαδσ − bα‖22.

In regularization it is needed to choose α, the so-called regularization parameter, in
some manor. One of the methods are called the L-curve method, see for example [7].
Here the logarithm of the residual norm is plotted against the logarithm of the solution
norm and the optimal α is chosen as the corner point of the L, that the plot should
hopefully look like. However the method doesn’t always work and in this case the L-
shape did not appear. Therefore the reconstruction will be computed for a number of
parameters to see what the resulting reconstruction will be.

4.4.1 Noise free measurements

We start by trying to do regularization on noise free problems to see if it is possible to
do something about the anomalies in the background.

(a) α = 0.0015 (b) α = 0.0005 (c) α = 0.0001

Figure 4.23: Regularized solutions for J = 2 with f1 and f2

4.4 Regularization 51

4.4.1.1 Simple Conductivity

Here we start by looking at the first example for J = 2 with f1, f2. For different values
of α between 0.002 and 0.0001 we get the following results, see Figure 4.23

α Norm difference

0.0020 0.0468

0.0015 0.0404

0.0010 0.0346

0.00075 0.0325

0.0005 0.0313

0.0001 0.0321

The original reconstruction had a norm difference of 0.0323 so numerically the solution
can be made a little better but it is not by much. Visually it is clear that a higher regu-
larization results in a more even background however as this enforces a smaller norm
of the reconstruction we lose some of the contrast.

4.4.1.2 Mollifier

Here we take the mollifier example for the boundary condition f2, f3.

(a) α = 0.0020 (b) α = 0.0010 (c) α = 0.0001

Figure 4.24: Regularized solutions for J = 2 with f2 and f3

52 Numerical results in FEniCS

α Norm difference

0.0025 0.0278

0.0020 0.0232

0.0015 0.0197

0.0010 0.0187

0.0005 0.0212

0.0001 0.0238

The original norm difference was 0.0240, so all of the above solutions except the first
one are numerically better than the initial reconstruction. The one that is numerically
best still have some artefacts, but in general it seems that it is possible to get a reasonable
solution that is still close to the original but doesn’t have a lot of strange artefacts.

4.4.1.3 Three Discontinuities

As a final example of a noise free regularization we turn our attention to the last ex-
ample, where we look at the one for f1, f2, since this is the one that gives that worst
reconstruction. Here we get the following results, see Figure 4.25

(a) α = 0.0020 (b) α = 0.0010 (c) α = 0.0001

Figure 4.25: Regularized solutions for J = 2 with f1 and f2

α Norm difference

0.0025 0.0915

0.0020 0.0850

0.0015 0.0796

0.0010 0.0767

0.0005 0.0779

0.0001 0.0807

4.4 Regularization 53

Here the original norm difference was 0.0809 thus again it is possible to create a better
solution however the numerically better ones still have the artefacts in the background,
where the ones that visually look more well-defined is actually worse numerically.

4.4.2 Noisy measurements

Now we look at what we can do with regularization, when we have noisy measure-
ments i.e. in this case noisy interior data. We look at the case with 10% noise seeing as
this is where the true conductivity gets really hard to recognize.

4.4.2.1 Simple Conductivity

We take a look at the simple conductivity for the boundary conditions f2 and f3 seeing
as this is the one that gave the worst reconstructions with 10% noise.

Here we get the following reconstructions, see Figure 4.26

(a) α = 0.0035 (b) α = 0.0025 (c) α = 0.0015

Figure 4.26: Regularized solutions for J = 2 with f2 and f3

The norm differences are computed

54 Numerical results in FEniCS

α Norm difference

0.0040 0.0801

0.0035 0.0781

0.0030 0.0768

0.0025 0.0767

0.0020 0.0787

0.0015 0.0837

The original noisy reconstruction had a norm difference of 0.1046, whereas the one with
no noise had a norm difference of 0.0343. Some data is naturally lost, when noise is
added, so we can’t get as good a solution as the original one but we are still able to get
a much better solution than the noisy one.

4.4.2.2 Mollifier

Now for the mollifier example we look at the one with the boundary conditions f1 and
f2 again because that was the worst reconstruction. The 3 best regularized reconstruc-
tions can be seen in Figure 4.27

(a) α = 0.0025 (b) α = 0.0020 (c) α = 0.0015

Figure 4.27: Regularized solutions for J = 2 with f1 and f2

and the computed norm differences are

4.4 Regularization 55

α Norm difference

0.0035 0.0412

0.0030 0.0375

0.0025 0.0346

0.0020 0.0329

0.0015 0.0332

0.001 0.0362

The original noisy reconstruction has the norm difference 0.1042 and the non noisy one
is 0.232. Here we are actually able to get a really good reconstruction with regulariza-
tion. Here we want to reconstruct something smooth, which is easier, than the previous
discontinuous example.

4.4.2.3 Three Discontinuities

Lastly we look at the one with 3 discontinuities for f1 and f2, which is the worst one.
The reconstructions seen in Figure 4.28 is the 3 best results

(a) α = 0.0030 (b) α = 0.0025 (c) α = 0.0020

Figure 4.28: Regularized solutions for J = 2 with f1 and f2

As for the norm difference we get

α Norm difference

0.0035 0.1180

0.0030 0.1150

0.0025 0.1136

0.0020 0.1145

0.0015 0.1191

56 Numerical results in FEniCS

The noisy reconstruction had a norm difference of 0.1559 and the original one 0.0809 so
all things considered the regularized reconstructions are rather good, but we still clearly
see noise in the reconstruction.

4.4.3 Conclusion to regularization

It is clear that there is not much to gain using regularization for the noise-free examples
however it is possible to gain a little better reconstruction especially for the mollifier
seeing as this is smooth conductivity, which is easier to reconstruct. For the noisy cases
however we see a much better reconstruction numerically, but the noise is still quite
clear visually.

CHAPTER 5

Limited-view data

There might be cases, where we won’t have access to the entire boundary, thus we
can only measure part of the boundary. In these case we will only have limited-view
data seeing as the data close to the unmeasured boundary might be hard to reconstruct
anything from, as it will be rather unreliable. In this chapter we will investigate how
good solutions we are able to produce in these cases. This is done by constructing two
different boundary conditions, see Figure 5.1

Figure 5.1: Partial boundary data

On one part (purple) of the boundary we have the Dirichlet condition like earlier on the
other (blue) part we impose a homogeneous Dirichlet condition.

58 Limited-view data

In this manor we will only have boundary data on the first part (purple) of the boundary.
This does not need to be one half of the boundary but could be any portion.
Another way this could have been done was to use a homogeneous Neumann condition
on the other (blue) boundary, ∂u

∂n
= 0.

The boundary conditions for the reference potential will also be the limited view ones.

We will expect that the area near the boundary where u = 0 will be unreliable and far
from the true conductivity.

5.1 Half of the boundary

We start out by looking at a boundary like the one in Figure 5.1, where we have mea-
surements on the upper half of the boundary. This is done using the following functions
as boundary conditions to ensure that the boundary condition is continuous

h1 = sin θ = y

h2 = sin 2θ = 2xy

h3 = sin2 θ = y2

h4 = 2 sin θ = 2y

h5 = 2 sin 2θ = 4xy

We use the boundary conditions h4 and h5 in hope that we might get something differ-
ent by combining for example h1 with h5 instead of h1 and h2.

In Appendix B the code for defining the two different boundaries that should have
different conditions and then there is code for how the boundary conditions should
then be defined differently in the earlier code.

5.1.1 Mollifier

First we look at the mollifier case. Here we get the following results, see Figure 5.2

Here it is clear that the limited view gives us bad reconstructions for the part close to

5.1 Half of the boundary 59

the boundary with homogeneous Dirichlet condition as expected. Here we also see that
h1, h2 gives results different from h1, h5.

(a) h1 and h2 (b) h1 and h5 (c) h1 and h3

(d) h2 and h3 (e) h2 and h4 (f) h3 and h5

Figure 5.2: Solutions for J = 2 with limited-view 50 %

Norm difference for 50% view

h1, h2 0.0362

h1, h5 0.0506

h1, h3 0.1183

h2, h3 0.0365

h2, h4 0.0677

h3, h5 0.0731

5.1.2 Three discontinuities

Next we look at the phantom with the three discontinuities. Here we get the following
numerical results, see Figure 5.3

Again we see similar results as before. It is clear that the elements that are far away
from the measured boundary gets harder to notice and with no prior knowledge you

60 Limited-view data

would not reliable be ablt to say what the true conductivity looks like.

(a) h1 and h2 (b) h1 and h5 (c) h1 and h3

(d) h2 and h3 (e) h2 and h4 (f) h3 and h5

Figure 5.3: Solutions for J = 2 with limited-view 50 %

Norm difference for 50% view

h1, h2 0.1360

h1, h5 0.2518

h1, h3 0.5263

h2, h3 0.1488

h2, h4 0.2096

h3, h5 0.3614

5.1.3 Near boundary

Lastly we take an element located close to the boundary. Here we do 2 different exper-
iments - one where we measure the boundary close to the element and one where we
measure the opposite boundary. This gives the following results, Figure 5.4 and 5.5

5.1 Half of the boundary 61

(a) h1 and h2 (b) h1 and h5 (c) h2 and h4

Figure 5.4: Solutions for J = 2 with limited-view 50 %, measure top half

(a) h1 and h2 (b) h1 and h5 (c) h2 and h4

Figure 5.5: Solutions for J = 2 with limited-view 50 %, measure bottom half

Norm difference for 50% view, top

h1, h2 0.0517

h1, h5 0.1709

h2, h4 0.0252

Norm difference for 50% view, bottom

h1, h2 0.0839

h1, h5 0.0730

h2, h4 0.0838

It is clear that when we measure the top half the box is more well-defined than when
we measure the bottom. When we measure the bottom the box doesn’t get as even and
well-defined and it is hard to know, if there is something behind the box. The solution
for the bottom view looks visually better, since we have an even area, where we in the
other have artefacts. This makes sense due to the fact that we have more information

62 Limited-view data

in the bottom, when we measure here. When we look at the norm differences it is clear
that the bottom case is worse than the others except for the one with a lot of artefacts.

5.2 One quarter of the boundary

Now we limit the view to only the part of the boundary where x, y > 0 i.e. the part of
the boundary that is located in the first quadrant.

Here we use the following functions as the boundary conditions

p1 = sin 2θ = 2xy

p2 = sin 4θ = 4xy
(
x2 − y2)

p3 = 2 sin 4θ = 8xy
(
x2 − y2)

again to ensure that we have continuous boundaries. We use p3 to check if combining
this with p1 gives something better than with p2.
We expect to see that the area far away from the boundary have heavy artefacts.

The code for the two different boundaries can be seen in Appendix B.

5.2.1 Mollifier

First for the case of the mollifier we get the following results, see Figure 5.6

(a) p1 and p2 (b) p1 and p3

Figure 5.6: Solutions for J = 2 with limited-view 25 %

5.2 One quarter of the boundary 63

It is clear that using p1, p2 is worse than p1, p3.

Norm difference for 25% view

p1, p2 0.1104

p1, p3 0.0725

As expected we see that there are heavy artefacts in the part that is not being measured.

5.2.2 Simple conductivity

Next for the case of the simple discontinuous conductivity we get the following results,
see Figure 5.7

(a) p1 and p2 (b) p1 and p3

Figure 5.7: Solutions for J = 2 with limited-view 25 %

Norm difference for 25% view

p1, p2 0.1170

p1, p3 0.0927

Again the same type of artefacts are appearing and it is the same set of boundary con-
ditions that gives the best result.

64 Limited-view data

5.2.3 Three discontinuities

For the three discontinuities we get quite oscillatory results (with a much higher and
lower value than earlier), see Figure 5.8 - note the new colour scale

(a) p1 and p2 (b) p1 and p3

Figure 5.8: Solutions for J = 2 with limited-view 25 %

Norm difference for 25% view

p1, p2 0.3948

p1, p3 0.2789

Here we see that the artefacts makes elements disappear or nearly obscure them. Also
the higher an lower values fits with the ealier theory that the size of the artefacts depend
on the intensity in th conductivity

5.3 Conclusion to limited-view

It is clear that when we use limited-view data we will have a bad reconstruction for the
areas away from the measured boundary. The further away from the boundary we get,
the worse it gets. Thus if we know that a certain element is close to one boundary it is
best to use this boundary for the measurements.
It is clear that we will need some sort of regularization to try and get rid of the artefacts
we get in the reconstructions and to see if it is actually possible to get usable results
when we only have access to a portion of the boundary. One way would be to do
Tikhonov regularization again as done in Chapter 4, but in the next Chapter we will see
that there is also another way to handle this.

CHAPTER 6

Singular Value
Decomposition (SVD)

For a given matrix, A ∈ Rn×m, it is possible to do a singular value decomposition such
that

A = UΣV T ,

where U ∈ Rn×n and V ∈ Rm×m are orthogonal matrices i.e. UUT = UTU = I and
V V T = V TV = I .
Σ ∈ Rn×m is a rectangular diagonal matrix containing the singular values, si in the
diagonal in descending order, s1 ≥ s2 ≥ · · · ≥ smin{m,n} > 0.

The solution computed earlier using least-squares ‖Aδσ − b‖22 is in Python the same
solution as the one using the pseudo-inverse of A, symbolized by A† given by

A† = V Σ†UT ,

where Σ† ∈ Rm×n is a diagonal matrix with the reciprocal of the singular values in the
diagonal.

66 Singular Value Decomposition (SVD)

The solution to the least-squares problem is then computed as

δσ = A†b.

One notable thing here is, that if some of the singular values are very small the reciprocal
will be quite large. Thus this will be quite dominant and enhance any noise there might
be in the data.

Thus one way to check whether the matrix is ill-posed is to computed the so-called
conditional number of the matrix by

cond(A) =
s1

smin{m,n}
, (6.1)

if this is large, it means, that there is a big difference in the singular values, and thus
it might be needed to do some sort of regularization to ensure, that we get a descent
solution.

Another thing to look at would be the singular vectors, the columns of V . In the so-
lutions we see some very characteristic lines, artefacts, which might be explained by
looking at the last singular vectors - the ones corresponding to the small singular values
- seeing as these are the ones that will dominate the solution.

6.1 Truncated singular value decomposition (TSVD)

In truncated singular value decomposition we try to make the matrix better conditioned
by cutting off some of the smallest singular values. Thus we construct the matrix A†α in
the manor

A†α = V Σ†αU
T ,

where Σ†α is again the reciprocal of the singular value in the diagonal as long as si > α,
and the rest of the diagonal will be set to 0. The solution is then constructed as

δσ = A†αb.

The code for doing this in Python can be seen in Appendix B.

6.2 Mollifier 67

6.2 Mollifier

Seeing as the matrix will be the same for every conductivity as the matrix only depend
on the reference conductivity, we should have the same condition number for all of the
phantoms.

Remark The matrices will be a bit different in the numerical implementation due to the different
meshes used but the overall behaviour will be similar.

Looking at the original system we compute the condition numbers for the different
matrices used

Condition number

f1, f2 18.4

f2, f3 18.5

f1, f3 18.1

f1, f2, f3 18.3

thus the condition number is about the same for each combination and not big, so it is
quite well-posed.
If we however look at the limited-view case we get for the different boundary conditions

Condition number for 50% view

h1, h2 1472.8

h1, h5 5859.2

h1, h3 434.6

h2, h3 2621.3

h2, h4 468.1

h3, h5 10360.0

Condition number for 25% view

p1, p2 22903.3

p1, p3 85207.1

Another way to look at this is to plot the singular values, which also gives a good indi-
cation of the behaviour of the matrix, see Figure 6.1.

68 Singular Value Decomposition (SVD)

(a) p1 and p2 (b) p1 and p3

Figure 6.1: Singular values for mollifier with limited-view 25 %

Here we see that we have small values, which when we compute the solution by use of
the pseudo-inverse, will dominate the solution, so for the limited-view we have matri-
ces that is more or less ill-posed.

To see how the small values dominate the solution, we look at the singular vectors, since
these are the building blocks, that the solutions consists of. Thus we take a look at the
columns of the matrix V . Seeing as there is 866 singular vectors in the numerical imple-
mentation, we can’t look at all of them but in Figure 6.2 we see some for the boundary
conditions f2, f3.

(a) 1 (b) 200 (c) 600

(d) 736 (e) 801 (f) 865

Figure 6.2: Singular vectors for mollifier f2, f3

6.2 Mollifier 69

In general the singular vectors, that show a pattern looking like the artefacts, are the
ones corresponding to the small values, while the others don’t seem to have much of
a pattern. This fits with the fact that the smallest singular values should dominate the
solutions. It should however be said that not all of the singular vectors corresponding
to small values have that sort of pattern.

Seeing as we don’t see a pattern when we use the boundary conditions f1, f3 we try and
take a look at the same singular vectors as for f2, f3 to see the difference in behaviour.

(a) 1 (b) 200 (c) 600

(d) 736 (e) 801 (f) 865

Figure 6.3: Singular vectors for mollifier f1, f3

Here it is clear, that the last singular vectors, that is the dominant part, does not have
a behaviour to induce a pattern. Actually if you plot several of the last singular vector
many of them look like the 865 one from Figure 6.3 i.e. they are rather smooth except
for a small section near the boundary. So looking at the singular vectors it makes sense,
that we don’t see the same sort of behaviour for these conditions.

Looking at the ones for the case with a 25% view, Figure 6.4, we see that the information
about the different areas of the domain is located in the different singular vectors. When
the singular value gets lower the corresponding singular vector is dominating an area
of the domain further away from the measured boundary.

The same is the case if one looks at the 50% view. (The images however are not included
here.) We also here see that the singular vectors for small singular values dominate the
area furthest from the measured boundary and the bigger the singular value the closer

70 Singular Value Decomposition (SVD)

(a) 1 (b) 201 (c) 451

(d) 650 (e) 801 (f) 865

Figure 6.4: Singular vectors for mollifier, 25% view, p1, p2

we move to the measured boundary.

This makes good sense. We know that the last singular values will be the ones domi-
nating the reconstruction so it makes sense, that they represent the area away from the
boundary seeing as this is where we will have bad reconstructions due to lack of good
data.

6.2.1 TSVD

We start by trying to do TSVD on the original solution even though the matrix is quite
well-behaved. For the boundary conditions f2 and f3 we get the following results - here
the number indicates the number of singular values that are set to 0.

Singular values = 0 Norm difference

25 0.0236

75 0.0209

125 0.0196

130 0.0195

140 0.0204

6.2 Mollifier 71

Here the best solution is when 130 singular values are excluded, which is considerable
better than the original norm difference of 0.0240, but not better than the one for Tiko-
honov regularization that had a norm difference of 0.0187.

A couple of the solutions from TSVD can be seen in Figure 6.5

(a) −25 singular values (b) −75 singular values (c) −130 singular values

Figure 6.5: TSVD solutions for different number of excluded singular values

It is quite clear that the best reconstruction is close to not having the prominent artefacts
like the earlier solutions.

In the case of the noisy data it should help to use TSVD seeing as small singular values
will enhance the noise. The matrix is the same as before but the left-hand side, b is
changed.

Here we get the following solutions from reconstructions, see Figure 6.6, and norm
differences

Singular values = 0 Norm difference

50 0.0458

100 0.0407

150 0.0383

200 0.0373

250 0.0365

275 0.0364

300 0.0365

350 0.0367

We see that the noise is still quite dominant in the solution, which is probably due to the
fact, that the last singular vectors only help to move the artefact lines and thus the noise

72 Singular Value Decomposition (SVD)

(a) −150 singular values (b) −275 singular values (c) −350 singular values

Figure 6.6: Noisy TSVD solutions

is still applied to the rest. Also the matrix is quite well-behaved, so the noise doesn’t get
enhanced much by the smallest singular values.

Lastly we do TSVD for the case of limited-view. Here the matrices are quite ill-conditioned
so hopefully it should be possible to get a much better solution.

In Figure 6.7 the best solutions can be seen, where it is clear that we are able to get
quite good reconstructions, seeing as we also showed before that it was the last singular
values that dominated the lower part, which was the worst area.

We get the following norm differences from the computations.

Solution for 50% view

Singular values = 0 Norm difference, h1, h5 Norm difference, h2, h4

50 0.0363 0.0328

100 0.0335 0.0257

150 0.0312 0.0223

200 0.0290 0.0212

225 0.0279 0.0208

250 0.0262 0.0211

275 0.0264 0.0240

6.3 Three discontinuities 73

(a) 50% view with h1, h5 (b) 50% view with h2, h4

(c) 25% view with p1, p2 (d) 25% view with p1, p3

Figure 6.7: Best TSVD solutions for limited-view

Solution for 25% view

Singular values = 0 Norm difference, p1, p2 Norm difference, p1, p3

250 0.0318 0.0304

300 0.0304 0.0270

325 0.0308 0.0269

375 0.0312 0.0282

6.3 Three discontinuities

As noted before the condition number should be relatively the same for this case, since
the matrix only depend on the reference. The mesh however is different, which is the
cause of the slight variation we see in the condition numbers below.

74 Singular Value Decomposition (SVD)

Condition number

f1, f2 17.3

f2, f3 15.8

f1, f3 18.1

f1, f2, f3 15.9

Condition number for 50% view

h1, h2 1590.4

h1, h5 6099.7

h1, h3 527.4

h2, h3 2796.7

h2, h4 489.4

h3, h5 10617.4

Condition number for 25% view

p1, p2 21166.5

p1, p3 77165.8

6.3.1 TSVD

Again we try to use TSVD to see if we can get better solutions for the limited-view case.
(We omit doing it for the original and noisy case seeing as it is limited what can be
gained from this)

Solution for 50% view

Singular values = 0 Norm difference, h1, h5 Norm difference, h2, h4

50 0.1729 0.1028

100 0.1497 0.0871

150 0.1469 0.0849

175 0.1440 0.0844

200 0.1424 0.0860

250 0.1294 −
300 0.1254 −
350 0.1316 −

6.3 Three discontinuities 75

Solution for 25% view

Singular values = 0 Norm difference, p1, p2 Norm difference, p1, p3

300 0.1064 0.1230

350 0.0952 0.1200

375 0.0931 0.1178

400 0.0935 0.1111

450 0.0971 0.1089

500 − 0.1096

The best numerical solutions can be seen in Figure 6.8

(a) 50% view with h1, h5 (b) 50% view with h2, h4

(c) 25% view with p1, p2 (d) 25% view with p1, p3

Figure 6.8: Best TSVD solutions for limited-view

It is clear that when we only have access to one quarter of the boundary, elements hid-
den behind other elements relative to the available boundary gets hard to recover. How-
ever if we allow more artefacts/noise to appear in the reconstruction by allowing more
singular values it is possible to actually see the area, see Figure 6.9. The problem is just
that there is a lot of artefacts in the image, thus if we had no idea of the real conductivity,
we might mistake some areas to be part of the true conductivity, when they are actually
not.

76 Singular Value Decomposition (SVD)

(a) 25% view with p1, p2,
−250 singular values

(b) 25% view with p1, p3,
−300 singular values

Figure 6.9: Other TSVD solutions for limited-view

In accordance with the observed singular vectors earlier it also makes sense that when
we exclude the last singular vectors we excluded that ones that dominate the areas far
away from the measured area and thus we end up with an area that gets more and more
smooth.

6.4 Simple discontinuity

For this one we restrict our attention to the 25% case. Here we have the condition
numbers

Condition number for 25% view

p1, p2 19961.7

p1, p3 76297.6

which again is of the same magnitude like the last examples so it fits with the statement
that there shouldn’t be much of many difference.

6.4.1 TSVD

Again we try to do TSVD though only for the boundary combination p1, p2

6.5 Conclusion to SVD 77

Solution for 25% view

Singular values = 0 Norm difference, p1, p2

250 0.0443

275 0.0431

300 0.0432

350 0.0469

A couple of the solutions can be seen in Figure 6.10

(a) −250 singular values (b) −275 singular values (c) −300 singular values

Figure 6.10: TSVD solutions for 25% view, p1, p2

It is clear that like for the mollifier we can get a quite good reconstruction since we
don’t have elements of the conductivity that is located down in the worst part of the
solution. Also it is nice to see that we are actually able to construct a nice square shape
even though we only measure one quarter of the boundary.

6.5 Conclusion to SVD

It is clear, that when we cut off the small singular values, we can get rid of most of the
artefacts and get solutions that are a lot better.

For the ones with full-view we are able to get a better solution, however it doesn’t
change much.

As we do regularization by TSVD for the limited-view case we get rid of the very little
information there is of the areas far away from the measured area, which results in some
solution, where elements, that should be there, disappear. However we can not use the

78 Singular Value Decomposition (SVD)

solutions with more singular values, since here we get a lot of elements that shouldn’t
be there and without prior knowledge it is hard to tell, which are right, and which are
wrong areas.

It is clear that the higher the condition number is, the more singular values we need to
cut-off to get the best numerical solution.

As for the singular vectors it is clear, that the last ones are the ones, that carry the infor-
mation resulting in the artefacts, and for the limited-view the ones, that carry informa-
tion about the problematic areas, which explains why we get more smooth solutions,
when we cut these off.

CHAPTER 7

Discussion and Conclusion

Through the use of Fréchet derivatives it is clear, that is possible to linearise the model
of AET to get an approximation of the true solution. Looking at the solutions for the
different phantoms in Chapter 4 it is clear, that we are actually able to reconstruct the
conductivity rather well using 2 or more boundary conditions. However we see these
strange artefacts appearing, which is not consistent with what has already been seen in
[8], as Hoffmann does not have these artefacts in his solutions. It is clear after looking
at the singular value decomposition of the system, that it is the matrix A, that induces
these artefacts as the same lines are apparent in some of the last singular vectors.

It is hard to tell, what exactly induces this structure in the matrix A. One theory could be
that the fact, that we decide to decouple our system, is to blame for the artefacts, seeing
as this is one thing that have been done in this thesis compared to [8]. In [8] the full
linear system is implemented and not the decoupled like here. Another thing is that [8]
also uses some iterative methods to reconstruct. However the method of reconstruction
shouldn’t be that different seeing, as it is the matrix, that seem to induce the structure.

Another peculiar thing is that we keep getting the best results for the reconstructions,
when we use 2 boundary conditions, that according to [3] and [8] should not induce
an elliptic system and thus is should not necessarily be stable nor have uniqueness.

80 Discussion and Conclusion

However we still see that both with and without noise, these are the best boundary
conditions. This again seems to be due to this strange structure, that the matrix induces,
since the 2 "wrong" conditions does not have any sort of specific structure it seems.
The matrices for all combinations of boundary conditions are all more or less equally
behaving, when looking at the condition numbers for the full-view case, so one could
say that the singular vectors in some sense are weighed the same in all cases however in
f1, f2 and f2, f3, there is artefacts in the last singular vectors, whereas in the good one,
f1, f3, the singular vectors does not have a specific pattern.

One thing that we also noted, when doing reconstructions is, it seems, that the artefacts
in the reconstruction depend on the intensity of the conductivity, as they appear more
heavily in the ones with high intensity and are almost gone, when it is low.

To try and get rid of some of the artefacts we tried doing regularization, but it was clear
that the reconstructions doesn’t get much better than before, and when we did over
regularization to get rid of the artefacts, it was clear, that we then made the rest of the
reconstruction worse. This makes sense seeing as we have seen that the matrix is not
that ill-posed, so there is not much to be gained when doing regularization.

When we turn our attention to the limited-view case it is clear, that at the areas furthest
away from where we measure we get more unreliable reconstructions. Using regular-
ization it has been possible to get rid at some of the disturbing artefacts by removing
some of the last singular vectors. However this has been at the cost of whatever little
information there was about these areas. This is due to the fact, that the last singu-
lar vectors are the ones containing the information about these areas. So getting rid of
these to remove the error, we end up getting rid of everything, there was to say about
this area.

One thing to note though about the limited-view is, that if we look at the case of an
element near the boundary it is clear that we are actually able to see it even though it is
far away from the measured boundary, as long as there is not some elements obscuring
the path from the measured boundary.

7.1 Future work 81

7.1 Future work

One very interesting thing to investigate would be why the matrix induces the artefacts,
we see in our reconstructions and also why we don’t see any, when we use cosine and
sine as boundary conditions. In relation to this one should maybe look in to how the
stability and uniqueness look for the decoupled system compared to the original system
in the numerical implementation.
Another thing would be to figure out how noise in the measurements would effect the
interior data to make reliable noise experiments.
Also it would be interesting to see, if it would be possible to do limited-view reconstruc-
tion that maybe with a better choice for boundary conditions or something else would
yield better reconstructions for the areas far away from the measured boundaries.
One could also investigate, if there would be other numerical methods than just using
least-squares, that would be able to yield better results with the decoupled system. An
iterative method like in [8] could be a idea.
Lastly it would also be interesting to see if other reference conductivities than the one
we choose, σ = 1, would result in better or worse reconstructions.

82 Discussion and Conclusion

APPENDIX A

Lax-Milgram

Theorem A.1 (Lax-Milgram Theorem)
I assume that B : H ×H → R is a bilinear mapping for which there exists constant α, β > 0

such that
|B(u, v)| ≤ α‖u‖‖v‖ (u, v ∈ H)

and
β‖u‖2 ≥ B(u, u) (u ∈ H).

Finally let f : H → R be a bounded linear functional on H.
Then there exists a unique element u ∈ H such that

B(u, v) = f(v), ∀v ∈ H.

Theorem A.2 Let σA ∈ L∞+ (Ω), σB ∈ L∞(Ω) and F ∈ H1(Ω) then there exists a unique
weak solution u ∈ H1

0 (Ω) to{
∇ · σA∇u = −∇ · σB∇F in Ω

u = 0 on ∂Ω
, (A.1)

84 Lax-Milgram

and
‖u‖H1(Ω) ≤ C

‖σB‖L∞(Ω)

KσA

‖F‖H1(Ω), (A.2)

where the constant C is independent of σA and σB and KσA is the essential infimum of σA in
accordance with Definition 1.1.

PROOF. In accordance with Theorem A.1 we define

B(u, v) =

∫
Ω

σA∇u · ∇vdx

and
F̄ (v) = −

∫
Ω

σB∇F · ∇vdx

from the weak formulation of (A.1).
Clearly B is bilinear and F̄ is linear.
We need to check the existence of the constant α, β > 0

|B(u, v)| =
∣∣∣∣∫

Ω

σA∇u · ∇vdx
∣∣∣∣

≤
∫

Ω

|σA∇u · ∇v| dx

≤ ‖σA‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω)

≤ ‖σA‖L∞(Ω)‖u‖H1
0 (Ω)‖v‖H1

0 (Ω).

By Hölder inequality and theorem of absolutely integrable functions we get

B(u, u) =

∫
Ω

σA∇u · ∇udx

=

∫
Ω

σA |∇u|2 dx

≥ KσA‖∇u‖
2
L2(Ω)

≥ KσAC‖u‖
2
H1

0 (Ω)

for some positive constant C independent of σA.
‖u‖H1

0 (Ω) ≤ c‖∇u‖L2(Ω) by Poincaré inequality [6, Theorem 3, Section 5.6.1] since

‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω)

⇓

‖u‖H1
0 (Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω) ≤ c‖∇u‖L2(Ω) + ‖∇u‖L2(Ω) = c̃‖∇u‖L2(Ω).

85

Lastly one needs to show that F̄ is bounded

|F̄ (v)| =
∣∣∣∣∫

Ω

σB∇F · ∇vdx
∣∣∣∣

≤
∫

Ω

|σB∇F · ∇v| dx

≤ ‖σB‖L∞(Ω)

∫
Ω

|∇F · ∇v| dx

≤ ‖σB‖L∞(Ω)‖∇F‖L2(Ω)‖∇v‖L2(Ω)

≤ ‖σB‖L∞(Ω)‖F‖H1(Ω)‖v‖H1
0 (Ω).

Thus by Theorem A.1 there exists a unique weak solution u ∈ H1
0 (Ω) to (A.1), since

B(u, v) = F̄ (v).

Now taking absolute value and choosing u as the test function we have that

KσAC‖u‖
2
H1

0 (Ω) ≤ |B(u, u)| = |F̄ (u)| ≤ ‖σB‖L∞(Ω)‖F‖H1(Ω)‖u‖H1
0 (Ω)

i.e.
‖u‖H1

0 (Ω) ≤ C̃
‖σB‖L∞(Ω)

KσA

‖F‖H1(Ω),

where the constant C̃ is independent of σA and σB .

�

Remark Note that also

‖u‖H1
0 (Ω) ≤ C

‖σB‖L∞(Ω)

KσA

‖∇F‖L2(Ω),

for some constant C independent of σA and σB .

The boundary value problem from (1.1){
∇ · σ∇u = 0 in Ω

u = f on ∂Ω

for σ ∈ L∞+ (Ω) and f ∈ H1/2(∂Ω) can be transformed to a problem with homogeneous
Dirichlet boundary conditions.
We do this by introducing the function F ∈ H1(Ω), where TF = f . Here TF is the

86 Lax-Milgram

trace of F to the boundary. We then define ū = u−F , which gives us a boundary value
problem of the form {

∇ · σ∇ū = −∇ · σ∇F in Ω

ū = 0 on ∂Ω
. (A.3)

Looking at the solution u = ū+F for the original problem (1.1) and using (A.2) on (A.3)
we get

‖u‖H1
0 (Ω) ≤ ‖ū‖H1

0 (Ω) + ‖F‖H1(Ω)

≤
(
C̃
‖σ‖L∞(Ω)

Kσ
+ 1

)
‖F‖H1(Ω).

By [5, Proposition 3.32] we can choose F ∈ H1(Ω) as an extension of f ∈ H1/2(∂Ω) such
that ‖F‖H1(Ω) ≤ c(Ω)‖f‖H1/2(∂Ω), where the constant only depends on the domain.
Thus we get that

‖u‖H1
0 (Ω) ≤ c(Ω)

(
C̃
‖σ‖L∞(Ω)

Kσ
+ 1

)
‖f‖H1/2(∂Ω). (A.4)

By use of the bounds of σ from Definition 1.1 we get that

‖u‖H1
0 (Ω) ≤ c(Ω)

(
C̃
Mσ

Kσ
+ 1

)
‖f‖H1/2(Ω).

APPENDIX B

FEniCS/Python code

B.1 Mesh Generation

B.1.1 Simple conductivity and small contrast

from dolfin import *
from mshr import *

domain = Circle(Point(0, 0), 1, 150)

domain.set_subdomain(1, Rectangle(Point(-0.2,-0.2), Point(0.2, 0.2)))

N = 20

mesh = generate_mesh(domain, N)

B.1.2 Near boundary 1

from dolfin import *
from mshr import *

88 FEniCS/Python code

domain = Circle(Point(0, 0), 1, 150)

domain.set_subdomain(1, Rectangle(Point(0.6,-0.1), Point(0.9, 0.1)))

N = 20

mesh = generate_mesh(domain, N)

B.1.3 Near boundary 2

from dolfin import *
from mshr import *

domain = Circle(Point(0, 0), 1, 150)

domain.set_subdomain(1, Rectangle(Point(-0.1,0.6), Point(0.1, 0.9)))

N = 20

mesh = generate_mesh(domain, N)

B.1.4 Three discontinuities

from dolfin import *
from mshr import *

domain = Circle(Point(0, 0), 1, 150)

domain.set_subdomain(1, Rectangle(Point(-0.2,0.2), Point(0.1, 0.5)))
domain.set_subdomain(2, Rectangle(Point(0.2,-0.5), Point(0.4, -0.2)))
domain.set_subdomain(3, Rectangle(Point(-0.2,-0.5), Point(0, -0.2)))

N = 20

mesh = generate_mesh(domain, N)

B.2 Definition of Conductivity 89

B.2 Definition of Conductivity

B.2.1 Simple conductivity

a0 = Constant(1.0)
a1 = Constant(1.5)

class sigmafun(Expression):
def eval(self,values,x):

if (between(x[1], (-0.2,0.2)) and
between(x[0], (-0.2, 0.2))):

values[0] = a1
else:

values[0] = a0

sigma = sigmafun()

B.2.2 Mollifier

class sigmafun(Expression):
def eval(self,values,x):

if (x[0]**2+x[1]**2<0.5):
values[0] = 1+3*math.exp(1/(x[0]**2+x[1]**2-0.5))

else:
values[0] = 1

sigma = sigmafun()

B.2.3 Small contrast

a0 = Constant(1.0)
a1 = Constant(1.1)

class sigmafun(Expression):
def eval(self,values,x):

if (between(x[1], (-0.2,0.2)) and
between(x[0], (-0.2, 0.2))):

values[0] = a1
else:

values[0] = a0

sigma = sigmafun()

90 FEniCS/Python code

B.2.4 Near boundary 1

a0 = Constant(1.0)
a1 = Constant(1.5)

class sigmafun(Expression):
def eval(self,values,x):

if (between(x[1], (-0.1,0.1)) and
between(x[0], (0.6, 0.9))):

values[0] = a1
else:

values[0] = a0

sigma = sigmafun()

B.2.5 Near boundary 2

a0 = Constant(1.0)
a1 = Constant(1.5)

class sigmafun(Expression):
def eval(self,values,x):

if (between(x[1], (0.6,0.9)) and
between(x[0], (-0.1, 0.1))):

values[0] = a1
else:

values[0] = a0

sigma = sigmafun()

B.2.6 Three discontinuities

a0 = Constant(1.0)
a1 = Constant(1.9)
a2 = Constant(1.6)
a3 = Constant(0.7)
class sigmafun(Expression):

def eval(self,values,x):
if (between(x[1], (0.2,0.5)) and
between(x[0], (-0.2, 0.1))):

values[0] = a1
elif (between(x[1], (-0.5,-0.2)) and
between(x[0], (0.2, 0.4))):

values[0] = a2
elif (between(x[1], (-0.5,-0.2)) and

B.3 Computation of Data 91

between(x[0], (-0.2, 0))):
values[0] = a3

else:
values[0] = a0

sigma = sigmafun()

B.3 Computation of Data

B.3.1 Gradient of Green’s function, ∇G

cord = mesh.coordinates()
K = mesh.num_vertices()
NabGarray = np.zeros((K,K,2))

def xx0absgrad(x,x0):
y = (x-x0)
return y/(y[0]**2+y[1]**2)

def xx0abs(x,x0):
y = (x-x0)
return (y[0]**2+y[1]**2)

for i in range(K):
x1 = cord[i]
for j in range(K):

if (j<>i):
x2 = cord[j]
if (x2[0]**2+x2[1]**2==0):

NabGarray[i,j,:] = (1/(2*math.pi)*
x1/(x1[0]**2+x1[1]**2))

else:
x2star =x2/(x2[0]**2+x2[1]**2)
NabGarray[i,j,:] = (1/(2*math.pi)*
(xx0absgrad(x1,x2)-xx0absgrad(x1,x2star)))

B.3.2 Setting up the system

Here it should be noted that the previous code for computing ∇G should be included
in the code for it to run properly

92 FEniCS/Python code

from dolfin import *
from mshr import *
import numpy as np
import shelve
import math

Mesh generated earlier and saved
mesh = Mesh('mitmesh.xml')

Conductivity
a0 = Constant(1.0)
a1 = Constant(1.5)

class sigmafun(Expression):
def eval(self,values,x):

if (between(x[1], (-0.2,0.2)) and
between(x[0], (-0.2, 0.2))):

values[0] = a1
else:

values[0] = a0

sigma = sigmafun()

V = FunctionSpace(mesh,"CG",1)

u = TrialFunction(V)
v = TestFunction(V)

lhs of the weak formulation
a = sigma*inner(grad(u),grad(v))*dx
aref = inner(grad(u),grad(v))*dx #reference sigma = 1

rhs of weak formulation
uleft = Constant("0.00")
L = uleft*v*dx

Boundary condition
f = Expression("x[0]") #cos(theta)
bcs = DirichletBC(V,f,"on_boundary")

u = Function(V)
uref = Function(V)

Solve weak formulation
solve(a == L,u,bcs)
solve(aref == L,uref,bcs)

B.3 Computation of Data 93

Interior data
H = sigma*inner(grad(u),grad(u))
Href = inner(grad(uref),grad(uref))

For handling gradient, vector space
parameters.reorder_dofs_serial = False
Vvec = VectorFunctionSpace(mesh,"CG",1)
dof0 = Vvec.sub(0).dofmap().dofs()
dof1 = Vvec.sub(1).dofmap().dofs()

Function for computing M
def Gint(dsigma):

I = Function(V)
NabG = Function(Vvec)
Iarray = np.zeros((K))
for i in range(K):

nabarray = NabG.vector().array()
nabarray[dof0] = NabGarray[:,i,0]
nabarray[dof1] = NabGarray[:,i,1]
NabG.vector()[:] = nabarray
Iarray[i] = assemble(inner(NabG,dsigma*grad(uref))*dx)

I.vector()[:] = Iarray
return I

A = np.zeros((K,K))
b = np.zeros((K))

Compute A and b
for i in range(K):

ibasis = Function(V)
ibasis.vector()[i] = 1
delu = Gint(ibasis)
for j in range(K):

jbasis = Function(V)
jbasis.vector()[j] = 1
A[j,i] = (assemble((ibasis*inner(grad(uref),grad(uref))+
2*inner(grad(uref),grad(delu)))*jbasis*dx))

b[i] = assemble(inner(H-Href,ibasis)*dx)

Save data for later use
data = shelve.open("decoup.db")

data["A_system"] = A
data["b_system"] = b

data.close()

94 FEniCS/Python code

B.3.3 Check of Green’s solution

from dolfin import *
from mshr import *
import numpy as np
import math

parameters.reorder_dofs_serial = False

Mesh
domain = Circle(Point(0, 0), 1, 150)

N = 20

mesh = generate_mesh(domain, N)

V = FunctionSpace(mesh,"CG",1)

Conductivity
class sigmafun(Expression):

def eval(self,values,x):
if (x[0]**2+x[1]**2<0.5):

values[0] = 3*math.exp(1/(x[0]**2+x[1]**2-0.5))
else:

values[0] = 0

sigma = sigmafun()

u0 = Constant("0.00")

cord = mesh.coordinates()
K = mesh.num_vertices()

Compution af gradient
NabGarray = np.zeros((K,K,2))

def xx0absgrad(x,x0):
y = (x-x0)
return y/(y[0]**2+y[1]**2)

def xx0abs(x,x0):
y = (x-x0)
return (y[0]**2+y[1]**2)

for i in range(K):
x1 = cord[i]
for j in range(K):

if (j<>i):

B.3 Computation of Data 95

x2 = cord[j]
if (x2[0]**2+x2[1]**2==0):

NabGarray[i,j,:] = (1/(2*math.pi)*
x1/(x1[0]**2+x1[1]**2))

else:
x2star =x2/(x2[0]**2+x2[1]**2)
NabGarray[i,j,:] = (1/(2*math.pi)*
(xx0absgrad(x1,x2)-xx0absgrad(x1,x2star)))

Vvec = VectorFunctionSpace(mesh,"CG",1)
dof0 = Vvec.sub(0).dofmap().dofs()
dof1 = Vvec.sub(1).dofmap().dofs()

Reference potential
f = Expression("x[0]") #cos(theta)

u = TrialFunction(V)
v = TestFunction(V)

bcs = DirichletBC(V,f,"on_boundary")
aref = inner(grad(u),grad(v))*dx #reference sigma = 1
L = u0*v*dx

uref = Function(V)
solve(aref == L,uref,bcs)

Computation of M
def Gint(dsigma):

I = Function(V)
NabG = Function(Vvec)
Iarray = np.zeros((K))
for i in range(K):

nabarray = NabG.vector().array()
nabarray[dof0] = NabGarray[:,i,0]
nabarray[dof1] = NabGarray[:,i,1]
NabG.vector()[:] = nabarray
Iarray[i] = assemble(inner(NabG,dsigma*grad(uref))*dx)

I.vector()[:] = Iarray
return I

Green's solution
u2 = Gint(sigma)

u = TrialFunction(V)
v = TestFunction(V)

True solution to system

96 FEniCS/Python code

acheck = inner(grad(u),grad(v))*dx
Lcheck = -inner(sigma*grad(uref),grad(v))*dx
bcscheck = DirichletBC(V,u0,"on_boundary")

ucheck = Function(V)

solve(acheck == Lcheck,ucheck,bcscheck)

Norm difference
print norm(u2.vector()-ucheck.vector())/norm(ucheck.vector())

Plot
h=plot(u2,scale=0.0)
h.set_min_max(-0.05, 0.05)
h.elevate(65)
h.update(u2)

k=plot(ucheck,scale=0.0)
k.set_min_max(-0.05, 0.05)
k.elevate(65)
k.update(ucheck)

interactive()

B.4 Noisy measurements

H = sigma*inner(grad(u),grad(u))

H2 = project(H,V)

maxH = H2.vector().array().max()

minH = H2.vector().array().min()

noise = level*(maxH-minH)*np.random.normal(0,1,K)

Hnoise = Function(V)

Hnoise.vector()[:] = H2.vector().array() + noise

B.5 Partial boundary 97

B.5 Partial boundary

B.5.1 Half of the boundary

class Boundary1(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and x[1] < 0.0

class Boundary2(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and not (x[1] < 0.0)

boundary1 = Boundary1()
boundary2 = Boundary2()

B.5.2 One quarter of the boundary

class Boundary1(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and not (x[1] > 0.0 and x[0] > 0.0)

class Boundary2(SubDomain):
def inside(self, x, on_boundary):

return on_boundary and (x[1] > 0.0 and x[0] > 0.0)

boundary1 = Boundary1()
boundary2 = Boundary2()

B.5.3 Change to the boundary condition in the code

bcs = [DirichletBC(V, Constant(0.0), boundary1),
DirichletBC(V, f, boundary2)]

B.6 TSVD

N = mesh.num_vertices()

Doing SVD
Us,Ss,Vs = np.linalg.svd(Abig)

Construction inverse of diagonal matrix

98 FEniCS/Python code

Sinv = np.zeros((N,N*2))
K = N - 50 # Number of included singular values
Sinv[:K,:K] = np.diag(1.00/Ss[:K])

Construction pseudo-inverse
AinvSVD= np.dot(np.dot(Vs.T,Sinv),Us.T)

Construct solution
u1 = Function(V)
u1.vector()[:] = np.inner(AinvSVD,bbig)+1

Bibliography

[1] Fenics project. http://http://fenicsproject.org/. Accessed June 11,
2015.

[2] G. Bal. Hybrid inverse problems and internal functionals. Inverse Problems and
Applications: Inside Out II, 60:325–368, 2011.

[3] G. Bal. Hybrid inverse problems and redundant systems of partial differential
equations. page 33, 2013.

[4] G. Bal, E. Bonnetier, F. Monard, and F. Triki. Inverse diffusion from knowledge of
power densities. page 24, 2012.

[5] D. Cioranescu and P. Donato. An introduction to homogenization. Oxford University
Press, 1999.

[6] L. C. Evans. Partial differential equations. American Mathematical Society, 2008.

[7] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring images : Matrices, spectra,
and filtering. SIAM, 2006.

[8] K. Hoffmann. Reconstruction Methods for Inverse Problems with Partial Data. PhD
thesis, Technical University of Denmark, 2014.

[9] I. Kocyigit. Acousto-electric tomography and CGO solutions with internal data.
Inverse Problems, 28(12):1, 2012.

[10] P. Kuchment and L. Kunyansky. Synthetic focusing in ultrasound modulated to-
mography. Inverse Problems and Imaging, 4(4):665–673, 2010.

[11] W. Strauss. Partial differential equations : an introduction. John Wiley & Sons, 2008.

http://http://fenicsproject.org/

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Interior data
	1.2 Model
	1.3 Reading guide

	2 Linearization
	2.1 Uniqueness and stability of the system
	2.2 Decoupling the system

	3 Setting up numerical problem
	3.1 Green's function on the unit disk
	3.1.1 Green's function - numerically

	3.2 Problem Data
	3.2.1 Check of Green's function solution

	4 Numerical results in FEniCS
	4.1 Phantoms
	4.2 Solutions
	4.2.1 Simple discontinuous conductivity
	4.2.2 Mollifier
	4.2.3 Low contrast
	4.2.4 Near boundary
	4.2.5 Three discontinuities
	4.2.6 Conclusion of the initial solutions

	4.3 Measurements with noise
	4.3.1 Simple discontinuous conductivity
	4.3.2 Low contrast
	4.3.3 Mollifier
	4.3.4 Three discontinuities
	4.3.5 Conclusion of noisy solutions

	4.4 Regularization
	4.4.1 Noise free measurements
	4.4.2 Noisy measurements
	4.4.3 Conclusion to regularization

	5 Limited-view data
	5.1 Half of the boundary
	5.1.1 Mollifier
	5.1.2 Three discontinuities
	5.1.3 Near boundary

	5.2 One quarter of the boundary
	5.2.1 Mollifier
	5.2.2 Simple conductivity
	5.2.3 Three discontinuities

	5.3 Conclusion to limited-view

	6 Singular Value Decomposition (SVD)
	6.1 Truncated singular value decomposition (TSVD)
	6.2 Mollifier
	6.2.1 TSVD

	6.3 Three discontinuities
	6.3.1 TSVD

	6.4 Simple discontinuity
	6.4.1 TSVD

	6.5 Conclusion to SVD

	7 Discussion and Conclusion
	7.1 Future work

	A Lax-Milgram
	B FEniCS/Python code
	B.1 Mesh Generation
	B.1.1 Simple conductivity and small contrast
	B.1.2 Near boundary 1
	B.1.3 Near boundary 2
	B.1.4 Three discontinuities

	B.2 Definition of Conductivity
	B.2.1 Simple conductivity
	B.2.2 Mollifier
	B.2.3 Small contrast
	B.2.4 Near boundary 1
	B.2.5 Near boundary 2
	B.2.6 Three discontinuities

	B.3 Computation of Data
	B.3.1 Gradient of Green's function, G
	B.3.2 Setting up the system
	B.3.3 Check of Green's solution

	B.4 Noisy measurements
	B.5 Partial boundary
	B.5.1 Half of the boundary
	B.5.2 One quarter of the boundary
	B.5.3 Change to the boundary condition in the code

	B.6 TSVD

	Bibliography

