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Summary (English)

We consider the Complete Electrode Model (CEM) as a model for the scenario
where one apply currents to electrodes attached at the surface of the body.

We show, using two different approaches, that the forward problem for the CEM
has a unique solution. Firstly, by Lax-Milgram Theorem, we identify the forward
problem by the variational formulation (2.1). Secondly, via a minimization
approach, by associating the forward problem with the functional Fσ (2.52).

Using the magnitude of the current density, we show non-uniqueness of the
inverse problem of finding the conductivity. We characterize this non-uniqueness
and state when reconstruction of the conductivity is possible.

Numerical experiments of both problems show that errors occur at discontinu-
ities of the conductivity and around the electrodes.
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Summary (Danish)

Vi benytter den fuldstændige elektrode model (CEM) til at betragte scenariet,
hvor strøm sendes gennem kroppen, via et antal elektroder fastspændt på denne.

Ved to forskellige fremgangsmåder vises det, at den partielle differentialligning
for CEM har en entydig løsning. Først relateres PDE’en til formulering (2.1) og
derefter vises entydighed ved brug af Lax-Milgram’s sætning. Dernæst identifi-
ceres PDE’en med minimeringen af funktionalet (2.52).

Vi viser, ved hjælp af kendskab til strømtætheden i kroppen, at det inverse
problem, at finde ledningsevnen, ikke har en entydig løsning. Vi karakterisere
dette og viser hvordan man kan rekonstruere ledningsevnen ved kendskab til
spændingen på randen.

Numeriske eksperimenter af begge problemer viser, at fejlene opstår ved diskon-
tinuerte områder af ledningsevnen og omkring elektroderne.
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acquiring an M.Sc. in Engineering.

The thesis deals with problems regarding Electrical Impedance Tomography
(EIT) and Current Density Impedance Imaging (CDII).
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Chapter 1

Introduction

We will in this thesis consider problems appearing in Electrical Impedance To-
mography (EIT) and Current Density Impedance Imaging (CDII).

Using EIT imaging technique one place a number of electrodes on the surface of
the skin. Through each electrode, ek, we apply a current, Ik, which results in a
voltage, u, throughout the body and a constant voltage, Uk, on each electrode.
From a medical aspect it is important to find the conductivity, σ, inside the
body, since the conductivity of different tissues varies significantly from each
other.

As a model for the given scenario we use the Complete Electrode Model (CEM)
for EIT presented in [SCI92]. Given a current pattern {Ik}Nk=1 ⊂ R with∑N
k=1 Ik = 0, we seek a pair (u, U) ∈ H := H1(Ω) × CN , s.t. (u, U) solves
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the boundary-value problem:

∇ · σ∇u = 0 in Ω (1.1)

u+ zkσ
∂u

∂n
= Uk on ek for all k = 1, . . . , N (1.2)

σ
∂u

∂n
= 0 on ∂Ω\

N⋃
k=1

ek (1.3)∫
ek

σ
∂u

∂n
ds = Ik for all k = 1, . . . , N (1.4)

Here the impedances {zk}Nk=1 are known constants and n are the out warded unit
normal. The boundary value problem (1.1)-(1.4) will from now on be referred
to as the forward problem.

We will show that the forward problem has a unique solution provided an extra
condition on U given by

∑N
k=1 Uk = 0. Uniqueness is shown via two different

approaches. Firstly we will show that there is a 1-to-1-correspondence between
the forward problem and the variational formulation

B((u, U), (v, V )) =

N∑
k=1

IkV k, for all (v, V ) ∈ H, (1.5)

where B is defined by

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u− Uk)(v − V k) ds. (1.6)

Showing that B satisfies the assumptions of the Lax-Milgram Theorem estab-
lishes unique solvability of the forward problem.

Secondly we prove uniqueness through a minimization problem associating the
forward problem with the functional

Fσ(u, U) =
1

2

∫
Ω

σ|∇u|2dx+
1

2

N∑
k=1

∫
ek

1

zk
(u− Uk)2ds−

N∑
k=1

IkUk. (1.7)

Next we consider the inverse problem of finding the conductivity. We state and
prove non-uniqueness of this and using the magnitude of the current density we
characterize the non-uniqueness.
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To show non-uniqueness of the inverse problem we consider the functional:

Ga(v, V ) =

∫
Ω

a|∇v| dx+

N∑
k=1

∫
ek

1

2zk
(v − Vk)2 ds−

N∑
k=1

IkVk. (1.8)

Here a denotes the magnitude of the current density a := σ|∇u|. We show
that a solution to the forward problem, with conductivity σ, is a minimizer of
Ga. Next we show and characterize the non-uniqueness by showing, that if two
pairs (σ, u) and (σ̃, ũ) satisfies σ|∇u| = σ̃|∇ũ|, they both minimize Ga and there
exists a function φ relating these pairs. This relation also makes it possible to
solve the inverse problem, provided knowledge of the voltage on some part of
the boundary, including all the electrodes.

The main goal of the thesis is two investigate the non-uniqueness of the inverse
problem through theory and numerical experiments. We wish to identify the
errors and how they occur, when reconstructing the conductivity. Finally we
try decreasing these errors.

The structure of the thesis is as follows: In Chapter 2 we study the forward
problem. Firstly, in Section 2.1-2.2, by identifying a variational formulation and
showing uniqueness via Lax-Milgram, secondly, in Section 2.3, by considering the
minimization of Fσ and proving the existence of a unique minimizer. In Chapter
3 we study the inverse problem by associating a solution with a minimal gradient
problem (Section 3.1) and next, Section 3.2, characterizing the non-uniqueness
of the solutions and which information is needed for doing the reconstruction. In
Chapter 4 we do numerical experiments of the forward problem, with different
choices of conductivity and electrodes. We investigate the convergence rates
with respect to the mesh size and interpret the errors. In Chapter 5 we do
numerical experiments of the inverse problem. First we describe an algorithm
to find a pair (σ, u) depending on the known magnitude of the current density.
Secondly we show how to generate the function relating different solutions of the
inverse problem. Finally we reconstruct the conductivity in various scenarios
and interpret the errors. In Chapter 6 we conclude on the results and put it
into perspective.

In Appendix A are some extra notes on spaces, theorems, definitions, etc. used
in the thesis. In Appendix B are pieces of the code and comments on these. In
Appendix C the original project plan can be found.
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Chapter 2

Electrical Impedance
Tomography: The Forward

Problem

In this chapter we consider the forward problem in EIT with complete electrode
boundary conditions. The mathematical framework for this is the so-called
Complete Electrode Model ((1.1)-(1.4)).

More specifically, consider a domain Ω with N electrodes attached to ∂Ω. As-
sume then that the size, location and contact impedance, zk, of each electrode is
known. The main goal of this chapter is to prove that, if one injects any admis-
sible current pattern, {Ik}Nk=1 with

∑N
k=1 Ik = 0, through the electrodes, then

one can uniquely determine the voltage, u, inside Ω as well as the voltage, Uk, on
each electrode. Here the unique determination is in the space H := H1(Ω)×CN .

In general we will make the following assumptions to the first two sections (2.2
and 2.3) of this chapter: We assume the domain Ω is bounded in Rn, n = 2, 3,
with smooth boundary ∂Ω. The ek’s are open and connected subsets of ∂Ω
with mutually disjoint closures. We let the conductivity, σ, be a complex-valued
function and continuous differentiable in Ω up to the boundary, i.e. there exists
a neighbourhood N∂Ω of ∂Ω, s.t. σ ∈ C1(Ω ∩ N∂Ω). Furthermore assume
there exists real constants σ0 and σ1, s.t. |σ| ≤ σ1 and Re(σ) ≥ σ0. For the
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impedances we assume there exists a real constant Z such that Re(zk) > Z for
all k = 1, . . . , N .

2.1 A variational formulation of the CEM

In this section we will establish a variational formulation of the forward problem.

First notice that the boundary conditions of the forward problem requires re-
striction of u and σ ∂u∂n to the boundary ∂Ω. This is carried out in Appendix
A, section A.1. Here we see that if u ∈ H1(Ω), then u ∈ H1/2(∂Ω) and
σ ∂u∂n ∈ H

−1/2(∂Ω). The definitions of these spaces are also found in Appendix
A.

Proposition 2.1 Let (u, U) ∈ H. Then (u, U) is a weak solution of the
forward the problem if and only if

B((u, U), (v, V )) =

N∑
k=1

IkV k, for all (v, V ) ∈ H (2.1)

Here B is defined as

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u− Uk)(v − V k) ds. (2.2)

Proof. 1. First we prove that, if (u, U) solves the forward problem it also
satisfies (2.1).

Using partial integration, (A.4), and the fact that ∇ · σ∇u = 0 we have∫
∂Ω

σ
∂u

∂n
v ds−

∫
Ω

σ∇u · ∇v dx = 0 ∀v ∈ H1(Ω). (2.3)

Rewriting (1.2) we have

σ
∂u

∂n
=

1

zk
(Uk − u) on ek for all k = 1, . . . , N (2.4)

and combining with (1.3)

σ
∂u

∂n
=

N∑
k=1

1

zk
(Uk − u)χek . (2.5)
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Since u ∈ L2(∂Ω) and χek is bounded for any k, the right hand side of (2.5)
are in L2(∂Ω). Thus is σ ∂u∂n ∈ L2(∂Ω). Hence, the first integral of (2.3) is
well-defined.

Therefore∫
∂Ω

σ
∂u

∂n
v ds =

N∑
k=1

1

zk

∫
∂Ω

(Uk − u)χekv ds = −
N∑
k=1

1

zk

∫
ek

(u− Uk)v ds, (2.6)

which, when inserted in (2.3), gives

N∑
k=1

1

zk

∫
ek

(u− Uk)v ds+

∫
Ω

σ∇u · ∇v dx = 0. (2.7)

Now if we subtract Uk from both sides of (1.2) and integrate over ek we get∫
ek

(u− Uk) ds+ zk

∫
ek

σ
∂u

∂n
ds = 0. (2.8)

Using (1.4) in the last equality and multiplying by the constant V k

zk
, where

Vk ∈ C is arbitrary, gives

1

zk

∫
ek

(u− Uk)V k ds+ IkV k = 0, for all k = 1, . . . , N. (2.9)

Next we sum over k and get

N∑
k=1

1

zk

∫
ek

(u− Uk)V k ds+

N∑
k=1

IkV k = 0. (2.10)

Combining (2.7) and (2.10) we have

N∑
k=1

1

zk

∫
ek

(u−Uk)V k ds+

N∑
k=1

IkV k =

N∑
k=1

1

zk

∫
ek

(u−Uk)v ds+

∫
Ω

σ∇u · ∇v dx.

(2.11)
Thus ∫

Ω

σ∇u · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u− Uk)(v − V k) ds =

N∑
k=1

IkV k, (2.12)

for any v ∈ H1(Ω). And since the Vk’s were chosen arbitrary, the above holds
for all (v, V ) ∈ H, i.e. (2.1) is satisfied.

2. Next, we assume that (u, U) is a solution to (2.1) for all (v, V ) ∈ V and show
that (u, U) is also a solution to the forward problem. By (u, U) solving (2.1)
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for any (v, V ) ∈ H, we can choose v s.t. v ∈ C∞(Ω), supp(v) ⊂ Ω, and V = 0.
This gives us

N∑
k=1

IkV k = 0 (2.13)∫
ek

(u− Uk)(v − Vk) ds = 0, for all k = 1, . . . , N, (2.14)

since v is zero on ∂Ω and therefore also on ek. So by (2.1)∫
Ω

σ∇u · ∇v dx = 0. (2.15)

Using (A.4) ∫
Ω

∇ · (σ∇u)v dx = 0 for all v ∈ C∞c (Ω), (2.16)

hence ∇ · σ∇u = 0 in weak sense. Now choose v ∈ H1(Ω) arbitrary and V = 0.
Then (A.4) implies∫

Ω

σ∇u · ∇v dx =

∫
∂Ω

σ
∂u

∂n
v ds for all v ∈ H1(Ω). (2.17)

Using this we obtain:∫
∂Ω

σ
∂u

∂n
v ds+

N∑
k=1

1

zk

∫
ek

(u− Uk)v ds

=

∫
∂Ω

(
σ
∂u

∂n
+

N∑
k=1

1

zk
(u− Uk)χek

)
v ds = 0.

(2.18)

Since v ∈ L2(∂Ω), (2.18) implies:

σ
∂u

∂n
+

N∑
k=1

1

zk
(u− Uk)χek = 0 in L2(∂Ω). (2.19)

Therefore:

σ
∂u

∂n
= −

N∑
k=1

1

zk
(u− Uk)χek , (2.20)

so (u, U) satisfies (1.2) and (1.3). Let us again choose v with support in Ω, but
now let V 6= 0. Then we can write B as:

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u− Uk)v ds

−
N∑
k=1

1

zk

∫
ek

(u− Uk)Vk ds.

(2.21)
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By the choice of v and (2.15), this reduces to:

B((u, U), (v, V )) = −
N∑
k=1

1

zk

∫
ek

(u− Uk)Vk ds for any V 6= 0. (2.22)

Choosing V s.t. Vj = 1 and Vk = 0 for k 6= j, (2.22) becomes

B((u, U), (v, V )) =
1

zj

∫
ej

(Uj − u) ds. (2.23)

By (2.1) and the choice of V this gives

1

zj

∫
ej

(Uj − u) ds = Ij . (2.24)

Finally, since (u, U) satisfies (1.2):∫
ej

σ
∂u

∂n
ds =

1

zj

∫
ej

(Uj − u) ds = Ij . (2.25)

This can be done for all j = 1, . . . , N , thus (u, U) satisfies (1.4). �

We have now established the appropriate variational formulation of the forward
problem in EIT with complete-electrode boundary conditions. From now on we
will therefore consider the forward problem and variational formulation as the
same.

2.2 Unique solvability of the forward problem via
Lax-Milgram

Thanks to Proposition 2.1 from the previous section, establishing unique solv-
ability of the forward problem, is equivalent to establishing unique solvability
of the variational problem (2.1). We will carry out the latter task by means of
the Lax-Milgram Theorem in the space V = H/C equipped with the norm:

‖(u, U)‖V = inf
c∈C

(‖u− c‖2H1(Ω) + ‖U − cN‖2CN )1/2. (2.26)

where cN = (c, . . . , c) ∈ CN .

The meaning of the space V is as follows: Two elements (u, U) and (ũ, Ũ) in H
are considered equivalent in V if and only if ∃c ∈ C s.t. (u, U) = (ũ+ c, Ũ + cN )
in H.
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Theorem 2.2 (Lax-Milgram) If H is a Hilbert-space with norm ‖ · ‖ and
B is a complex-valued functional on H ×H, which satisfies:

(i) B is sesquilinear:

B(c1u1 + c2u2, v) = c1B(u1, v) + c2B(u2, v)

B(u, c1v1 + c2v2) = c1B(u, v1) + c2B(u, v2).

(ii) B is bounded, i.e. ∃c > 0 s.t. |B(u, v)| ≤ c‖u‖‖v‖ for all u, v ∈ H.

(iii) B is coercive, i.e. ∃d > 0 s.t. |B(u, u)| ≥ d‖u‖2 for all u ∈ H.

Then for any anti-linear, continuous functional f : H → C, there exists a unique
u ∈ H s.t.

B(u, v) = f(v), ∀v ∈ H.

The proof of this is carried out in [DL88].

It is quite hard to show boundedness and coercivity of B on V equipped with
the norm (2.26). Fortunately, if we introduce another norm as follows:

‖(u, U)‖∗ =

(
‖∇u‖2L2(Ω) +

N∑
k=1

∫
ek

|u(x)− Uk|2 ds

)1/2

, (2.27)

we will the be able to show equivalence between ‖ · ‖V and ‖ · ‖∗ on V. Then we
will be left to show that B satisfies the three assumptions of the Lax-Milgram
Theorem on (V, ‖ · ‖∗).

Lemma 2.3 The two norms (2.26) and (2.27) are equivalent on V, i.e. there
exists real constants a and b, a < b, s.t. for all (u, U) ∈ V the following holds:

a‖(u, U)‖∗ ≤ ‖(u, U)‖V ≤ b‖(u, U)‖∗. (2.28)

Proof. We start by showing the first inequality. Let (u, U) ∈ V and ε > 0 be
arbitrary. Then, by the defintion (2.26), there exists some c ∈ R s.t.

‖u− c‖2H1(Ω) + ‖U − cN‖2CN ≤ ‖(u, U)‖2V + ε. (2.29)
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So

‖(u, U)‖2∗ = ‖(u− c, U − cN )‖2∗

= ‖∇(u− c)‖2L2(Ω) +

N∑
k=1

∫
ek

|u(x)− c− (Uk − c)|2 ds

≤ ‖∇(u− c)‖2L2(Ω) +

N∑
k=1

∫
ek

(
|u− c|2 + |Uk − c|2 + 2|u− c||Uk − c|

)
ds

≤ ‖∇(u− c)‖2L2(Ω) + 2

N∑
k=1

∫
ek

|u− c|2 ds+ 2

N∑
k=1

∫
ek

|Uk − c|2 ds,

where the last inequality comes by

|(u− c)− (Uk − c)|2 ≥ 0⇔ |u− c|2 + |Uk − c|2 ≥ 2|(u− c)(Uk − c)|. (2.30)

Using that
⋃N
k=1 ek ⊂ ∂Ω, the first sum can be bounded as follows:

N∑
k=1

∫
ek

|u− c|2 ds ≤
∫
∂Ω

|u− c|2 ds = ‖u− c‖2L2(∂Ω)

≤ C · ‖u− c‖2H1/2(∂Ω) ≤ C · ‖u− c‖
2
H1(Ω),

for some C > 0. The second-to-last inequality follows from the continuous
embedding H1/2(∂Ω) ⊂ L2(∂Ω) and the last inequality follows by (A.3).

The second sum can be bounded by:

N∑
k=1

∫
ek

|Uk − c|2 ds ≤ max |ek| ·
N∑
k=1

|Uk − c|2 = D · ‖U − cN‖2CN , (2.31)

with D = max |ek|. Since ‖∇(u − c)‖L2(Ω) ≤ ‖∇(u − c)‖H1(Ω), we have now
shown that there exists an a > 0, depending only on Ω and the electrodes, s.t.

‖(u, U)‖2∗ ≤ a(‖u− c‖2H1(Ω) + ‖U − cN‖2CN ). (2.32)

In view of this and (2.29), we deduce that ‖(u, U)‖2∗ ≤ a(‖(u, U)‖2V + ε) for any
ε > 0, which establishes the first inequality of (2.28).

We will show the second inequality by contradiction. So assume that there
exists no such b satisfying the second inequality of (2.28). Then we can choose
a sequence {(um, Um)}∞m=1 in V s.t.

‖(um, Um)‖V = 1 and ‖(um, Um)‖∗ <
1

m
for all m. (2.33)



12 Electrical Impedance Tomography: The Forward Problem

By definition of V we may choose complex constants {cm}∞m=1 s.t. the sequence
{(vm, V m)}∞m=1, given by (vm, V m) = (um − cm, Um − cmN ), satisfies:

1 ≤ ‖vm‖2H1(Ω) + ‖V m‖2CN < 1 +
1

m
for all m. (2.34)

The first inequality of the above comes directly from the definition of the norm
‖ · ‖V :

1 = ‖(um, Um)‖2V = inf
c∈C

(‖um − c‖2H1(Ω) + ‖Um − cN‖2CN )

≤ ‖um − cm‖2H1(Ω) + ‖Um − cmN‖2CN .

By H1(Ω) being compactly embedded in L2(Ω) we know {vm}∞m=1 has a conver-
gent subsequence {vmj}∞j=1 in L2(Ω), i.e. there exists a v ∈ L2(Ω) s.t. vmj → v
as j →∞.

On the other hand, since ∇vmj = ∇umj we have that

‖∇vmj‖2L2(Ω) ≤ ‖(u
mj , Umj )‖∗ <

1

mj
. (2.35)

Therefore {vmj}∞m=1 must be a Cauchy sequence in H1(Ω) since

‖vmj−vmi‖H1(Ω) ≤ ‖vmj−vmi‖L2(Ω)+‖∇vmj‖L2(Ω)+‖∇vmi‖L2(Ω) → 0 (2.36)

as i, j →∞, where the convergence come by vmj converging in L2(Ω). Being a
Cauchy sequence it also converges to some v satisfying ∇v = 0, i.e. v ≡ K ∈ C.

We finally have that

1

mj
>

∫
ek

|umj − Umj

k |
2 ds =

∫
ek

|vmj −K − (V
mj

k −K)|2 ds

=

∫
ek

|vmj −K|2 ds+

∫
ek

|V mj

k −K|2 ds− 2|V mj

k −K| ·
∫
ek

|vmj −K| ds

≥ |ek||V
mj

k −K|2 − 2|V mj

k −K| ·
∫
ek

|vmj −K| ds.

So we can write:

|ek||V
mj

k −K|2 < 1

mj
+ 2|V mj

k −K|
∫
ek

|vmj −K| ds

≤ 1

mj
+ 2

(
|V mj

k |+ |K|
) ∫

ek

|vmj −K| ds

≤ 1

mj
+ 2

(
1 +

1

mj
+ |K|

)
|ek|1/2‖vmj −K‖L2(∂Ω)

≤ 1

mj
+ 2C

(
1 +

1

mj
+ |K|

)
|ek|1/2‖vmj −K‖H1(Ω).
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The third inequality follows from |V mj

k | ≤ ‖V mj‖2CN < 1+ 1
mj

and from applying
the Cauchy-Schwarz inequality to

∫
ek
|vmj −K| ds =

∫
∂Ω
|vmj −K|χek ds. The

last inequality follows from the continuous embedding H1/2(∂Ω) ⊂ L2(∂Ω) and
(A.3).

Finally, since vmj converges to K in H1(Ω), the preceding estimate enables us
to conclude that V mj

k converges to K, for all k = 1, . . . , N . Thus we have:

1 = ‖(umj , Umj )‖2V ≤ ‖vmj −K‖2H1(Ω) + ‖V mj −K‖2CN → 0. (2.37)

This is a contradiction and therefore we conclude that there exists a b s.t. the
second inequality of (2.28) holds true. �

Since we now know that the norms (2.26) and (2.27) are equivalent on V, showing
B satisfies the assumptions of Lax-Milgram on (V, ‖ · ‖V) reduces to show it on
(V, ‖ · ‖∗). This is carried out in the next Proposition.

Proposition 2.4 Under the assumptions of Ω, σ and zk given in the begin-
ning of the chapter, the form B defined in (2.2) is sesquilinear, bounded and
coercive on (V, ‖ · ‖∗).

Proof. (i) First we show that B is sesquilinear. Given (u1, U1), (u2, U2) and
(v, V ) in V and complex constants c1 and c2:

B(c1(u1, U1) + c2(u2, U2), (v, V )) =

∫
Ω

σ∇(c1u1 + c2u2) · ∇v dx

+

N∑
k=1

1

zk

∫
ek

((c1u1 + c2u2)− (c1U1,k + c2U2,k))(v − V k) ds

=

∫
Ω

σ∇(c1u1) · ∇v + σ∇(c2u2) · ∇v dx

+

N∑
k=1

1

zk

∫
ek

c1(u1 − U1,k)(v − V k) + c2(u2 − U2,k))(v − V k) ds

= c1

(∫
Ω

σ∇u1 · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u1 − Uk,1)(v − V k)

)
ds

+ c2

(∫
Ω

σ∇u2 · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u2 − Uk,2)(v − V k)

)
ds

= c1B((u1, U1), (v, V )) + c2B((u2, U2), (v, V ))
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and

B((v, V ),c1(u1, U1) + c2(u2, U2)) =

∫
Ω

σ∇v · ∇(c1u1 + c2u2) dx

+

N∑
k=1

1

zk

∫
ek

(v − Vk)(c1u1 + c2u2 − (c1U1 + c2U2)k) ds

=

∫
Ω

σ∇v · ∇c1u1 + σ∇v · ∇c2u2 dx

+

N∑
k=1

1

zk

∫
ek

c1(v − Vk)(u1 − U1k) + c2(v − Vk)(u2 − U2k) ds

= c1

(∫
Ω

σ∇v · ∇u1 dx+

N∑
k=1

1

zk

∫
ek

(v − Vk)(u1 − Uk,1)

)
ds

+ c2

(∫
Ω

σ∇v · ∇u2 dx+

N∑
k=1

1

zk

∫
ek

(v − Vk)(u2 − Uk,2)

)
ds

= c1B((v, V ), (u1, U1)) + c2B((v, V ), (u2, U2))

and thus we have shown that B is sesquilinear. (ii) Next we show boundedness
of B:

|B((u, U), (v, V ))| =

∣∣∣∣∣
∫

Ω

σ∇u · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u− Uk)(v − V k) ds

∣∣∣∣∣
≤
∫

Ω

|σ||∇u| · |∇v| dx+

N∑
k=1

1

|zk|

∫
ek

|u− Uk||v − V k| ds

≤ σ1

∫
Ω

|∇u| · |∇v| dx+
1

Z

N∑
k=1

∫
ek

|u− Uk||v − V k| ds

≤ C ·

(∫
Ω

|∇u| · |∇v| dx+

N∑
k=1

∫
ek

|u− Uk||v − Vk| ds

)
,

where C = max{σ1,
1
Z }. Using Cauchy-Schwarz Inequality:∫

Ω

|∇u| · |∇v| dx ≤
(∫

Ω

|∇u|2 dx
)1/2(∫

Ω

|∇v|2 dx
)1/2

= ‖∇u‖L2(Ω) · ‖∇v‖L2(Ω).

(2.38)

For any k:∫
ek

|u− Uk||v − Vk| ds ≤
(∫

ek

|u− Uk|2 dx
)1/2(∫

ek

|v − Vk|2 dx
)1/2

(2.39)



2.2 Unique solvability of the forward problem via Lax-Milgram 15

and by Hölder’s Inequality for sums:

N∑
k=1

(∫
ek

|u− Uk|2 ds
)1/2(∫

ek

|v − Vk|2 ds
)1/2

≤

(
N∑
k=1

∫
ek

|u− Uk|2 ds

)1/2( N∑
k=1

∫
ek

|v − Vk|2 ds

)1/2

.

(2.40)

Thus we have:

|B((u, U), (v, V ))|2 ≤ C
(
‖∇u‖L2(Ω) · ‖∇v‖L2(Ω)

+

(
N∑
k=1

∫
ek

|u− Uk|2 ds

)1/2( N∑
k=1

∫
ek

|v − Vk|2 ds

)1/2
2

≤ C
(
‖∇u‖2L2(Ω) · ‖∇v‖

2
L2(Ω)

+

(
N∑
k=1

∫
ek

|u− Uk|2 ds

)(
N∑
k=1

∫
ek

|v − Vk|2 ds

))
+ 2C

(
‖∇u‖L2(Ω) · ‖∇v‖L2(Ω)

·

(
N∑
k=1

∫
ek

|u− Uk|2 ds

)1/2( N∑
k=1

∫
ek

|v − Vk|2 ds

)1/2


≤ C
(
‖∇u‖2L2(Ω) · ‖∇v‖

2
L2(Ω)

+

(
N∑
k=1

∫
ek

|u− Uk|2 ds

)(
N∑
k=1

∫
ek

|v − Vk|2 ds

))

+ C

(
‖∇u‖2L2(Ω)

(
N∑
k=1

∫
ek

|v − Vk|2 ds

)

+‖∇v‖2L2(Ω)

(
N∑
k=1

∫
ek

|u− Uk|2 ds

))

= C

(
‖∇u‖2L2(Ω) +

N∑
k=1

∫
ek

|u− Uk|2 ds

)

·

(
‖∇v‖2L2(Ω) +

N∑
k=1

∫
ek

|v − Vk|2 ds

)
= C‖(u, U)‖2∗‖(v, V )‖2∗,

i.e. B is bounded.
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(iii) Finally we show that B is coercive. Since |σ| ≤ σ1 and Re(zk) > Z we can
choose d s.t. |σd | < 1 and | 1

zk·d | < 1 for all k. Then

|B((u, U), (u, U))| =

∣∣∣∣∣
∫

Ω

σ∇u · ∇u dx+

N∑
k=1

1

zk

∫
ek

(u− Uk)(u− Uk) ds

∣∣∣∣∣
≥ d ·

(∫
Ω

|∇u|2 dx+

N∑
k=1

∫
ek

|u− Uk|2 ds

)
= d‖(u, U)‖2∗,

and thus B is coercive. �

We have now shown that B satisfies the hypotheses of the Lax-Milgram Theorem
on (V, ‖ · ‖∗). By Lemma 2.3 it thus also does on (V, ‖ · ‖V). Therefore we can
now establish the unique solvability for the variational problem (2.1).

Theorem 2.5 Under the assumptions of Ω, σ and zk given in the beginning
of the chapter, there exists, for any {Ik}Nk=1 satisfying

∑N
k=1 Ik = 0, a unique

(u, U) ∈ V s.t.;

B((u, U), (v, V )) =

N∑
k=1

IkV k, ∀(v, V ) ∈ V, (2.41)

where B is defined as in (2.2).

Proof. By the assumptions, the previous proposition implies that B satisfies
the Lax-Milgram criteria on (V, ‖ · ‖∗). To apply Lax-Milgram, we are therefore
left to show that the functional:

f : V → C, f(v, V ) =

N∑
k=1

IkV k (2.42)

is well-defined, anti-linear and continuous. It is clearly anti-linear, since for
(v, V ) and (w,W ) in V and (c1, c2) ∈ C2:

f(c1(v, V ) + c2(w,W )) =

N∑
k=1

Ik · (c1Vk + c2Wk) (2.43)

= c1

N∑
k=1

IkV k + c2

N∑
k=1

IkW k (2.44)

= c1f(v, V ) + c2f(w,W ). (2.45)
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To show well-definedness, note that for any c ∈ C;

f(v + c, V + c) =

N∑
k=1

IkV k + c

N∑
k=1

Ik =

N∑
k=1

IkV k = f(v, V ). (2.46)

To show boundedness let ε > 0 be arbitrary, and choose c s.t.:

(‖v − c‖2H1(Ω) + ‖V − cN‖2C)1/2 ≤ ‖(v, V )‖V + ε. (2.47)

Then

|f(v, V )| = |f(v − c, V − c)| =

∣∣∣∣∣
N∑
k=1

Ik(Vk − c)

∣∣∣∣∣ (2.48)

≤ ‖I‖CN · ‖V − c‖CN ≤ ‖I‖CN (‖(v, V )‖V + ε). (2.49)

Since it holds for any arbitrary ε > 0, we conclude f is bounded, thus continuous.
Hence, by Theorem 2.2, there exists a unique (u, U) ∈ V satisfying (2.41). �

We have now shown uniqueness of the problem in V, which is uniqueness up to
a constant. To establish uniqueness in H we need a new criteria. This is carried
out in the next corollary.

Corollary 2.6 If the assumptions from Theorem 2.5 holds and furthermore
we specify that

∑N
k=1 Uk = 0, then the forward problem, has a unique solution

in H.

Proof. From the previous Theorem 2.5, we know there exists a unique solution
(u, U) in V. Thus there are infinitely many solutions inH, which only differs by a
constant. Say one of these solutions is (u, U). Then U must satisfy

∑N
k=1 Uk = 0.

For any c, another solution is (u+c, U+cN ). But since
∑N
k=1 Uk+c = c ·N 6= 0

this solution does not satisfy
∑N
k=1 Uk = 0. Hence there is a unique solution of

the forward problem in H provided that
∑N
k=1 Uk = 0. �

We have now established existence and uniqueness of the forward problem via
Lax-Milgram. In the next section we will establish unique solvability by another
approach.
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2.3 Unique solvability of the forward problem via
minimization

In this section we will present a second proof that the forward problem is
uniquely solvable. This proof requires some further restrictions to the param-
eters σ, zk and the space H. The new definition of H, which we will use from
now on and throughout the thesis is:

H := {(u, U) ∈ H1(Ω)× RN |U1 + · · ·+ UN = 0}. (2.50)

Regarding σ and zk we assume that these are real valued functions defined on
Ω and that there exists an ε > 0 s.t.

ε < σ <
1

ε
and ε < zk <

1

ε
for all k = 1, . . . , N. (2.51)

These assumptions on σ and zk will be the one used throughout the thesis.

The main result of this section establishes a 1-to-1 correspondence between
solutions of the forward problem and minimizers of the functional Fσ : H → R
defined by:

Fσ(u, U) =
1

2

∫
Ω

σ|∇u|2dx+
1

2

N∑
k=1

∫
ek

1

zk
(u− Uk)2ds−

N∑
k=1

IkUk. (2.52)

Notice that

Fσ(u, U) = B((u, U), (u, U))−
N∑
k=1

IkUk, (2.53)

where B was defined in (2.2).

In this section we equip the space H with the inner product:

〈(u, U), (v, V )〉H :=

∫
Ω

uv dx+

∫
Ω

∇u · ∇v dx+
∑
k=1

UkVk (2.54)

and the associated induced norm is:

‖(u, U)‖H =

(∫
Ω

u2dx+

∫
Ω

|∇u|2dx+

N∑
k=1

U2
k

)1/2

. (2.55)

As a start, we will prove a Proposition, which will be useful later on.
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Proposition 2.7 There exists a C > 0, depending on Ω and the electrodes
{ek}Nk=1, s.t. for any (u, U) ∈ H, the below inequality holds:∫

Ω

u2dx+

N∑
k=1

U2
k ≤ C

(∫
Ω

|∇u|2dx+

N∑
k=1

∫
ek

(u− Uk)2ds

)
. (2.56)

Proof. We prove this by showing that:

κ := inf
(u,U)∈H

∫
Ω
|∇u|2dx+

∑N
k=1

∫
ek

(u− Uk)2ds∫
Ω
|∇u|2dx+

∫
Ω
u2dx+

∑N
k=1 U

2
k

> 0. (2.57)

This is shown by contradiction. So assume κ = 0. Then there must exists a
sequence {(un, Un)}∞n=1 s.t.

lim
n→∞

∫
Ω

|∇un|2dx+

N∑
k=1

∫
ek

(un − Unk )2ds = 0. (2.58)

The statement in (2.58) is equivalent to:

lim
n→∞

∫
Ω

|∇un|2dx = 0 (2.59)

lim
n→∞

∫
ek

(un − Unk )2ds = 0 for any k = 0, . . . , N. (2.60)

Without loss of generality we can assume that the elements of the sequence
has norm 1, ‖(un, Un)‖H = 1. The unit sphere is compact in {U ∈ RN |U1 +
· · · + UN = 0}, and by Theorem A.6 the unit sphere is weakly compact in
H1(Ω). Therefore there exists (u, U) ∈ H with ‖(u, U)‖H = 1 and a subsequence
{(unj , Unj )}∞j=1 of {(un, Un)}∞n=1 such that

unj ⇀ u in H1(Ω) as j →∞ (2.61)
Unj → U as j →∞. (2.62)

Since {unj} is bounded in H1(Ω) the trace theorem (Theorem A.5) implies
that {unj |ek} is bounded in H1/2(ek), hence in L2(ek) and L1(ek), for each
k = 1, . . . , N . For any k we have that:∫

ek

(unj − Uk)2ds =

∫
ek

[
(unj − Unj

k )2 + 2unj (U
nj

k − Uk) + U2
k − (U

nj

k )2
]
ds

=

∫
ek

(unj − Unj

k )2ds

+ 2(U
nj

k − Uk)

∫
ek

unjds+ |ek|(U2
k − (U

nj

k )2)
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Using (2.60) on the first part above and (2.62) on the last two parts, we conclude
that

lim
j→∞

∫
ek

(unj − Uk)2ds = 0. (2.63)

Notice that this only holds since u is bounded in L1(ek). Thus unj |ek → Uk in
L2(ek) and by the trace theorem unj |ek ⇀ u|ek in H1/2(ek), thus also in L2(ek).
Therefore by uniqueness of the limit we have u|ek = Uk for any k = 0, . . . , N .
Furthermore∫

Ω

|∇(unj − u)|2dx =

∫
Ω

|∇unj |2dx+

∫
Ω

|∇u|2dx− 2

∫
Ω

∇unj · ∇u dx (2.64)

→ 0 +

∫
Ω

|∇u|2dx− 2

∫
Ω

|∇u|2dx = −
∫

Ω

|∇u|2dx, (2.65)

as j → ∞. Now, since
∫

Ω
|∇(unj − u)|2dx ≥ 0, we must have

∫
Ω
|∇u|2dx = 0,

thus is u constant in Ω. Hence U1 = · · · = UN = u. But since U1 + · · ·+UN = 0,
we must have u = U1 = · · · = UN = 0, which contradicts with ‖(u, U)‖H = 1.
Therefore (2.57) holds true. Hence for any (u, U) ∈ H,∫

Ω
|∇u|2dx+

∑N
k=1

∫
ek

(u− Uk)2ds∫
Ω
|∇u|2dx+

∫
Ω
u2dx+

∑N
k=1 U

2
k

≥ κ. (2.66)

By
∫

Ω
|∇u|2dx ≥ 0,∫

Ω
|∇u|2dx+

∑N
k=1

∫
ek

(u− Uk)2ds∫
Ω
u2dx+

∑N
k=1 U

2
k

≥ κ, (2.67)

which gives us

1

κ

(∫
Ω

|∇u|2dx+

N∑
k=1

∫
ek

(u− Uk)2ds

)
≥
∫

Ω

u2dx+

N∑
k=1

U2
k (2.68)

and we have shown (2.56). �

We will use this result when proving the next Proposition, which states some
properties of Fσ. Here we will show that Fσ is strictly convex, Gateaux differ-
entiable and coercive.

Proposition 2.8 The functional Fσ : H → R given in (2.52) has the follow-
ing properties:

(a) Fσ is strictly convex.
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(b) Fσ is Gateaux-differentiable in H and the derivative at (u, U) in the direction
of (v, V ) is:

DG(Fσ((u, U)); (v, V ))

=

∫
Ω

σ∇u · ∇vdx+

N∑
k=1

∫
ek

1

zk
(u− Uk)(v − Vk)ds−

N∑
k=1

IkVK .
(2.69)

(c) Fσ is coercive in the sense that there exists a constant c > 0, depending on
κ from (2.57) and ε, s.t.

Fσ(u, U) ≥ c

2
‖(u, U)‖2H −

1

2c

N∑
k=1

I2
k . (2.70)

Notice that the first two parts on the right hand side of (2.69) sum up to
B((u, U), (v, V )), defined in (2.2), and the last part is the right hand side of
(2.1).

Proof. (a) The first two terms of Fσ,
∫

Ω
σ|∇u|2dx and

∫
ek

1
zk

(u − Uk)2ds,
are quadratic, thus strictly convex. The last term,

∑N
k=1 IkUk, is linear, hence

convex. Therefore Fσ is strictly convex.

(b) In this proof we will find the Gateaux derivative of Fσ at the point (u, U)
in direction of (v, V ), given by:

DG(Fσ((u, U)); (v, V )) = lim
ε→0

Fσ((u, U) + ε(v, V ))− Fσ(u, U)

ε
. (2.71)
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The first part Fσ((u, U) + ε(v, V )) can be seen as:

Fσ((u, U) + ε(v, V ))

=
1

2

∫
Ω

σ|∇(u+ εv)|2dx+
1

2

N∑
k=1

∫
ek

1

zk
(u+ εv − Uk − εVk)2ds

−
N∑
k=1

Ik(Uk + εVk)

=
1

2

∫
Ω

σ|∇u|2 + ε2σ|∇v|2 + 2σ∇u · ∇vdx

+
1

2

N∑
k=1

∫
ek

1

zk

[
(u− Uk)2 + ε2(v − Vk)2 + 2ε(u− Uk)(v − Vk)

]
ds

−
N∑
k=0

IkUk + εIkVk

= Fσ(u, U) + ε2

(
Fσ(v, V ) +

N∑
k=1

IkVk

)

+ ε

(∫
Ω

σ∇u · ∇vdx+

N∑
k=1

∫
ek

1

zk
(u− Uk)(v − Vk)ds−

N∑
k=1

IkVK

)

= Fσ(u, U) + ε2

(
Fσ(v, V ) +

N∑
k=1

IkVk

)

+ ε

(
B((u, U), (v, V ))−

N∑
k=1

IkVK

)
.

Hence the Gateaux derivative is:

DG(Fσ((u, U)); (v, V ))

= lim
ε→0

ε2
(
Fσ(v, V ) +

∑N
k=1 IkVk

)
+ ε
(
B((u, U), (v, V ))−

∑N
k=1 IkVK

)
ε

= lim
ε→0

(
ε

(
Fσ(v, V ) +

N∑
k=1

IkVk

)
+B((u, U), (v, V ))−

N∑
k=1

IkVK

)

= B((u, U), (v, V ))−
N∑
k=1

IkVK

=

∫
Ω

σ∇u · ∇vdx+

N∑
k=1

∫
ek

1

zk
(u− Uk)(v − Vk)ds−

N∑
k=1

IkVK .
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(c) By (2.66) from the proof of Proposition 2.7 we have∫
Ω

|∇u|2dx+

N∑
k=1

∫
ek

(u− Uk)2ds ≥ κ

(∫
Ω

|∇u|2dx+

∫
Ω

u2dx+

N∑
k=1

U2
k

)
(2.72)

= κ‖(u, U)‖2H. (2.73)

We have that ε ≤ σ, zk ≤ ε−1 for all k, i.e. ε−1σ ≥ 1 and ε−1z−1
k ≥ 1. Thus∫

Ω

|∇u|2dx+

N∑
k=1

∫
ek

(u− Uk)2ds

≤
∫

Ω

ε−1σ|∇u|2dx+

N∑
k=1

∫
ek

ε−1 1

zk
(u− Uk)2ds.

(2.74)

So

ε

2

(∫
Ω

|∇u|2dx+

N∑
k=1

∫
ek

(u− Uk)2ds

)

≤ 1

2

∫
Ω

σ|∇u|2dx+
1

2

N∑
k=1

∫
ek

1

zk
(u− Uk)2ds

= Fσ(u, U) +

N∑
k=1

IkUk.

Combining this with (2.73), we get

Fσ(u, U) ≥ κ ε
2
‖(u, U)‖2H −

N∑
k=1

IkUk. (2.75)

Let us from now denote c = κ ε2 . By the definition of the norm ‖ · ‖H in (2.55),

‖(u, U)‖2H = ‖u‖2H1(Ω) +

N∑
k=1

U2
k . (2.76)

Using that (x− y)2 ≥ 1
2x

2 − y2, we get

c

N∑
k=1

U2
k −

N∑
k=1

IkUk = c

N∑
k=1

(
Uk −

1

2c
Ik

)2

− 1

4c

N∑
k=1

I2
k (2.77)

≥ c
N∑
k=1

(
1

2
U2
k −

1

4c2
I2
k

)
− 1

4c

N∑
k=1

I2
k (2.78)

=
c

2

N∑
k=1

U2
k −

1

2c

N∑
k=1

I2
k . (2.79)
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Combining the above with (2.75) we have

Fσ(u, U) ≥ c

2
‖(u, U)‖2H −

1

2c

N∑
k=1

I2
k , (2.80)

which finishes the proof. �

The properties of Fσ will now be useful when establishing uniqueness. First we
will show how a solution of the forward problem relates to Fσ.

Proposition 2.9 Let (u, U) ∈ H. Then, (u, U) is a solution to the forward
problem with conductivity σ if and only if

DG(Fσ((u, U)); (v, V )) = 0 ∀(v, V ) ∈ H. (2.81)

Proof. Proposition 2.8 (2) states that

DG(Fσ((u, U)); (v, V )) = B((u, U), (v, V ))−
N∑
k=1

IkVK (2.82)

and by Proposition 2.1, (u, U) solves the forward problem if and only if

B((u, U), (v, V )) =

N∑
k=1

IkVK ∀(v, V ) ∈ H. (2.83)

This completes the proof. �

Now we are ready to state the main result of this section. Using Fσ we show
how the forward problem has a unique solution, and that this solution can be
found by minimizing Fσ.

Theorem 2.10 Fσ has a unique minimizer (u, U) in H and that minimizer
is a solution of the forward problem. Conversely, if the forward problem has a
solution, that solution is a minimizer of Fσ and is hence unique.

Proof. First let us show that Fσ has a unique minimizer in H. Let

d := inf
(u,U)∈H

Fσ(u, U) (2.84)
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and let {(un, Un)}∞n=1 ⊂ H be a minimizing sequence for Fσ s.t.

d ≤ Fσ(un, Un) ≤ d+
1

n
. (2.85)

Combining (2.75), (2.76) and (2.77), there exists a c > 0 s.t.

Fσ(u, U) ≥ c‖u‖2H1(Ω) + c

N∑
k=1

(
Uk −

1

2c
Ik

)2

− 1

4c

N∑
k=1

I2
k (2.86)

≥ − 1

4c

N∑
k=1

I2
k , (2.87)

for all (u, U) ∈ H. Therefore d 6= −∞. By Proposition 2.8 (c)

lim
‖(u,U)‖H→∞

Fσ(u, U) =∞. (2.88)

In view of (2.85) and (2.88) it follows that {(un, Un)}∞n=1 is bounded. This
in turn implies {(un, Un)}∞n=1 is weakly compact (by Theorem A.6), i.e. there
exists a subsequence {(unj , Unj )}∞j=1 such that

unj ⇀ u in H1(Ω) and Unj → U in {U ∈ RN |U1 + · · ·+ UN = 0} (2.89)

for some (u, U) ∈ H. By Proposition 2.8 (a) and (b), Fσ is convex and Gateaux
differentiable at (u, U) in any direction, hence also in the direction of (unj −
u, Unj − U) for any j. Therefore

Fσ(unj , Unj ) ≥ Fσ(u, U) +DG(Fσ((u, U)); (unj − u, Unj − U)) (2.90)

and by the convergence (2.89)

DG(Fσ((u, U)); (unj − u, Unj − U))→ 0 as j →∞. (2.91)

Thus as j → ∞, Fσ(u, U) ≤ Fσ(unj , Unj ) → d. Combining with (2.84),
Fσ(u, U) = d. Thus (u, U) is a global minimizer of Fσ. It is unique by Fσ
being strictly convex. Furthermore at (u, U), DG(Fσ((u, U)); (v, V )) = 0 for
all (v, V ) ∈ H. Thus, by Proposition 2.9, (u, U) is a solution to the forward
problem.

On the other hand, if (u, U) is a solution to the forward problem, we have,
by Proposition 2.9, that DG(Fσ((u, U)); (v, V )) = 0 for all (v, V ) ∈ H and by
convexity (u, U) must be a minimizer of Fσ. By strict convexity it is unique. �

We have now shown existence and uniqueness of the forward problem by two
different approaches. In Chapter 4 we will study the forward problem by doing
numerical experiments. In the next chapter we will study the inverse problem
of finding the conductivity.
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Chapter 3

Current Density Impedance
Imaging

In this chapter we will discuss the inverse problem of finding the conductivity
σ. We will characterize the non-uniqueness of the problem and to which extend
we can find a solution to the problem.

By the previous chapter, there is a unique solution (u, U) ∈ H, which solves
the forward problem w.r.t. σ and {Ik}Nk=1, in weak sense. In this Chapter we
fix the conductivity σ and let (u, U) be the solution of the forward problem
with this conductivity. We denote the magnitude of the current density by
a, a := σ|∇u|. The main goal of this section is to discuss if knowledge of a
determines σ uniquely. By knowledge of a we define the functional Ga by:

Ga(v, V ) =

∫
Ω

a|∇v| dx+

N∑
k=1

∫
ek

1

2zk
(v − Vk)2 ds−

N∑
k=1

IkVk. (3.1)

Notice how the construction of Ga arises from Fσ. Ga(u, U) only differs from
Fσ by 1

2

∫
Ω
a|∇u|dx.
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3.1 Defining a minimal gradient problem

In this section we will show, that (u, U) is a minimizer of Ga given in (3.1).

Proposition 3.1 For any (v, V ) in H it holds that

Ga(v, V ) ≥ Ga(u, U), (3.2)

i.e. (u, U) is a minimizer of Ga.

Proof. We let (v, V ) ∈ H. Then

Ga(v, V ) =

∫
Ω

σ|∇u||∇v| dx+

N∑
k=1

∫
ek

1

2zk
(v − Vk)2 ds−

N∑
k=1

IkVk (3.3)

≥
∫

Ω

σ∇u · ∇v dx+

N∑
k=1

∫
ek

(
1

2zk
(v − Vk)2 − σ ∂u

∂n
Vk

)
ds, (3.4)

where the last inequality comes by u solving the forward problem, so (1.4) holds.
Notice that if v = u we have equality in (3.4). Also ∇ · σ∇u = 0 in Ω implies∫

Ω

σ∇u · ∇v dx =

∫
∂Ω

vσ
∂u

∂n
ds−

∫
Ω

∇ · σ∇uv dx

=

∫
∂Ω

vσ
∂u

∂n
ds =

N∑
k=1

∫
ek

vσ
∂u

∂n
ds,

with the last equality coming from σ ∂u∂n = 0 on ∂Ω\ ∪Nk=1 ek. Thus we have

Ga(v, V ) ≥
N∑
k=1

∫
ek

(
vσ
∂u

∂n
+

1

2zk
(v − Vk)2 − σ ∂u

∂n
Vk

)
ds (3.5)

=

N∑
k=1

∫
ek

1

zk

(
zkσ

∂u

∂n
v +

1

2
(v − Vk)2 − zkσ

∂u

∂n
Vk

)
ds (3.6)

=

N∑
k=1

∫
ek

1

zk

(
−(u− Uk)(v − Vk) +

1

2
(v − Vk)2

)
ds, (3.7)

with the last inequality coming from zkσ
∂u
∂n = Uk − u. At this point we observe

that if v = u, we would have equality in (3.4) and (3.5) which implies that:

Ga(u, U) =

N∑
k=1

(
− 1

2zk

)∫
ek

(u− Uk)2 ds. (3.8)
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We have that

((u− Uk) + (v − Vk))2 ≥ 0 ⇔ (v − Vk)2 ≥ 2(u− Uk)(v − Vk)− (u− Uk)2

and therefore:

Ga(v, V ) ≥
N∑
k=1

∫
ek

1

zk

(
−(u− Uk)(v − Vk) + (u− Uk)(v − Vk)− 1

2
(u− Uk)2

)

=

N∑
k=1

∫
ek

− 1

2zk
(u− Uk)2 ds = Ga(u, U)

This concludes the proof. �

Using this result, we can show non-uniqueness of the inverse problem and fur-
thermore characterize the non-uniqueness.

3.2 Characterization of non-uniqueness

In this section we will study the non-uniqueness of determining the unknown
conductivity σ. The content of the first result is that knowledge of a alone
does not suffice to uniquely determine σ. Moreover, this result furnishes a
characterization of this non-uniqueness.

Theorem 3.2 Let (ũ, Ũ) be the solution of the forward problem with conduc-
tivity σ̃. Assume ∂Ω ∈ C1,α for some α ∈ (0, 1) and σ, σ̃ ∈ Cα(Ω;R). Then, if

σ|∇u| = σ̃|∇ũ| > 0 a.e. in Ω, (3.9)

there exists a function φ ∈ C1(u(Ω)), with φ′(t) > 0 a.e. s.t.

ũ = φ ◦ u in Ω and σ̃ =
σ

φ′ ◦ u
a.e. in Ω. (3.10)

Furthermore for all k = 1, . . . , N :

φ(t) = t− (Uk − Ũk) for t ∈ u(ek) (3.11)

Proof. Because of (3.9), both (u, U) and (ũ, Ũ) minimize Ga, i.e.

Ga(u, U) = Ga(ũ, Ũ). (3.12)
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Therefore by (3.7):

Ga(ũ, Ũ) =

N∑
k=1

∫
ek

1

zk

(
−(u− Uk)(ũ− Ũk) +

1

2
(ũ− Ũk)2

)
ds, (3.13)

and
Ga(u, U) = −1

2

∫
ek

1

zk
(u− Uk)2 ds. (3.14)

Thus

Ga(ũ, Ũ)−Ga(u, U)

=
1

2

N∑
k=1

∫
ek

1

zk

(
(u− Uk)2 + (ũ− Ũk)2 − 2(u− Uk)(ũ− Ũk)

)
ds

=
1

2

N∑
k=1

∫
ek

1

zk

(
(u− Uk)− (ũ− Ũk)

)2

ds = 0

By zk’s being strictly positive and
(

(u− Uk)− (ũ− Ũk)
)2

≥ 0 we have∫
ek

1

zk

(
(u− Uk)− (ũ− Ũk)

)2

ds = 0 for all k = 1, . . . , N.

Hence
(u− Uk)− (ũ− Ũk) = 0 a.e. on ek, (3.15)

i.e.
u− Uk = ũ− Ũk a.e on ek for all k = 1, . . . , N. (3.16)

Since we also have equality in (3.4) when v = ũ:∫
Ω

σ|∇u||∇ũ| dx =

∫
Ω

σ∇u · ∇ũ dx. (3.17)

Thus ∫
Ω

σ(|∇u||∇ũ| − ∇u · ∇ũ) dx = 0. (3.18)

Since σ is strictly positive in Ω and |∇u||∇ũ| − ∇u · ∇ũ ≥ 0 we must therefore
have

|∇u||∇ũ| = ∇u · ∇ũ a.e. in Ω. (3.19)

We let S = {x ∈ Ω||∇u(x)| = 0} ∪ {x ∈ Ω||∇ũ(x)| = 0}. Both u and ũ are
differentiable, even C1,α in Ω, by elliptic regularity (Theorem (A.4)), thus ∇u
and ∇ũ are continuous in Ω. Therefore S is closed in Ω and by (3.9), it follows
that Ω\S is dense in Ω. By (3.9) and continuity, whenever ∇u 6= 0 or ∇ũ 6= 0,
we can write:

∇ũ = µ∇u. (3.20)
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Here µ is continuous on Ω\S and µ > 0. Since Ω\S is dense in Ω, µ can be
extended continuously to all of Ω.

We let Lt be a connected component of the level set of u with the value t ∈
u(Ω\S). Differentiating in a tangential direction, vt, to Lt, gives ∇u · vt = 0.
Thus by (3.20); ∇ũ · vt = 0, i.e. ũ is constant on Lt. Notice that ũ is not
necessarily the same constant on all the connected components of the level set
of u with value t.

Explicitly, we can write, that for any x0 ∈ Ω\S:

ũ|L(u−1(u(x0));x0) ≡ constant, (3.21)

where L(u−1(u(x0));x0) defines the connected component of the level set of u,
with value u(x0), including x0. Furthermore we can write Ω\S as:

Ω\S =
⋃

t∈u(Ω\S)

u−1(t) =
⋃

t∈u(Ω\S)

⋃
Lt of u−1(t)

Lt. (3.22)

Thus:
u(Ω\S) =

⋃
t∈u(Ω\S)

⋃
Lt of u−1(t)

u(Lt). (3.23)

Defining φ : u(Ω\S)→ R by:

φ|u(L(u−1(u(x0));x0)) := ũ(x), (3.24)

where x is any point in L(u−1(u(x0));x0). This is well-defined by (3.21) and
hence:

∀x ∈ Ω\S : φ(u(x)) = ˜u(x). (3.25)

Furthermore by ũ being continuous on Ω, the preceding equality extends to hold
on all of Ω. Explicitly, we have:

φ(u(x)) = ũ(x), for all x ∈ Ω. (3.26)

Hence we have shown the first part of (3.10). Furthermore, ũ is differentiable,
thus φ is and

∇ũ(x) = φ′(u(x))∇u(x) (3.27)

Since this holds for all x ∈ Ω, (3.20) implies that µ = φ′◦u, thus φ′ is continuous
on u(Ω). Moreover µ > 0 on Ω\S, hence φ′ > 0 on u(Ω\S).

Using (3.9)

σ(x)|∇u(x)| = σ̃(x)|∇ũ(x)| = σ̃(x) · (φ′ ◦ u)(x)|∇u(x)|, ∀x ∈ Ω\S. (3.28)
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Since |∇u| > 0 on Ω\S:

σ̃ =
σ

φ′ ◦ u
on Ω\S, (3.29)

we have shown the second part of (3.10). Finally, by (3.16), for any k = 1, . . . , N :

ũ(x) = φ(u(x)) = u(x)− (Uk − Ũk) on ek, (3.30)

or
φ(t) = t− (Uk − Ũk) for t ∈ u(ek) (3.31)

and we have shown that (3.11) holds. �

Another result rises from the Theorem above. That is if the magnitude of the
current densities of two pairs are identical, then so are the current density. This
result is stated in the Corollary below.

Corollary 3.3 Let σ̃ and (ũ, Ũ) be defined as in the previous Theorem. Let
J := σ∇u and J̃ := σ̃∇ũ. If

|J | = |J̃ | > 0 a.e. in Ω, (3.32)

then
J = J̃ in Ω. (3.33)

Proof. The proof of this is immediate from the previous Theorem. Using
(3.10) and (3.27) we have:

J̃ = σ̃∇ũ =
σ

φ′ ◦ u
∇ũ = σ∇u = J in Ω\S

Both J and J̃ are continuous by elliptic regularity in Ω, since σ, σ̃ ∈ Cα(Ω) and
u, ũ ∈ C1,α(Ω). Furthermore Ω\S is dense in Ω, thus the above extends to hold
in all of Ω. �

Another result, which will be useful when reconstructing the conductivity is the
Maximum Principle of the forward problem.

Proposition 3.4 (Maximum principle). If (u, U) is a solution to the for-
ward problem then u attains maximum, M , and minimum, m, on

⋃N
k=1 ek.

Furthermore if Γ is a curve on the boundary of Ω connecting all electrodes ek,
then u(Γ ∪

⋃N
k=1 ek) = u(Ω).
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Proof. By the weak maximum principle, Theorem A.1, u attains its minimum
and maximum on Ω on ∂Ω. Thus there is a x0 ∈ ∂Ω s.t. u(x0) = M . By Hopf’s
Lemma, Lemma A.2, ∂u∂n (x0) > 0, and since u satisfies the boundary condition
(1.3), we have x0 ∈

⋃N
k=1 ek. In the exact same way, the weak maximum

principle states, that there exists a y0 ∈ ∂Ω, s.t. u(y0) = m, and by Hopf’s
Lemma ∂u

∂n (y0) < 0, thus y0 ∈
⋃N
k=1 ek.

By the definition of Γ, Γ∪
⋃N
k=1 ek is connected. Therefore u(Γ∪

⋃N
k=1 ek) is an

interval, and by the previous result, it includesm andM . Thus u(Γ∪
⋃N
k=1 ek) =

[m,M ] = u(Ω). �

With this Proposition, we are now ready to state and prove that if u and ũ
relates in a certain way on Γ, and σ|∇u| = σ̃|∇ũ|, we have uniqueness of the
inverse problem.

Theorem 3.5 Let (ũ, Ũ) be the solution to the forward problem with conduc-
tivity σ̃. Let σ, σ̃ ∈ Cα(Ω), for some α ∈ (0, 1). We let Γ ⊂ ∂Ω be a curve,
connecting the electrodes. If

σ|∇u| = σ̃|∇ũ| > 0 a.e. in Ω, (3.34)

and there exists a constant C s.t.

u|Γ − C = ũ|Γ. (3.35)

Then
u− C = ũ in Ω (3.36)

and
σ = σ̃ in Ω. (3.37)

Proof. From Theorem 3.2:

ũ = φ ◦ u in Ω. (3.38)

But now we assume that σ, σ̃ ∈ Cα(Ω) instead of σ, σ̃ ∈ Cα(Ω), thus, by elliptic
regularity, the above extends to hold in Ω, i.e.

ũ = φ ◦ u in Ω. (3.39)

And for any k = 1, . . . , N , let t ∈ u(ek) be arbitrary. Then:

φ(t) = t− (Uk − Ũk) (3.40)
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Taking any x ∈ Γ we have:

u(x)− C = ũ(x) = φ(u(x)). (3.41)

Thus for any t ∈ u(Γ):
φ(t) = t− C. (3.42)

Combining (3.40) with (3.42) and using that u is continuous on Ω gives us: For
any x0 ∈ Γ ∩ ek,

C = Uk − Ũk for all k = 1, . . . , N (3.43)

So on u(Γ∪
⋃N
k=1 ek), φ(t) = t−C. By the previous maximum principle u(Ω) =

u(Γ ∪
⋃N
k=1 ek), thus

φ(t) = t− C in u(Ω). (3.44)

Hence for any x ∈ Ω:

ũ(x) = φ(u(x)) = u(x)− C. (3.45)

Therefore ∇u = ∇ũ in Ω. Combining this with (3.34) and using the previous
Corollary:

σ∇u = σ̃∇ũ in Ω, (3.46)

thus σ = σ̃ in Ω. �

In practice it will probably not be straight forward to find a function ũ, which
is a solution to the forward problem, s.t. ũ = u + C on Γ. Especially it seems
difficult if one does not know u on Γ. Thus in order to solve the inverse problem
it is not sufficient with knowledge of a. But we do know, that if we find a pair
(σ̃, ũ), where (ũ, Ũ) is the solution of the forward problem with conductivity σ̃,
there exists a function φ connecting this pair to the true conductivity σ and
voltage u. So if one can construct this φ-function we can reconstruct the true
conductivity. By the Maximum Principle, Proposition 3.4, knowledge of u and
ũ on Γ∪

⋃N
k=1 ek, where Γ is a curve connecting the electrodes gives us the range

of u and ũ in the entire domain Ω. And thus we would be able to construct φ
by (3.10), and hence also σ. This will be considered in Chapter 5, when solving
the inverse problem numerically.



Chapter 4

Experiments of the forward
problem

In this chapter we will do some numerical experiments of the forward problem
to support the theory from Chapter 2. Throughout this chapter we will use the
unit square as domain, Ω = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. This domain does
not actually satisfy the conditions of the theory, which was based on domains
with smooth boundary.

We will solve the forward problem numerically, by defining a regular mesh on
Ω. Such a mesh can be seen in Figure 4.1. The mesh is defined by parameters
nx and ny, s.t. Ω is divided into nx-parts in x-direction and ny parts in the
direction of y. This gives nx · ny square elements, which are then divided into
two triangles. In all our experiments we will use nx = ny.

We seek a solution, (u, U), to the forward problem, for which u is defined as
a piecewise Lagrange polynomial of order 1. So for element i, Ei, we seek a
function υi, s.t. on Ei, υi is a polynomial of order 1 and elsewhere υi = 0. Our
solution u to the forward problem will then satisfy u|Ei

= υi.

Furthermore we want U to satisfy
∑N
k=1 Uk = 0. Due to this restriction we

cannot use the variational formulation, (2.1), directly. In the next section, we
will show two methods of treating this restriction. This is done for U ∈ RN ,
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Figure 4.1: Example of a mesh on Ω. Here with nx = 3 and ny = 4.

since we in the experiments will work in a real space.

4.1 Implementing the CEM

As proved in 2.6, the forward problem has a unique solution provided
∑N
k=1 Uk =

0. There are two ways of implementing this criteria to the numerical solver.

The first one is as follows: Assume U ∈ RN and define UN = −
∑N−1
k=1 Uk. Then∑N

k=1 Uk = 0 and our biliniear form B has the form:

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇v dx+

N−1∑
k=1

1

zk

∫
ek

(u− Uk)(v − Vk) ds

+
1

zN

∫
eN

(
u+

N−1∑
k=1

Uk

)(
v +

N−1∑
k=1

Vk

)
ds.

(4.1)

Similar the right hand side of (2.1) becomes

N−1∑
k=1

IkVk − IN
N−1∑
k=1

Vk. (4.2)

Another way to do it is to expand the function space, in which we seek a solution,
by adding an element c ∈ R. Then (u, U) will solve the forward problem and
satisfy

∑N
k=1 Uk = 0 if

B((u, U, c), (v, V, d)) =

N∑
k=1

IkVk ∀(v, V, d) ∈ H1(Ω)× RN × R, (4.3)
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where

B((u, U, c), (v, V, d)) =

∫
Ω

σ∇u · ∇v dx+

N∑
k=1

1

zk

∫
ek

(u− Uk)(v − Vk) ds

+ d

N∑
k=1

Uk + c

N∑
k=1

Vk.

(4.4)

Notice that when ∇v = 0 and Vk = 0 for all k’s,
∑N
k=1 Uk = 0. Furthermore if

d = 0 and
∑N
k=0 Vk = 0, (u, U) solves the forward problem.

We will in general consider two types of electrodes through the numerical ex-
periments. The first type of electrodes are of length one and defined by:

e1 = {(x, y)|x = 0 ∧ 0 ≤ y ≤ 1} (4.5)
e2 = {(x, y)|x = 1 ∧ 0 ≤ y ≤ 1} (4.6)
e3 = {(x, y)|y = 0 ∧ 0 ≤ x ≤ 1} (4.7)
e4 = {(x, y)|y = 1 ∧ 0 ≤ x ≤ 1} (4.8)

These electrodes can only be used in the pairs (e1, e2) and (e3, e4) since we re-
quire that the electrodes have mutually disjoint closures. A basis of the currents
on these electrodes are I1 = I3 = −I2 = −I4 = 1.0, which we will use through
the experiments.

The second type of electrodes we will consider are:

e1 = {(x, y)|x = 0 ∧ 0.25 ≤ y ≤ 0.75} (4.9)
e2 = {(x, y)|x = 1 ∧ 0.25 ≤ y ≤ 0.75} (4.10)
e3 = {(x, y)|y = 0 ∧ 0.25 ≤ x ≤ 0.75} (4.11)
e4 = {(x, y)|y = 1 ∧ 0.25 ≤ x ≤ 0.75} (4.12)

These electrodes can be paired in any possible way, even with all four of them
together. The basis, which we use, consist of three electrode pairs. These are
given by their currents: (I1, I2) = (−1.0, 1.0), (I3, I4) = (−1.0, 1.0), (I1, I3) =
(−1.0, 1.0).

Regarding the impedances we let z1 = z2 = z3 = z4 = 1.0 in all experiments.

Finally when solving the forward problem we would like to compare the solution
with a true solution. We will from now on denote the true solution of the
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forward problem by (u, U) and the numerically computed solution by (unx , Unx)
depending on the mesh size nx.

Throughout the experiments we will consider three types of errors, which is

‖u− unx
‖L2

‖u‖L2

,
‖u− unx

‖H1

‖u‖H1

and
|U − Unx

|
|U |

. (4.13)

These will, respectively, be referred to as the L2-error, H1-error and electrode-
error.

4.2 Experiments with constant conductivity

In this section we will do some experiments when keeping the conductivity
constant. We consider the electrodes given in (4.5) and (4.6).

As shown in Proposition A.7 in Appendix, the solution of the forward problem
is in this scenario an affine function w.r.t. x. Thus there exists α, β ∈ R s.t.
u(x, y) = αx+ β. We choose a constant conductivity of σ = 2.3. In Figure 4.2
is a plot of the true solution of the problem, as well as, the computed solution
for a mesh with nx = ny = 128.

Figure 4.2: Left: Explicit solution u. Center: Numerical solution u128. Right: u −
u128.

As seen the numerically computed solution is almost identical to the true. The
errors are:

‖u− u128‖L2

‖u‖L2

= 5.2 · 10−8 and
‖u− u128‖H1

‖u‖H1

= 6.3 · 10−6 (4.14)

and on the electrodes
|U − U128|
|U |

= 3.7 · 10−14 (4.15)
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This is a very good indicator for the correctness of the forward solver. Notice
that the largest errors occur around the endpoints of the electrodes, especially
near (0, 0) and (0, 1), whereas the error elsewhere are very close to zero.

Similar results are seen when using the electrodes (4.7) and (4.8).

Assuming the forward solver works as intended, we will now focus on more
complex scenarios. In these scenarios we do not have an explicit formula for
the solution of the forward problem. Therefore we will throughout this chapter
consider a solution produced on a very fine mesh as the true solution, u = u1024.

4.3 Experiments with smooth conductivity

In this section we let the conductivity σ be smooth on Ω given by the Gaussian
function

σ(x, y) = 10e
−
(

(x−0.3)2

0.1 +
(y−0.4)2

0.1

)
+ 0.6 (4.16)

Figure 4.3: Convergence rate w.r.t. elementsize h . Here with conductivity given in
(4.16) and electrodes defined in (4.5)- (4.6)

We start by using the electrodes (4.5) and (4.6). In Figure 4.3 is a plot of the
convergence rate, w.r.t. the element size h. This is defined as h := n−1

x . The
error of unx

in H1 has a convergence of an order very close to 1, exactly 0.98,
whereas the convergence order in L2 and on the electrodes are larger than 2,
exactly 2.3.
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In Figure 4.4 is a plot of the convergence rate for two different combinations of
the electrodes given in (4.9)-(4.12).

Figure 4.4: Convergence rate w.r.t. elementsize h . Here with conductivity given in
(4.16) and to the left with two electrodes defined in (4.9) and (4.10), and
to the right with the electrodes (4.9)- (4.12)

Here we see almost same order of convergence in both scenarios. There are some
difference for large values of h, but for small values it looks the same. In L2 and
H1 the error of unx

have an order between 1 and 1.5. In the scenario with two
electrodes (to the left) the order is 1.07 and 1.13 for L2 and H1 respectively,
whereas the similar orders in the scenario with four electrodes (to the right) are
1.40 and 1.27. Regarding the error on the electrodes the orders are measured to
be 1.22 in the case with two electrodes and 1.30 in the case with four electrodes.

Figure 4.5: Left: u . Center: u128. Right: u− u128. Here with conductivity given in
(4.16) and with two electrodes defined in (4.9) and (4.10).

The errors are here in general also larger than the errors in the scenario shown
in Figure 4.3. This could be explained by the fact that the errors occur around
the endpoints of the electrodes. When we consider the electrodes (4.9)-(4.12)
we introduce singularities at the endpoints of these electrodes. But we still have
the singularities at the corners of the domain as well. In Figure 4.5 is a plot
of the difference between u and u128 in the scenario with (4.9) and (4.10) as
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electrodes. Here we clearly see how the large errors occur around the endpoints
of the electrodes. Another thing worth noticing is that the difference u − u128

is non-negative. This is probably since, when the current moves from the right
to the left, the voltage decreases in the same direction. The function computed
on the rough mesh will then start the decrease before the one on the fine mesh,
thus the positive difference. This is also seen when computing the solution u256

as seen in Figure 4.6.

Figure 4.6: Left: u256. Center: u− u256. Right: u256 − u128.

We see a clearly smaller error compared to the error of u128. Again the difference
u− u256 is positive, but with smaller values. Similar the difference u256 − u128

are also positive, which is again possibly because the function on the rough mesh
starts decreasing faster. This could be since the solution in a sense is concave.

4.4 Experiments with piecewise constant conduc-
tivity

In this section we consider the problem, when the conductivity is discontinuous
given by the piecewise constant function:

σ(x, y) = 1 + 5χB0.2(0.7,0.7)(x, y) + 10χB0.1(0.2,02)(x, y) (4.17)

Here χBr(x0,y0) defines the characteristic function on the ball with radius r and
center (x0, y0). This conductivity is not in accordance with the theory where
we required it to be differentiable continuous.

Using the same types of electrodes as in the previous sections we generate the
convergence plot seen in Figures 4.7 and 4.8.

In the case of the two electrodes (4.5) and (4.6) showed in Figure 4.7 we see
almost the same behaviour as in the case with smooth conductivity, although
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Figure 4.7: Convergence rate w.r.t. elementsize h . Conductivity is given in (4.17)
and electrodes defined in (4.5)- (4.6)

the order of convergence is generally lower here. In L2 and on the electrodes
the order is 1.4, whereas it was 2.3 with smooth conductivity, and in H1 it is of
order 0.7, which was 0.98 with smooth conductivity.

In the second case we consider the electrodes (4.9) and (4.12). As seen in the
left of Figure 4.8 there is a clear outlier in the case of the electrode error. Other
than that it looks similar to the results of the previous section. There are
although a small difference. For small values of h we see how the error in L2

starts converging faster than that of H1, where we in the previous section saw
same order of convergence. Here the orders are 1.7 and 0.9 for L2 and H1,
respectively, whereas it for the error on the electrodes are 1.5 (if we delete the
outlying point). In general it is possible to see these outliers on the electrodes,
especially when using the electrodes (4.9)-(4.12).

Finally in the case with four electrodes (4.9)-(4.12), we also see that the error
of L2 has a higher order of convergence than that of H1. The order of the error
on the electrodes are similar to the one in L2, which is 1.3. For the error in H1

the order is 0.97.

In Figure 4.9 is the solution to the forward problem u, the approximation u128

and their difference plotted in the scenario with the four electrodes (4.9)-(4.12).
Notice again how the errors occur at the endpoints of the electrodes. Notice
also how the voltage in the areas of high conductivity are almost constant.
Furthermore we again see that the difference u − u128 is positive, and that in
areas of large conductivity, this difference is almost constant. This can probably
also explain why we see higher order of convergence in L2 than in H1. If we look
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Figure 4.8: Convergence rate w.r.t. elementsize h . Here with conductivity (4.17).
Left: The scenario with the electrodes (4.9) and (4.10). Right: With
electrodes (4.9)- (4.12)

at the boundary of the balls with high conductivity we see that u−u128 has some
small jumps. It is probably since these discontinuities are hard to approximate
using more rough meshes. Hence it seems easier for the approximation unx

to capture the function values of the true solution, but a lot more difficult to
capture the right values of the gradient.

Figure 4.9: Left: u. Center: Solution u128. Right: u − u128. Computed with elec-
trodes (4.9)-(4.12) and conductivity (4.17).

4.5 Conclusion on experiments

From the experiments where we have an explicit solution of the forward problem,
we conclude that our solver seems to work fine.

For a relatively fine mesh, i.e. meshes of 128 × 128 elements and larger, we
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generally achieve a relative error in H1 ranging from 0.1% to 5%. In L2 the
error is generally smaller and is in the range from 5 ·10−6% to 4%. The smallest
errors are achieved when having a smooth conductivity. This seems reasonable
since the theory only holds for conductivities in C1. Although the theory applies
to these conductivities it still seems to work in the case of having a discontinuous
conductivity, although the errors are larger.

Throughout the experiments we have seen an order of convergence between
1 and 2.5. These results seems appropriate considering the results of [DS15].
Furthermore the errors seems largest around the endpoints of the electrodes,
which is also consistent with [DS15]. Thus too achieve smaller errors it would
be a good idea to have a very fine mesh around the endpoints of the electrodes.
Notice also that the largest errors actually occur at electrodes from where the
current are injected. Thus an even finer mesh here would be a good idea.

Regarding the solutions of the forward problems, the voltage u is largest close
to the electrodes where the current are injected and smallest in close range of
the electrodes where a current is extracted. In areas of large conductivity the
voltage is almost constant, and the larger conductivity, the more constant is the
voltage.

Finally it seems that the value of the voltage in the domain is increasing when
the mesh is getting finer.



Chapter 5

Reconstructing conductivity

In Chapter 3 we discussed the non-uniqueness of the inverse problem. But we
also discussed how knowledge of a = σ|∇u| and u on Υ := Γ ∪

⋃N
k=1 ek, with

Γ being a curve connecting the electrodes, makes it possible to reconstruct σ.
Therefore we will in this chapter assume knowledge of a = σ|∇u| and u(Υ).

In this chapter we call (σ, u) a pair if (u, U) is the solution to the forward
problem with conductivity σ. The idea would now be to find a pair (σ̃, ũ) that
satisfies σ̃|∇ũ| = a. Once we have such a pair we will use the information in
u(Υ) to relate (σ, u) and (σ̃, ũ).

5.1 Algorithm for reconstruction

In this section we construct an algorithm, which finds a pair (σ̃, ũ), s.t. σ̃|∇ũ| =
a. A way to do this is as follows.

1. Initial guess for the conductivity, σ0, fx. σ0 = 1.

2. Solve the forward problem with σ0 as conductivity. Call this solution (u0, U0).
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3. Define σ1 by

σ1(x, y) =
a

|∇u0|
(5.1)

4. Given conductivity σn compute (un, Un) by solving the forward problem.

5. Is ‖a − σn|∇un|‖L2 < tolerance? If yes, we have a pair (σn, un). If no,
proceed to 6.

6. Given un compute σn+1 by

σn+1(x, y) =
a

|∇un|
(5.2)

and repeat 4.

The idea behind the sixth step is to ensure that σn+1|∇un| = a. Notice that
there is a problem in constructing the conductivity if there are points where
∇un = 0. In these situations we define an ε << 1 s.t. if there is a point
(x0, y0) where a

|∇un| (x0, y0) > ε−1, we let σn+1(x0, y0) = ε−1. In the experi-
ments this is only seen very few times. We choose ε very small, s.t. we ensure
that σn+1|∇un| = a.

In the next we will show how the sequence produced in the algorithm are a
decreasing sequence with respect to Ga (3.1). This is proved in the lemma
below.

Lemma 5.1 Assume ũ ∈ H1(Ω) and there is an ε > 0 s.t.

ε ≤ a

|∇ũ|
≤ 1

ε
. (5.3)

Let σ = a
|∇u| and let (u, U) be the unique solution of the forward problem with

conductivity σ. Then

Ga(u, U) ≤ Ga(ũ, Ũ) for any Ũ satisfying
N∑
k=1

Ũk = 0, (5.4)

and if Ga(u, U) = Ga(ũ, Ũ), then (u, U) = (ũ, Ũ).
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Proof. Choose Ũ , s.t.
∑N
k=1 Ũk = 0. Then

Ga(ũ, Ũ) =

∫
Ω

a|∇ũ|dx+

N∑
k=1

∫
ek

1

2zk
(ũ− Ũk)2ds−

N∑
k=1

IkŨk (5.5)

=

∫
Ω

a|∇ũ|dx+
1

2

N∑
k=1

∫
ek

1

zk
(ũ− Ũk)2ds−

N∑
k=1

IkŨk (5.6)

=
1

2

∫
Ω

a|∇ũ|dx+ Fσ(ũ, Ũ). (5.7)

By Theorem 2.10, (u, U) is a minimizer of Fσ(u, U). Thus

Ga(ũ, Ũ) =
1

2

∫
Ω

a|∇ũ|dx+ Fσ(ũ, Ũ) ≥ 1

2

∫
Ω

a|∇ũ|dx+ Fσ(u, U). (5.8)

Next

Ga(u, U) =

∫
Ω

a|∇u|dx+
1

2

N∑
k=1

∫
ek

1

zk
(u− Uk)2ds−

N∑
k=1

IkUk (5.9)

≤ 1

2

∫
Ω

a

|∇ũ|
|∇u|2dx+

1

2

∫
Ω

a|∇ũ|dx

+
1

2

N∑
k=1

∫
ek

1

zk
(u− Uk)2ds−

N∑
k=1

IkUk

(5.10)

=
1

2

∫
Ω

a|∇ũ|dx+ Fσ(u, U). (5.11)

Here the inequality in (5.10) comes by Cauchy-Schwarz and the fact that
√
ab ≤

1
2a+ 1

2b: ∫
Ω

a|∇u|dx =

∫
Ω

(
a

|∇u|

)1/2

|∇ũ|
(

a

|∇ũ|

)1/2

|∇u|dx (5.12)

≤
(∫

Ω

a|∇ũ|dx
)1/2(∫

Ω

a

|∇ũ|
|∇u|2dx

)1/2

(5.13)

≤ 1

2

∫
Ω

a

|∇ũ|
|∇u|2dx+

1

2

∫
Ω

a|∇ũ|dx. (5.14)

Hence
Ga(u, U) ≤ 1

2

∫
Ω

a|∇ũ|dx+ Fσ(u, U) ≤ Ga(ũ, Ũ), (5.15)

for all Ũ satisfying
∑N
k=1 Ũ = 0. Furthermore if we have equality in (5.4), we

have equality in (5.8), thus Fσ(ũ, Ũ) = Fσ(u, U). Since (u, U) is a solution
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to the forward problem, with conductivity σ, it is by Theorem 2.10 a unique
minimizer of Fσ, thus (u, U) = (ũ, Ũ). �

So the the sequence generated by the algorithm above is decreasing w.r.t. Ga.
This although does not mean, that the sequence finds the true pair (u, σ), since
by Proposition 3.1, there is no unique minimizer of Ga.

5.2 Generating φ

Assume we know both u and ũ on Υ. By Proposition 3.4 the ranges of ũ(Ω) and
u(Ω) equals the ranges of ũ(Υ) and u(Υ), respectively. As shown in Theorem
3.2, φmaps from ũ(Ω) to u(Ω). Hence knowledge of u and ũ on Υ combined with
the fact that u and ũ are continuous on Ω, thus also on Υ, gives us knowledge
of the entire interval on which φ is defined, as well as the entire range of φ.

In practice we only know u and ũ in a finite number of points on Υ. Assume
we know the values in the points {xi} and call these values {ui} and {ũi}.
Assume these sequences are sorted. Knowing the values in these points we can
approximate φ. This is done by a linear interpolation between these points.
Thus if we want to compute φ(k) for some k, we find j s.t. ũj−1 ≤ k ≤ ũj .
Then we define φ(k) by:

α =
uj − uj−1

ũj − ũj−1
(5.16)

φ(k) = α(k − ũj) + uj (5.17)

An example of this can be seen in the left of Figure 5.3.

The construction of φ′ can be done in multiple ways. One way is just to dif-
ferentiate the φ found above. Then φ′ will be piecewise constant. The more
points on Υ in which we know the values of ũ and u, the more precise should
this approximation be. There are although also cons by having knowledge in
a large number of points. Assuming that in two close points, the differences
ũj − ũj−1 and uj − uj−1 are of size 10−1 and 10−4, respectively. This will lead
to a value of φ′ at around 10−3. Hence when reconstructing σ by use of (φ′)−1,
we get a very high value of σ. This is a quite bad situation.

There are two ways to avoid this scenario. One way is two simply just to
avoid the information given in one point, if the difference in u compared to the
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difference in ũ are very small or very large. Another way is two calculate the
derivative by using values of u and ũ in more than two points. Say we want
to determine the derivative of φ at a value υ between ũj−1 and ũj . Then the
simplest way to calculate φ′(υ), as describe, is

φ′(υ) =
uj − uj−1

ũj − ũj−1
. (5.18)

This could as mentioned earlier be critical if the denominator is a lot smaller
or bigger than the numerator. Instead of avoiding these points we can consider
the values of their neighbours. Some different ways of calculating φ′(υ) is then:

φ′(υ) =
uj+1 − uj−2

ũj+1 − ũj−2
(5.19)

φ′(υ) =
1

4

(
uj−1 − uj−2

ũj−1 − ũj−2
+ 2

uj − uj−1

ũj − ũj−1
+
uj+1 − uj
ũj+1 − ũj

)
. (5.20)

There are pros and cons for any choice of method. The method in (5.18) are in
principle the correct way, since we here use all the exact known values. On the
other hand the solution computed through the algorithm only approximately
satisfy that σ̃|∇ũ| = a and therefore there could be some outliers, which can
interfere with our computation of φ′. Another thing to have in mind is that
the number of points on the boundary where we know u and ũ depends on the
choice of our mesh, and how fine it is.

In general the method which we will use is the one given in (5.18), but where we
avoid outliers. The question is then how to define, when a point is an outlier.
We will consider it an outlier if the measured derivative are below 10−3 or above
103.

5.3 Reconstruction with smooth conductivity

In this section we consider, how the reconstruction works, when the true con-
ductivity is defined by a smooth function. Let us consider the conductivity given
in (4.16).

Let (4.9) and (4.10) be the electrodes. As seen in the experiments of the forward
problem, choosing a mesh at size 128× 128 would give us an error ( on u in L2

and H1) of the solution of the forward problem at around 1%− 2%. We define
the curve Γ connecting the electrodes by

Γ = {(x, y)|(y = 1 and 0 ≤ x ≤ 1) or (0.75 < y < 1 and (x = 0 or x = 1))}.
(5.21)
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First let us compute a. A plot of σ, the solution to the forward problem u and
a can be seen in Figure 5.1. Notice here how the largest values of a are near the
electrodes and especially near the endpoints of the electrodes.

Figure 5.1: Left: The conductivity. Center: Solution to the forward problem. Right:
Magnitude of the current density, a = σ|∇u|.

For the reconstruction we will choose a tolerance for when to stop the algorithm.
An ideal thing is if this tolerance depends on a, such that the error becomes
relative. Let us therefore choose the tolerance to be ‖a‖L2 · 10−3.

In Figure 5.2 is a plot of the pair (σ̃, ũ) achieved through the algorithm, as well
as ã = σ̃|∇ũ|.

Notice how the conductivity σ̃ seems relative far from the true conductivity. The
computed ũ have a similar structure as u but not quite the same. Finally the
difference between a and ã are very small, with only a few differences around
the endpoints of the electrodes. Thus the algorithm does not find the true
conductivity σ, but a pair (σ̃, ũ) s.t. σ̃|∇ũ| ≈ a. By knowledge of u on Υ we
generate the φ-function as described in the previous section. In Figure 5.3 is a
plot of φ and (φ′)−1.

Notice how φ seems smooth, but a look at (φ′)−1 shows that this is not the case.
Also notice how φ is increasing. When constructing (φ′)−1 we have in this case
used the method in (5.20), but also avoiding some points if they were to close
to each other.

Next we compute an estimation for the solution to the forward problem u. In
Figure 5.4 is a plot of u∗ = φ(ũ) and the difference u− u∗.

As seen u and u∗ are almost the same, only with some errors around the one
electrode. The relative errors in this scenario are

‖u− u∗‖L2

‖u‖L2

= 0.002 and
‖u− u∗‖H1

‖u‖H1

= 0.03. (5.22)
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Figure 5.2: Upper left: Conductivity σ̃ after algorithm finished. Upper right: Solu-
tion of forward problem ũ. Lower left: ã = σ̃|∇ũ|. Lower right: ã− a.

We are now ready to compute the conductivity. There are two ways of computing
this. The first one is simply by use of the φ and Theorem 3.2 and the second is
by knowledge of a and u∗:

σ∗ = (φ′(ũ))−1σ̃ and σ∗2 =
a

|∇u∗|
. (5.23)

In Figure 5.5 is a plot of the two computed conductivities as well as their errors.
Both estimations seems quite good. As seen in both cases, the errors appear
around the electrodes. There are although a difference in the type of error.
For σ∗ the errors are seems to be single points. For σ∗2 the errors are more
curved shapes around the electrodes. Notice also how there seems to be some
wave like errors, in the middle of the domain, especially at σ∗. This seems to
happen when the true conductivity increases faster. The current will here move
towards the places with large conductivity. The errors might come because the
reconstruction algorithm capture these movements a bit later than they actually
happen. The errors are:

‖σ − σ∗‖L2

‖σ‖L2

= 0.047 and
‖σ − σ∗2‖L2

‖σ‖L2

= 0.005. (5.24)
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Figure 5.3: Left: φ. Right: (φ′)−1.

Figure 5.4: Left: Solution u. Center: Solution through reconstruction u∗. Right:
u−u∗. This is in the case with smooth conductivity (4.16) and electrodes
(4.9) and (4.10).

As seen the error on σ∗2 are nearly ten times smaller. But in both cases we get
a nice small error.

So this seems to work very well in the case with two electrodes. Further exper-
iments show similar results for other choices of electrodes.
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Figure 5.5: Upper left: σ. Upper center: σ∗. Upper right: σ∗2 . Lower left: σ∗ − σ∗2 .
Lower center: σ − σ∗. Lower right: σ − σ∗2 . This is in the case with
smooth conductivity (4.16) and electrodes (4.9) and (4.10)

5.4 Reconstruction with piecewise constant con-
ductivity

In this section we consider the case with a piecewise constant conductivity given
as

σ(x, y) = 1 + 5χB0.2(0.6,0.6)(x, y). (5.25)

First let us consider a case with electrodes (4.5) and (4.6). In Figure 5.6 is a
plot of the conductivity, solution of forward problem and a.

Figure 5.6: Left: σ. Center: u. Right: a = σ|∇u|.

Notice how the discontinuous conductivity clearly also make a discontinuous.



54 Reconstructing conductivity

After running the algorithm we get the pair (σ̃, ũ) plotted in Figure 5.7, together
with the plot of ã. The shape of the conductivity is captured, but the values
are way different from the original. At the edge of the ball, σ̃ has large values
of size 900. This shows the difficulties of capturing the discontinuities. On the
other hand the difference between a and ã are very small, which essentially is
what we want. The errors of ã happens around the discontinuities of σ. Notice
also that the error seems to happen at the discontinuities which points in the
direction of the electrodes. The relative error of ã are here:

‖a− ã‖L2

‖a‖L2

= 0.008. (5.26)

Figure 5.7: Upper left: Conductivity σ̃ after algorithm finished. Upper center: So-
lution of forward problem ũ. Upper right: ã = σ̃|∇ũ|. Lower left: σ− σ̃.
Lower center: ũ− u. Lower right: ã−a

a
.

Next we construct the function φ and its derivatives inverse. The derivative of
φ is in this case computed by (5.18). A plot of this can be seen in Figure 5.8.

Using this we are ready to reconstruct the conductivity. First using φ we com-
pute the voltage u∗. This is seen in Figure 5.9.
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Figure 5.8: Left: φ. Right: (φ′)−1.

Figure 5.9: Left: The reconstruction u∗. Right: u− u∗.

The reconstruction seems to work quite well. The errors are:

‖u− u∗‖L2

‖u‖L2

= 0.009 and
‖u− u∗‖H1

‖u‖H1

= 0.10. (5.27)

The error of u∗ in L2 is quite good. The error inH1 is larger. And this is also the
error which affect the reconstruction of the conductivity. It is also worthwhile
noticing the error of u∗ in the off-centered ball with high conductivity. The
error seems to be affine here, thus the difference of the gradients of u and ũ
are constant. This will clearly affect the computation of the conductivity when
using the method of σ∗2 in (5.23). In Figure 5.10 is a plot of the computed
conductivities as well as the errors.

The computed σ∗ seems as a good estimate of σ. As seen the form of the off-
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Figure 5.10: Upper left: σ∗. Upper right: σ∗2 . Lower left: σ−σ∗
σ

. Lower right: σ−σ∗2
σ

.

centered ball is captured very well. There are although some large errors around
the edge of the ball, especially at the edges pointing towards the electrodes.
Notice also that σ∗2 captures the shape of the ball, but it does not capture the
value. This is due to the discussion above of the error on u∗. At the ball it
seems that ∇u = c∇u∗ for some constant c. So when computing σ∗2 the result
will be

σ∗2 =
a

|∇u∗|
=

a

|c∇u|
=

1

|c|
σ, (5.28)

Which explains why the error at the ball seems constant. The errors in this
reconstruction are:

‖σ − σ∗‖L2

‖σ‖L2

= 0.16 and
‖σ − σ∗2‖L2

‖σ‖L2

= 0.4. (5.29)

An error at 16% might seem large, but the shape and size of the conductivity
are, as seen in the plots, captured quite well.

The errors appearing at the discontinuities could be decreased by doing the
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reconstruction for multiple choices of electrodes, since they occur in the direction
of the electrodes.

We will therefore in the next experiment consider the four electrodes (4.9)-(4.12),
with a basis of the current pattern given by (I1, I2) = (−1.0, 1.0), (I3, I4) =
(−1.0, 1.0) and (I1, I3) = (−1.0, 1.0). We will do the reconstruction for all three
choices and add them to one final reconstruction.

First let us consider the pattern (I1, I2) = (−1.0, 1.0). A plot of the recon-
structed conductivity is seen in Figure 5.11.

Figure 5.11: Upper left: σ∗. Upper right: σ∗2 . Lower left: σ−σ∗
σ

. Lower right: σ−σ∗2
σ

.

It is here worth noticing how the errors are a combination of the errors found in
the experiment with smooth conductivity shown in Figure 5.5, which appears
near the electrodes and the errors in the previous example around the edge
of the off-centered ball. The same is again seen if we use the current pattern
(I3, I4) = (−1.0, 1.0) as seen in Figure 5.12.

Finally doing the reconstruction with the two electrodes (4.9) and (4.11) com-
pletes the results. This result can be seen in Figure 5.13. Notice that we see the
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Figure 5.12: Upper left: σ∗. Upper right: σ∗2 . Lower left: σ−σ∗
σ

. Lower right: σ−σ∗2
σ

.

same errors as before, but in this case the value inside the off-centered ball are
not captured very well. One could explain this by the current travelling a short
distance, and that the direct way between the electrodes does not go through
the ball with high conductivity. Another thing to have in mind is that the sce-
nario with these two electrodes requires less knowledge of u on the boundary
compared to other choices of electrodes.

The average of the three previous computations are used as a final estimate of
the conductivity. The two different computations σ∗ and σ∗2 are almost equal
through the experiments. Therefore we only consider the average of σ∗. This is
seen in Figure 5.14. The relative error of the computed conductivity are here:

‖σ − σ∗‖L2(Ω)

‖σ‖L2(Ω)
= 0.19. (5.30)

This is not a small error, but the reconstruction captures the shape of the off-
centered ball quite good. The value in the ball are a little less than the correct.
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Figure 5.13: Upper left: σ∗. Upper right: σ∗2 . Lower left: σ−σ∗
σ

. Lower right: σ−σ∗2
σ

.

Notice how errors still occur around all four electrodes, but they are decreased
compared to the previous cases.

In real scenarios this method could be quite good since we do find the shape of
the objects. There are although the question, if we then can identify the object
correct, since we do not capture the exact conductivity of the object. Due to
the fact that the conductivity varies a lot from tissue to tissue, the error we get
might therefore be small enough to identify the object correctly. Another thing
to have in mind is to think about what happens if objects occur very close to
the electrodes. The fact of large errors occurring near the electrodes could make
it impossible to identify these objects.

Finally it is worth mentioning that when we run the algorithm we cannot expect
to get a decreasing sequence w.r.t. ‖a − ã‖L2 . Since this is how we define
the error, it could be, that if we choose the tolerance very low, the algorithm
will never stop. Therefore we could apply another stop criteria, say after 1000
iterations. Generally in the cases of discontinuous conductivity one should not
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Figure 5.14: Left: Conductivity σ∗ constructed as the average of multiple recon-
structions. Right: σ−σ∗

σ
.

expect the error ‖a− ã‖L2 to be below 1% of ‖a‖L2 . What one could do is run
the algorithm through a large number of iterations and pick out the pair which
gives the smallest error on a. This is a bit intricately, but since the theory does
not hold for discontinuous conductivity we cannot ensure that the algorithm
will actually work.
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Conclusion and Perspective

Construction of our numerical solver shows that the inverse problem can be
solved given some initial knowledge of the current density and voltage on the
boundary. In cases of smooth conductivity we have seen errors around 5%,
and for discontinuous conductivities between 15% and 20%, when the errors are
measured in L2. Although some will say these errors are large, the reconstruction
clearly captures the shape of the objects. The exact conductivity at these objects
may be a bit off, but generally they are close to the original. Smaller errors
would probably be seen if using a finer mesh. Especially in the cases with
smooth conductivity, since we in the investigation of the forward problem saw
quite large orders of convergence with respect to the mesh size.

We have shown non-uniqueness of the inverse problem and shown that if two
pairs (σ, u) and (σ̃, ũ) satisfies σ|∇u| = σ̃|∇ũ|, then there exists a strictly in-
creasing function φ, defined on the range of ũ, s.t. φ(ũ) = u and (φ′(ũ))−1σ̃ = σ.
Using the maximum principle we showed how one can construct φ by knowledge
of u and ũ on the boundary.

Through reconstruction we have seen how errors occur around the electrodes.
This type of error was also identified when solving the forward problem. Here we
saw how a fine mesh decreased these errors. For further reconstructions of the
inverse problem it is worthwhile having these observations in mind and consider
a very fine mesh around the electrodes. Furthermore we observed large errors
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around discontinuities of the conductivity. These errors can be handled through
a finer mesh, but as seen through computations of the forward problem, the order
of decrease of the errors w.r.t. the mesh size is quite small if measured in H1.
Thus a finer mesh around discontinuities would maybe not provide a significantly
smaller error, since the error in the inverse problem are related to the error in
H1 of the forward problem. So for further reconstruction experiments it might
not be worth having a very fine mesh around the discontinuities. Instead, since
the errors mainly occurred at discontinuities facing the electrodes, a good idea
is to reconstruct with multiple choices of the electrode set-up. This will decrease
the errors around the discontinuities and also the errors around the electrodes.

We have used knowledge of the current density and of the voltage on the bound-
ary. As mentioned in the introduction the current density can be achieved
through MRI scans. Although the entire current density are available through
these scans we only use the magnitude of it when reconstructing. One can think
about if the current density could be used for more. Immediately Corollary 3.3
seems to answer this question, since equality of the magnitude implies equality
of the entire current density. Regarding the knowledge of the voltage on the
boundary, it is reasonable to believe that the voltage on the electrodes can be
measured directly ([MS12]). But it is maybe not reasonable to believe we can
get knowledge of the voltage on other parts of the boundary. By continuity of
the voltage on the boundary, missing this information would imply that we are
missing knowledge of φ on one or more intervals of the range of ũ. This could
in practice be handled by doing a linear interpolation on these intervals. Doing
this it would be a good idea to have electrodes close to each other, since this
will probably decrease the length of the unknown intervals.



Appendix A

Definitions, theorems, etc.

In this part of the Appendix we provide some extra notes and some of the
theorems, definitions, propositions etc. used in the thesis. Some of the theorems
are modified from where they originally was found, s.t. they fit to the cases in
which we use them.

A.1 Notes on traces, H1/2 and H−1/2

First let us consider how we can restrict u to the boundary ∂Ω. As stated in the
trace theorem, Theorem A.5, there exists a continuous mapping T0 : H1(Ω) →
H1/2(∂Ω), s.t. T0u = u|∂Ω. I will comment a bit more on this matter and how
one should interpret H1/2.

Assume u ∈ C(Ω). Then u can be restricted to the boundary by u|∂Ω ∈ L2(∂Ω)
(Theorem A.3). Letting T0 be the operator restricting u to the boundary we
get:

‖T0u‖L2(∂Ω) = ‖u‖L2(∂Ω). (A.1)

Furthermore, (Theorem A.3), there exists a constant C > 0 s.t.

‖T0u‖L2(∂Ω) = ‖u‖L2(∂Ω) ≤ C‖u‖H1(Ω). (A.2)
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Finally if u ∈ H1(Ω), we can by density of C∞c (Ω) in H1(Ω) find a sequence
in C∞c (Ω) converging to u. Letting the operator T0 act on this sequence and
showing that the output is a Cauchy-sequence in L2(∂Ω) finishes the argument,
and we have that T0 maps from H1(Ω) into L2(∂Ω). It is not certain that T0

maps into the entire of L2(∂Ω), which gives raise to the definition of H1/2(∂Ω).
We simply define it to be the range of the operator T0, H1/2(∂Ω) = R(T0), thus
H1/2(∂Ω) ⊂ L2(∂Ω). We equip H1/2(∂Ω) with the norm given by

‖φ‖H1/2(∂Ω) = min
u∈H1(Ω),T0u=φ

‖u‖H1(Ω). (A.3)

This also gives raise to the space H−1/2(∂Ω) which will be defined as the dual
space of H1/2(∂Ω), i.e. H−1/2(∂Ω) = (H1/2(∂Ω))′.

The space H−1/2(∂Ω) will be helpful in the restriction of u to the boundary by
σ ∂u∂n . We denote this operator T1. First assume that u ∈ C2(Ω) and u solves
the forward problem, i.e. ∇ · σ∇u = 0. Using partial integration we then have

0 =

∫
Ω

∇· (σ∇u)v dx =

∫
∂Ω

σ
∂u

∂n
v ds−

∫
Ω

σ∇u ·∇v dx, ∀v ∈ C2(Ω). (A.4)

So we the define σ ∂u∂n ∈ H
−1/2(∂Ω) by how it acts on a function v ∈ H1/2(∂Ω):〈

σ
∂u

∂n
, v

〉
:=

∫
∂Ω

σ
∂u

∂n
v ds =

∫
Ω

σ∇u · ∇v dx. (A.5)

The integral
∫
∂Ω
σ
∂u

∂n
v ds does not in itself make any sense at this point, but

helps defining the operator.

Thus we now have an operator T1u = σ ∂u∂n . In [LM73] it is shown, that the
mapping can be extended to hold for all u, v ∈ H1(Ω) and ∇ · σ∇u ∈ L2(Ω),
s.t. T1 : H1(Ω)→ H−1/2(∂Ω).

A.2 Theorems, propositions, etc.

In some of the the theorems we consider the operator L, generally given by:

Lu = −
∑
i,j

aijuxixj
+
∑
i

biuxi
+ cu (A.6)
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In our cases Lu is defined by ∇ · σ∇u, thus this will be the definition of Lu in
this part of the Appendix.

Theorem A.1 (Weak maximum principle) Assume u ∈ C2(Ω) ∩ C(Ω) and

Lu = 0. (A.7)

Then u attains its maximum and minimum on Ω on ∂Ω.

Remark. This theorem is stated in [Eva10], Theorem 1 pg. 344, where the
proof is also found. It is used when establishing the maximum principle for the
forward problem (Proposition 3.4).

Lemma A.2 (Hopf’s Lemma) Assume u ∈ C2(Ω) ∩ C1(Ω) and

Lu = 0. (A.8)

Assume there exists points xM ∈ ∂Ω and xm ∈ ∂Ω s.t.

u(xM ) > u(x) and u(xm) < u(x) for all x ∈ Ω. (A.9)

Finally assume that there exists balls Bm and BM such that Bm ⊂ Ω ,BM ⊂ Ω,
xm ∈ ∂Bm and xM ∈ ∂BM . Then

∂u

∂n
(xm) < 0 and

∂u

∂n
(xM ) > 0, (A.10)

where n is the out warded unit normal of Bm and BM .

Remark. The proof of Lemma A.2 this is carried out in [Eva10] pg. 347-349.
It is used when establishing the maximum principle for the forward problem
(Proposition 3.4).

Theorem A.3 If Ω is bounded with smooth boundary, then there exists a
bounded linear operator

T : H1(Ω)→ L2(∂Ω) (A.11)

such that
Tu = u|∂Ω if u ∈ H1(Ω) ∩ C(Ω)

and
‖Tu‖L2(∂Ω) = ‖u‖L2(∂Ω) ≤ C‖u‖H1(Ω)

Remark. This is stated and proved in [Eva10] (pg. 272).
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Theorem A.4 Let Ω be a C1,α domain and let L be a strictly elliptic operator.
The if φ ∈ C1,α(Ω) and σ ∈ Cα(Ω), the Dirichlet problem

Lu = 0 in Ω, u = φ on ∂Ω (A.12)

has a unique solution in C1,α(Ω).

Remark. If σ ∈ Cα(Ω) instead, then the solution is in C1,α(Ω). We use this
in Theorem 3.2. The proof can be found in [GT01] page 211.

Theorem A.5 (Trace Theorem) Let Ω be a smooth open set. Then for any
s > 1

2 and multi index α, s.t. s− 1
2 − |α| > 0, the operator:

trα : Hs(Ω)→ Hs−|α|−1/2(∂Ω) (A.13)
u→ ∂αu|∂Ω (A.14)

is a continuous linear mapping.

Remark. We use this theorem, when considering the trace operator in the
proof of Proposition 2.1. We apply the theorem with s = 1 and α = 0. The
proof can be found in [LM73] Lemma 7.2 pg. 32.

Theorem A.6 Any bounded closed set of a Hilbert space is weakly compact

Remark. This is a consequence of Banach-Alaoglu Theorem, which states
that the closed unit ball of the dual space of a normed vector space is weakly
compact, combined with Riesz Representation Theorem, which states that any
Hilbert space is isomorphic with its dual.

Proposition A.7 Let Ω = [0, 1] × [0, 1] and assume e0 and e1 defined by
(4.5) and (4.6) are the only electrodes. If

∑N
k=1 Uk = 0 and the conductivity σ

is constant then the solution (u, U) of the forward problem is of the form

u(x, y) = αx+ β, (A.15)

where α = −I0σ−1 and β = σ(z0 − z1) + I0σ
−1.

Proof. From Corollary 2.6 the problem has a unique solution. Thus assume
the solution is given by u(x, y) = αx + β. That u satisfies (1.1) and (1.3) does
not affect the formula for α and β.
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We have that ∫
e0

σ
∂u

∂n
ds = −ασ and

∫
e1

σ
∂u

∂n
ds = ασ. (A.16)

Thus if (1.4) is satisfied we must have α = −I0σ−1 = I1σ
−1. Finally since

u|e0 = β and u|e1 = α+ β we have that on e0:

u+ z0σ
∂u

∂n
= β − z0σ (A.17)

and on e1

u+ z1σ
∂u

∂n
= β + α+ z1σ. (A.18)

So since (1.2) is satisfied and U0 + U1 = 0 we have

0 = β − z0σ + β + α+ z1σ ⇔ β = σ(z0 − z1) + α, (A.19)

and since α = I0σ
−1 we are done. �
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Appendix B

Pieces of code

In this part of the Appendix we will show some samples of the code that we use.

B.1 Defining mesh, electrodes, function space etc.

In this section we show how to define the mesh and function spaces. When
constructing the mesh, we use the build in function UnitSquareMesh, which
defines a regular triangular mesh on the unit square:

nx = 128
ny = 128
mesh = UnitSquareMesh(nx,ny)

Next we can define the boundaries and electrodes of the mesh above. First we
need to define the boundary of the mesh and how to mark the boundary. This
is done by:

boundary_parts = MeshFunction("size_t",mesh ,\
mesh.topology ().dim()-1)

ds = Measure("ds", domain=mesh ,subdomain_data=boundary_parts)
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We mark the boundary by "ds". Now we can define the different boundary
parts. If we want to define the left boundary of the domain, i.e. the electrode
defined in (4.5), we do as follows.

class LeftBoundary(SubDomain ):
""" This class defines the left boundary , i.e. the

boundary on the x[0]-axis of the domain."""
def inside(self , x, on_boundary ):

tol = 1E-14
# tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

This class will return points on the boundary of the mesh, which satisfies that
|x| < tol, where tol is given small tolerance. Due to computer uncertainty we
can not write x[0]=0. In similar way we can define the right upper and left
boundary. If we want to construct the electrode defined in (4.9) we can do this
by:

class LeftBoundaryZeroFive(SubDomain ):
""" This class defines the middle of the left boundary ,

i.e. the boundary on the x[0]-axis of the domain ,
where 0.25<x[1] <0.75. """

def inside(self , x, on_boundary ):
tol = 1E-14
# tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol \

and x[1] > 0.25 and x[1] < 0.75

Here we just require one more information compared to LeftBoundary, which
is the bound on y (x[1]). Similarly it can be done for the rest of the electrodes,
(4.9)-(4.12). The rest part of the left boundary is now defined by:

class RestLeftBoundaryZeroFive(SubDomain ):
""" Defines the part of the boundary on the x-axis ,
which is not a part of the electrode. That is the
points on the x-axis for where 0.25<x[1] <0.75
is not true """
def inside(self ,x,on_boundary ):

tol = 1E-14
return on_boundary and abs(x[0]) < tol \

and abs(x[1] -0.5) > 0.25

Finally the way we now mark the boundaries are done by:

Gamma_0 = LeftBoundary ()
Gamma_0.mark(boundary_parts , 0)
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Thus we can now call the left boundary by our mark ds and the number 0, i.e.
ds[0].

Next we construct the function space in which we seek a solution to the forward
problem. There are two ways of constructing the function space depending on
the method we use, described in Section 4.1. The first one is the one defined in
(4.1) and (4.2).
N = 2 # Number of electrodes
# Defining function -space
H = FunctionSpace(mesh ,’CG’ ,1)
RN = VectorFunctionSpace(mesh ,’R’,0,N-1)
func_space = MixedFunctionSpace ([H,RN])

First we need to define the number of electrodes. Then we construct the space H,
which is the space for which we seek a solution of u. The ’CG’ means continuous
Galerkin and the ’1’ is the order. Thus H consist of first order continuous
Galerkin (Lagrange) functions defined on the mesh. Next we define RN, which
is the function space for the vector UN . It is real-valued ’R’ with order 0 and
dimension N-1. The dimension is N − 1 and not N due to the implementation
as explained earlier.

Using the second method will not affect the definition of H. But it will change
RN and furthermore we need to define a space for the helping constant c.
RN = VectorFunctionSpace(mesh ,’R’,0,N)
C = FunctionSpace(mesh ,’R’ ,0)
func_space = MixedFunctionSpace ([H,RN,C])

What changes here is just that the dimension of RN is N. The function space for
c is defined to be real and of order 0.

B.2 Construction of conductivity

In the cases where the conductivity is a smooth function f(x), it is easily defined
by the use of Expression:
sigma = Expression("f(x)")

But it is a bit more difficult to construct a piecewise constant conductivity. In
the class CharacteristicFunctionDisk. This class defines a function, which
is 1 in the domain, except for in a ball centred at (x0, y0) with radius r, where
the value is k.
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class CharacteristicFunctionDisk(Expression ):
""" This class represents and manipulates

a characteristic function of a disk centered
at (x_center , y_center) of radius r. """

def __init__(self ,x_center ,y_center ,r,contrast_level ):
self.x_center = x_center
self.y_center = y_center
self.r = r
self.contrast_level = contrast_level
#super(Expression , self). __init__ ()

def sqr_dist_to_center(self , x):
return (x[0]-self.x_center )**2 \

+ (x[1]-self.y_center )**2

def eval(self , value , x):
if (self.sqr_dist_to_center(x) < self.r**2):

value [0] = 1 + self.contrast_level
else:

value [0] = 1

B.3 Solving the forward problem

In this section we show how the forward problem is solved, using the two meth-
ods described earlier. First we define the trial function (u, U) and the test
functions.

(u,U) = TrialFunctions(func_space)
(v,V) = TestFunctions(func_space)

Next we can construct the bilinear form B and the right hand side of the vari-
ational formulation. First we consider the case in (4.1) and (4.2). We use the
command grad to define the gradient and inner to compute the dot product.

B = (inner(sigma*grad(u), grad(v)))*dx \
+ sum ([1/z[i]*(u-U[i]) * (v - V[i]) \
* ds(i) for i in range(N-1)]) \
+ (1/z[N-1]*(u+sum([U[i] for i in range(N -1)]))\
*(v+sum([V[i] for i in range(N -1)])))* ds(N-1)

L = sum([I[i]*V[i]*dx for i in range(N -1)]) \
+ (I[N-1]* sum([-V[i] for i in range(N-1) ]))*dx
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Notice how the right hand side are defined by integrals
∑N−1
k=1

∫
Ω
IkVk. The

reason for this is that when we later assemble the left- and right-hand-side we
need it to be in integral form. Notice also that this integration holds equal to
the sum as long as the domain Ω has area 1.

Finally we compute the solution by LU -factorization.

A = assemble(B)
b = assemble(L)
# Computing solution
w = Function(func_space)
solve(A,w.vector(),b,’lu’)
(u,U) = w.split ()

First we assemble the bilinear form and right hand side. Next we define w to
be a function defined on the function space defined earlier. Finally to get the
solution (u, U) we split w.

For the second method defined in (4.3) the code looks as follows:

(u,U,c) = TrialFunctions(func_space)
(v,V,d) = TestFunctions(func_space)

a = (inner(sigma*grad(u),grad(v)))*dx \
+ sum ([1/z[i]*(u-U[i])*(v-V[i])*ds(i) for i in range(N)])\

+ (c*sum([V[i] for i in range(N)])*dx) \
+ (d*sum([U[i] for i in range(N)])*dx)

L = sum([I[i]*V[i]*ds(i) for i in range(N)])

A = assemble(a)
b = assemble(L)

# Computing solution

w = Function(func_space)
solve(A,w.vector(),b,’lu’)
(u,U,c) = w.split()

Notice, that when we implement the parts c
∑N
k=1 Vk and d

∑N
k=1 Uk, we do it

by c
∫

Ω

∑N
k=1 Vk and d

∫
Ω

∑N
k=1 Uk. This is again due to the assembling.
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B.4 Calculating errors

In the thesis there are different errors which need to be computed. Say we want
to compute the error between the computed solution uh and u in L2(Ω) and
H1(Ω). Then one can do this the simplest way by:

L2error =sqrt(assemble ((u-uh)**2*dx))
H1error =sqrt(assemble ((u-uh)**2*dx\

+inner(grad(u-uh),grad(u-uh))*dx))

This is the easiest and fastest way to compute the error. There are although
situations where this is not a good measure of the error, since the compiler
might expand by:

(u-uh )**2*dx = u**2*dx + uh**2*dx - 2*u*uh*dx

This is especially a bad thing in situations where u and uh are close to each
other. In these cases a lot of the errors will be a sum of computer uncertainties.
Furthermore the number of computer uncertainties which are summed depend
on the mesh. Thus a fine mesh could give a larger error than a rough mesh.

Therefore a better, but slower, method of computing the error is by the built in
errornorm-function. This function computes the error by raising he degree of
the polynomials un which u and uh are defined. We will in general work with a
degree-raise of order 3.

dolfin.fem.norms.errornorm(u, uh , norm_type=’L2’,\
degree_rise =3)

B.5 Algorithm for the inverse problem

In this section we show how the algorithm for the inverse problem are imple-
mented in FEnICS. In our results we always know the correct conductivity and
then produce the magnitude of the current density from that. Thus we first
solve the forward problem with conductivity σ to get the function u. Then the
magnitude a = σ|∇u| are computed by:

a = project(sigma*sqrt(inner(gradu ,gradu)),H)

The projection on to the space H are necessary, since we will use the current den-
sity inside the algorithm of the inverse problem. Before running the algorithm
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we need to define a tolerance for when to stop. We would like this tolerance to
depend on the size of a. This could either be the L2-norm of a or the smallest
value that a takes. It is described earlier how to compute the norm. To find the
smallest value of a, we write a as an array containing all the values of a in the
mesh points. This is done by

minimum = min(a.vector (). array ())

And this is also case why we need to project a onto the space. The tolerance
can now be computed. We will mainly have a tolerance of 1%− 2% of the size
of a. We are now ready to run the while-loop.

# Running while -loop
while error > tolerance:

# Compute solution of forward problem
(u,U) = TrialFunctions(func_space)
(v,V) = TestFunctions(func_space)

B = (inner(sigma*grad(u), grad(v)))*dx\
+sum([(u-U[i])*(v-V[i])*ds(i) for i in range(N -1)])\
+((u+sum([U[i] for i in range(N -1)]))\
*(v+sum([V[i] for i in range(N -1)])))* ds(N-1)

L = sum([I[i]*V[i]*ds(i) for i in range(N-1)]) \
+ (I[N-1]* sum([-V[i] for i in range(N-1) ]))*ds(N-1)

A = assemble(B)
b = assemble(L)

w = Function(func_space)
solve(A,w.vector(),b,’lu’)
(u,U) = w.split ()

# Computing error
atilde = project(sigma*sqrt(inner(grad(u),grad(u))),H)
error = sqrt(assemble ((a-atilde )**2*dx))

# Compute new conductivity
sigma = project(a/(sqrt(inner(grad(u),grad(u))),H)

Here we have computed the error, by the L2-norm of a − ã. One could also
compute it by the L∞-norm, i.e.

error_func = project(a-atilde ,H)
error = max(error_func.vector (). tilde ())
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We will mainly consider the error as the L2-norm of the difference. When
finished running the algorithm we have a pair (σ̃, ũ), which satisfies σ̃|∇ũ| ≈ a.
Thus we can create the φ-function. We will although not really compute the φ-
function, but instead u∗ = φ(ũ) and σ∗ = (φ′(ũ)−1σ̃ directly from the knowledge
of u on the boundary. Assume that U is a vector containing the values of u at
points of the boundary and UTILDE is its similar for ũ. Then we compute the
final conductivity and solution of the forward problem by: First we write ũ and
σ̃ as arrays representing the values of the node points. For each node-point we
find the value of ũ, and match this value with two values in UTILDE as:

k = utilde[i]
j = 0
while k > UTILDE[j] and j < len(UTILDE ):

j = j+1

Now we know that UTILDE[j− 1] ≤ ũ[i] ≤ UTILDE[j]. If j is neither 0 or
len(UTILDE), which we will handle as special cases, we compute the new values
of utilde[i] and sigmatilde[i] by

a = (U[j]-U[j -1])/( UTILDE[j]-UTILDE[j-1])
utilde[i] = a*(k-UTILDE[j-1])+U[j-1]
sigmatilde[i] = 1.0/a*sigmatilde[i]

Notice that this corresponds to computing φ′ by (5.18). Regarding the special
cases, note that these should in principle not occur since the range of u and ũ
on Υ should be equal to the ranges on Ω. But due to numerical approximations
they can occur. Anyway if this occurs we extend the affine function computed
in the neighbouring points, s.t. if j = 0, we compute a by:

a = (U[1]-U[0])/( UTILDE [1]- UTILDE [0])

and if j = len(UTILDE):

a = (U[-1]-U[ -2])/( UTILDE[-1]-UTILDE [-2])

Then u∗ and σ∗ are now computed by:

ustar = Function(H)
ustar.vector ()[:] = utilde
sigmastar = Function(H)
sigmastar.vector ()[:] = sigmatilde

Finally σ∗2 is computed through the current density a as:

sigmastar2 = a/sqrt(inner(grad(ustar),grad(ustar )))



Appendix C

Original Project Plan

In this Appendix is the original project plan and learning objectives for the
thesis.

C.1 Original Project Plan

We will in this thesis consider the scenario where one attached a number of
electrodes to the boundary of a domain and apply a current to each of them.

We will use the Complete Electrode Model (CEM) for EIT as a model for this
scenario. Using the CEM we will consider two main problems.

The first problem we will consider is the one of finding the voltage in the inte-
rior domain as well as on the electrodes when knowing the conductivity in the
interior. This problem is referred to as the forward problem. We will show that
this problem under certain circumstances has a unique solution. This is done
through two different approaches. Firstly we will consider the problem through a
variational formulation and using Lax-Milgram we will achieve uniqueness. The
second approach is by considering the problem as a minimization of a functional.
Finally we use FEnICS to solve various cases numerically.
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The second problem is the inverse problem of finding the conductivity in the
interior. We will show how this problem does not have a unique solution and
characterize this non-uniqueness. By this characterization we will also show how
knowledge of the current density inside the domain and the voltage at some part
of the boundary can help to solve the problem. We will solve the problem by
creating an algorithm. These situation are also visualized using FEnICS.

The theory which I will go through will be for dimensions d = 2, 3. The numer-
ical solutions will be done in two dimensions and the domain will be the unit
square. Although if time allows I will consider doing numerical computations
in three dimensions, by considering the unit-box as domain, or I will try with
other domains in two dimensions, for example the unit circle. Furthermore, if
time is there, I will consider doing some optimization of the problem.

C.1.1 Learning objectives

The learning objectives of the thesis is:

- Understand and state the problems, models etc. within EIT and CDII.

- Be able to state, prove and understand mathematical theorems, lemmas and
propositions within EIT and CDII.

- Combine and compare theorems, propositions etc.

- Obtain further knowledge within the fields of partial differential equations,
functional analysis, etc..

- Learn Python programming and FEnICS for solving partial differential equa-
tions.

- Be able to solve problems within EIT and CDII numerically.

C.1.2 Goals

1. Theory of CEM and numerical solution of forward problem:

1.1: Proving that a function is a solution to the forward problem if and only if
it solves a bilinear form.
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1.2: Proving that there is a unique solution of the forward problem, given some
conditions.

1.3: Implementing the CEM in FEnICS, solving it in the unit square domain
and finding the convergence rate.

2. Theory of CDII:

2.1: Proving the solution to the forward problem is a global minimizer of a
functional.

2.2: Proving and characterizing non-uniqueness of the CDII problem.

2.3: Proving maximum principle for CEM and uniqueness up to a constant.

3. Numerical implementation of CDII:

3.1: Designing a solver for the CDII problem.

3.2: Solving the CDII problem.

4. If time allows it:

4.1: Consider the problem in three dimensions or in another domain.

4.2: Doing some kind of optimization.
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