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Summary
When working with optimization problems it is often the case that the operator is
ill-conditioned due to the spread of the eigenvalues, which produces poor convergence
properties for iterative methods for solving optimization. Preconditioners are intro-
duced to counteract this effect and produce faster convergence. In this thesis we
consider the link between preconditioners for a PDE-constrained optimization prob-
lem and the structure of the Hilbert space in which we seek the solution.
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CHAPTER 1
Introduction

Optimization is the task of finding the best object with respect to a set of existing
criteria. We typically refer to the task as the problem we try to solve and the best
object the solution to the problem. The topic of optimization has been a popular
topic in mathematics due to the natural occurence of problems like this in our world.
Examples of problems could be optimal heating, optimal flow control or least squares
parameter estimation[De 15].

In particular over the last decades with the extensive growth in the processing
power of computers it has become feasible to tackle greater and more complex prob-
lems of this sort.

In mathematical notation a general optimization problem takes the formmin
x∈X

f(x),

subj. to g(x) ≤ 0

where f : X → R is a function to be minimized over some normed vector space X
and g defines the criteria x should fulfil. Some times one considers the problem where
g(x) ≤ 0 is replaced by an equality constraint e(x) = 0. We note that this is not
actually another problem as e(x) = 0 can be written in the above form by chosen

g(x) =

[
e(x)

−e(x)

]
≤

[
0
0

]
.

This is what we will be doing in this thesis and we will thus use e for the constraints
from here on.

Solving problems like these can in general be very hard with various complications.
The difficulty of the problem depend on both the function f , the constraints e and
the search space X. Luckily for us, it is often the case that these have particular
structures that we may exploit. In our case we will consider the situation where e
involves a partial differential equation (PDE), hence our task in this thesis is labeled
PDE-constrained optimization.
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When solving optimization problems there are traditionally two different approaches;
direct and iterative methods. Direct methods sometimes invloves finding a closed
formula expression for the solution, but might also be a fixed algorithmic process pro-
ducing the solution. Obviously iterative methods also produce the solution, however,
they do it by taking may smaller steps towards the solution, and we may stop them
somewhere along the way when we think we are “close enough” to the actual solution.
This is often useful as while it might take hundreds or thousands of steps to reach
the solution, the result we get after just fifty steps might actually be close enough for
the purpose. Another significant difference of the two methods is that direct solvers
often need significantly more memory than iterative solvers. This is not to say that
direct solvers are bad choices, the problems are simply outgrowing them in size.

When using iterative methods for computing approximate solutions to an opti-
mization problem it is important to know how well, the computed solution approxi-
mate the actual solution to the problem (even if we don’t know the actual solution).
In other words we want to have an upper bound for the error we are committing
by using the approximation. The decrease in the error will depend on the condition
number for the problem, which relates to the eigenvalues of the problem. In order for
the iterative methods to have fast convergence we require the condition number to
be small (by construction this means close to 1).

Often, however, problems will not have a small condition number because of the
spread of the eigenvalues. In these cases we want to transform our problem into a new
problem with better properties. We call such a transforming operator a preconditioner
for the problem. As it turns out, there is a relation between preconditioners and the
metric structure of our search space X.

This is a highly theoretical result, but with direct practical implications. We will
in this thesis explore this using the distributed control problem with mixed boundary
conditions:

min
(y,u)∈Y ×U

J(y, u) = 1
2

∫
Ω

(y − yd)2 dx+ α

2

∫
Ω
u2 dx

subj. to −∆y = u in Ω
y = f on ∂ΩD

∂y
∂n = g on ∂ΩN .

(1.1)

This is the distributed control problem with mixed boundary conditions. Here Ω
is our domain, y is the state variable and u is the control variable. yd is the desired
state, f and g are the Dirichlet and the Neumann boundary functions respectively.
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α is a positive scalar, often refered to as the regularization parameter. Y and U are
function spaces and our search space X is their direct product: X = Y × U .

The Poisson equation, −∆y = u, arises in various physical settings. An example
of such a setting could be heat distribution in an object, say a room, defined by the
domain Ω. Here y is the temperature state and u is a heat source term, say a radiator.
The Dirichlet boundary condition corresponds to an ideal cooler/heater with infinite
heat conductivity and the Neumann condition corresponds to a certain heat flux. If
the Neumann condition is zero, g = 0, then it corresponds to ideal insulation. Then
yd will be a desired heat distribution.

While we can typically not fine-control heat sources everywhere in the interior of
a room (radiators are commonly placed along walls as we want to be able to move
about the room) distributed control could occur in solid conducting materials where
heat might be induced by currents generated from an exteriorly controlled magnetic
field.

1.1 Problem statement
As already noted we wish in this thesis to explore the relation between preconditioners
for an optimization problem, here Problem (1.1), and the underlying metric structure
of the search space X = Y × U . We summarize this in the following question.

How does the underlying structure of the search space X influence perfor-
mance with and without preconditioners in PDE-constrained optimization?

1.2 Outline
This thesis is written with following structure: In the first chapter we have the intro-
duction, which you might have read if you are here now. In this we built up the basis
for our problem. We introduce a number of definitions, facts and concepts without
necessarily talking much about their origin in order to reach the actual question. We
also put forth our model problem which we will work with repeatedly thoughout the
thesis and relate the problem to a more graspable physical scenario.

The second chapter covers the theory relevant for the thesis. We first discuss
some background on optimization and PDEs, the general problem and our particular



4 1 Introduction

model problem. Following that we recall the concepts of differentiability of operators
in function spaces in order to introduce the Lagrangian and the first order optimality
conditions for our problem.

We briefly outline the basic concepts we need from finite element theory and
describe the descretization of our problem for a given finite element basis. We then
discuss how boundary conditions are applied in finite element discretization and in
particular how this relates to our problem, which will turn out to be a system of
matrix equations.

We then talk a little about matrix theory, touching upon saddle point systems
and the Schur complement. Following this up by discussion on preconditioning of
saddle point systems in general, in the end relating this to our model problem.

In the third chapter we discuss the practical implementation of our problem in
Python. We will go over the different step in setting up the problem and how these
were done in practice.

We present the results in chapter four. Here we present our numerical results with
plots and tables for different regularization values, grid sizes, and preconditioners.

In chapter five we present our conclusion along with an outlook to possible exten-
sions.

In the end of the thesis we have several appendix with various information related
to the project. Appendix A will be the problem statement as formulated in the
beginning of the project. The problem statement will be following by section with
reflections discussion obstacles encountered during the project.

Appendix B will contain supplementary theory and results not directly related,
but still needed in the thesis. Here we will also summarize some of the basic theory
learned in courses, which is relevant and might not be common knowledge to every
reader.

Appendix C contains additional results in the form of several pages with plots.
In Appendix D we present a python framework set up to send and execute Python

code on the university servers and automatically fetch the resulting data again.

1.3 Notation
For the readers convenience we here introduce the notation common used though-out
the thesis, unless otherwise speccified.



1.3 Notation 5

A,B,C,D, . . . Banach space/matrix operators in infinite/finite dimensions.
I The identity operator.

M , K For finite element M is allways the mass matrix and K is always
the stiffness matrix.

Q,U, V,W,X, Y Normed vector spaces.
a, b, c, s Bilinear forms, though c can be a scalar.
f, g Functionals.

u, v, w, x, y, h Elements in normed vector spaces. h may also be a scalar relating
to grid refinement in finite elements.

p, λ Lagrange multiplier.
t, α, β Real scalars.

d, i, j, k, n,m Integers.
□h Subscripting by h denotes the finite element subspace approxima-

tion of □.
u,y,p,g, f Vectors in Rd.

J, e J is always a functional and e is always an operator relating to
constraints.

Ω Denotes a subset of Rd.
ϕ, ψ, χ Finite element basis functions. χΩ may also denote the indicator

map on a particular set.
H Hilbert space.

(·, ·)H Inner product on H. The subscript may be omitted.
□∗ If □ is a Banach space: Dual space of □. If □ is a Banch space

operator: Adjoint of □.
⟨·, ·⟩X∗,X Dual pairing for the Banach space X. Subscripts may be omitted.
A ≤ B If A,B : H → H this means (Ax, x)H ≤ (Bx, x)H for all x ∈ H.

If A,B : H → H∗ this means ⟨Ax, x⟩H∗,H ≤ ⟨Bx, x⟩H∗,H .
A ≲ B There is c > 0 such that A ≤ cB.
A ∼ B Means A ≲ B and B ≲ A.
IH ,RH Riesz isomorphism on H, RH = I−1

H , ⟨IHx, y⟩ = (x, y)H for x, y ∈
H.
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CHAPTER 2
Theory

In this chapter we set up the theory for PDE-constrained optimization. We will
include both aspects from optimization theory and functional analysis in order to
cover the theory in detail. It is our hope that this section will thus be accessible
and provide enough in depth explanations that other students with a background in
introductory optimization and functional analysis, who might be interested in the
topic, can read and understand this without significant further outside reading.

We will start out by briefly revisiting the topics of optimization and partial dif-
ferential equations, before formulating their – for us more interesting – combination,
the PDE-constrained optimization problems[De 15]. We will then proceed to define
and work through the different tools we will need to tackle these problems.

We briefly cover Sobolev spaces[Gru08; Eva08] and proceed to Gâteaux and
Fréchet differentiability[De 15]. We give the definition of the Lagrangian and go
over how it helps us handle optimization problem[Zei95] by leading us to the KKT-
conditions[De 15], which we derive for our model problem.

We next cover the discretization using the finite element method[Eng09] and dis-
cretize our model problem using it, finally discussing how boundary conditions are ap-
plied to our matrix problem. We follow this up with some matrix theory briefly touch-
ing saddle point systems[BGL05] and then discuss the Schur complement[Zha05].

Finally we consider preconditioning[Zul11] where we talk about the condition num-
ber, and relates the inner product to choices of preconditioners. Following Zulehner we
derive a preconditioner for our discretized system. We discuss briefly approximations
to the Schur complement[Pea13; RDW10] and end on a note about considerations for
preconditioning in the operator setting.
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2.1 Background
The study of optimization in general concerns itself with – as the name implies –
finding optimal solution to a certain problem. The traditional problem considered is
that of finding the minimum or the maximum of a particular function, however, since
these two problems are equivalent (x∗ being the minimum of f(x) if and only if x∗ is
the maximum of −f(x)), one often simply studies how to find minima.

In general the problem considered can be formulated as: Given f : X → R and
g : X → Y , find the x ∈ X by solving

min
x∈X

f(x),

subj. to g(x) ≤ 0.
(2.1)

Here X and Y are normed vector spaces of finite dimension, i.e. Rn. Here g

defines constraints on our problem and ≤ is some partial ordering on Y . For the
finite dimensional case ≤ could for instance be a coordinate-wise comparison.

In this project we will primarily work with equality constraints, which are special
cases of inequality constraints. In particular g(x) = 0 is the same as[

g(x)
−g(x)

]
≤ 0.

In general problem (2.1) can be quite complicated to solve, however, often f will
have a particular structure that can be exploited. Many different algorithms have
been developed and refined to handle these different possible structures and a variety
of large scale toolboxes are available online. Commercial numerical software such
as Matlab offer additional optimization toolboxes, but free options are available as
well. The free toolbox CVX for instance is in its early stages of support on the free
numerical computation software Octave.

In this thesis, however, X and Y will in general not be the traditional choice of
Rn but spaces of functions, since we are interested in working with partial differential
equations and the unknowns here are functions.

The solution of partial differential equations (from here on abbreviated as PDE)
and differential equations in general has been a particularly popular topic of study due
to their ability to capture and model physical phenomena. A PDE is formulated over
a domain Ω ⊂ Rd and typically with a condition on the behavior on the boundary of
the domain, ∂Ω. The Dirichlet boundary condition is a common boundary conditions
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and describes how the restriction of the solution to the boundary should behave. The
Dirichlet boundary value problem is formulated as follows

Ly = f, in Ω,
y = g, on ∂Ω,

(2.2)

where y is the unknown function we wish to solve for, the right hand side f is a known
function on the domain Ω and g is a known function on the boundary ∂Ω. L is here
the differential operator acting on y.

L may take on many different forms, depending on the problem considered. An
example could be the Poisson problem

−∆y = f, in Ω,
y = g, on ∂Ω,

(2.3)

where L = −∆ = −
∑

i
∂2

∂x2
i

is the Laplace operator or simply Laplacian.
Other classes of PDE-problems often encountered is the Neumann boundary value

problems. Instead of a fixed boundary value these problems are characterized by the
fixture of the outgoing directional derivative on the boundary. These problems have
the formulation

Ly = f, in Ω,
∂y
∂n = g, on ∂Ω,

(2.4)

where n denotes the outwards normal vector on the boundary of Ω, and ∂y
∂n := ∇y ·n.

Analytical solutions to PDE problems are often very difficult to obtain and work-
ing with particular class of them might warrant a thesis in its own right. However,
PDEs will not be our main focus in this thesis and the one we consider will be given
as part of another problem we wish to solve, the problem of PDE-constrained opti-
mization.

The PDE-constrained optimization problem takes a general form not unlike the
optimization problem (2.1), with a function we wish to minimize and a set of con-
straints. The problem is often formulated as follows

min
y,u

J(y, u),

subj. to e(y, u) = 0,
(2.5)

where (y, u) ∈ Y × U = X, and Y and U are Banach spaces (often Hilbert spaces).
Here J is the functional on X which we wish to minimize and e : X → W is the
constraint. As the name PDE-constrained optimization implies e here contains one
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or more PDEs linking y and u. The unknown y is typically called the state, whereas
u is referred to as the control for the problem. In case of a heating problem in a
domain Ω, y would describe the heat distribution in Ω and u would describe how and
where we add heat or energy into the system. Typically the domain Ω is a bounded
domain.

We note that in literature the problem in its reduced form f(u) is often considered
– see for example [De 15] and [Her10] – as the implicit function theorem applied to
the equation e(y, u) = 0 under certain conditions introduce a map u 7→ y(u). This
map is sometimes called a solution map. Thus f(u) = J(y(u), u).

Since y and u are functions obviously Y and U must be function spaces. We
typically assume Y and U to be some subspaces of the Lebesgue space L2(Ω), but we
will return to the topic of function spaces in Section 2.2.

Now that we have established an abstract formulation of the PDE-constrained
optimization problem, it might be time to consider a few examples of concrete prob-
lems.

2.1.1 Distributed control problem
The name distributed control problem refers to problems where the control parameter
u is spread across the entire domain of the problem, Ω. We present here the Poisson
distributed control problem

min
y,u

J(y, u) = 1
2 ∥y − yd∥2

L2(Ω) + α
2 ∥u∥2

L2(Ω)

subj. to −∆y = u, in Ω,
y = f, on ∂ΩD,

∂y
∂n = g, on ∂ΩN .

(2.6)

Here α > 0 is a fixed constant, J is a goal functional, Ω the domain of the state y
and control u and ∂ΩD and ∂ΩN the Dirichlet and Neumann boundary respectively.
These are disjoint sets with union ∂Ω and they define the part of the boundary with
Dirichlet respectively Neumann boundary conditions.

The goal functional J has here been defined and it consists of two terms. The
first term measures the difference between our obtained state and some quantity yd,
and the second puts a bound on the control variable and keeps it small. The quantity
yd is here our desired state, the state we hope y to become, by tuning our control u,
though it is often an idealized and perhaps physically unattainable state.

A particularly interesting observation is that it is here clear how the solution map
u 7→ y(u) mentioned in the previous section arise as a solution to the PDE part of the
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problem. The existence and well-definedness of the solution map is thus tied directly
to the existence and uniqueness of the PDE problem.

Some other things that might stick out are the parameter α and the choice of
L2(Ω)-norms in J . α is called the regularization parameter and denotes how much
we penalize our control variable. It controls how “wild” our controls u can behave.
Adding a term like α

2 ∥u∥2
L2(Ω) limiting our variable is sometimes called a Tikhonov

regularization and thus one might at time see α referred to as a Tikhonov parameter.
As noted, the L2(Ω)-norm is used J and is essentially the result of the underlying

assumptions that y and u belong to some subspace of L2(Ω). In the situations where
this subspace has other possible norms, these are of course also valid choices here.
But there is no denying that the well-understood structure and properties of L2(Ω)
makes a sound argument for exactly this choice. A natural choice for y is H1(Ω),
which loosely stated is the set of one time differentiable L2(Ω) functions.

We will return to Equation (2.6) throughout the Thesis, as it is our model problem
of choice.

2.2 Function spaces

In this section we will introduce the Sobolev spaces W k,p. Following this we will
introduce Fréchet differentiability, which generalizes differentiation to Banach space
operators.

We expect the reader to already be familiar with the Lebesgue spaces Lp. We
simply note here that we will in this thesis primarily be interested in the Hilbert
space case, p = 2, and only the real function spaces.

2.2.1 Sobolev spaces

Finding solutions to partial differential equations can, as previously stated, be very
hard in general. To any given differential equation there might not even be a solution.
To mitigate this fact, we search to a class of functions slightly broader than the class
of differential functions in the classical sense.

To do this we expand the notion of differentiation from Ck(Ω)-functions to the
set of distributions D′(Ω). This set is the set of all linear functionals on C∞

0 (Ω). By
extending to this set we will be able to differentiate a much broader range of objects
than we can traditionally. For instance every locally integrable function f ∈ L1

loc(Ω)
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constitutes a distribution by acting on ϕ ∈ C∞
0 (Ω) as follows:

⟨f, ϕ⟩ =
∫

Ω
fϕ dx.

Thus L1
loc(Ω) ⊂ D′(Ω). Furthermore the set of Radon measures on Ω, M(Ω), is

contained in D′(Ω) by
⟨µ, ϕ⟩ =

∫
ϕdµ,

for µ ∈ M(Ω) and ϕ ∈ C∞
0 (Ω).

In the theory of distributions differentiation is extended by defining u′ ∈ D′(Ω) as
follows

⟨u′, ϕ⟩ := ⟨u,−ϕ′⟩.

As a special case of this we obtain the weak derivative.
Let y ∈ Lp(Ω) be a function, we say that w ∈ Lp(Ω) is the weak derivative of y if

for all functions ϕ ∈ C∞
0 (Ω) the following equality holds∫

Ω
yϕ′ dx =

∫
Ω
wϕdx. (2.7)

The more general definition follow here

Definition 1. Let y ∈ Lp(Ω) be a function and α = (α1, . . . , αk) a multi-index. We
say that w ∈ Lp(Ω) is the weak derivate of y associated with α if∫

Ω
yDαϕdx = (−1)|α|

∫
Ω
wϕdx, (2.8)

for all ϕ ∈ C∞
0 (Ω). We then write w = Dαy.

Remark 2. We recall that C∞
0 (Ω) is the set of smooth functions compactly supported

on Ω, and

Dα := ∂|α|

∂α1∂α2 . . . ∂αk
,

and |α| = k.

Using this even discontinuous functions may be considered differentiable (in the
weak sense). Take for instance the function x 7→ |x| on [a, b], a < 0 < b. Clearly
this function is in Lp([a, b]) and one can easily show by splitting the integral to the
continuous parts of the function that

x 7→

1, for x > 0,

−1, for x < 0,
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is a weak derivative for x 7→ |x|. Note that we write “a” and not “the” weak derivate,
this is because there can be more than one weak derivative for a function.

Furthermore the definition allows us to define the Sobolev spaces, W k,p(Ω), which
are subspaces of Lp(Ω) consisting of k times weakly differentiable functions. They
come with a special norm as well, and for the Hilbert space case an inner product.

Definition 3. Let 1 ≤ p < ∞ and k ∈ N. We then define the Sobolev space

W k,p(Ω) := {y ∈ Lp(Ω) | w = Dαy exist and belong to Lp(Ω) for all |α| ≤ k} ,

with the norm

∥y∥W k,p(Ω) =

∑
|α|≤k

∫
Ω

|Dαy|p dx

 1
p

.

When Lp(Ω) is a Hilbert space, i.e. p = 2, the corresponding Sobolev spaces
are Hilbert spaces as well. Typically one writes Hk(Ω) for W k,2(Ω), and the inner
product is given by

(u, v)Hk(Ω) =
∑

|α|≤k

∫
Ω
DαuDαv dx.

2.2.2 Gâteaux and Fréchet differentiability
Working in Banach spaces we need a notion of differentiability for operators between
such spaces. In this section we introduce the Fréchet derivative which generalized
differentiation to Banach spaces. We do this following the definition in [De 15]. To
do this we will also need to define the directional derivative for operators as well as
the Gâteaux derivative.

In the following set of definitions we assume U and V to be Banach spaces.

Definition 4. Let F : U → V be a map, u, h ∈ U , if the limit

lim
t→0

1
t

(F (u+ th) − F (u)) = ∂F (u)h (2.9)

exists, then we say that ∂F (u)h is the directional derivative at u in direction h. If
the limit exists for all h ∈ U , then we say that F is directionally differentiable at u.

Definition 5. Let F : U → V be directionally differentiable at u ∈ U and the
operator ∂F (u) : U → V from equation (2.9) be a continuous linear map, then F is
called Gâteaux differentiable at u and we call F ′(u) := ∂F (u) the Gâteaux derivative
of F at u.
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Definition 6. Let F : U → V be Gâteaux differentiable at u ∈ U and satisfy

∥F (u+ h) − F (u) − F ′(u)h∥V

∥h∥U
→ 0 as ∥h∥U → 0,

then we say that F is Fréchet differentiable at u and the function F ′(u) is called the
Fréchet derivative of F at u.

If for every u ∈ W ⊆ U F is Fréchet differentiable, then we naturally say that
F is Fréchet differentiable in W and when W = U we simply say that F Fréchet
differentiable.

We will now compute a few examples of Fréchet derivatives, some of which will
prove useful when we will work on our optimization problem.

Example 7. Let U = L2(Ω). The Fréchet derivative of F (u) = ∥u∥2 = (u, u) =∫
u2 dx, where u ∈ L2, is F ′(u)h = 2(u, h) = 2

∫
uh dx.

We see that∣∣∣∣F (u+ h) − F (u) − 2
∫
uh dx

∣∣∣∣ =
∣∣∣∣∫ (u+ h)2 dx−

∫
u2 dx− 2

∫
uh dx

∣∣∣∣
=
∣∣∣∣∫ u2 dx+

∫
h2 dx+ 2

∫
uh dx−

∫
u2 dx− 2

∫
uh dx

∣∣∣∣
=
∣∣∣∣∫ h2 dx

∣∣∣∣ = ∥h∥2
L2 .

Hence ∣∣F (u+ h) − F (u) − 2
∫
uh dx

∣∣
∥h∥L2

= ∥h∥L2 → 0 as ∥h∥L2 → 0,

and F ′(u)h = 2(u, h). △

So the squared L2-norm is everywhere Fréchet differentiable.
We cover here two more examples of Fréchet derivatives.

Lemma 8. Let U and V be Banach spaces and F : U → V be a bounded linear
operator, then for all u ∈ U , F ′(u)h = F (h).

Proof. By linearity (F (u + th) − F (u))/t = F (th)/t = F (h), thus F (h) is the direc-
tional derivative of F at u. As F is bounded, F is the Gâteaux derivative of F . By
F (u+ h) − F (u) − F (h) = 0, F is also the Fréchet derivative.

Example 9. Let U = H1(Ω) and for a fixed v ∈ U define F (u) =
∫

∇u · ∇v dx,
then F is a linear bounded operator from U to R and by Lemma 8 F is Fréchet
differentiable with Fréchet derivative F ′(u)h =

∫
∇h · ∇v dx. △
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Example 10. Let F : U → V be Fréchet differentiable at u ∈ U and let L : D(L) →
W be a bounded linear operator, then L(F (·)) is Fréchet differentiable at u ∈ U with
Fréchet derivative L(F ′(u)h).

Consider the following derivation

∥L(F (u+ h)) − L(F (u)) − L(F ′(u)h)∥W

∥h∥U
= ∥L(F (u+ h) − F (u) − F ′(u)h)∥W

∥h∥U

≤ ∥L∥∥F (u+ h) − F (u) − F ′(u)h∥V

∥h∥U
.

The last expression clearly goes to 0 as ∥h∥U → 0 since F was assumed Fréchet
differentiable. △

2.3 Lagrangian and optimality conditions
In optimization theory, when one considers optimization problems with equality con-
straints, a powerful method for solving these problems is to consider an alternate
problem incorporating the constraint. We consider here the general problem (2.1),
but with the equality constraint g(x) = 0 in place of the inequality one.

min
x∈X

f(x),

subj. to g(x) = 0.
(2.10)

For a problem like this we define the Lagrangian.

Definition 11. For the optimization problem (2.10) with g : X → Y we define the
Lagrangian map L : X × Y ∗ → R as

L(x, λ) = f(x) − ⟨λ, g(x)⟩Y ∗,Y , (2.11)

with λ called the Lagrange multiplier.

In general λ is an element of the dual space of Y . In the finite dimensional case,
Y = Rn, this simply makes ⟨λ, g(x)⟩ = λT gx into a dot-product where gx = g(x) ∈
Rn and λ is the element corresponding to λ in Rn.

If we consider our general PDE-constrained problem in (2.5), the Langrangian
naturally takes the form

L(y, u, p) = J(y, u) − ⟨p, e(y, u)⟩W ∗,W , (2.12)
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where p is our Lagrange multiplier.
The Lagrangian is a quite powerful tool as it gives us a single equation to optimize

without considering any additional constraints. Indeed, a solution for (2.5) will be a
stationary point for the Lagrangian; Appendix E in [Bis06] gives a detailed and very
intuitive derivation for the finite dimensional case.

2.3.1 Lagrangian over Banach spaces
For the infinite dimensional case Chapter 4.14 in [Zei95] gives us the result we need.

Lemma 12. Let X and W be real Banach spaces and J : X → R and e : X → W

Fréchet differentiable maps. Suppose u ∈ e−1(0) ⊂ X minimizes J and e′(u) : X → W

is surjective. Then there exists a functional p ∈ W ∗ such that

L(u, p) = J ′(u) − ⟨p, e′(u)⟩ = 0.

Remark 13. For our problem X = Y × U .

Proof. Following the steps in [Zei95]: Let u ∈ e−1(0) ⊂ X minimize J . Clearly
e(u) = 0, we wish to show that e′(u)h = 0 implies J ′(u)h = 0.

Let h ∈ X be given such that e′(u)h = 0 and let

F (ε, v) := e(u+ εh+ v),

for (ε, v) in an open ball round (0, 0) ∈ R ×X. We note that

F (ε, v) − F (ε, 0) = e(u+ εh+ v) − e(u+ εh) → e′(u+ εh)v as ∥v∥X → 0,

since e was assumed Fréchet differentiable, hence Fv(ε, 0)v = e′(u+εh)v. As F (0, 0) =
0 and e′(u) = Fv(0, 0) was assumed surjective, the implicit function theorem[Zei95,
Section 4.13] tells us that there is an open neighborhood around 0 ∈ R where
F (ε, v(ε)) = 0 and thus e(u+ εh+ v(ε)) = 0. By definition of the Fréchet derivative

e(u+ k) = e′(u)k + O(∥k∥),

thus setting k = εh+ v(ε)

0 = e(u+ εh+ v(ε)) = εe′(u)h+ e′(u)v(ε) + O(∥εh+ v(ε))

0 = e′(u)v(ε) + O(∥εh+ v(ε)),

as h was chosen such that e′(u)h = 0.
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As u was a minimizer, we have

J(u+ εh+ v(ε)) ≥ f(u).

Thus

J ′(u)(εh+ v(ε)) + O(∥εh+ v(ε∥)) ≥ 0.

Letting ε → 0 we get v(ε) → 0 and thus J ′(u)h = 0.
As we now have that e′(u)h = 0 with h ∈ X implies J ′(u)h = 0 we have

J ′(u) ∈ N(e′(u))⊥.

As e(u) was Fréchet differentiable, e′(u) is a bounded operator and since the domain
of e′(u) is all of X it is closed by [Kre89, Theorem 4.13-5(a)]. By the closed range
theorem[Yos80, p.205] J ′(u) ∈ R(e′(u)∗) = N(e′(u))⊥, thus there is a functional
p ∈ W ∗ such that J ′(u) = e′(u)p, thus

⟨J ′(u), h⟩ = ⟨e′(u)∗p, h⟩ = ⟨p, e′(u)h⟩, for all h ∈ X.

Thus J ′(u) − ⟨p, e′(u)⟩ = 0.

This is a very useful property, as we may now instead seek the stationary points
of the Lagrangian, which might in certain situations be much easier than solving our
original problem.

2.3.2 First order optimality conditions
For a point (y, u, p) ∈ Y × U × W ∗ to be a stationary point of L(y, u, p) we require
that the derivative with respect to each of the variables is zero.

L′
y(y, u, p)h = J ′

y(y, u)h− ⟨p, e′
y(y, u)h⟩ = 0 ∀h ∈ Y (2.13)

L′
u(y, u, p)w = J ′

u(y, u)w − ⟨p, e′
u(y, u)w⟩ = 0 ∀w ∈ U (2.14)

L′
p(y, u, p) = e(y, u) = 0. (2.15)

We note that the last condition is simply the constraint for our problem.
These are called the first order optimality conditions. At times we also refer to

them as the Karush-Kuhn-Tucker conditions, KKT-conditions. We derive the KKT-
conditions for our model problem.
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Example 14. We consider here the distributed control problem with mixed Dirichlet
and Neumann boundary conditions where Y = H1(Ω) and U = L2(Ω).

min
(y,u)∈Y ×U

J(y, u) = 1
2

∫
Ω

(y − yd)2 dx+ α

2

∫
Ω
u2 dx

subj. to −∆y = u in Ω
y = f on ∂ΩD

∂y
∂n = g on ∂ΩN ,

(2.16)

From this we form the Lagrangian for the problem

L(y, u, p) = 1
2

∫
Ω

(y − yd)2 dx+ α

2

∫
Ω
u2 dx

−
∫

Ω
(−∆y − u)p1 dx−

∫
∂ΩD

(y − f)p2 ds−
∫

∂ΩN

(
∂y

∂n
− g

)
p3 ds.

By the KKT-conditions (2.13)-(2.15) we derive a new set of equations. First, using
(2.13) we derive the following: Let h ∈ Y = H1(Ω) then

L′
y(y, u, p)h =

∫
Ω

(y − yd)h dx−
∫

Ω
−∆hp1 dx−

∫
∂ΩD

hp2 ds−
∫

∂ΩN

∂h

∂n
p3 ds

=
∫

Ω
(y − yd)h dx+

∫
Ω
h∆p1 dx−

∫
∂Ω

∂h

∂n
p1 ds

+
∫

∂Ω
h
∂p1

∂n
ds−

∫
∂ΩD

hp2 ds−
∫

∂ΩN

∂h

∂n
p3 ds.

Now, as L′
y(y, u, p) : Y → R we may pick h ∈ Y . If we first pick h ∈ C∞

0 (Ω) ⊆ Y

then the above expression along with L′
y(y, u, p) = 0 yields

∫
Ω

(y − yd)h dx+
∫

Ω
h∆p1 dx =

∫
Ω

((y − yd) + ∆p1)h dx = 0,

which by the fundamental lemma of the calculus of variation (Lemma 34 in Ap-
pendix B) this gives us the following PDE-problem.

−∆p1 = y − yd in Ω. (2.17)

By picking h ∈ H1
0 (Ω) ⊆ Y
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∫
∂Ω

∂h

∂n
p1 ds+

∫
∂ΩN

∂h

∂n
p3 ds =

∫
∂Ω

∂h

∂n
(p1 + χ∂ΩN

p3) ds = 0,

thus

p1|∂ΩD
= 0 and p1|∂ΩN

= −p3. (2.18)

And from the remaining part (setting no restriction on how h behaves on the
boundary)

∫
∂Ω
h
∂p1

∂n
ds−

∫
∂ΩD

hp2 ds =
∫

∂Ω
h

(
∂p1

∂n
− χ∂ΩD

p2

)
ds = 0,

we get

∂p1

∂n
|∂ΩN = 0 and ∂p1

∂n
|∂ΩD = p2. (2.19)

Clearly there is a direct relation between our Lagrange multiplier p1, p2 and p3,
hence we will simply consider only one multiplier p = p1 and use the relations for p2

and p3 as necessary.
Equations (2.17)-(2.19) now combine into the adjoint equation with mixed bound-

ary conditions

−∆p = y − yd in Ω

p = 0 on ∂ΩD

∂p

∂n
= 0 on ∂ΩN .

(2.20)

From here we move on to the second KKT-condition (2.14), which for w ∈ U

reads

L′
u(y, u, p)w = α

∫
Ω
uw dx−

∫
Ω

−wpdx

=
∫

Ω
(αu+ p)w dx.
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By the fundamental lemma of the calculus of variation, L′
u(y, u, p) = 0 yields that

almost everywhere

αu+ p = 0. (2.21)

As it was stated just after the KKT-conditions, the third and last of the KKT-
conditions, is simply that our constraint e(y, u) = 0 has to be satisfied. Thus that
the constraints in (2.16) is satisfied.

Summarizing, the KKT-conditions are realized by solving the following set of
problems:

State equation: −∆y = u in Ω

y = f on ∂ΩD

∂y

∂n
= g on ∂ΩN ,

Adjoint equation: −∆p = y − yd in Ω

p = 0 on ∂ΩD

∂p

∂n
= 0 on ∂ΩN ,

u-p relation: αu+ p = 0

△

2.4 Discretization
When we wish to solve optimization problems like the ones we have described so
far the most common approach involves computers, and since computers operate in
discrete domains, what we do is to discretize our problem to a finite dimensional
setting, which the computer can handle. Obviously we don’t discretize blindly, but
rather do it in a fashion that ensures our discretized solution will converge towards
the solution of our original problem as the discretization is refined.

Several techniques for discretization exist, but in this thesis we will use the finite
element method (FEM) in particular for our discretization. This method is well-
known and very commonly used today when people want to solve partial differential
equations [Eng09]. Since we will essentially be doing this every time we wish to take
a step in a direction for a better solution, this seems like a sound idea.
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2.4.1 The basics of the finite element method
In the finite element method the domain, Ω, of our problem is triangulated. Of course
if Ω does not have a boundary stitched together of straight edges, this procedure will
result in a new domain Ωh which will roughly resemble Ω depending on the size of the
triangles. It is quite common to refine the triangles profoundly near curved borders
to better match the shapes.

For most model problem, however, the domain will be a square and can thus be
directly triangulated without loss of detail. In this case Ωh = Ω.

A triangulation like this will, obviously, yield a number of triangles, say N . Each
of these sports three edges and vertices shared by one or more triangles. We label each
vertex in the triangulation {x1, x2, . . . , xM }, M being the total number of vertices.

From here we pick a set of basis functions from the function space relevant to
our problem. For example, if we seek to approximate y ∈ H1(Ω) we pick our basis
functions {ϕ1, ϕ2, . . . , ϕM } ⊂ H1(Ω). We choose each ϕi such that

ϕi(xj) =

1 i = j

0 i ̸= j,

where xj is the j’th vertex. Often additional conditions are layered on top as different
aspects in a PDE-problem may be captured directly in the basis functions.

Example 15. A choice of basis functions could be first order polynomial functions,
P1 = {p | p(x) = a0 + a1x1 + a2x2}. Consider the domain Ω =] − 1, 1[ × ] − 1, 1[ with
a triangulation as follows. Split the domain into 4 squares separated by the axes,
and divide each square into two triangles using lower left to upper right diagonals
as illustrated in Figure 2.1. Labeling the vertex left to right, row by row, starting
with the bottom row, we consider now ϕ5, the central basis function. This one will
be defined on all the triangles sharing the vertex x5 = (0, 0). Each triangle will have
its own basis function, for example

ϕ5(x, y) = 1 − x, (x, y) ∈ ∆(x5, x8, x9),

where ∆(x5, x8, x9) defines the triangle with corners x5, x8 and x9. For ∆(x4, x5, x8)
we have

ϕ5(x, y) = 1 − x+ y, (x, y) ∈ ∆(x4, x5, x8).

The entire basis function can be seen in Figure 2.2.
Another class of basis functions that should be mentioned is the polynomials

of partial first order, Q1 = {p | p(x) = a0 + a1x1 + a2x2 + a3x1x2}. These are of
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Figure 2.1: Simple FEM grid.

Figure 2.2: P1 FEM basis function.

relevance when using rectangular finite elements. We have above described finite
elements as triangulation, and while that is the general approach, we sometimes have
the choice of separating our domain completely into rectangles instead of triangles.
This is obviously not convenient for domains with curvy borders, but for rectangles,
L-shapes and generally “block-ish” domains it will work just fine.

A Q1 basis function on our previously described domain (albeit without the diag-
onals) is illustrated in Figure 2.3. Note how this function is only affine parallel to the
axes.

△

The space of all linear combinations of the basis functions Yh = span{ϕ1, ϕ2, . . . , ϕM }
is a finite dimensional subspace of our original space H1(Ω). We may consider func-
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Figure 2.3: Q1 FEM basis function.

tions in this space yh =
∑M

i=1 Yiϕi ∈ Yh and separately we may consider the coefficient
vector y = (Y1, Y2, . . . , YM ) ∈ RM .

Note that while we didn’t do this here, sometimes people label first the inner
nodes and then the boundary nodes afterwards. Letting n be the number of interior
nodes and n∂ be the number of boundary nodes. Then we write

{x1, x2, . . . , xn, xn+1, . . . , xn+n∂
} and {ϕ1, ϕ2, . . . , ϕn, ϕn+1, . . . , ϕn+n∂

}.

Given the problem of solving some PDE-problem Ly = f , our problem now shifts
from finding y ∈ Y , which is very hard in general, to finding y ∈ RM such that yh

solves the problem or at least closely approximates a solution. This might simply
seem like a crude restatement of the problem, but being reduced to finite dimensions
allows us to express the problem as a problem in linear algebra which is very well
understood compared to the function space setting.

2.4.2 Discretizing the problem

We consider here again the distributed control problem with mixed boundary condi-
tions (2.16) which we introduced in Example 14. We restate it here: Let Y = H1(Ω)
and U = L2(Ω), then the problem is
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min
(y,u)∈Y ×U

J(y, u) = 1
2

∫
Ω

(y − yd)2 dx+ α

2

∫
Ω
u2 dx

subj. to −∆y = u in Ω
y = f on ∂ΩD

∂y
∂n = g on ∂ΩN .

Holding off on the boundary conditions for now; in the example we derived the
following set of equations from the KKT-conditions,

−∆y = u

−∆p = yd − y

αu− p = 0.

Note that we have switched the sign of p here compared to the example. This will
not affect the solution, except for an obvious change in sign, however, it will help
produce a symmetric matrix system in the end.

The first step will be to write up the weak formulation of each of these problems.
We recall that ∫

Ω
(−∆y)v dx =

∫
Ω

∇y∇v dx−
∫

∂Ω

∂y

∂n
v ds (2.22)

and thus for v ∈ C∞
0 (Ω) we easily get

∫
Ω

∇y∇v dx =
∫

Ω
uv dx (2.23)∫

Ω
∇p∇v dx+

∫
Ω
yv dx =

∫
Ω
ydv dx, (2.24)

and similarly for the last condition,

α

∫
Ω
uv dx−

∫
Ω
pv dx = 0. (2.25)

Let {ϕ1, ϕ2, . . . , ϕn, ϕn+1, . . . , ϕn+n∂
} be our FEM basis, with i = 1, . . . , n denot-

ing the basis functions on interior nodes and i = n+ 1, . . . , n+n∂ the basis functions
on boundary nodes. We then get the following approximations
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yh =
n∑

i=1
yiϕi +

n+n∂∑
i=n+1

yiϕi, (2.26)

uh =
n∑

i=1
uiϕi +

n+n∂∑
i=n+1

uiϕi, (2.27)

and

ph =
n∑

i=1
piϕi +

n+n∂∑
i=n+1

piϕi. (2.28)

It should be noted that while we use the same basis functions for the approxi-
mation of both our state and control as well as Lagrange multiplier, there could be
situations where it would make sense to pick different basis for each. For solvability
reasons this is beyond our scope, though.

We now substitute (2.26)-(2.28) into (2.23)-(2.25). Before we go further and write
out the result, we will also make a choice for v. Picking v = ϕi for i ∈ {1, . . . , n} we
get a sequence of equations while satisfying the boundary conditions for v. While ϕi

is not necessarily C∞ – for instance neither P1 nor Q1 elements are – the problem
only occur on a set of measure zero, so we will disregard that. From this we obtain

∫
Ω

∇yh∇ϕj dx−
∫

Ω
uhϕj dx = 0, (2.29)∫

Ω
∇ph∇ϕj dx+

∫
Ω
yhϕj dx =

∫
Ω
ydϕj dx, (2.30)

α

∫
Ω
uhϕj dx−

∫
Ω
phϕj dx = 0, (2.31)

for j = 1, . . . , n. By expanding yh, uh and ph we get the following systems of equations

n+n∂∑
i=1

yi

∫
Ω

∇ϕi∇ϕj dx−
n+n∂∑
i=1

ui

∫
Ω
ϕiϕj dx = 0, (2.32)

n+n∂∑
i=1

pi

∫
Ω

∇ϕi∇ϕj dx+
n+n∂∑
i=1

yi

∫
Ω
ϕiϕj dx =

∫
Ω
ydϕj dx, (2.33)

α

n+n∂∑
i=1

ui

∫
Ω
ϕiϕj dx−

n+n∂∑
i=1

pi

∫
Ω
ϕiϕj dx = 0, (2.34)
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for j = 1, . . . , n. Defining the mass matrix M and stiffness matrix K by

Mij =
∫

Ω
ϕiϕj dx and Kij =

∫
Ω

∇ϕi∇ϕj dx, (2.35)

we may write the above system of equation as matrix equations.

Ky −Mu = 0,

Kp +My = yd,

αMu −Mp = 0,

where y = (y1, . . . , yn+n∂
), u = (u1, . . . , un+n∂

), p = (p1, . . . , pn+n∂
) and (yd)j =∫

Ω ydϕj dx.
Now, there is a slight problem here. We would like M and K to be symmetric

matrices, but right now they are both n×(n+n∂)-matrices. An easy fix to this would
be to substitute in ϕn+1, . . . , ϕn+n∂

on v’s spot in the weak formulations, however,
we don’t have non-zero boundary anymore. By integration by parts (2.22) we get an
additional contribution from the Neumann condition. Setting

(g)i =
∫

∂ΩN

∂y

∂n
ϕi dx =

∫
∂ΩN

gϕi dx

and for now assuming ∂y
∂n |∂ΩD = 0, we extend our matrix system to (n+n∂)×(n+n∂)-

matrices in the obvious way thereby obtaining the following system

Ky −Mu = g, (2.36)
Kp +My = yd, (2.37)

αMu −Mp = 0. (2.38)

Obviously yd has been extended to the boundary nodes as well here.

2.4.3 Applying Dirichlet boundary conditions
In finite element theory there are algorithms for applying Dirichlet boundary condi-
tions. What is technically done in a discretized PDE-equation Ky = f the diagonal
elements in K corresponding to boundary nodes are modified to 1 and all other ele-
ments in those rows are set to 0. Furthermore, the values in the vector f corresponding
to the boundary nodes are set to the known boundary value. Then for symmetry rea-
sons the boundary terms are all moves to the right hand side of the equation. This
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is done by modifying f and setting the corresponding element in K to 0. While this
explanation my be slightly confusing, consider the following example demonstrating
the modifications.

Example 16. Let us for example assume that x2 is the boundary node in a simple
4-node system and b is the known value at x2. Then given the FEM matrix equation

k1,1 k1,2 k1,3 k1,4

k2,1 k2,2 k2,3 k2,4

k3,1 k3,2 k3,3 k3,4

k4,1 k4,2 k4,3 k4,4



y1

y2

y3

y4

 =


f1

f2

f3

f4

 ,
the modification would be

k1,1 0 k1,3 k1,4

0 1 0 0
k3,1 0 k3,3 k3,4

k4,1 0 k4,3 k4,4



y1

y2

y3

y4

 =


f1 − k1,2b

b

f3 − k3,2b

f4 − k4,2b

 .
△

A good question here is how we apply this to our situation. Our problem is not a
simple matrix equation, but rather a system of equations involving several matrices.
However, our approach will be very similar. In the example above we considered a
matrix and right hand side (K, f) being modified into a new matrix and new right
hand side (K̂, f̂). Let us denote this operation by BC.

We first notice that p|∂ΩD = 0 and y|∂ΩD = f . Define (f)i =
∫

∂ΩD
fϕi dx, then

clearly for each boundary node xi ∈ ∂ΩD we must have pi = 0 and yi = (f)i.
Furthermore, for a non-boundary node xi ̸∈ ∂ΩD the matrix equation (2.37) yields∑

j

Mijyj +
∑

j

Kijpj = (yd)i∑
xj ̸∈∂ΩD

Mijyj +
∑

j

Kijpj = (yd)i −
∑

xj∈∂ΩD

Mijyj = (yd)i −
∑

xj∈∂ΩD

Mij(f)j .

We note that we could have limited the sum of Kijpj as well, but we already estab-
lished that pj already was zero in those positions.

From this observation, it seems reasonable that we should use (M̂, ŷd) = BC(M,yd)
and moreover that we should be applying boundary conditions to K in some way as
well.
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Considering first matrix equation (2.38), then since we apply boundary conditions
to M we obviously find that no a boundary node xi ∈ ∂ΩD αui = pi = 0, thus
u|∂ΩD = 0. Proceeding to equation (2.36) we get for a non-boundary node xi ̸∈ ∂ΩD∑

j

Kijyj −
∑

j

Mijuj = (g)i∑
xj ̸∈∂ΩD

Kijyj −
∑

j

Mijuj = (g)i −
∑

xj∈∂ΩD

Kijyj = (g)i −
∑

xj∈∂ΩD

Kij(f)j .

Again, here we need not limit the sum over the u’s as we just established the relevant
entries to be zero as with the p’s. From this it seems like we apply the boundary
condition to the matrix K and vector g. However, as g represent our Neumann
boundary conditions, it is nice to not mix the two. Moreover, g is already zero in every
position we would overwrite, since we overwrite on nodes in ∂ΩD and g is non-zero
only on ∂ΩN . So we may simply apply our boundary conditions (K̂,d) = BC(K,0),
and just add the vector d to g. Note how this on the boundary nodes xi ∈ ∂ΩD

simply reestablishes yi − ui = yi − 0 = (g)i + (f)i = 0 + (f)i, thus the equations
yi = (f)i actually appear twice in our system.

Futhermore, we will simply redefine M := M̂ , K = K̂ and yd = ŷd, since what
we want to solve is the problem with the boundary conditions.

We can combine the matrix equations (2.36)-(2.38) with the boundary conditions
now

M 0 K

0 αM −M
K −M 0


y

u
p

 =

 yd

0
g + d

 . (2.39)

2.4.4 Zero boundary conditions
Another strategy for handling boundary conditions is the idea of incorporating them
into the space we pick the basis functions from, for instance the space Vh defined by

Vh := span{ϕ1, ϕ2, . . . , ϕn}

corresponds to zero Dirichlet boundary conditions on all of ∂Ω. However, this only
really work for zero boundary conditions as superposition of two functions y1 and y2

both satisfying a Dirichlet condition y1(x) = y2(x) = α at a point x ∈ ∂Ω will obvi-
ously satisfy y1(x)+y2(x) = 2α at x, which is not the same boundary condition unless
α = 0. A similar observation can be made for the Neumann boundary condition.
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So to use this technique requires both the Dirichlet and Neumann boundary condi-
tions to be zero. Luckily we can reformulate a problem into a zero-boundary condition
problem. Consider the PDE-problem from our model problem

−∆y = u in Ω

y = f on ∂ΩD

∂y

∂n
= g on ∂ΩN ,

(2.40)

and let y be the solution to the following PDE-problem with boundary conditions

−∆y = 0 in Ω

y = −f on ∂ΩD

∂y

∂n
= −g on ∂ΩN .

Let y solve the PDE-problem (2.40) but with zero boundary conditions, then ŷ = y−y
solves (2.40). We note that since only y depend on u, we need only solve the zero-
boundary condition version of (2.40) to find ŷ for a new value of u.

Considering this in relation to our model problem, we will be minimizing the
functional J(ŷ, u), however,

J(ŷ, u) = 1
2

∫
Ω

(ŷ − yd)2 dx+ α

2

∫
Ω
u2 dx

= 1
2

∫
Ω

(y − (y + yd))2 dx+ α

2

∫
Ω
u2 dx = Ĵ(y, u).

The difference between J and Ĵ is simply the desired state. Thus defining ŷd = y+yd

as our new desired state, we obtain a formulation of our model problem where the
PDE part of the problem has zero boundary conditions.

Since we have seen here how we may reformulate our model problem as a variant
with 0 boundary condition, we will consider only zero boundary conditions for the
remainder of the thesis.

This does not render the previous sections on boundary conditions obsolete though.
By applying the zero Dirichlet boundary conditions as discussed in the previous sec-
tion, we are in fact making sure our functions yh, uh and ph come from a vector space
with the appropriate boundary conditions. Let

V̂h := span{ϕ1, ϕ2, . . . , ϕn, ϕn+1, . . . , ϕn+n∂
},
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then applying the Dirichlet conditions is equivalent to making sure our functions are
from the space

V ′
h :=

{
f =

n+n∂∑
i=1

fiϕi

∣∣∣ fi = 0 when the node xi ∈ ∂ΩD

}
.

This space satisfies Vh ⊆ V ′
h ⊆ V̂h.

2.5 Matrix Theory
The previous section ended with the discretization finalizing into a system of matrix
equations. This system has structural properties that we will take advantage of. As it
turns out it belongs to a particular class of matrix equations, the saddle point systems,
which has been studied extensively in their general form [Her10; Zul11; BGL05].

In this section we briefly touch upon saddle point systems and follow up with
some theory on the Schur complement, which we will need in the following sections.

2.5.1 Saddle point systems
A saddle point system is a matrix problem where the system matrix has the particular
block structure.

[
A BT

1
B2 −C

][
x
y

]
=

[
f
g

]
. (2.41)

Here A ∈ Rn×n, B1, B2 ∈ Rn×m and C ∈ Rm×m are all matrices and x, f ∈ Rn

and y,g ∈ Rm vectors. Obviously, many matrix systems can be split into a block
partitioning like this. Thus we require something more before we say (2.41) is a saddle
point problem.

[BGL05] requires first of all A non-zero or both of B1 and B2 to be non-zero.
Additionally, five properties are listed of which one or more should be true. We list
them here for convenience

(P1) A = AT , (A is symmetric),

(P2) H = 1
2 (A+AT ) ≥ 0, (H is positive semidefinite),

(P3) B1 = B2 = B,
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(P4) C = CT ≥ 0, (C is symmetric positive semidefinite),

(P5) C = 0, (C is the zero matrix).

Considering our matrix problem (2.39) from earlier, we group the system matrix
as follows

A =

[
M 0
0 αM

]
, B1 = B2 =

[
K −M

]
, and C = 0. (2.42)

Clearly (P3) and (P5) are satisfied, but in fact all five properties are satisfied. The
mass matrix Mij =

∫
Ω ϕiϕj dx, so clearly M is symmetric, making A symmetric (P1).

This means H = A and since M is positive definite by Lemma 29 in Appendix B and
α > 0, so is A and thus H (P3). (P4) is actually as obvious as (P5) since clearly
0 = 0T ≥ 0.

2.5.2 The Schur complement
Here we will discuss some of the theory regarding the Schur complement. Consider
the following block matrix

M =

[
A B

C D

]
,

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m, and note that when
D is invertible it allows for the following LDU-decomposition (lower-diagonal-upper
decomposition)

[
A B

C D

]
=

[
In BD−1

0 Im

][
A−BD−1C 0

0 D

][
In 0

D−1C Im

]
.

We say that SD := A − BD−1C is the Schur complement of D. When A is
invertible straight forward calculation yields the analogous decomposition

[
A B

C D

]
=

[
In 0

CA−1 Im

][
A 0
0 D − CA−1B

][
In A−1B

0 Im

]
.

We denote the Schur complement of A by SA := D − CA−1B. One really nice
property of this decomposition is that lower and upper triangular matrices inverts
easily.
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Lemma 17. Let [
In X

0 Im

]
be an upper triangular matrix. Then its inverse is[

In −X
0 Im

]
.

For a lower triangular matrix the result is analogous.

Proof. Consider the following computation and comparison[
In X

0 Im

][
E F

G H

]
=

[
E +XG F +XH

G H

]
=

[
In 0
0 Im

]
.

This implies H = Im and G = 0, which in turn yields E = In and F = −X. The
result for lower triangles follows from the simple observation

[
In 0
X Im

]
= P

[
In X

0 Im

]
P, where P =

[
0 In

Im 0

]
.

Note that P 2 = I.

2.5.2.1 Positive definiteness

For a Hermitian matrix M (in our case that means C = BT ) by [Zha05, Theorem 1.6]
there is a connection between the eigenvalues of M and the eigenvalues of A and SA.
What the theorem says is that the number of positive eigenvalues of M , p(M) is equal
to the total number of positive eigenvalues in A and SA together, i.e. p(A) + p(SA).
Likewise for negative eigenvalues and eigenvalues zero.

An immediate consequence of this is that if M is positive definite then so must
both A and SA be. Similar for positive semi-definite, though we must require A

positive definite to have SA. This result is summarized without proof in [Zha05]
in Theorem 1.12. We state the result here and write out the proof using [Zha05,
Theorem 1.6].

Lemma 18. Let

M =

[
A B

B∗ C

]
be a block Hermitian matrix with A square and invertible. Then
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(i) M > 0 if and only if A > 0 and SA > 0.

(ii) M ≥ 0 if and only if A > 0 and SA ≥ 0.

Remark 19. Note that B∗ here denotes the Hermitian transpose, that is conjugate
transpose B∗ = B

T .

Proof. Let p(M) denote the number of positive eigenvalues of M , q(M) the number
of negative eigenvalues of M and z(M) the number of zero eigenvalues of M . By
[Zha05, Theorem 1.6] we have p(M) = p(A) + p(SA), q(M) = q(A) + q(SA) and
z(M) = z(A) + z(SA).

(i) If M > 0, then q(M) = z(M) = 0, thus q(A) = q(SA) = 0 and z(A)+z(SA) = 0
, hence A > 0 and SA > 0. From this the reverse statement is trivial.

(ii) If M ≥ 0, then q(M) = 0, thus q(A) = q(SA) = 0. Since A was assumed
invertible we have z(A) = 0 and therefore A > 0. Moreover z(M) = z(SA), thus SA ≥
0. Again the reverse statement follows trivially from the same considerations.

2.6 Preconditioning
In this section, we introduce the concept of preconditioners. We first define the basic
ingredients before we formally define what a preconditioner is.

2.6.1 Condition number
When solving linear system such as

Ax = f, (2.43)

where A : X → Y is some operator, f is the known and x is our unknown, using
iterative methods a key quantity of interest is the condition number of A. We often
denote the condition number of A by κ(A).

For a matrix A the condition number κ(A) is defined by the matrix norm κ(A) =
∥A∥∥A−1∥, where ∥A∥ = supx ̸=0 ∥Ax∥/∥x∥. In analogous fashion we extend the
condition number to more general operators A : X → Y , i.e. κ(A) = ∥A∥∥A−1∥,
with the operator norm ∥A∥ = supx ̸=0 ∥Ax∥Y /∥x∥X .

The condition number is interesting because it figures in the error estimate when
iteratively solving problems such as (2.43). For a matrix system we can always com-
pute the condition number as they are always bounded by their largest eigenvalue,
however, general operators might not be bounded.
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What we are interested in is to have a conditioning number as close to 1 as possible,
but since we were probably given our problem, we can’t simply ask for a new operator
with better spectral properties.

Given a problem such as (2.43) we say that P : X → Y is a preconditioner for A
if P−1A has better spectral properties than A. The way we measure this is by the
condition number.

2.6.2 Riesz isomorphism

In certain cases, such as for our PDE-constrained optimization problem, one might
consider operators A as going from a space H to its dual space H∗. If H is a Hilbert
space, then the map IH : H → H∗ defined by

⟨IHx, y⟩ = (x, y)H ,

could be a possible choice as a preconditioner.
IH is the inverse of the Riesz isomorphism, RH = I−1

H . That is the famous map
coming from the Riesz representation theorem[Kre89, Theorem 3.8-1], linking each
element of the dual space x∗ ∈ H∗ to an element x in the Hilbert space H bijectively,
such that ⟨x∗, y⟩H∗,H = (x, y)H .

In [GHS14] it is noted that the Riesz representation takes on the role as a precon-
ditioner, which Zulehner explores in more detail in [Zul11]. We will here summarize
some of the content Zulehner presents in his article.

First off, Zulehner considers the saddle point problem in a more general form:
Find (u, p) ∈ X = V ×Q such that

a(u, v) + b(v, p) = f(v), for all v ∈ V,

b(u, q) − c(p, q) = g(q), for all q ∈ Q,
(2.44)

where V and Q are Hilbert spaces, a : V ×V → C, b : V ×Q → C and c : Q×Q → C
are bounded bilinear forms, and f, g are bounded linear functionals. Moreover, a and
c are assumed symmetric and nonnegative.

Now, a bilinear form s : H × H → C always comes with a associated operator
S : H → H∗ defined by the relation s(x, y) = ⟨Sx, y⟩ and vice versa. For a, b and
c we denote their associated operators A : V → V ∗, B : V → Q∗ and C : Q → Q∗.
Each of these operators are bounded since a, b and c were.
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Using these (2.44) may be restated as a problem of equality in the dual space X∗:

Au+B∗p = f,

Bu− Cp = g,

where B∗ is the adjoint of B defined by ⟨B∗r, v⟩ = ⟨Bv, r⟩ for r ∈ Q∗ and v ∈ V .
The problem (2.44) may be restated in the following short hand form: Find x =

(u, p) ∈ X such that

B(x, y) = F(y) (2.45)

for all y = (v, q) ∈ X, with

B(x, y) = a(u, v) + b(v, p) + b(u, q) − c(p, q) and F(y) = f(v) + g(q).

Like we did with the bilinear forms a, b and c, we may consider the operator
A : X → X∗ associated to B, such that ⟨Ax, y⟩ = B(x, y). Then the problem
rephrases to finding x ∈ X such that Ax = F .

As each of the bilinear forms were bounded it is trivial to see that there is some
constant cx > 0 such that

sup
0̸=z∈X

sup
0̸=y∈X

B(z, y)
∥z∥X∥y∥X

≤ cx < ∞.

By the inf-sub condition by Ladyzhenskaya, Babuška and Brezzi[Zul11] the prob-
lem (2.45) is well-posed if and only if

inf
0̸=z∈X

sup
0̸=y∈X

B(z, y)
∥z∥X∥y∥X

≥ cx > 0.

From these conditions, if 0 ̸= x ∈ X is a solution to (2.45) we have

cx ≤ ∥F∥X∗

∥x∥X
= sup

0̸=y∈X

|F(y)|
∥x∥X∥y∥X

= sup
0̸=y∈X

|B(x, y)|
∥x∥X∥y∥X

≤ cx.

Thus we obtain the condition

c−1
x ∥F∥X∗ ≤ ∥x∥X ≤ c−1

x ∥F∥X∗ .

In terms of our operator A this condition paraphrases into

cx∥z∥X ≤ ∥Az∥X∗ ≤ cx∥z∥X for all z ∈ X.
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As it turns out these bounds cx and cx on our operator A has a direct relation
to the afore mentioned condition number for κ(A). Note that as for ∥F∥X∗ we have
∥Az∥X∗ = sup0̸=y∈X |⟨Az, y⟩|/∥y∥X , thus

∥A∥ = sup
0̸=z∈X

∥Az∥X∗

∥z∥X
= sup

0̸=z∈X
sup

0̸=y∈X

|⟨Az, y⟩|
∥z∥X∥y∥X

= sup
0̸=z∈X

sup
0̸=y∈X

|B(z, y)|
∥z∥X∥y∥X

≤ cx.

Furthermore,

∥A−1∥ = sup
0̸=r∈Range(A)⊆X∗

∥A−1r∥X

∥r∥X∗
= sup

0̸=z∈X

∥z∥X

∥Az∥X∗
=
(

inf
0̸=z∈X

∥Az∥X∗

∥z∥X

)−1

=

(
inf

0̸=z∈X
sup

0̸=y∈X

|⟨Az, y⟩|
∥z∥X∥y∥X

)−1

=

(
inf

0̸=z∈X
sup

0̸=y∈X

|B(z, y)|
∥z∥X∥y∥X

)−1

≤ c−1
x .

Thus the bounds on A yields the following bound on the condition number of A:

κ(A) = ∥A∥∥A−1∥ ≤ cx

cx

.

Note that during the entire process nothing has been said explicitly about the
inner products on V and Q. The aim in [Zul11] is to find inner products for V and
Q such that one might obtain bounds cx and cx for the operator A. Good bounds
like that will lead to nice condition numbers and thus good convergence properties
for iterative methods.

The main theorem in [Zul11] then states the following

Theorem 20 (Theorem 2.6 in [Zul11]). If there are constants γ
v
, γv, γq

, γq > 0 such
that

γ
v
∥w∥2

V ≤ a(w,w) + ∥Bw∥2
Q∗ ≤ γv∥w∥2

V for all w ∈ V

and

γ
q
∥r∥2

Q ≤ c(r, r) + ∥B∗r∥2
V ∗ ≤ γq∥r∥2

Q for all r ∈ Q,

then

cx∥z∥X ≤ ∥Az∥X∗ ≤ cx∥z∥X for all z ∈ X

is satisfied with constants cx, cx > 0 that depend only on γ
v
, γv, γq

and γq. The
reverse conclusion holds true as well.
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Remark 21. By reading the proofs we get the following link between the constants:
cx =

√
2 max(cv, cq), with c2

v = max(γv, 1)γv and cq following the same pattern.
For the other,

cx = 3 −
√

5
4

c2
v + c2

q

max(cv, cq)
,

with cv = min(γ
v
, 1)γ

v
and cq analogously determined.

We note that these are just particular choices from the proofs, not necessarily the
the best bounds.

Rewriting the two conditions in the theorem one obtains

γ
v
⟨IV w,w⟩ ≤ ⟨(A+B∗I−1

Q B)w,w⟩ ≤ γv⟨IV w,w⟩, for all w ∈ V,

and

γ
q
⟨IQr, r⟩ ≤ ⟨(C +BI−1

V B∗)r, r⟩ ≤ γq⟨IQr, r⟩, for all r ∈ Q,

which shortens to

IV ∼ A+B∗I−1
Q B and IQ ∼ C +BI−1

V B∗. (2.46)

Lemma 22. Equation (2.46) is equivalent to both of the following statements

(i) IV ∼ A+B∗(C +BI−1
V B∗)−1B and IQ ∼ C +BI−1

V B∗,

(ii) IQ ∼ C +B(A+B∗I−1
Q B)−1B∗ and IV ∼ A+B∗I−1

Q B.

Proof. We will only prove (i) here as (ii) follows by analogous considerations.
(i) By equation (2.46) we get the following two inequalities:

IQ ≤ c1(C +BI−1
V B∗) and C +BI−1

V B∗ ≤ c2IQ.

Note that IV , IQ > 0, thus (C + BI−1
V B∗) > 0 and it is invertible. Moreove, both

c1, c2 > 0. By Lemma 33 the two inequalities yields

I−1
Q ≥ c−1

1 (C +BI−1
V B∗)−1 and c2(C +BI−1

V B∗)−1 ≥ I−1
Q .
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From these

IV ≤ c3(A+B∗I−1
Q B)

≤ c3(A+ c2B
∗(C +BI−1

V B∗)−1B)

≤ c2 max(1, c2)(A+B∗(C +BI−1
V B∗)−1B),

and

IV ≥ c−1
4 (A+B∗I−1

Q B)

≥ c−1
4 (A+ c−1

1 B∗(C +BI−1
V B∗)−1B)

≥ c−1
4 min(1, c−1

1 )(A+B∗(C +BI−1
V B∗)−1B).

Hence
IV ∼ A+B∗(C +BI−1

V B∗)−1B.

The other way follows from similar derivations.

2.6.3 Finite dimensional problems
Consider now the two statements in Lemma 22. If we take only the first part of either
statement, say (i), then the only unknown is IV and if we can find this we pretty
much have an expression for IQ. Thus our problem has taken the following form:
Find an operator IV : V → V ∗ which satisfy the first operator relation in Lemma
22(i). Then define IQ using the second operator relation in Lemma 22(i).

Zulehner then considers the special case when V and Q are finite vector spaces.
In this case the saddle point system is a matrix equation[

A BT

B −C

][
x
y

]
=

[
f
g

]
and the the inner product is defined by the matrix

IX =

[
IV 0
0 IQ

]
.

For the case where A and the negative Schur complement of A, S = C+BA−1BT ,
are non-singular it turns out the choices IV = A and IQ = S = C + BA−1BT

solves the operator relations in Lemma 22(i) as we shall see. Analogously, if C and
S′ = A + BTC−1B are non-singular similar considerations show that they solve the
relation in Lemma 22(ii).
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We note first how the equation for IQ is trivially satisfied with γ
q

= γq = 1. To
see the over relation holds we first consider the matrix

M =

[
S B

BT A

]
,

in which the Schur complement of A is S − BA−1BT = C. Since C is positive semi-
definite and A is positive definite by Lemma 18, M must be positive semi-definite.
Applying the lemma again, since S is positive definite and M is positive semi-definite
the Schur complement of S in M , call it Ŝ, must be positive semi-definite. By definite
Ŝ = A−BTS−1B ≥ 0, hence

A ≥ BTS−1B = BT (C +BA−1BT )−1B.

Using this

IV = A ≤ A+BT I−1
Q B = A+BT (C +BA−1BT )−1B ≤ A+A = 2A = 2IV ,

thus the operator relation is satisfied with γ
v

= 1 and γv = 2. Hence we have robust
estimates for our problem.

Example 23. We consider now our problem from Equation (2.39) with the matrix
blocks as defined in Equation (2.42). Then A block is positive definite as the mass
matrix M is positive definite by Lemma 29.

The negative Schur complement is

S = 0 +
[
K −M

] [M 0
0 αM

]−1 [
K

−M

]
= KM−1K + α−1M.

We already established that M was positive definite, thus all eigenvalues λi are posi-
tive. Let vi be the eigenvector for M corresponding to λi, then

Mvi = λivi ⇐⇒ 1
λi

vi = M−1vi,

hence λ−1
i is the eigenvalue for M−1 corresponding to eigenvector vi. Thus M and

M−1 share the same eigenvectors but with reciprocal eigenvalues. But if λi > 0, then
λ−1

i > 0 as well, hence M−1 is also positive definite.
As K is symmetric we find that vTKM−1Kv = (Kv)TM−1(Kv) ≥ 0, thus

KM−1K is positive semi-definite. Ergo we have KM−1K ≥ 0 and α−1M > 0, and
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thus S = KM−1K +α−1M > 0. So S is positive definite as well, hence we may here
use the preconditioner considered above:

P =

M 0 0
0 αM 0
0 0 S

 ,
where S = KM−1K + α−1M . These blocks corresponds to inner products induced
on our function space Vh. Clearly the state, control and Lagrange multiplier receive
different inner products. Let Yh, Uh and Ph each be the function space Vh but with
the different inner products. Let us explore what their inner products are.

In the following u and v will be the finite element approximated functions and u
and v their corresponding coefficient vectors. For Yh we get (u, v)Yh

= vTMu and
for Uh we get (u, v)Uh

= αvTMu. As M corresponds to the L2 inner product IL2 ,
we have

(u, v)Yh
= (u, v)L2 and

(u, v)Uh
= α(u, v)L2 .

For Ph it is slightly more complicated.

(u, v)Ph
= vTSu = vT (KM−1K + α−1M)u

= vTKM−1Ku + α−1vTMu = (Kv)TM−1(Ku) + α−1vTMu.

As M corresponds to IL2 : L2 → (L2)∗, M−1 must correspond to RL2 : (L2)∗ → L2,
and as K corresponds to −∆ : H1 → (H1)∗ we may, in a sense, view (Kv)TM−1(Ku)
as the induced inner product of ∆u and ∆v in (L2)∗. That is

(u, v)Ph
= α−1(u, v)L2 + (∆u,∆v)(L2)∗ .

△

Zulehner proceeds to show that for the case where both blocks A and C are
positive definite, we have for each θ ∈ [0, 1] solutions to the operator relations

IV = A+ [A,BTC−1B]θ and IQ = C + [C,BA−1BT ]1−θ, (2.47)

where

[M,N ]θ = M1/2(M−1/2NM−1/2)θM1/2.

Note that for θ = 0 and θ = 1 we obtain the previously mentioned solutions up to a
scaling with a factor of 2.
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Example 24. We consider again our problem given in Equation (2.39). The second
matrix equation derives from the equation αu − p = 0 which ultimately came from
the KKT-conditions derived in Example 14. Rearranging this we get u = α−1p and
substituting α−1p for u everywhere we reduce the system to two coupled partial
differential equations in the unknowns y and p, here listed without their boundary
conditions

−∆y = α−1p, and
−∆p = yd − y.

Discretization of this yields the matrix system[
M K

K −α−1M

][
y
p

]
=

[
yd

0

]
.

Again, not taking boundary conditions into account here. They are applied to this
system in a fashion analogous to what was seen earlier. We won’t consider them
further here.

Selecting the matrix blocks in the obvious way

A = M, B = K and C = α−1M,

satisfy the condition that A and C are positive definite matrices. Zulehner’s precon-
ditioner stated in Equation (2.47) are then

IV = M + [M,K(α−1M)−1K]θ = M + αθ[M,KM−1K]θ, and
IQ = α−1M + [α−1M,KM−1K]1−θ = α−1M + α−θ[M,KM−1K]1−θ.

Notably,

[M,KM−1K]θ = M1/2(M−1/2KM−1KM−1/2)θM1/2

= M1/2(M−1/2KM−1/2)2θM1/2.

Thus for θ = 1 − θ = 1
2 we have [M,KM−1K]1/2 = K and may obtain the following

simple forms for the preconditions, which Zulehner also shows.

IV = M + [M,K(α−1M)−1K]1/2 = M + α1/2K, and
IQ = α−1M + [α−1M,KM−1K]1/2 = α−1M + α−1/2K.

These are particularly nice as when M and K are very sparse matrices, the sum will
most often also be sparse, which is a useful property. Furthermore, neither of them
require inversion of a matrix, which means the quantities can easily be computed.
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As in the previous example they correspond to the inner products on Yh and Ph

(u, v)Yh
= (u, v)L2 + α1/2(∇u,∇v)L2 , and,

(u, v)Ph
= α−1(u, v)L2 + α−1/2(∇u,∇v)L2 .

△

2.6.4 Schur complement approximations

The examples in the previous section showed us possible choices as preconditioners
for our problem. The first example involved the negative Schur complement S =
C +BA−1BT , which there takes the form S = KM−1K + α−1M .

It is relevant in computations with large matrix systems to consider the efficiency
of operations in speed but also in memory usage. As a finite element mass matrix M
will generally be quite sparse, which is great for memory. Also, often the structure of
a finite element matrix like this may be exploited for fast computations. Alas, though
M is sparse, there is no guarantee M−1 will be sparse. Thus S will not necessarily
be sparse or easily inverted.

Recall that while we have considered preconditioners P , what we actually use
it for is to consider P−1 applied to our system matrix. Thus we prefer P to be
easily invertible. Being a block diagonal matrix P inverts by inverting each of the
blocks diagonal elements. This require us to invert S, which as mentioned might be
computationally very expensive.

As such approximations Ŝ of S are usually considered instead. In [RDW10] the
following approximation to S = KM−1K + α−1M is proposed

Ŝ1 = KM−1K.

We simply drop the α−1M term. The argument here is that for all but very small
values of α the KM−1K term will be the dominating one. This approximation is
nice as it inverts quite easily. It comes down to the problem of solving Kx = b
for x two times and Mx = b for b once, which are both sparse problems. It is
worth noting here that this approximation Ŝ1 has no α dependence anymore. The
logical conclusion should be that the upper and lower bounds previously established
must depend on α now, which the numerical results will also verify. Also, Ŝ1 is not
necessarily positive definite.



2.6 Preconditioning 43

By rewriting S we find that

S = KM−1K + α−1M = KM−1K + (
√
α

−1
M)M−1(

√
α

−1
M)

= KM−1K + (
√
α

−1
M)M−1(

√
α

−1
M) + 2

√
α−1K − 2

√
α

−1
K

= (K +
√
α

−1
M)M−1(K +

√
α

−1
M) − 2

√
α−1K.

In [Pea13] this is used for proposing another approximation to the Schur complement.
The proposed approximation is

Ŝ2 = (K +
√
α

−1
M)M−1(K +

√
α

−1
M).

That is, we drop the −2
√
α

−1
K term. Again the argument is that the term will be

dominated by Ŝ2 for most values of α. Furthermore, where the term removed for Ŝ1

was O(α−1) here we have O(
√
α

−1), so the error committed grows much slower.
Ŝ2 luckily have the same conveniences as Ŝ1 had. Defining L = K +

√
α

−1
M ,

inverting Ŝ2 is equivalent to solving Lx = b for x two times and Mx = b for b once.
Also, M and K being sparse means L is often a sparse matrix. As an added bonus
Ŝ2 does maintain its α-dependency, and as such the bounds should be expected to
remain fairly good.

We finally note here that using the approximations Ŝ1 and Ŝ2 of course signifies
usage of slightly different inner products as well. The correspond to the inner products

(u, v)
Ŝ1

= (∆u,∆v)(L2)∗

and

(u, v)
Ŝ2

= α(u, v)L2 + (∆u,∆v)(L2)∗ + 2
√
α

−1(∇u,∇v)L2

respectively.

2.6.5 Preconditioner for infinite dimensional case
A reasonable question coming from the abstract setting of Zulehner’s article is: Can
we consider our problem in the non-discretized operator setting and establish a pre-
conditioner operator? Also, will this preconditioner operator discretize to the same
preconditioner we found for the discretized system?

In this section we lay the foundation for a possible extension of the study in
previous sections to preconditioners in the infinite dimensional space.

We have a notion that a generalization of the Schur-complement to operator ma-
trices on Hilbert spaces might make derivations analogous to the finite dimensional
setting from the theory possible. We present here initial thoughts on this process.
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2.6.5.1 Schur complement for operator matrices

Let X and Y be Hilbert spaces and A : X → X, B : Y → X, C : X → Y and
D : Y → Y be bounded Hilbert space operators. Let IH : H → H be the identity
operator on H. We will consider the Hilbert space operator M : H → H, where
H = X × Y , defined by

M =

[
A B

C D

]
,

We begin by noting that upper triangular operator matrices behave a lot like regular
matrices. They are invertible in the same way.[

IX B

0 IY

][
IX −B
0 IY

]
=

[
IXIX +B0 IX(−B) +BIY

0IX + IY 0 0(−B) + IY IY

]
=

[
IX 0
0 IY

]
.

Note how for any operator B : X → Y the upper triangular operator matrix is easily
inverted by a change in sign.

Let D be invertible, then the following computation can be done. Let L,R : H →
H be triangular operator matrices, defined as follows

L =

[
IX −BD−1

0 IY

]
and R =

[
IX 0

−D−1C IY

]

We then compute

LMR =

[
IX −BD−1

0 IY

][
A B

C D

][
IX 0

−D−1C IY

]

=

[
IXA+ (−BD−1)C IXB + (−BD−1)D

0A+ IY C 0B + IY D

][
IX 0

−D−1C IY

]

=

[
A−BD−1C 0

C D

][
IX 0

−D−1C IY

]

=

[
(A−BD−1C)IX + 0(−D−1)C (A−BD−1C)0 + 0IY

CIX +D(−D−1C) C0 +DIY

]

=

[
A−BD−1C 0

0 D

]
.

Here the operator S = A − BD−1C : X → X is the Schur complement operator for
the opeator D in M .



2.6 Preconditioning 45

Sylvester’s Law of Inertia[Zha05, Theorem 1.5] states that for matrices A and B

there is a non-singular matrix G such that A = G∗BG if and only if A and B have
the same number of positive, negative and zero eigenvalues.

In Section 2.5.2 we saw how positive definiteness of the Schur complement can be
linked to the same property for the matrix blocks in the finite dimensional setting.
In [Zha05] this is done using Sylvesters’s Law of Inertia. By [Bun88; Cai80] the
intertia law also holds for operators in infinite dimensional Hilbert spaces. In infinite
dimensions the comparison of eigenvalues takes on a more complicated form involving
dimensions of eigenspaces, see [Cai80, p. 225], which is beyond the scope here.

By the same approach as in [Zha05, Theorem 1.6], but using the generalized
Hilbert space version of the Law of Inertia we can obtain a relation between the
between the positive, negative and zero eigenvalues of M , D and S, the Schur com-
plement of D in M .

Let M be a Hermitian operator, i.e. M = M∗, where M∗ is the adjoint operator.
Then

M =

[
A B

C D

]
=

[
A B

C D

]∗

=

[
A∗ C∗

B∗ D∗

]
= M∗,

and thus A = A∗, D = D∗ and B = C∗. Relabeling, we from here write

M =

[
A B

B∗ D

]
.

Note that now L and R are adjoints to each other.

L∗ =

[
IX −BD−1

0 IY

]∗

=

[
I∗

X 0
(−BD−1)∗ I∗

Y

]
=

[
IX 0

−D−1B∗ IY

]
= R

Recall that M > 0 if (Mh, h) > 0 for all h ∈ H. If a negative eigenvalue λ with
corresponding eigenvector h′ exists, then (Mh′, h′) = λ(h′, h′) = λ∥h′∥2 < 0, thus
M ̸> 0. Hence if M > 0, M can have no negative eigenvalues and the dimension of
the negative signed eigenspace must be 0. Likewise for the 0 eigenspace.

Since
(LMRh, h) = (MRh,L∗h) = (MRh,Rh) > 0

we find that LMR > 0. Consider now any x ∈ X and construct h = (x, 0) ∈ H,
then (LMRh, h) = (Sx, x) > 0, where S was the Schur complement, hence S > 0.
Constructing h = (0, y) for y ∈ Y analogously shows D > 0.

The other way is obvious for D > 0 and S > 0 we have for h ∈ H

(Mh, h) = (L−1ΛR−1h, h) = (ΛR−1h,R−1h) = (Sx, x) + (Dy, y) > 0,
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where Λ = LMR and R−1h = (x, y). Thus M > 0.
We conclude that we may obtain a generalized Lemma 18 for Hilbert space oper-

ators.

Lemma 25. Let X,Y and H = X×Y be Hilbet spaces and M : H → H a Hermitian
operator defined by

M =

[
A B

B∗ C

]
,

where A : X → X, B : Y → X and C : Y → Y are Hilbert space operators.
Furthermore, assume C to be invertible. Then M > 0 if and only if C > 0 and
SC = A+BC−1B∗ > 0, where SC is the Schur complement.

2.6.5.2 Continuous problem

In this section we consider, based on the theory from the previous section, the saddle
point problem

M

[
x

y

]
=

[
v

w

]
, with, M =

[
A B

B∗ −C

]
.

Here A : X → X, B : Y → X and C : Y → Y . Assuming A invertible and
S = C +B∗A−1B invertible, then following the derivation for the finite dimensional
case seen in the Theory chapter we may obtain a robust preconditioner of the form

P =

[
P1 0
0 P2

]
,

with bounds γ
x

= 1, γx = 2 and γ
y

= γy = 1 by setting P1 = A and P2 = S =
C +B∗A−1B.

Now the real problem is determining if the following operator

M =

IL2 0 −∆
0 αIL2 IL2

−∆ IL2 0

 ,
where ∆ is the Laplacian, IL2 is the indentity operator on L2 and α > 0, is a Hermitian
operator. Here we have the following break-down of sub-operators A, B and C,

A =

[
IL2 0
0 αIL2

]
, B =

[
−∆
IL2

]
, C =

[
0
]
.
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For M to be Hermitian we saw earlier that A and C should be Hermition and for B
we require

B =

[
−∆
IL2

]∗

=
[
−∆∗ I∗

L2

]
=
[
−∆ IL2

]
.

Clearly both A and C are Hermitian operators. C is trivial and A is easy because
the identity operator is Hermitian on L2, which is not altered by scaling with a real
constant. However, B is troublesome. We need −∆ to be Hermitian, i.e. self-adjoint.

However, −∆ is not just self-adjoint. This depends a lot on our space, so let us
briefly outline where the problem came from. We are working over a domain Ω with
boundary ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD ∩ ∂ΩN = ∅. Furthermore our functions are
all in L2(Ω), though there might be restrictions to a subspace where certain levels of
derivatives exist. We will now consider realizations of −∆.

For in depth theory of realizations see [Gru08, Chp. 4]. Suffices here to say
that realizations of an differential operator A are particular extensions of Amin :=
A|C∞

0 (Ω)
∥·∥G , where ∥·∥G means the closure of the operator in the Graph norm. We

seek here a self-adjoint realization; that is, a self-adjoint extension. Note that there
is a maximal realization Amax which acts as A but in the sense of distributions. All
realizations Ã of A satisfy Amin ⊂ Ã ⊂ Amax.

There are many self-adjoint realizations of −∆, typically corresponding to different
boundary conditions. In our problem we consider the boundary conditions u = 0 on
∂ΩD and ∂u

∂n = 0 on ∂ΩN .
Let γ0 : H1(Ω) → L2(∂Ω) be the trace operator and define γD : H1(Ω) →

L2(∂ΩD) by γD(u) = γ0(u)χ∂ΩD
. Let

V := {u ∈ H1(Ω) | γDu = 0},

then V is a closed subspace of H1(Ω) and thus a Hilbert space itself as we shall see
next.

Consider a Cauchy-sequence (un) ⊂ V , then exists u ∈ H1(Ω) such that un → u

in H1(Ω). By [Eva08, Chp. 5.5] the trace operator γ0 is bounded, and so is γD:

C∥u∥H1(Ω) ≥ ∥γ0(u)∥L2(∂Ω) ≥ ∥γD(u)∥L2(∂ΩD).

As γD is bounded it is continuous and thus un → u in H1(Ω) implies γD(un) → γD(u)
in L2(∂ΩD). Since γD(un) = 0 by definition we have 0 → γD(u) in L2(∂ΩD), hence
γD(u) = 0 meaning u ∈ V , which is what we wanted.

Let s(u, v) =
∑n

k=1(∂ku, ∂kv) be a biliniar form on V .
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Note, s is V -coercive:

s(v, v) =
n∑

k=1

(∂kv, ∂kv) =
n∑

k=1

∥∂kv∥2 ≥ 0,

thus
Re(s(v, v)) + (v, v) ≥ (v, v), for all v ∈ V.

Consider the triplet (L2(Ω), V, s), this satisfies the conditions for [Gru08, Corol-
lary 12.19] which we state as a lemma here.

Lemma 26 (Corollary 12.19 in [Gru08]). Let (H,V, a) be a triple where H and V

are complex Hilbert spaces with V ⊂ H algebraically, topologically and densely, and
where a is a bounded sesquilinear form on V with D(a) = V . Let A be the operator
associated with a in H.

When a is V -coercive, then A is a closed operator with D(A) dense in H and in
V . Moreover, the operator associated with a∗ in H equals A∗ which has the same
properties as listed for A. In particular, if a is symmetricm A is selfadjoint.

Remark 27. V ⊂ H algebraically, topologically and densely means simply that the
norm of V is stronger than the norm of H in the sense that

∥v∥V ≥ c∥v∥H for all v ∈ V,

where c > 0 is some constant. This property is easily observed to be satisfied with
constant c = 1 for our triplet since (v, v)V = (v, v)H + (∇v,∇v)H ≥ (v, v)H .

Remark 28. The corollary states some further properties about lower bounds for A,
which we will not bother with here.

Let T be the associated operator of s as defined by Lemma 26 ([Gru08, Corol-
lary 12.19]). Since s is symmetric T is self-adjoint. Using integration by parts

s(u, v) =
n∑

k=1

(∂ku∂kv) =

(
−

n∑
k=1

∂2
ku, v

)
, for u ∈ C∞

0 (Ω), v ∈ V,

thus T extends the operator −∆|C∞
0 (Ω). As T is a self-adjoint extension of Amin it

acts as −∆ everywhere. The domain of T , denoted by D(T ) is defined as

D(T ) := {u ∈ V ∩D(Amax) | (−∆u, v) = s(u, v) for all v ∈ V }.
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Considering elements of D(T ) belonging to C2(Ω) we find that for u ∈ V ∩ C2(Ω)
and v ∈ V ∩ C1(Ω)

(−∆u, v) − s(u, v) =
n∑

k=1

(∂ku, ∂kv) +
∫

∂Ω

∂u

∂n
v dσ − s(u, v)

=
∫

∂Ω

∂u

∂n
v dσ =

∫
∂ΩN

∂u

∂n
v dσ.

If u ∈ D(T ) then (−∆u, v) − s(u, v) = 0 by construction, thus
∫

∂ΩN

∂u
∂nv dσ = 0 and

∂u
∂n = 0 on ∂ΩN . Likewise, if the latter is satisfied, then working backwards we get
u ∈ D(T ).

In conclusion in a generalized sense T represents a mixed zero Dirichlet-Neumann
boundary condition corresponding to our problem. By Lemma 26 T is a closed
operator and D(T ) is dense in both L2(Ω) and V .

Returning to our problem we had A : X → X, B : Y → X and C : Y → Y .
Clearly by the matrix shape of A and B, we have X = X1 × X2. Let X1 = Y =
D(T ) and X2 = L2(Ω), then −∆ is self-adjoint as we wanted and we can obtain the
preconditioner P with

P1 = A =

[
IL2 0
0 αIL2

]
,

and

P2 = S =
[
−∆ IL2

] [I−1
L2 0
0 αI−1

L2

][
−∆
IL2

]
= ∆I−1

L2 ∆ + αIL2 .

Notably, this differs slightly from the problem described in the theory where the
range are dual spaces A : X → X∗, B : Y → X∗ and C : Y → Y ∗, i.e. M : H → H∗,
whereas here we have considered M as an automorphism.

Also, there are some issues as we here have B : Y → X we are saying that for
y ∈ Y , By ∈ X, that is −∆y ∈ X1 and IL2y ∈ X2. The latter is fine, but having
chosen X1 = Y we require that −∆ is an automorphism, which is generally not the
case.

In the future a further study in generalization of the Schur complement for oper-
ators between dual spaces could be interesting.
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2.6.5.3 Dual space Schur complement

Consider Hilbert spaces X and Y and let A : X → X∗, B : Y → X∗ and C : Y → Y ∗.
Define now M : H → H∗, where H = X × Y , by

M =

[
A B

B∗ C

]
.

Assuming C is invertible and self-adjoint, consider the following two operator matrices

L =

[
IX∗ −BC−1

0 IY ∗

]
, and R =

[
IX 0

−C−1B∗ IY

]
.

Clearly L : H∗ → H∗ and R : H → H. We note that the adjoint of the identity
operator, I∗

X , satisfy I∗
X(x∗)(x) = x∗(IXx) = x∗(x), thus I∗

X = IX∗ . Now

L∗ =

[
IX∗ −BC−1

0 IY ∗

]∗

=

[
I∗

X∗ 0
(−BC−1)∗ I∗

Y ∗

]
=

[
IX 0

−C−1B∗ IY

]
= R.

Thus L and R are adjoints of one another. We find that

LMR =

[
IX∗ −BC−1

0 IY ∗

][
A B

B∗ C

][
IX 0

−C−1B∗ IY

]

=

[
IX∗A+ (−BC−1)B∗ IX∗B + (−BC−1)C

0A+ IY ∗B∗ 0B + IY ∗C

][
IX 0

−C−1B∗ IY

]

=

[
A−BC−1B∗ 0

B∗ C

][
IX 0

−C−1B∗ IY

]

=

[
(A−BC−1B∗)IX + 0(−C−1)B∗ (A−BC−1B∗)0 + 0IY

B∗IX + C(−C−1B∗) B∗0 + CIY

]

=

[
A−BC−1B∗ 0

0 C

]
.

Thus LMR = R∗MR : H → H∗, and we have an operator S = A − BC−1B∗ very
similar to the Schur complement seen earlier.

Going from here there is an issue though, as [Bun88] and [Cai80] considers only
intertia for bounded linear automorphism on H. Also, eigenvalues cannot be defined
as traditionally for an operator H → H∗.

So a more in depth study involving generalization of eigenvalues to operators
between a Hilbert space and its dual space along with definition of generalized inertia
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might be interesting. If results similar to Lemma 18 could be obtained through this
we would immediately obtain the robust continuous preconditioner for our model
problem. This is an open question for further future investigation.
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CHAPTER 3
Practical

implementation
In this chapter we will go through the practical implementation of the theory. In this
first part we will briefly outline the resources used. After that we will go over the
finite element implementation: setting up the mesh, basis functions and assembling
matrices. Then we make a brief note on how the preconditioner is set up, and then
cover the optimization algorithm used.

This was done using the programming language Python, initially chosen due to
the availability of the open source tool FEniCS. FEniCS in particularly excels when
one wants to solve Partial Differential Equations.

Apart from FEniCS, later in the project through John Pearson1 we were intro-
duced to IFISS. IFISS, which is an open source MATLAB package, has amoung other
things tools for Optimal Control Problems, and we have initially graciously borrowed
a MINRES algorithm implementation used in one of the examples coming with the
toolbox. However, later we rewrote the optimization algorithm using the pseudo-code
in [GHS14] as a basis.

It should be noted that while FEniCS is a Python library, the latest versions are
not made available on the Windows platform. Thus initial implementations has been
in a virtual machine, with which follows certain limitations. Later in the project a
framework was built to directly push FEniCS-code jobs to the university server nodes,
through which we have access to much greater computation power. This framework
is presented further in Appendix D.

We note that in the following Python code these libraries have been importet:

1 # NumPy
2 import numpy as np

1https://www.kent.ac.uk/smsas/our-people/profiles/pearson_john.html
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3

4 # SciPy
5 import scipy.sparse as sps
6 import scipy.sparse.linalg as spslinalg
7

8 # MatPlotLib
9 from matplotlib.mlab import griddata

10

11 # FEniCS Dolfin
12 from dolfin import *
13

14 # MINRES
15 from minres_sparse import minres

.

3.1 Mesh and basis functions
The first step in the implementation is setting up the mesh and basis functions. This
step is one of the major reasons for using the FEniCS library as it comes with a
number of functions for automatic mesh generation and several posible choices of
basis functions. As FEniCS always generates triangular meshes we have been using P1

elements, in FEniCS called “Continuous Galerkin”, abbreviated “CG”, or “Lagrange”
elements of order 1. The code snippet is seen below and further explained afterwards.

1 # Mesh and basis fucntions
2 parameters['reorder_dofs_serial'] = False
3 mesh = UnitSquareMesh(m,m)
4 V = FunctionSpace(mesh, 'CG', 1)

.

As the first part of setting up the mesh and basis functions we choose a numbering
scheme for the nodes and basis elements. Two different schemes are the typical ones,
as we don’t know them to have specific names we here refer to them as the standard
scheme and the serial scheme. The standard scheme labels each node row by row
starting in the lower left corner while the serial scheme takes a zig-zag path. Both
schemes are pictured in Figure 3.1. FEniCS uses the alternate scheme by default, but
we have chosen to use the standard one here.

Then we choose our mesh, in our model problem with a unit square domain. We
pick a number m defining the level of refinement of our mesh. From here we set up
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Figure 3.1: Standard and serial node ordering. Standard node ordering is shown in
the left diagram and serial in the right.

several indicator functions to tell us if a particular point x is on the boundary of our
mesh, and where that boundary is a Dirichlet or Neumann boundary. This allows us
to use FEniCS to define a measure ds on the boundary which we can use to integrate
functions over the boundary.

Finally the function space, i.e. the basis functions, are chosen as P1 functions as
we mentioned in the beginning.

3.2 Matrix assembling
For the matrix assembly FEniCS again comes in handy. With the finite element
function space defined we can construct trial and test functions directly using FEniCS
functionality. We write up functions for the desired state, Neumann boundary and
Dirichlet boundary conditions. This is done using the code snippet seen below.

1 # Boundary detection and boundary functions
2 def isBoundary(x):
3 return near(0,x[0]) or near(1,x[0]) or \
4 near(0,x[1]) or near(1,x[1])
5 def isDirichletBoundary(x):
6 return near(1,x[0]) or near(1,x[1])
7 def isNeumannBoundary(x):
8 return isBoundary(x) and not isDirichletBoundary(x)
9

10 class Boundary(SubDomain):
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11 def inside(self, x, on_boundary):
12 return isBoundary(x)
13 class DirichletBoundary(SubDomain):
14 def inside(self, x, on_boundary):
15 return isDirichletBoundary(x)
16 class NeumannBoundary(SubDomain):
17 def inside(self, x, on_boundary):
18 return isNeumannBoundary(x)
19

20 class desiredState(Expression):
21 def eval(self, value, x):
22 if x[0] < 0.5 and x[1] < 0.5:
23 value[0] = 1
24 else:
25 value[0] = 0
26

27 class NeumannFunction(Expression):
28 def eval(self, value, x):
29 value[0] = 0
30

31 Dirichlet = Constant(0.0)
32 g = Expression("C",C=Dirichlet,domain=mesh)
33 f = NeumannFunction()
34 yd = desiredState()
35

36 # Trial and test functions
37 y = TrialFunction(V)
38 u = TrialFunction(V)
39 v = TestFunction(V)

.

We set up the bilinear form for the weak formulation for the PDE part of our
problem along with the functional on the right hand side. We also write up weak
forms for the Neumann boundary condition and Dirichlet boundary condition and
the desired state. With all the forms constructed FEniCS functionality allows us to
assemble the matrices and vectors directly from the forms. This is seen below.

Note that the first paragraph of code sets up the measure corresponding to the
boundary integral for respectively the Dirichlet and the Neumann parts of the bound-
ary.

1 # Boundary measures
2 markers = FacetFunctionSizet(mesh, 0)
3 ds = ds[markers]
4 DirichletBoundary().mark(markers, 1)
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5 NeumannBoundary().mark(markers, 2)
6

7 # Weak forms
8 a = inner(grad(y), grad(v))*dx
9 L = u*v*dx

10 Q = f*v*ds(2)
11 G = g*v*ds(1)
12 Yh = yd*v*dx
13

14 # Assemble matrices
15 K = assemble(a)
16 M = assemble(L)
17 Q = assemble(Q)
18 Gm = assemble(G)
19 Ym = assemble(Yh)

.

From here we move away from FEniCS objects. We cast the constructed matrices
and vectors to Numpy arrays. We apply boundary conditions to the matrices and
vectors as described in the theory: First to the mass matrix M and the vector for-
mulation of the desired state yd. Then to the stiffness matrix K and a zero vector.
The algorithm for applying the boundary conditions was written following the finite
element course notes [Eng09] from the finite element course at DTU.

1 # NumPy matrices and vectors
2 K = K.array()
3 M = M.array()
4 q = Q.array()
5 gv = Gm.array()
6 z = Ym.array()
7

8 # Boundary conditions
9 def BoundaryConditions(A,b,f,mesh):

10 # f must be an Expression with mesh-domain
11 coords = mesh.coordinates().tolist()
12

13 for i in range(0, len(coords)):
14 if not isDirichletBoundary(coords[i]):
15 continue
16

17 A[i,i] = 1
18 b[i] = f[i]
19 for j in range(0, A.shape[0]):
20 if i == j:
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21 continue
22

23 A[i,j] = 0
24 if not isDirichletBoundary(coords[j]):
25 b[j] = b[j] - A[j,i]*f[i]
26 A[j,i] = 0
27 return (A,b)
28

29 # Applying boundary conditions
30 (K,d) = BoundaryConditions(K,np.zeros(K.shape[0]),gv,mesh)
31 (M,z) = BoundaryConditions(M,z,gv,mesh)

.

Then the matrices and vectors are made into sparse matrices and assembled into
our complete system matrix and right hand side.

1 # Sparse matrices
2 K = sps.csr_matrix(K)
3 M = sps.csr_matrix(M)
4

5 # System matrix and RHS
6 def SystemMatrix(M,K,alpha):
7 (n,_) = M.shape
8 A = sps.bmat([[M, sps.csr_matrix((n,n)), K ],
9 [sps.csr_matrix((n,n)), alpha*M, -M ],

10 [K, -M, sps.csr_matrix((n,n))]])
11 return A
12

13 def RightHandSide(z,g):
14 (n,) = z.shape
15 b = np.bmat([[z],[np.zeros(n)],[g]])
16 b = np.asarray(b).squeeze()
17 return b
18

19 # Build system matrix and RHS
20 A = SystemMatrix(M,K,alpha)
21 b = RightHandSide(z,d+q)

.
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3.3 Preconditioner

We set up the preconditioner P as an object, which you can feed the basic matrix
blocks to and then set the type of preconditioner you want it to be. It then has a solve
function, which computes the action of the inverse on a vector. For computational
reasons the inversion is done on each block level separately, so that the preconditioner
matrix is never assembled completely.

1 class Preconditioner:
2 def __init__(self,M,K,alpha):
3 self.type = []
4 self.M = M
5 self.alpha = alpha
6 self.K = K
7

8 self.D = []
9 self.L = []

10

11 def setType(self,t):
12 self.type = t
13 if self.type == 1: # Diagonal
14 self.D = sps.diags(self.K.diagonal()**2/self.M.diagonal() + self

.K.diagonal()/self.alpha)
15 elif self.type == 2: # Rees Schur approximation
16 self.L = self.K
17 elif self.type == 3: # Pearson Schur approximation
18 self.L = self.K+self.M/np.sqrt(self.alpha)
19

20 def solve(self,x_it):
21 n = self.M.shape[0]
22 if self.type == 1:
23 r1 = x_it[0:n]
24 r2 = x_it[n:2*n]
25 z1 = spslinalg.spsolve(sps.diags(self.M.diagonal()),r1)
26 z2 = spslinalg.spsolve(sps.diags(self.M.diagonal()),r2)/self.

alpha
27

28 r3 = x_it[2*n:3*n]
29 z3 = spslinalg.spsolve(sps.diags(self.D.diagonal()),r3)
30 elif self.type == 2 or self.type == 3:
31 r1 = x_it[0:n]
32 r2 = x_it[n:2*n]
33 z1 = spslinalg.spsolve(self.M,r1)
34 z2 = spslinalg.spsolve(self.M,r2)/self.alpha
35
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36 r3 = x_it[2*n:3*n]
37 tmp = spslinalg.spsolve(self.L,r3)
38 tmp = self.M.dot(tmp)
39 z3 = spslinalg.spsolve(self.L,tmp)
40 else:
41 z1 = x_it[0:n]
42 z2 = x_it[n:2*n]
43 z3 = x_it[2*n:3*n]
44

45 return np.hstack((z1,z2,z3))

.

When the preconditioner object is initialized it is fed the mass matrix, stiffness
matrix and the regularization parameter alpha. Upon selecting the preconditioner
type, the composite matrices required for that particular type is then computed from
the given ones. From here the object can be fed to the optimization algorithm, which
will use the solve command to solve the inversion problem w = P−1v.

The setType method is used for selecting the preconditioner type. The primary
difference is which Schur complement approximation is used. The method is easily
modified for other variations of preconditioners.

1 # Setup preconditioner
2 P = Preconditioner(M,K,alpha)
3 P.setType(3)

.

3.4 MINRES
In Appendix B the theory behind the standard MINRES algorithm is covered in
some detail. It solves the problem Ax = b, where the knowns are A is the system
matrix and b the right hand side, by successively searching for the minimal residual
r = b−Ax in a increasing sequence of Krylov subspaces

K1(A, b) ⊆ K2(A, b) ⊆ · · · ⊆ Kn(A, b),

where n = dim b.
The optimization algorithm used in the code, however, is the preconditioned MIN-

RES algorithm which minimizes the P−1 norm, ∥r∥P −1 =
√

(r, P−1r), of the residual
in the Krylov subspaces AKk(P−1A,P−1b) [GHS14].
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Note that as Kk(A, b) = span0≤j<k{Ajb} we have

AKk(P−1A,P−1b) = A span
0≤j<k

{(P−1A)jP−1b}

= span
0≤j<k

{(AP−1)j+1b}

= AP−1 span
0≤j<k

{(AP−1)jb} = AP−1Kk(AP−1, b).

Note that by associativity

A(P−1A)jP−1 = A(P−1A)(P−1A) · · · (P−1A)P−1

= (AP−1)(AP−1)(A · · ·P−1)(AP−1),

which encompasses the second equality.
Following the derivation in Appendix B but with the new choice of Krylov space

we obtain the following expression for the new basis element:

ṽt+1 = AP−1vt −
t∑

j=1
projvj

(AP−1vj).

Here proju(v) = (v, u)P −1 û, where û = u/∥u∥P −1 , so the projection is with respect
to the P−1-norm. Recalling that vj is already normalized (here in the P−1-norm) we
have

ṽt+1 = AP−1vt −
t∑

j=1
(AP−1vt, vj)P −1vj

= Azt −
t∑

j=1
(Azt, P

−1vj)vj

= Azt −
t∑

j=1
(Azt, zj)vj

= Azt −
t∑

j=1
(zT

j Azt)vj .

Thus again going by the derivation in the appendix

AP−1Vt = Vt+1Ht, Ht =



zT
1 Az1 zT

1 Az2 zT
1 Az3 zT

1 Az4 . . .

∥ṽ2∥P −1 zT
2 Az2 zT

2 Az3 zT
2 Az4 . . .

0 ∥ṽ3∥P −1 zT
3 Az3 zT

3 Az4 . . .

0 0 ∥ṽ4∥P −1 zT
4 Az4 . . .

...
...

...
... . . .

 ∈ R(t+1)×t,
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and Ht is symmetric, since P = PT symmetric implies P−1 = P−T symmetric and
thus as in the appendix

(P−1Vt)TAP−1Vt = (P−1Vt)TVt+1Ht = V T
t P

−1Vt+1Ht = [It|0]Ht = Tt,

where for δi = zT
i Azi and γi = zT

i−1Azi = ∥ṽi∥P −1 we have

Tt =



δ1 γ2 0 . . . 0
γ2 δ2 γ3 0

0 γ3 δ3
. . . ...

... . . . . . . γt

0 0 . . . γt δt


.

This covers how the basis differs for the preconditioned MINRES algorithm. The
residual minimized here is, as stated initially, minimized in the P−1-norm. We start
with the initial guess x0 = 0 and thus have r0 = b−Ax0 = b. Now rt = b−AP−1xt,
thus for Kt = [b, AP−1b, . . . , (AP−1)t−1b] we have

min
x∈Kt

∥b−AP−1x∥P −1 = min
y∈Rt

∥b−AP−1Kty∥P −1

= min
z∈Rt

∥b−AP−1Vtz∥P −1

= min
z∈Rt

∥b− Vt+1Htz∥P −1

= min
z∈Rt

∥∥b∥P −1v1 − Vt+1Htz∥P −1

= min
z∈Rt

∥Vt+1(∥b∥P −1V −1
t+1v1 −Htz)∥P −1 .

Now, note that since Vt+1 contains the orthogonal basis with respect to the P−1-inner
product, we have V T

t+1P
−1Vt+1 = I, hence V −1

t+1 = V T
t+1P

−1 and thus

min
z∈Rt

∥Vt+1(∥b∥P −1V −1
t+1v1 −Htz)∥P −1 = min

z∈Rt
∥Vt+1(∥b∥P −1V T

t+1P
−1v1 −Htz)∥P −1

= min
z∈Rt

∥Vt+1(∥b∥P −1e1 −Htz)∥P −1 ,

where e1 = (1, 0, 0, . . . , 0) ∈ Rt+1. Furthermore, consider ∥Vkx∥2
P −1 , then

∥Vkx∥2
P −1 = (Vkx, Vkx)P −1 = (Vkx, P

−1Vkx)2

= (P−1Vkx)TVkx = xTV T
k P

−1Vkx = xTx = (x, x)2 = ∥x∥2
2.

Because of this

min
z∈Rt

∥Vt+1(∥b∥P −1e1 −Htz)∥P −1 = min
z∈Rt

∥∥b∥P −1e1 −Htz∥2.
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This covers how the preconditioner enters the MINRES algorithm. From here com-
putations follow the same procedure as the regular MINRES algorithm.

The preconditionned MINRES algorithm in [GHS14] (Algorithm 3.1) has been
implemented as minres.py, which can be found in Appendix B.

The function is called by

1 # Included in the beginning: from minres import minres
2 (x,iters,conv,resvec) = minres(A,b,P,maxit = 1000,tol = 1e-6)

.

3.5 Visualization
Visualizations has been done using MATLAB. As the computations were executed
on the university servers and the result was downloaded from them, there was not
much of an insentive to bring it into Python again over MATLAB. The latter also
features much simpler and easier to use plotting tools. That and the fact that we
have years of actual work experience in using MATLAB made MATLAB the plotting
tool of choice.

The result was collected and stored as a collection of variables via the following
python code snippet.

1 def ExtractSolution(x):
2 n = int(x.shape[0]/3)
3 return (x[0:n],x[n:2*n],x[2*n:3*n])
4

5 def Vector2Function(V,v):
6 f = Function(V)
7 f.vector()[:] = v
8 return f
9

10 def Function2Griddata(f,n=None):
11 z = f.vector().array()
12 xy = f.function_space().mesh().coordinates()
13 x = xy[:,0]
14 y = xy[:,1]
15 if not (n and isinstance(n, int)):
16 n = np.round(np.sqrt(len(x)))
17 xx = np.linspace(min(x),max(x),n)
18 yy = np.linspace(min(y),max(y),n)
19

20 XX,YY = np.meshgrid(xx,yy)
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21 ZZ = griddata(x,y,z,XX,YY,interp='linear')
22 return (XX,YY,ZZ)
23

24 (yv,uv,pv) = ExtractSolution(x)
25

26 y = Vector2Function(V,yv)
27 u = Vector2Function(V,uv)
28 p = Vector2Function(V,pv)
29

30 (Ux,Uy,Uz) = Function2Griddata(u)
31 (Yx,Yy,Yz) = Function2Griddata(y)
32 (Px,Py,Pz) = Function2Griddata(p)
33

34 import scipy.io as scio
35 scio.savemat(outputfilename, {
36 'Ux': Ux, 'Uy': Uy, 'Uz': Uz,
37 'Yx': Yx, 'Yy': Yy, 'Yz': Yz,
38 'Px': Px, 'Py': Py, 'Pz': Pz,
39 'alpha': alpha, 'h': 1.0/m, 'iters': iters, 'resvec':resvec}, oned_as='

row')

.

The stored variables are:

State y: Yx, Yy, Yz,

Control u: Ux, Uy, Uz,

Lagrange multiplier p: Px, Py, Pz.

Iterations: iter,

Regularization parameter α: alpha,

Mesh size h: h,

Residuals: resvec.

The following MATLAB code was then used to generate the plots.

1 d = load(datafilelocation);
2

3 iplot = 1;
4 for prmtr = {'Y','U'};
5 x = [0,1];
6 y = [0,1];
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7 margin = [-0.25,0.25];
8

9 figure(iplot);
10 hold on
11 % Axes
12 props = {'k-','LineWidth',2,'ShowArrowHead','Off'}
13 axX = quiver3(-0.1,0,0,1.3,0,0,props{:});
14 axY = quiver3(0,-0.1,0,0,1.3,0,props{:});
15 axZ = quiver3(0,0,-0.1,0,0,1.3,props{:});
16 % Surface
17 surf(d.([prmtr{1},'x']),d.([prmtr{1},'y']),d.([prmtr{1},'z']));
18 scale = 0.25;
19 xlim(x+scale*margin)
20 ylim(y+scale*margin)
21 z = zlim;
22 set(axZ,'ZData',z(1),'WData',(z(2)-z(1))*1.1);
23 zlim(z)
24 view(55,35)
25 grid on
26 xlabel('x')
27 ylabel('y')
28 iplot = iplot+1;
29 end
30

31 % Residuals
32 figure(iplot);
33 semilogy(d.resvec);
34 grid on
35 xlabel('iterations')
36 ylabel('residual')

.
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CHAPTER 4
Numerical results

In this chapter we will present the numerical results based on the theory discussed in
Chapter 2. The results are based on different setups for our model problem. Forclarity
we will now explain the core setup. In the following page we will preceed the results
with an explanation of the alteration to the core setup used in each case.

The results will consist of solution plots for the state y and the control u along
with a plot of the normalized residual ∥rk∥/∥r0∥ at each iteration k. The residual plot
also contains a slope value a for the “trend-line” which has the following expression:
y = exp(ak), which tells us about how fast our residuals approach zero:

∥rk∥
∥r0∥

≈ exp(ak).

The core setup is the following: The domain is chosen as the unit square, Ω := [0, 1]2.
The boundary is separated into a Dirichlet part ∂ΩD and a Neumann part ∂ΩN

defined as

∂ΩD := {(x1, x2) ∈ ∂Ω |x1 = 1 ∨ x2 = 1}

∂ΩN := ∂Ω\∂ΩD = {(x1, x2) ∈ ∂Ω |x1 = 0 ∨ x2 = 0}\{(0, 1), (1, 0)}.

For the boundary conditions y = f on ∂ΩD and ∂y
∂n = g on ∂ΩN we consider the

simplest case f = g = 0.
The desired state yd can be seen in Figure 4.1 and is defined as yd := χΩ1 with

Ω1 = [0, 1
2 ]2.

This yields the following matrix systemM 0 K

0 αM −M
K −M 0


y

u
p

 =

yd

0
0

 .
As a preconditioner here we use the one from Zulehner [Zul11] discussed in the

Theory section when the block-matrices A and negative Schur complement S = C +
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Figure 4.1: Desired state.

BA−1BT are non-singular. Here

A =

[
M 0
0 αM

]

and

S = 0 +
[
K −M

] [M−1 0
0 α−1M−1

][
K

−M

]
= KM−1K + α−1M.

As an approximation to the Schur complement we use the approximation suggested
by Pearson [Pea13] S ≈ Ŝ2 = (K +

√
α

−1
M)M−1(K +

√
α

−1
M).

In the following different setups we will make small changes to observe the con-
vergence properties under these conditions. The first results will be for our core
setup. In the second and third setups we will change the preconditioner in some way
and see how the convergence properties are affected. In the forth and fifth setup we
change the boundary conditions and in the sixth setup we again consider different
preconditioner.

The MINRES algorithm was given the following parameters: “tolerance level”:
10−9 and “maximum iterations”: 1500. A raw setup with no preconditioning was
also computed like the ones below here. However, it maxed out the iteration count
in every (h, α) pair and thus does not really varant enough interest for a dedicated
section.

More visualzations can be found in Appendix C.
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4.1 Core setup
This setup corresponds to the inner products

(u, v)Yh
= (u, v)L2 ,

(u, v)Uh
= α(u, v)L2

(u, v)Ph
= α(u, v)L2 + (∆u,∆v)(L2)∗ + 2

√
α

−1(∇u,∇v)L2 .

The setup here is as desribed in the first part of the chapter. In Table 4.1 are the
iterations counts for different values of h and α. As can be seen the iteration count
is very stable with respect to variations in h and α, as wanted.

In Figure 4.2 the resulting solution to the state y and constrol u is visualized. The
result is from the case α = 10−4 and h = 2−5. Variations in h does not change the
solution significantly, however, for very small values of h the gridlines will condense
to a point where it can be hard to see details in the plot. This played a part in this
choice for h. Variations in α change the solution significantly, larger values of alpha
forces more smooth solutions as the control is penalized more, while very small values
of alpha lets the state to better approximate the discontinuity in our desired state,
but the control go more wild with large rapid fluctuations which is not desirable.

We also see the normalized residual plot in Figure 4.2. The normalized residuals
follow the line very closely with a slope of about -0.9, which is close to -1. This is
quite good and we see how the tolerance is achieved after simply 23 iterations.

α
1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

h

2−4 23 23 21 21 21 19
2−5 23 23 23 23 21 21
2−6 23 23 23 23 23 21
2−7 23 23 23 23 23 21

Table 4.1: The iteration counts for the core setup for different values of α and h.

4.2 Different preconditioner Type I
In this setup we change the center block of the preconditioner from αM to M . As
α is just a constant we will still have upper and lower bounds such that the new
preconditioner satisfy the relations established by Zulehner in [Zul11], however, as
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Figure 4.2: Solutions to the core setup. We see the state y and control u along with
the normalized residual at each iteration. The slope is −0.91859. This
solution is for the case α = 10−4 and h = 2−5.
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the preconditioner does not accomodate as much for α anymore it should be expected
that the bounds now depend on α. The resulting precondtioner is

P =

M 0 0
0 M 0
0 0 S

 ,
where we still use the Pearson approximation for the Schur complement, that is

S ≈ Ŝ2 = (K + 1√
α
M)M−1(K + 1√

α
M).

This corresponds to the inner products

(u, v)Yh
= (u, v)L2 ,

(u, v)Uh
= (u, v)L2

(u, v)Ph
= α(u, v)L2 + (∆u,∆v)(L2)∗ .

The resulting iteration counts can be seen in Table 4.2. We observe as expected
that the iteration count changes dramatically with α. Note that the maximum it-
erations for the MINRES algorithm was set to 1500, which is why the table simply
shows 1500+ for the last results.

The visualization of the solution for choices α = 10−4 and h = 2−5 can be seen in
Figure 4.3. The change in the precondtioner should not affect the resulting solution,
which we also see here, however, the number of iterations required to reach the tol-
erance level skyrocketed. Looking at the normalized risidual plot we see that though
the normalized risiduals kind of follow the straight line, the slope is only about -0.09,
so the the steps are quite poor.

α
1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

h

2−4 85 193 670 1500+ 1500+ 1500+
2−5 87 215 758 1500+ 1500+ 1500+
2−6 89 232 783 1500+ 1500+ 1500+
2−7 89 236 815 1500+ 1500+ 1500+

Table 4.2: The iteration counts for different values of α and h for the setup with
the center block of the preconditioner changed.
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Figure 4.3: Solutions to the setup with the center block of the preconditioner
changed. The state y and the control u, along with the normalized
residual evolution. The slope is −0.093539. This solution is for the case
α = 10−4 and h = 2−5.
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4.3 Different Preconditioner Type II

In this setup we change the Schur complement approximation used in the precondi-
tioner from the Pearson approximation to

S ≈ Ŝ1 = KM−1K,

that is: simply dropping the α−1M term, as stated in Section 2.6.4.

Clearly this approximation removes the α dependence from the Schur complement
in our preconditioner and we expect the results to be in a vein similar to what we
saw in the previous case.

This setup corresponds to the inner product

(u, v)Yh
= (u, v)L2 ,

(u, v)Uh
= α(u, v)L2

(u, v)Ph
= (∆u,∆v)(L2)∗ .

As we see in Table 4.3 the iteration count vary in α again, though not nearly as
severely as we saw it in the previous setup, Section 4.2.

Again the plot of the solution for the state and control can be seen in Figure
4.4, along with the normalized residuals. The residuals show that this setup exhibits
somewhat poor convergence initially, but appear to get progressivley better. The
slope is about -0.64, which while not close to -1 is exceedingly better than the -0.09
from before. If we disregarded the first 10-15 iterations the slope is like closer to -0.7
or better.

α
1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

h

2−4 21 35 69 153 381 693
2−5 21 33 69 159 454 1313
2−6 21 33 71 169 476 1441
2−7 21 33 71 170 472 1438

Table 4.3: The iteration counts for different values of α and h. This is for the setup
where the approximation to the Schur complement was changed.
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Figure 4.4: Solutions for the setup with the Rees Schur complement approximation.
We see the state y and control u and normalized residual evolution. The
slope is −0.64073. This solution is for the case α = 10−4 and h = 2−5.
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4.4 Different Boundary
Here we will consider a setup where we change the Dirichlet and Neumann boundary
sets. The new boudnary sets will be defined as

∂ΩD := {(x1, x2) ∈ ∂Ω |x1 = 1 ∨ x2 = 0}

∂ΩN := ∂Ω\∂ΩD = {(x1, x2) ∈ ∂Ω |x1 = 0 ∨ x2 = 1}\{(0, 0), (1, 1)}.

This will force a discontinuity at the boundary because of the desired state, which
could affect convergence.

The preconditioner and thus inner product here is the same as the one for the
core setup in Section 4.1.

Looking at the iteration counts in Table 4.4 there is a slight change at larger
values of α, however, change is not significant. The visualized solution can be viewed
in Figure 4.5 for the values α = 10−4 and h = 2−5. The normalized residuals show
the same tendency as for the core setup with a slope at about -0.9.

α
1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

h

2−4 23 23 23 23 21 19
2−5 23 23 23 23 21 21
2−6 23 23 23 23 23 21
2−7 23 23 23 23 23 23

Table 4.4: The iteration counts for different values of α and h for the setup where
the boundary sets has been changed.

4.5 Reduced system
In this setup we consider the reduced system for the opportunity to try out the
preconditioner suggested by Zulehner in [Zul11] for the case where both block A and
block C in the system matrix are positive definite.

We reduce the first order optimality system by using the relation u = α−1p. This
gives us the reduced problem

−∆y = α−1p

−∆p = yd − y,
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Figure 4.5: Solutions for the setup with changed boundary sets. Depicted are the
state y and control u with the normalized residual evolution. The slope
is −0.89645. The result is for α = 10−4 and h = 2−5.
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which discretizes to the following saddle point system[
M K

K −α−1M

][
y
p

]
=

[
yd

0

]
.

Here both block A = M and block C = α−1M are positive definite. Thus we may
use the preconditioner from [Zul11]

P =

[
M +

√
αK 0

0 α−1M +
√
α

−1
K

]
.

This preconditioner has the advantage that it requires no approximation of the ma-
trices. And since both M and K are sparse matrices with nonzero entries only close
to the diagonal, the resulting diagonal blocks will both be sparse matrices.

This corresponds to the inner products

(u, v)Yh
= (u, v)L2 +

√
α(∇u,∇v)L2

(u, v)Ph
= α−1(u, v)L2 +

√
α

−1(∇u,∇v)L2 .

As seen in Table 4.5 iteration count is very stable in both α and h. What exactly
gives rise to the slight variations in number of iterations is hard to say.

The solution state and control can be seen in Figure 4.6. Compared to the earlier
setups this one exhibits the best slope at about -0.97. Also, compared to the two
other setups with slope about -0.9, this one seem to follow the line a bit on both sides,
where the others tend to stay above. It is likely the factor that no approximation was
performed in the preconditioner that makes this one slightly better.

α
1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

h

2−4 20 20 20 21 21 19
2−5 22 22 22 21 21 21
2−6 22 22 22 22 22 21
2−7 22 22 22 22 22 21

Table 4.5: The iteration counts for different values of α and h for the reduced system
setup with Zulehners preconditioner.



78 4 Numerical results

Figure 4.6: Solutions for the reduced system setup with Zulehners preconditioner.
We see the state y and control u together with the normlized residuals
at each step. The slope is −0.97234. The result is for α = 10−4 and
h = 2−5.



CHAPTER 5
Conclusion

We have considere PDE-constrained Optimization in this thesis. The main contribu-
tion of the thesis is the attempt to obtain a robust preconditioner for the operator
setting by generalization of the Schur complement to operator matrices.

For our problem we focused on solving a distributed control problem with mixed
Dirichlet and Neumann boundary conditions. In the first part of the theory chapter
we developed the theoretical tools to show how to combine the sub elements of the
distributed control problem into a single equation using the Lagrange multipliers.
We then work through the KKT-conditions which gives rise to a saddle point system.
We note here that the KKT-conditions result in a system of three equations two of
which are PDE problems with certain boundary conditions. We finally solve the three
equations together. In summary, the equations produced a matrix operator acting on
the direct sum of the state space Y , control space U and adjoint space P .

In the subsequent section of the theory we obtain a finite dimensional system by
discretization of the matrix operator system using the finite element method. This
produce a system of matrix equations involving mass and stiffness matrices. We in-
vestigate the application of boundary conditions to the mass and stiffness matrices,
a process not normally seen reported in previous work on PDE-constrained optimiza-
tion. The final system of matrix equations after applying boundary conditions also
form a saddle point system.

In the last part of the theory, we focus on the goal of our thesis and investigate
preconditioners for the saddle point problem. Here we followed the work by Zulhener
in [Zul11] and explored how the normed spaces Y , U , and P affect the condition
number of the derived operator problem. That is, the saddle point problem in the
(in)finite dimensional space. We observered how the normed spaces play a signigicant
role on the convergence rate of the solution. The main result here stems from finding
inner product operators IV and IQ satisfying the equivalence relations (2.46). Sat-
isfying the relation with good constants (close upper and lower bounding constants)
correpsonds to finding inner products in which the operator has a good condition
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number and thus produce robust preconditioners.

In the final part on preconditioners we consider preconditioning in the operator
setting. We generalize the Schur complement to operator matrices M : H → H and
extend the result on positive definiteness in Lemma 18 to the operator setting in
Lemma 25. As far as we know the has not been done before.

We proceed by considering a saddle point problem with such a matrix operator
M with a preconditioner analogous to the one in the discrete setting. In this setting
we use the theory of realizations for differential operators on Sobolev spaces to derive
the necessary search space for −∆ to be self-adjoint as necessary.

We end with a note that while this seemed to work, this problem differed from the
problems discussed previously in the theory as the range og M here is H∗, that is, the
dual space. Furthermore, we observe some discrepancies about our spaces occuring
because −∆ is not an automirphism in general.

We attempt to get around this in the last section, where we generalize the Schur
complement further to operator matrices M : H → H∗. However, we ultimately
conclude that to establish a new generalization of Lemma 18 for this setting, we lack
a generalization of the intertia law for such operators.

In chapter 4 we apply the results from the theory to practical application using
the Python setup with FEniCS described in chapter 3, where we also covered the
theoretical derivation for the preconditioned MINRES to demonstrate why this is
an efficient choice of algorithm for our optimization problem. We present several
numerical results for different variants of preconditioners:

P1 =

M 0 0
0 αM 0
0 0 Ŝ2

 , P2 =

M 0 0
0 M 0
0 0 Ŝ2

 ,

P3 =

M 0 0
0 αM 0
0 0 Ŝ1

 , P4 =

[
M +

√
αK 0

0 α−1M +
√
α

−1
K

]
,

where Ŝ1 = KM−1K and Ŝ2 = (K +
√
α

−1
M)M−1(K +

√
α

−1
M) are Schur comple-

ment approximations.

The results show that the best preconditioners are P1 and P4, which corresponds
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to the inner products

(u, v)Yh
= (u, v)L2 ,

(u, v)Uh
= α(u, v)L2

(u, v)Ph
= α(u, v)L2 + (∆u,∆v)(L2)∗ + 2

√
α

−1(∇u,∇v)L2

and

(u, v)Yh
= (u, v)L2 +

√
α(∇u,∇v)L2

(u, v)Ph
= α−1(u, v)L2 +

√
α

−1(∇u,∇v)L2 ,

respectively. In the case of P4 the reduction of the system means we only require
two inner products. The preconditioner P4 fared marginally better than P1 probably
because P4 requires no approximation of a Schur complement.

We observe in particular in sections 4.2 and 4.3 that the inner products

(u, v)Yh
= (u, v)L2 ,

(u, v)Uh
= (u, v)L2

(u, v)Ph
= α(u, v)L2 + (∆u,∆v)(L2)∗

and

(u, v)Yh
= (u, v)L2 ,

(u, v)Uh
= α(u, v)L2

(u, v)Ph
= (∆u,∆v)(L2)∗

for P2 and P3 respectively with their lack of α compensation have severe effect in the
rate of convergence for the optimization algorithm.

Finally we observe in section 4.4 how steep discontinuities does not visibly affect
the convergence rate for the problem with a proper preconditioner.

5.1 Future outlook
Here we list some future works that could possible be extended from this.

5.1.1 Schur complement generalizations
As briefly mentioned in the conclusions above and seen in the last parts of the theory
chapter we initalized a study into generalizations of the Schur complement in a pur-
suit to obtain a preconditioner for the operator setting analogous to the one in the
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discretized setting. While we did not succeed with the extension, we did take some
first steps that could be considered as a basis for further work.

A generalization of the Schur complement to Hilbert space operator matrices
M : H → H∗ was established in section 2.6.5.3, however, a generalization of Lemma
18 was not obtained here. We recon a more in depth study involving generalization
of eigenvalues to operators M : H → H∗ might lead to a definition of generalized
intertia similar to the one in [Cai80]. With this established generalized results in
vein with Lemma 18 could possibly be obtained, which would allow further process
in what have been started here.

5.1.2 Other model problems
In this thesis the focus has been on one particular model problem, however, many
other model problems could be considered. Futher study could involve exchanging
the PDE in the model problem for

−∆y + y = u,

could for instance be an option. In fact, the differential operator −∆ + 1 has very
nice spectral properties that could be taken advantage of.

Moreover one could study the effectiveness of these preconditioners under pertu-
bation by non-linear terms. Say,

−∆y + βF (y) = u,

where β is a small tunable constant and F is a non-linear map.
Another option could be to move away from the distributed control problem and

consider a boundary control problem where the PDE could be

Dy = 0 in Ω

y = u on ∂Ω

or

Dy = 0 in Ω
∂y

∂n
= u on ∂Ω,

where D is some differential operator.
There are a number of options available for further study in this topic.



APPENDIX A
Problem statement

The study of optimization has been a popular topic in mathematics and with the
growth of the processing power of computers in the last two decades ever more com-
plex problems have been practically available. In general optimization concerns itself
with solving problems of the formmin

x∈X
f(x),

subj. to g(x) ≤ 0
(A.1)

where f : X → R is the function we wish to minimize over some normed vector
space X and g defines constraints on x. Traditionally X have been chosen to be
of finite dimension. However, in recent years the interest in solving problems over
spaces of infinite dimension such as Lp-spaces and more generally Sobolev spaces is
of growing popularity. In practice solving is done through a discretization of the
problem, a projection from X down to a finite dimensional subspace X̃, where our
prior know-how applies.

In this thesis we will consider the problem of optimization as in (A.1), however
adding an equality constraint e(x) = 0 involving a partial differential equation (PDE).
The complete problem then takes the form

min
x∈X

f(x),

subj. to e(x) = 0,

g(x) ≤ 0.

(A.2)

We note that in simpler problems the inequality constraint g is often ommited. When
e(x) involves a PDE in x as we stated above, we say that (A.2) is a PDE-constrained
optimization problem.

A problem in PDE-constrained optimization is the the matrices arising from dis-
cretization of the problems in general happen to be severely ill-conditioned, the con-
dition numbers skyrocketing as the mesh is refined over the domain. This is an issue
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as iterative solvers require nice spectral properties of A to guarantee convergence
when trying to solve the system Ax = b. Direct solvers, the alternative option, are
unfortunately too memory intensive when working with large problems. To com-
bat this problem a proposed solution is to find a matrix P such that the problem
P−1Ax = P−1b, has better spectral properties than the original problem.[Her10] We
call such a matrix P a preconditioner for the system.

It turns out that for PDE-constrained problems a choice of preconditioner might
be influenced on the inner product of X, when X is a Hilbert space.[GHS14; Zul11]
What we would like to explore in this thesis is the significance of the innert product
influenced preconditioners.

How does the underlying structure of the search space X influence perfor-
mance with and without preconditioners in PDE-constrained optimization? –
and what about practical applications i.e. electrical impedance tomography?

A.1 Learning objectives
As part of a master thesis a number of generic learning objectives are imposed by
DTU[DTU16]. Throughout this thesis, those overarching objectives will be pursued
as part of the following personal objectives.

When done with this thesis the author should – in no particular order – be able
to:

• write and understand code in the programming language Python.

• use the Python software package FEniCS for solving PDE-problems.

• implement optimization algorithms for PDE-constrained optimization using
FEniCS.

• show understanding of optimization theory and in particular the theory of PDE-
constrained optimization.

• understand and explain the merits of using preconditioners in optimization.

• apply theory to solve PDE-constrained optimization problems.

• find litterature relevant for PDE-constrained optimization and paint a coherent
overview with a basis in the following articles:
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– “A note on preconditioners and scalar products in Krylov subspace meth-
ods for self-adjoint problems in Hilbert space” by Günnel, Herzog, and
Sachs. [GHS14]

– “A Globally Convergent Algorithm for a PDE-Constrained Optimization
Problem Arising in Electrical Impedance Tomography” by Carrillo and
Gómez. [CG15]

A.2 Time schedule

The following is the initial time schedule for the work to be done throughout this
thesis. It should be noted that in February and March a 7,5 ECTS course in Differ-
ential Operators and Function spaces (DifFun) will be followed at the University of
Copenhagen (KU), and thus the expected time dedicated to the thesis is considerably
lower during this time.

Figure A.1: Time table.

A.3 Reflections

Here we will reflect on how the project overall. What we had to change, and what
we might have liked to change in retrospect.
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A.3.1 Time schedule

The time table proposed here in the problem statement was an initial guess at how
everything was supposed to go. We like to think that the schedule actually held up
reasonably well, though there were some difinite shifts towards the end where writing
and numerical application became more of a simlutaneous process. Also, the still
not completely solved problem of preconditioners in infinite dimensions pressed the
theory works to go on until early July, shifting the final writing to first really start
in July.

Keeping up the workflow during the time during when we followed the DifFun
course at the University of Copenhagen was significantly harder than expected. In
retrospect it is too easy to let a sideactivity like this consume your time, but on the
other hand we feel that the break-off from the thesis work probably was a good thing
overall. The course also helped a lot for understanding theoretical aspects of the
thesis better, so even now we would definitely not have cut it out of the process.

Repeating from the first paragraph, we like to think the schedule actually held
up rather well in practice. Better than we had dared to hope initially, being an
idealization.

A.3.2 FEniCS (Python) vs. MATLAB

One of the most time consuming tasks in this project was to get a general under-
standing about how to use FEniCS and more importantly, when FEniCS is no longer
useful. While FEniCS is a great tool for solving PDE-problems, that is really all it
does. It was an initial hope that FEniCS could be used for most of the computations
in this project and thus let everything be done within the FEniCS framework. This
turned out to not really be possible, however.

While documentation is overall fairly good for FEniCS when you just want to
solve a PDE, it should be noted this finding very specific things can be complicated.
Also, due to a complete rewrite of certain functionality in later versions of FEniCS,
some parts of the documentation has simply been outdated while this project was in
progress. Thus, while FEniCS is certainly a powerful tool, it is definitely reasonable
to ask if any time was saved by using FEniCS, or if we should simply have written
our own code.

In the end FEniCS was abbandoned for the optimization part of the project and
solely used for mesh and basis function generation, as well as matrix assembly. This
the package handles very well. However, had we known of the IFISS library for



A.3 Reflections 87

MATLAB from the beginning of the project we would likely have prefered MATLAB
over FEniCS.

As advice for a future student taking on a topic in PDE-constrained optimization,
we would suggest the student to work with MATLAB using the IFISS library as a
basis if the student is more familiar with MATLAB. The demos on the topic packaged
with the library are also very informative. We would not suggest anyone completely
new to FEniCS to use over IFISS if the topic is PDE-constrained optimization.

A.3.3 Electrical Impedance Tomography (EIT)
Something a reader will probably notice, when reading the problem statement and
the rest of the thesis, is the distinct lack of anything relating to EIT in the main body
of the thesis though it was part of the problem formulation to apply the theory to
this particular problem.

Up until past midway through the project we still expected to apply the theory on
EIT. We later realized though, that EIT really is a quite different problem compared
to the distributed control model problem we started out with. More different than
we expected.

The in EIT we assume to know the Dirichlet-to-Neumann map Λσ : f → g for a
domain Ω and using this we wish to find the unknown quantity σ. In physical terms
we have the PDE

∇ · (σ∇u) = 0

governing the behaviour of electricity in a body Ω, where u : Ω → R describes the
electrostatic potential and σ : Ω → R the conductivity. We have then “conducted
experiments” by applying voltages f : ∂Ω → R along the boundary ∂Ω and measured
the currents g : ∂Ω → R at the boundary. f should satisfy

∫
∂Ω f dx = 0.

The problem we encountered was that this did not transfer well to a setup similar
to our model problem. We don’t immediately have a goal functional, and being
creative an coming up with one dependent on σ will generate some rather nasty non-
liniearities in the Lagrangian and KKT-system. It was considered to fix σ at some
value, solve the problem and update iteratively, which squelches the non-liniearities.
However, that would not be very relatable to the theory we had spend time working
with.

In the end the EIT application was abandoned for these reasons and to let the
focus remain on the core problem about preconditioners and function space structure.
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APPENDIX B
Various mathematical

results
In this appendix we will list various mathematical results which are needed in the
thesis, but are not important in themselves and does not really have a natural home
anywhere else.

The appendix is in two parts. The first part is simply an assortment of results.
The second part covers the basics for the MINRES algorithm.

B.1 Miscellaneous

B.1.1 Finite element mass and stiffness matrices

Lemma 29. Let {ϕi} be a finite element basis over the domain Ω with V = span{ϕi},
then following holds:

(i) The mass matrix Mij =
∫

Ω ϕiϕj dx is positive definite.

(ii) The stiffness matrix Kij =
∫

Ω ∇ϕi∇ϕj dx is positive semi-definite.

Proof. Let v = (vi) be a non-zero vector over V and vh =
∑

i viϕi the corresponding
function, then (i)

vTMv =
∑

i

∑
j

viMijvj =
∑

i

∑
j

vi

(∫
Ω
ϕiϕj dx

)
vj

=
∫

Ω

∑
i

viϕi

∑
j

viϕj dx =
∫

Ω

(∑
i

viϕi

)2

dx =
∫

Ω
|vh|2 dx > 0,
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and likewise (ii)

vTKv =
∑

i

∑
j

viKijvj =
∑

i

∑
j

vi

(∫
Ω

∇ϕi∇ϕj dx

)
vj

=
∫

Ω

∑
i

vi∇ϕi

∑
j

vi∇ϕj dx =
∫

Ω

(∑
i

vi∇ϕi

)2

dx =
∫

Ω
|∇vh|2 dx ≥ 0.

Remark 30. The stiffness matrix is positive definite on the subspace of vectors
resulting from Dirichlet boundary conditions restricting our space.

B.1.2 Operators: eigenvalues and orderings
Lemma 31. Let A : X → Y and B : Y → X be bounded operators. Then AB : Y →
Y and BA : X → X has the same eigenvalues.

Proof. Let λi ∈ C be an eigenvalue of AB and vi ∈ Y be a corresponding eigenvector.
Let wi = Bvi ∈ X,

ABvi = Awi = λivi.

Then BAwi == Bλivi = λiBvi = λiwi, hence λi is an eigenvalue og BA. The
other way follows trivially.

Lemma 32. Let A,B : H → H be two bounded positive self-adjoint and invertible
operators. Assume that A−B ≥ 0, then B−1 −A−1 ≥ 0.

Proof. For positive self-adjoint operators A and B we have, by Theorem 9.4-2 in
[Kre89], a unique positive Hermitian square roots A1/2 and B1/2. Now, consider
A−B ≥ 0 and multiply the equation by B−1/2 from left and right. Then we are left
with the expression B−1/2AB−1/2 − I ≥ 0. Hence σ(B−1/2AB−1/2) ⊂ {x ∈ R |x ≥
1}.

Note that B−1/2AB−1/2 = (B−1/2A1/2)(A1/2B−1/2) and by Lemma 31 this op-
erator has the same eigenvalues as (A1/2B−1/2)(B−1/2A1/2) = A1/2B−1A1/2, thus
A1/2B−1A1/2−I ≥ 0 and multiplying by A−1/2 from left and right yields B−1−A−1 ≥
0 as we wanted.

Lemma 33. Let A,B : H → H∗ be operators, such that RHA and RHB are satisfy
the conditions of Lemma 32, where RH : H∗ → H is the Riesz isomorphism. If
A ≤ B then B−1 ≤ A−1.
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Proof. First a note in notation, as we will need orderings of two different types of
operators here we will use A ⪯ B for operator A,B : H → H, and A ≤ B for
operators A,B : H → H∗.

Secondly, note that for operators A,B : H∗ → H we have A ≤ B when ⟨x∗, Ax∗⟩ ≤
⟨x∗, Bx∗⟩ for all x∗ ∈ H∗.

Denote by IH = R−1
H , by definition

A ≤ B

⟨Ax, x⟩ ≤ ⟨Bx, x⟩ for all x ∈ H

(RHAx, x) ≤ (RHBx, x) for all x ∈ H

RHA ≤∗ RHB

By Lemma 32 this implies

(RHB)−1 ⪯ (RHA)−1.

As (RHB)−1 = B−1R−1
H = B−1IH , by definition this is

(B−1IHx, x) ≤ (A−1IHx, x) for all x ∈ H.

Now by symmetry of the inner products, let x∗ = IHx, then

(x,B−1IHx) ≤ (x,A−1IHx) for all x ∈ H.

(RHx
∗, B−1x∗) ≤ (RHx

∗, A−1x∗) ∀x∗ ∈ H∗

⟨x∗, B−1x∗⟩ ≤ ⟨x∗, A−1x∗⟩ for all x ∈ H

B−1 ≤ A−1,

which is what we wanted.

B.1.3 Fundamental Lemma of Calculus of Variations

Lemma 34 (Fundamental Lemma of Calculus of Variations). Let Ω ⊆ Rn and f be
a continuous function such that ∫

Ω
fh dx = 0

for all h ∈ C∞
0 (Ω), then f = 0.
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Proof. Assume the contrary, that there is x ∈ Ω such that f(x) ̸= 0, say f(x) = α > 0,
then as f is continuous there exists an open ball about x, Bδ(x) ⊂ Ω, δ > 0, such
that inf f(Bδ(x)) = β > 0.

For an open ball such asBδ(x) we may find a non-negative function h ∈ C∞
0 (Bδ(x)) ⊂

C∞
0 (Ω), then ∫

Ω
fh dx =

∫
Bδ(x)

fh dx ≥ β

∫
Bδ(x)

h dx > 0,

which contradict our assumption on f .

B.2 Krylov subspace optimization
This section follows the process described in the lecture notes

http://persson.berkeley.edu/18.335/toledo_krylov.pdf1,
though with a number of our own considerations and corrections of errors found in
the document.

First off, a Krylov subspace is defined as follows.

Definition 35. Given an optimization problem Ax = b the Krylov subspace Kt(A, b)
is defined by

Kt(A, b) := span{b, Ab,A2b, . . . , At−1b}

Why does it make sense to search in Krylov subspaces? The following Lemma
shows why it makes sense to search in a sequence of increasing Krylov subspaces.

Lemma 36. Suppose the set of vectors V := {b, Ab,A2b, . . . , Akb} are not linearly
independent vectors. Then the solution x to the problem Ax = b is in V \{Akb}.

Proof. If the set of vectors V are not linearly independent, then there are αj ∈ R
such that

b =
k∑

j=1
αjA

jb = A

k−1∑
j=0

αj+1A
jb

 .

Hence x =
∑k−1

j=0 αj+1A
jb solves Ax = b.

1MIT Course 18.335: Introduction to Numerical Methods (Fall 2007)
http://persson.berkeley.edu/18.335/



B.2 Krylov subspace optimization 93

B.2.1 An orthogonal basis

Now consider the orthonormal basis v1, v2, . . . , vt for the t’th Krylov subspace Kt(A, b).
If t = 1, then clearly v1 = b/∥b∥. More generally, let Kt = [b, Ab,A2b, . . . , At−1b] be
the matrix defining our t’th Krylov subspace, and let Vt = [v1, v2, . . . , vt] be an
orthonormal basis for Kt(A, b). We will now inductively build up our basis.

There is a matrix Rt such that Kt = VtRt since the columns of Vt and Kt spans
the same subspace. We may thus write

At−1b =
t∑

j=1
rj,tvj .

Hence by isolating vt we get

vt = r−1
t,t A

t−1b− r−1
t,t

t−1∑
j=1

rj,tvj

Avt = r−1
t,t A

tb− r−1
t,t

t−1∑
j=1

rj,tAvj .

By Lemma 36 Avt ∈ Kt(A, b) only if the solution x for Ax = b is in Kt(A, b). If
this was the case we would have found the solution and been done already, thus we
may assume x ̸∈ Kt(A, b) and thus Avt ̸∈ Kt(A, b). Hence we can orthogonalize Avt

with the existing basis Vt using Gram-Schmidt procedure and get a basis for the new
space.

As Vt was already an orthogonal basis we only need to apply the algorithm to the
new vector Avt. By Gram-Schmidt new basis element vt+1 is

ṽt+1 = Avt −
t∑

j=1
projvj

(Avt),

where proju(v) = (v, u)û with û denoting the normalization of u. Thus projvj
(Avt) =

(Avt, vj)vj = (vT
j Avt)vj and therefore

ṽt+1 = Avt −
t∑

j=1
(vT

j Avt)vj

vt+1 = ṽt+1/∥ṽt+1∥.
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Because of this

Avt = ∥ṽt+1∥vt+1 +
t∑

j=1
(vT

j Avt)vj

= ht+1,tvt+1 +
t∑

j=1
hj,tvj ,

with ht+1,t = ∥ṽt+1∥ and hj,t = vT
j Avt for 1 ≤ j ≤ t. Hence

AVt = Vt+1Ht, Ht =



vT
1 Av1 vT

1 Av2 vT
1 Av3 vT

1 Av4 . . .

∥ṽ2∥ vT
2 Av2 vT

2 Av3 vT
2 Av4 . . .

0 ∥ṽ3∥ vT
3 Av3 vT

3 Av4 . . .

0 0 ∥ṽ4∥ vT
4 Av4 . . .

...
...

...
... . . .

 ∈ R(t+1)×t.

Assuming A was symmetric, clearly V T
t AVt is symmetric as well, thus

V T
t AVt = V T

t Vt+1Ht = Tt

is symmetric. Now V T
t Vt+1 = [It|0], where 0 ∈ Rt, thus Tt = (hi,j)1≤i,j≤t. Let

δj = vT
j Avj and γj = vT

j−1Avj . Clearly by symmetry we also have γj = ∥ṽj∥. Thus

Tt =



δ1 γ2 0 . . . 0
γ2 δ2 γ3 0

0 γ3 δ3
. . . ...

... . . . . . . γt

0 0 . . . γt δt


.

In conclusion we find that we need only remember a few of the vectors for each
iteration:

vt+1 = Avt − δtvt − γt−1vt−1.

B.2.2 MINRES

The MINRES algorithm seeks to solve the problem Ax = b where A and b are the
known quantities. This is done by searching iteratively for the solution xk in the
shifted Krylov subspace b + AKk(A, b) with minimal residual rk. In general the
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actual space is r0 +AKk(A, r0), r0 being the first risidual, but taking the initial guess
x0 = 0 sets r0 = b−Ax0 = b. We will work with this initial guess.

We note that rk = b−Axk. Let Kk = [b, Ab, . . . , Ak−1b] then

min
x∈Kk

∥b−Ax∥2 = min
y∈Rk

∥b−AKky∥2

= min
z∈Rk

∥b−AVkz∥2,

where z = Rky using the equation Kk = VkRk from the previous section. Furthermore
by AVk = Vk+1Hk

= min
z∈Rk

∥b− Vk+1Hkz∥2.

As Vk+1 is unitary, i.e. V T
k+1Vk+1 = Ik+1, we have for x ∈ Rk+1

∥x∥2
2 = xTx = xT Ik+1x = xTV T

k+1Vk+1x = (Vk+1x)T (Vk+1x) = ∥Vk+1x∥2
2,

Thus

min
z∈Rk

∥b− Vk+1Hkz∥2 = min
z∈Rk

∥V T
k+1b−Hkz∥2

= min
z∈Rk

∥∥b∥2e1 −Hkz∥2,

since v1 = b/∥b∥2, and therefore Vk+1b = ∥b∥2Vk+1v1 = ∥b∥2e1.
As Hk = [Tk|γk+1ek]T (since Tk is symmetric) Hk is a band matrix with only

entries in the diagonal and first upper and lower diagonals. A matrix like this can
be QR factorized using Givens rotations. A Givens rotation is a rotation such that a
vector (a, b) is rotated into (r, 0), with r =

√
a2 + b2, that is

G

[
a

b

]
=

[
r

0

]
, where G =

[
c s

−s c

]
.

This extend naturally to higher dimensions

G


0ℓ1

a

b

0ℓ2

 =


0ℓ1

r

0
0ℓ2

 , where G =


Iℓ1 0ℓ1,2 0ℓ1,ℓ2

02,ℓ1

c s
02,ℓ2−s c

0ℓ2,ℓ1 0ℓ2,2 Iℓ2

 .
Here 0ℓ ∈ Rℓ is a zero vector and 0ℓ,k ∈ Rℓ×k a zero matrix. We note that there
is a more general difinition of Givens rotations, but if we apply the rotations in the
correct order, we won’t need it here.
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By composition of several Givens rotations G1, G2, . . . , Gℓ we may obtain a QR
factorization for Hk. Thus G1G2 . . . GℓHk = Rk where Uk is upper triangular. Now
set QT

k = G1G2 . . . Gℓ, then Hk = QkUk. We note that Qk ∈ R(k+1)×(k+1) and
Uk ∈ R(k+1)×k, however, as Uk is upper triangular we have

Hk = QkUk =
[
Q̂k qk+1

] [Ûk

0T
k

]
= Q̂kÛk,

where Q̂k ∈ R(k+1)×k and Ûk ∈ Rk×k and qk+1 is the (k + 1)’th column in Qk. We
note that Ûk is upper triangular like Uk and Q̂T

k Q̂k = Ik.
From here we redefine Qk := Q̂k and Uk := Ûk, then

min
z∈Rk

∥∥b∥2e1 −Hkz∥2 = min
z∈Rk

∥∥b∥2e1 −QkUkz∥2

= min
z∈Rk

∥∥b∥2Q
T
k e1 − Ukz∥2,

and we may solve Ukz = ∥b∥2Q
T
k e1 for z.

While it is possible to solve for z like this and then x = Vkz, this would require
storing all columns of Vk in memory or recomputing them at each step. This is not
very efficient, thus the following computation is usually used instead. Note first that

x = Vkz = VkU
−1
k Ukz = Mkw, where Mk = VkU

−1
k and w = Ukz = ∥b∥2Q

T
k e1.

Furthermore, since Hk was tridiagonal we need only remove the lower diagonal
element in each column, hence reacalling that Hk ∈ Rk+1×k we have ℓ = k. Moreover,
let Gi be the Givens rotation matrix removing the lower diagonal element from the
i’th column. Then Gi affects only rows i and i + 1 in Hk, hence Rk can at most be
tridiagonal, the nonzero diagonals being the regular diagonal and the first and second
upper diagonals.

Then MkUk = Vk. Let mi be the i’th column in Mk, then since the i’th column
of Uk is (0i−3, ui−2,i, ui−1,i, ui,i,0k−i)T we have

ui,imi = vi − ui−1,imi−1 − ui−2,imi−2.

where negative and zero subscripted elements are taken to be 0. Thus we may effi-
ciently built Mk column by column. We note that by the structure of the matrices
each iteration steps only changes very little, mostly extending the matrices following
the same patterns.

The biggest change is that whereQk = G1G2 . . . Gk before, nowQk+1 = G1G2 . . . Gk+1 =
Q̃kGk+1, where Q̃k is Qk with an added column and row having 1 i the diagonal ele-
ment. This is because Gk+1 will affect 2 rows in Q̃k.
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Hence we can compute all the matrices column by column rotation by rotation
one in each step and we need only store 3 columns each step of the way.

B.2.3 Code: Preconditioned MINRES algorithm

Python implementation of Algorithm 3.1 in [GHS14].

1 import numpy as np
2

3 # Scipy sparse implementation of preconditioned MINRES
4 def minres(A, b, P, maxit=500, tol=1e-6):
5 if b.ndim > 1:
6 print("b is not a 1-d vector")
7 return
8

9 n = A.shape[0]
10 xk = np.zeros(n)
11 xkm1 = xk.copy()
12 vk = b - A.dot(xk)
13 zk = P.solve(vk)
14 gamk = np.sqrt(np.dot(vk,zk))
15

16 zk = zk/gamk
17 vk = vk/gamk
18

19 # init more
20 erro = gamk
21 k = 1
22

23 vkm1 = 0
24 ck = 1
25 ckm1 = 1
26 sk = 0
27 skm1 = 0
28 wk = 0
29 wkm1 = 0
30 nukm1 = gamk
31

32 resvec = np.zeros(maxit + 1)
33 resvec[0] = erro
34

35 while k-1 < maxit and erro > tol:
36 Azk = A.dot(zk)
37 deltak = np.dot(Azk,zk)
38
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39 vkp1 = Azk - deltak*vk - gamk*vkm1
40

41 zkp1 = P.solve(vkp1)
42 gamkp1 = np.sqrt(np.dot(vkp1,zkp1))
43 zkp1 = zkp1/gamkp1
44 vkp1 = vkp1/gamkp1
45

46 alph0 = ck * deltak - ckm1 * sk * gamk
47 alph2 = sk * deltak + ckm1 * ck * gamk
48 alph3 = skm1*gamk
49 alph1 = np.sqrt(alph0 ** 2 + gamkp1 ** 2)
50

51 ckp1 = alph0/alph1
52 skp1 = gamkp1/alph1
53

54 wkp1 = (1/alph1)*(zk-alph3*wkm1 - alph2*wk)
55

56 xk = xkm1 + ckp1*nukm1*wkp1
57 nuk = -skp1*nukm1
58

59 k = k + 1
60 ckm1 = ck
61 ck = ckp1
62 skm1 = sk
63 sk = skp1
64 gamk = gamkp1
65 wkm1 = wk
66 wk = wkp1
67 nukm1 = nuk
68 xkm1 = xk.copy()
69 vkm1 = vk.copy()
70 vk = vkp1.copy()
71 zk = zkp1.copy()
72 erro = abs(nuk)
73 resvec[k-1] = erro
74

75 if erro > tol:
76 flag = 1
77 itr = k-1
78 else:
79 flag = 0
80 itr = k-1
81

82 return (xk, itr, flag, resvec[0:k])

minres_sparse.py.



APPENDIX C
Additional results

In this appendix we will show solution and residual plots for other values of α and h.
We won’t show plots for all the runs as 5 · 24 = 120 is a bit many, but we will try to
get a diverse selection going.

All the plots will be for h = 2−6, and then varying α-values. The plots are best
viewed in the PDF-version of the Thesis, where zoom is available, as they have been
retained small to not take up unnecessarily large amounts of space.

Figure C.1: Solutions to the core setup, state y to the left, control u to the right.
This solution is for the case α = 10−3 and h = 2−6.
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Figure C.2: Solutions to the core setup, state y to the left, control u to the right.
This solution is for the case α = 10−4 and h = 2−6.

Figure C.3: Solutions to the core setup, state y to the left, control u to the right.
This solution is for the case α = 10−5 and h = 2−6.
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Figure C.4: Solutions to the core setup, state y to the left, control u to the right.
This solution is for the case α = 10−6 and h = 2−6.

Figure C.5: Solutions to the core setup, state y to the left, control u to the right.
This solution is for the case α = 10−7 and h = 2−6.
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Figure C.6: Solutions to the core setup, state y to the left, control u to the right.
This solution is for the case α = 10−8 and h = 2−6.

Figure C.7: Solutions to the setup in Section 4.2, state y to the left, control u to
the right. This solution is for the case α = 10−3 and h = 2−6.
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Figure C.8: Solutions to the setup in Section 4.2, state y to the left, control u to
the right. This solution is for the case α = 10−4 and h = 2−6.

Figure C.9: Solutions to the setup in Section 4.2, state y to the left, control u to
the right. This solution is for the case α = 10−5 and h = 2−6.
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Figure C.10: Solutions to the setup in Section 4.2, state y to the left, control u to
the right. This solution is for the case α = 10−6 and h = 2−6.

Figure C.11: Solutions to the setup in Section 4.2, state y to the left, control u to
the right. This solution is for the case α = 10−7 and h = 2−6.
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Figure C.12: Solutions to the setup in Section 4.2, state y to the left, control u to
the right. This solution is for the case α = 10−8 and h = 2−6.

Figure C.13: Solutions to the setup in Section 4.3, state y to the left, control u to
the right. This solution is for the case α = 10−3 and h = 2−6.
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Figure C.14: Solutions to the setup in Section 4.3, state y to the left, control u to
the right. This solution is for the case α = 10−4 and h = 2−6.

Figure C.15: Solutions to the setup in Section 4.3, state y to the left, control u to
the right. This solution is for the case α = 10−5 and h = 2−6.
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Figure C.16: Solutions to the setup in Section 4.3, state y to the left, control u to
the right. This solution is for the case α = 10−6 and h = 2−6.

Figure C.17: Solutions to the setup in Section 4.3, state y to the left, control u to
the right. This solution is for the case α = 10−7 and h = 2−6.
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Figure C.18: Solutions to the setup in Section 4.3, state y to the left, control u to
the right. This solution is for the case α = 10−8 and h = 2−6.

Figure C.19: Solutions to the setup in Section 4.4, state y to the left, control u to
the right. This solution is for the case α = 10−3 and h = 2−6.
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Figure C.20: Solutions to the setup in Section 4.4, state y to the left, control u to
the right. This solution is for the case α = 10−4 and h = 2−6.

Figure C.21: Solutions to the setup in Section 4.4, state y to the left, control u to
the right. This solution is for the case α = 10−5 and h = 2−6.
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Figure C.22: Solutions to the setup in Section 4.4, state y to the left, control u to
the right. This solution is for the case α = 10−6 and h = 2−6.

Figure C.23: Solutions to the setup in Section 4.4, state y to the left, control u to
the right. This solution is for the case α = 10−7 and h = 2−6.
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Figure C.24: Solutions to the setup in Section 4.4, state y to the left, control u to
the right. This solution is for the case α = 10−8 and h = 2−6.

Figure C.25: Solutions to the setup in Section 4.5, state y to the left, control u to
the right. This solution is for the case α = 10−3 and h = 2−6.
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Figure C.26: Solutions to the setup in Section 4.5, state y to the left, control u to
the right. This solution is for the case α = 10−4 and h = 2−6.

Figure C.27: Solutions to the setup in Section 4.5, state y to the left, control u to
the right. This solution is for the case α = 10−5 and h = 2−6.
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Figure C.28: Solutions to the setup in Section 4.5, state y to the left, control u to
the right. This solution is for the case α = 10−6 and h = 2−6.

Figure C.29: Solutions to the setup in Section 4.5, state y to the left, control u to
the right. This solution is for the case α = 10−7 and h = 2−6.
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Figure C.30: Solutions to the setup in Section 4.5, state y to the left, control u to
the right. This solution is for the case α = 10−8 and h = 2−6.



APPENDIX D
G-bar framework

As some Python libraries such as FEniCS are not available on the Windows platform,
it was necessariry to execute jobs on the university servers, using the General Databar
(G-bar) service provided at DTU.

Jobs can be executed on the server directly using SSH or by connecting using
Thinlinc. However, while Thinlinc provides a desktop environment it is not as smooth
as using a personal computer and one might not be used to the development tools
provided on the servers. Working from ones personal computer is often prefered.

Jobs can also be sent to the server cluster using the command qsub command.
The simple syntax is qsub <bash script file>, however, many parameters can be
specified for the command for more specialized usage. Sending jobs still requires a
connection to the server, e.g. using SSH. Using qstat gives a list of current jobs.

Furthermore, either approach still requires all the relevant files for the job to be
present on the server. This might be logical, but the logistics of moving relevant job
files and results back and forth between working on and updating them are cumber-
some.

In order to circumvent this hurdle we wrote a Python package for interfacing with
the DTU G-bar directly in Python. This appendix covers the usage of this framework.

D.1 gbar.py

The framework is a number of objects handling interaction with the G-bar using
SSH and FTP via the existing paramiko package available in Python. The following
objects are defined in gbar.py:

Connection is the “root”-object for the connections. It facilitates setting a host-
name, a username and a password. It does not actually set up any connection
to the host.
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SSH derives from Connection. It sets up an SSH client for connection to the host
address and has functions for sending commands to the host after a connection.
The results can be either displayed to the terminal or captured as strings.

FTP derives from Connection. It sets up an FTP client for connection to the host
address and has methods for exploring directories and checking for existence
of files and directories on the server. It also sports functionality to upload,
download and delete files, as well as open files for reading.

gbar derives from SSH. It sets the host name to login.gbar.dtu.dk and connects
using SSH. Internally it also sets up and connects an FTP object to the host
for handling file manipulation. There are methods for calling qsub and qstat.

hpc derives from gbar. Sets the host to login.hpc.dtu.dk, but is otherwise the
same as gbar.

job is “root”-object for jobs. It allows several different settings and takes lists of files
relevant to the job, i.e. the main files to be executed, the dependecies it might
have and the relevant output files. The object takes a gbar-connection object
and uses it to move all relevant files to the server. It generates the relevant bash
script file and moves it to the server as well. It runs the job on the server and
has methods for checking if the job has been completed yet. It also downloads
the relevant result files after the job has run and removes everything from the
server again unless asked not to.

FEniCSjob derives from job. It makes sure the bash script loads the FEniCS mod-
ules on the server before executing the job.

The idea is that from this foundation is is fairly easy to set up your own specialized
connection and job. The following is the Python code for the package.

1 import paramiko
2 import getpass
3 import time
4 import os
5 import ntpath
6

7 class Connection(object):
8 def __init__(self, host, username=None, password=None):
9 self.host = host

10 self.username = username
11 self.password = password
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12

13 def get_username(self):
14 if not self.username:
15 return raw_input('Username: ')
16 return self.username
17

18 def get_password(self):
19 if not self.password:
20 return getpass.getpass('Password: ')
21 return self.password
22

23 class SSH(Connection):
24 def __init__(self, host, username=None, password=None):
25 super(SSH, self).__init__(host, username, password)
26

27 self.ssh = paramiko.SSHClient()
28 self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
29

30 def connect(self):
31 username = self.get_username()
32 password = self.get_password()
33 self.ssh.connect(self.host, username=username, password=password)
34

35 def close(self):
36 self.ssh.close()
37

38 def iexec_command(self, cmd, getErr=False):
39 stdin, stdout, stderr = self.ssh.exec_command(cmd)
40 if getErr:
41 for line in stderr.read().splitlines():
42 print " | %s" % line
43 else:
44 for line in stdout.read().splitlines():
45 print " | %s" % line
46

47 def exec_command(self, cmd, NoPrint=False):
48 stdin, stdout, stderr = self.ssh.exec_command(cmd)
49 string = stdout.read()
50 if NoPrint:
51 return string
52 else:
53 print(string)
54

55

56 class FTP(Connection):
57 def __init__(self, host, username=None, password=None):
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58 super(FTP, self).__init__(host, username, password)
59 self.port = 22
60

61 self.transport = paramiko.Transport((self.host, self.port))
62 self.sftp = None
63 self.path = "./"
64

65 def connect(self):
66 # Connect to remote host
67 username = self.get_username()
68 password = self.get_password()
69 self.transport.connect(username=username, password=password)
70 self.sftp = paramiko.SFTPClient.from_transport(self.transport)
71

72 def close(self):
73 self.sftp.close()
74

75 def set_path(self, path):
76 # Sets working directory
77 # Path can be absolute or relative to homedir
78 if not path[-1] == "/":
79 raise Exception
80 if not self.exist(path):
81 raise Exception
82 self.path = path
83

84 def is_absolute_path(self, path):
85 if path[0] == "/" or path[0:2] == "./" or path[0:2] == "~/":
86 return True
87 else:
88 return False
89

90 def listdir(self, path, hidden=False):
91 # Write out the content of the path
92 if not self.is_absolute_path(path):
93 path = self.path + path
94 list = sorted([e for e in map(str, self.sftp.listdir(path)) if e[0]

<> "." or hidden])
95 for line in list:
96 print " | %s" % line
97

98 def exist(self, path):
99 # Check if path exists on the remote host

100 if not self.is_absolute_path(path):
101 path = self.path + path
102 try:
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103 self.sftp.stat(path)
104 except IOError, e:
105 if e[0] == 2:
106 return False
107 raise
108 else:
109 return True
110

111 def download(self, remotepath, localpath):
112 # Download file
113 if not self.is_absolute_path(remotepath):
114 remotepath = self.path + remotepath
115 self.sftp.get(remotepath, localpath)
116

117 def upload(self, localpath, remotepath):
118 # Upload file
119 if not self.is_absolute_path(remotepath):
120 remotepath = self.path + remotepath
121 self.sftp.put(localpath, remotepath)
122

123 def open(self, path, mode="r"):
124 # Open file to read
125 if not self.is_absolute_path(path):
126 path = self.path + path
127 return self.sftp.open(path, mode)
128

129 def delete(self, path):
130 # Delete remote file
131 if not self.is_absolute_path(path):
132 path = self.path + path
133 self.sftp.remove(path)
134

135 class gbar(SSH):
136 def __init__(self, username=None, password=None):
137 super(gbar, self).__init__('login.gbar.dtu.dk', username, password)
138 self.path = None
139 self.output_file = None
140 self.error_file = None
141 self.ftp = FTP('transfer.gbar.dtu.dk', username, password)
142

143 self.connected = False
144

145 def connect(self):
146 super(gbar, self).connect()
147 self.ftp.connect()
148 self.connected = True
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149

150 def close(self):
151 super(gbar, self).close()
152 self.ftp.close()
153 self.connected = False
154

155 def is_connected(self):
156 return self.connected
157

158 # Allows for usage such as:
159 # g = gbar(...)
160 # g("ls -l")
161 # g("pwd")
162 def __call__(self, command, NoPrint=False):
163 assert isinstance(command, str)
164 return self.exec_command(command, NoPrint)
165

166 # Allows for usage such as:
167 # g = gbar(...)
168 # g > "ls -l"
169 # g > "pwd"
170 def __gt__(self, command):
171 assert isinstance(command, str)
172 return self.exec_command(command, False)
173

174 # Defining Job
175 def set_path(self, path):
176 # Sets working directory
177 # Path can be absolute or relative to homedir
178 if not self.is_connected():
179 raise Exception
180 if not path[-1] == "/":
181 raise Exception
182 if not self.ftp.exist(path):
183 raise Exception
184 self.path = path
185 self.ftp.path = path
186

187 def exec_command(self, command, NoPrint=False):
188 if not self.is_connected():
189 raise Exception
190 command = self.path_cmd() + command
191 return super(gbar, self).exec_command(command, NoPrint)
192

193 def path_cmd(self):
194 if self.path:
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195 return "cd " + self.path + ";"
196 else:
197 return ""
198

199 def qsub_cmd(self, args):
200 qsub_location = "/opt/torque4/bin/qsub"
201 return qsub_location + " " + args + ";"
202

203 def qstat(self, args=None, job_name=None, output=False):
204 qstat = "/opt/torque4/bin/qstat"
205 command = qstat
206 if args:
207 command = command + " " + args
208 x = self.exec_command(command, True)
209 if not x:
210 return ""
211 x = x.split("\n")
212 l = []
213 for i in range(2,len(x)):
214 y = filter(None, x[i].split(" "))
215 if not len(y) > 0:
216 break
217 if job_name and not (job_name == y[1]):
218 continue
219 l.append(y)
220 if output:
221 return l
222 for i in range(0,len(l)):
223 print("{0:<15} | {1:<20} | {2:<10} | {3:<10} | {4:^3} | {5:<8}".

format(*l[i]))
224

225 class hpc(gbar):
226 def __init__(self, username=None, password=None):
227 super(hpc, self).__init__(username, password)
228 self.host = 'login.hpc.dtu.dk'
229

230 class job(object):
231 def __init__(self):
232 self.job_id = None
233

234 # Input / Output
235 self.main = None
236 self.dependencies = None
237 self.output = None
238

239 # Job parameters
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240 self.walltime = None
241 self.localpath = None
242 self.remotepath = None
243 self.stdout_file = None
244 self.stderr_file = None
245

246 self.conn = None
247

248 self.started = False
249 self.completed = False
250 self.silent = False
251 self.clean_up = True
252

253 def set_job_id(self):
254 self.job_id = self.generate_job_id()
255

256 def set_main(self, script):
257 self.main = script
258

259 def set_dependencies(self, scripts):
260 self.dependencies = scripts
261

262 def set_output(self, output):
263 self.output = output
264

265 def set_walltime(self, walltime):
266 self.walltime = walltime
267

268 def set_silence(self, silence):
269 self.silent = silence
270

271 def set_self_cleaning(self, clean):
272 self.clean_up = clean
273

274 def set_localpath(self, localpath):
275 self.localpath = localpath
276

277 def set_remotepath(self, remotepath):
278 self.remotepath = remotepath
279

280 def set_path(self, localpath, remotepath):
281 self.set_localpath(localpath)
282 self.set_remotepath(remotepath)
283

284 def set_stdout_file(self, stdout_file):
285 if stdout_file[0] == "/" or stdout_file[0] == ".":
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286 cpath = stdout_file
287 else:
288 assert isinstance(self.remotepath, str)
289 cpath = self.remotepath + stdout_file
290

291 path_dir = "/".join(cpath.split("/")[0:-1])
292 assert isinstance(self.conn, gbar)
293 assert self.conn.ftp.exist(path_dir)
294

295 self.stdout_file = stdout_file
296

297 def set_stderr_file(self, stderr_file):
298 if stderr_file[0] == "/" or stderr_file[0] == ".":
299 cpath = stderr_file
300 else:
301 assert isinstance(self.remotepath, str)
302 cpath = self.remotepath + stderr_file
303

304 path_dir = "/".join(cpath.split("/")[0:-1])
305 assert isinstance(self.conn, gbar)
306 assert self.conn.ftp.exist(path_dir)
307

308 self.stderr_file = stderr_file
309

310 def set_stdout_stderr_files(self, stdout_file, stderr_file):
311 self.set_stdout_file(stdout_file)
312 self.set_stderr_file(stderr_file)
313

314 def set_connection(self, connection):
315 self.conn = connection
316

317 def get_filepart(self, file, part = None):
318 if part == "file":
319 return ntpath.basename(file)
320 elif part == "path":
321 return ntpath.dirname(file) + "/"
322 else:
323 return file
324

325 def validate(self):
326 if not isinstance(self.main, str):
327 raise Exception
328 if not isinstance(self.dependencies, list):
329 if isinstance(self.dependencies, str):
330 self.dependencies = [self.dependencies]
331 else:
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332 raise Exception
333 if not isinstance(self.output, list):
334 if isinstance(self.output, str):
335 self.output = [self.output]
336 else:
337 raise Exception
338 if not isinstance(self.localpath, str):
339 raise Exception
340 if not isinstance(self.remotepath, str):
341 raise Exception
342 if not isinstance(self.stdout_file, str):
343 raise Exception
344 if not isinstance(self.stderr_file, str):
345 raise Exception
346 if not isinstance(self.walltime, str):
347 raise Exception
348 if not isinstance(self.conn, gbar):
349 raise Exception
350 if not self.job_id:
351 self.set_job_id()
352

353 def generate_job_id(self):
354 return "job01" + ("%13.2f" % time.time()).replace(".", "")
355

356 def id2time(self, job_id):
357 s = job_id[3:-2] + "." + job_id[-2:]
358 return float(s)
359

360 def walltime2sec(self):
361 l = self.walltime.split(":")
362 t = 0
363 mul = [1,60,3600]
364 for i in range(0,len(l)):
365 t += int(l.pop())*mul[i]
366 return t
367

368 def generate_bash(self, commands):
369 # Check that path is set
370 self.validate()
371

372 script_name = self.job_id + ".sh"
373

374 # File content
375 initialization = ["#!/bin/sh",
376 "",
377 "#PBS -N " + self.job_id,
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378 "#PBS -l walltime=" + self.walltime,
379 "#PBS -o " + self.stdout_file,
380 "#PBS -e " + self.stderr_file,
381 "cd $PBS_O_WORKDIR"]
382 header = ["",
383 "echo",
384 "echo ================================",
385 "echo Running job: " + self.job_id,
386 "echo ================================",
387 "echo Execution time: `date`"]
388

389 clean_up = ["rm " + script_name]
390 end_statement = ["",
391 "echo ================================",
392 "echo End time: `date`",
393 "echo End: " + self.job_id]
394

395 # Write file
396 with open(script_name, "wb") as file:
397 file.write("\n".join(initialization))
398 file.write("\n")
399 file.write("\n".join(header))
400 file.write("\n")
401 file.write("\n".join(commands))
402 file.write("\n")
403 if self.clean_up:
404 file.write("\n".join(clean_up))
405 file.write("\n")
406 file.write("\n".join(end_statement))
407

408 # Upload file
409 self.conn.ftp.upload(script_name, self.remotepath + script_name)
410 os.remove(script_name)
411

412 def is_done(self):
413 if self.completed:
414 return True
415 if not self.started:
416 return False
417

418 if not self.conn.ftp.exist(self.stdout_file):
419 return
420

421 f = self.conn.ftp.open(self.stdout_file)
422 lines = f.readlines()
423 if len(lines) == 0:
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424 return False
425 s = str(lines[-1])
426 f.close()
427 if s[0:4] <> "End:":
428 return False
429 s = s[5:-1]
430 t1 = self.id2time(s)
431 t2 = self.id2time(self.job_id)
432 if t1 < t2:
433 return False
434 self.completed = True
435 return True
436

437 def wait_for(self):
438 if not self.started:
439 raise Exception
440 queue_time = 300 # worst case guess(?)
441 wait_times = [3, 3, 4, 10, 10, 30, 30, 30, 60, 60, 120, 300]
442 wait_times.reverse()
443 job_done = True
444 t = 0
445 while not self.is_done():
446 if len(wait_times) > 1:
447 w = wait_times.pop()
448 if not self.silent:
449 print "(%d sec) Waiting %d seconds more... " % (t, w)
450 time.sleep(w)
451 t = t + w
452 if t > queue_time + self.walltime2sec():
453 job_done = False
454 break
455 if job_done:
456 print "job01 is done!"
457 else:
458 print "job01 is not done yet, consider checking 'qstat' through

putty"
459

460 def generate_command(self):
461 return ["python " + self.get_filepart(self.main, "file")]
462

463 def run(self):
464 self.validate()
465 self.started = True
466

467 # Upload
468 self.conn.ftp.upload(self.localpath + self.main, self.get_filepart(
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self.main, "file"))
469 for dependency in self.dependencies:
470 self.conn.ftp.upload(self.localpath + dependency, self.

get_filepart(dependency, "file"))
471

472 # Run
473 command = self.generate_command()
474

475 self.generate_bash(command)
476 bash_script = self.job_id + ".sh"
477

478 command = self.conn.path_cmd() + self.conn.qsub_cmd(bash_script)
479 if not self.silent:
480 print "Executing command: \n %s" % command
481 self.conn.ssh.exec_command(command)
482

483 def get_data(self):
484 if not self.completed:
485 raise Exception
486 for i in range(0, len(self.output)):
487 self.conn.ftp.download(self.output[i], self.localpath + self.

output[i])
488

489 def get_stdout_file(self, location=None):
490 if location:
491 self.conn.ftp.download(self.stdout_file, location)
492 else:
493 f = self.conn.ftp.open(self.stdout_file)
494 l = f.readlines()
495 for s in l:
496 print(s.strip())
497

498 def get_stderr_file(self, location=None):
499 if location:
500 self.conn.ftp.download(self.stderr_file, location)
501 else:
502 f = self.conn.ftp.open(self.stderr_file)
503 l = f.readlines()
504 for s in l:
505 print(s.strip())
506

507

508 def clean(self):
509 self.conn.ftp.delete(self.get_filepart(self.main, "file"))
510 for dependency in self.dependencies:
511 self.conn.ftp.delete(self.get_filepart(dependency, "file"))
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512 self.conn.ftp.delete(self.get_filepart(dependency, "file") + "c"
)

513 for i in range(0, len(self.output)):
514 self.conn.ftp.delete(self.output[i])
515

516 def run_wait_and_get_data(self):
517 self.run()
518 self.wait_for()
519 self.get_data()
520 if self.clean_up:
521 self.clean()
522

523 class FEniCSjob(job):
524 def __init__(self):
525 super(FEniCSjob, self).__init__()
526

527 def load_FEniCS_cmd(self):
528 cmd = ["module load gcc",
529 "module load FEniCS/1.5.0",
530 "module load openblas"]
531 return cmd
532

533 def generate_command(self):
534 fenics_cmd = self.load_FEniCS_cmd()
535 python_cmd = ["python " + self.get_filepart(self.main, "file")]
536 return fenics_cmd + python_cmd

.

D.2 Personalized connection and job
As an example we will show here how our connection and job was set up more specif-
ically. bcsj_gbar derived from gbar is set to automatically connect using the user-
name and password directly given in the object. Futhermore it directs the object to
work out of a specified folder on the server. A bit of printet output to the terminal
was added for feedback.

1 class bcsj_gbar(gbar):
2 def __init__(self, usr="<studentId>", pwd="<password>"):
3 print("--------------------------")
4 print(" Logging in to Gbar...")
5 print("--------------------------")
6 print(" > Username: " + usr)
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7 print(" > Password: ********")
8 print("--------------------------")
9 super(bcsj_gbar, self).__init__(usr, pwd)

10

11 self.connect()
12 print(" ")
13 if not self.ftp.exist("./ssh_python/"):
14 self.ftp.sftp.mkdir("./ssh_python/")
15

16 self.set_path("./ssh_python/")
17

18 def connect(self):
19 super(bcsj_gbar, self).connect()
20 print(" Connected...")
21

22 def close(self):
23 super(bcsj_gbar, self).close()
24 print(" Connection closed...")

.

As seen in the results a lot of otherwise identical jobs were run using different
values of α and h. In order to batch these jobs together as one an extension to the
FEniCSjob object was made. This added a new property args to the job-object listing
a number of different arguments the job should be executed with. To handle this
argument the method for generating part of the bash script needed to be overloaded.

1 class bcsj_job(FEniCSjob):
2 def __init__(self, connection=None):
3 super(bcsj_job, self).__init__()
4

5 self.set_connection(connection)
6

7 self.set_remotepath("./ssh_python/")
8 self.set_stdout_stderr_files(
9 stdout_file="output/stdout.txt",

10 stderr_file="output/stderr.txt"
11 )
12 self.args = None
13

14 def set_args(self, args):
15 self.args = args
16

17 def generate_command(self):
18 fenics_cmd = self.load_FEniCS_cmd()
19 if self.args:
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20 if isinstance(self.args, list):
21 python_cmd = []
22 i = 0
23 for arg in self.args:
24 i += 1
25 python_cmd += ["python " + self.get_filepart(self.main,

"file") + " " + arg]
26 python_cmd += ["echo subjob {0} / {1} done!".format(i,

len(self.args))]
27 else:
28 python_cmd = ["python " + self.get_filepart(self.main, "file

") + " " + self.args]
29 else:
30 python_cmd = ["python " + self.get_filepart(self.main, "file")]
31 return fenics_cmd + python_cmd

.
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