
Computational Methods for Hybrid
Impedance Tomography

M. Sc. Thesis by Christian Kragh

Kongens Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract

This thesis investigates a hybrid impedance inverse problem where the conductivity in a pla-
nar domain is reconstructed from noise-free interior data of the current density and power
density types. Two algorithms are implemented for reconstructing C2–conductivities. The
first algorithm performs well for the current density problem using a single measurement.
The second algorithm produces good reconstructions for the power density problem using
two measurements. The results indicate that both algorithms are convergent for the current
density problem. The second algorithm is the only one which performs well for the power
density problem but is only semi-convergent in that case. The effect of highly oscillating
Neumann conditions is investigated, where the results indicate that higher frequencies lead
to poorer reconstructions. The numerical results moreover indicate that L2–regularization
for the power density problem does not have any positive impact. Finally, the second al-
gorithm is tested for the reconstruction of a piece-wise constant conductivity, with results
that are comparable to the case of a C2–conductivity.

ii

Preface

This Master’s thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU Compute) as the final project
of the Master Programme in Mathematical Modelling and Computation. The work has
been carried out during the spring of 2016 from February to July.

The thesis deals with topics of applied functional analysis and partial differential equa-
tions. Specifically, it focuses on numerical methods for inverse problems arising in hybrid
tomography for conductivity imaging.

It is intended to address fellow students at the graduate level in applied mathematics
or engineering mathematics. A prerequisite is familiarity with Functional Analysis and
specifically the concept of Hilbert spaces, boundedness and dual spaces. Moreover, some
knowledge of theory for partial differential equations is also strongly recommended. That is,
acquaintance with the concepts of weak formulations, Sobolev spaces and the Lax–Milgram
Theorem is advantageous.

Specifically, students at the Mathematical Modelling and Computation Master Programme
at DTU should have the proper prerequisites if they have completed the courses Partial Dif-
ferential Equations (01246), Functional Analysis (01715) and Advanced Topics in Applied
Functional Analysis (01716).

Christian Kragh
Kgs. Lyngby, July 10, 2016.

iv

Acknowledgements

I would like to thank my supervisor, Associate Professor Kim Knudsen for his very valuable
advice in our weekly meetings and for guiding me in the right direction while also allowing
me to work independently. I would also like to thank my co-supervisor Postdoc Stratos
Staboulis for our discussions, his very useful inputs and views on the subject.

Finally, I would like to thank Ida Bertelsen for her continuous support during the whole
project.

vi

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Mathematical model . 3
1.3 Statement of a hybrid inverse problem . 5
1.4 Thesis outline . 8

2 The forward problem 9
2.1 Variational form - existence and uniqueness 9
2.2 An analytical solution . 17

2.2.1 Power density data . 19

3 Methods for solving inverse problems 23
3.1 Continuity and differentiability of the forward map 23

3.1.1 Fréchet differentiability of the forward map 26
3.1.2 Fréchet derivative of the data map 29

3.2 Methods of the Newton-type . 31
3.2.1 Newton’s method in Banach spaces 31
3.2.2 A Newton-type method given Power Density data 32
3.2.3 A Newton-type method with multiple measurements 34
3.2.4 Ellipticity of the linearised problem 38

4 Implementation 41
4.1 The Finite Element setup . 41
4.2 Validation of the forward problem implementation 45

4.2.1 Code examples from Python . 45
4.3 Implementation details of the inverse problem 48

4.3.1 Meshes and conductivity phantoms 48

viii CONTENTS

4.3.2 Parameter choices . 49

5 Numerical results 53
5.1 Reconstruction of a smooth target conductivity 53
5.2 Regularization effects . 57
5.3 Effects of the choice of boundary conditions 58
5.4 Propagation of singularities . 59
5.5 Reconstruction of a piece-wise constant conductivity 61

6 Conclusion and perspectives 63
6.1 Conclusion . 63
6.2 Perspectives . 65

References 65

A Learning objectives and plan 71
A.1 Final version . 71

A.1.1 Learning objectives . 71
A.1.2 Time plan . 72

A.2 Note on corrections to the original plan . 73
A.3 Original version . 74

A.3.1 Learning objectives . 74
A.3.2 Time plan . 75

B Python code 77

Chapter 1

Introduction

1.1 Motivation

Since the introduction of the X-ray computed tomography (CT) technique in the 1970’s,
there has been a growing research interest in tomographic methods, leading to many other
types of tomography such as PET (positron-electron tomography), SPECT (single photon
emission CT), MRI (magnetic resonance imaging), optical- and ultrasound tomography
and EIT (electrical impedance tomography).

Originating from Greek as the combination of tomos meaning ”slice” and graphia meaning
”decription of”, the term tomography refers to imaging by sectioning. However, it now has a
broader definition since in many cases the techniques are not confined to 2D sections and are
thus often 3D-based methods. They are however all methods for determining the internal
structure of an object from measurements of their corresponding physical modalities. The
mathematical problems involved in the methods are so-called inverse problems which have
been of great theoretical interest in mathematics.

A part from the fact that the methods are based on different physical phenomena and
thereby different measurement techniques, they also differ by their costs, the degree of
health risk they expose patients to and their ability to detect different biological features.

This led to the idea that coupling different physical modalities might be advantageous and
could potentially produce imaging methods with more precision and applicability than the
single modality methods. These coupled modality methods are called hybrid tomography
methods.

2 Introduction

Tissue Conductivity [S m−1]
Skin 3× 10−3

Fat 2× 10−2

Liver 5× 10−2

Blood 7× 10−1

Table 1.1: Conductivities of different types of tissues.

The case of hybrid impedance tomography methods have their origins in electrical impedance
tomography (EIT) which is a single modality method for reconstructing the conductivity
inside an object (e.g. the human body). In EIT, electrodes are attached to the boundary
of the object and the resulting voltages on the boundary are measured to provide the data
for the reconstruction.

The conductivity is known to be an appropriate indicator of the health of biological tissues
and functional processes [12]. Specifically, it provides valuable information of the distribu-
tion of air in the lungs of a patient due to the fact that air has a very small conductivity.
Moreover, the conductivity of different types of biological tissue can differ by several orders
of magnitude making them easily distinguishable provided a high-resolution image. The
conductivities of different types of tissue can be seen in Table 1.1.

Figure 1.1: A ten days old child with electrodes attached to the chest as an experimental
setup for EIT [17].

The original mathematical formulation of the EIT problem was proposed by Calderón in
1980 [8]. It is known to be heavily ill-conditioned and the modulus of continuity is no better
than logarithmic [1], meaning that exponential decrease in measurement error only leads
to a linear improvement in precision. Due to the logarithmic stability, it is only possible
to obtain low resolution reconstructions of the conductivity [27].

Hybrid electrical impedance tomography is then based on the idea of coupling EIT with
other physical modalities in order to produce images of higher resolution or to obtain

1.2 Mathematical model 3

Symbol Quantity Unit Type
E(x, t) Electric field strength Vm−1 vector field
B(x, t) Magnetic Flux density Vsm−2 = T vector field
J(x, t) Electrical current density Am−2 vector field
σ(x) Electrical conductivity AVm−1 = Sm−1 scalar field
ρ(x, t) Electrical charge density Asm−3 scalar field
ε(x) Electrical permitivity AsV−1m−1 = Fm−1 scalar field
µ(x) Magnetic permeability A−1sVm−1 = Hm−1 scalar field

Table 1.2: Physical quantities of electrodynamics

added information compared to the single modality case of EIT. The coupling of physical
modalities utilised in hybrid EIT is expected provide more stability than that of the original
EIT problem [3].

1.2 Mathematical model

To provide the physical background of hybrid EIT, we need to go to Maxwell’s equations
of electrodynamics. In their differential form they read (see for example Griffiths [15]),

∇ ·E = ρ

ε0
∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0

(
J + ε0

∂E
∂t

)
,

(1.1)

with the physical quantities given in Table 1.2 and the constant ε0 and µ0 being the vacuum
permitivity and permeability respectively. Apart from Maxwell’s equations there are a few
more important law’s of electrodynamics which will be relevant from our perspective. With
a continuous charge distribution, the force field pr. unit volume (Lorentz’ equation) is given
by

f = ρE + J×B. (1.2)
and the power density is given by

H = J ·E, (1.3)
which measures the power [W] of the electric field pr. unit volume. This is of course a
scalar quantity and hence is not typeset in bold. A central part of the model is the linear
approximation of the relation between the current density J and the electric field E. This
is the generalized Ohm’s law,

J = σE, (1.4)
which holds for so-called linear media including biological tissue [27]. The conductivity is
simply a name for the proportionality constant. The intuition of (1.4) is that in a medium

4 Introduction

with a large conductivity, even a small electrical field magnitude can result in a large
current density. We shall view the conductivity as a function of space σ(x) and neglect
that σ might also depend on time and the frequency of the electrical field as noted by
Widlak and Scherzer [27].

Inspecting the third equation in (1.1) (Faraday’s law), the partial derivative of the magnetic
field with respect to time is present on the right hand side. With a planar wave solution
to the magnetic field of the form B = B0 exp(k · r− iωt), this reduces to

∇×E = −iωB (1.5)

from where the electrostatic approximation in the low frequency regime, reads

∇×E = 0. (1.6)

The approximation is arguably valid ([10], A.2) if
√
µ0ωσ � L (1.7)

with ω, σ, L denoting a reference frequency, conductivity and length respectively. The fact
that E is rotation-free in R3 (a simply connected region) is sufficient to conclude that it
can be written as the gradient of a scalar field u [21],

E = −∇u. (1.8)

The minus sign is the convention for an energy potential with the force field should point
in the direction of largest decrease in the potential.

The fourth Maxwell equation in (1.1) is Ampères law with Maxwell’s correction of including
the displacement current ε0 ∂E

∂t . Taking the divergence on both sides and using that the
divergence of a curl is zero, it becomes

∇ · J + ε0
∂ (∇ ·E)

∂t
= 0 (1.9)

Applying now Gauss’ law, the first of Maxwell’s equations in (1.1), we get the law of charge
conservation,

∇ · J = −∂ρ
∂t
, (1.10)

Recalling Gauss’ Divergence Theorem, this simply corresponds to the fact that the net
outward surface current through any closed surface ∂Ωi enclosing a volume Ωi must be
due to a change in the charge density,∫

∂Ωi

J · n̂ ds =
∫

Ωi

∇ · J dx = − ∂

∂t

∫
Ωi

ρ dx, (1.11)

1.3 Statement of a hybrid inverse problem 5

where q =
∫

Ω ρ dx is the net charge inside the volume Ω. Since this must be true for any
volume, and we require that there is no local accumulation of charge, we arrive at the
equation,

∇ · J = 0. (1.12)
Combining this with Ohm’s law (1.4) and (1.8), we obtain

∇ · (σ∇u) = 0. (1.13)

Suppose we have an object which occupies a region Ω ⊂ R3. Then the outward current
density is measured on the boundary ∂Ω to give boundary data,

J · n̂ = σ
∂u

∂n
= f on ∂Ω. (1.14)

Combining (1.13) and (1.14) we arrive at a boundary value problem for determining the
potential u given a known conductivity σ and boundary measurements f .

∇ · (σ∇u) = 0 in Ω ,

σ
∂u

∂n
= f on ∂Ω,

(1.15)

which is the boundary value problem constituting the forward map of EIT. Having obtained
a potential u from (1.15), we can compute p–power density,

H = σ|∇u|p, p > 0. (1.16)

From (1.8), the relation between electric field E and the potential u is given by −∇u = E
[15]. In the case p = 2,

H(σ) = σ|E|2 with the SI-unit [H] = J
s ·m3 = W

m3 = power
volume . (1.17)

Hence for p = 2, H(σ) corresponds to the power density (the electrical power pr. unit
volume). As we shall see shortly, (1.15) and (1.16) are the key ingredients in this project.

1.3 Statement of a hybrid inverse problem

The problems arising in (hybrid) tomography are inverse problems. The fundamental
objective of an inverse problem is to find x, typically a model parameter, given some
output data d such that

F(x) = d (1.18)
where F is the forward map which is known more or less explicitly. In that sense, the
problem of finding x is essentially to invert the operator F mapping x into the data d.

6 Introduction

Mathematically, F is often a differential or integral operator which is not straightforward
to invert. The concept of well-posedness is very central in inverse problem theory and
originates from the definition given by Hadamard [16] (1902). Qualitatively it states that
a mathematical model should fulfil the three properties:

1. Existence

2. Uniqueness

3. Stability with respect to the data

Many inverse problems are ill-posed and often the third condition is not fulfilled. This
is the case for EIT, where existence and uniqueness results have been obtained [26], but
where solutions depend too sensitively on the data [1]. We will here propose a class of
hybrid EIT inverse problem where interior data of the power density type (1.16) is added
to the EIT data. To state the problem we first need to introduce a bit of notation.

We consider a open, bounded domain Ω in R2 or R3 and denote by ∂Ω the boundary of
Ω which is assumed to be smooth. Then we introduce the following Sobolev spaces (See
Evans [11] for a textbook reference on the well-known spaces H1, H1/2 and their duals),

H̃1(Ω) :=
{
u ∈ H1(Ω)

∣∣∣ ∫
∂Ω
u dS = 0

}
. (1.19)

H̃−1/2(∂Ω) :=
{
f ∈ H−1/2(∂Ω)

∣∣∣ ∫
∂Ω
f dS = 0

}
, (1.20)

where integrals on ∂Ω should be understood in the trace sense. Moreover we introduce the
space,

L∞+ (Ω) :=
{
σ ∈ L∞(Ω)

∣∣∣σ(x) > c1 a.e. in Ω, c1 > 0
}
, (1.21)

which requires conductivities to have a global lower bound, corresponding to no material
being perfectly insulating. We can now define the inverse problem for the interior data
hybrid EIT.

1.3 Statement of a hybrid inverse problem 7

Problem 1 (Power Density EIT). Let the true conductivity σ ∈ L∞+ (Ω) and let fm ∈
H̃−1/2(∂Ω) be given. Then um ∈ H̃1(Ω) denotes the solution of

∇ · (σ∇um) = 0 in Ω

σ
∂um
∂n

= fm on ∂Ω,
(1.22)

Then the interior data,

Hm(σ) = σ|∇um|p, p > 0 in Ω, (1.23)

is given for each measurement fm.

Reconstruct σ.

Problem 1 is a more general case of a hybrid inverse problem, where we are not specifically
concerned with the method used for obtaining the measurements of the interior data H(σ).
However, we motivate the investigation of this type of problem, by existing tomographic
methods that are related to or covered by this formulation.

One example is the magnetic resonance EIT (MREIT) which is based on the physical
coupling of the current density field J and the magnetic field B. The fourth equation
in (1.1) (Ampére’s law) can be used to express the current density in terms of B in the
electrostatic approximation,

∇×B = µ0J (1.24)

An MRI scanner can be used to measure one component of the B-field. By rotating the
object, one would ideally be able to obtain complete information about B and hence J. In
practice, knowledge of one or two components of B is more achievable. MREIT hence is
typically concerned with interior measurements of J, |J| or only the z-component of the
magnetic field Bz [27]. Note that |J| corresponds exactly to the case p = 1 in our model,
since J = σ∇u in linear media. This case is often called Current Density Impedance (CDII)
[27].

The case of power density interior data (p = 2) appears in different types of ultrasound
coupled impedance tomography. In the review by Widlak and Scherzer [27], several meth-
ods are mentioned. Impedance-acoustic tomography (IAT) is stated as the conductivity
reconstruction from Cauchy data and the power density interior data σ|∇u|2, where the
power density is obtained by the ultrasound wave generated by thermal expansion due to
Joule heating.

8 Introduction

In acousto-electrical tomography (AET) ultrasound beams are used to excite the electrical
field and thereby perturbing the conductivity. The measured voltage difference can then
be used to compute the power density data σ|∇u|2 [27].

Motivated by these hybrid tomography schemes, this project will focus on methods for
solving Problem 1 in the cases p = 1 and p = 2 with an emphasis on the latter. However,
a few results will also be based on other cases where p ∈ [0.5, 2].

1.4 Thesis outline

Having motivated the subject and introduced the main concepts, we are prepared to state
the goals of this project and lay out the path leading to these goals.

This thesis surveys computational methods for solving Problem 1 with one and two in-
duced currents and corresponding Neumann measurements. The methods are based on a
linearisation of the forward map and a Newton-type method for iterative reconstruction
of the conductivity, which is closely related to the algorithms presented by Hoffmann [18],
although here applied to the Neumann boundary data whereas in [18], Dirichlet boundary
conditions are used. The variational problems are solved using the Finite Element method
via the software package FEniCS [2].

First, the forward problem of EIT is investigated with emphasis on existence and unique-
ness and the formulation of a variational form which is implementable in a Finite Element
setting. Subsequently, the methods for solving the inverse problem are presented by de-
riving the linearisation (Fréchet derivative) of the forward map and variational forms are
presented for obtaining updating the conductivity by an increment δσ. Then two algo-
rithms are posed as solution procedures to Problem 1. The implementation of the two
algorithms is then described, leading up to the presentation of the obtained numerical
results. These are discussed in terms of related work. Finally, the perspectives and limita-
tions are discussed and a conclusion of the thesis is presented.

The main objectives of this thesis is to investigate the performance of the two Newton type
algorithms from Hoffmann [18] applied to the Neumann boundary condition. In the case
p = 2, we would like to address how does the regularization parameter α and the choice
of Neumann conditions affect the quality of the conductivity reconstructions. Moreover,
we will aim to confirm the prediction of propagation of singularities from the thesis by
Hoffmann [19] in the case of Neumann boundary conditions. Finally, we will evaluate how
the method performs for the reconstruction of a piece-wise constant target conductivity.

Chapter 2

The forward problem

This chapter focuses solely on the forward problem of Electrical Impedance Tomography
(EIT), which is a Laplace type partial differential equation (PDE) in two or three spatial
dimensions. This type of PDE can be solved analytically in some special cases but often
requires a numerical approach, e.g. the Finite Element Method (FEM) which will be
employed here. Functional analysis also plays a key role in determining conditions for
unique solvability of the weak and strong formulations of the boundary value problem,
where the weak formulation is especially important regarding the FEM. We here define
some concepts that were already mentioned in the introduction. This chapter however
goes into a more detail with these concepts.

2.1 Variational form - existence and uniqueness

As we saw in Section 1.3 the forward problem of EIT stems from the electrostatic equation.
Let Ω be a bounded domain in R2 or R3, with a smooth boundary ∂Ω. Then we consider
the boundary value problem from (1.15),

∇ · (σ∇u) = 0 in Ω

σ
∂u

∂n
= f on ∂Ω,

(2.1)

with ∂u
∂n denoting the outward normal derivative on the boundary.

As one might suspect, this problem is not uniquely solvable for e.g. u ∈ C2(Ω) since adding

10 The forward problem

a constant would immediately give a new solution. Therefore, choosing a proper space for
u is important.

In practice, expressing the problem as in (2.1) is not always very convenient. It turns
out that a weaker formulation of the problem can be very powerful both for theoretical
and numerical reasons. Consider (2.1) where we multiply on both sides by a smooth test
function, v ∈ C∞(Ω̄), and integrate to get∫

Ω
v (∇ · (σ∇u)) dx =

∫
Ω
v (σ∆u+∇σ · ∇u) dx = 0, (2.2)

provided u is sufficiently smooth. It will later become apparent what exactly we mean by
this. Applying Green’s first identity, (2.2) becomes∫

∂Ω

∂u

∂n
σv dS −

∫
Ω
∇u · (σ∇v + v∇σ) dx+

∫
Ω
v(∇σ · ∇u) dx = 0, (2.3)

where two of the terms cancel out to give∫
Ω
σ∇u · ∇v dx =

∫
∂Ω

∂u

∂n
σv dS. (2.4)

Using the Neumann-condition from (2.1), we arrive at∫
Ω
σ∇u · ∇v dx =

∫
∂Ω
fv dS ∀ v ∈ C∞(Ω̄), (2.5)

which is what later will form the basis of the weak formulation of (2.1).

We have now stated the alternate formulation (2.5) without really adressing which spaces
we should expect u and f to belong to. Inspecting (2.5), we would at least require that
∇u and ∇v exist. That would mean u, v ∈ C1(Ω). However, this is more restrictive than
necessary. In fact, the partial derivatives of u and v entering (2.5) can be replaced by the
weak partial derivatives. The appropriate spaces for weakly differentiable functions are the
Sobolev spaces W k,p and specifically the Hilbert spaces Hk = W k,2. See Evans [11], Chap.
5, for a textbook defining weak derivatives and Sobolev spaces. Returning to (2.5), we can
write for any u, v, σ ∈ C∞(Ω),∫

Ω
σ∇u · ∇v dx =

∫
Ω
σ

d∑
i=1

uivi dx =
d∑
i=1

∫
Ω
σuivi dx =

d∑
i=1

∫
Ω
σDiuDiv dx (2.6)

where ui denotes the (strong) partial derivative with respect to ui. The last equality is
true because of the approximation result (Th. 5.3.2 in [11]), stating that C∞(Ω) is dense
in W k,p(Ω) and thus also in H1(Ω). Hence, we can relax the condition on u and v to
u, v ∈ H1(Ω) ⊂ L2(Ω) when considering (2.5). When writing ∇u we then also understand
it as the weak gradient of u.

2.1 Variational form - existence and uniqueness 11

Inspecting the original PDE (2.1), we immediately encounter an issue with uniqueness,
since assuming u is a solution then also ũ = u + c is a solution. The same holds for any
solution to (2.5). Hence we need some other requirements on u and possibly v and f .
One way to obtain uniqueness would be to choose u ∈ H1(Ω)/R identifying u with every
function u+ c, c ∈ R. A more physical requirement however, would be the grounding of u
(on average) on the boundary, demanding

∫
∂Ω u dS = 0. This motivates the introduction

of the following auxiliary function spaces,

Definition 1 (The space H̃1(Ω)). The Sobolev space H1(Ω) consists of functions u ∈
H1(Ω), such that ∫

∂Ω
u dS = 0, (2.7)

equipped with the norm,
‖u‖H̃1(Ω) := ‖∇u‖L2(Ω) (2.8)

and the corresponding inner product,

〈u, v〉H̃1(Ω) := 〈∇u,∇v〉L2(Ω). (2.9)

Since now u is assumed to be in H1(Ω) we have to be careful integrating along the bound-
ary ∂Ω. The boundary has dimension d − 1 and is therefore of Lebesgue measure zero.
This means u does not necessarily take values on the boundary. The integral should be
understood in the context of traces:∫

∂Ω
u dS :=

∫
∂Ω
Tu dS, (2.10)

where T : W 1,p → Lp(∂Ω) is the trace operator (see Evans [11], Theorem 5.5.1). Whenever
we integrate an H1(Ω)-function u along the boundary we will understand it as an integral
over Tu rather than u.

Remark 1. The norms ‖·‖H1(Ω) and ‖·‖H̃1Ω) are equivalent. That is, there exists constants
a, b > 0 such that

a‖u‖H1(Ω) ≤ ‖u‖H̃1(Ω) ≤ b‖u‖H1(Ω) ∀u ∈ H̃1(Ω) ⊂ H1(Ω). (2.11)

Proof. In the case of H1(Ω), the Sobolev space norm reduces to

‖u‖2H1(Ω) = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω), (2.12)

by which the right inequality of (2.11) is clearly fulfilled with b = 1, since

‖u‖2
H̃1(Ω) = ‖∇u‖2L2(Ω) ≤ ‖u‖

2
L2(Ω) + ‖∇u‖2L2(Ω) = ‖u‖2H1(Ω). (2.13)

12 The forward problem

The left inequality of (2.11) is obtained using the Poincaré inequality with the average
taken on the boundary (see for example [13] B.3), which states that

‖u− (u)‖L2(Ω) ≤ C‖∇u‖L2(Ω) ∀u ∈ H1(Ω), C > 0. (2.14)

where (u) := |∂Ω|−1 ∫
∂Ω u dx. For an estimate of the left-hand side of (2.14) we note that

by definition (u) = 0 for u ∈ H̃1(Ω). Hence,

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω). (2.15)

By the definition of the norm on H̃1(Ω) we then have

‖u‖H1(Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω) ≤ (C + 1)‖∇u‖L2(Ω) = (C + 1)‖u‖H̃1(Ω), (2.16)

which proves the left inequality of (2.11) with a = (C + 1)−1.

Moreover, H̃1(Ω) is in fact closed in H1(Ω) and is thus also a Hilbert space ([13], Lemma
2.2). Requiring u, v ∈ H̃1(Ω) is a way to obtain a uniquely solvable problem as we will
later see.

Now, we are almost ready to formally define the problem we wish to solve. However, we
have only been concerned with the left-hand side of (2.5) so far. As for the right-hand
side, we need to consider which space f should belong to for the integral

∫
∂Ω fv dS to make

sense. For this we need to define the trace space on Ω and its dual space,

T (H1(Ω)) := H1/2(∂Ω), H−1/2(∂Ω) := (H1/2)′(∂Ω). (2.17)

Understanding f as a functional on H1/2(∂Ω), we can define f : H1/2(∂Ω) → R as the
dual pairing of f with Tv ∈ H1/2(∂Ω),

〈f, v〉 = 〈f, Tv〉L2(∂Ω) =
∫
∂Ω
f Tv dS, f ∈ H−1/2(Ω). (2.18)

Setting v = 1 ∈ H1(Ω) in (2.5) gives∫
∂Ω
f dx =

∫
Ω
∇u∇1 dx = 0. (2.19)

Hence also f should integrate zero on the boundary in order to have a legitimate solution
of (2.5) and is hence also necessary to have a strong solution in the sense of (2.1). This
leads to the definition of the space,

H̃−1/2(∂Ω) :=
{
f ∈ H−1/2(∂Ω)

∣∣∣ ∫
∂Ω
f dS = 0

}
. (2.20)

We have then obtained appropriate function spaces for u, v and f . Now, if σ is an (essen-
tially) bounded function, σ ∈ L∞(Ω), then∣∣∣∣∫

Ω
σ∇u∇v dx

∣∣∣∣ ≤ ‖σ‖L∞(Ω)

∣∣∣∣∫
Ω
∇u∇v dx

∣∣∣∣ <∞, (2.21)

2.1 Variational form - existence and uniqueness 13

since ∇u and ∇v belong to L2(Ω) by definition of the Sobolev space H̃1(Ω). Shortly, we
will also prove boundedness of the integral as a bilinear form. Requiring also that σ(x) > c1
a.e. in Ω for c1 > 0 corresponds to the physical consideration that no region is perfectly
insulating (σ 6= 0 anywhere). In mathematical terms, the lower and upper global bounds
for σ can be obtained by defining the space

L∞+ (Ω) :=
{
σ ∈ L∞(Ω)

∣∣∣σ(x) > c1 a.e. in Ω, c1 > 0
}
. (2.22)

Now we are able to state a uniquely solvable weak formulation of the forward problem. Let
u, v ∈ H̃1(Ω), f ∈ H̃−1/2(∂Ω), and σ ∈ L∞+ (Ω). Then we define the weak formulation of
(2.1) as ∫

Ω
σ∇u · ∇v dx =

∫
∂Ω
fv dS ∀ v ∈ H̃1(Ω). (2.23)

The left-hand side of (2.23) is the bilinear form,

a : H̃1(Ω)× H̃1(Ω)→ R, s.t.

a(u, v) =
∫

Ω
σ∇u · ∇v dx,

(2.24)

which is bounded, since

|a(u, v)| ≤ ‖σ‖L∞(Ω)

(∫
Ω
|∇u|2 dx

∫
Ω
|∇v|2 dx

) 1
2

= ‖σ‖L∞(Ω)‖u‖H̃1(Ω)‖v‖H̃1(Ω)

= A ‖u‖H̃1(Ω)‖v‖H̃1(Ω). (2.25)

The right-hand side of (2.23) is the bounded linear functional l : H̃1(Ω)→ R, such that

l(v) =
∫
∂Ω
fv dx. (2.26)

Boundedness of l is a consequence of f belong to H−1/2(∂Ω) — the space of bounded
linear functionals on H1/2(∂Ω). Note that one could also obtain boundedness of l with the
restriction f ∈ L2(∂Ω), which would imply

|l(v)| =
∣∣∣∣∫
∂Ω
fv dx

∣∣∣∣ ≤ (∫
∂Ω
|f |2dx

∫
∂Ω
|v|2 dx

) 1
2

= ‖f‖L2(∂Ω)‖v‖L2(∂Ω) (2.27)

= ‖f‖L2(∂Ω)‖Tv‖L2(∂Ω) ≤ ‖f‖L2(∂Ω)‖v‖H1(Ω) (2.28)

≤ C‖f‖L2(∂Ω)‖v‖H̃1(Ω) = B‖v‖H̃1(Ω) (2.29)

utilizing the norm equivalence of Remark 1. The problem (2.23) can then be formulated
as the variational problem, of finding u ∈ H̃1(Ω), s.t.

a(u, v) = l(v) ∀ v ∈ H̃1(Ω), (2.30)

14 The forward problem

In order to obtain uniqueness of (2.23), The Lax–Milgram Theorem (Th. 6.2.1 in Evans
[11]) becomes of great use.

Theorem 1 (Uniqueness). Let Ω be a bounded domain in Rd (d = 2 or d = 3) with a
smooth boundary ∂Ω and let σ ∈ L∞+ (Ω). Then the problem (2.23) has a unique solution,
u ∈ H̃1(Ω).

Proof. First we want to show that a(u, v) is coercive, i.e. that there exists C > 0 such that

|a(u, u)| ≥ C‖u‖ ∀u ∈ H̃1(Ω). (2.31)

This comes directly from σ being bounded from below, since

|a(u, u)| ≥ inf
x∈Ω

{
σ(x)

} ∫
Ω
|∇u|2dx ≥ c1

∫
Ω
|∇u|2dx = c1‖u‖H̃1(Ω). (2.32)

Then since H̃1(Ω) is a Hilbert space, a(u, v) is a bounded, coercive bilinear form and l(v)
a bounded linear functional on H̃1(Ω), the Lax–Milgram Theorem states that there is a
unique u ∈ H̃1(Ω) such that

a(u, v) = l(v) ∀ v ∈ H̃1(Ω), (2.33)

which completes the proof.

In a numerical setting, the integral condition on functions in H̃1(Ω) is not very convenient
to implement. Hence, one might choose a different but equivalent formulation, which uses
H1(Ω). Instead of solving (2.23), suppose we want to solve for (u, c) ∈ H1(Ω) × R, the
problem,

A ((u, c), (v, d)) = L((v, d)) ∀ (v, d) ∈ H1(Ω)× R, (2.34)

where A : (H1(Ω)× R)× (H1(Ω)× R)→ R is the augmented bilinear form, defined by

A ((u, c), (v, d)) :=
∫

Ω
σ∇u · ∇v dx+ d

∫
∂Ω
u dS + c

∫
∂Ω
v dS. (2.35)

The functional L : H1(Ω)× R→ R extends the functional l to the product space,

L((v, d)) := l(v) =
∫
∂Ω
fv dS. (2.36)

Using (2.34), we no longer require u, v or f to integrate to zero on the boundary. However,
we need to prove that there is an equivalence between the problems (2.23) and (2.34).

Corollary 1 (Uniqueness of the augmented form). The problem (2.23) has a unique solu-
tion u ∈ H̃1(Ω) if and only if (u, c) is a unique solution of (2.34) with c = |∂Ω|−1 ∫

∂Ω f dS.

2.1 Variational form - existence and uniqueness 15

Proof. For the "⇐"-direction, suppose (u, c) solves (2.34). By the assumption, (2.34) holds
for all (v, d) ∈ H1(Ω)× R. Choosing the trial function (v = 0, d 6= 0) immediately gives

d

∫
∂Ω
u dS = 0, d 6= 0, implying

∫
∂Ω
u dS = 0. (2.37)

This shows that u ∈ H̃1(Ω). Then choosing v ∈ H̃1(Ω), d = 0, gives∫
Ω
σ∇u · ∇v dx =

∫
∂Ω
fv dS, ∀ v ∈ H̃1(Ω), (2.38)

which shows that u is a solution of (2.23). By Th. 1, this is unique.

"⇒": Now suppose u solves (2.23). Since u ∈ H̃1(Ω), then
∫
∂Ω u dS = 0. Moreover, for

v ∈ H̃1(Ω), (2.34) reduces to (2.23) and hence u solves (2.34) for all (v, d) ∈ H̃1(Ω)× R.

Then we only need to show that u solves (2.34) for v ∈ H1(Ω)\H̃1(Ω). Consider ṽ = v−v0,
where v0 = |∂Ω|−1 ∫

∂Ω v dS. Then ṽ ∈ H̃
1(Ω), since∫

∂Ω
ṽ dS =

∫
∂Ω
v −

(
|∂Ω|−1

∫
∂Ω
v dS

)
dS =

∫
∂Ω
v dS −

∫
∂Ω
v dS = 0. (2.39)

By the fact that (2.23) holds for all v ∈ H̃1(Ω), we obtain∫
Ω
σ∇u · ∇ṽ dx =

∫
∂Ω
fṽ dS. (2.40)

Since v0 is a constant, we have ∇v0 = 0 a.e., and∫
∂Ω
fṽ dS =

∫
Ω
σ∇u · ∇ṽ dx =

∫
Ω
σ∇u · ∇(v − v0) dx =

∫
Ω
σ∇u · ∇v dx. (2.41)

On the other hand, for (2.34) to be true, we require∫
Ω
σ∇u · ∇v dx =

∫
∂Ω
fv dS − c

∫
∂Ω
v dS, (2.42)

using that
∫
∂Ω u dS = 0 by assumption. Equating (2.41) and (2.42), we get∫

∂Ω
fṽ dS =

∫
∂Ω
fv dS − c

∫
∂Ω
v dS. (2.43)

Since ṽ = v − v0, we have

v0

∫
∂Ω
f dS = c

∫
∂Ω
v dS = c |∂Ω| v0. (2.44)

which is fulfilled for all v ∈ H1(Ω) if only if

c = |∂Ω|−1
∫
∂Ω
f dS, (2.45)

which guarantees that (u, c) ∈ H1(Ω)× R is unique.

16 The forward problem

Numerically this formulation is advantageous, since we avoid working with the spaces H̃1,
H̃1/2 and H̃−1/2 and instead work with H1, H1/2 and H−1/2. Moreover, we preserve the
symmetry of the bilinear form.

As we saw in (2.19),
∫
∂Ω f dS = 0 is a necessary condition for a solution to the strong

formulation (2.1) and (2.5), while this is not required for solving the variational forms
(2.23) and (2.34). Ideally, we would want our solution to also solve the strong formulation
(2.1) or the integral formulation (2.5). At least we should require that

∫
∂Ω f dS is close to

zero. In practice, f is estimated by measured data on the boundary and there would be
some noise, due to which

∫
∂Ω f dS 6= 0.

Suppose there is a true f0 ∈ H̃−1/2(∂Ω) for which
∫
∂Ω f0 dS = 0. For some other measured

f ∈ H−1/2(∂Ω) not necessarily integrating to zero on the boundary, assume that

‖f − f0‖L2(∂Ω) < δ. (2.46)

Then for solutions u, u0 ∈ H̃1(Ω) to (2.23), corresponding to f and f0 respectively, we have

‖u− u0‖H̃1(Ω) ≤ C‖f − f0‖L2(∂Ω) = Cδ. (2.47)

Considering the variational forms (2.23) for both solutions, we have∫
Ω
σ∇u0 · ∇v dx =

∫
∂Ω
f0v dS, (2.48)∫

Ω
σ∇u · ∇v dx =

∫
∂Ω
fv dS, (2.49)

for all v ∈ H̃1(Ω). Collecting these, we get∫
Ω
σ∇(u− u0) · ∇v dx =

∫
∂Ω

(f − f0)v dS. (2.50)

Using v = u−u0 ∈ H̃1(Ω) as a test function and global lower bound c1 > 0 for σ ∈ L∞+ (Ω),∫
Ω
|∇(u− u0)|2 dx ≤ c−1

1

∫
∂Ω

(f − f0)(u− u0) dS. (2.51)

Applying the Cauchy-inequality and the Trace Theorem,

‖∇(u− u0)‖2L2(Ω) ≤ c
−1
1 ‖f − f0‖L2(∂Ω)‖T (u− u0)‖L2(∂Ω) (2.52)

≤ C‖f − f0‖L2(∂Ω)‖u− u0‖H1(Ω) (2.53)

Identifying the left-hand side as the squared norm of u− u0 in H̃1(Ω) and using the norm
equivalence of Remark 1, we obtain

‖u− u0‖H̃1(Ω) ≤ C‖f − f0‖L2(∂Ω) < Cδ, (2.54)

2.2 An analytical solution 17

thus having obtained a stability result for the approximate solution u, given a true solution
u0 with measured and true data f and f0 respectively. This ensures that there is at most
a linear dependence on the measurement noise δ in the sense of (2.54).

However, the dependence on noise is much more severe (logarithmic) in the case of the
inverse EIT problem, which is one of the reasons that hybrid inverse problems such as
Problem 1 is investigated, providing more stability.

2.2 An analytical solution

In this section, we provide an example of the forward problem (2.1) where it is possible
to find an analytical solution. We choose Ω to be the unit disk in R2. This region will be
used throughout the thesis for examples or implementations. In order to have a specific
forward problem to solve, we need to choose σ ∈ L∞+ (Ω) and f ∈ H̃−1/2(Ω). Given that Ω
is now a circular domain, we naturally express the problem in polar coordinates (r, θ).

We choose σ to be the piece-wise constant, radially symmetric function,

σ(r, θ) =
{

1 for 0 ≤ r ≤ r0

1 + C for r0 < r ≤ 1
(2.55)

and the Neumann data f is chosen to be

f(θ) = cos(kθ), k ∈ N. (2.56)

Note that
∫
∂Ω f ds = 0 for all k ∈ N as required for a strong solution to exist.

Due to the symmetry in this problem, we can assume that the solution can be written
u(r, θ) = R(r)Θ(θ) by standard separation of variables. Since the outward normal vector
is parallel to the radial tangent vector, the Neumann condition is simply

σR′(r)Θ(θ) = cos(kθ). (2.57)

This already implies that R′(1)Θ(θ) = cos(kθ). This constant can be fixed by simply
setting R′(1) = 1, which means Θ(θ) = cos(kθ).

Then we have also fixed the integral,∫
∂Ω
u ds = R(1)

∫ π

−π
Θ(θ)ds = 0, (2.58)

ensuring u ∈ H̃1(Ω) provided R(r) is differentiable. Since σ is constant on each of the two
subdomains r ≤ r0 and r0 < r, the first part of (2.1) becomes the Laplace-equation on the
whole domain. That is

∆u = 0 in Ω, (2.59)

18 The forward problem

where the Laplacian in polar coordinates is given by

∆ = ∂2

∂r2
1
r2 + 1

r

∂

∂r
+ ∂2

∂θ2 . (2.60)

Hence, (2.59) becomes
R′′Θ + 1

r
R′Θ + 1

r2 Θ′′ = 0 in Ω. (2.61)

Now since Θ′′ = −k2 cos(kθ) = −k2Θ, we have(
R′′ + 1

r
R′ − k2

r2

)
Θ = 0 in Ω. (2.62)

We then split R into two functions, each defined on a subdomain of Ω.

R(r, θ) =
{
R1(r) for 0 ≤ r ≤ r0

R2(r) for r0 < r ≤ 1.
(2.63)

Requiring continuity of R, we have R1(r0) = R2(r). Requiring σ∇u to be continuous, we
also have R′1(r0) = (1 + C)R′2(r0). Together with the condition R′(1) = 1 from before, we
have in total

R′′1 + 1
r
R′1 −

k2

r2 = 0 for 0 ≤ r ≤ r0 (2.64)

R′′2 + 1
r
R′2 −

k2

r2 = 0 for r0 < r ≤ 1. (2.65)

R1(r0) = R2(r0) (2.66)

(1 + C)R′1(r0) = R′2(r0) (2.67)

R′2(1) = 1 (2.68)

R(r) <∞ in Ω. (2.69)

The 2nd order ODE’s in (2.64) and (2.65) are Euler equations with the known solutions,

R1(r) = ark + cr−k (2.70)

R2(r) = crk + dr−k, a, b, c, d ∈ R. (2.71)

From the boundedness of R1 we require b = 0. The other three boundary conditions give

a = c+ r−2k
0 d (2.72)

(1 + C)a = c− r−2k
0 d (2.73)

k(c− d) = 1. (2.74)

2.2 An analytical solution 19

These are linear equations in a, c, d, and the solution is
a

b

c

d

 = K


2
0

C + 2
−Cr2k

0

 , K = 1
k(Cr2k

0 + C + 2)
. (2.75)

The forward solution then becomes

u(r, θ) =
{

2Krk cos(kθ) for 0 ≤ r ≤ r0

K
[
(C + 2)rk − Cr2k

0 r−k
]

cos(kθ) for r0 < r ≤ 1.
(2.76)

In Fig. 2.1, the conductivity is plotted for C = 10, r0 = 1
2 (left) along with the solution

u(r, θ) for k = 1 (right). Note, that in this case, f(θ) = cos(θ), which corresponds to

(a) σ(r, θ) with C = 10 (b) The solution u(r, θ) with C = 10, k = 1.

Figure 2.1: (a) The piece-wise constant conductivity σ (b) and the solution u(r, θ)

f(x) = x in cartesian coordinates. While σ is discontinuous at r = r0, the solution u
is continuous in all of the domain. However, since σ∇u is assured to be continuous, we
cannot expect ∇u itself to be continuous — again due to the discontinuity in σ.

2.2.1 Power density data

In this section, we will compute the interior power density data H(σ) = σ|∇u|p, p > 0
used for the hybrid inverse problem, Problem 1. In the current analysis of the forward

20 The forward problem

problem, it would be interesting to see how H(σ) behaves given the discontinuity around
r = r0. Specifically, we would like H to be well-defined as a mapping into L2(Ω). In order
to examine whether this is the case, we recall that

u(r, θ) =
{
u1(r, θ) = ark cos(kθ) for 0 ≤ r ≤ r0

u2(r, θ) =
(
crk + dr−k

)
cos(kθ) for r0 < r ≤ 1.

(2.77)

where the constants a, c, d ∈ R. We then compute the gradients in polar coordinates,

∇u1 = akrk−1
[
cos(kθ)
sin(kθ)

]
, ∇u2 = krk−1

[
(c− d) cos(kθ)
−(c+ d) sin(kθ)

]
with the polar tangent vector basis êr = (1, 0)T , êθ = (0, 1)T . The euclidean norm of the
gradients then becomes,

|∇u1| = akrk−1 |∇u2| =
k

r

[
c2r2k + d2r−2k + 2cd

(
1− 2 cos2(kθ)

)]1/2
Hence, the power density becomes

H(σ) =


H1(σ1) = σ1|∇u1|p = apkprp(k−1) for 0 ≤ r ≤ r0

H2(σ2) = σ2|∇u2|p

= (1 + C)
(
k
r

)p[
c2r2k + d2r−2k + 2cd

(
1− 2 cos2(kθ)

)]p/2 for r0 < r ≤ 1.

In order to evaluate whether H(σ) ∈ L2(Ω) we must consider the two integrals,

I1 =
∫

Ωi

|H1(σ1)|2 dx, I2 =
∫

Ωo

|H2(σ2)|2 dx

where Ωi and Ωo denote the inner and outer part of Ω respectively. The first integral is
rather straight-forward and simply gives

I1 = 2πa2pk2p
∫ r0

0
r2p(k−1)r dr = π(ak)2pr

2p(k−1)+2
0

p(k − 1) + 1 <∞ ∀ p > 0. (2.78)

Note that all the constants in front of the integral are strictly larger than zero, where we
assume k ∈ N+. The case k = 0 would simply give H1(σ1) = 0 in Ωi. The second integral
becomes a little more complicated, but we can quite easily find a upper bound. First we
find that

|H2(σ2)|2 ≤ (1 + C)2
(
k

r

)2p (
c2r2k + d2r−2k + 2cd

)p (2.79)

Since 0 < r0 < 1 and k, p > 0, we also get

|H2(σ2)|2 ≤ (1 + C)2
(
k

r0

)2p (
c2 + d2r−2k

0 + 2cd
)p
, (2.80)

2.2 An analytical solution 21

which is just a constant upper bound for |H2(σ2)|. So in fact H2(σ2) ∈ L∞(Ωo). Conse-
quently, we have

I2 ≤ 2π(1 + C)2 k
2p

r2p
0

(
c2 + d2r−2k

0 + 2cd
)p ∫ 1

r0

r dr (2.81)

= π(1− r2
0)(1 + C)2 k

2p

r2p
0

(
c2 + d2r−2k

0 + 2cd
)p
<∞ ∀ p > 0. (2.82)

In total,
‖H(σ)‖L2(Ω) = I1 + I2 <∞ ∀ p > 0, (2.83)

which holds for all possible values of the parameters k, r0, C, a, c and d. So it turns out
that the power density mapping H behaves nicely in the sense that it is well-defined as
a mapping into L2(Ω) at least for this choice of the conductivity and Neumann data. Of
course, it cannot necessarily be generalized to any piece-wise conductivity and any smooth
Neumann data function f on the boundary.

22 The forward problem

Chapter 3

Methods for solving inverse
problems

This chapter focuses on the strategies used in this thesis for solving hybrid EIT inverse
problems given interior data of certain types. Since these problems involve an approximate
inversion of a non-linear map between Banach spaces (or other function spaces), this typ-
ically requires numerical schemes in practice. This project uses a linearisation approach,
where the map of the conductivity σ into the resulting electric potential u, is linearised.
Since linearisations require the knowledge of the derivative of a map, the Fréchet derivative
is introduced as the appropriate concept. With the Fréchet derivative of the forward map
it is possible to construct a Newton-type method, where each iteration involves solving a
linearised problem, in order to approximately solve the conductivity reconstruction prob-
lem. Specifically, we will derive methods to solve the Hybrid EIT inverse problem given
power density interior data.

3.1 Continuity and differentiability of the forward map

The first step in deriving a method for solving the inverse problem is to analyse the forward
map, which maps the conductivity σ ∈ L∞+ (Ω) into the solution u ∈ H̃1(Ω) of the forward
problem. This gives the following definition.

24 Methods for solving inverse problems

Definition 2 (Forward map of EIT). Let Ω be a bounded domain in R2 or R3, with a
smooth boundary ∂Ω. Given σ ∈ L∞+ (Ω), f ∈ H̃−1/2(Ω), we define the forward map of the
EIT problem as U : L∞+ (Ω) → H̃1(Ω) given by U(σ) = u where u ∈ H̃1(Ω) is the unique
solution of the problem

∇ · (σ∇u) = 0 in Ω

σ
∂u

∂n
= f on ∂Ω,

(3.1)

with the corresponding weak formulation,∫
Ω
σ∇u · ∇v dx =

∫
∂Ω
fv dS ∀ v ∈ H̃1(Ω). (3.2)

A fundamental property for the application of iterative methods is the continuity of the
forward map. As U(σ) is only implicitly given as the solution of the variational formulation
in (3.2), this is our starting point for obtaining a continuity and a differentiability result
for U .

We begin by considering an arbitrary σ ∈ L∞+ (Ω) and a perturbation δσ ∈ L∞(Ω) such
that σ + δσ ∈ L∞+ (Ω), which is of course only guaranteed if δσ is ”sufficiently” small. To
be more precise, it would be sufficient that

‖δσ‖L∞(Ω) < c1 (3.3)

where c1 > 0 is again the lower bound for σ meaning σ(x) > c1 for a.e. x ∈ Ω. The
continuity result is similar to the ones in [13, 20] and can be stated as follows.

Theorem 2 (Continuity). Let σ, σ + δσ ∈ L∞+ (Ω) and δσ ∈ L∞(Ω). Then there exists a
C > 0 independent of δσ s.t.

‖U(σ + δσ)− U(σ)‖H̃1(Ω) ≤ C‖δσ‖L∞(Ω). (3.4)

Proof. By the definition of U and the fact that the right-hand sides of (3.2) are identical
for the two input conductivities,∫

Ω
σ∇U(σ) · ∇v dx =

∫
Ω

(σ + δσ)∇U(σ + δσ) · ∇v dx ∀ v ∈ H̃1(Ω), (3.5)

implying that∫
Ω
σ∇ (U(σ)− U(σ + δσ)) · ∇v dx =

∫
Ω
δσ∇U(σ + δσ) · ∇v dx ∀ v ∈ H̃1(Ω). (3.6)

3.1 Continuity and differentiability of the forward map 25

Now, both U(σ) and U(σ+δσ) belong to H̃1(Ω), whereby also U(σ+δσ)−U(σ) ∈ H̃1(Ω).
Hence, (3.6) holds with U(σ)− U(σ + δσ) as a test function, which means∣∣∣∣∣

∫
Ω
σ
∣∣∣∇(U(σ)− U(σ + δσ)

)∣∣∣2 ∣∣∣∣∣ =
∣∣∣∣∣
∫

Ω
δσ
[
∇U(σ + δσ) · ∇

(
U(σ)− U(σ + δσ)

)]∣∣∣∣∣
≤ ‖δσ‖L∞(Ω)

∥∥∇U(σ + δσ) · ∇[U(σ)− U(σ + δσ)]
∥∥
L1(Ω). (3.7)

By the Cauchy-Schwarz inequality we have∥∥∇U(σ + δσ) · ∇[U(σ)− U(σ + δσ)]
∥∥
L1(Ω) ≤ ‖∇[U(σ)− U(σ + δσ)]‖L2(Ω)

= ‖U(σ + δσ)‖H̃1(Ω)‖U(σ)− U(σ + δσ)‖H̃1(Ω)

and hence,∣∣∣∣∣
∫

Ω
σ
∣∣∣∇(U(σ)− U(σ + δσ)

)∣∣∣2 ∣∣∣∣∣ ≤ ‖δσ‖L∞(Ω)‖U(σ + δσ)‖H̃1(Ω)‖U(σ)− U(σ + δσ)‖H̃1(Ω) .

By the lower bound σ(x) > c1 a.e. in Ω, we obtain

c1‖U(σ)− U(σ + δσ)‖2
H̃1(Ω) ≤

∣∣∣∣∣
∫

Ω
σ
∣∣∣∇(U(σ)− U(σ + δσ)

)∣∣∣2 dx∣∣∣∣∣. (3.8)

Hence, we arrive at

‖U(σ)− U(σ + δσ)‖2
H̃1(Ω) ≤ c

−1
1 ‖δσ‖L∞(Ω)‖U(σ + δσ)‖H̃1(Ω)‖U(σ)− U(σ + δσ)‖H̃1(Ω),

implying that

‖U(σ)− U(σ + δσ)‖H̃1(Ω) ≤ c
−1
1 ‖δσ‖L∞(Ω)‖U(σ + δσ)‖H̃1(Ω). (3.9)

Using v = U(σ + δσ) as a test function in (3.2) along with the Cauchy-Schwarz inequality
and the Trace Theorem [11] we get the estimate,

‖U(σ + δσ)‖H̃1(Ω) ≤ c
−1
1 ‖f‖L2(∂Ω), (3.10)

which means

‖U(σ)− U(σ + δσ)‖H̃1(Ω) ≤ c
−2
1 ‖δσ‖L∞(Ω)‖f‖L2(∂Ω) = C‖δσ‖L∞(Ω) (3.11)

concluding the proof.

26 Methods for solving inverse problems

3.1.1 Fréchet differentiability of the forward map

Having obtained a continuity result, we will now proceed to prove differentiability of the
forward map in a similar sense to Fréchet differentiability in Banach spaces.

For a function on the real numbers, f : R→ R we have the notion of the derivative of f at
a point x0 as the limit,

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

, (3.12)

whenever the limit exists. The concept of Fréchet derivatives generalizes this to maps
between Banach spaces [23].

Definition 3 (Fréchet derivative). Let V and W be Banach spaces and U ⊂ V be an open
subset of V . A map, f : U →W is then said to be Fréchet differentiable at u ∈ U if there
exists a bounded linear operator A : V →W such that

lim
η→0

‖f(u+ η)− f(u)−Aη‖W
‖η‖V

(3.13)

and A is called the Fréchet derivative of f at u ∈ U .

In the following, we want to show that the forward map U : L∞(Ω) → H̃1(Ω) is Fréchet
differentiable. The proof is similar to the one given in [19] but is generalized to the Neumann
condition, which eventually changes the classical formulation. Also, here the approach
takes the variational form as a starting point rather than the classical formulation. Since
we know the forward map only implicitly by (3.2), we can only turn to this equation to
find a first order derivative of U . With σ and δσ as in Th. 2, we have from (3.5) that∫

Ω
σ∇
[
U(σ + δσ)− U(σ)

]
· ∇v dx = −

∫
Ω
δσ∇U(σ + δσ) · ∇v dx (3.14)

for all v ∈ H̃1(Ω). By the continuity of U stated in (3.4), we have

∇U(σ + δσ) = ∇U(σ) +
[
∇U(σ + δσ)− U(σ)

]
= ∇U(σ) +O

(
‖δσ‖L∞(Ω)

)
. (3.15)

This gives us the first order estimate

δσ∇U(σ + δσ) = δσ∇U(σ) +O
(
‖δσ‖2L∞(Ω)

)
≈ δσ∇U(σ). (3.16)

Hence we arrive at∫
Ω
σ∇
[
U(σ + δσ)− U(σ)

]
· ∇v dx = −

∫
Ω
δσ∇U(σ) · ∇v dx. (3.17)

Writing u = U(σ) and δu = U(σ + δσ)− U(σ) we get∫
Ω
σ∇δu · ∇v dx = −

∫
Ω
δσ∇u · ∇v dx ∀ v ∈ H̃1(Ω). (3.18)

3.1 Continuity and differentiability of the forward map 27

So to first order, the increment δu can be approximated by solving the variational form
(3.18). As we shall see, such a first order approximation is exactly what defines the Fréchet
derivative in the weak sense. However, we will also need a strong version of (3.18). As
we have already discovered deriving the variational form of the forward problem (3.2),
the operator ∇ · (σ∇[·]) can be understood by its variational form for any test function
v ∈ H̃1(Ω). More precisely,∫

Ω

[
∇ · (δσ∇u)

]
v dx =

∫
∂Ω
δσ
∂u

∂n
v −

∫
Ω
δσ∇u · ∇v dx and (3.19)∫

Ω

[
∇ · (σ∇δu)

]
v dx =

∫
∂Ω
σ
∂δu

∂n
v −

∫
Ω
σ∇δu · ∇v dx. (3.20)

From the Neumann condition of the (strong) forward problem (3.1), we see that

(σ + δσ)∂U(σ + δσ)
∂n

= σ
∂U(σ)
∂n

= f. (3.21)

This means
σ
∂δu

∂n
= −δσ ∂U(σ + δσ)

∂n
≈ −δσ ∂u

∂n
(3.22)

by the same first order estimation as before. Using (3.18) and the fact that the boundary
terms in (3.19) and (3.20) cancel each other out due to (3.22), we have∫

Ω

[
∇ · (δσ∇u)

]
v dx =

∫
Ω

[
∇ · (σ∇δu)

]
v dx ∀ v ∈ H̃1(Ω). (3.23)

Hence, we have a corresponding formulation boundary value problem for δu with a Neu-
mann condition,

∇ · (σ∇δu) = −∇ · (δσ∇u) in Ω,

σ
∂δu

∂n
= −δσ ∂u

∂n
on ∂Ω, (3.24)

which has the variational form∫
Ω
∇δu · ∇v dx = −

∫
Ω
δσ∇u · ∇v dx ∀ v ∈ H̃1(Ω), (3.25)

given σ ∈ L∞+ (Ω) and the forward solution at σ denoted u = U(σ).

Now we are ready to show that U has a Fréchet derivative given by the solution of (3.25).

Lemma 1 (Fréchet differentiability of U). Let U be the forward map from Def. 2. Then
U has a Fréchet derivative in the sense that there exists a bounded linear operator dU :
L∞+ (Ω)→ H̃1(Ω) such that for δσ ∈ L∞(Ω),

lim
δσ→0

‖U(σ + δσ)− U(σ)− dU(δσ)‖H̃1(Ω)

‖δσ‖L∞(Ω)
. (3.26)

28 Methods for solving inverse problems

Given a reference potential u ∈ H̃1(Ω) and a reference conductivity σ ∈ L∞+ (Ω), the Fréchet
derivative in the direction δσ ∈ L∞(Ω) is then is given by the solution δu ∈ H̃1(Ω) to the
boundary value problem,

∇ · (σ∇δu) = −∇ · (δσ∇u) in Ω,

σ
∂δu

∂n
= −δσ ∂u

∂n
on ∂Ω, (3.27)

with the corresponding variational form,∫
Ω
∇δu · ∇v dx = −

∫
Ω
δσ∇u · ∇v dx ∀ v ∈ H̃1(Ω). (3.28)

Proof. The linearity of dU comes directly from (3.27) and (3.28) both being linear in δσ.

Boundedness can be obtained by considering the variational form (3.28),∫
Ω
σ∇δu · ∇v dx = −

∫
Ω
δσ∇ũ · ∇v dx ∀ v ∈ H̃1(Ω). (3.29)

Using v = δu as a test function, we get

‖∇δu‖2L2(Ω) ≤ c
−1
1

∣∣∣∣ ∫
Ω
σ|∇δu|2 dx

∣∣∣∣ = c−1
1

∣∣∣∣ ∫
Ω
δσ∇ũ · ∇δu dx

∣∣∣∣ (3.30)

≤ c−1
1 ‖δσ‖L∞(Ω)‖∇ũ · ∇δu‖L1(Ω), (3.31)

again with c1 as the lower bound of σ. Applying the Cauchy-Schwarz inequality, we find

‖∇δu‖2L2(Ω) ≤ c
−1
1 ‖δσ‖L∞(Ω)‖∇u‖L2(Ω)‖∇δu‖L2(Ω), (3.32)

whereby

‖δu‖H̃1(Ω) = ‖∇δu‖L2(Ω) ≤ c−1
1 ‖δσ‖L∞(Ω)‖∇u‖L2(Ω) = C‖δσ‖L∞(Ω), (3.33)

which proves that dU is bounded as an operator from L∞(Ω) to H̃1(Ω).

To prove the limit in (3.26) we define u1 = U(σ), u2 = U(σ + δσ). Then we get from the
definition of U that

∇ · [(σ + δσ)∇(u2 − u1 − δu)] = −∇ · (δσ∇δu), (3.34)

which has the weak formulation,∫
Ω

(σ + δσ)∇(u2 − u1 − δu) · ∇v dx = −
∫

Ω
δσ∇δu · ∇v dx, ∀ v ∈ H̃1(Ω). (3.35)

3.1 Continuity and differentiability of the forward map 29

Since u2 − u1 − δu ∈ H̃1(Ω) we can choose this as a test-function. Then we get∫
Ω

(σ + δσ)
∣∣∇(u2 − u1 − δu)

∣∣2 dx = −
∫

Ω
δσ∇δu · ∇(u2 − u1 − δu) dx. (3.36)

Then since σ + δσ ∈ L∞+ (Ω), and hence is bounded from below by the constant c1 > 0,

c1‖u2 − u1 − δu‖2H̃1(Ω) ≤ ‖∇δu · ∇(u2 − u1 − δu)‖L1(Ω)‖δσ‖L∞(Ω) (3.37)

≤ ‖δu‖H̃1(Ω)‖(u2 − u1 − δu)‖H̃1(Ω)‖δσ‖L∞(Ω). (3.38)

By (3.33), we have that

‖δu‖H̃1(Ω) ≤ C1‖δσ‖L∞(Ω), for some C1 > 0. (3.39)

Hence,
‖u2 − u1 − δu‖H̃1(Ω) ≤ c

−1
1 C1‖δσ‖2L∞(Ω) = C‖δσ‖2L∞(Ω) (3.40)

and evaluating the quotient in (3.26),

‖u2 − u1 − δu‖H̃1(Ω)

‖δσ‖L∞(Ω)
≤ C‖δσ‖L∞(Ω) → 0 for δσ → 0. (3.41)

3.1.2 Fréchet derivative of the data map

The map that we actually want to invert in terms of the hybrid inverse problem (Problem
1) is the one taking the target conductivity into the power density data. That is the map
H : L∞+ (Ω)→ L2(Ω), given by

H(σ) = σ|∇u|p , p > 0, (3.42)

where u is given by the forward map of σ, u = U(σ). In order to derive an iterative method
based on a linearisation of H we are interested in deriving the Fréchet derivative of H.
First we write out H(σ) as the product,

H(σ) = h1(σ)h2(σ), h1(σ) = σ, h2(σ) = |∇U(σ)|p, (3.43)

For Fréchet derivatives, the rules of differentiation (the product rule, the sum rule and the
chain rule) from the usual differential calculus hold [4] (Sec. 5.3). This means we can write

dH(δσ) =
(
h1
∂h2

∂σ
+ h2

∂h1

∂σ

)
δσ (3.44)

30 Methods for solving inverse problems

where dH(δσ) is the Fréchet derivative of H in the direction δσ. For the derivative of h2,

∂h2

∂σ
= ∂

∂σ

(
|∇u|2

) p
2 = p

2

(
|∇u|2

) p
2−1 ∂|∇u|2

∂σ
= p

|∇u|2−p
∂|∇u|2

∂σ
. (3.45)

To compute the last term ∂|∇u|2
∂σ we write for d = 3 (equivalent for d = 2),

∂|∇u|2

∂σ
= ∂

∂σ
(∇u · ∇u) = ∂

∂σ

(
u2
x + u2

y + u2
z

)
(3.46)

= 2
(
ux
∂ux
∂σ

+ uy
∂uy
∂σ

+ uz
∂uz
∂σ

)
= 2
(
∇u · ∇dU

)
, (3.47)

where dU is the operator representing the Fréchet derivative of the forward map from
Lemma 1. Collecting this we obtain,

∂h2

∂σ
δσ = p

∇u · ∇dU
|∇u|2−p

δσ = p
∇u · ∇δu
|∇u|2−p

, (3.48)

where δu is the directional (Fréchet) derivative δu = dU(δσ).

Finally we get from H(σ) = h1(σ)h2(σ), that

dH(δσ) =
(
∂h1

∂σ
h2 + ∂h2

∂σ
h1

)
δσ = |∇u|pδσ + pσ

∇u · ∇δu
|∇u|2−p

(3.49)

= |∇u|p
(
δσ + pσ

∇u · ∇δu
|∇u|2

)
. (3.50)

So we might assume that dH represents a sort of derivative wrt. σ. Now we will prove that
this is in fact the case, in the context of Fréchet derivatives, under certain assumptions.

Theorem 3 (Fréchet differentiability of H). Let σ ∈ L∞+ (Ω) and u ∈ H̃1(Ω) denote
the solution of the forward problem (2) with σ ∈ L∞+ (Ω). Moreover assume that |∇u| is
bounded from below by a positive constant and that |∇u|p ∈ L2(Ω) for p > 0. Then the
map, H : L∞+ (Ω)→ L2(Ω), mapping σ into the data,

H : σ 7→ σ|∇u|p, p > 0, (3.51)

has a Fréchet derivative in the sense that there exists a bounded linear operator dH:
L∞(Ω)→ L2(Ω) such that

lim
δσ→0

‖H(σ + δσ)−H(σ)− dH(δσ)‖L2(Ω)

‖δσ‖L∞(Ω)
. (3.52)

provided σ + δσ ∈ L∞+ (Ω). The Fréchet derivative in the direction δσ is then denoted δh
and is given by

δh := dH(δσ) = |∇u|p
(
δσ + pσ

∇u · ∇δu
|∇u|2

)
. (3.53)

3.2 Methods of the Newton-type 31

Proof. The linearity of dH can be seen directly from (3.53), since δu is linear in δh from
Lemma 1. For boundedness, we note that

‖δh‖L2(Ω) ≤
∥∥δσ|∇u|p∥∥

L2(Ω) +
∥∥∥∥pσ∇u · ∇δu|∇u|2

∥∥∥∥
L2(Ω)

(3.54)

≤ ‖δσ‖L∞(Ω)‖|∇u|p‖L2(Ω) + |p| ‖σ‖L∞(Ω)
∥∥|∇u|−1|∇δu|

∥∥
L2(Ω), (3.55)

using that |∇u|p ∈ L2(Ω) by assumption. Now since we also assumed that |∇u|−1 ∈ L∞(Ω)
and that dU is bounded from Lemma 1,

‖∇δu‖L2(Ω) = ‖δu‖H̃1 ≤ C1‖δσ‖L∞ , C1 > 0, (3.56)

we get that

‖δh‖L2(Ω) ≤ ‖δσ‖L∞(Ω)‖|∇u|p‖L2(Ω) + |p| ‖σ‖L∞(Ω)
∥∥|∇u|−1∥∥

L∞(Ω)‖δu‖H̃1 (3.57)

≤
(
‖|∇u|p‖L2(Ω) + C1|p| ‖σ‖L∞(Ω)

∥∥|∇u|−1∥∥
L∞(Ω)

)
‖δσ‖L∞(Ω) (3.58)

= C‖δσ‖L∞(Ω) , C > 0. (3.59)

We are left to show that (3.52) is satisfied. By the derivation in (3.43)-(3.50), we obtain
an expansion to first order of H(σ),

H(σ + δσ)−H(σ) = |∇u|p
(
δσ + pσ

∇u · ∇δu
|∇u|2

)
+O(|δσ|2). (3.60)

This means that

‖H(σ + δσ)−H(σ)− dH(δσ)‖L2(Ω) ≤ C‖δσ‖2L2(Ω), (3.61)

implying that (3.52) is satisfied.

3.2 Methods of the Newton-type

Now we turn our attention to the methods for solving the power density inverse problem,
Prob. 1. In this section we will derive a Newton-type algorithm, using the linearisation
of H (the forward data map) from before. This section is largely based on the work by
Hoffmann[18].

3.2.1 Newton’s method in Banach spaces

Suppose f : X → Y is mapping between Banach spaces X and Y . Then Newton’s method
for solving the equation, f(x) = y for x ∈ X, may be stated as the iterative process of

32 Methods for solving inverse problems

solving at each step k ∈ N,

xk+1 = xk − dF−1(y − f(xk)), (3.62)

where dF denotes the Fréchet derivative of f . With the increment y−f(xk) being approx-
imated by the linear term, we could also write

y − f(x) ≈ dF (xk+1 − xk) = dF (δx), (3.63)

using our previous notation.

Under certain conditions, among them that the starting point x0 lies within a certain
neighbourhood of the solution, this iterative process converges to a solution of f(x) = y.
That is, f(xk)→ y in Y for k →∞. See [6], Theorem on p. 829.

However, the method is restrictive in the sense that it requires dF to be invertible at all
the points in the chosen neighbourhood of the solution. Moreover, it requires X and Y
to be Banach spaces which, as we say in the previous section, is not the case for L∞+ (Ω).
Nonetheless, the general idea is still applicable for our purpose.

3.2.2 A Newton-type method given Power Density data

Let us consider Problem 1, where we want to reconstruct σ ∈ L∞+ (Ω) from the power
density data H(σ).

In this case we have a non-linear map H : L∞+ (Ω)→ L2(Ω), with the Fréchet-like derivative
given in Th. 3. However, we cannot expect dH to be invertible, so the method stated in
(3.62) is not necessarily well-defined. However, we can use the equivalent of (3.63), being

H(σ)−H(σk) = dH|σ(δσk). (3.64)

The Fréchet derivative of H thus gives a linear approximation to the difference between a
the current approximation at step k, H(σk), and the true data H(σ). Hence, we want to
solve (3.64) for δσ to perform a Newton-type step, equivalent to computing the increment
xk+1 − xk in (3.62). Implicitly, dH depends on the Fréchet derivative of U as we saw in
Section 3.1.2. So in order to find the direction δσ we can solve (3.64) and the PDE defining
dU , (3.27), simultaneously.

Now we can define a Newton-type step for the inverse problem: Let σk ∈ L∞+ (Ω) and
uk ∈ H̃1(Ω) be given reference functions, we want to solve the system for δσk ∈ L∞(Ω),

3.2 Methods of the Newton-type 33

δuk ∈ H̃1(Ω) at a step k ∈ N,

∇ · (σk∇δuk) = −∇ · (δσk∇uk) in Ω (3.65)

σk
∂(δuk)
∂n

= −δσk
∂uk
∂n

on ∂Ω, (3.66)

|∇uk|p
(
δσk + pσk

∇uk · ∇δuk
|∇uk|2

)
= H(σ)−H(σk) in Ω. (3.67)

In order to solve (3.65)-(3.67) in a Finite Element-setting, we need to convert the system
to its weak formulation. Multiplying each equation by test functions, v1 ∈ H̃1(Ω), v2 ∈
L∞(Ω), and using the additivity of weak formulations, we obtain the following variational
problem.

Variational Problem 1 (A Newton-type step).

Given σk ∈ L∞+ (Ω), uk ∈ H̃1(Ω), p > 0, solve for δσk ∈ L∞(Ω), δuk ∈ H̃1(Ω),∫
Ω

(δσk∇uk + σk∇δuk) · ∇v1 dx+
∫

Ω
|∇uk|p

(
δσk + pσk

∇uk · ∇δuk
|∇uk|2

)
v2 dx

+α
∫

Ω
δukv1 + δσkv2 dx =

∫
Ω

(
H(σ)−H(σk)

)
v2 dx (3.68)

∀ v1 ∈ H̃1(Ω), v2 ∈ L∞(Ω),

where 0 < α � 0 is a regularization parameter, which in this case enforces a penalty on
the L2–norm of the trial functions, using test cases v1 = δuk, v2 = δσk.

Choosing an initial σ0 ∈ L∞+ (Ω), one can obtain an initial u0 as the forward map U(σ0).
From here the k’th step in (3.68) can be performed successively until ‖σk+1−σk‖L∞(Ω) < T
for some predefined error tolerance 0 < T � 1. This results in the Newton-type method
given in Algorithm 1.

34 Methods for solving inverse problems

Algorithm 1 Newton-type algorithm for one measurement M = 1
Require: The domain Ω, the Neumann data f ∈ H̃−1/2(∂Ω) and the interior data H(σ).

Define σ0 ∈ L∞+ (Ω), a tolerance T > 0 and maximum iteration number K.

Set k = 0.

while k < K and ε < T do
Solve for uk the forward problem,∫

Ω
σk∇uk · ∇v dx =

∫
∂Ω
fv dS ∀ v ∈ H̃1(Ω).

Solve for δuk ∈ H̃1(Ω), δσk ∈ L∞(Ω) the variational problem,∫
Ω

(δσk∇uk + σk∇δuk) · ∇v1 dx+
∫

Ω
|∇uk|p

(
δσk + pσk

∇uk · ∇δuk
|∇uk|2

)
v2 dx

+α
∫

Ω
δukv1 + δσkv2 dx =

∫
Ω

(
H(σ)−H(σk)

)
v2 dx ∀ v1 ∈ H̃1(Ω), v2 ∈ L∞(Ω).

Compute H(σk).

Set
σk+1 = σk + δσk and compute ε = ‖δσk‖L2(Ω).

Set k = k + 1.

end while

return σk

3.2.3 A Newton-type method with multiple measurements

The Newton-type method of Algorithm 1 uses only one measurement given by H(σ). Now
we want to derive a method corresponding to Algorithm 1 which can handle multiple
measurements of the interior data.

By a measurement we shall mean the pair of the m’th Neumann data and the power
density data, {fm, Hm(σ)}, where Hm(σ) is the data resulting from the forward map
(3.2) with f = fm. The superscript notation is to not confuse with the iteration index
k, used as a subscript for other variables. Suppose we have M such measurements. For

3.2 Methods of the Newton-type 35

the given fm ∈ H̃−1/2(∂Ω) we get a forward solution umk ∈ H̃1(Ω) at the step k. Given
the forward solution and a reference conductivity σk ∈ L∞+ (Ω), the want to solve for
(δσk, δumk) ∈ L∞(Ω)× H̃1(Ω) for the m’th measurement,

∇ · (σk∇δumk) = −∇ · (δσk∇umk) in Ω (3.69)

σk
∂(δumk)
∂n

= −δσk
∂(umk)
∂n

on ∂Ω, (3.70)

|∇umk |p
(
δσk + pσk

∇uk · ∇δumk
|∇umk |2

)
= Hm(σ)−Hm(σk) in Ω. (3.71)

Now for each of the M measurements we want to solve (3.69)-(3.71) which gives two
equations with a Neumann boundary condition on δumk . Hence in all we get 2M equations.
However for each measurement we need to solve for the same δσk, which means we have
M + 1 variables, not 2M . This can be written as a 2M × (M + 1) matrix equation, which
is only a square system for M = 1, as was the case in Algorithm 1. In the case M > 1 we
will have an overdetermined system, which we can collect into{

Ax = b in Ω

Dx = 0 on ∂Ω.
(3.72)

A =



∇ · ([·]∇umk) ∇ · (σk[·]) · · · 0
...

...
∇ · ([·]∇uMk) 0 · · · ∇ · (σk[·])
|∇u1

k|p pσk
∇u1

k·∇[·]
|∇u1

k
|2−p · · · 0

...
...

|∇uMk |p 0 · · · pσk
∇uM

k ·∇[·]
|∇uM

k
|2−p


, b =



0
...
0

H1(σ)−H1(σk)
...

HM (σ)−HM (σk)


(3.73)

D =


0 0 · · · 0

[·] ∂u∂n σ ∂[·]
∂n · · · 0

...
... . . . 0

[·] ∂u∂n 0 0 σ ∂[·]
∂n

 , x =


δσk
δu1
k
...

δuMk

 , (3.74)

where x ∈ L∞(Ω) × [H̃1(Ω)]M , denoting by V the space L∞(Ω) × [H̃1(Ω)]M . A is then
a 2M × (M + 1) matrix, x is a (M + 1) × 1 vector and b is a 2M × 1 vector. Since the
system is overdetermined, we would not expect it to be satisfied exactly. Rather we will
look for a minimizer,

x∗ = arg min
x∈V

‖Ax− b‖L2(Ω) (3.75)

36 Methods for solving inverse problems

This minimization problem can be solved by a Least-Squares Finite Element Method (see [7]
for a reference). Since A is a second order operator which would require a H2–conforming
Finite Element Method. This is generally not something one would prefer in the numerical
setting. Hence, we transform the problem into a first order system,{

Âx̂ = b in Ω

Gx = x̂ in Ω
(3.76)

where Â and G are defined by

A = ÂG, G = diag(1,∇, ...∇), (3.77)

where G essentially is just the operator that transforms the variables δumk to their gradients
δwmk := ∇δumk , such that Â is a first order operator. As a technicality, one also needs the
to solve the forward problem as a first order problem. This gives the variational form of
the forward problem for umk ∈ H̃1(Ω), wkm ∈ H1

div(Ω),∫
Ω
σkw

m
k · ∇v dx+

∫
Ω
wmk · φdx =

∫
∂Ω
fv dS +

∫
Ω
∇umk · φdx (3.78)

∀ (v, φ) ∈ H̃1(Ω)×Hdiv(Ω).

Here, we have defined the vector space,

Hdiv(Ω) :=
{
w ∈ [L2(Ω)]d s.t. ∇ · w ∈ L2(Ω)

}
(3.79)

Finally, we arrive at the least squares variational form of (3.76).

Variational Problem 2 (Least-squares). In correspondance to the first-order version
of the system, we define the space,

V := H1(Ω)× [H̃1(Ω)]M ×H1(Ω)× [Hdiv(Ω)]M . (3.80)

Again σk ∈ L∞+ (Ω), (∇u1
k,∇u2

k, . . . ,∇uMk) ∈ [H1
div]M , p > 0 are given. We then want to

find the norm–minimizing solution,

arg min
(x,x̂)∈V

‖Âx̂− b‖L2(Ω) + ‖Gx− x̂‖L2(Ω). (3.81)

This results in the least-squares variational form [LSFEM [7], Th. 3.1] for (x, x̂) ∈ V∫
Ω

(Âx̂)T Âv̂ + (Gx− x̂)T (Gv− v̂) + αxTv dx =
∫

Ω
bT Âv̂ dx ∀ (v, v̂) ∈ V, (3.82)

where the term α
∫

Ω xTv dx imposes an L2–penalty on x due to the test case v = x =
[δσk, δu1

k, . . . , δu
M
k]T .

3.2 Methods of the Newton-type 37

Algorithm 2 Least-squares Newton-type algorithm with M measurements
Require: The domain Ω, the Neumann data

(f1, . . . , fM) ∈ [H̃−1/2(∂Ω)]M , and the interior data H1(σ), . . . ,HM (σ).

Define σ0 ∈ L∞+ (Ω), a tolerance T > 0 and maximum iteration number K.

Set k = 0.

while k < K and ε < T do
for m = 1 : M do
Solve for wmk = ∇umk ∈ Hdiv(Ω) the forward problem as a first order PDE,∫

Ω
σkw

m
k · ∇v dx+

∫
Ω
wmk · φdx =

∫
∂Ω
fm v dS +

∫
Ω
∇umk · φdx

∀ (v, φ) ∈ H̃1(Ω)×Hdiv(Ω).

Compute Hm(σk).
end for

Solve for (x, x̂) ∈ V , the variational problem,∫
Ω

(Âx̂)T Âv̂ + (Gx− x̂)T (Gv− v̂) + αxTv dx =
∫

Ω
bT Âv̂ dx ∀ (v, v̂) ∈ V,

Set
σk+1 = σk + δσk and compute ε = ‖δσk‖L2(Ω).

Set k = k + 1.

end while

return σk

Solving (3.82) we get the desired increment δσk for the k’th step in a least-squares type
Newton method, given in Algorithm 2.

The presented algorithms are both implemented using Python with the Finite-Element
library software FEniCS [2]. The implementation details are described in the following
chapter.

38 Methods for solving inverse problems

3.2.4 Ellipticity of the linearised problem

In this section we will briefly discuss ellipticity of the PDE system (3.72) defining the
Newton step for with an arbitrary number of measurements M . This is more of a heuristic
approach — the underlying theory of ellipticity for this type of problems is beyond the
scope of this thesis. Hence, we will not go into detail with the proofs but rather state the
results which will be useful for explaining the numerical results presented in Chapter 5.

Elliptic PDE’s have the property that provided smooth coefficients and boundary condi-
tions, the solution is also smooth [11], Th. 6.3. This is important, since this otherwise we
would not expect a Continuous Galerkin–type Finite Element Method to be applicable. An
important concept related to ellipticity is the principal symbol of the differential operator
entering the PDE. The principal symbol is a scalar representation of a differential operator,
which essentially replaces each partial derivative of order α by a variable ξα.

The principal symbol of the the Fréchet derivative dH as given in (3.53) for each measure-
ment m is given for (x, ξ) ∈ Ω× Rn by

Pm = |∇um|p
(

1− p (∇um · ξ)2

|∇um|2|ξ|2

)
(3.83)

That this operator actually represents the scalar equations of the PDE system in (3.65)-
(3.67) requires a derivation given in [19], Sec. 4.4.1.

The main result we want to refer here, is that the corresponding scalar operator to the
operator A in (3.73) is elliptic if and only if Pm = 0 for some (x, ξ) ∈ Ω×Rd. For a single
measurement, assuming ∇um 6= 0, loss of ellipticity occurs for pairs (x, ξ) ∈ Ω×Rd where

(∇um · ξ)2

|∇um|2|ξ|2
= 1
p

(3.84)

This is the same as
cos2(〈∇um, ξ〉) = 1

p
(3.85)

where 〈·, ·〉 denotes the angle between the vectors. For one measurement, this equation has
no solutions for p < 1 and the scalar operator is elliptic in that case (Th. 4.13 in [19]). For
all other p ≥ 1, at each x there is an angle for which (3.85) is fulfilled and hence the scalar
operator is not elliptic for p ≥ 1. For multiple measurements M , loss of ellipticity occurs
when (3.84) is fulfilled at (x, ξ) ∈ Ω× Rd for all m ∈ {1, 2, . . . ,M}.

The last thing we will note regards the propagation of singularities. Theorem 4.17 in [19]
states that a solution δσ to the scalar version of (3.72) has singularities propagating in
the perpendicular direction to the direction of loss of ellipticity. That is, for example with
p = 1 if ∇u is in the x-direction, then loss of ellipticity occurs when ξ is parallel to ∇u by
(3.85). This means that singularities will then propagate in the y-direction.

3.2 Methods of the Newton-type 39

In the case of two measurements M = 2 for p = 2, (3.85) is fulfilled for both gradient fields
∇u1 and ∇u2 provided they both make an angle of 45 degrees with some direction ξ at
a point x ∈ Ω. This implies that whenever the gradient fields become perpendicular to
each other there will be two directions, corresponding to the two solutions of (3.85), where
ellipticity is lost. These characteristic directions are observed in the numerical results in
Chap. 5.

40 Methods for solving inverse problems

Chapter 4

Implementation

This chapter describes the numerical implementation of the methods from Chapter 3. So
far, we have only considered continuous formulations of the power density inverse problem
(1). Even though Algorithms 1 and 2 are designed to be implemented in a numerical
setting, they consist of a sequence of weak formulations of boundary value imposed PDEs,
which are all continuous problems. In practice, it is often necessary to solve these types of
problems numerically, which the Finite Element Method (FEM) is suitable for.

In this chapter, we will describe the type of Finite Element Method which is used and the
implementation of the method using the software package FEniCS [2]. Then we will present
examples of the solutions obtained with the method and verify them with convergence tests
on problems with known solutions.

4.1 The Finite Element setup

Rather than going through the whole Finite Element Method we will highlight some of the
important properties and the setup used for our specific purpose. For a reference on the
Finite Element Method see for example [14].

The first step in the FEM is to identify the weak formulation of problem we want to solve.
In this thesis we have essentially four variational problems. To provied and overview, we
will briefly summarize them here. With σ ∈ L∞+ (Ω) and f ∈ H̃−1/2(∂Ω) they are given as
follows.

42 Implementation

The forward problem. Solve for uk ∈ H̃1(Ω)∫
Ω
σ∇uk · ∇v dx =

∫
∂Ω
fv dx ∀v ∈ H̃1(Ω) (4.1)

The first-order forward problem. For each m, solve for (umk , wmk) in H̃1(Ω)×H1
div(Ω),∫

Ω
σkw

m
k · ∇v dx+

∫
Ω
wmk · φdx =

∫
∂Ω
fv dS +

∫
Ω
∇umk · φdx (4.2)

∀ (v, φ) ∈ H̃1(Ω)×Hdiv(Ω).

Let the variables be given as in Sec. 3.2. Then we have the Newton steps for the two
presented algorithms:

The Newton step for Algorithm 1. Solve for (δσ, δu) ∈ L∞(Ω)× H̃1(Ω),∫
Ω

(δσk∇uk + σk∇δuk) · ∇v1 dx+
∫

Ω
|∇uk|p

(
δσk + pσk

∇uk · ∇δuk
|∇uk|2

)
v2 dx

+α
∫

Ω
δukv1 + δσkv2 dx =

(
H(σ)−H(σk)

)
v2 (4.3)

∀ v1 ∈ H̃1(Ω), v2 ∈ L∞(Ω),

The Newton step for Algorithm 2. Solve for (x, x̂) ∈ V ,∫
Ω

(Âx̂)T Âv̂ + (Gx− x̂)T (Gv− v̂) + αxTv dx =
∫

Ω
bT Âv̂ dx ∀ (v, v̂) ∈ V, (4.4)

V = H1(Ω)× [H̃1(Ω)]M ×H1(Ω)× [Hdiv(Ω)]M ,

with Â,G defined as in Section 3.2.3.

Note that the forward problem (4.1) is the one used in Algorithm 1 whereas the first-
order version (4.2) is employed in Algorithm 2 in order to avoid second order terms of
umk in the Newton-step (4.4). To implement these variational forms in a FEM–setting, we
must choose a discretization of the domain Ω (a mesh) and function spaces that can be
represented on the discretization.

In all the numerical experiments in this thesis we choose Ω to be the unit disk in R2 as
in Chapter 2 for the analytical example. The most common choice of representation of a
domain in R2 in the FEM, is one consisting of triangular elements. Such a triangulation

4.1 The Finite Element setup 43

(a) A mesh with the num-
ber of nodes: 223 and the
number of elements: 384.

(b) A Continuous Galerkin basis function on the
unit disk.

Figure 4.1: (a) A coarse mesh on the unit disk (b) and a Continuous Galerkin basis function.

or mesh is shown in Fig. 4.1a. We then need to define a suitable function space on the
mesh where we want to look for solutions to the discretized problem.

For the forward problems (4.1) and (4.2), we need to conform the spaces H̃1(Ω) and
Hdiv(Ω). The former is simply H1(Ω) with an integral condition

∫
∂Ω Tu dS = 0, which

naturally calls for piece-wise linear function space. The latter is a vector space where each
entry is weakly differentiable. Hence, each entry can be conformed by a piece-wise linear
function.

For the Newton step for Algorithm 1 (4.3), we solve for functions in the spaces L∞(Ω)
and H̃1(Ω). Generally, we would need to allow discontinuous function to approximate
functions in L∞(Ω). However, in these numerical experiments we primarily investigate the
reconstruction C2-conductivities for which piece-wise linear functions are appropriate.

For the Newton step for Algorithm 2 (4.4), we encounter H1(Ω), H̃1(Ω) and H1
div(Ω),

which can all be approximated by piece-wise linears or piece-wise linears in each entry
in the case of the vector function space H1

div(Ω). The transformation into a first-order
system (see Section 3.2.3) ensures that we avoid the Sobolev space H2 which is known to
be impractical to implement — see Section 2.2.2 in [7].

To summarize, the chosen finite dimensional subspace for the discretization is the space of

44 Implementation

piecewise linear functions on the mesh. These are defined by their value at each node and
a linear interpolation between the three nodes on each triangular element. This is known
as the space of Continuous Galerkin (CG1) functions. A basis for this space on a mesh
with N nodes is the collection of continuous, piecewise linear functions {vi}Ni=1 having the
property,

vi(xj) = δij . (4.5)
with xi denoting the coordinate of the i’th node and δij being the Kronecker delta. Since
these are all H1-functions on Ω, they constitute a basis for a N -dimensional subspace of
H1(Ω),

VN := span {vi}Ni=1 ⊂ H1(Ω). (4.6)

A CG1 basis function can be seen in Fig. 4.1b. The interpolation u(x) of a continuous
function onto the mesh, is then given as the convenient expansion,

u(x) =
N∑
i=1

u(xi)vi(xi). (4.7)

The three stated problems are all linear in the trial functions, and can generally be ex-
pressed as variational forms for each trial function

a(u, v) = l(v) ∀ v ∈ V. (4.8)

where V is the corresponding trial function space, a is a bilinear form and l is a bounded
linear functional. In the finite–dimensional setting we set up Ntotal equations by solving
instead for ui ∈ Vh,

a(ui, vi) = l(vi) ∀ vi ∈ Vh, (4.9)

where Vh represents the total finite-dimensional space. In Table 4.1, Vh is given for each
variational problem. Now, each of the variational problems of the form (4.9) can be as-
sembled to a system of Ntotal linear equations,

Ax = b, (4.10)

which can be solved by an efficient matrix solver embedded in FEM software packages,
such as FEniCS.

Note that the FEM spaces are only dependent on M for Algorithm 2, since Algorithm 1
is only designed for M = 1. However, it is quite clear that Algorithm 2 is more expensive.
However, for the implementation we only use M = 1 and M = 2 for which Algorithm
2 is implementable on a workstation computer. The advantage of Algorithm 2 is that it
transforms the 2nd order least squares problem in to a first order problem, which makes it
more it more suitable for a CG1–setting. Note also, that the matrices Â and G are quite
sparse, making Algorithm 2 more efficient than one would suppose from the dimensionality
of Vh.

4.2 Validation of the forward problem implementation 45

The forward problem (Alg. 1): Vh = VN

The forward problem, 1st order (Alg. 2): Vh = VN × [VN]2 (solved M times)

Newton step (Algorithm 1): Vh = VN × VN

Newton step (Algorithm 2): Vh = VN × (VN)M × VN × (VN)2M .

Table 4.1: Finite-dimensional subspaces used for the two algorithms. VN is the N -
dimensional Continuous Galerkin (CG1) space on the mesh.

4.2 Validation of the forward problem implementation

For the implementation of the Finite Element Method we employ the software package
FEniCS [2], which is a very intuitive Finite Element software package for both Python and
C++. We will present a few pieces of examples of the Python code. The majority of the
code for the implementation of both the forward and inverse problems presented can be
seen in Appendix B.

In this section, we will validate the implementation of the forward problem 4.1 by comparing
with the analytical solution from Section 2.2. Hence we consider on the unit disk in polar
coordinates the forward problem with the piece-wise constant conductivity,

σ(r, θ) =
{

1 for 0 ≤ r ≤ r0

1 + C for r0 < r ≤ 1
(4.11)

and the Neumann data f ∈ H̃−1/2(∂Ω) given by

f(θ) = cos(kθ), k ∈ N on ∂Ω. (4.12)

4.2.1 Code examples from Python

As discussed in Sec. 2.1, in order to enforce the solution to be in H̃1(Ω) we need to add
two terms to the bilinear form. The resulting augmented variational problem is then to
solve for (u, c) ∈ H1(Ω)× R,∫

Ω
σ∇u · ∇v dx+ d

∫
∂Ω
u dS + c

∫
∂Ω
v dS =

∫
∂Ω
f v dS ∀ (v, d) ∈ H1(Ω)× R. (4.13)

Using the main Python-library dolfin from the FEniCS package one can implement the
problem. A mesh such as the one in Fig. 4.1a is defined. The space H1(Ω) × R is then

46 Implementation

conformed by VN × R. This function space is defined in the code as

V = Functionspace (mesh ,"CG",1)
R = FunctionSpace (mesh , "R", 0)
W = V*R

The bilinear form is very intutively implemented as

a = sigma*inner(grad(u), grad(v))* dx

Additional terms enforcing the integral condition int(u) ds = 0
constraints = (v*c + u*d)*ds

Add the terms to the variational form
a = a + constraints

And the linear functional is equivalently defined.

L = f*v*ds

Then the dolfin–function solve() is used to compute the solution of the variational prob-
lem.

z = Function (W)
solve(a == L, z)

In Fig. 4.2 one can see the conductivity (left) with C = 10, r0 = 1
2 and the forward FEM

solution, with a mesh size of N = 1809. This is the FEM solution corresponding to the
analytical solution plotted in Fig. 2.1b, Sec. 2.2. By a visual comparison it seems that
the FEM solution is an approximation of the true one. To verify the method explicitly,
we need to evaluate the norm of the difference of the true and approximate solutions in a
suitable function space as a function of the mesh-size N or alternatively as a function of
the node-to-node distance h. Since this distance varies a bit on the mesh-types used for
the unit disk, we prefer to use N as a measure of the mesh resolution. Note, that h is of
length dimension and hence of order N−1/2 since the area of each element is of order N−1.
That is,

Ai = O(h2) = O

(
1
N

)
and hence h = O

(
1√
N

)
(4.14)

4.2 Validation of the forward problem implementation 47

Figure 4.2: Left: The piece-wise constant conductivity σ. Right: The solution u with
f(θ) = cos(θ). Both projected to piecewise linears on a mesh with 1809
vertices.

Choosing the L2-norm of the relative error,

ε =
‖utrue − uFEM‖L2(Ω)

‖utrue‖L2(Ω)
, (4.15)

approximated in VN , the order of convergence can be defined as a largest k > 0 satisfying

‖ε‖L2(Ω) ≤ C
(
N−1/2

)k
(4.16)

for some C > 0 and for all N in a large enough range. This is equivalent to

‖ε‖L2(Ω) ≤ Ch〈h〉k, (4.17)

with 〈h〉 denoting the average node-to-node distance. The L2–error is chosen throughout
since it is a natural error in a numerical setting, being equivalent to the least-squared
error for vectors in RN . In Fig. 4.3 the relative error ε can be seen as a function of N
plotted against a slope of order O(N−1/2) = O(h). The plot indicates that with respect
to the L2–norm, the convergence rate is roughly of order N−1/2 which is equivalent to
O(h). In the sense of (4.16) this indicates first order convergence. Moreover, it validates
the implementation of the forward problem in the sense that it does converge to the true
solution as h→ 0.

48 Implementation

Figure 4.3: The relative L2–error as a function of N .

4.3 Implementation details of the inverse problem

In this section we will go through some details in the setup of the implementation of
Algorithms 1 and 2. These details are mostly related to the choices of test examples for
numerical experiments and the choices of parameters in the two algorithms.

4.3.1 Meshes and conductivity phantoms

As mentioned earlier, we will continue with the unit disk D ⊂ R2 as the domain for our
numerical investigations. We will introduce two different mesh sizes to be used applied in
the algorithms:

1. A fine mesh with N = 19899 vertices for simulating interior data H(σ).

2. A coarser mesh withN = 7211 vertices for computing reconstructions with Algorithm
1 and 2.

We should note that it is important to simulate the interior data on another mesh than the
one used for reconstruction. In practice, the interior data would be accessible on another
mesh than the one used for FEM triangulation and should then be interpolated onto the
FEM mesh. Using the same mesh for both data simulation and reconstruction falls into
the category of an ”inverse crime”.

4.3 Implementation details of the inverse problem 49

For simulating the data H(σ), the forward problem is solved, given a chosen phantom or
true conductivity σ. This can be done one a relatively large mesh, since it only requires
solving the forward problem once. The coarser mesh is then used for the inverse problem
algorithms.

The target conductivity phantoms are based on a piece-wise constant conductivity similar
to the one used in the previous examples. However, applying CG1–based methods, we
cannot be sure to obtain convergence of the algorithms without some added regularity.
Hence, our starting point will be a smoothed version of the piece-wise constant conductivity
σsmooth ∈ C2(Ω) by smoothing in the region close to the discontinuity with a fifth order
polynomial.

Most of the implementations will be tested on this conductivity phantom. In the last part
of Chapter 5, we will however test the methods for the actual piece-wise constant phantom
σPC ∈ L∞+ (Ω). The two conductivity phantoms are plotted in Fig. 4.4 as 2D–plots with
a cool-to-warm color scale representing min-to-max function values in the range. These
phantoms are inspired by those used in [18] and [25] with three elliptic inclusions.

(a) The conductivity phantom with fifth or-
der polynomial smoothing.

(b) The piece-wise constant conductivity
phantom.

Figure 4.4: The conductivity phantoms used for testing.

4.3.2 Parameter choices

In the two implemented algorithms there are a range of parameters to be set. Two param-
eters have already been discussed — the mesh size and the chosen target conductivities.

50 Implementation

For each algorithm we need to define an initial conductivity, σ0 which should be as general
as possible. For the numerical tests, we choose the constant conductivity

σ0(x) = 1 in Ω. (4.18)

Note that the background value of the phantoms in Fig. 4.4 is also 1. Hence, the initial
conductivity already has the correct value outside the inclusions and on the boundary.
In the implementation of Algorithm 1 and 2, this means that one can add a Dirichlet
condition on δσ, ensuring that perturbations only take place in the interior of Ω. This
technical step is done to add stability to the methods. The same assumption is used in
[18] and [13]. It should be noted that this did not change the qualitative behaviour of the
methods, although it slightly improved the error rates.

In the testing of the methods we additionally have the following parameters:

1. The power p > 0 entering the data H(σ) = σ|∇u|p which will take values in the set
p ∈ {0.5, 0.75, 1.0, 2.0}.

2. The regularization parameter α entering both algorithms, enforcing an L2–penalty
on the solution. The interval for testing is α ∈ [0, 0.1].

3. The number of interior data measurements M ∈ {1, 2}.

4. The frequency n entering the Neumann data f1 = cos(nθ), f2 = cos(nθ) + sin(nθ)
with the interval n ∈ {1, 2, . . . , 6}.

5. The maximal iteration number K ∈ {1, 20}.

The numerical experiments can be divided into five smaller parts:

Part 1: Reconstructions of the smooth conductivity

For a fixed α = 10−4 and measurements f1 = cos(θ) = x, f2 = cos(θ) + sin(θ) = x + y,
we produce reconstructions of σsmooth with M = 1 and p ∈ {0.5, 0.75, 1.0} for Algorithm 1
and with M = 2, p ∈ {0.75, 1.0, 2.0} for Algorithm 2 . We use the iteration number k as a
variable and examine the behaviour as function of k with p as a parameter.

Part 2: Regularization effects

For a fixed p = 2.0 and M = 2 with f1 = cos(θ) = x, and f2 = cos(θ) + sin(θ) = x+ y, we
produce reconstructions of σsmooth with Algorithm 2 for a varying regularization α ∈ [0, 0.1]
to investigate the effect of the regularization.

4.3 Implementation details of the inverse problem 51

Part 3: Neumann data dependence

For a fixed p = 2.0, α = 10−4 and M = 2 we set f1 = cos(nθ), and f2 = cos(nθ) + sin(nθ),
and vary n in the range n ∈ {1, 2, . . . , 6}. We then produce reconstructions of σsmooth
with Algorithm 2 for chosen values of n to evaluate how the quality of the reconstructions
depends on the n.

Part 4: Propagation of singularities

For a fixed α = 10−4 and one measurement M = 1 with f1 = cos(θ) = x, we reconstruct
σsmooth for p = 1.1, p = 1.3, p = 1.5, p = 2.0 with Algorithm 2 using only one iteration.
Since ∇u is in the same direction as the Neumann data after the first iteration (the x-
direction in this case), one can predict the angle of propagation of singularities as the
orthogonal direction to the loss of ellipticity direction, as discussed in Sec. 3.2.4. The
propagation direction is to be confirmed by the reconstructions.

Moreover, when using two measurements, the ellipticity is lost at each point where ∇u1
and ∇u2 are orthogonal, as we saw in Sec. 3.2.4. Using orthogonal Neumann boundary
conditions f1 = cos(θ) = x, and f2 = sin(θ) = y will lead to orthogonal gradients after one
iteration with Algorithm 2. One should consequently see singularities propagating in the
angle of 45◦ to the x-axis.

Part 5: Reconstruction of the piece-wise constant conductivity

As a final test of our methods, we will attempt to reconstruct the piece-wise constant
conductivity shown in Fig. 4.4b in the case of power density interior data (p = 2). This
is done for α ∈ {0, 0.1, 1} and M = 2 using Algorithm 2. The case α = 1 is only an
illustrative one, to indicate how a far too large regularization parameter affects the results.
The Neumann data is again chosen to be f1 = cos(θ) = x, and f2 = cos(θ)+sin(θ) = x+y.

52 Implementation

Chapter 5

Numerical results

In this chapter, we will present the most important results from the numerical experiments
done in the project. All the results are obtained by implementing Algorithm 1 and 2 with
the setup described in Chapter 4.

5.1 Reconstruction of a smooth target conductivity

We first present the reconstructions of the smooth conductivity phantom in Fig. 5.1

Algorithm 1

In Fig. 5.2 the reconstructions obtained with Algorithm 1 after 10 Newton iterations are
plotted for p = 0.5, p = 0.75 and p = 1.0. Here, the regularization parameter α = 10−4

and one measurement is used with f1 = x as the Neumann condition on the boundary.
Each reconstruction is terminated after K = 10 iterations where the criterion

‖σk+1 − σk‖L2(Ω) = ‖δσ‖L2(Ω) ≤ 10−6 (5.1)

is satisfied. Note, that the color scale is from smallest value (blue) to largest value (red)
and hence the colors do not directly represent the same values as in the color scale for the
phantom in 5.1. Rather, the color scale indicates whether the reconstruction adequately
captures the features of the true phantom.

We observe that for p = 0.5 and p = 0.75 the reconstruction are as good as indistinguishable
from the phantom. For p = 1.0 we observe that the reconstruction is slightly blurred along

54 Numerical results

Figure 5.1: The conductivity phantom with fifth order polynomial smoothing.

the y-direction. For p = 1.0 the loss of ellipticity from (3.84) is in the x-direction, at
least after one iteration, where ∇u is parallel to the x-axis. This is due to the Neumann
condition f1 = x for x ∈ ∂Ω and the initial conductivity σ0 being constant. As we saw in
Section 3.2.4, singularities propagate in the orthogonal direction to the loss of ellipticity
direction, which in this case is the y-direction.

In Fig. 5.3 we examine the convergence of Algorithm 1 for the same setting as before,
with different parameter values of p. Here we plot the relative L2–error of the difference

(a) p = 0.5 (b) p = 0.75 (c) p = 1.0

Figure 5.2: Reconstructions with Algorithm 1 where M = 1, α = 10−4.

5.1 Reconstruction of a smooth target conductivity 55

0 2 4 6 8 10
k

10-1

100

ε

p=0.5

p=0.75

p=1

p=2

Figure 5.3: The L2-error as a function of the iteration number k for Algorithm 1 with
M = 1 measurements

between the true conductivity and the reconstructed one,

ε =
‖σk − σtrue‖L2(Ω)

‖σtrue‖L2(Ω)
. (5.2)

Fig. 5.3 shows that Algorithm 1 converges to a stable solution for all three values of p.
Moreover, the of loss of ellipticity for p = 1.0 affects the errors, as the relative L2–error
converges to a larger value for p = 1.0. This is due to the error induced by the propagation
of singularities parallel to the y-axis. The smallest relative error is approximately 0.43 for
both p = 0.5 and p = 0.75. For p = 1 it is 0.72. One should note that the reconstruction
problem for p = 0.5 is not very challenging since the data H(σ) = σ|∇u|1/2 already
resembles the conductivity σ, due to the fact that the power p = 1

2 , damps relative changes
in |∇u|.

Algorithm 2

Having now obtained good reconstructions for p ≤ 1, we will turn to the case of two
measurements M = 2 to provide the needed stability to obtain reconstructions for p = 2
(power density case) where the PDE system (3.72) becomes non-elliptic. For p = 2 and
M = 2 loss of ellipticity occurs at points x ∈ Ω for which ∇u1 and ∇u2 are orthogonal.
The Neumann data is chosen to be f1 = cos(θ) = x and f2 = cos(θ) + sin(θ) = x + y.
Seeing that orthogonal Neumann-directions would lead to orthogonal gradients after the
first iteration (loss of ellipticity), while too little angular separation between the directions
of f1 and f2 would imply less added information, a separation of 45 degrees appears to
be a reasonable choice. In Fig. 5.4 we view the reconstructions obtained by Algorithm

56 Numerical results

(a) p = 0.75 (b) p = 1 (c) p = 2

Figure 5.4: Reconstructions with Algorithm 2 where M = 2, α = 10−4.

2 with two measurements. Again the method is stopped after K = 10 iterations. The
reconstructions are fairly close to the true phantom, but for p = 1 and p = 2.0 there are
some noisy regions. For p = 2 this noise will induce more errors in the next iterations and
eventually lead to semi-convergence: After some number k iterations, the error starts to
increase. For this reason, it is difficult to use a convergence criterion for p = 2 as the one
in (5.1).

In Fig. 5.5 we examine the behaviour of the errors for different p. We observe that
for p ≤ 1 the method converges to a stable solution. For p = 2.0 the error behaves quite
differently but comes quite close to the true solution after 9 and 10 iterations. It is however
only semi-convergent, as we will see in the next section. The smallest errors obtained are
approximately 0.04 for p ≤ 1 and 0.064 for p = 2.

0 2 4 6 8 10
k

10-1

100

ε

p=0.5

p=0.75

p=1

p=2

Figure 5.5: The L2–error as a function of the iteration number k for Algorithm 2 with
M = 2 measurements.

5.2 Regularization effects 57

5.2 Regularization effects

In this section we investigate solely the power density case p = 2 with Algorithm 2 and
specifically how the regularization affects the performance of the method.

The regularization parameter α enforces an L2–regularization on the norm of δσ and δu.
Having a too large regularization would lead to reconstructions that due not fit the data
well enough, since the solved problem in that case differs too much from the true one. A
too small regularization would presumably lead to amplification of errors resulting from
the Finite Element approximation.

In Fig. 5.6 the relative L2–error is plotted as a function of the iteration number, for
different values of α and p = 2.0 and two measurements M = 2. Firstly, we observe that
the method is only semi-convergent for all the chosen values of α > 0. For all α ≤ 10−3

the method obtains a minimal relative error after 9 iterations of εmin ≈ 0.072. With
α = 10−2 a minimum is obtained after 12 iterations with the value εmin ≈ 0.078. For
α = 10−1 the method is never really close to the solution and obtains a minimum after
1 iteration of εmin ≈ 0.18. For each α ≤ 10−3 the behaviour is almost identical — it is

0 5 10 15 20
k

10-1

100

ε

α=10−1

α=10−2

α=10−3

α=10−4

α=10−5

α=10−6

Figure 5.6: The L2–error as a function of the iteration number k with varying α using
Algorithm 2 with M = 2 and p = 2.

only just possible to separate the α = 10−3 curve from the last three, which take almost
identical values. This suggests that as long as the regularization is sufficiently small, one
will obtain the same results. Hence, one would assume that the optimal value is in fact
α = 0 implying that there is no actual need for regularization. The explanation for this
might be that the LSFEM variational form already regularizes the solution by using two

58 Numerical results

measurements and finding an L2–norm minimizing solution. As noted by Hoffmann [19],
using a regularization parameter α ∈ [10−12, 10−3] for this algorithm does not change the
qualitative properties of the results. This can be confirmed here in a more quantitative way
as Fig. 5.6 shows that there is negligible difference in the errors for α ≤ 10−3. Moreover,
the tests showed the same results for α = 0. This does however not rule out regularization
in general but merely indicates that L2–regularization is not suitable for this problem. One
should note that noise is not included and regularization could become important in that
case. Other types of regularization (e.g. Total Variation) could be suitable for the problem
even without added noise.

The indication of L2–regularization being unnecessary is consistent with the conlusions
of Capdeboscq [9] where a similar problem is solved with three measurements and the
computational results indicate that the problem is not severely ill-posed and that Tikhonov
regularization is not needed.

5.3 Effects of the choice of boundary conditions

We now investigate the effects of changing the frequency n entering the Neumann boundary
conditions for the forward problem with

f1(θ) = cos(nθ) (5.3)

f2(θ) = cos(nθ) + sin(nθ). (5.4)

In Fig. 5.7 we see the relative L2–error of the reconstruction as a function of the iteration
number k and with the frequency n as a parameter. Note that for n = 1, f1 = cos(θ)
corresponds to f1 = x and is the same boundary condition as used for the previous recon-
structions. We find again that the smallest error is obtained at k = 9 and that the method
is only semi-convergent. In the case of n > 1 the methods appear to be more stable but
further away from the true target conductivity.

It seems plausible that the higher oscillations in the Neumann data cause loss of information
around the inclusions, since the forward solution has to capture more information (in terms
of a more rapidly changing function as opposed to a constant one) from the boundary
condition. This eventually leads to reconstructions which cannot describe the behaviour
around the inclusion boundaries. In Fig. 5.8 we show the reconstructions for n = 2, n = 4
and n = 8 after 3 iterations which is sufficient to illustrate the effect. Clearly, the more
rapid oscillations with n = 4 and n = 8 induce some errors in the region close to the center
of disk. Especially for n = 8 the reconstruction appears quite pixelated, even though it is
computed on the same mesh as the two others. The errors could however also be a result
of the fact that a more rapidly oscillating function is not approximated well by piece-wise
linear functions, unless the mesh is very fine.

5.4 Propagation of singularities 59

0 5 10 15 20
k

10-1

100

ε

f1 =cos(θ)

f1 =cos(2θ)

f1 =cos(3θ)

f1 =cos(4θ)

f1 =cos(5θ)

f1 =cos(6θ)

Figure 5.7: The L2–error as a function of the iteration number k with f1 = cos(nθ),
f2 = cos(nθ) + sin(nθ) for different n using Algorithm 2.

(a) n = 2 (b) n = 4 (c) n = 8

Figure 5.8: Reconstructions with different values of n using Algorithm 2 where M = 2, α =
10−4.

5.4 Propagation of singularities

We here investigate the result from Hoffmann [19], discussed in Section 3.2.4, concerning
propagation of singularities. The result states that there are certain directions where
singularities propagate and these are the perpendicular directions to the loss of ellipticity
directions. In Sec. 3.2.4 we saw that the pairs of points and directions where ellipticity is
lost is given by (x, ξ) ∈ Ω× R2 where

cos2(〈∇u, ξ〉) = 1
p
. (5.5)

60 Numerical results

In the first Newton iteration the background conductivity is σ0 = 1 for all x ∈ D. With
one Neumann boundary condition f1 = x, the gradient of the forward solution is then
everywhere parallel to the x-axis. One can then calculate the angle of loss of ellipticity
specific values of p as cos2(p−1). The direction for propagation of singularities is the
perpendicular direction, which gives the directions

p = 1.1 : θ = 72.45◦ p = 1.3 : θ = 61.29◦ (5.6)

p = 1.5 : θ = 54.73◦ p = 2.0 : θ = 45.00◦ (5.7)

In Fig. 5.9 the reconstructions after one iteration are plotted using Algorithm 2 and f1 = x

(a) p = 1.1.
Predicted angle: 72.5◦.

(b) p = 1.3.
Predicted angle: 61.3◦.

(c) p = 1.5.
Predicted angle: 54.7◦.

(d) p = 2.0.
Predicted angle: 45◦.

Figure 5.9: Reconstructions with Algorithm 2 after 1 iteration with one measurement f = x =
cos(θ).

as the only Neumann condition. The predicted angles of the propagation of singularities
are shown with a black guideline. The characteristic directions are very visible in the
reconstructions and the direction is very close to the predicted one. Of course, this is only

5.5 Reconstruction of a piece-wise constant
conductivity 61

(a) f1 = x, f2 = x+ y (b) f1 = x, f2 = y.

Figure 5.10: Reconstructions with Algorithm 2 after 1 iteration with p = 2.

after one iteration where we know that ∇u will be in the x-direction. In the next iteration
it is already hard to say where the loss of ellipticity will occur.

Using two Neumann boundary conditions, there might still be points where ellipticity
is lost, i.e. where the condition (3.85) is fulfilled for both gradient fields ∇u1 and ∇u2
simultaneously. For the case p = 2, this can happen whenever the gradient fields are
orthogonal — i.e. there exists a direction ξ which makes an angle of 45◦ with both fields.
Choosing orthogonally oriented Neumann boundary conditions f1 = x and f2 = y ensures
that this will happen after one iteration. Conversely, if one chooses f1 = x and f2 =
x + y, the gradient fields will not be orthogonal at any point after one iteration. In
Fig. 5.10 we observe this phenomenon where the reconstruction for orthogonally oriented
boundary conditions in Fig. 5.10b has a distinct characteristic direction of 45◦ to the x-axis
corresponding to the propagation of singularities along this direction, while there is no such
direction in the case of f2 = x + y in Fig. 5.10a. Consequently, the choice of boundary
conditions separated by 45◦ degrees is preferable in terms of avoiding propagations of
singularities.

5.5 Reconstruction of a piece-wise constant
conductivity

Finally, we evaluate for p = 2 (the power density problem) using Algorithm 2, the re-
constructions of a piece-wise constant conductivity. The phantom is shown in Fig. 5.11.
Fig. 5.12 shows reconstructions for three different values of the L2–regularization parame-
ter α to also illustrate that even for piece-wise constant conductivities, the regularization
parameter should be as small as possible in accordance with what we found in Sec. 5.2.

62 Numerical results

Figure 5.11: The piece-wise constant conductivity phantom.

We observe that the reconstructions for α = 0 and α = 0.001 are roughly of the same quality
as the one obtained for the smooth conductivity from Fig. 5.4c (with α = 10−4). For α = 1,
the reconstruction becomes more erroneous, but is in fact closer to the true phantom than
one would expect from the level of regularization. Clearly, the reconstructions for the
piece-wise constant conductivity do not represent the discontinuities in σ perfectly. The
boundaries of the inclusions are somewhat blurred in each of the examples in Fig 5.12.
Qualitatively, the reconstructions are still very resemblant of the true piece-wise constant
conductivity of Fig. 5.11. The algorithm was again found semi-convergent and the errors
evolve similarly to those of Fig. 5.6 with a smallest relative L2–error of approximately
0.10.

(a) α = 0 (b) α = 0.001 (c) α = 1

Figure 5.12: Reconstructions of the piece-wise constant conductivity after 5 iterations, for p =
2, using Algorithm 2 where M = 2 and different values of α.

Chapter 6

Conclusion and perspectives

6.1 Conclusion

In this thesis, we have presented methods for solving a class of hybrid inverse problems with
interior data of the current density type (CDII) and the power density type, which arises
in for example acousto-electrical tomography (AET) and impedance acoustic tomography
(IAT).

The thesis presents two algorithms which are designed to solve inverse problem using a
single measurement (Algorithm 1) and several measurements (Algorithm 2) respectively.
The algorithms are based on a linearisation of the forward map and a coupled PDE for
determining both the Fréchet derivative δu and the increment direction δσ simultaneously.
These algorithms appear in [18] using a Dirichlet boundary condition on the electrical
potential, while in this thesis, they are applied to the Neumann boundary condition.

The algorithms are applied to reconstruct both C2–conductivities and piece-wise constant
conductivities on the unit disk, both with three elliptic inclusions to be reconstructed. In
[18] the same type of algorithms are applied to the C2–case while the experiments on piece-
wise constant conductivities are an addition presented in this thesis. Both algorithms are
implemented with the Finite Element software FEniCS [2].

Algorithm 1 successfully solves the problem with 1 measurement for p ≤ 1, with errors
being smaller than 0.07 in the relative L2–norm. Algorithm 2 solves the problem with
2 measurements for the significantly more challenging problem of p = 2 with a relative
L2–error of approximately 0.072. With the chosen mesh-size for the reconstructions (7211

64 Conclusion and perspectives

vertices) the methods are only semi-convergent in the numerical sense — they come close
to the target conductivity around 10 Newton-type iterations but after sufficiently many
iterations there eventually diverge, assumably due to the accumulation of errors in the
FEM–approximation in each step.

Additional investigations have been carried out solely for the power density case (p = 2),
where Algorithm 2 (as opposed to Algorithm 1) provides good reconstructions by employing
two boundary measurements.

For the reconstruction from the power density data, the effects of the L2–regularization
parameter α have been examined. The results clearly indicate that there is no effective
gain in adding L2–regularizing terms. Small values α < 10−4 all produce approximately
the same error at each iteration while larger values of α lead to increased errors. In Hoff-
mann [18] it is mentioned that choosing α ∈ [10−12, 10−3] does not change the qualitative
properties of the methods used. This is consistent with what is found here, with the ex-
ception that we conclude that there regularization term could be set to exactly zero or
any value < 10−12. Moreover, it is consistent with Capdeboscq [9], where it is noted that
Tikhonov-regularization is not necessary for a similar power density problem.

We also investigate the effects of Neumann boundary conditions of the type f1 = cos(nθ),
f2 = cos(nθ)+sin(nθ) for different values of n. The numerical results indicate that a larger
frequency n leads to poorer reconstructions with the mesh-size used for reconstructions
(7211 vertices).

A result concerning the propagation directions of singularities in non-elliptic cases, which
is presented in [19], is confirmed here for the Neumann case and slightly different conduc-
tivity phantoms. In the case of a single measurement, the reconstructions after 1 iteration
show quite clearly the characteristic directions which are consistent with the theoretically
predicted ones.

Additionally, in the case of two measurements with perpendicular gradients after 1 itera-
tion, a characteristic propagation direction of 45 degrees with the x-axis is found. This is
also consistent with the theory presented in [19], whereas the numerical evidence for this
is not presented there.

Finally, reconstructions are presented for the case of piece-wise constant conductivities with
two measurements and power density interior data. The reconstructions are still reasonable
even though piece-wise linear basis functions are strictly not suitable for the recovery of
a piece-wise constant target conductivity. The relative L2–error takes a minimal value of
approximately 0.10.

6.2 Perspectives 65

6.2 Perspectives

Here we present a discussion on how the methods used in this project could be modified
and which other approaches could be taken.

The first thing to note is that the model used here does not include noise in the data. This
might be done as in [9] where up to 10% Gaussian noise is added. Including noise would
allow us to numerically evaluate the stability of the power density problem, especially in
the case of two measurements.

This immediately leads us to the discussion of regularization, since it becomes more relevant
when more noise is added. It would be natural to evaluate whether L2–regularization would
be necessary in the case of noisy data. Another interesting subject would be to apply other
types of regularization. An approach could be to build a method applying Total Variation
regularization, which penalizes the L1-norm of ∇δσ and is generally preferable in order to
preserve discontinuous change in the conductivity [28].

A third consideration is that the methods presented here could be tested on other types
of conductivity phantoms. The examples used in the numerical experiments are quite
artificial in the sense that they do not appropriately represent the physical reality that
they attempt to model. The simulated conductivities could indeed be constructed such
that they represent the complexity of a the conductivity inside e.g. the human body — an
example would be the conductivity phantoms used by Bal et. al. [5] for the power density
problem. In addition to this, one should also note that 2D reconstructions are of course
not realistic representations of the intrinsically three-dimensional phenomenon electrical
current inside a physical object.

Finally, future investigations could deal with the implementation of similar algorithms
applied to inverse problems with different types of interior data. The original idea of
this project was to consider convoluted data types where only the convolution of the power
density data would be accessible. In the case of Gaussian convolutions this would essentially
be adding a deblurring problem to the one presented here. A method could then consist
of the solving a deblurring inverse problem to obtain the interior data H(σ) and hereafter
apply the reconstruction algorithms for the interior data. Alternatively one could perform
the linearisation directly on the convoluted data and apply a Newton-type algorithm via
this linearisation.

66 References

References

[1] Giovanni Alessandrini. Stable determination of conductivity by boundary measure-
ments. Applicable Analysis, 27(1-3):153–172, 1988.

[2] Martin S. Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet,
Anders Logg, Chris Richardson, Johannes Ring, Marie E. Rognes, and Garth N. Wells.
The fenics project version 1.5. Archive of Numerical Software, 3(100), 2015.

[3] Habib Ammari. An Introduction to Mathematics of Emerging Biomedical Imaging,
volume 62 of Mathématiques et Applications. Springer, Berlin, 2008.

[4] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional
Analysis Framework. Texts in Applied Mathematics. Springer New York, 2009.

[5] Guillaume Bal, Wolf Naetar, Otmar Scherzer, and John Schotland. The levenberg-
marquardt iteration for numerical inversion of the power density operator. Journal of
Inverse and Ill-Posed Problems, 21(2):265–280, 4 2013.

[6] Robert G. Bartle. Newton’s method in banach spaces. Proceedings of the American
Mathematical Society, 6(5):827–831, 1955.

[7] Pavel B. Bochev and Max D. Gunzburger. Least-Squares Finite Element Methods,
volume 166 of Applied Mathematical Sciences. Springer-Verlag New York, 175 Fifth
Avenue, New York, USA, 2009.

[8] Alberto P. Calderón. On an inverse boundary value problem. Seminar on Numerical
Analysis and its Applications to Continuum Physics, pages 65–73, 1980.

[9] Yves Capdeboscq, Jérôme Fehrenbach, Frédéric De Gournay, and Otared Kavian.
Imaging by modification: Numerical reconstruction of local conductivities from corre-
sponding power density measurements. SIAM Journal on Imaging Sciences, 2(4):1003–
1030, 2009.

[10] Margaret Cheney, David Isaacson, and Jonathan C. Newell. Electrical impedance
tomography. SIAM Review, 41(1):85–101, 1999.

68 REFERENCES

[11] Lawrence C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, Rhode Island, 1998.

[12] Sami Gabriel, R. W. Lau, and C. Gabriel. The dielectric properties of biological
tissues: Ii. measurements in the frequency range 10 hz to 20 ghz. Physics in Medicine
and Biology, 41(11):2251, 1996.

[13] Henrik Garde. Sparsity Regularization for Electrical Impedance Tomography. Master’s
thesis, Technical University of Denmark, Kgs. Lyngby, Denmark, 2013.

[14] Mark S. Gockenbach. Understanding and Implementing the Finite Element Method.
SIAM, 2006.

[15] David. J. Griffiths. Introduction to Electrodynamics. Prentice Hall, 1999.

[16] Jacques Hadamard. Sur les problèmes aux dérivés partielles et leur signification
physique. Princeton University Bulletin, 13:49–52, 1902.

[17] Sina Heinrich, Holger Schiffmann, Alexander Frerichs, Adelbert Klockgether-Radke,
and Inéz Frerichs. Body and head position effects on regional lung ventilation
in infants: an electrical impedance tomography study. Intensive Care Medicine,
32(9):1392–1398, 2006.

[18] Kristoffer Hoffmann and Kim Knudsen. Iterative reconstruction methods for hybrid
inverse problems in impedance tomography. Sensing and Imaging, 15, 2014.

[19] Kristoffer Hoffmann and Kim Knudsen. Reconstruction Methods for Inverse Problems
with Partial Data. PhD thesis, 2015.

[20] Bangti Jin and Peter Maass. An analysis of electrical impedance tomography with
applications to tikhonov regularization. ESAIM: Control, Optimisation and Calculus
of Variations, 18:1027–1048, 10 2012.

[21] Per W Karlsson and Vagn Lundsgaard Hansen. Matematisk Analyse 2: Funktioner af
flere reelle variable. Institut for Matematik, DTU, 1998.

[22] Peter D. Lax and Arthur N. Milgram. Parabolic equations. Annals of Mathematics
Studies, 33:167–190, 1954.

[23] Michael J. Cloud Leonid P. Lebedev, Iosif I. Vorovich. Functional Analysis in Me-
chanics. Springer Monographs in Mathematics. Springer New York, 2012.

[24] Norman G. Meyers. An lp-estimate for the gradient of solutions of second order
elliptic divergence equations. Annali della Scuola Normale Superiore di Pisa - Classe
di Scienze, 17(3):189–206, 1963.

[25] Jennifer L. Mueller and Samuli Siltanen. Linear and Nonlinear Inverse Problems with
Practical Applications. Computational Science and Engineering. SIAM, 2012.

REFERENCES 69

[26] John Sylvester and Gunther Uhlmann. A global uniqueness theorem for an inverse
boundary value problem. Annals of Mathematics, 125(1):153–169, 1987.

[27] Thomas Widlak and Otmar Scherzer. Hybrid tomography for conductivity imaging.
Inverse Problems, 28(8):084008, 2012.

[28] Zhou Zhou, Gustavo Sato dos Santos, Thomas Dowrick, James Avery, Zhaolin Sun,
Hui Xu, and David S Holder. Comparison of total variation algorithms for electrical
impedance tomography. Physiological Measurement, 36(6):1193, 2015.

———–

70 REFERENCES

Appendix A

Learning objectives and plan

A.1 Final version

A.1.1 Learning objectives

In addition to the overarching learning objectives, stated in the MSc in Mathematical
Modelling and Computation (DTU) Programme Specification (http://sdb.dtu.dk/2015/
20/378), a student completing this project will be able to:

• Understand the topics of functional analysis related to PDE’s: The weak formulation
of the forward problem, application of the Lax–Milgram Theorem for variational
problems.

• Use Python for scientific computing, specifically understand how to use the software
package, FEniCS, for solving the forward and inverse problems in Hybrid Tomography
using the Finite Element Method.

• Theoretically understand and implement iterative methods for inverse problems. This
includes: How to derive a continuity and differentiability (Fréchet derivative) of the
forward map and use it to construct a Newton-type algorithm.

• Apply FEniCS to Hybrid Tomography (inverse) problems and discuss the results in
relation to known literature.

http://sdb.dtu.dk/2015/20/378
http://sdb.dtu.dk/2015/20/378

72 Learning objectives and plan

A.1.2 Time plan

The main objectives to be completed (writing process excluded) are the following:

1. Literature reading: Functional analysis topics, research papers on hybrid tomography.

2. Theory and implementation (FEniCS) for the forward problem.

3. Computation of interior data H(σ, u) with FEniCS.

4. Theoretical understanding of the inverse problem.

5. Implementation of inverse algorithms given interior data.

Writing will be done in parallel with these tasks, according to the more specific time plan
shown in Fig A.1.

Christian Kragh, Lyngby, July 10, 2016.

Note on corrections to the original plan 73

A.2 Note on corrections to the original plan

The learning objectives have been modified such that they correspond to the actual subjects
that were dealt with in the project. Moreover, they contain more specific elements that
the original one which can be seen in Appendix A.3.

The time plan was modified, since the work with implementations of the power density
problem demanded more time than was expected, due to the fact that both the pro-
gramming language Python and the FEM software FEniCS were subjects that I was not
previously familiar with.

74 Learning objectives and plan

A.3 Original version

A.3.1 Learning objectives

In addition to the overarching learning objectives, stated in the MSc in Mathematical
Modelling and Computation (DTU) Programme Specification (http://sdb.dtu.dk/2015/
20/378), a student completing this project will be able to:

• Understand the topics of functional analysis related to PDE’s and the Finite Element
method: Sobolev spaces, Poincaré inequality, the Lax-Milgram Theorem, the weak
formulation.

• Use Python for scientific computing, specifically understand how to use the software
package, FEniCS for solving the forward and inverse problems in Hybrid Tomography.

• Theoretically understand and implement optimization methods for inverse problems.
This includes calculus of variations, functional (Fréchet) derivatives, Gauss-Newton
and similar methods, deconvolution algorithms.

• Apply FEniCS to Hybrid Tomography (inverse) problems and discuss the results in
relation to known literature.

http://sdb.dtu.dk/2015/20/378
http://sdb.dtu.dk/2015/20/378

Original version 75

A.3.2 Time plan

The main objectives to be completed (writing process excluded) are the following:

1. Literature reading: Functional analysis topics, research papers on tomography.

2. Theory and implementation (FEniCS) for the forward problem.

3. Computation of internal data H(σ, u) and convolutions of H with FEniCS.

4. Theoretical understanding of the inverse problem.

5. Implementation of inverse (optimization) algorithms given internal data.

6. Implementation of inverse (optimization) algorithms given convolutions ofH (internal
data).

Writing will be done in parallel with these tasks, according to the more specific time plan
shown in Fig A.1.

Christian Kragh, Lyngby, February 24, 2016.

76 Learning objectives and plan

M
o

n
th

Ja
n

W
e

e
k

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

G
e

n
e

ra
l
re

a
d

in
g

 a
n

d
 p

ro
je

ct
 d

e
fi

n
it

io
n

F
o

rw
a

rd
 m

a
p

 (
La

x
M

il
g

ra
m

,
F

re
ch

e
t

d
e

ri
v
a

ti
v
e

s)

C
o

n
v
o

lu
ti

o
n

s
(I

n
te

g
ra

l
o

p
e

ra
to

rs
)

In
v

e
rs

e
 p

ro
b

le
m

s
(O

p
tm

iz
a

ti
o

n
)

w
it

h
 i

n
t.

 d
a

ta

F
E

n
iC

S
 b

a
si

c
le

a
rn

in
g

S
im

u
la

te
 f

o
rw

a
rd

 p
ro

b
le

m

S
im

u
la

te
 i

n
te

rn
a

l
d

a
ta

C
o

m
p

u
te

 c
o

n
v

o
lu

ti
o

n
s

Im
p

le
m

e
n

t
in

v
e

rs
e

 a
lg

o
ri

th
m

s
fo

r
in

t.
 d

a
ta

 (
H

)

Im
p

le
m

e
n

t
in

v
e

rs
e

 a
lg

o
ri

th
m

s
fo

r
co

n
v

o
lu

ti
o

n
 d

a
ta

T
e

st
in

g
 o

f
a

ll
 m

e
th

o
d

s
(d

if
fe

re
n

t
se

tt
in

g
s)

Im
p

le
m

e
n

ta
ti

o
n

 o
f

p
o

ss
ib

ly
 o

th
e

r
a

lg
o

ri
th

m
s

F
o

rw
a

rd
 p

ro
b

le
m

 c
h

a
p

te
rs

 (
w

it
h

 p
lo

ts
 e

tc
.)

T
h

e
o

ry
 c

h
a

p
te

rs
 f

o
r

in
v

e
rs

e
 p

ro
b

le
m

In
v

e
rs

e
 p

ro
b

le
m

,
H

 d
a

ta
 -

 r
e

su
lt

s

In
v

e
rs

e
 p

ro
b

le
m

,
co

n
v

o
lu

te
d

 d
a

ta
 -

 r
e

su
lt

s

D
is

cu
ss

io
n

,
In

tr
o

d
u

ct
io

n
,

C
o

n
cl

u
si

o
n

,
fi

ll
in

g
 g

a
p

s

C
o

rr
e

ct
io

n
s

P
re

li
m

in
a

ri
e

s

F
o

rw
a

rd
 p

ro
b

le
m

In
v

e
rs

e
 p

ro
b

le
m

 (
th

e
o

ry
)

In
v

e
rs

e
 p

ro
b

le
m

 (
n

u
m

e
ri

ca
l)

F
e

e
d

b
a

ck
 o

n
 w

ri
ti

n
g

M
is

ce
ll

a
n

e
o

u
s

M
a

j
Ju

n
F

e
b

M
a

r
A

p
r

M
a

st
e

r
th

e
si

s
w

o
rk

 p
la

n
,

C
h

ri
st

ia
n

 K
ra

g
h

,
F

e
b

.
2

4
,

2
0

1
6

.

T
h

e
o

ry

Im
p

le
m

e
n

ta
ti

o
n

W
ri

ti
n

g

Greenland trip

Figure A.1: Time plan for the Master Thesis with start date January 25 2016, to be
submitted June 25 2016.

Appendix B

Python code

Algorithm1.py

1 from dolfin import *
2 import numpy as np
3 import mshr
4
5 def NewtonIter (mesh ,u0 ,sigma0 ,p,alpha ,Hdiff ,V,f,bc=True):
6
7 # Define function space
8 R = FunctionSpace (mesh , "R", 0) # constant space
9 W = MixedFunctionSpace ([V, V,R]) # product space

10
11 # Define trial and test functions
12 (deltas ,deltau ,c) = split(TrialFunction (W))
13 (phi ,psi ,d) = split(TestFunction (W))
14 dx1 = dx(mesh)
15 ds1 = ds(mesh)
16
17 def boundary (x, on_boundary):
18 return on_boundary
19
20 bc1= DirichletBC (W.sub(0), 0.0, boundary)
21
22
23 # q1 = (div(deltaz *grad(u0)) + div(sigma0 * deltaw))* \
24 # (div(v3* grad(u0))+ div(sigma0 *v4))* dx1
25 q1 = inner(deltas *grad(u0)+ sigma0 *grad(deltau),grad(psi))* dx1
26 # Power density |grad u |^p

78 Python code

27 u0sqr=inner(grad(u0),grad(u0))
28 pwd = u0sqr **(p/2)
29
30 if abs(p-2.0) < 0.001:
31 q2 = (deltas *u0sqr + p* sigma0 *\
32 inner(grad(u0),grad(deltau)))* phi*dx1
33 else:
34 q2 = (deltas *pwd + p* sigma0 *(pwd/u0sqr)*\
35 inner(grad(u0),grad(deltau)))* phi*dx1
36
37 reg = alpha *(deltas *phi + deltau *psi)* dx1
38
39 L = Hdiff*phi*dx1
40 LagrM = (c*psi + d* deltau)* ds1
41 q3 = -deltas *(f/ sigma0)* psi*ds1
42 # q3=0
43 a = q1+q2+reg+LagrM # remove q3 if delta_sigma = 0 on boundary
44
45 # Solve the system
46 w = Function (W)
47
48 if bc == True:
49 solve(a == L,w,bc1)
50 elif bc == False:
51 a = a+q3
52 solve(a == L,w)
53 # solve(a == L,w,bc1)
54 # Alternative condition delta_sigma =0 on boundary
55 (x1 ,x2 ,c) = w.split(deepcopy = True)
56
57 return x1

Algorithm2.py

1 from dolfin import *
2 import numpy as np
3 import mshr
4
5 def NewtonIterFull (mesh ,w0 ,sigma0 ,p,alpha ,Hdiff ,V,Vg ,w2=0, Hdiff2 =0):
6
7 # Define function space
8 R = FunctionSpace (mesh , "R", 0) # constant space
9

10 if w2==0:
11 # Define trial and test functions

79

12 W = MixedFunctionSpace ([V, V, V,Vg ,R])
13 (deltas ,deltau ,deltaz ,deltaw ,c) = split(TrialFunction (W))
14 (v1 ,v2 ,v3 ,v4 ,d) = split(TestFunction (W)) # product space
15 deltau2 = 0
16 deltaw2 = 0
17 v5=0
18 v6=0
19 else:
20 W = MixedFunctionSpace ([V, V, V,Vg ,V,Vg ,R,R])
21 (deltas ,deltau ,deltaz ,deltaw ,deltau2 ,deltaw2 ,c,c2)\
22 = split(TrialFunction (W))
23 (v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,d,d2) = split(TestFunction (W))
24
25 dx1 = dx(mesh)
26 ds1 = ds(mesh)
27
28 def boundary (x, on_boundary):
29 return on_boundary
30
31 bc1= DirichletBC (W.sub(0), 0.0, boundary)
32 bc2= DirichletBC (W.sub(2), 0.0, boundary)
33
34 def Q1(deltaz ,deltaw ,w0):
35 q1 = inner(grad(deltaz),w0)\
36 + deltaz *div(w0) \
37 + inner(grad(sigma0), deltaw) \
38 + sigma0 *div(deltaw)
39 return q1
40
41 q11 = Q1(deltaz ,deltaw ,w0)*Q1(v3 ,v4 ,w0)
42
43 w0sqr = inner(w0 ,w0)
44 pwd = w0sqr **(p/2)
45
46 def Q2(deltaz ,deltaw ,w0 ,w0sqr ,new= False):
47
48 if p == 2:
49 q2 = deltaz *w0sqr + p* sigma0 *inner(w0 , deltaw)
50 else:
51 q2 = deltaz *pwd + p* sigma0 *(pwd/w0sqr)*\
52 inner(w0 , deltaw)
53 return q2
54
55 q21 = Q2(deltaz ,deltaw ,w0 ,w0sqr)*Q2(v3 ,v4 ,w0 ,w0sqr)
56
57
58 def G(deltau ,deltaw ,v2 ,v4):

80 Python code

59 g = inner(grad(deltau)-deltaw ,grad(v2)-v4)
60 return g
61 g = (deltas - deltaz)*(v1 -v3)
62 g = g+G(deltau ,deltaw ,v2 ,v4)
63 #
64 # if w2!=0:
65 # g = g+G(deltau2 ,deltaw2 ,v5 ,v6)
66 #
67 # g = g
68
69 def Reg(deltas , deltau1):
70 reg = alpha *(deltas *v1 + deltau1 *v2)
71 # reg = alpha *(inner(grad(deltas),grad(v1)) + deltau1 *v2)
72 return reg
73 reg = Reg(deltas , deltau)
74
75 def Lfun(Hdiff ,v3 ,v4 ,w0 ,w0sqr ,pwd):
76 l1 = Hdiff *(v3 *pwd + p* sigma0 *(pwd/w0sqr)\
77 *inner(w0 , v4))
78
79 return l1
80
81 L1 = Lfun(Hdiff ,v3 ,v4 ,w0 ,w0sqr ,pwd)
82
83 LagrM = (c*v2 + d* deltau)
84
85 if w2 !=0:
86 w2sqr = inner(w2 ,w2)
87 pwd2 = w2sqr **(p/2)
88
89 q12 = Q1(deltaz ,deltaw2 ,w2)*Q1(v3 ,v6 ,w2)
90 q22 = Q2(deltaz ,deltaw2 ,w2 ,w2sqr)*Q2(v3 ,v6 ,w2 ,w2sqr)
91 g = g+G(deltau2 ,deltaw2 ,v5 ,v6)
92 reg = reg + alpha* deltau2 *v5
93 L2 = Lfun(Hdiff2 ,v3 ,v6 ,w2 ,w2sqr ,pwd2)
94 LagrM = LagrM + c2*v5 + d2* deltau2
95 else:
96 q12 = 0
97 q22 = 0
98 L2 = 0
99

100 LagrM = LagrM*ds
101 # reg = alpha*sqrt(sqrt(inner(grad(deltas),grad(v1))))
102 a = (q11+q12+q21+q22+g+reg)* dx1+LagrM
103 L = (L1+L2)* dx1
104 # anew = q1+q2new+g+reg+LagrM
105 # Solve the system

81

106 w = Function (W)
107 solve(a == L, w,[bc1 ,bc2])
108 if w2 ==0:
109 (x1 ,x2 ,x3 ,x4 ,c1) = w.split(deepcopy = True)
110 else:
111 (x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,c1 ,c2) = w.split(deepcopy = True)
112 return x1

forward_functions.py

1 from dolfin import *
2 import numpy as np
3 import mshr
4 """
5 Functions for solving the forward problem and computing internal data
6 """
7
8 """
9 Solver for the forward problem with a given conductivity sigma

10 and a current density f on the boundary of the domain .
11
12 div(sigma*grad(u)) = 0
13 sigma*du/dn = f
14
15 Input:
16 Mesh 'mesh ' the finite element mesh
17 Function 'sigma ' the conductivity defined in the domain
18 Function 'f' current density on the boundary
19
20 Output :
21 Function 'u' solution of the forward problem
22 """
23 def EITForwardSolve (mesh ,sigma ,f,V):
24
25 # Define function space
26 # V = FunctionSpace (mesh ,"CG",1)
27 R = FunctionSpace (mesh , "R", 0) # ----------- constant space
28 W = V * R # --------------------------------- product space
29
30 # Define trial and test functions
31 (u, c) = TrialFunctions (W)
32 (v, d) = TestFunctions (W)
33
34 # Define forms and Lagrange multipliers
35 lagrMult = (v*c + u*d)*ds

82 Python code

36 a = sigma*inner(grad(u), grad(v))* dx + lagrMult
37 L = f*v*ds
38
39 # Solve the system
40 w = Function (W)
41 solve(a == L, w)
42 (u, c) = w.split(deepcopy = True)
43
44 return u
45
46 def EITForwardSolve1storder (mesh ,sigma ,f,V,Vg):
47
48 # Define function space
49 # V = FunctionSpace (mesh ,"CG",1)
50 R = FunctionSpace (mesh , "R", 0) # ----------- constant space
51 W = MixedFunctionSpace ([V,Vg ,R]) # --------- product space
52 # Define trial and test functions
53 (u, w, c) = split(TrialFunction (W))
54 (v,phi , d) = split(TestFunction (W))
55
56 # Define forms and Lagrange multipliers
57 lagrMult = (v*c + u*d)*ds
58
59 a = sigma*inner(w, grad(v))* dx + lagrMult
60 a = a + inner(w-grad(u),phi)*dx
61 L = f*v*ds
62
63 # Solve the system
64 z = Function (W)
65 solve(a == L, z)
66 (u,w,c) = z.split(deepcopy = True)
67
68 return u,w,c
69
70 def ComputeH (sigma ,grad_u ,p):
71 # solve(a == L, H)
72 H = sigma*dot(grad_u , grad_u)**(p/2)
73 return H
74
75 def ComputeHnew (sigma ,u,p,V):
76 v = TestFunction (V)
77 w = TrialFunction (V)
78 #
79 a = inner(w, v)*dx
80 L = inner(sigma*dot(grad(u),grad(u)), v)*dx
81 H = Function (V)
82 solve(a == L, H)

83

83 return H
84
85
86 def project1 (sigma ,V):
87
88 v = TestFunction (V)
89 w = TrialFunction (V)
90 #
91 a = inner(w, v)*dx
92 L = inner(sigma , v)*dx
93 z = Function (V)
94 problem = LinearVariationalProblem (a,L,z)
95 solver = LinearVariationalSolver (problem)
96 solver . parameters [" krylov_solver "][" relative_tolerance "] = 5e -6
97 solver . parameters [" krylov_solver "][" monitor_convergence "] = True
98 solver .solve ()
99 return z

100
101 def ComputeGradient (mesh ,u):
102 V_g = VectorFunctionSpace (mesh , 'Lagrange ', 1)
103 V = FunctionSpace (mesh , 'Lagrange ', 1)
104 project (grad(u),V_g)
105 v = TestFunction (V_g)
106 w = TrialFunction (V_g)
107 a = inner(w, v)*dx
108 L = inner(grad(u), v)*dx
109 grad_u = Function (V_g)
110 solve(a == L, grad_u)
111 return grad_u
112
113
114 def get_centers ():
115 eps = 0.2
116 cx1 = -0.5
117 cy1 = -0.1
118 r1 = 0.3
119
120 cx2 = 0.2
121 cy2 = 0.5
122 r2 = 0.25
123
124 cx3 = 0.4
125 cy3 = -0.3
126 r3 = 0.25
127
128 C1 = 1
129 C2 = 1.5

84 Python code

130 C3 = 1.2
131
132 ## Test values
133 # C1 = 0
134 # C2 = 0
135 # C3 = 1
136 # eps = 0.2
137
138 C = [C1 ,C2 ,C3]
139 cx = [cx1 ,cx2 ,cx3]
140 cy = [cy1 ,cy2 ,cy3]
141 rad = [r1 ,r2 ,r3]
142 return C,cx ,cy ,rad ,eps
143
144 def polsmooth (r,eps):
145 pol = -6*r**5/(eps **5)+ \
146 15*r**4/(eps **4)-10*r**3/(eps **3)+1
147 return pol

callAlgorithms.py

1 """
2 Script that calls Algorithm 1 and 2
3 and performs the Newton iterations
4 """
5
6 from scipy import misc
7
8 from dolfin import *
9 import numpy as np

10 import mshr
11
12 #
13 ## Import the EIT - functions from another module
14 ## including the forward - solver functions for the
15 ## interior data computation .
16
17 from forward_functions import *
18 from Algorithm1 import *
19 from Algorithm2 import *
20 from EITplotter import *
21
22 ## Compute the interior data by solving the forward problem
23 ## on the disk of radius r.
24

85

25 import time
26 #
27 time1 = time.time ()
28
29 alpha = 0
30 pval = [0.5,0.75 ,1.0,1.5,2.0]
31 M = 1
32 K = 20
33 n = 1
34 jrange = range(2,3)
35
36 # parameters [" num_threads "] = 2
37 # parameters [" form_compiler "][" cpp_optimize "] = True
38
39 err = np.zeros ((5,K+1))
40 #
41 res1 = 100
42 res2 = 60
43
44 res1true = 120
45 res2true = 90
46
47 # Define the Finite Element triangulization
48 mesh_rad =1.0
49 omega1 = mshr. Circle (Point(0.,0.), mesh_rad ,res1)
50 mesh1 = mshr. generate_mesh (omega1 , res2 , "cgal")
51
52 omega_true = mshr. Circle (Point(0.,0.), mesh_rad , res1true)
53 mesh_true = mshr. generate_mesh (omega_true , res2true , "cgal")
54
55
56 V1 = FunctionSpace (mesh1 ,"CG",1)
57 Vtrue = FunctionSpace (mesh_true ,"CG",1)
58
59 # Define boundary input
60 f1 = Expression ('x[0]')
61 f2 = Expression ('x[0]+x[1]')
62
63 f1str = 'x'
64 f2str = 'x+y'
65
66 class NeumannCos (Expression):
67 def eval(self , values , x):
68 theta = np. arctan2 (x[1],x[0])
69 values [0] = cos(n*theta)
70
71 class NeumannSin (Expression):

86 Python code

72 def eval(self , values , x):
73 theta = np. arctan2 (x[1],x[0])
74 values [0] = sin(n*theta)
75
76 class NeumannSinCos (Expression):
77 def eval(self , values , x):
78 theta = np. arctan2 (x[1],x[0])
79 values [0] = sin(n*theta)+ cos(n*theta)
80
81 # Define the target conductivity . Here we choose a conductivity which
82 # is piece -wise constant , with a different constant value inside two
83 # ellipses within the domain
84
85 C,cx ,cy ,rad ,eps1 = get_centers ()
86 cx1 ,cy1 ,r1 = cx[0],cy[0],rad[0]
87 cx2 ,cy2 ,r2 = cx[1],cy[1],rad[1]
88 cx3 ,cy3 ,r3 = cx[2],cy[2],rad[2]
89 C1 ,C2 ,C3 = C[0],C[1],C[2]
90
91 #f1 = NeumannCos ()
92 #f2 = NeumannSinCos ()
93
94 # Piece -wise constant conductivity
95 class conductivityFun (Expression):
96 def eval(self , values , x):
97 X1 = x[0]-cx1
98 Y1 = x[1]-cy1
99

100 R1 = np.sqrt(1.5*X1**2 + 1.5*Y1**2 + X1*Y1)
101 R2 = np.sqrt((x[0] - cx2)**2 + 2*(x[1] - cy2)**2)
102 R3 = np.sqrt((x[0] - cx3)**2 + (x[1] - cy3)**2)
103 # if np.sqrt(2*(x[0] - cx1)**2 + (x[1] - cy1)**2) < r1:
104 if R1 < r1:
105 values [0] = 1 + C1
106 elif R2 < r2:
107 values [0] = 1 + C2
108 elif R3 < r3:
109 values [0] = 1 + C3
110 else:
111 values [0] = 1
112
113 class conductivityExp (Expression):
114 def eval(self , values , x):
115 R1 = 2*(x[0] - cx1)**2 + (x[1] - cy1)**2
116 R2 = (x[0] - cx2)**2 + 2*(x[1] - cy2)**2
117 R3 = (x[0] - cx3)**2 + (x[1] - cy3)**2
118

87

119 steepness = 13
120 values [0] = 1+2*np.exp(- steepness *R1)+\
121 1*np.exp(- steepness *R2)\
122 +1.5*np.exp(- steepness *R3)
123
124 class conductivitySmooth (Expression):
125 def eval(self , values , x):
126 X1 = x[0]-cx1
127 Y1 = x[1]-cy1
128 eps=eps1
129 R1 = np.sqrt(1.5*X1**2 + 1.5*Y1**2 + X1*Y1)
130 R2 = np.sqrt((x[0] - cx2)**2 + 2*(x[1] - cy2)**2)
131 R3 = np.sqrt((x[0] - cx3)**2 + (x[1] - cy3)**2)
132
133 values [0] = 1
134 r1new = r1+0.5*eps
135 r2new = r2+0.5*eps
136 r3new = r3+0.5*eps
137 if R1 < r1new:
138 values [0] = 1 + C1* polsmooth (R1 -(r1new -eps),eps)
139 if R1 < (r1new -eps):
140 values [0] = 1+C1
141 if R2 < r2new:
142 values [0] = 1 + C2* polsmooth (R2 -(r2new -eps),eps)
143 if R2 < (r2new -eps):
144 values [0] = 1 + C2
145 # values [0] = 1
146 if R3 < r3new:
147 values [0] = 1 + C3* polsmooth (R3 -(r3new -eps),eps)
148 if R3 < (r3new -eps):
149 values [0] = 1+ C3
150
151 sigmaFun = conductivitySmooth ()
152 sigma_true = project (sigmaFun ,Vtrue)
153 # sigmaFun = Expression ('1 ')
154
155 ll = LagrangeInterpolator ()
156 sigma_trueV1 = Function (V1)
157 ll. interpolate (sigma_trueV1 , sigma_true)
158
159 norm_sigma_true = norm(sigma_trueV1 ,'L2')
160
161 #plot(sigma_true)
162 u_true1 = EITForwardSolve (mesh_true ,sigma_true ,f1 ,Vtrue)
163 u_true2 = EITForwardSolve (mesh_true ,sigma_true ,f2 ,Vtrue)
164 #
165

88 Python code

166 #
167 for j in jrange :
168 p = pval[j]
169 print ('p=')
170 print (p)
171 # grad_u_true = ComputeGradient (mesh ,sigma , u_true)
172
173 Htrue1 = ComputeH (sigma_true ,grad(u_true1),p)
174 Htrue2 = ComputeH (sigma_true ,grad(u_true2),p)
175
176 parameters ['allow_extrapolation '] = True
177 Htrue1 = project (Htrue1 ,Vtrue)
178 Htrue2 = project (Htrue2 ,Vtrue)
179 parameters ['allow_extrapolation '] = False
180
181 HV1 = Function (V1)
182 HV2 = Function (V1)
183 ll. interpolate (HV1 , Htrue1)
184 ll. interpolate (HV2 , Htrue2)
185 Htrue1 =HV1
186 Htrue2 =HV2
187
188 # sigma_true = sigma_trueV1
189 # sigma_true = project (sigma_true ,V1)
190
191 # ==
192 # Newton -type algorithm for inverse problem
193 # ==
194
195 C1 = 0
196 C2 = 0
197 C3 = 0
198 sigma0 = conductivityFun ()
199 sigma0 = interpolate (sigma0 ,V1)
200
201 Vg = VectorFunctionSpace (mesh1 , 'CG', 1)
202 err[j,0]= norm(project ((sigma_trueV1 - sigma0),V1),'L2 ')\
203 / norm_sigma_true
204 print err[j,0]
205
206 for k in range(1,K+1):
207 u1 = EITForwardSolve (mesh1 ,sigma0 ,f1 ,V1)
208 u2 = EITForwardSolve (mesh1 ,sigma0 ,f2 ,V1)
209
210 # First -order forward prob
211 # u1 ,w1 ,c1 = EITForwardSolve1storder (mesh1 ,sigma0 ,f1 ,V1 ,Vg)
212 # u2 ,w2 ,c2 = EITForwardSolve1storder (mesh1 ,sigma0 ,f2 ,V1 ,Vg)

89

213
214 # Newton iteration
215 H01 = ComputeH (sigma0 ,grad(u1),p)
216 Hdiff1 = Htrue1 -H01
217 H02 = ComputeH (sigma0 ,grad(u2),p)
218 Hdiff2 = Htrue2 -H02
219
220 # 1 measurement - Algorithm 1
221 if M==1:
222 dsigma = NewtonIter (mesh1 ,u1 ,sigma0 ,p,alpha ,
223 Hdiff1 ,V1 ,f1 ,bc=True)
224 # 2 measurements
225 if M==2:
226 dsigma = NewtonIterFull (mesh1 ,w1 ,sigma0 ,p,alpha ,
227 Hdiff1 ,V1 ,Vg ,w2 , Hdiff2)
228
229 sigma0 = sigma0 + dsigma
230
231 # Compute L2 -norm of error
232 parameters ['allow_extrapolation '] = True
233 norm_sigma_true = norm(sigma_trueV1 ,'L2')
234 sigma_diff = project ((sigma_trueV1 - sigma0),V1)
235 dsig_norm = norm(dsigma ,'L2 ')
236 print(dsig_norm)
237 err[j,k]= norm(project ((sigma_trueV1 - sigma0),V1),'L2 ')\
238 / norm_sigma_true
239 print(err[j,k])
240 parameters ['allow_extrapolation '] = False
241
242 # if alpha < 0.1:
243 # alpha = alpha*10
244
245 time2 = time.time ()
246
247 elapsed = time2 -time1
248
249
250 print(" Elapsed time:")
251 print(elapsed)
252
253 #V1 = FunctionSpace (mesh1 ,"CG",1)
254 #
255 #z1 = sigmaV . compute_vertex_values ()
256 sigmaV = project (sigma0 ,V1)
257 sigmaVtrue = Function (Vtrue)
258 ll. interpolate (sigmaVtrue , sigmaV)
259

90 Python code

260 z0 = sigmaVtrue . compute_vertex_values ()
261 z1 = sigmaV . compute_vertex_values ()
262 z2 = sigma_true . compute_vertex_values ()
263 z3 = sigma_trueV1 . compute_vertex_values ()
264
265 print("Test succeeded .")
266 #r1 ,theta1 ,data1 = polardata (sigmaV ,mesh1 , mesh_rad)
267 #r2 ,theta2 ,data2 = polardata (sigma_true ,mesh_true , mesh_rad)
268 #
269 params = np.array ([p,n,M,K,alpha ,res1 ,res1true ,f1str ,f2str ,\
270 C[0],C[1],C[2],res2 , res2true])
271 np.save('params .npy ',params)
272 np.save('err.npy ',err)
273 np.save('sigmaVtrue .npy ',z0)
274 np.save('sigmaV1 .npy ',z1)
275 np.save('sigma_trueVtrue .npy ',z2)
276 np.save('sigma_trueV1 .npy ',z3)
277 #np.save('r1 ',r1)
278 #np.save(' theta1 ',theta1)
279 #np.save('data1 ',data1)

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Mathematical model
	1.3 Statement of a hybrid inverse problem
	1.4 Thesis outline

	2 The forward problem
	2.1 Variational form - existence and uniqueness
	2.2 An analytical solution
	2.2.1 Power density data

	3 Methods for solving inverse problems
	3.1 Continuity and differentiability of the forward map
	3.1.1 Fréchet differentiability of the forward map
	3.1.2 Fréchet derivative of the data map

	3.2 Methods of the Newton-type
	3.2.1 Newton's method in Banach spaces
	3.2.2 A Newton-type method given Power Density data
	3.2.3 A Newton-type method with multiple measurements
	3.2.4 Ellipticity of the linearised problem

	4 Implementation
	4.1 The Finite Element setup
	4.2 Validation of the forward problem implementation
	4.2.1 Code examples from Python

	4.3 Implementation details of the inverse problem
	4.3.1 Meshes and conductivity phantoms
	4.3.2 Parameter choices

	5 Numerical results
	5.1 Reconstruction of a smooth target conductivity
	5.2 Regularization effects
	5.3 Effects of the choice of boundary conditions
	5.4 Propagation of singularities
	5.5 Reconstruction of a piece-wise constant conductivity

	6 Conclusion and perspectives
	6.1 Conclusion
	6.2 Perspectives

	References
	A Learning objectives and plan
	A.1 Final version
	A.1.1 Learning objectives
	A.1.2 Time plan

	A.2 Note on corrections to the original plan
	A.3 Original version
	A.3.1 Learning objectives
	A.3.2 Time plan

	B Python code

