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Active vibration-based structural
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wind turbine blade: Demonstration
on an operating Vestas V27 wind
turbine
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Abstract
This study presents a structural health monitoring system that is able to detect structural defects of wind turbine blade
such as cracks, leading/trailing-edge opening, or delamination. It is shown that even small defects of at least 15 cm size
can be detected remotely without stopping the wind turbine. The structural health monitoring system presented is
vibration-based: mechanical energy is artificially introduced by means of an electromechanical actuator, whose plunger
periodically hits the blade. The induced vibrations propagate along the blade and are picked up by accelerometers
mounted along the blade. The vibrations in mid-range frequencies are utilized: this range is above the frequencies excited
by blade–wind interaction, ensuring a good signal-to-noise ratio. At the same time, the corresponding wavelength is
short enough to deliver required damage detection resolution and long enough to be able to propagate the entire blade
length. This article demonstrates the system on a Vestas V27 wind turbine. One blade of the wind turbine was equipped
with the system, and a 3.5-month monitoring campaign was conducted while the turbine was operating normally. During
the campaign, a defect—a trailing-edge opening—was artificially introduced into the blade and its size was gradually
increased from the original 15 to 45 cm. Using a semi-supervised learning algorithm, the system was able to detect even
the smallest amount of damage while the wind turbine was operating under different weather conditions. This article
provides detailed information about the instrumentation and the measurement campaign and explains the damage detec-
tion algorithm.
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Introduction

Blades of modern wind turbines are designed for 20–
25 years of service under severe weather conditions,
and during this period, damage is unavoidable. With a
high probability, a small blade defect may develop into
a bigger failure, and if no countermeasures are taken,
may become critical, causing catastrophic conse-
quences. Repair of a small defect is significantly
cheaper than repair of a bigger one or replacement of
an entire blade. Therefore, wind turbine operator com-
panies pay close attention to structural health monitor-
ing (SHM) of the blades. Today, this is done by
periodical visual inspections conducted every 1–2 years,
but many in the industry realize that a better approach
is needed. Today, many approaches are suggested,

attacking the problem from very different angles:1

alongside using more robust blade design and special
surface treatments to protect the blades, they include,
for example, facilitating visual monitoring by means of
transportable ground-based optical systems, by drones
equipped with high-resolution video cameras, using
thermography and many others techniques.
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One of the most promising ways is instrumenting
wind turbines with vibration sensors and monitoring
the blades’ integrity via permanent monitoring of their
vibration.2,3 This approach is already adopted for mon-
itoring the mechanical components of wind turbines,
such as gearbox and bearings. The main advantage of
such a system is that the operator/owner is notified
about the occurrence of damage almost immediately
after it has happened and not after 1–2 years, when it is
detected by visual inspection.

SHM via vibration monitoring may be based on dif-
ferent physical phenomena. One of the popular
vibration-based approaches is detecting changes in
modal parameters: loss of structural integrity leads to
reduction of stiffness, which can be detected by moni-
toring modal parameters. However, this approach can-
not achieve the required damage resolution since the
modal parameters are not very sensitive to damage.4

Another modal-based technique is finite element (FE)
model updating.5 It can provide more detailed informa-
tion about a detected damage toward its localization
and identification,6–8 but the method is prone to numer-
ical instability due to ill-conditioned system of equations
required to be solved when updating the parameters.9

Another well-known vibration approach is based on
guided waves:10 a piezoelectric exciter generates stress
waves, which propagate through the structure and get
picked by another piezoelectric sensor. Typically, a net-
work of active sensors (which can measure and generate
vibrations) is used. Blade damage can be detected and
localized by monitoring how the vibration propagates
from the actuators to the sensors. The guided waves
approach has much better damage resolution but
requires high sensor density, since the high-frequency
oscillations quickly decay with the propagation dis-
tance. Using a large number of sensors adds complexity
to the SHM system and negatively influences its cost,
making it less attractive for the end users.

In the study by Tcherniak and Mølgaard,11 the
authors introduced another technique (patent pending),
which is similar to the guided waves technique but has
inherent differences: the excitation is introduced by an
electromechanical actuator, and the utilized frequency
range is much lower compared to the guided waves
approach. The introduced vibrations are picked by an
array of accelerometers. The waves at the lower fre-
quency (around 1 kHz) can propagate longer distances,
thus the technique requires far fewer sensors. At the
same time, the frequency is high enough to ensure suffi-
cient damage detection resolution (at least 15 cm size).
Structural damage changes the properties of the energy
propagation between the actuator and the acceler-
ometers; this can be detected by comparing the vibration
pattern in a reference (healthy) state with the damaged
state.

The important feature of the suggested approach is
that it is possible not only to detect damage but also to
follow its development.11 Additionally, in previous
studies,12–14 the possibility to use the technique for
damage localization was demonstrated.

In Tcherniak and Mølgaard,11 the method was
applied to an SSP34m blade (34 m long) mounted on a
test rig. This study reports the results when the same
technique was used on an operating wind turbine.

System implementation on Vestas V27
wind turbine

In Tcherniak and Mølgaard,11 the authors described
the experiment conducted on an SSP34m blade
mounted in a test rig. Test rig facilities greatly simpli-
fied the experiment: since the blade did not move and
was located indoors, it required much less effort to
mount accelerometers, actuators and cabling. The
experiment proved that the proposed approach per-
forms well on a modern blade, with feasible actuator
location and using a reasonable number of sensors.
The system managed to detect a realistic blade fault
(trailing-edge opening) and follow up on its progres-
sion. However, using the test rig, we could not evaluate
the robustness of the method against noise. Indeed,
when operating, the wind turbine blade is subjected to
wind excitation and excitation from the hub and nacelle
mechanisms, which mask the signal from the actuator.
In Tcherniak and Mølgaard,11 some artificial noise
(recorded on the blades of another wind turbine in
operation) was mixed with the measured signals from
the actuator: we had to admit that the selected signal-
to-noise ratio was very much a guess. In addition, to be
able to demonstrate technical feasibility of the pro-
posed system, it was important to do it on a real oper-
ating wind turbine.

Vestas V27 wind turbine was selected for the experi-
ment due to its availability. The wind turbine stands in
the grounds of Technical University of Denmark
(DTU), Department of Wind Energy (formerly known
as Risø), in Denmark, near the town of Roskilde.
Vestas V27 is a relatively old wind turbine, with 27 m
rotor diameter and 225 kW rated power. However, this
wind turbine can be considered representative of many
modern wind turbines: it is an upwind, pitch-regulated,
horizontal axis wind turbine. In contrast to modern
wind turbines, its blades are relatively stiff, and it has
only two speed regimes: 32 and 43 r/min.

For blade excitation, the same actuator was used as
for the SSP34m blade experiment (Figure 1(a)). The
actuator is a simple electromechanical device: a coil is
mounted on a steel base; driven by an electrical pulse,
the coil ‘‘shoots’’ the plunger toward the structure; and
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after the hit, the plunger retracts to the initial position
by means of a spring.

Due to the size of the blade, it was not possible to
install the actuator inside the blade (as was done on the
SSP34m blade). Instead, the actuator was installed

outside the blade, on its upwind side about 1 m from
the root, covered by a waterproof lid and secured with
a strap (Figure 1(b) and (c)).

The vibrations were measured by accelerometers.
The blade was instrumented with 12 monoaxial piezo-
electric accelerometers (Brüel & Kjær Type 4507-B);
their location on the blade is shown in Figure 2(a). The
nominal sensitivity of accelerometers 5–15 was 10 mV/
m/s2 (Type 4507-B-004), and accelerometer 16, located
near the actuator, had nominal sensitivity 1 mV/m/s2

(Type 4507-B-001). For mounting the accelerometers,

Figure 1. Actuator: (a) design, (b) actuator location inside the
circle, and (c) installation on the blade.

Figure 2. Blade instrumentation: (a) contour of the blade
where the red circles indicate the location of the accelerometers
and the green circle is the actuator position, (b) accelerometer
mounted on the blade, and (c) cable arrangement.
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we used plastic mounting clips, which were glued
directly to the blade (no special alignment was per-
formed, the accelerometers’ measurement direction was
normal to the blade surface). To protect the acceler-
ometers, they were covered by silicon, and then, ‘‘heli-
copter tape’’ was applied on top to give the silicon a
smooth shape (Figure 2(b)). The accelerometers and
cables were placed on the downwind side of the blade.

The accelerometer cables run from the acceler-
ometers toward the trailing edge and then along the
trailing edge toward the blade root (Figure 2(c)). The
cables were glued to the blade with silicon and covered
with helicopter tape. Experience from the previous long
measurement campaign on the same wind turbine15 was
used. From the same experience, we knew that such an
arrangement could last several months, which is suffi-
cient for the planned campaign, but obviously not good
enough to survive on the blade for several years. For
the latter case, other arrangements must be developed.

The accelerometers were connected to a data acqui-
sition system (Brüel & Kjær Type 3660-C with two
LAN-XI modules, a 12-channel input module Type
3053-B-120 and 4-channel input/output module Type
3160-A-042). Two piezoresistive direct current (DC)
accelerometers Type 4574-D mounted in the spinner
were used to estimate the rotor azimuth with a possibil-
ity to derive the rotational speed of the rotor. In addi-
tion, the pitch angle was measured.

The actuator was controlled by the signal from the
signal generator built into one of the data acquisition
modules. The generated rectangular pulse triggered the
actuator’s electronics, making a 100 mF capacitor dis-
charge through the coil. Then, the capacitor was
charged again to 48 V using a DC/DC converter to be
ready for the next shot.

The data acquisition system and the electronics were
placed in a waterproof box (dimensions 60 3 45 3

20 cm3 and weight 25 kg), which was mounted to the
inner surface of the spinner (Figure 3). The equipment
was powered by 24 V from the nacelle via a slip ring.

The measured data (in total, 16 signals were sampled
with 16,384 Hz frequency) were wirelessly transmitted
from the rotating part to the nacelle via two Cisco wire-
less access points, one located inside the waterproof
box and another installed in the nacelle. When the tur-
bine is operating, the line of sight between the hub and
nacelle might be blocked by the steel parts of the hub.
To keep an uninterrupted wireless connection, two
pairs of antennas were employed: two omnidirectional
antennas attached to the hub and two directional anten-
nas mounted inside the nacelle.

The data acquisition system was controlled by Brüel
& Kjær PULSE LabShop software. The software was
programmed to start data acquisition, record 10 s, initi-
ate an actuator hit and record for another 20 s. Then,

acquisition was stopped and the system waited for four
and a half minutes and initiated again. Thus, 12 actua-
tor hits and corresponding datasets were produced every
hour. Typical signals are shown in Figure 4.

Simultaneously with the vibration data, meteorolo-
gical data were collected from a weather mast located a
few hundred meters away. The weather data included
temperature, wind speed and direction, wind turbulence
at different altitudes, atmospheric pressure and precipi-
tation; the data from the mast were delivered averaged
within 1-min intervals. The power production data and
yaw angle (the wind direction seen from the nacelle)
were also available from the wind turbine system.

Experiment

The measurement campaign was started 28 November
2014 and finished 12 March 2015, thus lasting 104 days.
With 12 actuator hits per hour (6 hits per hour during

Figure 3. Data acquisition system: (a) the waterproof box with
LAN-XI system (more modules are shown) and (b) the
waterproof box is mounted inside the spinner but the cables are
not yet connected.
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the Christmas and New Year eve period), data from
24,693 actuator hits were collected. During this time,
the wind turbine was subjected to different weather con-
ditions. The monitoring period covers about one-third
of a year, thus no season-related events were observed.
During the campaign, the turbine was in its normal
power production regime, governed by its controller.
However, following the agreement with the wind tur-
bine owner, in the damaged state, we could only oper-
ate the turbine under visual surveillance, that is, during
working hours. For nights, weekends and holidays, the
wind turbine was set to idling (no power production),
though the SHM system was kept working.

Damage implementation

For validating the capabilities of the proposed SHM
system, an artificial defect was introduced in the

instrumented blade. The following considerations were
taken into account:

1. Input from wind turbine manufacturers and service
companies regarding blades’ typical defects and
their location.

2. Reparability of the defect: it should be possible to
repair the blade inexpensively after the end of the
experiment.

3. Risk of the artificial damage developing to critical
should be minimal.

In addition to this, we planned to test another prop-
erty of the proposed SHM system: the indication of
damage progression. For this reason, we planned to
gradually increase the size of the defect.

Taken the abovementioned into account, the
trailing-edge opening type of damage was selected. This
is a typical defect for blades manufactured using this
technology. Commercial sources, for example, Wind
Energy Update,16 inspection reports and technical
papers such as Ataya and Ahmed17 and Haselbach and
Branner18 indicate that trailing-edge failures are fre-
quently observed in blades. Besides this, such a failure
is easy to introduce, extend and repair, and according
to experience, the probability that it can progress
uncontrollably is very low.

The initial artificial damage was introduced on 9
December 2014 (Figure 5(a)) by technicians from ser-
vice company Total Wind Group. The trailing edge
was opened and extended to simulate a crack. The
length of the opening was 15 cm. The opening was cov-
ered by helicopter tape to prevent atmospheric water
from coming into contact with unprotected inner blade
material. On 15 December 2014, the opening length
was extended to 30 cm (Figure 5(b)) and 06 January
2015 to 45 cm (Figure 5(c)). On 19 January2015, the
defect was repaired. The defect location in the blade is
shown in Figure 2(a) and zoomed in Figure 5(d).

Data processing and damage detection

Classification

The damage detection approach used in this work is a
case of anomaly or novelty detection, and the vast
knowledge accumulated using this paradigm can be uti-
lized for solving the SHM problem.19,20 Using the ter-
minology in the anomaly detection field, semi-supervised
anomaly detection describes our approach. A supervised
approach to damage detection would require recordings
of a normal (healthy) operating state as well as record-
ings of the blades in operation with the damage that
should be detected by the system. A supervised classifier
could then be trained to distinguish between the
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Figure 4. Typical signals: (a) accelerometer 16 (20 cm from the
actuator), (b) accelerometer 15 (8.5 m from the actuator), and
(c) DC accelerometer.
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different observed operating states. In practice, it
would only be feasible to obtain operational data for
a limited number of damage types, constraining the
usefulness and versatility of the SHM system.
Employing a semi-supervised view of the problem, we
assume that only the normal (healthy) state is known,
and significant deviations from this state are associ-
ated with damage. The damage detection procedure
therefore includes two phases: the training phase and
the detection phase. During the training phase, we
assume that the structure is undamaged; here, we col-
lect a number of samples, characterizing the normal
state under different operating regimes and establish
a statistical model (or models, one for every wind tur-
bine regime) of the normal state. In the detection
phase, every newly acquired sample is compared to
the model of the normal state. If a significant devia-
tion is detected, we declare that the blade is damaged.

To prepare the recordings from the accelerometers
for statistical modeling, two steps must be performed:
pre-processing and calculation of a feature vector. The
steps are considered in the following sections.

Data processing

In the presented SHM system prototype, the data were
not processed in real time (as one would expect from a
commercial SHM system) but were post-processed
later, when the data from several hundred actuator hits
became available.

The data analysis started with processing the two
DC accelerometers’ signals (the example is shown in
Figure 4(c)). Note that the mean of the signal is not at
zero due to the centrifugal acceleration due to the rota-
tion of the rotor. By detecting and counting the peaks,
it is possible to obtain the rotations per minute and

Figure 5. Implementation of the artificial blade damage. (a) Initial 15 cm trailing-edge opening, (b) extended to 30 cm, (c) extended
to 45 cm, and (d) damage location in the blade relative to accelerometers and its development: 15 cm . 30 cm . 45 cm
correspond to black . dark gray . light gray. The red circles are the accelerometers as in Figure 2(a).
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azimuth profiles and derive the rotations per minute
and azimuth values at the moment of the actuator hit.

For each actuator hit, the time history from the
accelerometers, pitch angle, derived rotor rotations per
minute and rotor azimuth information were combined
with the weather data and saved into a database to
facilitate data access.

The three main operating regimes were identified:
idling, operating at 32 r/min and operating at 43 r/min.
It was recognized that the vibrational data from the
regimes cannot be compared directly, and further anal-
ysis was conducted separately for each regime.

Further pre-processing steps included the following:

1. Selecting the part of the signal around the actuator
hit. This was done by detecting the beginning of the
peak in the actuator control signal; at this step, the
originally recorded 30 s of vibration data (about
500,000 time samples) are reduced to 3000 time
samples per measured channel.

2. Fine alignment of the signals from different hits.
This was done using the signal from accelerometer
16, closest to the actuator, since it is least affected
by the noise.

3. Bandpass filtering. As mentioned in section
‘‘Introduction,’’ a medium-frequency range
(around 1 kHz) is used. The bandpass filter (BPF)
was designed around this frequency (700–1200 Hz).

4. Finally, the short part of the filtered signal was
extracted for the following processing: only 201
time samples between time sample 300 and 500
(inside the dashed rectangle in Figure 6(b)) was
retained and used for damage feature calculation.

Figure 6 illustrates the steps of the process. It must
be noted that the BPF filter parameters were found by
trials, using data from the undamaged and damaged
states and trying to maximize the performance of the
damage detection. This approach is not feasible in the
real-life scenario, where the data from the damaged
blade is not available. However, based on the authors’
experience gained from processing Vestas V27 and
SSP34m blade data, the performance of the algorithm
is only slightly affected by the fine tuning of the pre-
processing parameters; using general recommendations,
one can design a quite sensitive and robust SHM sys-
tem. Such recommendations are design a BPF with the
center frequency around 1 kHz and width 500–600 Hz
and retain 200–400 time samples where all the signals
attain the highest magnitude. Apparently the original
design can be further improved by either testing the
system mounted on a blade on a test rig or by creating
‘‘virtual test environments’’ based on a detailed FE
model of the blade, which can simulate the acceleration
responses to the actuator hits. Such ‘‘virtual

environments’’ can be a great tool for optimizing sen-
sors and actuator location, to tune the performance of
the system toward the most realistic failures.

Feature vector

The collection of pre-processed signals for each actua-
tor hit must be represented using a smaller number of
quantities, termed features. This representation must
retain sufficient information to separate ‘‘normal’’ and
‘‘anomalous’’ operation for the subsequent statistical
modeling.

Following Parker,21 the feature vector is based on
the cross-covariance between all pairs of sensor time
series. Such a covariance matrix characterizes the cur-
rent state of the blade. An acquired structural defect
will change the energy propagation from the actuator
to the sensors, which will affect the vibration pattern
(relative magnitude and phase) of the measured accel-
eration signals. Since the cross-covariance function is a
measure of similarity between two signals, the changes
in the vibration pattern will be reflected as a change in
the cross-covariance matrix.

For a fixed time-lag (in this study, we used zero
time-lag), the covariance matrix is an N3N symmetric

Figure 6. (a) Typical accelerometer signal (32 r/min,
accelerometer 5) and (b) same signal after bandpass filtering.
The dashed rectangle indicates the final trim.
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matrix, where N is the number of sensors selected for
the analysis (either the full set or a subset of the sensors
in Figure 2(a)). The number of distinct elements in the
matrix is N(N + 1)=2. If all 12 sensors are selected, the
dimensionality of the feature vector is 78. However,
the values in this feature vector will exhibit multicolli-
nearity, which will impact the subsequent fitting of a
statistical model. To counter the multicollinearity,
dimensionality reduction using principal component
analysis (PCA) is employed. The PCA technique is a
statistical method that learns a lower dimensional
orthogonal representation from a set of vectors such
that the extracted dimensions retain maximal variance
of the data. The PCA representation of the data is
learned using the covariance vectors obtained during
the training phase. In this work, the number of vectors
available for training is around 200 (cf. the ‘‘Results’’
section).

The feature vector used to represent the state of the
blade for the ith actuator hit is obtained by

1. Calculating the cross-covariance matrix and
reshaping it into an N(N + 1)=2 length feature vec-
tor, which consists of the distinct elements of the
cross-covariance matrix.

2. Project the feature vector into the K-dimensional
PCA representation to produce the final com-
pressed feature vector xi of length K, where K is
smaller than N(N + 1)=2.

Choosing a small number of PCA dimensions to use
in the subsequent modeling of the normal state can be
crippling for the ability to detect damage. In this work,
K was chosen such that 99% of the variance in the
training data is retained.

Normal state and damage index

From each of M actuator hits obtained in the healthy
state, a feature vector is extracted. The collection of M

feature vectors (which is often called training set) are
gathered to a matrix X= x1, x2, . . . , xM½ �, X 2 RK,M .
This matrix forms the base for the statistical model of
the healthy blade, or in other words, the normal or ref-
erence state. The feature vectors xi are often called
samples, as they reflect the state of the system at the
time of the ith actuator hit. When the actuator strikes
the structure and a new sample y arrives, the difference
between the sample and the statistical model of the
healthy state characterizes the health of the structure.
The Mahalanobis distance is a convenient metric to
quantify this difference. The Mahalanobis distance
between a sample y and the dataset X is given by

d y,Xð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� mXð ÞT ðSXÞ�1

y� mXð Þ
q

ð1Þ

where mX 2 RK is the mean of the samples in X and
SX 2 RK,K is the covariance between the samples. This
metric is selected as a damage index in this study. If the
damage index is relatively small and does not exceed
some threshold D, we declare that the system is in unda-
maged state. Conversely, if d(y,X).D, we declare state
y as damaged.

Following the semi-supervised strategy, we base the
choice of the threshold D exclusively on the observa-
tions from the training phase. A naı̈ve choice of thresh-
old would include all points in the training set

D =maxi d xi,Xð Þð Þ ð2Þ

but this choice is sensitive to outliers that could be pres-
ent in the training set. Instead, we shall estimate the
probability of a sample being an outlier based on the
training data. The value of the threshold D can then be
obtained as the (100� R)th percentile of the cumulative
distribution function, which means that R percent of the
samples from the healthy state may exceed this value. In
other words, it means that we allow R percent of false
alarms in the training set, which results in a more con-
servative choice of the threshold. Furthermore, in this
study, we use this approach to control the threshold,
and R is called allowed false alarm rate.

In practice, all values di = d xi,Xð Þ are calculated for
the selected training set X and sorted such that
dj\dj + 1, j = 1, . . . ,M � 1. Then, the threshold DR is
selected from the sorted sequence as

DR = dk ð3Þ

where k is the nearest integer less than or equal to
M(100� R)=100.

The important feature of the damage index (1) is
that (in most of the cases), its value increases with the
damage development. This allows one to identify if the
damage appeared but then stabilized or if it keeps
progressing.

Results

As mentioned before, Vestas V27 wind turbine has a
controller which operates the wind turbine in one of the
three regimes:

1. Idle: the blades’ pitch is about 90� so the wind tur-
bine is not producing power. The rotor revolves
due to wind shear. This regime is active if the wind
is too weak (its speed is below the cut on speed).
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This regime is activated if the wind turbine is bro-
ken or ‘‘switched off.’’

2. Low-speed production regime: the controller keeps
the rotor speed constant at 32 r/min. The pitch
angle for all three blades is about 0.

3. High-speed production regime: the controller keeps
the rotor speed at 43 r/min. The pitch angle is
about 0, though some slight variations may
present.

Apparently, for SHM purposes, the latter two
regimes are of the main interest: most of the time wind
turbines are operating, and it is unreasonable to stop

them for SHM purposes. This study addresses only the
regimes when the wind turbine is operating.

Sensitivity to weather conditions

As it is well known from literature, environmental con-
ditions influence the dynamic response of the structure
and this may seriously affect the performance of an
SHM algorithm. Figure 7 demonstrates this, using the
data from leading- and trailing-edge accelerometers,
from the 43 r/min regime. Following the scheme
described in Worden and Manson,22 the first one-third
of the available 856 samples for the healthy state at

Figure 7. (a) Damage index (43 r/min regime), the training samples are picked from the beginning of the training set, left from the
dash-dotted line: accepted false alarm rate 5% and test false alarm rate 48.6%. (b) Temperature when the samples were taken.
(c) Damage index, the training samples are randomly picked: accepted false alarm rate 5% and test false alarm rate 8.1%.
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43 r/min regime was used for the algorithm training.
These samples are located left of the vertical dash-
dotted line in Figure 7(a). Accepting 5% of false alarms
in the training set (R = 5%), the model of the healthy
state is generated, and the threshold is found (solid hor-
izontal line, the points below the line indicate the
healthy state). The samples below the threshold line are
classified as healthy state, while the samples above the
threshold are declared as damaged state.

All states corresponding to the smallest amount of
damage (the 15 cm crack) are identified correctly
(denoted by ‘‘+ ’’). However, validating the model
against the healthy samples not included in the training
set, one finds that the algorithm produces 48.6% of
false alarms, which is much more than the allowed 5%.
One can readily correlate the false alarms with the
peaks and drops of the temperature (Figure 7(b)).
Indeed, the model of the healthy state was generated
when the temperature was between 2�C and 4�C, and
this model fails when the temperature is outside this
range.

Instead of taking the first samples, the model can be
based on an equal number of samples randomly picked
from the healthy state. This significantly improves the
performance of the model. Figure 7(c) illustrates this
for some realization of the random sequence. Now, the
test false alarm rate is 8.1%, which is much closer to
the allowed 5% rate.

Figure 8 demonstrates the application of this
approach to all available data from the undamaged and
damaged states, for both 32 and 43 r/min operating
regimes collected during the entire monitoring period.
The considered datasets contain 1684 samples for the
healthy case, 224 samples for the 15 cm crack case, 310
samples for the 30 cm crack, and 237 samples for the

45 cm crack. The difference in the sample count for the
different damaged states is due to the different duration
of the periods, when the wind turbine was operating in
these damaged states. This was due to the availability
of the technicians who climbed the blade to extend the
blade opening and was also dependent of the weather,
when this operation was possible. The different number
of samples in the damaged states does not affect the
classification results, as every sample from the damaged
states is considered independently. In the same way as
described above, the model of the healthy state was
generated based on the one-third of the available sam-
ples from the healthy state, which were randomly
selected. The remaining two-third of the samples was
used to validate the correctness of the healthy state
classification and compute the false alarm rate.

As mentioned before, two models were used, one for
each regime, and to be comparable, the damage indices
d are normalized by the corresponding threshold values
D5%. For the given random sequence, the overall false
alarm rate is 7.3%, while the correct detection rate for
all three crack sizes is 100%. Figure 8 also illustrates
that the damage index value generally increases with
the size of the crack: for the undamaged blade, the
value is below 1 (for the false alarm cases, it reaches 2);
for the 15 cm crack, the value is between 1 and 8; for
the 30 cm crack, it is between 2 and 15; and for the
45 cm crack, it is between 4 and 80. It is not possible to
make a correlation between the damage index value
and the crack size (as it naturally depends on the loca-
tion of damage), but one can conclude whether the
crack has stabilized or continues to develop.

As mentioned before, the choice of the allowed false
alarm rate R defines the detection threshold, thus
affecting the resulting false alarm rate (False Positives)

Figure 8. Damage index for all undamaged and damage cases at 32 and 43 r/min. Allowed false alarm rate is 5% and test false alarm
rate is 7.3%.
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and the correct detection rate (True Positives), which in
classification studies is typically illustrated by a receiver
operating characteristic (ROC) curve. Here, we use a
slightly different approach plotting the false alarm rate
and the correct detection rate as functions of the
allowed false alarm rate R (Figure 9). Since the samples
of the training set are randomly selected from the
healthy samples, the false alarm rate and correct detec-
tion rate depend on realization of the random sequence.
Figure 9 illustrates the abovementioned: the allowed
false alarm rate R was iterated from 0% to 10%; for
each case, 500 random realizations of the training set
were generated and the corresponding models were
applied to the data. Figure 9(a) shows the development
of the false alarm rate, where the dots represent the
value for each random sequence realization and the line
is the mean value. As expected, the mean false alarm
rate is generally higher than the allowed false alarm
rate; however, there exist random sequence realizations
where the false alarm rate is significantly higher or sig-
nificantly lower than the mean value.

Figure 9(b) shows the averaged correct detection
rate. The figure is based on the data from the 43 r/min
case.

Influence of different sensor configurations

The measured datasets include the data from 12 accel-
erometers, as shown in Figure 2. Accelerometer 16 is
located close to the actuator, and its signal is only used
to align time histories from the different actuator hits.
Sensors 5 to 15 are distributed along the blade. In the
implementation of a real SHM system, using the least
number of sensors is desirable from system cost consid-
erations. Optimization of the number of sensors and
their location is out of the scope of this article; how-
ever, in this section, we provide some results of ‘‘what-
if’’ scenarios, selecting different sensor configurations
and providing the corresponding detection results and
the false alarm rate.

Figure 10 compares the results for different sensor
configurations computed for the 32 r/min regime. In

Figure 9. (a) Test false alarm rate for different allowed false alarm values for 500 random realizations of the training set and the
averaged value. (b) Averaged correct detection rate for 500 realizations of the training set.
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Figure 10(a), the results when using all 11 blade acceler-
ometers are shown. Excluding the spar sensors (Figure
10(b)) improves the results, indicating that the spar sen-
sors signals do not contain any information about the
trailing-edge opening. Indeed, using only spar sensor
for detection (Figure 10(c)) shows extremely bad detec-
tion results. It is interesting to note that using the four
leading edge sensors (Figure 10(d)), the bigger amount
of damage (namely, 30 and 45 cm cracks) is detectable
but the algorithm fails to detect the 15 cm crack. Using
the four trailing-edge sensors (Figure 10(e)), the 15 cm
crack can be detected with a higher certainty; here, we
observe an interesting and untypical phenomenon: the
bigger amount of damage (30 cm crack) produces a
smaller damage index; thus, the longer crack can be
detected with the lower certainty than the bigger one.

The energy of the mechanical impact provided by
the actuator propagates along the blade toward its tip;
numerous reflections from the elements of the structure
and blade’s tip define a complex unique vibration pat-
tern sampled by the few accelerometers. Since most of
the energy propagates from the actuator toward the tip,
it could be expected that a structural fault will mainly
affect the readings of the accelerometers located behind
the damage and, in much lesser degree, the readings of
the accelerometers between the actuator and the fault.
Figure 10(f) to (h) supports this suggestion: using four
sensors (two on the leading edge and two on the trailing
edge), the detection rate is excellent when the sensors
are behind the fault (Figure 10(h)), only the 30 and
45 cm cracks are detectable when the sensors surround
the fault (Figure 10(g)), and the worst results are
obtained when the sensors are located between the fault
and the actuator. Using this observation, it is possible
to roughly locate the fault by ‘‘scanning’’ the blade by
employing different sensor combinations.

Discussion

At 32 and 43 r/min regimes, the damage detection
algorithm demonstrates comparable performance.
However, in the idling case, the performance drops. It
was found that this case required taking the rotor azi-
muth angle into account: apparently, the samples
measured at different blade positions are not directly
comparable. A possible reason for this is that while
idling, the blade pitch is about 90� and the plunger hit
direction lies in the rotor plane. Therefore, the
strength of the hit is affected by gravity and depends
on the azimuth angle (Figure 1(c)). When operating,
the blades’ pitch is around zero, the actuator direc-
tion is always perpendicular to the vector of gravity
(Figure 1(b)), and the hit strength is not affected by
the rotor position.

Technical implementation

As mentioned earlier, the described system is a proto-
type, which was implemented in order to prove the con-
cept of an actuator-based, vibration-based SHM
system. This section discusses some technical aspects of
a real-life implementation of such a system.

Perhaps the most challenging part of such a system,
if implemented in reality, is the accelerometers. Due to
possible lightning strikes, wind turbine manufactures
avoid placing any metal elements (except the compo-
nents of the lightning protection system) into the blade
further than one-third of its length. Apparently, the use
of conventional piezoelectric accelerometers connected
by copper wires is not an option for monitoring the
entire blade, and they have to be replaced, for example,
by metal-free optical accelerometers connected by opti-
cal fiber cables. This solution requires optical data
acquisition systems. As the specifications of the cur-
rently available fiber optic, accelerometers are consider-
ably inferior to their piezoelectric counterparts, and
their performance can significantly affect the perfor-
mance of the overall system, and this must be thor-
oughly investigated. Still, conventional piezoelectric
accelerometers can be an option if only the root section
of blades needs to be monitored.

Regarding the amount of data that the system has
to handle, one can note it is quite moderate despite the
high sampling frequency (in the described implementa-
tion, 16 kHz but can be reduced to 2–3 kHz without
any effect on accuracy). Indeed, the system is not mea-
sured constantly but activated periodically, for exam-
ple, once per hour (the 5-min interval used in this study
is due to the need to collect a lot of data in a short
period of time). The amount of data will depend on the
practical implementation of the system, namely, the
split of the responsibilities between the embedded sys-
tem and the server. For example, if the bandpass filter-
ing, signal alignment, calculation of the covariance
matrix, and the dimensionality reduction are performed
by the embedded system, then each sample is expressed
by a vector of 20–30 floating-point numbers, which is
up to 120 bytes. This amount of data has to be trans-
ferred to the server for classification and decision mak-
ing; if the embedded system is capable of producing
these steps (which involves Mahalanobis distance cal-
culation), then the embedded system needs to transfer
only few bytes to the server when damage is detected.
During the training phase, it is desirable to collect the
raw data (time histories), which will provide more flexi-
bility, for example, for simple damage localization as
described in previous section or if a few sensors are lost
during system use.

Another crucial parameter characterizing the SHM
system is its overall cost, which includes the cost of the
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Figure 10. Test false alarm rate and correct detection rate as a function of allowed false alarm rate, for eight sensor configurations.
The corresponding sensor configurations, with the engaged accelerometers shown as filled circles, are shown above the graph.
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hardware, cost of installation (either retrofitting or
installation during blade manufacturing), and mainte-
nance and operational costs. The apparently high cost
of such a system makes it economically feasible only
for multi-megawatt wind turbines whose blades’ length
reaches 80–100 m. Monitoring of the full length of such
a blade requires 20–30 accelerometers per blade,
though the data acquisition channels can be shared
between the blades using multiplexing. For long blades,
a multi-actuator design (as described in Tcherniak and
Mølgaard11), appears promising; thus, the blade can be
monitored by sections. This allows a significant reduc-
tion of the data acquisition channels. Concluding, we
can note that the projected cost of such a system may
be considerably high; however, with a proper design, it
can be notably reduced.

Conclusion and future research

This study presents an active vibration-based SHM sys-
tem that utilizes an electromechanical actuator (auto-
matic hammer) and an array of accelerometers. As a
damage feature, a covariance matrix between the mea-
sured acceleration signals was used. This article
describes a 3.5-month measurement campaign when
the system was installed on an operating Vestas V27
wind turbine. The ability of the system to detect an
artificially introduced failure (blade’s trailing-edge
opening) was investigated. It was demonstrated that a
15-cm-long opening can be detected without stopping
the wind turbine. It can be concluded that the actuator-
based approach in combination with covariance-based
damage feature can be used for successful detection of
typical blade defects, while using a feasible hardware
setup and semi-supervised learning algorithm.

The authors see the following directions of future
development. The first direction concerns creating vir-
tual test environments, which will allow simulation of
the vibration response of the blade to an actuator hit.
Such environments should be based on a three-
dimensional (3D) model of the blade detailed enough to
realistically reproduce the time history of the accelera-
tion responses with good resolution. The environments
are a convenient tool for designing and optimizing the
SHM system, as it facilitates selecting the number and
location of the actuator and accelerometers, and testing
the design against different types and locations of blade
faults. Such a tool can also be useful to determine the
minimum characteristics of the data acquisition chain.
For example, using such a tool, one can evaluate the
suitability of metal-free optical accelerometers in the
blade SHM context.

The second direction is the improvement of the clas-
sification algorithm. First of all, the algorithm should

be able to take into account the weather conditions.
There are already a number of promising approaches
minimizing the effect of weather conditions on the dam-
age detection results. Another approach to improve the
certainty of the classification is to utilize the sequence
of observations. Indeed, the SHM system produces a
binary answer (the blade is either healthy or damaged)
after every actuator hit. However, there is no need to
make a conclusion solely based on one observation,
while many sequential observations are available.
Utilizing this sequence may considerably improve the
certainty of the decision making. For example, the
sequential probability test ratio (SPRT) approach looks
like a promising tool to benefit from the observation
sequence.23
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