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SUMMARY

In this thesis, phase contrast tomographic experiments are simulated in order
to test and compare different variations of the reconstruction methods related
to phase contrast tomography(PCT).

Computed tomography formulated as both a continuous and discrete model
is presented. Different reconstruction methods, including analytical and itera-
tive methods are also presented with some examples. This leads to a presenta-
tion of the regularization methods, where total variation (TV) regularization is
the main focus for this project.

A forward model for the PCT experimental set-up called free space propa-
gation is presented and implemented, in order to simulate experimental data.
Phase retrieval techniques, which are used when reconstructing PCT data, are
also presented and implemented. From these techniques a selection of com-
plete PCT reconstruction methods are defined and put into the formulation
of TV regularization. In order solve the defined TV regularization problems
an optimization algorithm is implemented, which is set up to handle the PCT
reconstruction methods.

Finally the optimization algorithm is used to solve different types of sim-
ulated experiments using the different methods. First the PCT methods are
tested against the standard absorption based tomography method, to show some
examples where PCT can be advantageous. Next the different PCT methods are
tested for different scenarios and compared in order to identify the advantages
and disadvantages of the different techniques.
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NOMENCLATURE

List of symbols

λ Wavelength of X-rays.
E Energy of X-rays.
I0 Intensity of X-ray before interaction with object.
IL Intensity of X-ray after interaction with object.
x Cartesian coordinate vector.
f(x) Continuous object in Cartesian coordinates.
xi Cartesian coordinate in dimension i.
R Radon transform operator.
δDirac Dirac delta function.
t Translational variable from the Radon transform, perpendicular to

the direction of the X-rays.
θ Angular parameter from the Radon transform.
pθi(t) Projection through Radon transform, for angular variable value θi

with integer i.
pθ(t) Sinogram of projections through Radon transform.
F /F−1 Fourier transform operator / inverse Fourier transform operator.
ω Frequency vector for Fourier space frequencies.
Nθ Number of discrete angles for angular parameter θ.
Nt Number of discrete values of translation variable t.
Ψ(ω) Filter function in Fourier space.
N Number of pixels in each coordinate direction.
Pi,j Pixel expansion function.
pn Pixel expansion function in single index notation n.
Ui,j Discrete object value in pixel i, j.
un Discrete object value in single index notation n.
bm Discrete measurement of X-ray following line Lm.
am,n Distance travelled by ray m through pixel n.
A Projections matrix of size M ×N2 with elements am,n.
T1, T2 Symmetric positive definite matrices defining the SIRT methods.
I Identity matrix.
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T (u) Data fidelity term in the regularization formulation.
R(u) Regularizer in the regularization formulation.
D Finite difference approximation of the derivative operator.
α Regularization parameter in the regularization formulation.
JTV Total variation analytical operator.
RTV (u) Total variation discrete reguralizer.
Dn Local derivative in pixel n.
d Thickness of 3D object.
ni Refractive index of material.
δ Refractive index decrement.
β Absorption index.
B(x) Absorption image from one X-ray projection.
φ(x) Phase shift image from one X-ray projection.
T (x) Transmittance function.
R Distance from object to detector.
q Smallest detectable element.
PR(x) Fresnel propagator.
IR(x) Intensity image.
ps Pixel size on the detector.
c Speed of light.
h Planck’s constant.
Bθ(t) Absorption data.
φθ(t) Phase shift data.
βv, δv Vectors with discrete absorption index and refractive index decre-

ment, respectively.
Bv, φv Vectors with absorption data and phase shift data, respectively.
Tθ(t) Transmission data.
IRθ (t) Intensity data.
Tv, I

R
v Vectors with discrete transmission and intensity data, respectively.

C, S Diagonal matrices for linear phase retrieval model.
G Matrix for CTF phase retrieval model.
σ Proportionality between absorption and phase shift data.
W Matrix for CTF duality phase retrieval model.
Q Matrix for AC2R method.



IX

Abbreviations

CT Computed Tomography.
PCT Phase Contrast Tomography.
FBP Filtered Back Projection.
IR Iterative Reconstruction.
ART Algebraic Reconstruction Technique.
SIRT Simultaneous Iterative Reconstruction Techniques.
TV Total Variation.
ABT Absorption Based Tomography.
CTF Contrast Transfer Function.
TS Two Stage.
AC Algebraic Combined.
TS2R Two Stage method with two R distances.
TSD Two Stage method with Duality assumption.
AC2R Algebraic Combined method with two R distances.
ACD Algebraic Combined method with Duality assumption.
CP Chambolla and Pock optimization algorithm.
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Chapter 1

INTRODUCTION

The scientific research of Computed Tomography (CT) began in the 60’s and
70’s [1] and is still a developing research topic in many universities around the
world. The origin of CT was within the perspective of using it for analysis of
biological tissue, directed at both treatment and research of mainly the human
body. With the advancement of synchrotrons and more coherent X-ray sources
the use of CT has spread to other research areas. For industrial applications,
in materials science within physics and biological research, among other things,
this method has also proven a valuable analysis tool. Increasing demand of
higher resolution, lower X-ray doses, better distinction between similar tissues
and reduced time consumption places high demands on the acquisition of data
and mathematical reconstruction methods.

Resent development in laboratory X-ray sources have made partially co-
herent high energy X-rays acquirable on relatively small experimental set-ups,
compared to the synchrotrons. This opens up for techniques which are not usu-
ally used in lab facility, such as Phase Contrast Tomography (PCT) which is the
subject of this thesis. At the frontpage an image of a laboratory X-ray source
from DTU physics is shown.

The main idea behind PCT is based on the refractive effects of X-rays when
passing through an object. In the classical set up, the X-ray passing through
the medium is mathematically modelled as purely absorption based, where the
refractive behaviour is seen as negligible. For PCT, the refraction is modelled
as a phase change of the travelling X-ray waves. By expanding the absorption
model to include refraction, the model becomes more detailed and advanced,
with the aim to produce more precise and exact scanning results. Therefore
PCT could be used to produce better results than absorption based tomography
for some experiments. Since the model, and hence the problem to be solved,



2 INTRODUCTION

becomes more complicated this is not necessarily a method which is desirable
for all purposes.

The method for solving CT problems is called reconstruction, and recon-
structions are also an important part of solving PCT problems. There exists a
series of reconstruction methods based on either analytical or discrete mathe-
matical formulations, with different focuses such as efficiency, data acquisition,
prior knowledge among other things. For this project the focus is to use Total
Variation (TV) regularization as the reconstruction technique, since the speci-
men examined with X-rays often are piecewise constant and since it has been
used to produce some good results for both CT [2] and PCT [3].

The main focus for this project to simulate different PCT experiments and
show what strengths and weaknesses are related to PCT and the different takes
on this method. Some simulated PCT experiments should demonstrate prob-
lems where PCT method would be valuable or maybe even necessary when
compared with the classical CT method. Other simulated experiments are car-
ried out in order to test and compare different variations of PCT and especially
what the strengths and limits of these are. In this way, a thorough comparison
of different PCT variations could make a basis for choosing the experimental
set up and reconstruction method that is best suited for a real life experiment.

All code and simulations has been carried out in Matlab. Functions from
packages, besides the standard library tools are mentioned when used. The
implemented code, along with supplementary packages, can be download via
Dropbox 1.

1dl.dropboxusercontent.com/u/4368314/Matlab_Code_Msc_Rasmus_Dalgas.zip

dl.dropboxusercontent.com/u/4368314/Matlab_Code_Msc_Rasmus_Dalgas.zip


Chapter 2

COMPUTED TOMOGRAPHY

Computed tomography, with a focus on standard absorption based tomography, is
presented with a short historic introduction. X-ray tomography and data acqui-
sition methods are also introduced. Different reconstruction methods, including
both analytical and iterative, are presented with a few examples. Finally regu-
larization and measurement noise is also mentioned.

From a mathematical point of view, the task of calculating the interior of
an object from measured lower dimensional projections is called reconstruction.
The reconstruction problem is a so called inverse problem, where we derive some
model to describe the behaviour of the travelling X-rays, measure the X-rays
after they have passed through the object and try to calculate what object fits
the measurements through the model. See Figure 2.1 for a schematic overview.

Object Physical Process Measurements

Model
Reconstruction

Modelling

Forward Model

Figure 2.1: The inverse problem aims to reconstruct the Object, which corresponds
best, in some sense, to the Measurements, which are recorded through some not com-
pletely known Physical Process. In the ideal situation the Forward Model used for the
reconstruction is very similar to the physical process, though this could require the
model to be highly complex, which is undesirable for several reasons.
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Inverse problems, such as the reconstruction problem, are often ill-posed.
Ill-posed problems are problems which does not fulfil the conditions for a well-
posed problem. Well-posed problems were defined by Hadamard [4] by three
conditions:

• Existence: Does a solution to the problem exist?

• Uniqueness: Is the solution unique?

• Stability: Is the solution stable?

For reconstruction problems these conditions can all be broken in different cases.
If the measurements are affected by noise, there might not exist any solution
which fits the measurements exactly. If the number of measurement data points
is less than the number of variables we solve for, there can be series of solutions
which fits the measurements, not one unique solution. Finally the model can
be unstable with respect to changes in the data, which means that the solution
could change dramatically for small changes in the measurements. All three
conditions should be kept in mind when solving reconstruction problems, since
they are essential when deciding for the solution method.

The reconstruction problem was a research topic of the Bohemian mathe-
matician Johann Radon who published a paper about the reconstruction prob-
lem in 1917, where he showed that a unique solution can be obtained from a
complete series of line integrals through an object. However practical solution
methods was not developed until about 50 years later [1], where the development
of CT as we know it today started.

The first scanners were so called pencil beam scanners which emits single
X-ray beams. The X-ray source is rotated around the object, perpendicular
to the beam direction, and for different angles the remaining X-ray intensity is
measured in a single detector. In order to obtain sufficient data for the recon-
struction, the X-ray source is translated linearly in the direction perpendicular
to the beam direction and several measurements are thereby recorded for each
angle [1]. See Figure 2.2 for a 2D model sketch of the pencil beam.

The pencil beam scanner only allows us to measure a single ray at a time,
which is a very time costly drawback. This drawback lead to a development of
the fan beam scanner. The fan beam scanner emits X-rays in a fan with some
angular width, rather than a single ray, and thus a series of detectors, instead
of just one, is needed. See Figure 2.3 for a 2D model sketch of the fan beam ge-
ometry. This method speeds up the data acquisition and reduces the total scan
time duration significantly which is desirable for many practical purposes. To-
day most industrial CT scanners uses the fan beam (or 3D cone beam) method
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since speed is critical.

Figure 2.2: Pencil Beam geometry.
Figure taken from [1].

Figure 2.3: Fan Beam geometry.
Figure taken from [1].

A problem with the fan beam scanner geometry, is the more complicated
geometry, since the rays are not parallel. For some physical set-ups the parallel
rays are still required, for example synchrotron facilities. Therefore a parallel
beam method is used, which is similar to the the pencil beam scanner, but
instead of one beam, several parallel beam are projected simultaneously.

2.1 X-ray tomography

Tomography is a technique used within a wide variety of natural sciences, for
example geology, biology and medical science. The technique utilizes the effects
of travelling electromagnetic waves, light or sound waves for example, to section
an object of interest. The waves used in CT scanners are X-ray waves, which are
in electromagnetic waves with a wavelength in the range λ ∈ [3 ·10−9, 10−6](m),
corresponding to energies in the range E ∈ [1, 400](KeV) [5].

The most common X-ray tomography method, used in for example medical
equipment, is the absorption based method. For this method the transmission,
especially the absorption, of the X-rays through an object is modelled by the
Lambert-Beer law. This law models the attenuation of the X-rays along lines
through some object. For a Cartesian coordinate vector x and the coefficient of
attenuation for the object described as a function f , the law can be mathemat-
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ically stated as [5]

IL = I0 exp

(
−
∫
L

f(x) dx
)
. (2.1)

Here the IL is the intensity of X-ray L after interaction with the object. In this
setting x could be any dimension larger than one. Rearranging (2.1) we arrive
at

log

(
I0
IL

)
=

∫
L

f(x) dx, (2.2)

which is called the projection measurement. These projections are the available
data we will have from a series of measurements, and the attenuation coefficient
f is what we want to find, i.e. the inverse problem of tomography.

The detectors of most CT systems are scintillator detectors, which consist
of a scintillator and a photon detector. The scintillator converts the short-wave
X-rays into long-wave electromagnetic waves [1] which can be recorded by a
photon detector, for example a CCD. The recorded photon count can be related
to the intensity of the X-ray after the object, IL. The original intensity of the
X-ray is known, I0, and together this gives us the projection measurements.

2.1.1 Continuous model and analytical reconstruction

The analytical reconstruction methods are based on continuous measurements
and continuous reconstructions. For real life problems the measurements will
be discrete, though for the mathematical theory the continuous model is used.
A central part of the analytical reconstruction methods is the Radon transform.
This transform relates the angular measurements to the projections through a
line integral, similar to Lambert-Beer law (2.2).

A 2D object defined in Cartesian coordinates, x1 and x2, as the continuous
function f(x1, x2) can be parametrized by an angular parameter θ ∈ [0, π[ and
the translational parameter t ∈ R through the relation

t = x1 cos(θ) + x2 sin(θ). (2.3)

Given this parametrization the Radon transform R can be written in one of the
following ways:

Rf(t, θ) =

∫ ∞
−∞

f(t cos(θ)− τ sin(θ), t sin(θ) + τ cos(θ)) dτ

=

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2) δDirac(t− x1 cos(θ)− x2 sin(θ)) dx1 dx2.
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Where δDirac is the Dirac delta function. This transform also generalizes to
higher dimensions > 2, where the integration is over hyperplanes of dimen-
sion n − 1. For each angular value θi ∈ [0, π[ this transform corresponds to a
projection p

pθi(t) = Rf(t, θi).

A series of projections is often called a sinogram. These projections are the
measurements as mentioned in the previous section. In theory the translational
parameter t ∈ R can be any real number, though in practice since the object
of interest only has some finite dimensions this parameter will only have some
finite range of values.

Relating this to the schematic overview of the inverse problem in Figure 2.1,
we now have the data measured by the detector, i.e. the Measurements. The
measurements are assumed to follow the Forward model, Lambert-Beer law,
through a Radon transform, and the next step is to reconstruct by solving the
inverse problem.

Filtered back projection
The most common analytical reconstruction method is called filtered back pro-
jection (FBP). This method filters the projections in the Fourier domain followed
by a back projection to the object domain in the Cartesian coordinates [1]. This
method can be written up as a three step procedure:

Fourier transform p̂θ(ω) = F(pθ(t)) =
∫ ∞
−∞

pθ(t)e
−2πitω dt

Filtering pfθ (t) = F
−1 (p̂θ(ω)|ω|) =

∫ ∞
−∞

p̂θ(ω)|ω|e2πitω dω (2.4)

Back projection f(x1, x2) =

∫ π

0

pfθ (t) dθ =

∫ π

0

pfθ (x1 cos(θ) + x2 sin(θ)) dθ

Here the parametrization (2.3) is used. F denotes the 1D Fourier transform
along t and the Fourier transformed variables are marked with ·̂ . This specific
filter in this method is needed to secure the reconstruction of the object to be
exact. That is, for a complete sinogram where measurements are collected from
all angles and translations, the object can be reconstructed exactly, using FBP.

As mentioned above the measurements will be discrete in real life, and so this
continuous formulation has to be discretized in order to be useful in practice. In
Matlab this can be done using the function radon. This calculates the Radon
transform of a discrete object. Filtered back projection can also be carried out
in Matlab, this can be done using the function iradon.

In Figure 2.4 an object called the Shepp-Logan phantom, which resembles a
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cross section of a brain, is transformed to a series of projections (the sinogram)
and reconstructed using FBP. The actual Shepp-Logan phantom is a 3D model,
but to make it simple a 2D example is presented here, since the techniques can
be generalized to 3D.

x
1

x
2

Original

 

 

θ

t

Sinogram

 

 

x
1

x
2

FBP Reconstruction

 

 

Figure 2.4: Radon transform and FBP on Shepp-Logan phantom(256× 256 pixels).
Nθ = 180 equidistant discrete angles in [0◦, 179◦] and Nt = 367 t-values for each
discrete angle.

The FBP method presented in the three steps (2.4) has a problem when
data becomes noisy data. The filtering process in the Fourier domain filters
the data according to the absolute value of the frequencies i.e. high frequency
data is amplified and low frequency data is dampened. The problem is that
the measurements are inevitably affected by noise, so high frequency noise will
be amplified when reconstructing using FBP. A way to handle this problem
is to modify the |ω| filter, also called the ramp filter, to a filter which either
amplifies the high frequencies less or even dampens them. A series different
filter functions Ψ(ω) that is typically used for this, are shown in Figure 2.5.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ω

Ψ
 (

ω
) 

Filter Functions Ψ(ω)

 

 

Identity

Sinc

Cosine

Hamming

Hann

Figure 2.5: Functions for filter modifi-
cation, frequencies between -1 and 1.
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Modified FBP Filters

 

 
Ramp

Sinc

Cosine

Hamming

Hann

Figure 2.6: Modified filters, frequencies
between -1 and 1.
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These functions are multiplied to the ramp filter, in the filtering step in (2.4),
such that the final filter becomes Ψ(ω) · |ω|. These filters are visualized in
Figure 2.6, where Ψ(ω) is just the identity for the ramp filter. When introducing
the filter functions it should be noted that the FBP method looses its exactness.

To show the effects of these filters in reconstructions, Gaussian white noise
have been added to the sinogram in Figure 2.4 and the different filters have been
used in the reconstruction process. To compare the different reconstructions
numerically an error-measure is needed. Here a relative error measure e is used,
defined as

e(u) =
‖u− u∗‖2
‖u∗‖2

· 100, (2.5)

where vector u is the FBP solution, vector u∗ is the original image and ‖ · ‖2
is the two-norm. In Figure 2.7 the reconstructions of the (256 × 256 pixel)
Shepp-Logan phantom is shown with corresponding relative error.

Ramp, e = 26.9%

 

 
Sinc, e = 22.9%

 

 
Cosine, e = 17.4%

 

 
Hamming, e = 15.5%

 

 
Hann, e = 15.1%

 

 

Figure 2.7: FBP solutions using different filters on data with normal distributed
noise added, of a relative magnitude level at 25%.

For this specific problem the Hann filter gave the best numerical result,
though this is very problem dependant. The performance of the filters is also
highly related to the magnitude of the noise, for example for this specific problem
the Ramp filter gives the best numerical result for a low 5% noise level and the
cosine filter the best result for a 10% noise level.

2.1.2 Discrete model and algebraic reconstruction

As opposed to the analytical solution methods presented in the previous sec-
tion, there is also a series of discrete solution methods which can be used to
reconstruct the object from a set of measurements. For these methods both the
object space and the reconstruction space is discrete. The model used is a linear
model which follows from the discretization.

The discretization of the object space is based on an expansion with respect
to a set of expansion functions. In this case the pixel (for 2D or voxel for 3D)
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expansion functions is used as in [6]. Here, similar to the analytical reconstruc-
tion, only the 2D case is considered for simplicity. The object space is separated
into N ×N equal-sized pixels. For pixel (i, j) the pixel expansion function is:

Pi,j(x) =

{
N2 if x ∈ [x

(i−1)
1 , x

(i)
1 ]× [x

(j−1)
2 , x

(j)
2 ],

0 else,
i, j = 1, 2, ..., N.

With pixel values Ui,j the expansion can be written as:

f(x) =
1

N2

N∑
i,j=1

Ui,jPi,j(x) =
1

N2

N2∑
n=1

un pn(x) where n = i+ (N − 1)j. (2.6)

Here single index notation n = 1, 2, ..., N2 is introduced.

As mentioned in the beginning of section 2.1 the projection measurements are
integrals along lines through the object. The discrete measurements becomes:

bm = log

(
I0
ILm

)
=

∫
Lm

f(x) dx m = 1, 2, ...,M.

Inserting the discrete expansion of the object space this becomes:

bm =

∫
Lm

f(x) dx =

∫
Lm

1

N2

N2∑
n=1

un pn(x) dx =
1

N2

N2∑
n=1

un

∫
Lm

pn(x) dx.

The integral over the basis functions pn(x) can be determined by introducing
am,n: the distance travelled by ray m through pixel n. A sketch of this is shown
in Figure 2.8. Inserting am,n into the integral becomes

∫
Lm

pk(x) dx = N2am,n.
The discrete model therefore becomes

bm =

N2∑
n=1

un am,n m = 1, 2, ...,M.

Figure 2.8: Line intersection method sketch, that shows the pixels intersected by a
single x-ray. Taken from [6].
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The relation between measurements b and the object u is linear, so by creat-
ing matrix A with element values am,n such that A = {am,n}m=1,...,M,n=1,...,N2

we can write this as a linear system

Au = b. (2.7)

In this linear system b and u are column vectors of measurements and pixel-
values, respectively. If ray m does not intersect with pixel n, am,n is 0 and since
this is relatively typical the matrix A is sparse. For a series of measurements
bm,m = 1, ...,M and a known scanning geometry, where we know which pixel is
intersected by which X-ray we can set up A and we have a linear discrete model
1.

This model assumes that the object is piecewise constant within each pixel,
which is an approximation of the real world that becomes better for smaller
pixel sizes. With this model we have arrived at a linear inverse problem.

Iterative Reconstruction
The system matrix A in (2.7) often becomes large when we have a lot of data
combined with a desire for high resolution results, i.e. many pixels. There-
fore Iterative Reconstruction (IR) methods, or also called algebraic method,
are typically used for solving the linear system, rather than classical Gaussian
elimination. There are two main classes within iterative: Algebraic Reconstruc-
tion Technique (ART) and Simultaneous Iterative Reconstruction Techniques
(SIRT).

The ART method is a row action method, which iterates row by row [8].
So in one total iteration, k, the method steps through all of the M rows of the
system matrix A. For the k’th iteration and m’th row of the system matrix A
denoted as aTm the iterative update scheme can be written like this [7]:

u(k,m) = u(k−1,m)+α(k) bm − aTmu(k−1,m)

‖am‖22
am m = 1, 2, ...,M , k = 1, ... (2.8)

Here · T denotes the transpose and α is a parameter of the method called the
relaxation parameter. This parameter could either be constant or change for
each iteration, hence the ·(k) notation.

The SIRT method steps through all of the rows simultaneously, hence the
name, and the update scheme can be written as such [7]

u(k) = u(k−1) + α(k)T1A
TT2(b−Au(k−1)). (2.9)

1The system matrix A could be build using the AIRtools package [7]. In this project a
modified version of, paralleltomo.m from AIRtools function, called parbeam.m, is used. This
function was given to me by my supervisor Jakob Sauer Jørgensen.
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Here T1 and T2 are symmetric positive matrices that defines different types
of SIRT methods. Two common versions are the Landweber and Cimmino
methods [9]. For the Landweber method both matrices are the identity matrix
T1 = T2 = I. For the Cimmino method T1 = I and T2 is a diagonal matrix
with elements 1

M
1

‖am‖22
.

The advantages for discrete model is that they model the geometry of the
scanning set-up better than the analytical methods [10]. So for scanning set-ups
with restricted data, where it for example only is possible to scan in a limited
range of angles, or where we can only acquire a certain number projections for
each angle, the iterative methods have a clear advantage.
Most of the commercial CT scanners use filtered back projection [11], even
though these iterative methods have existed in the literature for more than 40
years [8] and have been tested for many years as well.

In Figure 2.9 an comparison of FBP and IR with limited data is shown. In
this example the artefacts inside the object makes it harder to see some of the
smaller objects on the FBP solution, though the IR solutions are a bit blurred.
The AIRtools package [7] has been used to produce these results.

x
1

x
2

FBP Reconstruction, e= 77.9

 

 

x
1

x
2

ART Reconstruction, e= 32.6

 

 

x
1

x
2

CIM Reconstruction, e= 32.6

 

 

Figure 2.9: 2D Shepp-Logan phantom example of limited data, where only 12 evenly
distributed angles are chosen for θ ∈ [0◦, 179◦], to show the advantage of the IR
methods. The ART method has iterated for 10 iterations, with α = 0.25, and the
slower converging Cimmino method for 50 iterations with α = 1/σ2

1 , for σ1 being the
largest singular value of ATT2A.

The biggest disadvantage of the IR methods is that they are relatively slow,
in a computational sense, due to the fact that one single iteration requires essen-
tially both a forward projection and a backward projection [10]. Dependent on
which iterative algorithm is chosen and how difficult the problem is, convergence
of the algorithm to a good result could require many iterations, which clearly
makes IR computationally slow, when comparing to FBP.

Another disadvantage, related to this, is the lack of a distinct stopping cri-
terion, which is a problem because these methods do not necessarily converge
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toward the solution we perceive as the best solution. So some useful stopping
criterion is needed in order to stop iterating when the best solution is reached.

These disadvantages could be the reason that iterative methods are not used
in commercial CT scanners. However a method such as ART which operates
row-by-row, could actually start calculating on the first iteration sweep before
all measurements where taken, which along with other initiatives, could help
speeding up the IR method. More details on the use of iterative methods in
commercial CT can be found in [11].

2.1.3 Regularization

The linear system matrix A from (2.7) is often ill-conditioned, meaning that
the condition number is high and that inversion of this will give numerical
inaccuracies. This is especially a problem when the measurements are affected
by measurement noise, since these inaccuracies could end up amplifying the
noise drastically and thus distorting the solution. Just as the modified filtering
for the FBP method, we need to handle the noise when using the discrete model.
This can be done by regularizing the solution, such that we force it to behave
in an expected way. Here it should be noted that introducing regularization is
the task of imposing some prior knowledge of the object of interest.

When introducing regularization we lose the iterative formulations from the
previous section, since we cannot include regularization in the update functions
(2.8) and (2.9). Instead we set up a optimization problem formulation which
allows us to introduce the regularization term. This formulation is still based
on the discrete linear formulation (2.7) and since we still wish to fit the recon-
struction u to measurements b, we want projected image Au to be as close to
b in some sense. The difference between Au and b is often measured in some
norm ‖ · ‖ and this is called the data fidelity term T (u) = ‖Au− b‖, which is the
first of the two term of the regularization formulation. The other term, which
is not related to the linear model, is the regularizer R(u). The regularization
formulation can be written as:

u∗α = argmin
u
{T (u) + αR(u)}.

Where α ∈ R+ is a regularization parameter. For T (u) = ‖Au− b‖22 and α = 0
this becomes the least squares problem.

The introduction of this regularization formulation opens a wide variety
methods since there is a choice of the two terms T (u) and R(u), a choice of op-



14 COMPUTED TOMOGRAPHY

timization method and a choice of the parameter α. The choice of optimization
method will not be discussed in this project, only mentioned, since it can be an
entire research topic in itself. The choice of α will be slightly discussed in the
following and the choice of the two terms will be elaborated in more detail.

There are several ways to choose the "best" value for the parameter α, it
could be based on the relationship between T (u∗) and R(u∗), it could be based
on a statistical method using for example cross-correlation or some other way of
determining α. This depends on several things, especially how the "best" value
is determined. An overview of some of the methods can be found in chapter 5
of [9].

A highly considered regularization method is the so called Tikhonov regu-
larization method. For this method the two terms are T (u) = ‖Au − b‖22 and
R(u) = ‖Du‖22, where D is a matrix, it could be the identity matrix or a finite
difference approximation of a derivative operator. For D being the identity, a
minimization of the regularized formulation forces the solution u to be as small
as possible, where larger values are penalized the most, which will decrease the
solution values, dependent on α. For D being a finite difference matrix min-
imization of the regularized formulation would minimize differences between
neighbouring pixels such that the solution would become more smooth.

T (u) = ‖Au− b‖22 is not necessarily the best suited norm for the reconstruc-
tion problem, but within this project that is the data fidelity term which is
considered. When considering the best suited data fidelity term both the noise
and the specific reconstruction problem among other things, can be to account,
which makes this a complex task.

When choosing the regularizing term R(u) it is very problem dependent
which term will give the best results. Therefore prior knowledge of the problem
and object, that is some general expected tendencies which can be formulated
mathematically, will be a good starting point for choosing this term. It has been
shown that Total Variation (TV) can be advantageous prior for reconstruction
problems with piecewise constant element [6],[2]. Since objects that are analysed
with X-rays often are piecewise constant this prior seem like a reasonable prior
to introduce. The theory behind TV is elaborated upon in the following.

Total Variation
The Total Variation (TV) approach to regularization is based on objects which
are expected to be piecewise constant. For reconstruction problems this prior
knowledge seem reasonable, since the objects we reconstruct is expected to be
separated into components with different properties, whether it is hard tissue,
soft tissue or both.
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In the continuous setting where a 2D object can be described by a continuous
function f(x1, x2) over some domain Ω. The TV of f can be expressed by the
following operator

JTV f =

∫
Ω

√(
∂f

∂x1

)2

+

(
∂f

∂x2

)
dx1 dx2.

For this to fit as an expression for the regularizer term, this has to be discretized.
The corresponding discrete formulation of the total variation can expressed as
such:

RTV (u) =

N2∑
n=1

‖Dnu‖2,

where n is the pixel-index, Dn is the local derivative of pixel n andN2 is the total
number of pixels. The data fidelity term used for this method is the squared
2-norm.

An optimization algorithm solving the TV regularization problem has been
implemented in Matlab. This algorithm and the implementation is presented
in further details in chapter 6.

2.1.4 Measurement noise

When measuring the X-rays at the detector some noise will inevitably affect the
collected data. This noise is often modelled as normally distributed noise, but
by considering the data acquisition we introduce a more realistic noise model.
The X-ray detector counts the number photons that arrives at it, so knowledge
of the photon count can be used to simulate more realistic Poisson distributed
noise.

The number of expected photons transmitted by a X-ray source can be ap-
proximated by a Poisson distribution [1] and so can the number of detected
photons. In practice the Poisson distributed noise can be simulated by modi-
fying the simulated measurements using a random Poission distribution and an
estimate of the number of detected photons.
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2.2 Summary

Computed tomography has been presented with formulations of a continuous
and a discrete model. Different reconstruction methods for both the contin-
uous and discrete model are presented with some examples of reconstruction
results. Regularization and especially Total variation is introduced and finally
measurement noise is also introduced.

When measurement data is affected by noise, absorption based tomography,
as it has been presented in this section, can still give some problems even if
regularization techniques are used. This could for example be when objects with
low absorption are examined, or when components in an object is desired to be
distinguishable, but have very similar absorption properties. For these cases
the different data handling techniques, such as either filtering or regularization,
will not be enough to give good results. Therefore a different data acquisition
technique is needed.



Chapter 3

PHASE CONTRAST FORWARD MODEL

The physical background behind Phase contrast imaging is presented with a short
introduction to the different phase contrast techniques. The technique in focus
for this project, free space propagation, is presented in further details with ad-
vantages and limitations. Experimental settings and mathematical derivations
of a model for free space propagation is presented. As such the forward model
of phase contrast tomography is presented and finally examples from an imple-
mentation of this is presented.

Phase contrast imaging covers a wide variety of X-ray tomography meth-
ods related to methods presented in chapter 2 especially in section 2.1. Phase
contrast tomography utilizes the fact that electromagnetic waves, for example
X-rays, are not only attenuated when interacting with matter, but the phase of
the wave is also shifted [5].

Some of the advantages of using phase contrast as opposed to absorption
based tomography can be:

• Small differences in material samples can be detected.

• Material distinction in object with different parts of very similar refractive
properties.

• Especially better for higher energy beams in some materials, as seen for
aluminium in Figure 3.1 where the phase effect is higher than than the
amplitude effect.
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Figure 3.1: Ratio of the effect on the phase and the amplitude of a transmitted wave
as a function of the X-ray energy for the element aluminium. Taken from [12].

3.1 Phase contrast

Electromagnetic waves such as X-rays are usually modelled by the electromag-
netic wave equation which comes from Maxwell’s equations. These waves has
components of both a electric and a magnetic field. Here it is assumed that
the X-ray waves are plane waves, such that they follow exp

(
i 2π
λ nd

)
after inter-

action with an object [12], where i is the imaginary unit, d is the thickness of
the object and ni is the refractive index of the object. Normally the refraction
index is just an index number describing the speed of the X-rays in vacuum and
in a medium or an object. When the interaction with the object describes both
an attenuation and a refraction of the X-ray wave, the refractive index can be
modelled as a complex index, in order to include both. The complex refractive
index of materials ni can be described by the two components, the refractive
index decrement, δ, and the absorption index, β:

ni = 1− δ + iβ

Here β should not be confused with the absorption/attenuation coefficient often
denoted µ, which is proportional to the index through µ = 4π

λ β, where λ the
X-ray wavelength [13]. The effects of δ is related to the so called Thomson
scattering and the effects of β is related to the photoelectric effect and inelastic
Compton scattering[14]. So where β attenuates the amplitude of the X-ray
waves, the refractive index δ changes the phase of the waves, such that they
phases shifted relative to each other, this is called the phase shift. The relation
shown in Figure 3.1 is the relation between δ and β which is seen to increase
for higher energy X-rays.
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For absorption based tomographic methods the phase shift caused by the
refractive index decrement in the material is so small, that the effect of this
refraction is negligible when the intensity is measured a at relatively short dis-
tance after the wave has exited the object. But further away from the object
this phase shift is detectable. Combining the complex refraction index with
the plane wave exponential function we get an expression which describes the
attenuation and phase shift the X-ray waves:

exp

(
i
2π

λ
nid

)
= exp

(
−2π

λ
βd

)
· exp

(
i
2π

λ
(1− δ)d

)
. (3.1)

This shows the attenuating effect of β in the decaying exponential function and
phase shifting effect of δ in the complex exponential function.

The first two objectives, in order get data where this refractive information
contained, is then to have: X-ray waves produced suited for the purpose and
some specific data acquisition technique. As mentioned above there are a series
of techniques which can be used for phase contrast tomography and these are
also related to how the X-ray waves are produced. Some of the most well-known
phase contrast techniques are listed below [3]:

• crystal interferometry,

• diffraction enhanced,

• Talbot interferometry,

• aperture-based,

• propagation-based.

Here the first two techniques use crystals and the optical properties of these. The
next two use gratings with slits that in the right set-up can be used to find the
phase contrast. The last method, which is the method we will focus on for this
project, does not need either crystals or gratings. For propagation based phase
contrast tomography, also called free space propagation, the experimental set-up
is very similar to absorption based tomography where no optical components
are needed, only an X-ray source and a detector.

The different methods presented above places different requirements on the
X-ray source, though in common for all of them is the need for a parallel beam
geometry as presented in chapter 2 and shown in Figure 2.2.

The energy of the X-ray waves should also be quasi-monochromatic, that is
only consisting of waves with energies within a narrow energy band, which can
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be achieved by filtering the waves. However there is a trade-off when filtering,
since this will reduce the brilliance of the source and a high brilliance is also
needed. So the source should have brilliance high enough that a filtering will not
reduce this to much. The brilliance of the source is a way to measure the quality
of the X-ray source, which depends on the photons emitted pr. second, the
angular divergence of the rays, the area of the rays and the relative bandwidth
of the monochromator crystal relative to 0.1% bandwidth [5]. Besides that,
the methods also has a demand for high transverse coherency of the source.
The coherency of the source is related to how the X-ray waves from the source
behaves compared to each other. A way to quantify the coherency of the X-
ray waves, is to calculate the cross-correlation between the spacial points on the
waves, high cross-correlation then means that the waves emitted from the source
travels similarly. Having Quasi-monochromatic waves is a necessary condition
for having coherent waves.

Previously it was hard to achieve both high brilliance and coherency on any
equipment besides the large synchrotron facilities. Today it is possible to pro-
duce laboratory equipment which is more suited toward delivering this, which
has given new possibilities for the applications of phase contrast tomography. At
the DTU physics department an experimental laboratory set up is being built, to
carry out phase contrast tomography experiments. This project serves as an ex-
amination of the reconstruction methods related to phase contrast tomography
that could be used for such an experimental set up.

For the free space propagation method there is also a demand for the reso-
lution of the detector which should be a high resolution detector (for example
with resolution of µm pixels). More on the physical model of the free space
propagation in the following section, that is the forward model which the X-ray
waves are assumed to follow.

3.2 Free space propagation

The idea behind free space propagation is mainly that if you move the detector
in the direction of X-rays, such that there is some distance R between the object
and the detector, the waves will propagate which will magnify the effects of the
refraction. Propagation is the movement of electromagnetic waves in a medium,
the propagation of X-rays is described in further details below.

As for standard CT, the idea in phase contrast tomography is to scan the
object from different angles and so collect a sinogram of projections. A single
linear projection of the refractive index and the absorption index in the direction
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x3 can be written like as [13]

B(x) =
2π

λ

∫
β(x1, x2, x3) dx3

φ(x) = −2π

λ

∫
δ(x1, x2, x3) dx3

Here x is a 2D Cartesian coordinate vector, B is the absorption image and φ
the phase shift image. B and φ is not what we can measure on the detector,
but the results of the wave interaction with the object.

A sketch to show the set up for free-space propagation PCT as opposed to
purely absorption based tomography (ABT) is shown in Figure 3.2.
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Figure 3.2: 3D sketch to show the difference in data acquisition between ABT and
PCT. The 2D intensity images shown here are projections of a 3D object along the x3
direction. The object here is a 3D ellipsoid, which is mainly weakly absorbing. Nine
cylinders, which are projected to circles, lies along the x3 direction inside the object.
Five are either purely absorbing (black), four purely refracting (white) and the outer
shell of the elipsoid is also purely refracting. For the PCT method called free space
propagation the experimental set up is similar to ABT. When the detector is close to
object, R ∼ 0, only the absorption B is detected, where further down, effects of both
B and phase shift φ are detected.

The effects of the interaction with the object creates the transmission de-
scribed by (3.1). Inserting the expressions for the phase shift and projected
attenuation this becomes the Transmittance function T ,

T (x) = exp (−B(x)) · exp (iφ(x)) (3.2)

The transmittance T (x) models the interaction of the X-rays with the object.
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After passing the object, the X-rays propagates through the air. The be-
haviour of this propagation depends on the distance from the object R and also
on the wavelength of the X-rays λ. The size of the smallest detectable elements
q determines which regime that describes the propagation best. A way to un-
derstand why q is part of the relation, is that differences in the object acts as
little slits, which is causes diffraction patterns of the propagating wave. The
width of these slits, that is q, is then the smallest detectable difference. So there
are regions in which the propagation is modelled differently. A common way to
separate these regions are as [5]:

Contact region: R� q2

λ

Fresnel region: R ≈ q2

λ

Fraunhofer region: R� q2

λ

The Fresnel region is also known as the near field region and the Fraunhofer
region as the far field region. The region which is most interesting for phase
contrast tomography is the Fresnel region, since in this region the measured
intensity contains information of both the attenuation and the phase shift. An
example of the measurable intensity in these different regions are shown in
Figure 3.3.

Black = absorp.

White = re f rac .

Contact

R=1e-04 m

Near

R=1e-03 m

Near

R=1e-02 m

Near

R=1e-01 m

Far

R=1 m

Figure 3.3: Simulations of detectable intensity through objects that are only ab-
sorbing and only refracting the X-rays, shown from several distances to shown what
information is "visible" in the intensity. This simulates 2D projections along the direc-
tion of the X-rays of a nine 3D cylinders which lies in the same direction. Wavelength
λ = 1Å, pixel size 0.1µm and diameter of circles 0.5µm. Inspired by figure 9.2 in [5].

In the Fresnel region the propagation follows the Fresnel propagator given
as a propagation function [13]:

PR(x) = − i

λR
exp

(
iπ

λR
|x|2

)
By combining the transmission and the propagation a model for the intensity I
can be expressed using the convolution operator ? as such [13]:

IR(x) = |T (x) ? PR(x)|2
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So the intensity is the squared modulus of the convolution of the transmitted
X-rays with the Fresnel propagator. This intensity IR(x) is what is shown i
both Figure 3.3 and Figure 3.2. For some applications presented in chapter 4
the Fourier transform formulation is more desirable since the convolution is a
product in Fourier space. By Fourier transform, formulated as in (2.4), denoted
as ·̂, the Fresnel propagator in Fourier space becomes:

P̂R(ω) = exp
(
−iπR|ω|2

)
. (3.3)

where ω are the spatial frequencies. For a system where the resolution of the
detector is known, the 2D spatial frequencies ω = (ω1, ω2) are limited for discrete
data. For p being the resolution, i.e. size of a pixel in meter (m) such that the
sampling distance is Fs = 1/p, the discrete spatial frequencies are found in:

(ω1, ω2) ∈
[
−Fs

2
,
Fs
2

]
×
[
−Fs

2
,
Fs
2

]
(3.4)

The free space propagation forward model describing the data acquisition
from X-ray source to the recordable intensity has been presented. To set this
in context of the inverse problem presented in Figure 2.1 this intensity model is
attempt to model the physical phenomena caused by the X-ray interaction. The
unknown variables which describe the material components of the object are δ
and β, and the intensities are the measurements. The intensity depends on the
following parameters which are expected to be known for a specific experimental
set up:

• Energy of the X-rays (assumed to be monochromatic) E, which determines
the wavelength λ of the X-rays.

• Pixel size on the detector ps

• Distance from object to detector R

And for this to follow Fresnel propagation as desired, these parameters should
fulfil the Fresnel regime such that:

R ≈ p2
s

λ
=
E · p2

s

c · h
,

where c is the speed of light in vacuum and h is Planck’s constant.

For some of the solution methods presented in chapter 4 measurements from
several distances will be needed. From a data acquisition point of view this
could be problematic since this can introduce some measuring errors such as
misalignments of the measurements. Besides this, the data acquisition time will
also be increased significantly when measurements has to be done from several
distances.
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3.3 Discretization and examples in 2D

In the previous section a forward model simulating the free space propagation
of X-rays in the Fresnel regime is presented. In this section the forward model
is discretized, but for the sake of simplification the forward model is formulated
in a 2D setting instead of 3D. This way the derived discretized model from
section 2.1 can be used. When combining the forward model with tomography,
multiple projections are recorded from different angles which are collected in
a sinogram. Notation and some examples of tomographic measurements are
simulated below.

The tomographic measurements are taken at different angles and for linear
translations perpendicular to the direction of the X-rays similar to the technique
for absorption based tomography. The notation is the same as in section 2.1,
such that the coordinate system of the scanner is rotated around the the coor-
dinate system of the object. In this way several absorption images are collected
into a sinogram holding the absorption data Bθ(t), and similarly for the phase
shift data φθ(t). Using the Radon transform these two sinograms can be written
like this:

Bθ(t) =
2π

λ

∫ ∞
−∞

∫ ∞
−∞

β(x1, x2) · δDirac(t− x1 cos(θ)− x2 sin(θ)) dx1 dx2

φθ(t) = −2π

λ

∫ ∞
−∞

∫ ∞
−∞

δ(x1, x2) · δDirac(t− x1 cos(θ)− x2 sin(θ)) dx1 dx2.

Where the new variable pair (θ, t) is the angle of rotation and t is the linear
translation perpendicular to the direction of the X-rays. So this gives us the ab-
sorption and phase shift data from the absorption index and the refractive index
decrement. The discretized formulation of this is similar to the one introduced
in section 2.1, where the object is separated into N × N pixels and the pixel
expansion (2.6) is used. A single index notation is introduced n = i+ (N − 1)j
for i, j = 1, 2, ..., N , so n = 1, 2, ..., N2 and the absorption index and the re-
fractive index decrement are collected in two column vectors, βv and δv, with
element index n. Using this expansion and discretization the discrete model
from absorption and refractive index to absorption and phase shift data can be
formulated as such:

Bv = A

(
2π

λ
βv

)
φv = A

(
−2π

λ
δv

)

Here A is the matrix from (2.7) describing the length of the X-rays through
each pixel. Column vectors Bv and φv holds discrete absorption and phase
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shift data of Bθ(t) and φθ(t). For Nθ and Nt begin the total number of angles
and translations, respectively, the discretization for Bθi(tj) becomes element
n = i + Nt(j − 1) in Bv, where i = 1, 2, ..., Nt and j = 1, 2, ..., Nθ. The length
of these data vectors becomes Nθ ·Nt. The reconstruction problem that has to
solved becomes two separate inverse problems:
We want to reconstruct

• absorption index βv from absorption data Bv, and

• refractive index decrement δv from phase shift data φv.

With the knowledge the absorption and phase shift data, Bv and φv, it is clear
now that the problem to be solved are two similar reconstruction problems, as
considered in subsection 2.1.2 and subsection 2.1.3. However what is recorded
at the detector are not these two sinograms, it is the combined intensity sino-
gram which is modelled by the transmission and propagation as described in
section 3.2. The intensity data which can be recorded at the detector is denoted
as such:

IRθ (t) = |Tθ(t) ? PR(t)|2 (3.5)

,where: Tθ(t) = exp (−Bθ(t)) · exp (iφθ(t)) .

The discrete formulation of the intensity data Iv can be written using discrete
notation introduced above. First the discrete transmission is introduced:

Tv = exp(−Bv + iφv).

Where exp operates element-wise on the vectors. Since the projections of the 2D
object are 1D, with variation along translation variable t, and the propagation
function PR(t) is only varies in this dimension, the discrete propagation function
is the same of any fixed angle θi. A column vector PRv is introduced that has the
length Nθ · Nt and is the propagation function evaluated at the same discrete
points as Bv and φv. Based on this the discrete intensity data IRv becomes:

IRv = |Tv ? PRv |2

Where | · |2 denotes an element-wise modulus squared operation and ? denotes
a discrete convolution here. In practice this discrete convolution operation can
be done by using the fact that a product in Fourier space is a convolution
in real space. By using a 1D discrete fast Fourier transform (FFT) on Tv,
in the direction where t varies, using the propagation function in the Fourier
space (3.3) and finally using a 1D inverse FFT on the product of these, the
discrete convolution is calculated. This method is used in the forward model
implementation for this project.
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To simulate this forward model, the discrete formulation above has been
implemented and an example from absorption index and refractive index decre-
ment, to the corresponding absorption and phase shift data, and finally to the
intensity data is shown in Figure 3.4 and Figure 3.5.

The phantom used for these examples simulates a grain structure which
consist of different materials. Since this phantom is used several times for this
project it is explained in further details in subsection 3.3.1.
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Figure 3.4: 2D slice example of forward simulation with grain phantom of with
silicon and aluminium grains in a polycarbonate block. On the top original phantom
and below the absorption and phase shift data. The absorption and phase shift data
are not the sinograms which we are able to measure, but sinograms we want to find,
in order to reconstruct β and δ. The original phantom sizes was [256 × 256] pixel.
Tomographic settings here was 359 angles θ in [0◦, 179◦] and 368 translations t for
each angle.
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Figure 3.5: 2D slice example to show a forward simulation of the propagation of
the absorption and phase shift data which gives the intensity measurements needed
to make phase contrast tomographic reconstructions. This is what we can measure
at the detector. Only one intensity sinogram is recorded at the detector, the two
visualizations here are just shown in different color ranges, to visualize the structure
better. The left sinogram has an actual linear colorbar and on the right sinogram
all values above 2 has been truncated to color-value 2. In this simulation the X-ray
energy was 40 keV, the distance from the object to the detector was R = 0.5m and
the pixelsize was 1µm. Tomographic settings here was 359 angles θ in [0◦, 179◦] and
368 translations t for each angle.

3.3.1 Phantom

The grain phantom, used for the example in Figure 3.5, simulates a grain struc-
ture in a 2D slice object. The grains are constructed by making a series of
Voronoi cells, which are a region of closest points to a series of random dis-
tributed centres 1. The Voronoi cells are separated into three regions, 3/5 of
the cells as "background", 1/5 of the cells as one material and the last 1/5 as
another materials. For some of the examples the background will be a low ab-
sorbing material, for example polycarbonate as in Figure 3.5. The two other
materials will be chosen as higher absorbing materials, for example two sort of
metal. In Figure 3.5 the two metals chosen are silicon and aluminium, which
are next to each other in the periodic table, and have very similar absorption
and refraction properties. In Table 3.1 the indexes for some materials are listed.

This phantom simulates a grain structure similar to what can be seen in
physical materials science experiments. A good CT solution for this phantom is
a solution where the distinction between the two materials and the background
is clear and also the determination of what the materials are. The grains of

1A implementation of function phantomgallery.m, which, among other thing, can be used
to create these Voronoi cells, was given to me by my supervisor Per Christian Hansen
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different materials are in several cases next to each other, which makes the dis-
tinction between them more difficult and such the different grains have different
degrees of complexity, in the sense of a reconstruction problem.

Material absorption index (β) refractive index decrement (δ)
Polycarbonate(C16H14O3) 8.43 · 10−12 1.64 · 10−7

Carbon(diamond) 1.90 · 10−11 4.55 · 10−7

Magnesium 1.15 · 10−10 2.22 · 10−7

Aluminium 2.32 · 10−10 3.37 · 10−7

Silicon 2.68 · 10−10 3.01 · 10−7

Iron 6.42 · 10−9 9.54 · 10−7

Copper 9.96 · 10−9 1.06 · 10−6

Table 3.1: Absorption index and refractive index decrement for X-rays of energy 40
keV for different materials, taken from [15].

3.4 Summary

The two steps in the forward model of the free space propagation technique from
the object to the measurements has been presented. The mathematical model is
presented and an example of data produced by the forward model is presented.
When we want to go back from the measurements to the original object, we
have to go through these same two steps in the reverse order as illustrated in
Figure 3.6.

The reconstruction process in Figure 3.6 is the same as for absorption based
CT, so the techniques presented in section 2.1 can be used for this. The phase
retrieval process has not yet been presented, but the idea is go back from the
propagated measurements (3.5) to the projected data. This process has been
attempted in wide variety of ways, which will be presented in the next chapter
about phase retrieval.
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Figure 3.6: Diagram of the forward and inverse problems of phase contrast tomog-
raphy, which shows the different stages from object to measurements. The absorption
index β and refractive index decrement δ, in Cartesian coordinates (x1,x2), are pro-
jected to the two sinograms: absorption data B and the phase shift data φ for angles θ
and translations t. These two sinograms are not measurable, but just an intermediate
step in the forward model. After the object, the X-ray waves are transmitted and
propagated through the air to the detector where they are measured as the intensity
I, a sinogram. Together these two parts are the forward model. To go back through
the same two steps, the absorption and phase shift data are found through phase re-
trieval and finally the absorption index β and refractive index decrement δ can be
found through a reconstruction.
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Chapter 4

PHASE RETRIEVAL

Phase retrieval for free space propagation, the task of calculating the absorption
and phase shift data from intensity measurements, is presented. The focus is a
linear phase retrieval method called the contrast transfer function. This method
is derived mathematically based on a Taylor expansion of the transmission func-
tion. Besides this a simpler variant of the linear models, the duality method, is
presented.

Phase retrieval in this setting is the task of calculating the phase shift and
absorption from intensity measurements. Phase retrieval can be the task of
other phase contrast techniques than free space propagation, though since the
data and the forward problem are different, the phase retrieval technique for
these methods also varies. So the phase retrieval methods presented here are
related to and derived from the free space propagation method presented in
section 3.2. Besides this, the methods presented here are linear phase retrieval
methods. The linear models are chosen since they have produced good results
[13] and especially since a linear model is used when a combined phase retrieval
and reconstruction method is examined in chapter 5.

These phase retrieval methods are based on the intensity, which is the
squared modulus of the transmitted electromagnetic wave convolved with a
Fresnel propagator. The methods are linear with respect to Bθ(t) and φθ(t)
which can be achieved by a Taylor expansion, as described further below. Here
the focus has been on one method, namely the contrast transfer function (CTF).



32 PHASE RETRIEVAL

4.1 Phase retrieval methods

The phase retrieval method examined here is only linear in the Fourier domain,
therefore the intensity is first rewritten in Fourier domain. Here the notation
is similar to the notation from section 3.2 to make it less complicated, i.e. the
derivations are related to a single projection, but also applicable for an entire
sinogram.

In the following the Fourier transform, as defined in (2.4), is used repeatedly.

The intensity can be reformulated as such:

IR(x) = |T (x) ? PR(x)|2 = (T (x) ? PR(x)) · (T ∗(x) ? P ∗R(x))

where ·∗ denotes the complex conjugate. Therefore the Fourier transform of the
intensity can be formulated as (here the Fourier transform of PR, (3.3), is used):

ÎR(ω) =
(
T̂ (ω) · exp

(
−iπR|ω|2

))
?
(
T̂ ∗(ω) · exp

(
iπR|ω|2

))
=

∫
exp

(
−iπλR|ω − τ |2

)
· T̂ (ω − τ) · exp

(
iπλR|τ |2

)
· T̂ ∗(−τ) dτ

= exp
(
−iπλR|ω|2

) ∫
exp (2iπλRωτ) · T̂ (ω − τ) · T̂ ∗(−τ) dτ

This expression can be rewritten to [13], [16]:

ÎR(ω) =

∫
T

(
x− λRω

2

)
· T ∗

(
x +

λRω

2

)
exp (−2πix · ω) dx. (4.1)

Here the inverse Fourier transform of a convolution is used, as well as an assump-
tion that the absorption is weak (B(x) � 1) and the phase is slowly varying.
This intensity formulation will then be the starting point for the derivation of
the linear phase retrieval method.

4.1.1 The CTF method

For the contrast transfer function (CTF) the transmission T (x) is linearized by
Taylor expanding around

−B(x) + iφ(x) = 0.
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Using g = −B(x) + iφ(x) and g0 = 0 the Taylor expansion of the transmission
function (3.2) becomes:

T (x) = exp(g0) + exp(g0)(g − g0) +O(g2)

= 1 + g +O(g2)

= 1−B(x) + iφ(x) +O
(
B(x)2, φ(x)2, B(x) · φ(x)

)
Neglecting the terms of order two or higher, we arrive at a linear approximation
of the transmission T (x) ≈ 1 − B(x) + iφ(x). This is inserted into (4.1) (here
k = λRω

2 is used for simplicity):

ÎR(ω) ≈
∫ (

1−B(x− k) + iφ(x− k)
)
·
(

1−B(x + k)− iφ(x + k)
)

· exp (−2πix · ω) dx

In order to achieve a linear expression, terms of second order or higher are
neglected, which leaves:∫ (

1−B(x− k)− iφ(x− k)−B(x + k) + iφ(x + k)
)
· exp (−2πix · ω) dx

= δDirac(ω) +

∫ (
−B(x− k)− iφ(x− k)

)
· exp (−2πix · ω) dx

+

∫ (
−B(x + k) + iφ(x + k)

)
· exp (−2πix · ω) dx

= δDirac(ω) + exp
(
iπλR|ω|2

)
(−B̂(ω)− iφ̂(ω))

+ exp
(
−iπλR|ω|2

)
(−B̂(ω) + iφ̂(ω))

= δDirac(ω)− 2 cos(iπλR|ω|2)B̂(ω) + 2 sin(iπλR|ω|2)φ̂(ω)

Here integral variable substitution, Fourier transform and Euler’s formula has
been used, as well as k replaced by the original value λRω

2 . A linear model in
Fourier space has been derived which, based on intensity measurements, can
be used for calculating B̂(ω) and φ̂(ω) for known details of the experimental
system, such as the wavelength λ, the distance from object to detector R and
the resolution of the detector, which can be used to find the relevant spacial
frequencies (3.4).

The most conspicuous about this model might be the fact that for each in-
tensity measurement, there are two unknown to be found. This will give a highly
underdetermined system, unless there are measurements multiple detector po-
sitions. For measurements from two distances there will be the same amount
of measurement as variables, which can help to solve this problem. This is one
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way to handle this problem of data to variables ratio, another is called the du-
ality method, which is elaborated upon in subsection 4.1.2. Measurements from
even more than two distances will give more data and therefore this can be a
way to produce even better results, which is the case in for example [13]. How-
ever, as mentioned in section 3.2, more than one distance can introduce some
misalignments which will introduce systematic errors.

The function δDirac(ω) is the Dirac delta which comes from the constant 1.
This could potentially result in a problem, since it becomes infinitely large for
input 0. In order to avoid any problems with this, the zero-frequency should be
handled separately. Other frequency problems arises when the cos or sin terms
become 0, since this leaves the corresponding variables that we are solving for,
to be chosen freely. This is called zero-crossings problems. When measuring
from several distances this problem is reduced, since the zero crossings will be
shifted because they are dependent on the distance parameters R, but for two
distances this could be a problem.

The CTF method gives the best results for objects with low absorption [13],
so this is an important disadvantage of this method. However some of the
examples, where absorption based tomography can have problems and PCT
could be useful, is exactly when the absorption is low.

To set the CTF method into the setting of the discrete 2D formulation
presented in section 3.3. The data from the forward model are the intensity
measurements for example from two distances: IR1

θ (t) and IR2

θ (t). The real
data is discrete so in the discrete notation the data becomes IR1

v and IR2
v . The

measured data is Fourier transformed, discretely, using FFT along the direction
where t varies. The transformed data is then denoted as ÎR1

v and ÎR2
v . In

Fourier space the frequency domain is also discretized as described by (3.4),
though since the projections are only 1D, the spacial frequencies only varies in
this direction. The spacial frequencies are split into Nt, as for variable t, evenly
spaced values, and since it is the same for each angle θ they are repeated every
time θ changes. Single index notation of the spacial frequencies is denoted ωn
where n = i + Nt(j − 1) and i = 1, 2, ..., Nt and j = 1, 2, ..., Nθ. The linear
system can be denoted by having the cosine and sine functions in two diagonal
matrices C and S [3]:

C(R) =


cos(iπλR|ω1|2) 0 · · · 0

0 cos(iπλR|ω2|2) · · · 0
...

...
. . . 0

0 0 · · · cos(iπλR|ωK |2)


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S(R) =


sin(iπλR|ω1|2) 0 · · · 0

0 sin(iπλR|ω2|2) · · · 0
...

...
. . . 0

0 0 · · · sin(iπλR|ωK |2)

 ,

where K = Nθ · Nt is the total number of frequencies. The unknowns, we are
solving for, are the absorption data Bv and the phase shift data φv. These
variables are Fourier transformed, discretely using FFT: B̂v and φ̂v, in order to
be able to set up the linear model. For the two distances, R1 and R2, the linear
model becomes: ÎR1

v

ÎR2
v

 =

(−2C(R1) 2S(R1)

−2C(R2) 2S(R2)

)
︸ ︷︷ ︸

G

B̂v
φ̂v

 (4.2)

If several distances were measured, this would be introduced as new rows of in
the matrix G by C(R) and S(R) again, and the measurements would be stacked
on the left hand side. G is a very sparse matrix, since it is only built from
diagonal matrices and in the case of two distances, it becomes a tridiagonal
matrix. When implementing this method the model in G avoid zero-frequencies
by only using frequencies that is close to 0, but not exactly 0. The zero-crossings
problems are avoided by using a mask which marks the zero crossings and just
assuming that the solution is zero at these crossings, since the solution here
could be arbitrary according to the model.

The linear CTF phase retrieval method has been presented. To use it in
practice, the measurements are first Fourier transformed. Next, the model re-
lating the absorption and phase shift data to the intensity, in the Fourier space,
is set up and solved. After this, the results are inversely Fourier transformed to
achieve results in Cartesian coordinates in real space.

4.1.2 The duality method

The duality method is a way to simplify the linear phase retrieval methods,
such that they only require measurements from a single distance. This is mainly
desirable for two reasons; it will speed up the data acquisition time and it will
reduce alignment and other errors introduced by measuring at two or more
distances. The method is based on the assumption that the absorption and
phase shift data are proportional. This assumption will not hold for all objects,
but even for objects where this does not hold for all materials, this method
has shown some good results [17]. A proportionality constant, σ, between the
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absorption and phase shift data is introduced:

σ =
φ

B
= − δ

β

For some materials, such as for example the phantom with aluminium and mag-
nesium from section 3.3, this factor is not constant. However, for σ is chosen
within a range of realistic values, this will not have a significant influence the
results as also explained in chapter 7.

Using the proportionality assumption with constant factor σ, the CTFmethod,
formulated with respect to the absorption data, becomes:

ÎR(ω) ≈ δDirac(ω)− 2 cos(iπλR|ω|2)B̂(ω) + 2 sin(iπλR|ω|2)σB̂(ω)

= δDirac(ω) +
(

2σ sin(iπλR|ω|2)− 2 cos(iπλR|ω|2)
)
B̂(ω)

This leaves a linear correspondence between the measurements and the absorp-
tion data in the Fourier space, and using this model, phase retrieval can be
carried out based on measurements from a single distance.

Writing up the discrete linear model for the Fourier transformed intensity
data, as in subsection 4.1.1, the linear problem for the CTF duality method is:

ÎRv = (−2C(R) + 2σS(R))︸ ︷︷ ︸
W

B̂v. (4.3)

This is a linear model with a diagonal matrix, which means that it is very easy
to solve, as long as the diagonal elements are non-zero.

4.2 Summary

Some phase retrieval techniques has been presented and derived. Using these
methods the absorption and phase shift data can be found from intensity data
measurements. When the projected data is retrieved from the measurements,
then the next step is to go back and calculate the absorption index and refractive
index decrement using one of the different reconstruction methods presented in
section 2.1.



Chapter 5

PHASE CONTRAST TOMOGRAPHY

This chapter combines the three previous chapters by examining tomographic
reconstructions from measurements of phase contrast data. The first part focuses
on the two stage method, which is phase retrieval followed by reconstruction.
Next the algebraic combined method is introduced, where the phase retrieval is
combined with the reconstruction into one combined linear model, such that the
reconstructions can be done in one step. Details of what and how the different
methods are implemented and their differences is also presented.

In this chapter the phase contrast tomographic data, which now can be sim-
ulated, is run through the phase retrieval methods presented previously and
finally the original object is reconstructed. In this way it becomes possible to
simulate physical experiments with different materials, different retrieval meth-
ods, different reconstruction methods and different experimental set ups such
as variable distance and energy among other things. The two main classes of
PCT methods presented here are: 1) the two stage (TS) method, where the
two stages are phase retrieval and reconstruction and 2) the algebraic combined
(AC) method, where the phase retrieval and the reconstruction is combined into
one step.

5.1 Two stage reconstruction method

The two stage method is the phase contrast tomography method which consists
of a stage of phase retrieval which is followed by a stage of reconstruction as
illustrated in Figure 3.6. This two stage method is a classical way to retrieve the
absorption index and refractive index decrement from intensity measurements.
In other set ups in the literature the reconstruction methods used has been



38 PHASE CONTRAST TOMOGRAPHY

Filtered Back Projection or Tikhonov regularization [13],[18]. For this project
the focus is reconstructions using TV-regularization. Since TV-regularization
has shown good results for normal absorption based CT [2] and also has been
used for phase contrast tomography [3] we expect that it is a regularization
method which will give good results for PCT problems.

The two stage method implemented within this project comes in two different
versions dependant on the phase retrieval method:

• The first method is based on measurements from two different detector
positions placed at distances R1 and R2. For the phase retrieval stage the
standard CTF method is used, where the system (4.2) is set up and solved
with respect to discretely Fourier transformed absorption and phase shift
data. This method is referred to as TS2R, short for two stage method
with two R distances for the measurements.

• The second method is based on measurements from a single detector posi-
tion placed at the distance R. This method uses the CTF duality method
where an absorption and phase shift proportionality is assumed. In this
version the system (4.3) is set up and solved with respect to the discretely
Fourier transformed absorption data. This method is referred to as TSD,
short for two stage method based on duality assumption.

For both methods the data is inversely Fourier transformed after solving the re-
spective linear systems. For TS2R this results in both absorption and phase shift
data, i.e. data for two reconstruction problems. For TSD the phase retrieval
results in the absorption data, which is then the data for a single reconstruction
problem. So this concludes the first stage of phase retrieval.

For the second stage, reconstruction, both TS2R and TSD uses Total Varia-
tion regularization. An optimization algorithm for solving the TV-problem has
been implemented, which is used to solve the two reconstruction problems for
TS2R and the one reconstruction problem for TSD. To make a fair comparison
of the different tomography methods the same optimization method is used for
the TV regularization for all methods. Since the same optimization method
is used, the details of the method and implementation choices, are outlined in
chapter 6.

This concludes the two implemented versions of the two stage PCT method,
and what the two stages consists of. These methods are now ready to be used
in a the setting of simulated experiments.
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5.2 Algebraic combined method

The idea of an algebraic combined (AC) method is to make one combined
method as opposed to the two stage (TS) method presented in section 5.1.
This idea has been examined before in different settings, for example in [18]
where the combined method is based on filtered back projection reconstructions
with 2D filters, or in [3] where a linear formulation is set up and reconstruction
is done using TV-regularization. The setting for this project is similar to the
formulation in [3], though the objective is also to compare the AC method to
the two stage method presented in section 5.1. This comparison is done in order
to show advantages and disadvantages of having a combined model as opposed
to a two stage model for simulated physical experiments. The models presented
in this section are different from [3], since they are build on the discrete formula-
tion detailed in subsection 2.1.2. This discretization is the basis for formulating
simulated experiments in correct physical units. In this way the methods from
discretization to the modelling are done with correct physical units in mind.

The AC model should therefore combine the phase retrieval methods pre-
sented in chapter 4 with the discrete reconstruction methods presented in subsec-
tion 2.1.2 and subsection 2.1.3. Since the discrete model presented in section 3.3
is linear in real space and both versions of the CTF method is linear in Fourier
space, a Fourier transform is needed in order to combine these two methods
linearly. The measurement data consists of 1D projection of a 2D object from
different angles and the Fourier transform is then a discrete transform of each
of the 1D projections. One way to handle this transform, is to make a combined
operator FR which combines the Fourier transform with the Radon transform
such that [FRf ](ω1, ω2) = F(R(f(x1, x2)). In the discrete formulation, the
columns of system matrix A presented in (2.7) corresponds the different pro-
jections of each discrete pixel. By discretely Fourier transforming each these
columns, only along translation variable t, a matrix Â can be created which
describes the linear model from object to Fourier transformed sinogram. Using
this discrete definition a discrete algebraic model, combing the phase retrieval
and discrete linear model, can be formulated. Two version of the phase retrieval
method CTF has been presented and therefore there will also be two versions
of the AC method:

• The first method is, like the TS2R mehtod, based on measurements from
two different detector positions placed at distances R1 and R2. Using
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matrix G from (4.2) and Â the linear discrete AC2R model becomes:ÎR1
v

ÎR2
v

 = G

 2π
λ Â 0

0 − 2π
λ Â


︸ ︷︷ ︸

Q

(
βv

δv

)
.

This model is based on Fourier transformed intensity data as marked with
·̂ . Combining matrices G and Q this gives a linear model which relates the
absorption index and the refractive index decrement to the Fourier trans-
form of the measured intensity data. A function for setting up the linear
model has been implemented, where the matrix combination of G and Q is
calculated, based on the settings of a simulated or real experiment. With
measurements from two distances a TV regularization problem can be de-
fined, and the implemented optimization algorithm can be used to solve
this. This version of the AC method is referred to as AC2R, short for
algebraic combined method using two R distances for the measurements.

• The second version is based on a single detector distance, as for TSD,
placed at the distance R. The phase retrieval step is based on the CTF
duality method, which is based on an proportionality assumption between
the absorption and phase shift. Combing the CTF duality model (4.3)
and Â the linear discrete ACD model can written up as such:

ÎRv = W
2π

λ
Â βv

The model here is based on the intensity data which is discretely Fourier
transformed. A function for setting up the matrix V has been imple-
mented, which is only based on the experimental settings of a simulated
or real experiment. With data from a single distance measurement, a
TV-regularization model can be set up and solved using the implemented
optimization algorithm, which will give the absorption index of the object,
proportional to the refractive index decrement δ with factor −σ. This ver-
sion is referred to as ACD, short for algebraic combined method using the
duality CTF phase retrieval method.

For the TS and ABT method the reconstruction problem, that has to be solved,
is based on the system matrix A, which is a large, but sparse, matrix. Since this
matrix is sparse this can stored and applied without using too much memory.
For the AC method the matrix Â is part of the system matrix and this makes the
system matrix dense due to the Fourier transform. This means that storing it
would demand a lot of memory, which can cause problems for a practical imple-
mentation. Instead of storing the system matrix, a matrix-free implementation
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could be a solution to this problem. A matrix-free implementation is based on
a function which can give the same result as applying, for example, the matrix
A to a vector x, though without setting up the matrix A. This function can
be much less memory demanding since a large dense matrix is avoided, though
it could be computationally slower than applying a matrix multiplication. For
the combined matrix Â a matrix-free implementation would apply the matrix
A first follow by a Fourier transform of the resulting sinogram.

For several optimization algorithms for TV-regularization the transpose of
the system matrix is needed [19],[20]. In a matrix-free implementation, this
means that a function for applying the transpose of a matrix, AT to a vector
y also has to be implemented. If the system matrix consists of a combination
of other matrices, as the case for the AC2R and ACD methods, the rule for
transpose of matrices has to be used ((FR)T = RTFT ). For the combined
matrix Â, the transpose would correspond to applying the transpose of the
Fourier transform first, followed by a transpose of the system matrix A. Since
the Fourier transform is an orthonormal operator it’s inverse corresponds to it’s
transpose. Therefore the transpose of the combined operator Â consists of a
inverse Fourier transform follow by matrix AT , this is denoted as ÂT . For the
AC2R method the transposed system matrix becomes QTGT where QT is:

QT =

 2π
λ Â

T 0

0 − 2π
λ Â

T

 .

For the ACD method the transpose of the system matrix becomes 2π
λ ÂT WT .

5.3 Summary

Four solution methods to the phase contrast tomographic problem, based on the
free space method, has been presented. All of the methods uses the CTF phase
retrieval technique. Two of them uses the phase retrieval and reconstruction in
separate steps, the TS methods, and the other two, the AC methods, uses a
combination of the phase retrieval and reconstruction in one step. The matrices
needed in order to set up a TV-regularization formulation has been presented
for all four methods, and next an optimization algorithm is needed to solve the
now defined problems.
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Chapter 6

TOTAL VARIATION REGULARIZATION

An optimization algorithm for solving the TV regularization problem is imple-
mented. This algorithm is presented, and details of the implementation is de-
scribed along with algorithmic choices and the motivation for these. The appli-
cation of the algorithm to the AC problem, which motivated this implementation,
is discussed. The implementation of the algorithm is tested on a standard CT
problem. Finally the application of this algorithm to PCT and the implementa-
tion of the TSD and ACD methods are tested to verify that these methods are
also implemented correctly, and that optimization algorithm works as expected
on the PCT problems.

An optimization algorithm has been implemented such that TV regulariza-
tion problems can be solved for both the ABT and the PCT methods presented
in chapter 5. The optimization algorithm has been implemented in Matlab, as
well as all other code that has been implemented as part of this project. The
motivation for choosing Matlab as the programming language is that it handles
matrices efficiently enough for prototyping purposes and the necessary packages
and functions already exists. Besides that, it is easy to set up simple examples
to demonstrate the effects of a set up and the code is easy to interpret when
comparing to pseudo code or the mathematical equations it is based on. For
use on data from real life experiments, all of the methods should be extended
to 3D and implemented in a more efficient programming language.

6.1 Implementation of Chambolle Pock algorithm

For both the ABT method and the PCT methods an optimization algorithm
is the main ingredient in solving the reconstruction problem. A reconstruction
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problem usually becomes a large linear system even for small N × N pixel
separated domains. However, since the system matrix A from (2.7) is sparse,
the memory needed to store this is reduced dramatically by only storing non-
zero elements and their indexes. This method is also applicable for the TS
methods, since the system matrix and the entire reconstruction stage is similar
to ABT reconstructions.

For the AC methods the system matrix becomes dense since it includes a
Fourier transform, so storing this matrix will demand a lot of memory. In order
to avoid this, a so called matrix-free system can be set up, where system matrix
can be applied to the variables without setting up and storing the entire system
matrix. This matrix free formulation gives rise to another problem, which is the
choice of optimization algorithm. As mentioned previously TV regularization is
the reconstruction method which will be used for all the methods when compar-
ing them, though when introducing the matrix free formulation the optimization
algorithm should be able to handle this. In order order to have that, an opti-
mization algorithm, which can be used to solve TV regularization problems, has
been implemented.

Based on an algorithm presented by Chambolle and Pock [20] and the adap-
tation to the TV-regularization problems presented in [21], an optimization
algorithm for solving the matrix free TV regularization problem has been im-
plemented. This optimization algorithm is referred to as the CP algorithm. In
the following, a general formulation of a linear problem that is referred to is
Av = y, where A is the system matrix, v the variables and y the data. The
gradient ∇ is should be regarded as the 2D finite difference derivative approx-
imation in directions x1 and x2 separately. As proposed in [21] the operator

for the TV regularization problem becomes the combination K =

(
A
∇

)
. The

specific version of the CP algorithm, adjusted to the TV problem, is the `22-TV
CP algorithm, with the pseudo code presented in Algorithm 4 in [21]. Since
this algorithm is implemented to handle a matrix free set up, the application
of the system matrix A or it’s transpose AT to a vector, should be function
calls, rather than matrix multiplications, other than that the algorithm is im-
plemented according to the pseudo-code.

To compute the norm of K the power method presented in algorithm 8 in
[21] i used. The loop of the power method runs for 30 iterations, which should
be enough to for it to have converged. In the simulated experiments for this
project, the objects considered are relatively small (in the range of µm) which
can make the system matrix applied to a vector, Av, result in very small values.
Since storing numbers on a computer has a finite numerical precision, these very
small values could affect the result when running the algorithm. To avoid this,
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a scalar factor s has been introduced as a parameter of the method, where the
linear problem is scaled as such sAv = sy. This lead in a new linear problem
A∗v = y∗, with A∗ = sA and y∗ = sy, where the solution v is the same as
before and therefore this scaling is only a computational need.

In order to stop the iterative algorithm, in an other way than just by running
some fixed number number of iterations, a stopping criterion has been added.
This stopping criterion uses the relative change of the solution in each step to
determine when to stop. For the solution u in step k + 1 the relative solution
change is measured in the 2-norm as

ũk+1 =
‖uk+1 − uk‖2
‖uk‖2

,

and saved for each iteration. For some tolerance, which is a user specified
parameter, the algorithm will stop when ũ becomes smaller than this tolerance.

To verify this implementation it is compared to the Matlab package TVreg
[7]. For this test problem the materials of the grain phantom is set to some
fictive values taken from [3]. The background is set to 0, so non-absorbing, and
all other material is set to β = 5 · 10−11, which resembles a weak absorbing
material [3]. The ABT method is chosen for this test, since this is the standard
CT method. The other physical details of this test are:

Source: Energy of the source E = 40keV or wavelength λ = 0.31Å,

Detector: Pixelsize of 1µm and 200× 200 pixels in total,

Projections: 359 evenly distributed angles between 0◦ and 179◦ degrees
and 572 evenly distributed beams for each angle.

Photons: 107 detected photons per pixel.

For different choices of the regularization parameter α the problem is solved
with the implemented CP algorithm. The algorithm is run for 2000 iterations
in this example or until the stopping criterion was met with the tolerance 10−6.
The results are shown in Figure 6.1. To evaluate the convergence of the algo-
rithm, the relative change of the solution ũ, is shown in Figure 6.2. When the
relative change of the solution reduces, it is a sign that the algorithm approaches
some specific solution, which a necessary, but not sufficient condition for conver-
gence. Solutions of this problem solved with the TVreg package is presented in
Figure 6.3, to see if the results from this well established algorithm are similar
to the results from the implemented CP algorithm.
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Figure 6.1: Solutions of the ABT problem with a fictive material on a non-absorbing
background. The solution algorithm is the implemented CP algorithm where a scaling
of s = 104 has been used. Different choices of the regularization parameter α shown.
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of the solution difference between iterative steps. Illustrated for different choices of
the regularization parameter α.
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Figure 6.3: Solutions of the ABT problem with a fictive material on a non-absorbing
background. The TVreg solution method has been used to solve the problem for
different choices of the regularization parameter α.

These tests shows that the implemented CP algorithm can be used to solve
TV regularization problems, especially the CT problem. The implemented CP
algorithm is seen to give results comparable to the results produced by a well
established TV regularization solver, and therefore the implementation of this
solver is expected to be correct. The tests also shows the effect of the regu-
larization parameter which smooths the solution in some sense. In chapter 7
several simulations are shown where a regularization parameter has to be chosen.
These simulations has been carried out for several choices of the regularization
parameter, and solutions presented here is chosen as a "best" solution. The best
solution is chosen based on the error measure e(u) (2.5) combined with visual
inspection of results, where distinction between materials and reduction of noise
and artifacts are considered.
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6.2 TV for Phase contrast data

The implemented CP algorithm is tested for the two phase contrast methods
TSD and ACD, in order to verify the implementation of these method. In order
to have a reference for the results the material set to the same fictive material
as in section 6.1, that is β = 5 · 10−11. This number is taken from Kostenko
[3] where it together with δ = 5 · 10−9 is referred to as a weak phase problem.
These fictive parameters has been used to produce some good results for the
ACD method, therefore this also tested here to check if the implemented ACD
method works as expected. At the same time the same problem is solved using
the TSD method and ABT method in order to see the differences of between
the solutions for this fictive problem. The details of the experiment is the same
as in section 6.1 and the PCT data is acquired from a distance of R = 1m. The
methods are run for 400 iterations or until the relative solution change becomes
lower than the tolerance of 10−5. The results from using these three methods
are visualized in Figure 6.5. The relative change of each of the solutions is
visualized in Figure 6.4.

The tests of PCT methods on this fictive material test problem shows that
ACD and TSD method can be used to solve this problem. In the results from
chapter 5 in Kostenko [3] an other phantom is used, but with respect to all other
aspects the experiment is the same as the one presented above. Comparing the
solutions it seem that, for this experiment, the combined method can give good
results and as seen in Figure 6.5, the TSD and ACD methods gives similar
results.
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three methods shown in Figure 6.5. The problem is solved using the implemented CP
algorithm.
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Figure 6.5: Test of the ACD method on a problem with the grain phantom and the
fictive material parameters, β = 5 · 10−11 and β = 5 · 10−11, taken from Kostenko
[3]. The problem is also solved using the ABT method and TSD method in order
to see if they solve the problem as expected and to compare the different methods.
Regularization parameters for the three solutions where set to: αABT = 0.3, αTSD =
0.3 and αTSD = 1.0. The implemented CP algorithm has been used to solve the
problem for each method.

6.3 Summary

An optimization algorithm for Total Variation regularization has been imple-
mented. The algorithm, first presented by Chambolle and Pock [20], has been
adjusted for the TV problem as in [21], and finally implemented such that it
can handle problems defined in a matrix-free sense. The choice of implementing
a matrix version was motivated by the ACD problem, where the large system
matrix becomes dense. The implementation has been tested and compared to
a well established TV regularization solver to verify the results. Finally the
implemented TSD and ACD methods are tested with the newly implemented
algorithm, to validate the implementation of these.

Several things could be done to optimize this TV algorithm implementation,
including the suggested preconditioning [20], calculation of the duality gap as a
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stopping criterion and a possibility of adding constraints to the problem, such
as for example non-negativity constraints.



Chapter 7

SIMULATIONS

Simulations of physical experiments which demonstrates different aspects of the
PCT methods in relation to the experimental settings. The four PCT methods
are tested and compared with each other and with the classical ABT method.
First the ABT method is compared to the TS method, to show the strength of
PCT in some specific experiments. Next the two PCT methods, TS and AC, are
compared for different materials to test if the material properties of the object
determines which method is most advantageous. Finally the TS and AC method
is compared for different noise levels, that is simulations with few versus many
detected photons per pixel to see if one method handles noise better than the
other.

The four implemented PCT method is now ready to be used to simulate
physical experiments in order to test their forces and limits. All the experiments
are 2D examples, but the results can be generalized to real life 3D experiments.
The idea behind these experiments is to test for which problems the phase
contrast tomographic (PCT) methods can give better results than with the
standard absorption based tomographic (ABT) methods. The four different
PCT methods are also compared to each other for different problems, to test
if there is some experiments where one method would be favourable to the
others. Based on the results of such simulated experiments one would be able
make suggestions on how to handle real life experiments regarding both data
acquisition and data processing.

Since the simulated experiments in this project are modelled to fit with real
physical experiments in several aspects, there are a number of parameters for the
experiments. Most of these parameters are kept constant for all of the following
simulations, since the combinatorial possibilities of changing each one of these
would grow rapidly. Some parameters are set to values which would be realistic
to achieve on a lab scale X-ray set up, these are the energy, the pixel size, the
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number of photons on the detector and the length between the object and the
detector. Other parameters, such as the number of pixels and the projection
dimensions, are chosen such the the computational effort is not too massive,
since the efficiency of the implementations has not been the main focus.The
parameters shared by the simulations are listed below:

Source: Energy of the source E = 40keV or wavelength λ = 0.31Å,

Photons: 105 detected photons per pixel.

Distances: For the ABT method the distance from object to detector
R is assumed to be negligible, so R ∼ 0m, for the single
distance methods, TSD and ACD, the distance set to R =
0.5m and for the two distance methods, TS2R and AC2R,
the two distances are set to R1 = 1mm and R2 = 0.5m.

Detector: Pixelsize of 1µm and 200× 200 pixels in total,

Projections: 359 evenly distributed angles between 0◦ and 179◦ degrees
and 572 evenly distributed beams for each angle.

The distances R1 and R2 are chosen such that one distance is relatively far away
from the object, where both the refractive and absorbing effects are detectable
and one close to object where the absorbing effects are mainly visible.

The phantom used for the simulations is the grain phantom described in
subsection 3.3.1, where the background is a polycarbonate background, unless
otherwise mentioned, and the grains consists of two other materials. The re-
fractive index decrement and absorption index for the different materials can be
found in Table 3.1. For the duality methods, TSD and ACD, the proportion-
ality constant σ is a parameter of the methods. For experiment where specific
materials is expected in the object this value could be set exactly. By testing
for different choices of this parameter, is seem that it is not so important if σ is
chosen to be the exact value, but within ±50% is gives similar results. In these
simulations this constant is set to the exact value of the grain material where σ
is lowest. The width of the detector is the length of the diagonal of the object,
though still some effect could affect the results near the boundary, so in order to
avoid these effect a frame of zeros has been added to the object, which is then
removed again when a solution is found.

In all of these tests the implemented CP algorithm has been used for the
solving the TV regularization problems. It has been set to run for 2000 iterations
or until the stopping criterion, with tolerance 10−5, was met.
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The different reconstructions are compared visually, and in order to also
quantify the correctness of the reconstructions numerically, a relative error mea-
sure e (as the one from subsection 2.1.1 equation (2.5)) is used to compare the
results to the ground truths. The results are visualized as images next to im-
ages of the ground truths, and to make the results comparable to the ground
truths, the color intensity range on these images has been set to ±10% of the
ground truth. Intensities on any of the solutions above or below these values
are truncated to the nearest value with the intensity range. When visualizing
both the β and δ values, an intensity range

7.1 Classical CT vs phase contrast tomography

Classical computed tomography, here called absorption based tomography (ABT)
is compared to the two stage (TS) phase contrast tomographic method, where
the two stages are a phase retrieval stage and a reconstruction stage. The two
implemented TS methods, TSD and TS2R, are tested for two different prob-
lems. For the first problem the material in the grains consists of silicon and
magnesium, which have similar refraction and absorption properties (see Ta-
ble 3.1). For the second problem the grains consists two materials which are
even more similar, in the sense of β and δ, namely silicon and aluminium. Be-
cause silicon and aluminium are more identical than silicon and magnesium, this
second problem is considered as a harder problem since distinction between the
different materials is desired. The TSD method for the two problems is shown
in Figure 7.1 and 7.2 and the TS2R method for the same two problem is shown
in Figure 7.3 and 7.4.

These simulated experiments has shown that for materials like these, the
TS methods can give better results than the classical ABT method. The ABT
method gave better results for the harder problem and this makes sense since
aluminium is more absorbing than magnesium which makes it easier to distin-
guish from the noise and the background. For the easier problem with silicon
and magnesium, both the TSD method and TS2R method gave good results
where the distinction between the two materials where clear, though the TSD
method had problems setting the level of the background material. For the
harder problem the TSD method gave a result where the distinction between
silicon and aluminium was difficult, but the TS2R method gave a result where
the refractive index decrement could used to distinguish between the two. It
should be noted that the TS2R method uses twice the amount of the data, in-
tensity measurements from two distances, so this could be one reason why it
gives better results.
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Figure 7.1: Comparison of ABT and TSD. The material in the grains are sili-
con(highest β) and magnesium. The regularization parameters are set to αABT = 1.4
and αTSD = 0.8. On the TSD result the distinction between the different materials in
the grains is clear, even the small parts, though the background level of background
is too high. The ABT result is affected by the noise and it is hard to determine the
exact size of the grains and the exact material in each one of them.
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Figure 7.2: Comparison of ABT and TSD. The material in the grains are sili-
con(highest β) and aluminium. The regularization parameters are set to αABT = 1.4
and αTSD = 0.7. The ABT result is affected by the noise, but the edges of the grains
are somewhat detectable. The TSD result shows a clear edge between background and
grains, though the background level is too high and the material distinction between
the different grains is not so obvious.
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Figure 7.3: Comparison of ABT and TS2R. The material in the grains are sili-
con(highest β and highest δ) and magnesium. The regularization parameters where
set to αABT = 1.4, αTS2R−β = 0.5 and αTS2R−δ = 130. The ABT solution only has a
β as result, since this method does not calculate the refractive index decrement. From
the ABT result it is more or less possible to determine what material is located where,
but the edges and sizes of the grains are hard to determine. The TS2R result for β is
similar to the result from ABT and the δ result shows a clear distinction between the
materials of the grains and from the background, though the levels of the silicon and
aluminium grains are a bit lower.
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Figure 7.4: Comparison of ABT and TS2R. The material in the grains are sili-
con(highest β and lowest δ) and aluminium. The regularization parameters where set
to αABT = 1.4, αTS2R−β = 0.5 and αTS2R−δ = 130. The ABT method gives a result
with where it is possible to distinguish the grains from the background, but still with
some problems on the grain edges and clear problems when it comes to distinguishing
between the materials of the grains. The TS2R result for β is affected by noise and it
is not clear what material the different grains are made of. However the TS2R result
for δ gives clear edges for the grains and here it is possible to determine which grains
consists of which material.
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For materials with higher absorption index, β, the ABT method will give
better results. The CTF method is based on that the absorption data is weak
(Bθ(t)� 1), so for problems with materials where this does not hold, it should
be noted that the ABTmethod would be preferable to the TSD or TS2R method.
However for the examples presented in this section the advantage of using PCT
is clear.

7.2 PCT methods for different materials

Now that the advantage of using phase contrast tomography has been shown, the
different PCT methods are compared for different materials. The four methods
TSD, ACD, TS2R and AC2R has been implemented, and these are used to
solve different problems to test which method is advantageous for which type of
problem.

The methods are tested against each other for different materials to see
how they handle different problem types. Three different problems has been
defined where each of the different methods are tested to see how they handle
the problems compared to each other. The three problem are defined by the
size of the absorption index β, such that there is a low level absorption problem,
β ∼ 10−11, and medium level absorption problem, β ∼ 10−10, and a high level
absorption problem, β ∼ 10−8.

1) The first problem has got silicon and aluminium grains, which are both
materials of a medium level of absorption. These materials are used to
test whether the AC methods can solve this harder problem as good as or
better than the TS method did in the previous section.

2) The second problem is consists of low level absorbing materials. For this
problem the background was changed to a zero absorbing and refracting
background, and the grains were set to materials polycarbonate and car-
bon(in diamond form). This problem was set up to see how these method
performs, compared to each other, when the material is very low absorb-
ing. For this very low absorbing problem it would be difficult, to get good
results using the absorption based method without having to emit and
detect a lot more photons.

3) The third problem consists of grains with copper and iron. Both of these
materials are high level absorbing materials. This will make it a hard
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problem for all of the PCT methods, since they are all build on the CTF
method which has an assumption of a weakly absorbing object. Therefore
this problem will show which of the methods that handles the difficulties
in a problem with high absorbing materials best.

The results from using the CP algorithm on the PCT methods for the dif-
ferent problems are visualized in Figure 7.5 - 7.8.

Carrying out these simulations, it became clear that the AC2R method had
some difficulties reconstructing both the absorption index and the refractive
index decrement simultaneously. When choosing the regularization parameter
α for this method, it could either be chosen relatively low, which is the case
for Figure 7.6. This choice makes the values of the δ affected by noise and
the result becomes some very small values, without being regularized. The β
solution for a relatively low α is similar to the TS2R solution. α can also be
chosen as a relatively high value ( 100), which will make the β solution very
blurry, going toward a constant solution. This will affect the δ values for each
iteration of the CP algorithm, which then also change to a blurry result, far
from the solution we seek. Choosing α in between these two cases resulted in
either "over-regulated" β solutions with small δ solutions, or blurry β and δ
solutions far form the real solutions. Based on these observations it seem that
when solving for the both the δ and β index at the same time, it is not possible
to chose a single α which will give good results for both δ and β. So as it is here
the AC2R method has some problems and comparisons between this and TS2R
are therefore not shown for problems two and three. One approach to handle
this, could be to choose individual regularization parameters for each of the two
indexes or in some other way handle it by weighting the variables.

The results produced with the ACD method shows some undesired artifacts
for the medium and high level absorption problems. These artifacts are line or
net structures which are mostly seen in the grains. When solving a problem like
this with a regularization method, any undesired artifacts could either dominate
the nearby pixels or the artifacts could be dominated by the nearby pixels. The
latter is off course desired in order to get rid of the undesired artifacts, but
the effect depends on the extend of the artifacts. The grain edges on the ACD
results are clear as well as the distinction between grains and the background.
The TSD results are blurry and the edges are not completely clear.

Overall the TS2R method seem most advantageous if data is recorded with
two detector distances.
With one detector distance TSD and ACD both have problems with artifacts
and blurry grain edges, for the high level absorption problem, so one is not ad-
vantageous to the other. Due to these problems, it is not possible to distinguish
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Figure 7.5: Comparison of the TSD and ACD methods. The phantom consists of
grains with silicon(highest β) and aluminium. The regularization parameters are set
to αTSD = 0.7 and αACD = 3. On the TSD result it is easy to distinguish between
background from the grains, though the level of the background is too high. The grains
seem to consist of only one material, so distinction between silicon and aluminium is
not possible from this result. The ACD result suffers from artifacts especially closer
to the boundary of the object. The edges between the grains and the background are
clear, but it is hard to distinguish between the materials of the grains.

the copper grains from the iron grains.

For the medium level absorption problem the TSD result is piecewise con-
stant, but the background level is too high and grain edges are slightly blurry.
The ACD method has some undesired artifacts, but besides that the background
level and grain edges are more precise. On the ACD result it is, for some grains,
possible to distinguish between the different materials, which in total makes
ACD slightly advantageous for the medium level problem.

For the low absorption level problem, the grains in the TSD result are blurry
as well as their edges, though the overall level of the background and the grains
are close to the original β solution. The ACD result has clear grains and edges,
but the level of grains, and especially of the background, is further from the
original values than the TSD result. Both methods gives solutions with ad-
vantages and disadvantages when compared to each other, so the best method
for the low level absorption problem depends on whether sharpness or precise
intensity levels is of highest priority.

It should also be mentioned that the ACD method had a much slower change
rate than the TSD method, that is the change of the solution for the ACD
method for each iteration decreased a lot slower than for the TSD method.
This can be seen as a disadvantage of the ACD method, since in several practical
application a fast convergence rate highly desirable.
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Figure 7.6: Comparison of the TS2R and AC2R methods. The phantom has grains
with silicon(highest β and lowest δ) and aluminium. The regularization parameters
were set to αTS2R−β = 0.5, αTS2R−δ = 130 and αAC2R = 0.1. The β result from the
TS2R method is corrupted by the noise, the grains are detectable, but their edges
are blurry and the materials are not distinguishable. However the δ result has a clear
edges and from this it is also possible to determine which grains consists of what. The
β result from AC2R is also corrupted by noise, but the edges of the grains are clearer
than for the TS2R result. The δ result for AC2R method is simply so much smaller
than the original values (a factor ∼30), that the solution cannot be used to tells us
anything about the grains.
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Figure 7.7: Comparison of the TSD and ACD methods. The phantom has grains
which consists of polycarbonate and carbon(highest β) in diamond form, and the
background is a non-absorbing and non-refracting. The reconstruction parameters
was set to αTSD = 0.02 and αACD = 1. The result from the TSD method is is
slightly blurry, but besides this the grain edges are clear and especially the distinction
between the two grain materials is very clear. The ACD result is visually very close to
the original β image, though the error measure is still around 20, which due to some
of the background values being negative instead of 0.
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Figure 7.8: Comparison of the TSD and ACD methods. The materials in the grains
of the phantom are copper(highest β) and iron. The regularization parameters is set
to αTSD = 0.5 and αACD = 12. The TSD result is affected by small patches/rings
which gives a blurring effect. Due to these artifacts the grain edges are blurred and
the materials of the grains are indistinguishable. The ACD result also suffers from
artifacts which are both small patches and lines through the object. On this solution
it not possible distinguish between the material in grains and the grain edges are
slightly blurry.
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7.3 PCT methods for different noise levels

To test how the TSD and ACD method handles increasing measurement noise
best, they are tested for a simulated experiment where the number of detected
photons per pixel is reduced. A reduced number of detected photons will make
the signal weaker which will make the noise on measurements more dominant.
Since the low level absorption problem in the previous section gave the best
results for both the TSD and ACD method, this problem is the subject for fol-
lowing noise tests. Here the background is set to a zero absorbing and refracting
background, and the grains consists of polycarbonate and carbon in diamond
form.

The number photons per pixel is reduced to a significantly lower level of
104 detected photons per pixel, as a first problem with increased noise. Such a
reduction would mean that the data acquisition time would be reduced signifi-
cantly.
For the other reduced noise problem, the number of detected photons is once
again reduced significantly to 103 detected photons per pixel on the detector.
This second test will increase the demand for the regularization, since the noise
is now increased to a relatively high level.
Together with the results visualized in Figure 7.7, three different noise level ex-
periments has been defined, from relatively low noise (105 detected photons per
pixel) to relatively high noise (103 detected photons per pixel).

The results from the three simulated experiments for with different noise
levels can be found in Figure 7.7, 7.9 and 7.10.

Reducing the detected photons per pixel to a factor 10 smaller, from 105 to
104, did not result in solutions which were significantly worse. Since this could
speed up the data acquisition, the gain of reducing the photons, for experiments
like this, could be very valuable. The further reduction to a relatively low
photons count per pixel, 103, has introduced so much noise that both solutions
are highly affected by it. A reduction of photons per pixels like this would be
most likely not be worth the gain in acquisition time. For the comparison of
the TSD and ACD methods, the TSD method handles the noise slightly better,
but in general main difference between the two methods is whether the edges
of the grains are blurry or the edges are more clear. Based on the fact that the
background pixel were better reconstructed by the TSD method, resulting in
the lower error measure e, one could argue that the TSD method handles this
problem slightly better than the ACD method. However, for increasing noise
one method does not seem advantageous to the other.
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Figure 7.9: Comparison of TSD and ACD. The problem has a zero background, and
grains of polycarbonate and carbon in diamond form(highest β). The detected photons
per pixel was reduced to 104 for this experiment. The regularization parameters where
set to αTSD = 0.02 and αACD = 1. The TSD result is blurry and the edges of grains are
not so clear. For the ACD result the grain edges are clear, but some of the background
pixels are negative which causes the higher relative error e. For both the TSD and
ACD result the polycarbonate grains are mostly affect by noise, especially the grains
near the center of the object.
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Figure 7.10: Comparison of TSD and ACD. The problem has grains with carbon
(highest β) in diamond form and polycarbonate. The background is non-absorbing and
non-refracting. The detected photons per pixel is reduced to 103. The regularization
parameters were set to αTSD = 0.03 and αACD = 1.1. Both the TSD and the ACD
results are affected by noise and the solutions are relatively far away from the original
β, which can also be seen from the high error measures e. The structures of the
diamond grains are still reasonably visible, but the polycarbonate grains are barely
visible. The TSD result is more blurry than the ACD result which has clearer edges
on the diamond grains, though the ACD result has more pixels which are affected by
the noise.
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7.4 Summary

Simulated experiments are carried out to test PCT against standard ABT and
to test and compare the different versions of PCT presented in this project. The
TS method have been compared with the ABT method, for two problems, one
considered more difficult than the other. The TS methods has produced results
which could solve these problems better than the classical ABT method. The
more difficult problem needed the TS2R method, which uses data from two de-
tector distances, in order to get results where grains of similar material became
distinguishable.

The comparison of the the PCT methods revealed that the AC2R method
had some problems when setting it into a TV regularization formulation. The
comparison of the TSD and ACD method showed that the results produced by
the two methods were similar, but dependant on whether clear grain edges, exact
intensity levels in the pixels or the reduction of artifacts are of highest priority,
one method could be regarded as slightly more advantageous than the other.
The convergence rate of the ACD method was slower than the TSD method, so
with efficiency in mind this makes the TSD method preferable. Introduction of
more noise to the data did not change this result, but for the problem showed
here, a significant reduction of the photons detected, which is a reduction in
data acquisition time, could to some extend be done without loosing significant
detail in the produced results.

7.5 Discussion

The result from using TSD and ACD are similar, though with a few differences
which could make one method slightly advantageous to other. In general it seem
the gain of going from the TSD method to the regular method TS2R with two
detector distances is more valuable. As mentioned, the ACD method converges
slower than the TSD method, so by improving the CP implementation such
that the duality gap of the method is used as to monitor the convergence and
used as a stopping criterion the solutions produced by the ACD method could
be improved. Another improvement which could improve all the PCT method
is an option to include constraints additional to the TV regularization problem.
This could for example be a non-negativity constraint which would reduce the
errors introduced by non-realistic negative values.
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The TS methods, which has a phase retrieval stage followed by reconstruction
stage, can be viewed as an analogue to the FBP method presented in 2.1.1. The
phase retrieval stage is essentially a filtering stage, and the TV regularized
reconstruction stage is are more advanced back projection. In this view, the AC
method filters the solution in each iteration of optimization algorithm instead
of just a single filtering of the original intensity signal.

The PCT methods implemented and tested here gives the best results for
materials with a relatively low absorption index. These materials are the ones
where ABT is mostly affected by noise, so this leaves a room for improvement
which can be covered by using the PCT methods.
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Chapter 8

CONCLUSION AND FUTURE WORK

The aim of this project was to simulate physical phase contrast tomography
(PCT) experiments and use these experiments to test and compare different
variations of the PCT reconstruction methods. This has been completed, and
the results from these comparisons could be the basis for setting up real physical
experiments.

The focus for the simulated experiments has been to make simulations where
the simulated data resembles real life experiments in different aspects. A forward
model for the simulations has been presented and implemented. The model is
based on a discrete formulation which can easily be related to real physical units.

Theory behind computed tomography, reconstruction techniques, phase re-
trieval and phase contrast tomography has been combined to formulate four
different PCT reconstruction methods. All of the methods are put into a TV
regularization formulation which is chosen as the main reconstruction method
for this project. A need for a matrix free optimization algorithm arose since the
systems matrices for the AC methods were large and dense. So to handle this,
an optimization algorithm for solving matrix free TV regularized problems was
implemented and tested.

The simulations showed the advantage of using PCT opposed to using the
classical absorption based tomographic (ABT) method. The PCT methods
tested produced better results for materials with smaller absorption indexes,
which is exactly where ABT method shows weaknesses in terms of measurement
noise for example. The AC2R method turned out to have a weakness when
using it in a TV regularized setting. The two duality methods TSD and ACD
gave result which where similar, but the TSD result had more exact intensity
levels in the solutions, where the ACD method had more clear grain edges.
For a harder problem, where distinction between similar materials is important,
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the TS2R method could be used to give better result, though data from two
detector distances is needed for this method. It has also been shown that for
some experiments a significant reducing of the number of photons detected per
pixel, can be done without loosing a significant amount of information in the
data.

8.0.1 Future work

The result presented in this project is based on a series of choices regarding the
different models and methods. Essentially the discretization of the tomography
model, the phase retrieval method and underlying assumptions, the choice of
reconstruction method and within this the choice of optimization algorithm, are
all aspect where a choice between different options has been made. So all of these
choices could be reconsidered and an this could open for an enormous range of
possible combinations. Beneath some suggestions to further development and
testing of these method, which seem reasonable and useful after having worked
with this topic for several months, are listed.

Other phase retrieval techniques, such as the mixed TIE-CTF method [13]
can give better results for materials with higher absorption index, so it could be
interesting to compare methods based on this to methods based on CTF solely.
The linearization when deriving the phase retrieval methods, only includes first
order term. Including higher order term could make the model more realistic
and hence improve the phase retrieval.

The implemented optimization algorithm could also be improved by includ-
ing calculation of the duality gap, which would be a more convergence precise
stopping criterion. Further options such as a the possibility for including so-
lution constraints, for example a non-negativity constraint, could improve the
method and hence the results produced with it.

Finally the tests here are simulations of physical experiments which could
be used in laboratory scale experimental set ups. Therefore a more realistic
modelling the X-ray sources available in such a setting could be interesting.
This could be done by simulating data produced by a source with energy within
a narrow energy band rather than just a single energy and wavelength.
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