
Development of Tool Support for
Compositional Verification of
Railway Interlocking Systems
Master Thesis

Cebrail Erdogan

Kongens Lyngby 2017

Master of Science in Engineering
Computer Science and Engineering

Development of Tool Support for Compositional Verification of Railway Interlocking Sys-
tems
Master Thesis

Cebrail Erdogan
s113414@student.dtu.dk

Technical University of Denmark
Department of Applied Mathematics and Computer Science

DTU Compute
Richard Petersens Plads
Building 303b
2800 Kgs. Lyngby
DENMARK

Tel. +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary
This thesis describes the entire development of a decomposition tool, supporting the
RobustRailS’ compositional verification of railway interlocking systems.

Running a verification process with big railway networks can be a problem due to
the state space explosion problem. A decomposition of railway systems can significantly
reduce the verification time and increase the success rate of execution. With the tool
developed in this project, the verification tool is supported for large scale industrial
use by letting users easily decompose networks into smaller chunks.

A divide strategy called border cut is presented along with different approaches
on how to apply this cut. The tool is designed to easily be extended with new types
of cuts. Therefore, other divide strategies are also introduced as potential future
extensions.

The RAISE Specification Language (RSL) is used to assist in the specification and
design of the software. Starting from abstract specifications and developing them into
concrete specifications, remarkably contributes to the overall quality of the product.
Furthermore, development processes such as test-driven development (TDD) has been
used to encourage simple design and confidence in the product.

The end product is a command line interface tool that accepts networks defined in
XML and generates new XML files containing the sub-networks. Multiple experiments
with self-created and real-world networks show that the tool can handle networks of
different sizes, providing a very smooth user experience as well.

ii

Sammenfatning
Denne afhandling beskriver hele udviklingen af et dekomponeringsværktøj, der under-
støtter RobustRailS’ kompositionelle verifikation af jernbane-sikringsanlæg.

At køre en verifikationsproces for store jernbanenet kan være problematisk på
grund af kombinatorisk eksplosion i tilstandsrummet. En dekomponering af jern-
banenet kan reducere verifikationstiden betydeligt og øge antallet af succeskørsler af
verifikationsværktøjet. Med dekomponeringsværktøjet udviklet i dette projekt støttes
verifikationsværktøjet til industriel brug i stor skala ved at lade brugere nemt dele et
netværk i mindre stykker.

En skæringsstrategi kaldet border cut præsenteres sammen med forskellige tilgange
til hvordan man kan anvende denne strategi. Værktøjet er designet til nemt at kunne
udvides med nye skæringtyper, derfor introduceres der også andre skæringsstyper som
potentielle udvidelser.

RAISE Specification Language (RSL) er brugt til at formulere specifikationen og
designet af softwaren. At udvikle specifikationer fra abstrakt- til konkret niveau har
bidraget meget til den overordnede kvalitet af produktet. Desuden er udviklingspro-
cesser som test-driven development (TDD) blevet benyttet til at opnå simpelt design
og tillid til produktet.

Slutproduktet er et kommandolinjeværktøj, der accepterer netværk defineret i
XML. Værktøjet genererer nye XML-filer, som indeholder delnetværker. Eksperimenter
med fiktive og ikke-fiktive netværker viser, at værktøjet kan håndtere netværker af
forskellige størrelser, hvilket også giver en meget jævn brugeroplevelse.

iv

Preface
This thesis was prepared at the department of Applied Mathematics and Computer
Science at the Technical University of Denmark under supervision of Associate Profes-
sor Anne E. Haxthausen, in fulfillment of the requirements for acquiring an M.Sc. in
Computer Science and Engineering.

The thesis deals with the development of a decomposition tool supporting the Robust-
RailS’ verification of railway interlocking systems.

The project period for the thesis was from January 2nd, 2017 to August 4th, 2017.

Kongens Lyngby, August 4, 2017

Cebrail Erdogan

vi

Acknowledgements
I would first like to thank my thesis advisor Professor Anne E. Haxthausen of the
Department of Applied Mathematics and Computer Science at DTU. The door to
Prof. Haxthausen office was always open whenever I ran into a trouble spot or had
a question about my software development or writing. She consistently allowed this
paper to be my own work but steered me in the right the direction whenever she
thought I needed it.

I would also like to acknowledge Linh Hong Vu and Hugo Daniel at DTU with
their assistance on using the verification tool and providing materials.

Finally, I must express my very profound gratitude to my family for providing me
with unfailing support and continuous encouragement throughout my years of study
and through the process of writing this thesis. This accomplishment would not have
been possible without them. Thank you.

viii

Contents
Summary i

Sammenfatning iii

Preface v

Acknowledgements vii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 1
1.3 Thesis Structure . 2

2 Background 3
2.1 RobustRailS . 3
2.2 Railway Interlocking System . 3
2.3 Existing Tools . 6
2.4 GUI Tool . 7
2.5 Raise Specification Language . 8

3 Analysis 9
3.1 Intended use of Tool . 9
3.2 Cuts and Decomposition Methods 9
3.3 Border Cut . 10
3.4 Border Cut Conditions . 11
3.5 Soundness Conditions . 12
3.6 Decomposition Methods . 13
3.7 Other cut types . 17

4 Requirements 21
4.1 Functional Requirements . 21
4.2 Non-Functional Requirements . 21
4.3 RSL Requirements . 22

5 Design 29
5.1 RSL Modules Overview . 29

x Contents

5.2 Well-formedness of Cuts . 30
5.3 Soundness of Cuts . 33
5.4 Decomposition Specifications . 35
5.5 XML schema . 42
5.6 Class Diagrams . 44
5.7 Sequence Diagrams . 47
5.8 Adding a New Cut Type . 53

6 Implementation & Tests 55
6.1 The C++ Project Structure . 55
6.2 Parser . 56
6.3 XML Writer . 56
6.4 Cloning of networks . 57
6.5 Tests . 58

7 Experiments 61
7.1 Goal of the Experiments . 61
7.2 Experimental Approach . 61
7.3 Mini Extended . 61
7.4 EDL . 63
7.5 Roskilde station . 64

8 Discussion 67
8.1 Results . 67
8.2 Limitations . 67
8.3 Directions for Future Work . 68

9 Conclusion 69

A Installing the tool 71
A.1 Prerequisites . 71
A.2 Building . 72

B Using the tool 73
B.1 Prerequisites . 73
B.2 Usage . 73

C Networks and Cuts in XML 75
C.1 Original network . 75
C.2 Cut Specifications . 76
C.3 Sub-networks . 78

D Tests 87
D.1 Decomposition_TEST . 87
D.2 RSL Results . 92
D.3 C++ Results . 93

Contents xi

E RSL Specifications 95
E.1 Decomposition_DESIGN . 95
E.2 Decomposition_COMMON . 97

F C++ Code 107
F.1 Cut Types . 107
F.2 Main decomposition files . 110

Bibliography 115

xii

CHAPTER1
Introduction

The overall goal of this project is to provide a command line tool, that can be used
for decomposition of future Danish interlocking systems. In this chapter, we will
motivate for this, explain the goal of the project, and at last give an overview of report
structure.

1.1 Motivation
The Danish Railway system is moving towards a new digital interlocking system [10],
along with the rest of the Europe. With that said, it is only expected that new
tools are introduced for a more integrated system in the future compatible with the
standardized European Train Control System (ETCS) Level 2 [15].

An interlocking system controls the dynamic allocation of routes for trains and
thereby creating a safe system where trains can safely travel through the network
without colliding and derailing. The overall purpose of the new interlocking system is
to make the interlocking safer and smarter.

The Danish Council for Strategic Research has funded the project RobustRailS [12].
One of its goals is to provide methods and tools for formal verifications of railway inter-
locking systems. DTU has an active part of this project and amongst its contributions,
it does also develop software.

A verification tool for interlocking systems is already in existence in the form of a
command line interface (CLI), developed as part of the RobustRailS project in DTU
[13]. Although the tools exist, the verification can be a problem when processing large
networks as it may fail to give results due to the state space explosion problem, often
seen in model-checkers [6]. A temporary workaround for this has been to decompose
networks defined in XML files manually. This process is not user-friendly and takes
too much time.

1.2 Goal
The goal of this project is to tackle the state space explosion problem by providing a
decomposition tool which converts big networks into smaller chunks. It will provide
a user-friendly experience that will make it possible to generate sub-networks easily
from a given cut specification.

The decomposition tool must preserve the network safety properties when applying
cuts. This ensures that the sub-networks are valid representations that can be used

2 1 Introduction

with the verification tool. The developed tool should be extendible, such that a
developer may with ease add new cut types.

A tool that achieves these goals will support the compositional verification by
providing a decomposition solution.

1.3 Thesis Structure
Chapter 1: Introduction This chapter introduces the reader to the motivation
behind the project along with the goal it accomplishes.

Chapter 2: Background This chapter provides background information about the
RobustRailS project and the domain of interlocking systems. The already existing
tools are also presented here.

Chapter 3: Analysis This chapter contains an analysis of cut types and decom-
position methods. A cut type called border cut is analyzed to give the reader a
complete understanding of how it can be applied using different decomposition
methods.

Chapter 4: Requirements This chapter covers all requirements, from abstract
functional and non-functional requirements to concrete RSL requirements.

Chapter 5: Design In this chapter, the design of the solution is presented with
focus on satisfying the established requirements.

Chapter 6: Implementation & Tests The implementation process and the techni-
cal solutions of the design are described. Some examples of tests and their results
are also described in this chapter.

Chapter 7: Experiments This chapter describes experiments of the decomposition
tool.

Chapter 8: Discussion This chapter contains a discussion of the obtained results
from the experiments. Furthermore, the limitations and potential improvements
are discussed.

Chapter 9: Conclusion This chapter concludes the paper.

CHAPTER2
Background

2.1 RobustRailS
Robustness in Railway OperationS is a large interdisciplinary project which tries to
discover if we can get the trains to run on time [2]. The project aims to develop
systems that provide robustness in the planning of, and during, railway operations.
RobustRailS can have a enormous impact on people traveling by train, as it may
potentially save them precious time. Funded by a large grant from the Danish Council
for Strategic Research, four departments here at DTU are carrying out RobustRailS.

RobustRailS has as one of its goals to develop a holistic method, which in turn
will support the verification of the interlocking systems based on the safety properties.
This new signaling system, which will be deployed in the period 2009-2021 complies
with the standardized European Train Control System (ETCS) Level 2 [15].

2.2 Railway Interlocking System
Interlocking systems of the new signaling systems will ensure that all dynamically
allocated train routes are to be fulfilled without violating any safety properties. It
creates a safe system where trains can safely travel through a network without colliding
and derailing.

A domain specific language (DSL) has already been developed as part of the holistic
method, that is used to verify the interlocking systems [15]. Its primary function is
to increase the productivity and significantly reduce errors in the specifications of
railway interlocking systems. A DSL is used to describe the interlocking system and
its operational environment.

A specification is the top most element in the DSL. It consists of two elements, a
network layout, and an interlocking table. A combination of the two provides all the
necessary data to specify an interlocking system. A network layout focuses on the
physical alignment of the elements, and the interlocking table contains the supporting
data of the routes.

4 2 Background

Specification

NetworkLayout Interlocking Table

MarkerBoardSection LevelCrossing Route

Linear Point

Figure 2.1: Domain specific language of the interlocking system. Solid arrows points
to sub-elements and hollow arrows points to base elements.

The specification elements in this domain specific language are described in the
subsequent subsections. For simplicity, we do not consider level crossing since it has
no relevance in this dissertation.

2.2.1 Network Layout
A network layout revolves around the placement of elements and their properties, e.g.
neighboring. A network layout specification contains linears, points and marker boards.
A network layout has two directions, up and down. The up direction is represented as
the right direction in figures and down in the opposite direction. See the network layout
mini in Figure 2.2 as a simple example of a network layout. The lines seen in the figure
represents bi-directional track sections which can only be occupied by one train at a
time. The short vertical lines with gaps in between represent connections/neighboring.

t10 t14t13t12

mb10 mb14mb13

mb12mb11 mb15
t20

mb21

mb20

t11

UPDOWN

b10 b14

Figure 2.2: An example of network layout called Mini [7].

A linear is a type of section and contains at most two neighbors, one in every
end. The linear sections are represented as straight lines. If a linear only contains one
neighbor, then it is called a boundary, which can be identified by the dashed lines on
its disconnected side. A linear has only two properties, its neighbors, and its length.
In Mini layout (Figure 2.2), the linear sections are b10, t10 t20, t12, t14 and b14,

2.2 Railway Interlocking System 5

where b10 and b14 are boundaries.

A point is also a type of section and contains three ends connected to different
sections. The three ends are known as stem, plus and minus. The stem is the lone
end in the opposite direction of plus and minus. The plus end is parallel to the stem.
The plus- and stem end can be seen as a linear section as they represent the straight
sub section of a point. The minus end of a point diverts from away this linear section
and creates a branch in the network. A point also has two properties, its neighbors,
and its length. The points in Mini layout are t11 and t13.

MINUS

PLUSSTEM

Figure 2.3: A point with its three ends. A point can face any direction.

It is possible for two different points to have their minus ends connected to each
other. An example is shown in Figure 2.4.

t13

t11 T16

t12 T15t10

Figure 2.4: Two points connected to each other. An excerpt of Figure 3.19.

A marker board also called a signal, is mounted in one of the ends of a linear
section. It can only be seen in one direction. If its direction is up, then it can only be
seen by a train moving the same direction and vice versa. A marker board can not
exist on the disconnected side of a boundary. Additionally, it has a distance to the
end it is facing. So, in total, a marker board has three properties: A reference to a
linear section, a direction, and a distance.

mb11

mb10

b10 t10

Figure 2.5: Marker boards with different directions. The figure is a excerpt from Mini
layout.

6 2 Background

2.2.2 Interlocking Table
An interlocking table contains information about the routes. The routes are listed as
rows with their values on the columns. A route is a collection of trackside elements
contained within a specific network. It has a path going from a source marker board to
a destination marker board. If no marker boards with the same direction are located
between the source marker board and the destination marker board, then we are
dealing with an elementary route. The routes in an interlocking table are all of this
type. As stated in [6], a route r currently consists of:

src(r) The source signal of r, given as a marker board.

dst(r) The destination signal of r, given as a marker board. Both the source and
destination must face the same direction, i.e. UP or DOWN.

path(r) The list of sections along the path from src(r) to dst(r).

overlap(r) A list of sections in r’s overlap. An overlap is a buffer space after dst(r)
that is used in case a train overshoots its path.

points(r) The points used by r and their required positions (MINUS or PLUS).

markerboards(r) A set of protecting marker boards used for flank or front protec-
tion for the route.

conflicts(r) A set of conflicting routes which must not be set while r is set.

id src dst path points marker boards conflicts
1a mb10 mb13 t10;t11;t12 t11:p;t13:m mb11; mb12; mb20 1b; 2a; 2b; 3; 4; 5a; 5b; 6b; 7
· ·
7 mb20 mb11 t11; t10 t11:m mb10;mb12 1a; 1b; 2a; 2b; 3; 5b; 6a

Table 2.1: An excerpt of an interlocking table for the network layout in Figure 2.2 [6].
The overlap column is ommited, since no overlaps exists in this table.

2.3 Existing Tools
The RobustRailS project has resulted in multiple products. In this section, the existing
tools that are described.

2.3.1 RobustRailS Verification Tool
Currently, RobustRailS has a verification tool that can verify any given interlocking
system. A toolchain is used to accomplish this task which can be seen in Figure 2.6
[14].

The verification tool, designed as a command line tool, is developed by Linh Vu
[13]. The tool accepts configurations in XML, where a configuration consists of a
network and an interlocking table.

2.4 GUI Tool 7

As it can be seen in Figure 2.6, the tool chain has several steps. In the first box
(yellow), the given network and the generated interlocking table are statically checked.
This verifies if the input is well formed or not, if not, then the correctness of the
network is not checked. It is a requirement that the given specification must comply
with the static semantic rules defined for the DSL. Note that the generation of an
interlocking table is optional.

In case of a successful static check, a model instance will be generated from a
generic model which describes the dynamic behavior of the Danish interlocking system.

Concurrently, safety properties are generated from given specification, which runs
through the defined safety-properties.

Finally, the generated model instance is verified against the safety properties using
a combination of bounded model checking (BMC) and inductive reasoning. If the
model instance does not satisfy the properties, counterexamples will be generated.

Figure 2.6: The tool-chain of the verification system.

2.4 GUI Tool
The GUI tool is developed by Andreas Foldager [5] using the Eclipse platform. It
provides a visual environment for both creating networks, generating route tables and
running the verification tool. The networks are created using a visual editor, and the
verification tool can be directly triggered from the properties panel which will show
the result in the same panel.

8 2 Background

Figure 2.7: A screenshot of the Eclipse GUI tool.

2.5 Raise Specification Language
The specification of the developed tool in this project uses the RAISE formal method
which consists of RAISE development method and RSL.

RAISE (Rigorous Approach to Industrial Software Engineering) was developed for
the use on the LaCoS project, including other industrial and research projects [1].

The Raise Specification Language (RSL) is a wide-spectrum specification language.
It is capable of expressing high-level, abstract specifications, as well as low-level designs.
RSL specifications can be considered as mathematical models of software systems.

The advantage of using RAISE is that it has a huge contribution to the design
of the product. It gives the developers an early insight of the design and encourages
simpler implementation in later stages. Knowing the notation of RSL alongside the
implementation language is all that it takes.

CHAPTER3
Analysis

In this chapter, the role of the decomposition tool is analyzed in the context of how
it can fit the existing toolchain and what it should be capable of. Furthermore, cut
types and decomposition methods are analyzed.

3.1 Intended use of Tool
The decomposition tool can seamlessly be used with the existing tool chain. By
creating the tool as a standalone, it will have flexibility due to separation from the
verification tool, moreover, easy testing during development, since the outcome of the
decomposition tool can be tested with the already existing verification tool-chain. A
more in-depth integration with the tool-chain is possible but is more reasonable after
the decomposition tool is tested on the field for some time.

Verification Tool

Sub-network

....Decompose

Sub-network
Network

Decomposition Tool

Cut
Specification

Figure 3.1: Integration with existing tool-chain.

The decomposition tool accepts network layout and a cut specification in XML-
format. The network and cut specification will be parsed, and the network will be
decomposed. This might result in two or more sub-networks, which must all be verified
with the verification tool.

3.2 Cuts and Decomposition Methods
Before introducing the cuts and decomposition methods, a clear distinction between
these two is needed. A cut also referred as a divide strategy, is a set of operations
that are applied at a given place in a network with the purpose of disconnecting
without losing the safety properties. A cut specification contains information about

10 3 Analysis

the properties of the cut. The described cuts in this paper are border cut, linear cut,
and horizontal cut. Only border cut is implemented of the listed.

A decomposition method, on the other hand, takes a cut, or a set of cuts as an
input. It applies the cuts with a specified algorithm that is suited for a specific scenario.
The described decomposition methods in this paper are: single cut (decomposition),
cluster cut (decomposition) and multi cut (decomposition).

The description here focuses on the application of the cuts and methods, and not
their type specifications, where the differences between them are not as clear.

3.3 Border Cut
A border cut cuts between two linear sections [7]. Therefore, it can simply be specified
by two sections, section up and section down. When a border cut happens, both
sections are preserved. However, two new boundaries are created, one belonging to the
sub-network down and one to the sub-network up. In the down network, the section
up is converted to a boundary, and in the up network, the section down is converted.
If the new boundaries contain invalid marker boards, then they are removed too.
Figure 3.2 shows a border cut on a minimal network possible. In this example, the
section down is t2 and the section up is t3.

mb5

mb2

UPDOWN

mb3

mb4

(section
up)

t2b1 b4t3
(section
down)

Figure 3.2: A valid border cut.

mb2

mb3

mb4

t2b1 t3

Figure 3.3: Down sub-network.

mb5mb3

mb4

t2 b4t3

Figure 3.4: Up sub-network.

Notice that the marker board mb5 is removed in down sub-network and mb2
is removed in up sub-network since they are no longer valid. The two given linear
sections (t2 and t3) are preserved in both sub-networks and converted to boundaries
respectively to the sub-network they are placed.

3.4 Border Cut Conditions 11

3.4 Border Cut Conditions
For a border cut to be well-formed, the border cut conditions must be satisfied. Here
well-formedness is equivalent to syntactically correct. Four pre-conditions have been
defined for this particular type of cut. These conditions make sure that the cuts are
valid and that they will result in valid networks.

BCC 1
The two cut sections (down and up) must be neighbors. If the two given sections
are not neighbors, then the input is invalid since there is no way of telling where to
perform the cut.

BCC 2
The up- and down sections must not already be boundaries.

BCC 3
The two sections (down and up) must not be in the same elementary route. Therefore,
the down section must contain an up marker board, and the up section must contain
a down marker board. Where up and down are the directions they face.

BCC 4
The sections up and down must not be reachable to each other if disconnected. In
that case, a cut will not result in two networks. Figure 3.5 shows a cut representing
this case, here, a cut will disconnect t4 and t5, but the other branch will make the
all sections still reachable - making the cut invalid (not well-formed).

t2 t9t8t7

t5

t3b1 b10

t4

t6

Cut 1

mb10

mb9

mb6

mb5
mb2

mb1

mb14

mb13

mb7

mb11

mb8

mb4

mb3

mb12

Figure 3.5: An invalid cut. The result will be two not well-formed sub-networks since
all sections are still reachable.

12 3 Analysis

3.5 Soundness Conditions
Soundness conditions are checked after the sub-networks are generated from a de-
composition. The used cut type or decomposition method does not matter. The
purpose of the soundness checks is to check whether sub-networks still satisfy the
safety properties regarding flank and front protection. These safety properties in the
networks prevent head-to-head and flank collisions.

If the sub-networks do not satisfy the safety properties, the sub-networks will
reveal dependencies on each other. These dependencies can be found by generating
interlocking tables for the sub-networks.

If the soundness conditions are satisfied, then the sub-networks are sound and
do not contain violation of flank/front protection. If soundness conditions are not
satisfied on the sub-networks, then it can for sure be said that either the network or
the cut was invalid.

Four soundness rules exist, and they can only be checked after a cut has been
performed as they require an interlocking table to be generated from the sub-networks.
A specification for interlocking generation from a network layout is already supplied
by Vu [13]. It would have been preferable to be able to check for these conditions
as pre-conditions, but the need for interlocking tables for sub-networks makes that
impossible. The procedure for checking the SCs (Soundness Conditions) are very
similar. The network is initially decomposed, and the individual tables are generated,
after that, the routes are checked for dependencies on other tables or sub-networks.

SC 1
This condition checks for overlap requirements. The overlap buffer must not be less
than the minimum safety distance. If any overlap section exists, it must reside in the
generated interlocking table or the sub-network it was based on.

SC 2
This condition checks if the points in the routes only reside in the same interlocking
table or the sub-network it was based on.

SC 3
This condition checks if the marker boards in the routes only resides in the generated
interlocking table or the sub-network it was based on.

SC 4
This condition checks if the conflicts in routes are independent. All conflicting routes
must reside in the same interlocking table.

3.6 Decomposition Methods 13

3.6 Decomposition Methods
In this section, different methods to decompose using border cuts are presented. The
intention is to easily be able to decompose networks in different scenarios. The
scenarios to consider are:

Scenario 1 A network which needs to be decomposed between two stations, where
the stations are connected by single linear section.

Scenario 2 A network which needs to be decomposed between two stations, e.g.
in a network where the stations are connected by two or more consecutive linear
sections. In this scenario, all sections are in the same branch.

Scenario 3 A network that needs to be decomposed in different levels of branches
resulting in two sub-networks, e.g. in a network two stations are connected by
linear sections side-by side running in parallel.

Scenario 4 An arbitrary large network that needs multiple decompositions in one
execution resulting in more than two sub-networks.

Scenario 5 A network that needs to be decomposed at the minus end of two
connected points.

The rest of the section goes through decomposition methods that can solve the
problems in these scenarios.

3.6.1 Single Cut Decomposition
A single cut decomposition is the simplest of all the decomposition methods. It is an
execution of a single border cut, hence the name single. The single cut is applicable
for a scenario where there are enough consecutive linear sections on the same branch.
This makes it applicable in simple networks and networks mentioned in scenario 2.

When applying a single cut on a network, two networks are always produced. The
Figure 3.6 below shows a simple example of a single cut. Notice that marker boards
are omitted in the next few figures for simplicity. In this example, the single cut is
defined by sc:{t2,t3}.

t2 t3b1 b4

Cut

Figure 3.6: Single cut on a simple network.

14 3 Analysis

The single cut decomposition method generates the sub-networks down and up which
can be seen in Figure 3.7.

t2b1 t3

(a) Down network.
t3t2 b4

(b) Up network.

Figure 3.7: Sub-networks of a single cut decomposition on a simple network.

As mentioned, the single cut decomposition method is applicable for scenario 2.
An example of this scenario can be seen Figure 3.8. It is very common to see stations
to be connected in this way. Decomposing between stations can be a very practical
since every sub-network can be interpreted as an independent network that is not
difficult to examine.

t25 t28t26 t27
B stationA station

Figure 3.8: Network containing both stations.

t25 t26 t27
A station

(a) Down network containing station A.

t28t26 t27
B station

(b) Up network containing station B.

Figure 3.9: Decomposition between two stations.

A single cut may, later on, be extended with new cut types other than border
cut. This can enable the user to use this decomposition method in different scenarios
opposed to only being restricted to scenario 2. This topic is further analyzed in
Section 3.7.

3.6 Decomposition Methods 15

3.6.2 Cluster Cut Decomposition
A single cut can, however, be exploited such that it can be used in other scenarios.
This is what cluster cut decomposition does. It contains multiple single cuts which it
executes to produce two sub-networks. It only produces two well-formed networks
if all of the cuts are executed. A partial execution of cluster cut will not result in a
well-formed network. Cluster cut makes it possible to apply cuts on different levels of
branches to achieve two sub-networks. See Figure 3.10 for an example of this case,
where the cluster cut is defined by cc:{sc:{t4,t5};sc:{t6,t7}}.

t2 t9t8t7

t5

t3b1 b10

t4

t6

Cut 1

Cut 2

Cluster Cut

Figure 3.10: Cluster cut on the mini network layout.

The cluster cut decomposition method generates the sub-networks down and up
which can be seen in Figure 3.11.

t2 t7

t5

t3b1

t4

t6

(a) Down network.
t9t8t7

t5

b10

t4

t6

(b) Up network.

Figure 3.11: Decomposition of the mini network layout.

As it can be seen the cluster cut is applicable for the scenario 3 and just like single
cut, it can also be applied between stations. Figure 3.12 shows an example of this,
station A and station B is connected by two parallel linears sections that are running
side-by-side.

16 3 Analysis

t25 t28t26 t27

t35 t38t36 t37

B stationA station

Cut 1

Cut 2

Figure 3.12: Network containing both stations.

t25 t26 t27

t35 t36 t37

A station

(a) Down network containing station A.

t28t26 t27

t38t36 t37

B station

(b) Down network containing station B.

Figure 3.13: Decomposition between two stations.

3.6.3 Multi cut Decomposition
A general decomposition method can be designed that can take a set of cuts, containing
a mixture of both single- and cluster cuts. This allows us to define more complex cut
specifications that will serve as input for the decomposition function. The result of
running a decomposition of such input can produce more than two networks. The
number of outputs depends on the given number of cuts. A decomposition method
of this kind is applicable for all the scenarios that single- and cluster cut covers.
Besides, it does also cover scenario 4, making it easy to decompose large networks
in one execution. See Figure 3.14 for an example of a multi cut, which is defined by
{sc:{t2,t3},cc:{sc:{t4,t5};sc:{t6,t7}}}.

t2 t9t8t7

t5

t3b1 t10t4

t6

Cluster Cut

b11

Single Cut

Figure 3.14: A multi cut on a extended version of mini.

3.7 Other cut types 17

This particular multi cut decomposition generates three sub-networks. These
sub-networks are N1, N2, and N3 which can be seen in Figure 3.15.

t2 t3b1

(a) N1 network.

t2 t8t7

t5

t3 t4

t6

(b) N2 network.

t9t8t7

t5

b10

t4

t6

(c) N3 network.

Figure 3.15: The three sub-networks resulted by a multi cut decomposition method.

3.7 Other cut types
Even though decomposition methods with border cut covers must of the scenarios
listed, you may have noted that scenario 1 and scenario 5 were not applicable. For
this reason, new cut types are under development that targets these scenarios. These
new cuts are described in the next subsections.

Linear Cut
Linear cut is introduced in the paper [8] and is similar to border cut. It is used
when the routes of the two sub-models partially overlap. The linear cut needs only
one linear section in common for the sub-networks down and up, while a border cut
needs two. Sometimes there are simply not enough linear sections between stations
to apply a border cut. Linear cut is a good solution for these cases, e.g. scenario
1. Figure 3.16 shows a case where a linear cut is applicable. T2 can be specified as
the cut specification. A cut here will add new boundaries to the T2 section. Marker
boards will also be added to ensure sane boundaries.

18 3 Analysis

A station B station
P2 T2 T3

Figure 3.16: The linear section T2 is connected to two stations through P2 and T3.

A station
P2 T2

Figure 3.17: Resulting Down network

B station
T2 T3

Figure 3.18: Resulting Up network

Horizontal cut
Horizontal cut is another cut that is under development and is introduced in the paper
[4]. It will be capable of cutting between two minus ends of points, thus targeting
scenario 5. How it does this is best explained with an example. Figure 3.19 is based
on a figure from the paper regarding this particular cut. A horizontal cut is performed
on the shown red line, crossing the link between t9 and t10. To each of the two
sub-networks, above the cut and below it, two consecutive linear section is added on
the other side of the cut forming a stub. This abstracts the whole other sub-network.
The new sections have marker boards to satisfy the network conditions. The two
resulting sub-networks are shown in Figures 3.20 and 3.21. Notice that the high and
low names are used because down and up are reserved for network directions.

3.7 Other cut types 19

E1

t7

E8

T1

t13

t11

E19

E26

T16 T19

E2

t5

E10

T2 t12

E17

E24

T15 T18

E3
t9

E12

T3
E15

E22

T14 T17

t8 t10

t6

Figure 3.19: The total network and the cut.

E1

t7

E8

T1

t13

t11

E19

E26

T16 T19

E2

t5

E10

T2 t12

E17

E24

T15 T18

E61

E62

T61

t8 t10

t62

Figure 3.20: The high sub-network.

E51

E52

T51 T52

E3
t9

E12

T3
E15

E22

T14 T17t6

Figure 3.21: The low sub-network.

20

CHAPTER4
Requirements

This chapter covers all requirements, from abstract functional and non-functional
requirements to concrete RSL requirements.

4.1 Functional Requirements
FR01: Create Specifications This requirement is going to affect the approach to
how we design the product. RSL will be used for this requirement.

FR02: CLI Tool Create an exclusive command line interface tool that takes a
network XML file and creates new XML files from decomposition results. This tool
must support border cut all of the decomposition methods introduced in Chapter 3.

FR03: XML Support The tool must be able to parse networks, interlocking tables
and cut specifications in XML. An XML writer for the same objects must also be
supported.

FR04: Extendibility New cut types must easily be implementable by design.

4.2 Non-Functional Requirements
QR01: Linux OS Support The tools must be compatible mainly with OS system
Linux. Compatibility with other operating systems will be considered as an
advantage but not a requirement.

QR02: Reliable The decomposition tool must be reliable and able to handle
networks in all sizes.

22 4 Requirements

4.3 RSL Requirements
In this section, the type definitions are initially described using RSL. After that,
decomposition method requirements are listed as well. The requirements here are
going to be presented as pre- and post-conditions. The conditions are wrapped in
predicate functions for simplicity.

4.3.1 Types Specification
The interlocking types are already defined by Vu in [13] as part of his project. The
cut types are defined in this project. The full RSL code of the cut types can be seen
in Appendix E.2.

Interlocking Types
The basic elements, sections, marker boards and routes are all given a unique id,
therefore an identifier is supplied for all of them.

Id = Text,
SecId = Id,
MbId = Id,
RouteId = Id

Network Layout
A network layout is represented as maps of linears, points and marker boards. Each
map contains identifiers as key values mapping to its element.

NetworkLayout ::
linears : SecId -m-> Linear
points : SecId -m-> Point
marker_boards : MbId -m-> MarkerBoard

A linear is a record containing its neighbors and length.

Linear ::
neighbors : LinearEnd -m-> SecId
length : Distance

Where LinearEnd contains the direction of the neighbor and the Distance contains
the distance of the linear as a natural number.

LinearEnd = Direction,
Distance = Nat,
Direction == UP | DOWN

A point is also a record containing its neighbors and length. However its neighbors
are defined with PointEnd.

4.3 RSL Requirements 23

Point ::
neighbors : PointEnd -m-> SecId
length : Distance

PointEnd == NB_STEM | NB_PLUS | NB_MINUS,

Lastly, a marker board element is defined by which linear section it is mounted on,
which direction it is facing and its distance to the end of linear it is facing.

MarkerBoard ::
section : SecId
dir : LinearEnd
distance : Distance

Interlocking table
An interlocking table specifies the elementary routes for a specific network. See
Section 2.2.2 for more details about it. A route is specified as a short record definition
with all of the columns included.

Route ::
source : MbId
dest : MbId
path : SecId-list
overlap : SecId-list
points : SecId -m-> PointPos
signals : MbId-set
conflicts : RouteId-set,

InterlockingTable = RouteId -m-> Route

A record containing both the network layout and the interlocking table is simply
called an Interlocking.

Interlocking ::
track_layout : L.NetworkLayout
interlocking_table : InterlockingTable

Cut Types
The border cut, presented in Chapter 3, can be defined given two sections.

BorderCut ::
section_down:SecId
section_up:SecId

A single cut specification can be defined by the cut it executes. If more cuts have to
be included, then single cut has to be extended. Section 5.8 shows an example of this.

SingleCut = BorderCut

A cluster cut is a set of single cut types.

24 4 Requirements

ClusterCut = SingleCut-set,

A multi cut specification is a set of cut type specifications.

MultiCut = Cut-set,

Where a cut element in the set is either a cluster cut or a single cut.

Cut == Cut_from_SingleCut(cut_to_singlecut: SingleCut) |
Cut_from_ClusterCut(cut_to_cluster: ClusterCut)

4.3.2 Decomposition Requirements
The requirements for different decomposition methods are presented here as RSL
specification. The main focus here is to determine the state of a network before and
after a decomposition. The well-formedness check functions that appear in the listings,
such as the cut_wf, are defined later in Section 5.2. The overloading feature of RSL
is used to define the function decompose multiple times for different decomposition
methods.

Single Cut Decomposition Requirements
The single cut decomposition can be defined to have the inputs and outputs:

decompose: C.ITG.I.L.NetworkLayout >< C.SingleCut -~->
C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout

decompose(n,sc) as (n_down,n_up)

It has the pre-conditions:

1. The network and the cut specification must be well formed.

pre C.ITG.I.L.is_wf(n) /\ C.cut_wf(n,sc),

The post requirements are defined in the predicate function:

post post_single_cut_decomposition(sc,n,n_down,n_up)

Which contains the following requirements:

1. The union of ndown (sub-network down) and nup (sub-network up) elements
must be the same elements from n (Original network).

dom n_down_linears union dom n_up_linears = dom n_linears /\
dom n_down_points union dom n_up_points = dom n_points /\
dom n_down_markerboards union dom n_up_markerboards = dom n_markerboards /\

Where n_down_linears, n_down_markerboards and n_down_points are the
respective elements from ndown. The same naming principle holds for nup and
n. These local names are assigned as seen in RSL snippet below.

4.3 RSL Requirements 25

n_linears = C.ITG.I.L.linears(n),
n_points = C.ITG.I.L.points(n),
n_markerboards = C.ITG.I.L.marker_boards(n),

n_down_linears = C.ITG.I.L.linears(n_down),
n_down_points = C.ITG.I.L.points(n_down),
n_down_markerboards = C.ITG.I.L.marker_boards(n_down),

n_up_linears = C.ITG.I.L.linears(n_up),
n_up_points = C.ITG.I.L.points(n_up),
n_up_markerboards = C.ITG.I.L.marker_boards(n_up)

The prefixes in the listings such as C.ITG.I.L are used to access modules and
are described in Chapter 5.

2. The intersection of ndown and nup elements must yield the linears from the
cut specification and the marker boards placed on them. The marker boards
facing the boundary sides are not included because they are removed in the
decomposition process. The intersection of points must not result in any elements.
dom n_down_linears inter dom n_up_linears = {l_down, l_up} /\
dom n_down_markerboards inter dom n_up_markerboards =

{C.ITG.I.L.signals(l_down,n)(UP), C.ITG.I.L.signals(l_up,n)(DOWN)} /\
dom n_down_points inter dom n_up_points = {} /\

3. All elements in ndown must be the very same elements in n, except l_up which
is the new boundary.
(all l:SecId :- l isin n_down_linears \ {l_up} => n_down_linears(l) = n_linears(l)) /\
(all p:SecId :- p isin C.ITG.I.L.points(n_down) =>

C.ITG.I.L.points(n_down)(p) = C.ITG.I.L.points(n)(p)) /\
(all mb:SecId :- mb isin C.ITG.I.L.marker_boards(n_down) =>

C.ITG.I.L.marker_boards(n_down)(mb) = C.ITG.I.L.marker_boards(n)(mb)) /\

4. For the new boundary l_up at ndown, the following must hold.
UP ~isin C.ITG.I.L.signals(l_up,n_down) /\
UP ~isin C.ITG.I.L.neighbors(n_down_linears(l_up)) /\
C.ITG.I.L.neighbors(n_down_linears(l_up))(DOWN) =

C.ITG.I.L.neighbors(n_linears(l_up))(DOWN) /\
C.ITG.I.L.length(n_down_linears(l_up)) = C.ITG.I.L.length(n_linears(l_up)) /\

The up neighbor and the marker board mounted at UP must no longer exist. The
length and neighboring properties of l_up in n_down must match the properties
of l_up in n.

5. All elements in nup must be the very same elements in n, except l_down which
is the new boundary.
(all l:SecId :- l isin n_up_linears \ {l_down} => n_up_linears(l) = n_linears(l)) /\
(all p:SecId :- p isin C.ITG.I.L.points(n_up) =>

C.ITG.I.L.points(n_up)(p) = C.ITG.I.L.points(n)(p)) /\
(all mb:SecId :- mb isin C.ITG.I.L.marker_boards(n_up) =>

C.ITG.I.L.marker_boards(n_up)(mb) = C.ITG.I.L.marker_boards(n)(mb)) /\

6. For the new boundary l_down at nup, the following must hold.

26 4 Requirements

DOWN ~isin C.ITG.I.L.signals(l_down,n_up) /\
DOWN ~isin C.ITG.I.L.neighbors(n_up_linears(l_down)) /\
C.ITG.I.L.neighbors(n_up_linears(l_down))(UP) =

C.ITG.I.L.neighbors(n_linears(l_down))(UP) /\
C.ITG.I.L.length(n_up_linears(l_down)) = C.ITG.I.L.length(n_linears(l_down)) /\

The down neighbor and the marker board mounted at DOWN must no longer exists.
The length and neighboring properties of l_down must match the properties of
l_down in n.

7. Finally, the sub-networks must be well-formed.
D.ITG.I.L.is_wf(n_down) /\ D.ITG.I.L.is_wf(n_up)

Cluster Cut Decomposition Requirements
The cluster cut decomposition can be defined to have the inputs and outputs:

decompose: C.ITG.I.L.NetworkLayout >< C.ClusterCut -~->
C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout

decompose(n,cc) as (n_down,n_up)

It has the pre-conditions:

1. The network and the cut specification must be well formed.
pre D.ITG.I.L.is_wf(n) /\ D.cut_wf(n,sc),

The post-conditions are defined in the predicate function:
post post_cluster_cut_decomposition(cc,n,n_down,n_up)

The cluster cut post-conditions are basically the same as single cut requirements,
the difference lies in the amount of single cuts that has to be checked. The requirements
are the following:

1. The union of ndown and nup must have the same elements as n.
dom n_down_linears union dom n_up_linears = dom n_linears /\
dom n_down_points union dom n_up_points = dom n_points /\
dom n_down_markerboards union dom n_up_markerboards = dom n_markerboards /\

They are defined the same way as in single cut requirement.

2. The intersection of ndown and nup elements must yield the linears from the cut
specifications and the marker boards placed on them. Once again, the marker
boards facing the boundary side are not included because they are removed in
the decomposition process. The intersection of points does again result in an
empty set.
dom n_down_linears inter dom n_up_linears = l_downs union l_ups /\
dom n_down_markerboards inter dom n_up_markerboards =

{C.ITG.I.L.signals(l_down,n)(UP) | l_down:SecId :- l_down isin l_downs} union
{C.ITG.I.L.signals(l_up,n)(DOWN) | l_up:SecId :- l_up isin l_ups} /\

dom n_down_points inter dom n_up_points = {} /\

4.3 RSL Requirements 27

3. The elements in ndown must be the very same elements in n as for the single
cut, except l_ups which is the set of new boundaries.
(all l:SecId :- l isin n_down_linears \ l_ups =>

n_down_linears(l) = n_linears(l)) /\
(all p:SecId :- p isin C.ITG.I.L.points(n_down) =>

C.ITG.I.L.points(n_down)(p) = C.ITG.I.L.points(n)(p)) /\
(all mb:SecId :- mb isin C.ITG.I.L.marker_boards(n_down) =>

C.ITG.I.L.marker_boards(n_down)(mb) = C.ITG.I.L.marker_boards(n)(mb)) /\

4. For the new boundaries l_ups at ndown, the same requirements from single cut
must hold.
(all l_up: SecId :- l_up isin l_ups =>

UP ~isin C.ITG.I.L.signals(l_up,n_down)) /\
(all l_up: SecId :- l_up isin l_ups =>

UP ~isin C.ITG.I.L.neighbors(n_down_linears(l_up))) /\
(all l_up: SecId :- l_up isin l_ups =>

C.ITG.I.L.neighbors(n_down_linears(l_up))(DOWN) =
C.ITG.I.L.neighbors(n_linears(l_up))(DOWN)) /\

(all l_up: SecId :- l_up isin l_ups =>
C.ITG.I.L.length(n_down_linears(l_up)) = C.ITG.I.L.length(n_linears(l_up))) /\

5. The elements in nup must be the very same elements in n, except l_downs which
is the set of new boundaries.
(all l:SecId :- l isin n_up_linears \ l_downs =>

n_up_linears(l) = n_linears(l)) /\
(all p:SecId :- p isin C.ITG.I.L.points(n_up) =>

C.ITG.I.L.points(n_up)(p) = C.ITG.I.L.points(n)(p)) /\
(all mb:SecId :- mb isin C.ITG.I.L.marker_boards(n_up) =>

C.ITG.I.L.marker_boards(n_up)(mb) = C.ITG.I.L.marker_boards(n)(mb)) /\

6. For the new boundaries l_ups at ndown, the same requirements from single cut
must hold.
(all l_down: SecId :- l_down isin l_downs =>

DOWN ~isin C.ITG.I.L.signals(l_down,n_up)) /\
(all l_down: SecId :- l_down isin l_downs =>

DOWN ~isin C.ITG.I.L.neighbors(n_up_linears(l_down))) /\
(all l_down: SecId :- l_down isin l_downs =>

C.ITG.I.L.neighbors(n_up_linears(l_down))(UP) =
C.ITG.I.L.neighbors(n_linears(l_down))(UP)) /\

(all l_down: SecId :- l_down isin l_downs =>
C.ITG.I.L.length(n_up_linears(l_down)) = C.ITG.I.L.length(n_linears(l_down))) /\

7. Finally, the networks must be well-formed.
C.ITG.I.L.is_wf(n_down) /\ C.ITG.I.L.is_wf(n_up)

28 4 Requirements

Multi Cut Decomposition Requirements
The multi cut decomposition can be defined to have the inputs and outputs:

decompose: C.ITG.I.L.NetworkLayout >< C.MultiCut -~->
C.ITG.I.L.NetworkLayout-set

decompose(n,mc) as ns

It has the following pre-conditions:

1. The network and the cut specifications in the set must all be well-formed.
pre C.ITG.I.L.is_wf(n) /\ C.cuts_wf(n, mc)

The post-conditions are defined in the predicate function:
post post_multi_cut_decomposition(mc,n,ns)

The function inherits the same requirements as single- and cluster cuts. It simply uses
the relevant post function depending on the cut type.

1. The post requirements of both types must be satisfied.
(all c: C.Cut:- c isin mc =>

case c of
C.Cut_from_SingleCut(sc) ->

let (n_down,n_up) = decompose(n,sc)
in post_single_cut_decomposition(sc,n,n_down,n_up) end,

C.Cut_from_ClusterCut(cc) ->
let (n_down,n_up) = decompose(n,cc)
in post_cluster_cut_decomposition(cc,n,n_down,n_up) end

end) /\

2. Finally all of the networks must be well formed.
(all n : C.ITG.I.L.NetworkLayout :- n isin ns => C.ITG.I.L.is_wf(n))

CHAPTER5
Design

This chapter covers the specification and the design of the command line tool. The
design choices made to satisfy the requirements from Chapter 4 are described with
RSL specifications and UML diagrams.

5.1 RSL Modules Overview
The RSL modules have a nested structure. A scheme and object can be defined within
a class expression. A module that creates an object of a class is represented by an
arrow, where the arrow points to the inherited class. In Section 5.1, an overview of the
modules can be seen. The Decomposition module has access to all the other modules
by creating an object of Interlocking Table Generator module, which inherits other
modules.

Decomposition
Interlocking

Table
Generator

Interlocking Network
Layout

Figure 5.1: The RSL modules overview

The Decomposition module is developed in this project as an extension to the other
modules developed by Linh Vu [13]. The Decomposition module showed in the
figure above is simplified, it contains the submodules in Figure 5.2. By decoupling
the specifications into different sub-modules, the development and maintenance are
simplified. Below is a list describing each sub-module.

Decomposition_TEST Contains tests of decomposition- and auxiliary functions.

Decomposition_DESIGN Contains the main decomposition functions.

Decomposition_COMMON Contains commonly used functions from different
modules.

Decomposition_REQ Contains the requirements of decompositions methods.

Decomposition_THEOREM Contains theorems of decomposition methods.

The assigned prefix names associated with each module can be seen below, they
appear frequently in the RSL code listings when accessing types in objects.

30 5 Design

Decomposition_TEST Decomposition_DESIGN Decomposition_COMMON

Decomposition_THEOREM Decomposition_REQ

Figure 5.2: Sub-modules of the Decomposition module

(D) Decomposition_DESIGN

(C) Decomposition_COMMON

(ITG) InterlockingTableGenerator

(I) Interlocking

(L) NetworkLayout

5.2 Well-formedness of Cuts
In this section, the RSL specifications for well-formedness checks are showed. The
network layout and interlocking table are checked using RSL specifications provided
by Vu [13]. The cut checks, on the other hand, are defined in this project. The
well-formedness of a cut is determined before any decomposition operation. The only
inputs needed are a network layout and a cut specification. In Chapter 3 the BCC
pre-conditions were introduced. In this section, the reader will see how they are
specified in RSL to check for well-formedness.

5.2.1 Well-formed Single Cut
When checking if a single cut is well-formed the followings must hold:

C-01 Linear section up from the cut specification exists in the network.

C-02 Linear section down from the cut specification exists in the network.

C-03 Border cut conditions are satisfied.

cut_wf: ITG.I.L.NetworkLayout >< SingleCut -> Bool
cut_wf(n,sc) is
let l_up = section_up(sc),

l_down = section_down(sc)
in

/* Does linear section up exists in network? */
ITG.I.L.l_exists(l_up,n) /\
/* Does linear section down exists in network? */
ITG.I.L.l_exists(l_down,n) /\
/* Is BCC1 satisfied? */
BCC1(n,sc)

end,

5.2 Well-formedness of Cuts 31

Below is a short recap of the border cut conditions described in Chapter 3.

BCC1 Check if single cut sections are neighbors

BCC2 Check if single cut sections contain one up- and one down signal

BCC3 Check if single cut sections are already boundaries

BCC4 Check if single cut sections are still reachable after disconnecting

The RSL specification of the condition checks are as follows below.
BCC: ITG.I.L.NetworkLayout >< SingleCut -> Bool
BCC(n, sc) is
let l_up = section_up(sc),

l_down = section_down(sc)
in

/* Are the sections neighbours? */
(ITG.I.L.are_neighbors(l_down,l_up, n) /\
/* Is down-linear a boundary? */
~ITG.I.L.is_boundary(l_down,n) /\
/* Is up-linear a boundary? */
~ITG.I.L.is_boundary(l_up,n) /\
/* Do we have a down- and up signal from linears in cut specification? */
DOWN isin dom ITG.I.L.signals(l_up,n) /\ UP isin dom ITG.I.L.signals(l_down,n)) /\
/* Check if linears are is still reachable when disconnected */
let disconnected_network = get_disconnectedNetwork(n,l_down,l_up) in

l_up ~isin get_reachableNetworkSet(disconnected_network,l_down) /\
l_down ~isin get_reachableNetworkSet(disconnected_network,l_up)

end
end

The last check disconnects the cut section such that they are no longer neighbors,
then l_up is checked if it is reachable in the down network and vice versa. In a
decomposition, the cut sections are disconnected with the sections around them and
not between them as it is done here (see Section 3.3). This does however not affect
the reachability check because this approach is only one single linear section away
from where the actual disconnection happens.

32 5 Design

5.2.2 Well-formed Cluster Cut
The initial intuition for this specification was to reuse the well-formedness for single
cuts by saying:

cut_wf: ITG.I.L.NetworkLayout >< ClusterCut -> Bool
cut_wf(n,cc) is

(all sc: SingleCut :- sc isin cc => cut_wf(n, sc)),

This, however, is not possible due to the last check is done by the BCC function.
The reachability check to be precise. The problem is that the sub-networks should
only be unreachable after all of the single cuts in a cluster cut are disconnected. To
solve this problem a new BCC function in RSL is explicitly designed for cluster cut.
Here the network is disconnected in all given single cut locations, then the reachability
is checked. It could be argued that the reachability could be checked only for the last
single cut, but that could potentially exclude some not well-formed cuts. The RSL
specification can be seen below.

cut_wf: ITG.I.L.NetworkLayout >< ClusterCut -> Bool
cut_wf(n,cc) is

(all sc: SingleCut :- sc isin cc =>
/* Does linear section up exists in network? */
ITG.I.L.l_exists(section_up(sc),n) /\
/* Does linear section down exists in network? */
ITG.I.L.l_exists(section_down(sc),n)

) /\
/* Is BCC rules satisfied? */
BCC(n,cc)

BCC: ITG.I.L.NetworkLayout >< ClusterCut -> Bool
BCC(n, cc) is

(all sc: SingleCut :- sc isin cc =>
let l_up = section_up(sc),

l_down = section_down(sc)
in

/* Are the sections neighbours? */
(ITG.I.L.are_neighbors(l_down,l_up, n) /\
/* Is down-linear a boundary? */
~ITG.I.L.is_boundary(l_down,n) /\
/* Is up-linear a boundary? */
~ITG.I.L.is_boundary(l_up,n) /\
/* Do we have a down- and up signal from linears in cut specification?

*/↪→
DOWN isin dom ITG.I.L.signals(l_up,n) /\ UP isin dom

ITG.I.L.signals(l_down,n)) /\↪→
/* Check if linears are is still reachable when disconnected --

Disconnects all cuts every time */↪→
let disconnected_network = get_disconnectedNetwork(n,cc) in

l_up ~isin get_reachableNetworkSet(disconnected_network,l_down) /\
l_down ~isin get_reachableNetworkSet(disconnected_network,l_up)

end
end

)

5.3 Soundness of Cuts 33

5.2.3 Well-formed Multi Cut
A multi cut can consist of a mixture of cluster cuts and single cuts. The already
defined well-formed check functions can be reused. In this function, every cut type
must be checked, so the correct function is applied. A case matching is used for this
purpose. The RSL specification can be seen below.

cuts_wf: ITG.I.L.NetworkLayout >< MultiCut -> Bool
cuts_wf(n , mc) is

(all c: Cut:- c isin mc =>
case c of

Cut_from_SingleCut(sc) -> cut_wf(n, sc),
Cut_from_ClusterCut(cc) -> cut_wf(n, cc)

end)

5.3 Soundness of Cuts
In this section, the RSL code for soundness checks is shown. The soundness checks
are defined in Decomposition_COMMON but are used as theorems (axioms) in the
Decomposition_THEOREM module. A theorem gives the opportunity to define the
consequence of a function. It is different from a post-condition, where a post-condition
defines the state of the actual output. The first specification shows the soundness
check for a single cut. It initially checks if the sub-networks are well-formed, followed
by soundness checks.

[Single_decompose_SC] in Decomposition_DESIGN |-
all (n1,n2): C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout,

n: C.ITG.I.L.NetworkLayout,
c: C.SingleCut:-

(n1,n2) = decompose(n,c) =>
C.ITG.I.L.is_wf(n1) /\ C.ITG.I.L.is_wf(n2) /\
C.SC2(n,n1,n2) /\ C.SC3(n,n1,n2) /\
C.SC4(n,n1,n2) /\ C.SC5(n,n1,n2),

The same checks are done for cluster cut.

[ClusterCut_decompose_SC] in Decomposition_DESIGN |-
all (n1,n2): C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout,

n: C.ITG.I.L.NetworkLayout,
c: C.ClusterCut:-

(n1,n2) = decompose(n,c) =>
C.ITG.I.L.is_wf(n1) /\ C.ITG.I.L.is_wf(n2) /\
C.SC2(n,n1,n2) /\ C.SC3(n,n1,n2) /\
C.SC4(n,n1,n2) /\ C.SC5(n,n1,n2),

34 5 Design

The multi cut theorem does the same checks, but it uses pattern matching to distinguish
between the cuts.

[MultiCut_decompose_post] in Decomposition_DESIGN |-
all n: C.ITG.I.L.NetworkLayout,

mc: C.MultiCut:-
(all c:C.Cut :- c isin mc =>

case c of
C.Cut_from_SingleCut(sc) ->
(all (n1,n2): C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout

:- (n1,n2) = decompose(n,sc) =>↪→
C.ITG.I.L.is_wf(n1) /\ C.ITG.I.L.is_wf(n2) /\
C.SC2(n,n1,n2) /\ C.SC3(n,n1,n2) /\
C.SC4(n,n1,n2) /\ C.SC5(n,n1,n2)),

C.Cut_from_ClusterCut(cc)->
(all (n1,n2): C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout

:- (n1,n2) = decompose(n,cc) =>↪→
C.ITG.I.L.is_wf(n1) /\ C.ITG.I.L.is_wf(n2) /\
C.SC2(n,n1,n2) /\ C.SC3(n,n1,n2) /\
C.SC4(n,n1,n2) /\ C.SC5(n,n1,n2))

end
)

end

Before showing the actual RSL specification for the soundness checks, a recap of the
conditions are listed.

SC1 If any overlap section exists in the route, it must reside in the generated
interlocking table or the sub-network it was based on.

SC2 Any point in the route must only reside in the same interlocking table or the
sub-network it was based on.

SC3 Any marker boards in the route must only reside in the generated interlocking
table or the sub-network it was based on.

SC4 All conflicting routes must reside in the same interlocking table.

The specification for SC1 can be seen on the next page. The function takes the
original network and the sub-networks as input. An interlocking table is generated
from the original network and this table is divided into two sub-tables. One table with
routes belonging to down and one table with routes belonging to up. The function
iterates all of the routes in down table and checks if all found overlaps are part of the
sub-network it is based on. The same is done for the down table.

5.4 Decomposition Specifications 35

SC1: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout -> Bool
SC1(n,n_down,n_up) is

let
t = ITG.mk_table(n),
down_routes = get_sub_routes(n_down,t),
up_routes = get_sub_routes(n_up,t)

in
(all r : ITG.I.Route :- r isin rng down_routes =>

(all s: SecId :- s isin ITG.I.overlap(r) =>
s isin ITG.I.L.sections(n_down)))

/\
(all r : ITG.I.Route :- r isin rng up_routes =>

(all s: SecId :- s isin ITG.I.overlap(r) =>
s isin ITG.I.L.sections(n_up)))

end,

The same exact procedure is applied for other soundness checks too, they are therefore
not shown here, except for SCC2. The SCC2 is listed for comparison, so the reader
can see how similar the check is performed. The rest of the soundness condition
definitions can be seen in Appendix E.

SC2: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout -> Bool
SC2(n, n_down,n_up) is

let
t = ITG.mk_table(n),
down_routes = get_sub_routes(n_down,t),
up_routes = get_sub_routes(n_up,t)

in
(all r : ITG.I.Route :- r isin rng down_routes =>

(all s_id : SecId :- s_id isin dom ITG.I.points(r) =>
s_id isin ITG.I.L.sections(n_down)))

/\
(all r : ITG.I.Route :- r isin rng up_routes =>

(all s_id : SecId :- s_id isin dom ITG.I.points(r) =>
s_id isin ITG.I.L.sections(n_up)))

end,

5.4 Decomposition Specifications
In this section, the decomposition method specifications are described along with
their auxiliary functions. The main decomposition methods are placed in the
Decomposition_DESIGN module while the auxiliary functions are placed in the RSL
module Decomposition_COMMON.

5.4.1 Single cut Decomposition
A single cut decomposition execution divides a network into two sub-networks. The
cut specification tells the decompose function where to perform the cut. If the cut
specification is well-formed, then it will output two networks, the sub-network down
and the sub-network up. The function is defined as shown in the listing below.

36 5 Design

It receives the cut specification and then calls the apply_bc function followed by
get_reachableNetwork.

The apply_bc function is called twice for each sub-network to be generated. It
receives the direction (DOWN/UP) for targeted sub-networks (down/up) and the cut
specification as input. apply_bc has subroutines which perform the specific operations
defined for a border cut. After it has executed, both sub-networks are in a not
well-formed state, that is because they still contain both sides of the cut.

The get_reachableNetwork function is used to extract only the targeted sub-
network after the cut operations are performed by apply_bc. It requires an input of
a section that resides in the targeted sub-network. The extracted sub-network will be
well-formed if the cut is applied properly.

decompose: C.ITG.I.L.NetworkLayout >< C.SingleCut -~->
C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout

decompose(n,sc) is
let

l_down = C.section_down(sc),
l_up = C.section_up(sc),

cut_applied_down = C.apply_bc(n,sc, DOWN),
cut_applied_up = C.apply_bc(n,sc, UP),

n_down = C.get_reachableNetwork(cut_applied_down,l_down),
n_up = C.get_reachableNetwork(cut_applied_up,l_up)

in
(n_down,n_up)

end
pre C.ITG.I.L.is_wf(n) /\ C.cut_wf(n,sc),

5.4.2 Cluster cut Decomposition
A cluster cut decomposition is an execution of a set of single cuts, which all combined
produces two networks. The specification of a cluster cut decomposition is defined as
seen in the listing below.

decompose: C.ITG.I.L.NetworkLayout >< C.ClusterCut -~->
C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout

decompose(n,cc) is
let

l_ups = { C.section_up(c) | c:C.SingleCut :- c isin cc },
l_downs = { C.section_down(c) | c:C.SingleCut :- c isin cc },

cut_applied_down = C.apply_bc(n,cc, DOWN),
cut_applied_up = C.apply_bc(n,cc, UP),

n_down = C.get_reachableNetwork(cut_applied_down, hd l_downs),
n_up = C.get_reachableNetwork(cut_applied_up, hd l_ups)

in
(n_down, n_up)

end
pre C.ITG.I.L.is_wf(n) /\ C.cut_wf(n, cc),

5.4 Decomposition Specifications 37

The decompose specification of cluster cut resembles the single cut specifica-
tion, but, there are some differences. The apply_bc function receives a cluster cut
as input which applies cut operations on all of the single cuts. Furthermore, the
get_reachableNetwork function receives arbitrary sections from the sets l_ups and
l_downs. As a side note, it does not matter which of the cut sections are used in
get_reachableNetwork, since they appear in both sub-networks, but for consistency,
the lower sub-network receives l_down and upper sub-network l_up.

5.4.3 Multi cut Decomposition
The multi-cut decomposition is the execution of multiple single cuts and cluster cuts.
The idea of the algorithm used in this function is to reuse the already defined single cut
and cluster cut decomposition functions. All of the cuts will be executed recursively.
The cuts are executed one by one in arbitrary order and the algorithm is finished
when no more applicable cuts remain.

A pre-condition with cuts_wf is only possible using a boolean flag to tell if the
input is the original network or not. All of the cuts are only expected to be well-formed
for the original network. The reason for not using the pre-condition for all instances
is due to the non-applicable cuts being carried over to next instances. To filter them
out, the get_applicableCuts function is used to return the subset of all well-formed
cuts for the particular targeted network. The RSL specification for the multi cut can
be seen in the listing below.

decompose: C.ITG.I.L.NetworkLayout >< C.MultiCut >< Bool -~->
C.ITG.I.L.NetworkLayout-set

decompose(n,mc, isOriginalNetwork) is
let

applicableCuts = C.get_applicableCuts(n,mc)
in

if applicableCuts = {}
then {n}
else let cut= hd applicableCuts in

let
(n1,n2) = case cut of

C.Cut_from_SingleCut(sc) -> decompose(n,sc),
C.Cut_from_ClusterCut(cc) -> decompose(n,cc)

end,
ns1 = decompose(n1, mc \ {cut}, false),
ns2 = decompose(n2, mc \ {cut}, false)

in
ns1 union ns2

end
end
end

end
pre C.ITG.I.L.is_wf(n) /\ if isOriginalNetwork then C.cuts_wf(n, mc) else true end

Every time a cut is applicable for a network, the correct decompose function is
called, creating n1 and n2. The created sub-networks are then executed with the
rest of the remaining cuts. When no applicable cuts remain, the current network is
returned. The returned networks are assigned as ns1 and ns2. These networks are

38 5 Design

accumulated using the union operator. The union of all the returned sub-networks will
eventually be returned. This process can be visualized as a binary tree of networks
where only the leaves are included in the result, see Figure 5.3. It can also be seen
that a multi cut with n cuts will produce n+1 sub-networks.

N

N1 N2

N3

N4 N5

N6

Figure 5.3: Every child node in the tree represents a sub-network. The green leafs in
the binary tree identifies the final networks that are part of the multi-cut
decomposition result.

Applying a Border Cut
The specification of apply_bc for a single cut can be seen below. This function
does two operations. Initially, it obtains the sections to be disconnected and then
disconnects them by removing the connecting neighbors from both sides. The obtained
sections in question lie around the cut sections.

Then the function removes the extra marker board placed at the new boundary (if
there exists any). How this function operates depends on the given direction d, which
identifies the targeted sub-network.

apply_cut : ITG.I.L.NetworkLayout >< SingleCut >< Direction -~-> ITG.I.L.NetworkLayout
apply_cut(n,sc,d) is

let
l_down_id = section_down(sc),
l_up_id = section_up(sc),
l_down = ITG.I.L.get_linear(l_down_id,n),
l_up = ITG.I.L.get_linear(l_up_id,n),

disconnect_down = if d = DOWN then l_up_id else ITG.I.L.down(l_down) end,
disconnect_up = if d = DOWN then ITG.I.L.up(l_up) else l_down_id end,
disconnected_network = get_disconnectedNetwork(n, disconnect_down, disconnect_up),

-- Remove invalid markerboard at the interested side of the disconnection
extra_mb_removed_n =

if d = DOWN then remove_extra_mb(disconnected_network,l_up_id,d)
else remove_extra_mb(disconnected_network,l_down_id,d)

5.4 Decomposition Specifications 39

end
in

extra_mb_removed_n
end,

The specification of apply_bc for cluster cut differs by recursively applying single cut
operations on the same network until no more cuts are left.

apply_cut : ITG.I.L.NetworkLayout >< ClusterCut >< Direction -~-> ITG.I.L.NetworkLayout
apply_cut(n,cc,d) is

if cc = {} then n else
let

sc = hd cc,
sc_subnet = apply_cut(n,sc,d)

in
apply_cut(sc_subnet,cc \ {sc},d)

end
end,

Reachable Network
The get_reachableNetwork is a function that discovers a network from a given
section. It returns the discovered network as a NetworkLayout. This function is useful
and is applied in different scenarios. The function is specified as follow:

get_reachableNetwork : ITG.I.L.NetworkLayout >< SecId -~-> ITG.I.L.NetworkLayout
get_reachableNetwork(n,s) is
let

-- Get all sections
sections = get_all_sections(n,{s},{}),
-- Get all linears from given sections
linears = get_all_linears(n,sections),
-- Get all points from given sections
points = get_all_points(n, sections),
-- Get all signals from given sections (signals only exists in linears)
signals = get_all_signals(n, sections)

in
-- Instantiate a new network layout
ITG.I.L.mk_NetworkLayout(linears,points,signals)

end
pre ITG.I.L.s_exists(s,n),

The interesting function in this specification is get_all_sections. This function
traverses a network and outputs all the sections it finds. Once the sections are known,
the linears, points, and signals can easily be extracted using map comprehension to
form the new sub-network. The specification of the get_all_sections function can
be seen below. To see the other functions (get_all_linears, get_all_points and
get_all_signals) see Appendix E.2.

get_all_sections: ITG.I.L.NetworkLayout >< SecId-set >< SecId-set -~-> SecId-set
get_all_sections(n,tv,v) is

if tv = {} then v
else

40 5 Design

let
current = hd tv,
visited = {current} union v,

toVisit = (tv union ITG.I.L.get_neighbors(current,n)) \ visited
in

get_all_sections(n,toVisit,visited)
end

end,

For this function, a general traversal algorithm is used which is based on Depth
First Search (DFS) and Breadth First Search (BFS) [3]. Every section is discovered by
looking at the neighbors of the current one. The algorithm traverses in all directions,
it has the inputs (n, tv, v), where n is the network, tv is the set of nodes to be visited
and v is the set of visited sections. Both tv and v are of type SecId-set. Using sets
means that the next node to visit is arbitrary, so the algorithm does not exactly follow
DFS or BFS. That does however not matter since all of the nodes must be visited
anyway, in which order it happens, affect neither the result nor the performance. The
algorithm is finished when no more unvisited nodes exist (when tv is empty), in this
case, v is returned.

The start section given to the algorithm does not matter as long as it resides in
the correct sub-network to be discovered. A benefit of this algorithm is that we can
be sure all nodes are only visited once.

Disconnecting a Network
This specification function takes two neighbor sections and disconnects them. The
disconnections happen on both sections, meaning that both sections will no longer
have the other one as a neighbor. Since there exist two types of sections (linears and
points), the function must be able to cover all combinations. If one of the sections is
a point, then the correct point-end must be determined to disconnect properly. The
specification of get_disconnectedNetwork can be seen in the listing below.

get_disconnectedNetwork : ITG.I.L.NetworkLayout >< SecId >< SecId -~->
ITG.I.L.NetworkLayout↪→

get_disconnectedNetwork(n,secIdDown, secIdUp) is
let

points = ITG.I.L.points(n),
linears = ITG.I.L.linears(n),

linearsToDisconnect =
-- if down section is a linear
[l +> remove_nb(ITG.I.L.get_linear(l,n), UP) | l:SecId :- l isin

ITG.I.L.linears(n) /\ l = secIdDown] !!↪→
-- if up section is a linear
[l +> remove_nb(ITG.I.L.get_linear(l,n), DOWN) | l:SecId :- l isin

ITG.I.L.linears(n) /\ l = secIdUp],↪→

pointsToDisconnect =
-- if down section is a point
-- point end to disconnect: ITG.I.L.get_p_end_by_nb_id(s,s,n)

5.4 Decomposition Specifications 41

[p +> remove_nb(ITG.I.L.get_point(secIdDown,n),
ITG.I.L.get_p_end_by_nb_id(secIdDown, secIdUp, n)) | p:SecId :- p isin
ITG.I.L.points(n) /\ p = secIdDown] !!

↪→
↪→

-- if up section is a linear
[p +> remove_nb(ITG.I.L.get_point(secIdUp,n),

ITG.I.L.get_p_end_by_nb_id(secIdUp, secIdDown, n)) | p:SecId :- p isin
ITG.I.L.points(n) /\ p = secIdUp]

↪→
↪→

in
-- Update the network by adding the new boundaries
ITG.I.L.mk_NetworkLayout(linears !! linearsToDisconnect, points !!

pointsToDisconnect, ITG.I.L.marker_boards(n))↪→
end
pre ITG.I.L.are_neighbors(secIdDown, secIdUp, n),

Another version explicitly for cluster cut is defined that reuses the already defined
get_disconnectedNetwork for a single cut. This version visits all single cuts and
disconnects between the cut section one by one. The returned network will probably
be disconnected multiple places.

get_disconnectedNetwork : ITG.I.L.NetworkLayout >< ClusterCut -~->
ITG.I.L.NetworkLayout↪→

get_disconnectedNetwork(n,cc) is
if cc = {} then n
else let

sc = hd cc,
sc_disconnected = get_disconnectedNetwork(n, section_down(sc),

section_up(sc))↪→
in
get_disconnectedNetwork(sc_disconnected,cc \ {sc})

end
end

pre (all sc : SingleCut :- sc isin cc => ITG.I.L.are_neighbors(section_down(sc),
section_up(sc), n)),↪→

Removing invalid marker boards
When new boundaries are created as a product of disconnection, it must be ensured
that these new boundaries do not contain invalid marker boards. Invalid marker
boards are removed with the remove_extra_mb function, previously seen used in the
apply_bc specification. The specification for this functions can be seen below.

remove_extra_mb : ITG.I.L.NetworkLayout >< SecId >< Direction -> ITG.I.L.NetworkLayout
remove_extra_mb(n,l,d) is

let
-- Get the extra marker boards to be removed (if exists)
extra_mbs = { ITG.I.L.signals(l,n)(-d)}
in
-- Update the network by deleting the extra marker board
ITG.I.L.mk_NetworkLayout(ITG.I.L.linears(n),

ITG.I.L.points(n),
ITG.I.L.marker_boards(n) \ extra_mbs)

end,

42 5 Design

5.5 XML schema
The XML schemas for cuts are presented in this section. The XML schemas created
in this project are based on the previously defined schemas in Vu’s project [13], e.g.
the network layout XML schema.

A single cut using border cut can be defined using the borderCut tag. Inside this
tag, two sections must be defined using the trackSection tag. The following XML
listing shows how a border cut may be defined.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<borderCut id="miniBorderCut">

<trackSection id="b10" side="down" type="linear"/>
<trackSection id="t10" side="up" type="linear"/>

</borderCut>
</xmi:XMI>

The id attribute is the section identifier that already exists in the network layout.
The side attribute is used to define l_down and l_up from the specification. The
type of the sections are also included, even though only linears sections are currently
allowed, it may be beneficial for new cut types in the future to have this attribute.

A cluster cut can be defined using the clusterCut tag. Inside the cluster cut tag,
there can be any arbitrary number of border cut definitions. The identifiers of border
cuts are used to distinguish between them.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<clusterCut id="miniClusterCut">

<borderCut id="miniBorderCut">
<trackSection id="b10" side="down" type="linear"/>
<trackSection id="t10" side="up" type="linear"/>

</borderCut>
</clusterCut>

</xmi:XMI>

A multi cut is defined with the multiCut tag. Inside the tag, there can be any
number of single and cluster cuts. The following listing shows an example.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<multiCut id="miniMultiCut">

<borderCut id="BorderCut1">
<trackSection id="t2" side="down" type="linear"/>
<trackSection id="t3" side="up" type="linear"/>

</borderCut>
<clusterCut id="ClusterCut1">

<borderCut id="CC_BorderCut1">
<trackSection id="t9" side="down" type="linear"/>
<trackSection id="t10" side="up" type="linear"/>

5.5 XML schema 43

</borderCut>
<borderCut id="CC_BorderCut2">

<trackSection id="t20" side="down" type="linear"/>
<trackSection id="t21" side="up" type="linear"/>

</borderCut>
</clusterCut>

</multiCut>
</xmi:XMI>

In the given example, the multi cut contains one border cut (single cut) and one cluster
cut. The cluster cut contains two additional border cuts. Both cuts (BorderCut1
and ClusterCut1) produces each two sub-networks, so we can expect to produce 3
sub-networks in total when decomposing consecutively.

44 5 Design

5.6 Class Diagrams
In the rest of the sections, the design choices made for the command line tool are
described. In this section, the class diagrams of the decomposition tool are presented
to give the reader an overview of the software structure design.

5.6.1 Cut Classes
The cut types are structured as it can be seen in Figure 5.4. All cuts are inherited
from the base Cut class. A new cut class can be added by further extending the
SingleCut class. Extending the single cut class by introducing a new cut type, alike
border cut, automatically puts the new cut type in a good place to be used with
cluster- and multi cut. The multiplicities show that cluster cut and multi cut can
have any number of contents in them. The uni-directional associations show that only
the higher level cuts are aware of the relationship.

A variant type could have been used to accomplish a more similar structure to
the RSL specification. Unfortunately, the variant type std::variant was not yet
supported by the compiler used in this project, which was below C++17 [11].

MultiCut

- borderCuts
- clusterCuts

+ MultiCut()
+ getBorderCuts()
+ getClusterCuts()
+ getBorderCut()
+ getClusterCut()
+ getCut()
+ setBorderCuts()
+ setClusterCuts()

Cut

type

+ Cut()
+ getCutType()
+ isA()

BorderCut

- linear_up
- linear_down

+ BorderCut()
+ getLinearUp()
+ getLinearDown()
+ setLinearUp()
+ setLinearDown()

SingleCut

+ SingleCut()

ClusterCut

- borderCuts

+ ClusterCut()
+ getBorderCuts()
+ setBorderCuts()

*

*

*

Figure 5.4: Class diagram of the cut types.

5.6 Class Diagrams 45

5.6.2 Parser Classes
The parsers do not have any inheritance involved, but their multiplicities correspond
to the cut classes. The class diagram in Figure 5.5 does also include the parser classes
along with their relations to the cut classes. The parsers aggregate cut types by
instantiating a private local value. Every parser class is responsible for the type it
aggregates.

MultiCut

- borderCuts
- clusterCuts

+ MultiCut()
+ getBorderCuts()
+ getClusterCuts()
+ getBorderCut()
+ getClusterCut()
+ getCut()
+ setBorderCuts()
+ setClusterCuts()

-multiCut

Cut

type

+ Cut()
+ getCutType()
+ isA()

MultiCutParser

+ MultiCutParser()
+ ~MultiCutParser()
+ getMultiCut()
+ parse()
+ print_element_names()
+ doVisit()
+ getSearchIndicator()
+ getSearchValue()

-clusterCut

BorderCut

- linear_up
- linear_down

+ BorderCut()
+ getLinearUp()
+ getLinearDown()
+ setLinearUp()
+ setLinearDown()

-borderCut

SingleCut

+ SingleCut()

ClusterCutParser

+ ClusterCutParser()
+ ~ClusterCutParser()
+ getClusterCut()
+ parse()
+ print_element_names()
+ doVisit()
+ getSearchIndicator()
+ getSearchValue()

ClusterCut

- borderCuts

+ ClusterCut()
+ getBorderCuts()
+ setBorderCuts()

*

*

BorderCutParser

+ BorderCutParser()
+ ~BorderCutParser()
+ getBorderCut()
+ parse()
+ print_element_names()
+ doVisit()
+ getSearchIndicator()
+ getSearchValue()

*

*

*

*

Figure 5.5: Class diagram of the parsers.

46 5 Design

5.6.3 Domain
Finally, all of the classes are shown in Figure 5.6. This figure can be interpreted as
the domain model. The relationship between the main decomposition classes and the
other classes are introduced. The already showed relationships in previous diagrams
are not included this time for simplicity.

The class Decomposition is the main class used to trigger the decomposition process
and the class DecompositionCommon contains commonly used functions by other
classes, which is why it is associated with them all.

-common

Decomposition

- interlocking
- networkLayout
- routeTable

+ Decomposition()
+ decompose()
+ decompose()
+ decompose()
+ setInterlocking()
+ setNetworkLayout()
+ setRouteTable()
+ toDescription()
+ printStats()

MultiCut

- borderCuts
- clusterCuts

+ MultiCut()
+ getBorderCuts()
+ getClusterCuts()
+ getBorderCut()
+ getClusterCut()
+ getCut()
+ setBorderCuts()
+ setClusterCuts()

BorderCut

- linear_up
- linear_down

+ BorderCut()
+ getLinearUp()
+ getLinearDown()
+ setLinearUp()
+ setLinearDown()

ClusterCut

- borderCuts

+ ClusterCut()
+ getBorderCuts()
+ setBorderCuts()

MultiCutParser

+ MultiCutParser()
+ ~MultiCutParser()
+ getMultiCut()
+ parse()
+ print_element_names()
+ doVisit()
+ getSearchIndicator()
+ getSearchValue()

ClusterCutParser

+ ClusterCutParser()
+ ~ClusterCutParser()
+ getClusterCut()
+ parse()
+ print_element_names()
+ doVisit()
+ getSearchIndicator()
+ getSearchValue()

DecompositionCommon

+ DecompositionCommon()
+ isCut_wf()
+ isCut_wf()
+ isCuts_wf()
+ sectionExists()
+ cutSectionsExistsInNetwork()
+ cutSectionsExistsInNetwork()
+ apply_bc()
+ apply_bc()

+ apply_bc()
and 23 more...

BorderCutParser

+ BorderCutParser()
+ ~BorderCutParser()
+ getBorderCut()
+ parse()
+ print_element_names()
+ doVisit()
+ getSearchIndicator()
+ getSearchValue()

DecompositionXmlWriter

+ DecompositionXmlWriter()
+ xmlWriteMainDoc()
- xmlWriteIxl()
- xmlWriteCut()
- xmlWriteNetwork()
- xmlWriteRouteTable()
- xmlWriteNeighbor()
- xmlWriteRouteConditions()

Figure 5.6: Domain diagram.

5.7 Sequence Diagrams 47

5.7 Sequence Diagrams
In this section, the sequence diagrams of the tool are presented. The sequence diagrams
created show the high-level method calls during executions. Low-level operations such
as assignments are omitted, so are irrelevant and obvious calls. A method call that
has been shown before might sometimes be simplified in another sequence diagram by
showing only its return value, instead of it inner calls again.

5.7.1 Parser Sequences
The parser sequence diagrams show the sequence flow of the parsing of different
decomposition methods. The diagrams clearly show how the parsers in some cases
reuse lower level parser methods, which is the case with cluster and multi cut.

The parser in Figure 5.7 shows the sequence diagram of the border cut. The parser
instance starts by calling the cutparser with the cut file path as the argument. The
cutparser then calls the borderCutParser with the XML node identified from the
borderCut tag. The borderCutParser will then create a new border cut object that
it will populate with its properties. The result will then be returned all the way back
to the parser object.

Figure 5.7: Sequence diagram of the border cut parser.

The DecompositionParser in the sequence diagram does also call the parser for
network layout, which is how it differentiates from CutParser. The parsing of the
network layout is omitted since it is not developed in this project. Notice that the
cut name and its type is generalized in the last return value. This is possible because
of the inheritance scheme used for the cuts (see Figure 5.4), a derived cut type can
be cast to its base class and vice versa. Casting to another cut type is however not
possible.

48 5 Design

The Figure 5.8 shows a sequence diagram of the cluster cut parsing. The initial steps
are the same until clusterCutParser is called. The clusterCutParser instance
contains a loop that visits all XML nodes starting from the given pcurr:XmlNodePtr.
If a border tag occurs, then a BorderCutParser is created and called with parse
method. It can be seen from the previous sequence diagram that a bordercut object
will be returned from the BorderCutParser. The loop stop until no more XML nodes
exist. Finally, a ClusterCut object is created which is populated with found border
cuts. The cluster cut object is then returned all the way back to the parser object.

Figure 5.8: Sequence diagram of the cluster cut parser.

5.7 Sequence Diagrams 49

The last parser sequence to examine is the multi cut parser which can be seen in
Figure 5.9. The multi cut resembles the cluster cut parser sequence but is slightly
more complex. The sequence shows how the multi cut parser can exploit the already
defined parsers for border cut and cluster cut. The multiCutParser contains a big
for loop block that checks for border cuts and cluster cuts in the given XML file. Any
occurrence creates the respective parser for the found cut type. The received objects
from the parsers are saved into a new MultiCut object, which is the returned object
to the initial caller.

Figure 5.9: Sequence diagram of the multi cut parser.

50 5 Design

5.7.2 Decomposition Sequences
The decomposition sequence diagrams show the most crucial part of the tool that
must be designed properly from the start. The decomposition of the networks begins
after the parsing is done, it is therefore not included, nor is the XML generations.
Just like the sequence diagrams for the parsers, repetitive sequences will occur. The
specification created for decomposition methods has a huge impact on the design
shown in this section, this will be obvious for the reader immediately when examining
the diagrams.

Initially, the single cut decomposition is introduced in Figure 5.10. As it been
mentioned before, the single cut decomposition applies a border cut operation on a
given cut specification and network. The singleton object main represents the lifeline

Figure 5.10: Sequence diagram of single cut decomposition.

of the main class which will be executable. It starts by calling the decomposition
instance with a network and a single cut as arguments. The decomposition instance
will create two new instances of the network (downNetwork and upNetwork) using
the clone function defined in common (see Section 6.4). Thereafter will both net-

5.7 Sequence Diagrams 51

works be modified by the apply_bc method that will disconnect sections and remove
unnecessary marker boards at a cut position. The networks are then respectively
rediscovered using reachableNetwork before returning the results back to the main
object.

The next sequence diagram in Figure 5.11 shows the cluster cut decomposition. It
resembles very much single cut decomposition, but the apply_bc method in this cases
triggers a loop that will call the apply_bc for all the single cuts. The downNetwork
and upNetwork will be altered multiple times before called back to the main object.
Notice that apply_bc is an overloaded function that differs by its input arguments.

Figure 5.11: Sequence diagram of cluster cut decomposition.

52 5 Design

Finally, the sequence diagram for a multi cut is shown in Figure 5.12. This diagram
is simplified by referencing the previous sequences with the frames sd single cut
and sd cluster cut. Notice that the referenced frames can call objects not shown
in this figure, such as the DecompositionCommon. Even though the sequence is
simplified, it still has a complex flow. This can be observed by the recursive calls.
The algorithm here is based on the specification in Section 5.4.3. The decompose
function in decomposition starts by finding applicable cuts. If no applicable cuts
exist, then none of the code in opt frame is executed. If applicable cuts exist, then a
decomposition sequence is executed depending on the cut type. The same decompose
function is called again for the created sub-networks ns.down and ns.up. Eventually,
when no more cuts exist, all of the networks are returned as a result to the main
object.

Figure 5.12: Sequence diagram of multi cut decomposition.

5.8 Adding a New Cut Type 53

5.8 Adding a New Cut Type
The ability to extend the decomposition tool with new cut types is one of the
requirements that has been determined. This requirement has an influence on the
structure of the software and its design. The extendibility of the software has been
touched upon a couple of times, but to really understand, one must know how to
add a new cut. To add a new cut, the list below shall be done. As an example, the
addition of linear cut is portrayed.

5.8.1 Specifications
1. Specify the requirements of linear cut in RSL.

2. Create RSL specification for cut.

a) Introduce the new cut:
LinearCut ::

section:SecId,

b) Extend single cut to include the new cut.
SingleCut == SingleCut_from_BorderCut(singlecut_to_bordercut: BorderCut) |

SingleCut_from_LinearCut(singlecut_to_linearcut: LinearCut),

c) Create a specification for cut operations, call it apply_lc.

3. Use constructors to avoid ambiguousness.
linearcut = singlecut_to_linearcut(sc)

5.8.2 C++ tool
1. Add the new cut LinearCut such that SingleCut is its base class (See Figure 5.4).

2. Add a new XML definition and parser for LinearCut based on the existing
parsers. Since all the cuts specifications refer to section identifiers, adding a new
one should be straightforward.

3. Add the new function that specifies the cut operations, call it apply_lc.

4. Use casting to avoid ambiguousness.

The given direction to add a new cut assumes that the nature of the cut does
not deviate extremely from the already defined border cut. In that case, additional
development of the tool might be necessary. The advantage of the decomposition
methods single-, cluster- and multi cut, is that they can still be applicable for different
cut types. A cluster cut or a multi cut consisting of different cut types will provide a
huge flexibility.

54

CHAPTER6
Implementation & Tests
This chapter makes a run-through of the implementation of the decomposition tool.
Unlike previous chapter (Chapter 5), this chapter focuses not on the overall structure
but technical challenges unique to this project.

6.1 The C++ Project Structure
In the early phases of the implementation, it was decided to reuse the already existing
parser for interlocking systems from Vu’s project [13] and implement the other parsers
for cuts based on that. This decision had its upsides and downsides. The overall
time of parser implementation was shortened. However, the code was part of a large
project with many dependencies. This meant that some files had to be included even
though they are not directly used in this project, and the build process became a
little more complex. Attempts have been made to separate the needed code to an
independent project to overcome this issue but were not possible. However, this issue
has been reduced by modifying the CMake configuration file CMakeList.txt only to
build relevant files. Another attempt for simplification is made possible by separating
the decomposition tool with rest of the included code by keeping all its code in a
single folder. The folder has the following path:

[rr-project]/decomposers/networkDecomposition/

Where [rr-project] is the main project folder of RobustRailS tools. The main
decomposition classes such as main.cpp and Decomposition.cpp are placed in this
folder, including the executables. The rest of the files are in the sub-folders:

• cut. Contains cut types.

• parser. Contains cut parser.

• xmlWriter. Contains XML writer for networks.

• common. Contins the DecompositionCommon class.

• test. Contains the test classes.

The directly used code from Vu’s project is in the paths:

[rr-project]/dkixl/
[rr-project]/parsers/ixlparser/

56 6 Implementation & Tests

The dkixl folder contains the interlocking classes and the ixlparser folder
contains the interlocking parser classes. The other included folders and codes will not
be listed since they are irrelevant.

6.2 Parser
The libxml2 library is used in the implementation of the cut parser. This new
parser extension is based on the already existing parser for the network layouts from
verification tool [13]. The basic idea behind implementing the parser is to visit every
XML node and save the appropriate attributes in found occurrences. The nodes
represent the tags in the XML tree created by the libxml2 library. The challenge in
this part of the project was to understand the already defined parsers and extend
accordingly.

6.3 XML Writer
The xmlwriter is also part of the libxml library and is used to write XML files in
the system. The files written contains the sub networks generated by the tool. The
implementation of the XML writer requires that every element in the networks to be
visited. This can unfortunately not be done automatically with objects as arguments,
since the XML writer does not know data structure of the network layout and which
data to include or not. New methods had to be implemented for this purpose.

In a given interlocking XML file, the elements are not grouped, but are listed in
the order they are connected. However, all of the elements such as the points, linears
and the marker boards are coupled together in map data types during the parsing
process. This means that the information regarding the order they are listed in the
XML file is lost.

A possible solution to this would be rediscovering (network traverse) the connections
in the sub-networks to know which order to list them in the new XML files, however,
this resulted in another problem. Rediscovering sub-networks before writing them in
files may filter out errors in the program because only one side of wrongly disconnected
networks will show up. This made debugging troublesome. Therefore it was chosen
not to write by rediscovering their connections. Instead, the elements are written in
groups of sections, points and marker boards. This is simply done by traversing the
map data types containing the elements. This choice does not result in any functional
misbehaviors, in fact, it can be beneficial to have the elements grouped in some cases.

6.4 Cloning of networks 57

6.4 Cloning of networks
In the process of a decomposing, it is natural to create multiple instances of networks
representing the sub-networks. In the implementation process, it became apparent
that this was a problem, the default copy constructors supplied by the C++ compiler
did not create new instances of all the network elements, mainly of elements contained
in maps. The consequence was that the new instances were referencing to the very
same objects they were supposed to copy. This meant that modifying a single instance
resulted in all of them being modified, a solution to this had to be implemented.

It was not possible to modify or add new copy constructors to the network
objects, because that required the whole project folder to be compiled, the lack of
some confidential dependent folders meant that this was not possible (see Section 6.1).
Instead, new functions were created in the DecompositionCommon class for this purpose.
This function would take any network element and return a clone (copy) of it. When
a network has to be cloned, new elements such as linears, points, and marker boards
are instantiated without any relation information. A relation information comprises
neighboring of the sections and mount placements of marker boards. When all elements
are instantiated, then their relations are set. The reason for this ordering is that the
relations are represented by pointer references, and to reference other elements, they
must first exist. Figure 6.1 shows an overview of relation setter functions used in the
cloning process.

The implementation of this function took extensive time. Many sub-functions had
to be implemented and tested thoroughly. If a single element is not cloned properly,
many problems can arise later on, without a direct hint of what the root cause is.

DecompositionCommon
::clone

DecompositionCommon
::clone

DecompositionCommon
::setLinearRelations

DecompositionCommon
::setPointRelations

DecompositionCommon
::setMarkerBoardRelations

DecompositionCommon
::setLevelCrossingRelations

DecompositionCommon
::getSection

Figure 6.1: The clone function and its sub-functions.

58 6 Implementation & Tests

6.5 Tests
Test driven development (TDD) methodology has been used in this project during the
development of the tool. This methodology requires the test cases to be established
before the code is written. Testing new functions in small cycles ensure that the
written specification and the C++ code works as expected. The test cases are written
in the form of unit tests. Every test contains assertions that must be true for successful
a test case. Another advantage that the tests bring is the confidence in the written
code. After a change in the code, one can simply run all the tests to see if all the
cases are still covered.

6.5.1 RSL Tests
The RSL specifications have been tested by converting them into sml code. The sml
code is thereafter executed in its own compiler. The RSL test module is mentioned
before in Section 5.1. This test module starts by instantiating a network layout that
can be used for testing. The network layout mini-e is used for this purpose. See
Figure 7.1 in next chapter for a representation of the network layout. All variations
of cut types are also instantiated, including invalid ones to test for negative results.
Some examples of RSL tests definitions along with the results will be shown here. The
test result will be at the bottom of each listing. For all of the RSL tests, please look
at Appendix D. Initially, a test for section disconnections is shown below. One of the
given sections is a point (t4), so the function must be able to disconnect at the correct
point end.

[get_disconnectNetwork_with_points]
let n = D.C.get_disconnectedNetwork(mini_ext, "t3", "t4") in

D.C.ITG.I.L.are_neighbors("t3", "t4", mini_ext) /\
D.C.ITG.I.L.are_neighbors("t3", "t4", n) = false

end

-- sml result
[get_disconnectNetwork_with_points] true

The next test relies on the result of the first shown test and extends it by performing
a get_reachableNetwork function on the disconnected network.

[get_reachableNetwork]
let n = D.C.get_disconnectedNetwork(mini_ext, D.C.section_down(sc1),

D.C.section_up(sc1)) in↪→
D.C.get_reachableNetwork(mini_ext, "b1") ~=
D.C.get_reachableNetwork(n, "b1")

end,

-- sml result
[get_reachableNetwork] true

The test below is an example of a test with an expected value of false. A set of non-
applicable cuts are given to the function get_applicableCuts which will therefore
return an empty set.

6.5 Tests 59

[get_applicableCuts_False]
let cuts = D.C.get_applicableCuts(mini_ext, mc2) in

(cuts ~= {}) = false
end,

-- sml result
[get_applicableCuts_False] true

The RSL listing below contains a test for the multi cut decomposition method. A valid
multi cut is given to the decompose function which generates well-formed sub-networks.
[decomposed_mc1_wf]
let ns = D.decompose(mini_ext, mc1, true) in

(all n : D.C.ITG.I.L.NetworkLayout :- n isin ns => D.C.ITG.I.L.is_wf(n))
end

-- sml result
[decomposed_mc1_wf] true

The conversion to sml makes it possible to see the results in other constructions than
true/false assertions. The test below prints out the sub-networks after a multi cut
decomposition.
[decompose_mc1]
D.C.decomposed_sec_repr(D.decompose(mini_ext, mc1, true), {}),

-- sml result
[decompose_mc1] {{"t2","t3","b1"},{"t2","t8","t7","t6","t5","t3","t4"},

{"t11","b12","t10"},{"t7","t8","t5","t6","t11","t10","t9"}}

6.5.2 C++ Tests
The C++ code has been tested using an open source unit testing framework called
Catch [9]. For all of the test results, see Appendix D. The catch framework provides
an easy way of defining unit tests. A test is defined using the TEST_CASE methods.
This method can contain nested sections that enable tests of different scenarios. An
assertion is defined using the REQUIRE function. The unit test in the next page
corresponds to the first to RSL test shown in the previous section. The test checks
both disconnections of sections and extraction (reachability) of networks.

TEST_CASE("Disconnecting linears", "[disconnect, linears]"){
string xmlInputFile = "xml/mini-e.xml";
string xmlCutFile = "xml/cut.xml";
string xmlOutputFile_dis = "xml/mini-e_disconnected.xml";
string xmlOutputFile_down = "xml/mini-e_disconnected_down.xml";
string xmlOutputFile_up = "xml/mini-e_disconnected_up.xml";

DecompositionParser *decParser = new DecompositionParser();
DecompositionCommon *common = new DecompositionCommon();
DecompositionXmlWriter *xmlWriter = new DecompositionXmlWriter();

decParser -> parse(xmlInputFile,xmlCutFile);
RttTgenDkIxlInterlocking* interlocking = decParser -> getInterlocking();
RttTgenDkIxlNetworkLayout* network = interlocking -> getNetworkLayout();

60 6 Implementation & Tests

map<string, RttTgenDkIxlLinear*>& linears = network -> getLinears();

SECTION("Disconnect between two given linears"){
REQUIRE(linears["t2"] -> isNeighborWith("t3"));

common -> disconnectNetwork(network, network -> findTrackSection("t2") ,
network -> findTrackSection("t3"));↪→

REQUIRE(!linears["t2"] -> isNeighborWith("t3"));
REQUIRE(linears["t2"] -> getNeighborOids().size() == 1);
REQUIRE(linears["t3"] -> getNeighborOids().size() == 1);

SECTION ("Test of function getReachableSections"){
std::queue<string> sectionsToVisit;
std::set<std::string> visited;

SECTION("Down"){
sectionsToVisit.push("t2");
std::set<std::string> sections_down =

common -> getReachableSections(network, sectionsToVisit,
visited);↪→

REQUIRE(sections_down.size() == 2);
}

SECTION("Up"){
sectionsToVisit.push("t3");
std::set<std::string> sections_up =

common -> getReachableSections(network, sectionsToVisit,
visited);↪→

REQUIRE(sections_up.size() == 10);
}

}
}

}

The result of the tests are obtained by creating an executable and running it, a list of
successful and unsuccessful assertions are printed. An example of one of the assertion
output is shown below.

PASSED:
REQUIRE(sections_up.size() == 10)

with expansion:
10 == 10

The overall result of the tests is also obtained. The result is:

All tests passed (43 assertions in 9 test cases)

CHAPTER7
Experiments

In this chapter, the tool is examined with different cases. The experiments will test
if the tool can handle different networks, both self-created and real-world examples.
A successful decomposition should result in a statically correct network that will be
accepted by the verification tool.

7.1 Goal of the Experiments
The main goal of the experiments is to see how well the decomposition tool handles
networks of different types and sizes. So essentially, the main goal is to see if the tool
works. The second goal is to see if the decomposed networks are in fact easier on the
verification tool and if they are executed successfully.

7.2 Experimental Approach
For each of the case, the original network is verified using the verification tool
(monolithically). Then the sub-networks created using the decomposition tool are
also verified (compositionally). If a statically correct output is acquired from the
decomposition tool, then the main goal is achieved. The results from both executions
are compared by measuring time (in seconds) and memory usage (in MB). Besides,
statistical information about the network layouts is also provided such as: number of
linears, points, marker boards and routes.

The experiments are performed on a server running Ubuntu (14.04.1) with Intel(R)
Core(TM) i5 CPU 750 @ 2.67GHz and 16GB RAM.

7.3 Mini Extended
One of the most heavily used and tested network layout is called mini-e. It is an
extension of the self-created mini layout previously showed in Figure 2.2. The mini-e
network can be seen down below in Figure 7.1. The reason for not using the mini layout
for experiments is because of its limitations regarding applicable cuts. This extended
layout allows cuts in the middle of two the points and on the sections stretching both
sides. The XML definition for this layout can be seen in Appendix C.1.1.

For this particular case, the following applicable border cuts exists: {t2,t3},
{t5,t6}, {t7,t8} and {t10,t11}. For best possible results with the verification tool, the
combination that generates most sub-networks is chosen. All of the border cuts listed

62 7 Experiments

can be applied. However, {t5,t6} and {t7,t8} must be applied as a cluster cut to
output valid sub-networks. A multi cut is defined as seen below which will enable us
to generate all of the sub-networks in one go.

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<multiCut id="miniEMultiCut">

<clusterCut id="miniEClusterCut1">
<borderCut id="miniEClusterCut1_BC1">

<trackSection id="t5" side="down" type="linear"/>
<trackSection id="t6" side="up" type="linear"/>

</borderCut>
<borderCut id="miniEClusterCut1_BC2">

<trackSection id="t7" side="down" type="linear"/>
<trackSection id="t8" side="up" type="linear"/>

</borderCut>
</clusterCut>
<borderCut id="miniRBorderCut1">

<trackSection id="t2" side="down" type="linear"/>
<trackSection id="t3" side="up" type="linear"/>

</borderCut>
<borderCut id="miniBorderCut2">

<trackSection id="t10" side="down" type="linear"/>
<trackSection id="t11" side="up" type="linear"/>

</borderCut>
</multiCut>

</xmi:XMI>

t11t9t7

mb1 mb17mb11

mb12 mb20
t5

mb7

mb8

t4b1 b12t2

mb1

mb4

b1 t8

mb13

mb14
t6

mb9

mb10

mb3

mb6

mb5 mb15

mb18mb16

t3 t10

Figure 7.1: The mini-e network layout.

mb1

b1 t2

mb1

mb4

b1

mb3

mb6

t3

Figure 7.2: Sub-network mini-e_mc_1.

t7

mb11

mb12
t5

mb7

mb8

t4t2 t8

mb14
t6

mb10

mb3

mb6

mb5

t3

Figure 7.3: Sub-network mini-e_mc_2.

7.4 EDL 63

t11t9t7

mb11

t5

mb7

t8

mb13

mb14
t6

mb9

mb10

mb15

mb18mb16

t10

Figure 7.4: Sub-network mini-e_mc_3.

t11

mb17

mb20

b12

mb15

mb18

t10

Figure 7.5: Sub-network mini-e_mc_4.

By applying the multi cut, four sub-networks are successfully produced. The tool is
lightweight and the decomposition happens instantaneously. The full XML definitions
for the sub-networks can be seen in Appendix C and the Figures 7.2 to 7.5 show
sub-networks generated.

The verification tool successfully verified the safety properties for all of the networks.
Table 7.1 shows the verification metrics for the compositional analysis of the sub-
networks. The metrics for the compositional analysis are obtained by summing the
results from the sub-network metrics, except the memory usage, which is the maximum
memory usage of any verification.

The results show that the compositional verification of the network requires much
less memory than the monolithic run, only third in this case. The running time does
also show positive results, which is only 8.47 seconds opposed to the 25.31 seconds
in the monolithic run. The table shows the result for a synchronized run of the
compositional verification, if all of the sub-networks were to be executed concurrently,
then the memory usage would increase. In that case, the memory usage is 240.80 MB,
which is still less than the monolithic run.

Linears Points Signals Routes Time (s) Memory (MB)
mini-e_mc_1 3 0 4 2 0.09 19.1
mini-e_mc_2 6 1 9 9 4.59 101.4
mini-e_mc_3 6 1 9 9 3.70 101.2
mini-e_mc_4 3 0 4 2 0.09 19.0
Compositional 130 39 152 191 8.47 101.4
mini-e 10 2 18 22 25.31 309.5

Table 7.1: Comparison between monolithic and compositional execution of the verifi-
cation tool.

7.4 EDL
EDL stands for Early Deployment Line and is the first the first regional line in
Denmark to be commissioned in the Danish Signalling Programme. The line stretches
from Roskilde- to Næstved station and is 55km in total. The layout of the EDL line is
confidential and can therefore not be included in this paper. A compositional analysis
has already been done in the paper [7], where a manual decomposition was done by
hand.

64 7 Experiments

The same decomposition has been successfully replicated by the developed tool.
The existence of intermediate stations between Roskilde and Næstved adds up to eight
sub-networks. Where each sub-network is a station. The metrics from the paper are
shown here in Table 7.2. This table contains an extra row containing the state space
dimension (in logarithmic scale).

Linears Points Signals Routes log10(|S|) Time Memory
Gadstrup 14 3 16 21 73 86 513
Havdrup 10 2 12 14 51 20 263
L. Skensved 20 4 22 28 101 223 1212
Køge 52 22 54 66 306 6581 9393
Herfølge 6 2 10 14 39 13 191
Tureby 6 2 10 14 39 12 180
Haslev 10 2 12 14 51 22 261
Holme-Olstrup 12 2 16 20 63 27 350
Compositional 130 39 152 191 682 6984 9393
EDL 116 39 138 191 682 22793 26484

Table 7.2: Comparison between monolithic and compositional verification of the early
development line. Metrics are obtained from another machine.[7].

Another successful verification of safety properties of all the networks shows the
same picture. The compositional verification of the eight sub-networks shows that
the verification time is approximately a third of the monolithic analysis. The memory
usage of a synchronized run shows a maximum of 9393 MB, whereas a concurrent run
would result in 12363 MB. Both are significantly less than the 26484 MB used by the
monolithic analysis.

7.5 Roskilde station
The Roskilde station is another network that has been experimented with. It is also
confidential, so the same conditions as EDL do apply regarding including it in the
paper. The station is huge and does result in an out-of-memory error when executed
monolithically because of the state explosion problem.

Unfortunately, the complexity of the station made it very difficult to find applicable
cuts, and only one cluster cut was found applicable. This big cluster cut contains
7 single cuts that together cuts in the middle of the station. The decomposition
successfully decomposed the station resulting in two sub-networks Roskilde (Down)
and Roskilde (Up). The cut was unfortunately not enough to overcome the state
explosion problem. However, the cut remarkably improved the time before termination
for the smaller network Roskilde (Up). See Table 7.3 for the measured time before
termination.

7.5 Roskilde station 65

Linears Points Signals Routes Time (before termination)
Roskilde (Down) 76 43 93 310 221
Roskilde (Up) 40 22 50 142 6783
Compositional 116 65 143 452 -
Roskilde 102 65 129 468 415

Table 7.3: Comparison between monolithic and compositional execution run time
before termination.

66

CHAPTER8
Discussion

This chapter contains a discussion of the project and the developed tool. The results
of the experiments are recalled and discussed if the tool delivers what it promises.
The current limitations of the tool and the consequences it may possess are discussed.
Finally, potential improvements are presented that can be included in a future work
of the tool.

8.1 Results
Different networks have been used for experimental purposes. The tool did certainly
satisfy its main goal of decomposing all given networks. The self-created network mini-
e showed that it could be applied a border cut with different types of decomposition
methods, such as single-, cluster and multi cut. Successful decomposition was also
achieved with the EDL and Roskilde network. Both mini-e and EDL showed better
certifications metrics after the decomposition. A cluster cut decomposition of Roskilde,
however, was not enough to overcome the state explosion problem. The limited time
with this confidential network was not enough to find more than one applicable cut.
A multi cut specification with more cuts could have resulted in smaller sub-networks,
thus resulting in a successful verification. If other cut types other than border cut was
included in this tool, such as the linear cut and horizontal cut, then the possibility of
specifying such multi cut could have been easier.

The performance of the decomposition tool has been great, and all executions were
instantaneous. This is due to the tool being lightweight and developed in C++. The
user experience is smooth and easy. A non-technical user can easily learn the use of
the command line tool. The tool shows great potential to be used together with the
verification tool in the future.

8.2 Limitations
The tool does have some limitations that can be tedious in some cases. Some of them
are already mentioned in the paper. These limitations are:

• Limited cut types. Only border cut is included in this project. This may become
a limitation depending on the network that has to be decomposed.

• Code dependence. The tool uses a shared library from RobustRailS’ verification
project (see Appendix A). This is a limitation only if the tool will be kept separate

68 8 Discussion

from rest of the tool-chain. The shared library can influence the decomposition
tool if changed and recompiled.

• Not considered network elements. For simplicity, some elements of the network
layouts were not considered, such as level crossings.

8.3 Directions for Future Work
Potential improvements for the decomposition tool are listed below. These improve-
ments can extend the tool to have more functionalities.

• A Static checker. A static checker can be used ensure that the given- and
generated network is statically correct. Currently, the RobustRailS’ tool provides
this check for network inputs, however, manually running this tool for every
sub-network can be tedious.

• Automatic find of cuts. Develop an algorithm that searches for applicable cuts in
the network. A function as such will fully automate decomposition of networks
and free the user of manually defining cut specifications.

• Graphical user interface. A graphical user interface can make it easier for the
user to specify where to apply the cut. A good option here would be to integrate
the decomposition tool with the graphical tool developed by Andreas [5].

CHAPTER9
Conclusion

The goal of this project was to support the RobustRailS’ compositional verification
by developing a decomposition tool. The verification tool suffered from the state
explosion problem that is seen with model-checkers. This made it difficult to verify
large networks.

To support the verifications tool, a decomposition tool working in the command
line environment is developed. Before implementing, an analysis of the network
layouts and cut types have been done to gain knowledge of the domain and develop
decomposition methods. Then, requirements have been determined, from abstract to
concrete. RSL has been used both for requirement- and design specification of the
software. With the specifications in place, the implementation of the tool has been
made using C++.

The tool uses the cut type border cut with a variety of decomposition methods
such as single-, cluster- and multi cut. Network layouts and cut specifications in XML
format are used by the tool to generate the sub-networks. The sub-networks are writ-
ten as XML files to the file system which can be used together with the verification tool.

The tool has been tested using unit tests, and by experiments. The unit tests have
been solely used to test the functionalities of the tool. The experiments, however,
has been a combination of experimenting the decomposition- and verification tool.
Comparison between the monolithic and compositional verification reveals that the
decomposition tool can support the verification tool and potentially solve the state
explosion problem.

70

APPENDIXA
Installing the tool

A.1 Prerequisites
To be able to install/build the project, some libraries must first be installed. These
libraries are common to C++ and are often available through the default system
package manager by OS. In case the operating system is Ubuntu/Linux, the libraries
can be installed with:

sudo apt-get install cmake
sudo apt-get install build-essential g++ python-dev autotools-dev libicu-dev li
bbz2-dev libboost-all-dev libclang-dev
sudo apt-get install libxml2 libxml2-dev
sudo apt-get install doxygen
sudo apt-get install zlibc
sudo apt-get install sqlite3
sudo apt-get install libsqlite3-0 libsqlite3-dev
sudo apt-get install libc++1 libc++-dev
sudo apt-get install cvs

It is important that the library versions are up to date and are the same during
the build and executions. When the libraries are updated, then the project must be
built again, otherwise it will look after older library versions which no longer exist.

A.1.1 Needed files
The first thing that must be ensured is that we have all of the files needed to build.
The whole project folder will be archived in a tar file. Running ls reveals the following
files in the root project folder:

build-aux CMakeCPackOptions.cmake decomposers lib parsers
build.bat CMakeFiles dkixl librttmbtlib.so README.cmake.txt
build.Debug cmake_install.cmake exceptions libsonolar-shared.so rtt-mbt
build_dk_gcc.sh CMakeLists.txt executables logging symboltable
build.Release copySharedLibs.sh IMR Makefile testprocs
build.sh CPackConfig.cmake include math types
cmake CPackSourceConfig.cmake intvallib memory utils
CMakeCache.txt CTestTestfile.cmake latticelib memorymodel visitors

Notice that only the folder decomposers, dkixl and parsers have been used in
development. All the other files and folders are dependencies.

72 A Installing the tool

A.2 Building
The project’s building process is handled by CMake. To build the project, do the
following in exact order:

1. Go to the root folder of the project.

2. Run sh Build.sh in the terminal - needed only first time

3. Run make. The compiler will end with some undefined reference errors, however
they are expected since not all of the project folders are available due to
confidentiality.

4. Run the command sh copSharedLibs.sh. This will copy the shared libs from
the folder lib to the root folder.

5. Rerun make in terminal. No errors should appear this time and the executables
Decompose and tests should be generated successfully in the paths:

a) [rr-project]/decomposers/networkdecomposition/decompose

b) [rr-project]/decomposers/networkDecomposition/tests

Where [rr-project] is the root folder of the project. When a change is made to the
source code, rerunning make a single time should be sufficient.

A.2.1 Making shared libraries accessible
The decomposition tool uses two shared files from the verification tool. These shared
libraries are called librttmbtlib.so and libsonolar-shared.so. Copies of the
shared libraries are already included in the [rr-project]/lib folder. In the building
process, the user already made sure that the shared libraries are also copied to the
root folder, this ensures that the tool can be executed in its original path listed above.

However, if the user wants to move the binaries somewhere else in the system,
then the shared libraries must be copied to a system library PATH. A good candidate
for a library path is /usr/lib/.

APPENDIXB
Using the tool

B.1 Prerequisites
This user guide assumes that you already have installed the tool by building the
project and installing its dependencies, if not, take a look at Appendix A for how to
do so.

B.2 Usage
To see the usage list simply run ./Decompose without any options or with the -h flag.
The user must be in the path of Decompose binary file.

Usage:
-h,--help Show this help message
-c,--cut Specify the cut file path
-n,--network Specify the network file path

If this message does not appear, then the tool was not properly installed. If it appears,
you may continue with the guide. Let us start with an example. Let us decompose a
network called mini-e. The XML definitions of the cut specification and the network
layout before and after the decomposition are included in the Appendix C.

The user must provide a relative path, both for the network layout and the cut
specification. The -n and -c options are used to accomplish this. The following
command is executed to decompose the mini-e network with singe cut:

./Decompose -n mini-e.xml -c xml/mini-e_sc.xml

If successful, the detected cut type and a list of generated XML files will be printed:

BorderCut Detected
Generated xml file: ./mini-e_down.xml
Generated xml file: ./mini-e_up.xml

Another example is shown below. To decompose the mini-e network with a multi
cut specification, the same command is executed but with a different cut path:

./Decompose -n mini-e.xml -c xml/mini-e_mc.xml

74 B Using the tool

If successful, the detected cut type and a list of generated XML files will be printed:

MultiCut Detected
Generated xml file: ./xml/mini-e_mc_1.xml
Generated xml file: ./xml/mini-e_mc_2.xml
Generated xml file: ./xml/mini-e_mc_3.xml
Generated xml file: ./xml/mini-e_mc_4.xml

As it can be seen, the usage of the tool is very straightforward.

APPENDIXC
Networks and Cuts in

XML
This appendix shows network layouts and cut specifications in XML formats. The
XML definition before

C.1 Original network
C.1.1 mini-e.xml

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<trackSection id="b1" length="100" type="linear">

<neighbor ref="t2" side="up"/>
</trackSection>
<trackSection id="t2" length="100" type="linear">

<neighbor ref="b1" side="down"/>
<neighbor ref="t3" side="up"/>

</trackSection>
<trackSection id="t3" length="100" type="linear">

<neighbor ref="t2" side="down"/>
<neighbor ref="t4" side="up"/>

</trackSection>
<trackSection id="t4" length="100" type="point">

<neighbor ref="t5" side="plus"/>
<neighbor ref="t7" side="minus"/>
<neighbor ref="t3" side="stem"/>

</trackSection>
<trackSection id="t5" length="100" type="linear">

<neighbor ref="t4" side="down"/>
<neighbor ref="t6" side="up"/>

</trackSection>
<trackSection id="t6" length="100" type="linear">

<neighbor ref="t5" side="down"/>
<neighbor ref="t9" side="up"/>

</trackSection>
<trackSection id="t7" length="100" type="linear">

<neighbor ref="t4" side="down"/>
<neighbor ref="t8" side="up"/>

</trackSection>
<trackSection id="t8" length="100" type="linear">

76 C Networks and Cuts in XML

<neighbor ref="t7" side="down"/>
<neighbor ref="t9" side="up"/>

</trackSection>
<trackSection id="t9" length="100" type="point">

<neighbor ref="t6" side="plus"/>
<neighbor ref="t8" side="minus"/>
<neighbor ref="t10" side="stem"/>

</trackSection>
<trackSection id="t10" length="100" type="linear">

<neighbor ref="t9" side="down"/>
<neighbor ref="t11" side="up"/>

</trackSection>
<trackSection id="t11" length="100" type="linear">

<neighbor ref="t10" side="down"/>
<neighbor ref="b12" side="up"/>

</trackSection>
<trackSection id="b12" length="100" type="linear">

<neighbor ref="t11" side="down"/>
</trackSection>
<markerboard distance="50" id="mb1" mounted="up" track="b1"/>
<markerboard distance="50" id="mb3" mounted="up" track="t2"/>
<markerboard distance="50" id="mb4" mounted="down" track="t2"/>
<markerboard distance="50" id="mb5" mounted="up" track="t3"/>
<markerboard distance="50" id="mb6" mounted="down" track="t3"/>
<markerboard distance="50" id="mb7" mounted="up" track="t5"/>
<markerboard distance="50" id="mb8" mounted="down" track="t5"/>
<markerboard distance="50" id="mb9" mounted="up" track="t6"/>
<markerboard distance="50" id="mb10" mounted="down" track="t6"/>
<markerboard distance="50" id="mb11" mounted="up" track="t7"/>
<markerboard distance="50" id="mb12" mounted="down" track="t7"/>
<markerboard distance="50" id="mb13" mounted="up" track="t8"/>
<markerboard distance="50" id="mb14" mounted="down" track="t8"/>
<markerboard distance="50" id="mb15" mounted="up" track="t10"/>
<markerboard distance="50" id="mb16" mounted="down" track="t10"/>
<markerboard distance="50" id="mb17" mounted="up" track="t11"/>
<markerboard distance="50" id="mb18" mounted="down" track="t11"/>
<markerboard distance="50" id="mb20" mounted="down" track="b12"/>

</network>
<routetable id="miniroutetable" network="mininetwork">
</routetable>

</interlocking>
</xmi:XMI>

C.2 Cut Specifications
C.2.1 mini-e_sc.xml

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<borderCut id="miniBorderCut" version="0.1">

<trackSection id="t2" side="down" type="linear"/>
<trackSection id="t3" side="up" type="linear"/>

C.2 Cut Specifications 77

</borderCut>
</xmi:XMI>

C.2.2 mini-e_cc.xml

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<clusterCut id="miniClusterCut">

<borderCut id="miniBorderCut1">
<trackSection id="t5" side="down" type="linear"/>
<trackSection id="t6" side="up" type="linear"/>

</borderCut>
<borderCut id="miniBorderCut1">

<trackSection id="t7" side="down" type="linear"/>
<trackSection id="t8" side="up" type="linear"/>

</borderCut>
</clusterCut>

</xmi:XMI>

C.2.3 mini-e_mc.xml

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<multiCut id="miniEMultiCut">

<clusterCut id="miniEClusterCut1">
<borderCut id="miniEClusterCut1_BC1">

<trackSection id="t5" side="down" type="linear"/>
<trackSection id="t6" side="up" type="linear"/>

</borderCut>
<borderCut id="miniEClusterCut1_BC2">

<trackSection id="t7" side="down" type="linear"/>
<trackSection id="t8" side="up" type="linear"/>

</borderCut>
</clusterCut>
<borderCut id="miniRBorderCut1">

<trackSection id="t2" side="down" type="linear"/>
<trackSection id="t3" side="up" type="linear"/>

</borderCut>
<borderCut id="miniBorderCut2">

<trackSection id="t10" side="down" type="linear"/>
<trackSection id="t11" side="up" type="linear"/>

</borderCut>
</multiCut>

</xmi:XMI>

78 C Networks and Cuts in XML

C.3 Sub-networks
C.3.1 After Single Cut
mini-e_sc_down.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="b1" length="100" type="linear">

<neighbor ref="t2" side="up"/>
</trackSection>
<trackSection id="t2" length="100" type="linear">

<neighbor ref="b1" side="down"/>
<neighbor ref="t3" side="up"/>

</trackSection>
<trackSection id="t3" length="100" type="linear">

<neighbor ref="t2" side="down"/>
</trackSection>
<!--Markerboards-->
<markerboard id="mb1" distance="50" mounted="up" track="b1"/>
<markerboard id="mb3" distance="50" mounted="up" track="t2"/>
<markerboard id="mb4" distance="50" mounted="down" track="t2"/>
<markerboard id="mb6" distance="50" mounted="down" track="t3"/>

</network>
<routetable id="miniroutetable" network="mini-e-network"/>

</interlocking>
</xmi:XMI>

mini-e_sc_up.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="b12" length="100" type="linear">

<neighbor ref="t11" side="down"/>
</trackSection>
<trackSection id="t10" length="100" type="linear">

<neighbor ref="t9" side="down"/>
<neighbor ref="t11" side="up"/>

</trackSection>
<trackSection id="t11" length="100" type="linear">

<neighbor ref="t10" side="down"/>
<neighbor ref="b12" side="up"/>

</trackSection>
<trackSection id="t2" length="100" type="linear">

C.3 Sub-networks 79

<neighbor ref="t3" side="up"/>
</trackSection>
<trackSection id="t3" length="100" type="linear">

<neighbor ref="t2" side="down"/>
<neighbor ref="t4" side="up"/>

</trackSection>
<trackSection id="t5" length="100" type="linear">

<neighbor ref="t4" side="down"/>
<neighbor ref="t6" side="up"/>

</trackSection>
<trackSection id="t6" length="100" type="linear">

<neighbor ref="t5" side="down"/>
<neighbor ref="t9" side="up"/>

</trackSection>
<trackSection id="t7" length="100" type="linear">

<neighbor ref="t4" side="down"/>
<neighbor ref="t8" side="up"/>

</trackSection>
<trackSection id="t8" length="100" type="linear">

<neighbor ref="t7" side="down"/>
<neighbor ref="t9" side="up"/>

</trackSection>
<!--Points-->
<trackSection id="t4" length="100" type="point">

<neighbor ref="t5" side="plus"/>
<neighbor ref="t7" side="minus"/>
<neighbor ref="t3" side="stem"/>

</trackSection>
<trackSection id="t9" length="100" type="point">

<neighbor ref="t6" side="plus"/>
<neighbor ref="t8" side="minus"/>
<neighbor ref="t10" side="stem"/>

</trackSection>
<!--Markerboards-->
<markerboard id="mb10" distance="50" mounted="down" track="t6"/>
<markerboard id="mb11" distance="50" mounted="up" track="t7"/>
<markerboard id="mb12" distance="50" mounted="down" track="t7"/>
<markerboard id="mb13" distance="50" mounted="up" track="t8"/>
<markerboard id="mb14" distance="50" mounted="down" track="t8"/>
<markerboard id="mb15" distance="50" mounted="up" track="t10"/>
<markerboard id="mb16" distance="50" mounted="down" track="t10"/>
<markerboard id="mb17" distance="50" mounted="up" track="t11"/>
<markerboard id="mb18" distance="50" mounted="down" track="t11"/>
<markerboard id="mb20" distance="50" mounted="down" track="b12"/>
<markerboard id="mb3" distance="50" mounted="up" track="t2"/>
<markerboard id="mb5" distance="50" mounted="up" track="t3"/>
<markerboard id="mb6" distance="50" mounted="down" track="t3"/>
<markerboard id="mb7" distance="50" mounted="up" track="t5"/>
<markerboard id="mb8" distance="50" mounted="down" track="t5"/>
<markerboard id="mb9" distance="50" mounted="up" track="t6"/>

</network>
<routetable id="miniroutetable" network="mini-e-network"/>

</interlocking>
</xmi:XMI>

80 C Networks and Cuts in XML

C.3.2 After Cluster Cut

mini-e_cc_down.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="b1" length="100" type="linear">

<neighbor ref="t2" side="up"/>
</trackSection>
<trackSection id="t2" length="100" type="linear">

<neighbor ref="b1" side="down"/>
<neighbor ref="t3" side="up"/>

</trackSection>
<trackSection id="t3" length="100" type="linear">

<neighbor ref="t2" side="down"/>
<neighbor ref="t4" side="up"/>

</trackSection>
<trackSection id="t5" length="100" type="linear">

<neighbor ref="t4" side="down"/>
<neighbor ref="t6" side="up"/>

</trackSection>
<trackSection id="t6" length="100" type="linear">

<neighbor ref="t5" side="down"/>
</trackSection>
<trackSection id="t7" length="100" type="linear">

<neighbor ref="t4" side="down"/>
<neighbor ref="t8" side="up"/>

</trackSection>
<trackSection id="t8" length="100" type="linear">

<neighbor ref="t7" side="down"/>
</trackSection>
<!--Points-->
<trackSection id="t4" length="100" type="point">

<neighbor ref="t5" side="plus"/>
<neighbor ref="t7" side="minus"/>
<neighbor ref="t3" side="stem"/>

</trackSection>
<!--Markerboards-->
<markerboard id="mb1" distance="50" mounted="up" track="b1"/>
<markerboard id="mb10" distance="50" mounted="down" track="t6"/>
<markerboard id="mb11" distance="50" mounted="up" track="t7"/>
<markerboard id="mb12" distance="50" mounted="down" track="t7"/>
<markerboard id="mb14" distance="50" mounted="down" track="t8"/>
<markerboard id="mb3" distance="50" mounted="up" track="t2"/>
<markerboard id="mb4" distance="50" mounted="down" track="t2"/>
<markerboard id="mb5" distance="50" mounted="up" track="t3"/>
<markerboard id="mb6" distance="50" mounted="down" track="t3"/>
<markerboard id="mb7" distance="50" mounted="up" track="t5"/>
<markerboard id="mb8" distance="50" mounted="down" track="t5"/>

</network>
<routetable id="miniroutetable" network="mini-e-network"/>

</interlocking>

C.3 Sub-networks 81

</xmi:XMI>

mini-e_cc_up.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="b12" length="100" type="linear">

<neighbor ref="t11" side="down"/>
</trackSection>
<trackSection id="t10" length="100" type="linear">

<neighbor ref="t9" side="down"/>
<neighbor ref="t11" side="up"/>

</trackSection>
<trackSection id="t11" length="100" type="linear">

<neighbor ref="t10" side="down"/>
<neighbor ref="b12" side="up"/>

</trackSection>
<trackSection id="t5" length="100" type="linear">

<neighbor ref="t6" side="up"/>
</trackSection>
<trackSection id="t6" length="100" type="linear">

<neighbor ref="t5" side="down"/>
<neighbor ref="t9" side="up"/>

</trackSection>
<trackSection id="t7" length="100" type="linear">

<neighbor ref="t8" side="up"/>
</trackSection>
<trackSection id="t8" length="100" type="linear">

<neighbor ref="t7" side="down"/>
<neighbor ref="t9" side="up"/>

</trackSection>
<!--Points-->
<trackSection id="t9" length="100" type="point">

<neighbor ref="t6" side="plus"/>
<neighbor ref="t8" side="minus"/>
<neighbor ref="t10" side="stem"/>

</trackSection>
<!--Markerboards-->
<markerboard id="mb10" distance="50" mounted="down" track="t6"/>
<markerboard id="mb11" distance="50" mounted="up" track="t7"/>
<markerboard id="mb13" distance="50" mounted="up" track="t8"/>
<markerboard id="mb14" distance="50" mounted="down" track="t8"/>
<markerboard id="mb15" distance="50" mounted="up" track="t10"/>
<markerboard id="mb16" distance="50" mounted="down" track="t10"/>
<markerboard id="mb17" distance="50" mounted="up" track="t11"/>
<markerboard id="mb18" distance="50" mounted="down" track="t11"/>
<markerboard id="mb20" distance="50" mounted="down" track="b12"/>
<markerboard id="mb7" distance="50" mounted="up" track="t5"/>
<markerboard id="mb9" distance="50" mounted="up" track="t6"/>

</network>

82 C Networks and Cuts in XML

<routetable id="miniroutetable" network="mini-e-network"/>
</interlocking>

</xmi:XMI>

C.3.3 After Multi Cut
mini-e_mc_1.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="b1" length="100" type="linear">

<neighbor ref="t2" side="up"/>
</trackSection>
<trackSection id="t2" length="100" type="linear">

<neighbor ref="b1" side="down"/>
<neighbor ref="t3" side="up"/>

</trackSection>
<trackSection id="t3" length="100" type="linear">

<neighbor ref="t2" side="down"/>
</trackSection>
<!--Markerboards-->
<markerboard id="mb1" distance="50" mounted="up" track="b1"/>
<markerboard id="mb3" distance="50" mounted="up" track="t2"/>
<markerboard id="mb4" distance="50" mounted="down" track="t2"/>
<markerboard id="mb6" distance="50" mounted="down" track="t3"/>

</network>
<routetable id="miniroutetable" network="mini-e-network"/>

</interlocking>
</xmi:XMI>

mini-e_mc_2.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="t2" length="100" type="linear">

<neighbor ref="t3" side="up"/>
</trackSection>
<trackSection id="t3" length="100" type="linear">

<neighbor ref="t2" side="down"/>
<neighbor ref="t4" side="up"/>

</trackSection>
<trackSection id="t5" length="100" type="linear">

C.3 Sub-networks 83

<neighbor ref="t4" side="down"/>
<neighbor ref="t6" side="up"/>

</trackSection>
<trackSection id="t6" length="100" type="linear">

<neighbor ref="t5" side="down"/>
</trackSection>
<trackSection id="t7" length="100" type="linear">

<neighbor ref="t4" side="down"/>
<neighbor ref="t8" side="up"/>

</trackSection>
<trackSection id="t8" length="100" type="linear">

<neighbor ref="t7" side="down"/>
</trackSection>
<!--Points-->
<trackSection id="t4" length="100" type="point">

<neighbor ref="t5" side="plus"/>
<neighbor ref="t7" side="minus"/>
<neighbor ref="t3" side="stem"/>

</trackSection>
<!--Markerboards-->
<markerboard id="mb10" distance="50" mounted="down" track="t6"/>
<markerboard id="mb11" distance="50" mounted="up" track="t7"/>
<markerboard id="mb12" distance="50" mounted="down" track="t7"/>
<markerboard id="mb14" distance="50" mounted="down" track="t8"/>
<markerboard id="mb3" distance="50" mounted="up" track="t2"/>
<markerboard id="mb5" distance="50" mounted="up" track="t3"/>
<markerboard id="mb6" distance="50" mounted="down" track="t3"/>
<markerboard id="mb7" distance="50" mounted="up" track="t5"/>
<markerboard id="mb8" distance="50" mounted="down" track="t5"/>

</network>
<routetable id="miniroutetable" network="mini-e-network"/>

</interlocking>
</xmi:XMI>

mini-e_mc_3.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="t10" length="100" type="linear">

<neighbor ref="t9" side="down"/>
<neighbor ref="t11" side="up"/>

</trackSection>
<trackSection id="t11" length="100" type="linear">

<neighbor ref="t10" side="down"/>
</trackSection>
<trackSection id="t5" length="100" type="linear">

<neighbor ref="t6" side="up"/>
</trackSection>
<trackSection id="t6" length="100" type="linear">

<neighbor ref="t5" side="down"/>

84 C Networks and Cuts in XML

<neighbor ref="t9" side="up"/>
</trackSection>
<trackSection id="t7" length="100" type="linear">

<neighbor ref="t8" side="up"/>
</trackSection>
<trackSection id="t8" length="100" type="linear">

<neighbor ref="t7" side="down"/>
<neighbor ref="t9" side="up"/>

</trackSection>
<!--Points-->
<trackSection id="t9" length="100" type="point">

<neighbor ref="t6" side="plus"/>
<neighbor ref="t8" side="minus"/>
<neighbor ref="t10" side="stem"/>

</trackSection>
<!--Markerboards-->
<markerboard id="mb10" distance="50" mounted="down" track="t6"/>
<markerboard id="mb11" distance="50" mounted="up" track="t7"/>
<markerboard id="mb13" distance="50" mounted="up" track="t8"/>
<markerboard id="mb14" distance="50" mounted="down" track="t8"/>
<markerboard id="mb15" distance="50" mounted="up" track="t10"/>
<markerboard id="mb16" distance="50" mounted="down" track="t10"/>
<markerboard id="mb18" distance="50" mounted="down" track="t11"/>
<markerboard id="mb7" distance="50" mounted="up" track="t5"/>
<markerboard id="mb9" distance="50" mounted="up" track="t6"/>

</network>
<routetable id="miniroutetable" network="mini-e-network"/>

</interlocking>
</xmi:XMI>

mini-e_mc_4.xml

<?xml version="1.0" encoding="UTF8"?>
<xmi:XMI xmi:version="2.4.1" xmlns:xmi="http://www.omg.org/spec/XMI/2.4.1">

<xmi:Documentation exporter="DK-IXL" exporterVersion="0.1"/>
<interlocking id="mini-e" version="0.1">

<network id="mini-e-network">
<!--Linears-->
<trackSection id="b12" length="100" type="linear">

<neighbor ref="t11" side="down"/>
</trackSection>
<trackSection id="t10" length="100" type="linear">

<neighbor ref="t11" side="up"/>
</trackSection>
<trackSection id="t11" length="100" type="linear">

<neighbor ref="t10" side="down"/>
<neighbor ref="b12" side="up"/>

</trackSection>
<!--Markerboards-->
<markerboard id="mb15" distance="50" mounted="up" track="t10"/>
<markerboard id="mb17" distance="50" mounted="up" track="t11"/>
<markerboard id="mb18" distance="50" mounted="down" track="t11"/>
<markerboard id="mb20" distance="50" mounted="down" track="b12"/>

</network>

C.3 Sub-networks 85

<routetable id="miniroutetable" network="mini-e-network"/>
</interlocking>

</xmi:XMI>

86

APPENDIXD
Tests

This appendix contains the test files for RSL and their results. The C++ test cases
are summarized in a table because the source code can be overwhelming.

D.1 Decomposition_TEST
This file contains all of the RSL tests.

/*==
* File: $Name: Decomposition_TEST.rsl $
* Created: $Date: 2017-04-10 15:16:14 $
* Author: $Author: Cebrail Erdogan<s113414@student.dtu.dk>$
* Description: Test cases for decomposition of networks.
*===
*/

Decomposition_DESIGN
scheme Decomposition_TEST =

with T in
class

object D : Decomposition_DESIGN

value
/**
* Extended mini layout.
* The extended mini layout contains extra linear sections compared to the mini

layout.↪→
*
*
* t5 t6
* /-|-----|------|-\
* / \
* |-----|-----|-----|---/---|-----|------|---\--|------|------|------|
* b1 t2 t3 t4 t7 t8 t9 t10 t11 b12
*
*
*/

-- linears
b1 : D.C.ITG.I.L.Linear = D.C.ITG.I.L.mk_Linear([UP +> "t2"], 40),
t2 : D.C.ITG.I.L.Linear =

D.C.ITG.I.L.mk_Linear([DOWN +> "b1", UP +> "t3"], 100),
t3 : D.C.ITG.I.L.Linear =

D.C.ITG.I.L.mk_Linear([DOWN +> "t2", UP +> "t4"], 100),
t5 : D.C.ITG.I.L.Linear =

88 D Tests

D.C.ITG.I.L.mk_Linear([DOWN +> "t4", UP +> "t6"], 100),
t6 : D.C.ITG.I.L.Linear =

D.C.ITG.I.L.mk_Linear([DOWN +> "t5", UP +> "t9"], 100),
t7: D.C.ITG.I.L.Linear =

D.C.ITG.I.L.mk_Linear([DOWN +> "t4", UP +> "t8"], 100),
t8 : D.C.ITG.I.L.Linear =

D.C.ITG.I.L.mk_Linear([DOWN +> "t7", UP +> "t9"], 100),
t10 : D.C.ITG.I.L.Linear =

D.C.ITG.I.L.mk_Linear([DOWN +> "t9", UP +> "t11"], 100),
t11 : D.C.ITG.I.L.Linear =

D.C.ITG.I.L.mk_Linear([DOWN +> "t10", UP +> "b12"], 100),
b12 : D.C.ITG.I.L.Linear = D.C.ITG.I.L.mk_Linear([DOWN +> "t11"], 100),

-- points
t4 : D.C.ITG.I.L.Point =

D.C.ITG.I.L.mk_Point(
[NB_STEM +> "t3", NB_PLUS +> "t7", NB_MINUS +> "t5"], 100),

t9 : D.C.ITG.I.L.Point =
D.C.ITG.I.L.mk_Point(

[NB_STEM +> "t10", NB_PLUS +> "t8", NB_MINUS +> "t6"], 100),

-- signals (marker boards)
mb1 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("b1", UP, 5),
mb3 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t2", UP, 50),
mb4 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t2", DOWN, 50),
mb5 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t3", UP, 50),
mb6 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t3", DOWN, 50),
mb7 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t5", UP, 50),
mb8 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t5", DOWN, 50),
mb9 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t6", UP, 50),
mb10 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t6", DOWN, 50),
mb11 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t7", UP, 50),
mb12 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t7", DOWN, 50),
mb13 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t8", UP, 50),
mb14 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t8", DOWN, 50),
mb15 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t10", UP, 50),
mb16 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t10", DOWN, 50),
mb17 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t11", UP, 50),
mb18 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("t11", DOWN, 50),
mb20 : D.C.ITG.I.L.MarkerBoard = D.C.ITG.I.L.mk_MarkerBoard("b12", DOWN, 50),

-- all elements
all_linears : SecId -m-> D.C.ITG.I.L.Linear =

["b1" +> b1, "t2" +> t2, "t3" +> t3, "t5" +> t5, "t6" +> t6,
"t7" +> t7, "t8" +> t8, "t10" +> t10, "t11" +> t11, "b12" +> b12],

all_points : SecId -m-> D.C.ITG.I.L.Point = ["t4" +> t4, "t9" +> t9],
all_sigs : MbId -m-> D.C.ITG.I.L.MarkerBoard =

["mb1" +> mb1, "mb3" +> mb3, "mb4" +> mb4, "mb5" +> mb5,
"mb6" +> mb6, "mb7" +> mb7, "mb8" +> mb8, "mb9" +> mb9,
"mb10" +> mb10, "mb11" +> mb11, "mb12" +> mb12, "mb13" +> mb13, "mb14" +>

mb14,↪→
"mb15" +> mb15, "mb16" +> mb16, "mb17" +> mb17, "mb18" +> mb18, "mb20"

+> mb20],↪→
mini_ext : D.C.ITG.I.L.NetworkLayout =

D.C.ITG.I.L.mk_NetworkLayout(all_linears, all_points, all_sigs),

empty_n : D.C.ITG.I.L.NetworkLayout =

D.1 Decomposition_TEST 89

D.C.ITG.I.L.mk_NetworkLayout([], [], []),

-- cut specs
sc1: D.C.SingleCut = D.C.mk_BorderCut("t2","t3"),
sc2: D.C.SingleCut = D.C.mk_BorderCut("t10","t11"),
sc3: D.C.SingleCut = D.C.mk_BorderCut("t5", "t6"),
sc4: D.C.SingleCut = D.C.mk_BorderCut("t7", "t8"),
sc5: D.C.SingleCut = D.C.mk_BorderCut("b1", "t2"), -- invalid
sc6: D.C.SingleCut = D.C.mk_BorderCut("t20", "t21"), -- invalid
sc7: D.C.SingleCut = D.C.mk_BorderCut("t30", "t31"), -- invalid
cc1: D.C.ClusterCut = {sc3,sc4},
cc2: D.C.ClusterCut = {sc2,sc4},
cut1: D.C.Cut = D.C.Cut_from_SingleCut(sc1),
cut2: D.C.Cut = D.C.Cut_from_SingleCut(sc2),
cut3: D.C.Cut = D.C.Cut_from_SingleCut(sc7),
cut4: D.C.Cut = D.C.Cut_from_ClusterCut(cc1),
mc1: D.C.MultiCut = {cut1,cut2},
mc2: D.C.MultiCut = {cut3} -- invalid

-- Variables used
test_case

[single_cut]
sc1,

[cluster_cut]
cc1,

[multi_cut]
mc1,

[mini_ext]
mini_ext

-- Well-formedness tests
test_case

[mini_ext_is_wf]
D.C.ITG.I.L.is_wf(mini_ext),

[sc_wf]
D.C.cut_wf(mini_ext, sc1),

[cc_wf]
D.C.cut_wf(mini_ext, cc1),

[mc_wf]
D.C.cuts_wf(mini_ext, mc1)

-- Auxilliary function tests
test_case

[remove_nb_down]
let s = D.C.remove_nb(t2, DOWN) in DOWN ~isin dom D.C.ITG.I.L.neighbors(s)

end,↪→

[remove_nb_up]
let s = D.C.remove_nb(t2, UP) in UP ~isin dom D.C.ITG.I.L.neighbors(s) end,

90 D Tests

[remove_nb_minus]
let s = D.C.remove_nb(t4, NB_MINUS) in NB_MINUS ~isin dom

D.C.ITG.I.L.neighbors(s) end,↪→

[remove_nb_plus]
let s = D.C.remove_nb(t4, NB_PLUS) in NB_PLUS ~isin dom

D.C.ITG.I.L.neighbors(s) end,↪→

[remove_nb_stem]
let s = D.C.remove_nb(t4, NB_STEM) in NB_STEM ~isin dom

D.C.ITG.I.L.neighbors(s) end,↪→

[isOverlapDistanceSatisfied_False]
D.C.isOverlapDistanceSatisfied(mb1,b1) = false,

[isOverlapDistanceSatisfied_True]
D.C.isOverlapDistanceSatisfied(mb1,t2)

-- Getters
test_case

[get_applicableCuts_True]
let cuts = D.C.get_applicableCuts(mini_ext, mc1) in

cuts = mc1
end,

[get_applicableCuts_False]
let cuts = D.C.get_applicableCuts(mini_ext, mc2) in

cuts = {}
end,

[get_all_section]
let ss = D.C.get_all_sections(mini_ext, {"b1"}, {}) in

card ss = card D.C.ITG.I.L.sections(mini_ext)
end,

[get_all_linears]
let ls = D.C.get_all_linears(mini_ext, D.C.ITG.I.L.sections(mini_ext)) in

ls = D.C.ITG.I.L.linears(mini_ext)
end,

[get_all_points]
let ps = D.C.get_all_points(mini_ext, D.C.ITG.I.L.sections(mini_ext)) in

ps = D.C.ITG.I.L.points(mini_ext)
end,

[get_all_signals]
let mbs = D.C.get_all_signals(mini_ext, D.C.ITG.I.L.sections(mini_ext)) in

mbs = D.C.ITG.I.L.marker_boards(mini_ext)
end,

[get_reachableNetwork]
let n = D.C.get_disconnectedNetwork(mini_ext, D.C.section_down(sc1),

D.C.section_up(sc1)) in↪→
D.C.get_reachableNetwork(mini_ext, "b1") ~=
D.C.get_reachableNetwork(n, "b1")

end,

D.1 Decomposition_TEST 91

[get_disconnectNetwork_sc1]
let n = D.C.get_disconnectedNetwork(mini_ext, D.C.section_down(sc1),

D.C.section_up(sc1)) in↪→
D.C.ITG.I.L.are_neighbors(D.C.section_down(sc1), D.C.section_up(sc1),

mini_ext) /\↪→
D.C.ITG.I.L.are_neighbors(D.C.section_down(sc1), D.C.section_up(sc1), n) =

false↪→
end

-- Decompose function tests
test_case

--[decompose_sc1]
-- D.decompose(mini_ext, sc1),

[decomposed_sc1]
D.C.decomposed_sec_repr(D.decompose(mini_ext, sc1)),

[decomposed_sc1_wf]
let (n1,n2) = D.decompose(mini_ext, sc1) in

D.C.ITG.I.L.is_wf(n1) /\ D.C.ITG.I.L.is_wf(n2)
end,

[decomposed_cc1]
D.C.decomposed_sec_repr(D.decompose(mini_ext, cc1)),

[decomposed_cc1_wf]
let (n1,n2) = D.decompose(mini_ext, cc1) in

D.C.ITG.I.L.is_wf(n1) /\ D.C.ITG.I.L.is_wf(n2)
end,

[decompose_mc1]
D.C.decomposed_sec_repr(D.decompose(mini_ext, mc1), {}),

[decomposed_mc1_wf]
let ns = D.decompose(mini_ext, mc1) in

(all n : D.C.ITG.I.L.NetworkLayout :- n isin ns => D.C.ITG.I.L.is_wf(n))
end,

[decomposed_cluster_cut_apply_cut]
D.C.apply_cut(mini_ext, cc1, DOWN)

-- BCC tests
-- Takes significant time to execute
test_case

[bcc1]
D.C.BCC1(mini_ext, sc1),

[bcc2_M]
D.C.BCC2_M(mini_ext, sc1),

[bcc2_T]
let (n_down,n_up) = D.decompose(mini_ext, sc1) in

D.C.BCC2_T(mini_ext, n_down, n_up)
end,

92 D Tests

[bcc3]
let (n_down,n_up) = D.decompose(mini_ext, sc1) in

D.C.BCC3(mini_ext, n_down, n_up)
end,

[bcc4]
let (n_down,n_up) = D.decompose(mini_ext, sc1) in

D.C.BCC4(mini_ext, n_down, n_up)
end,

[bcc5]
let (n_down,n_up) = D.decompose(mini_ext, sc1) in

D.C.BCC5(mini_ext, n_down, n_up)
end

end

D.2 RSL Results

[mini_ext_is_wf] true
[sc_wf] true
[cc_wf] true
[mc_wf] true
[remove_nb_down] true
[remove_nb_up] true
[remove_nb_minus] true
[remove_nb_plus] true
[remove_nb_stem] true
[isOverlapDistanceSatisfied_False] true
[isOverlapDistanceSatisfied_True] true
[get_applicableCuts_True] true
[get_applicableCuts_False] true
[get_all_section] true
[get_all_linears] true
[get_all_points] true
[get_all_signals] true
[get_reachableNetwork] true
[get_disconnectNetwork_sc1] true
[get_disconnectNetwork_with_points] true
[decomposed_sc1]

({"t2","t3","b1"},{"t2","b12","t11","t10","t7","t8","t6","t5","t3","t4","t9"})↪→
[decomposed_sc1_wf] true
[decomposed_cc1]

({"b1","t2","t3","t6","t5","t8","t7","t4"},{"t7","b12","t11","t10","t5","t6","t8","t9"})↪→
[decomposed_cc1_wf] true
[decompose_mc1] {{"t2","t3","b1"},{"t2","t8","t7","t6","t5","t3","t4"},
{"t11","b12","t10"},{"t7","t8","t5","t6","t11","t10","t9"}}
[decomposed_mc1_wf] true
[bcc] true
[sc1_M] true
[sc1] true
[sc2] true
[sc3] true
[sc4] true

D.3 C++ Results 93

D.3 C++ Results

Test Section Nr. of Assertions Result
Disconnecting linears 6 PASSED
Decomposition of networks with single cut 5 PASSED
Parsing of cuts 9 PASSED
Decomposition of networks with cluster cut 2 PASSED
Decomposition of networks with multi cut 4 PASSED
Parsing of network 4 PASSED
Writing of networks 3 PASSED
Network wellformed (Under development) 4 PASSED
Decomposition of Roskilde network with cluster cut 2 PASSED
Minor functions 2 PASSED

Table D.1: Simplified overview of test sections.

94

APPENDIXE
RSL Specifications

E.1 Decomposition_DESIGN

/*==
* File: $Name: Decomposition_DESIGN.rsl $
* Created: $Date: 2017-03-26 16:12:06 $
* Author: $Author: Cebrail Erdogan<s113414@student.dtu.dk>$
* Description: Decomposition of Railway Networklayouts
*===
*/

Decomposition_COMMON
scheme Decomposition_DESIGN =

with T in
class

object C: Decomposition_COMMON
value

/*
* Single-cut decomposition.
* Decompose a network into two sub-networks, given a single cut

specification.↪→
*/
decompose: C.ITG.I.L.NetworkLayout >< C.SingleCut -~->

C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout
decompose(n,sc) is

let
l_down = C.section_down(sc),
l_up = C.section_up(sc),

cut_applied_down = C.apply_bc(n,sc, DOWN),
cut_applied_up = C.apply_bc(n,sc, UP),

n_down = C.get_reachableNetwork(cut_applied_down,l_down),
n_up = C.get_reachableNetwork(cut_applied_up,l_up)

in
(n_down,n_up)

end
pre C.ITG.I.L.is_wf(n) /\ C.cut_wf(n,sc),

/*
* Cluster-cut decomposition.
* Decompose a network into two sub-networks, given a cluster-cut

specification.↪→
*/
decompose: C.ITG.I.L.NetworkLayout >< C.ClusterCut -~->

C.ITG.I.L.NetworkLayout >< C.ITG.I.L.NetworkLayout

96 E RSL Specifications

decompose(n,cc) is
let

l_ups = { C.section_up(c) | c:C.SingleCut :- c isin cc },
l_downs = { C.section_down(c) | c:C.SingleCut :- c isin cc },

cut_applied_down = C.apply_bc(n,cc, DOWN),
cut_applied_up = C.apply_bc(n,cc, UP),

n_down = C.get_reachableNetwork(cut_applied_down, hd l_downs),
n_up = C.get_reachableNetwork(cut_applied_up, hd l_ups)

in
(n_down, n_up)

end
pre C.ITG.I.L.is_wf(n) /\ C.cut_wf(n, cc),

/*
* Multi-Cut decomposition.
* Decompose a network into multiple networks, given a set of cuts.
* The input can be a mix of single- and cluster cuts.
*/
decompose: C.ITG.I.L.NetworkLayout >< C.MultiCut >< Bool -~->

C.ITG.I.L.NetworkLayout-set
decompose(n,mc, isOriginalNetwork) is

let
applicableCuts = C.get_applicableCuts(n,mc)

in
if applicableCuts = {}
then {n}
else let cut= hd applicableCuts in

let
(n1,n2) = case cut of

C.Cut_from_SingleCut(sc) -> decompose(n,sc),
C.Cut_from_ClusterCut(cc) -> decompose(n,cc)

end,
ns1 = decompose(n1, mc \ {cut}, false),
ns2 = decompose(n2, mc \ {cut}, false)

in
ns1 union ns2

end
end
end

end
pre C.ITG.I.L.is_wf(n) /\ if isOriginalNetwork then C.cuts_wf(n, mc) else

true end↪→
end

E.2 Decomposition_COMMON 97

E.2 Decomposition_COMMON

/*==
* File: $ Name: Decomposition_COMMON.rsl $
* Created: $ Date: 2017-05-12 11:12:06 $
* Author: $ Author: Cebrail Erdogan<s113414@student.dtu.dk> $
* Description: Common types and functions
*===
*/
InterlockingTableGenerator
scheme Decomposition_COMMON =

with T in
class

object ITG : InterlockingTableGenerator
type

BorderCut ::
section_down:SecId
section_up:SecId,

SingleCut = BorderCut,
ClusterCut = SingleCut-set,
MultiCut = Cut-set,
Cut == Cut_from_SingleCut(cut_to_singlecut: SingleCut) |

Cut_from_ClusterCut(cut_to_clustercut: ClusterCut)
value

/* Constant values */
MIN_SAFETY_DISTANCE : Distance = 50,
empty_n : ITG.I.L.NetworkLayout =

ITG.I.L.mk_NetworkLayout([], [], []),
empty_mc : MultiCut = {}

/* Well formedness check of cuts */
value

/* Check if single cut spec is well-formed */
cut_wf: ITG.I.L.NetworkLayout >< SingleCut -> Bool
cut_wf(n,sc) is

let l_up = section_up(sc),
l_down = section_down(sc)

in
/* Does linear section up exists in network? */
ITG.I.L.l_exists(l_up,n) /\
/* Does linear section down exists in network? */
ITG.I.L.l_exists(l_down,n) /\
/* Is BCC rules satisfied? */
BCC(n,sc)

end,

/* Check if cluster cut spec is well-formed */
cut_wf: ITG.I.L.NetworkLayout >< ClusterCut -> Bool
cut_wf(n,cc) is

(all sc: SingleCut :- sc isin cc =>
/* Does linear section up exists in network? */
ITG.I.L.l_exists(section_up(sc),n) /\
/* Does linear section down exists in network? */
ITG.I.L.l_exists(section_down(sc),n)

) /\

98 E RSL Specifications

/* Is BCC rules satisfied? */
BCC(n,cc),

/* Check if multi-cut specs are well-formed */
cuts_wf: ITG.I.L.NetworkLayout >< MultiCut -> Bool
cuts_wf(n , mc) is

(all c: Cut:- c isin mc =>
case c of

Cut_from_SingleCut(sc) -> cut_wf(n, sc),
Cut_from_ClusterCut(cc) -> cut_wf(n, cc)

end)

/* Border Cut Condition rules */
value

/* BCC
* Type: Pre condition
* Check if sc sections are neighbours
* Check if sc sections contain one up- and one down signal
* Check if sc sections are already boundaries
* Check if sc sections are still reachable after disconnecting
*/
BCC: ITG.I.L.NetworkLayout >< SingleCut -> Bool
BCC(n, sc) is

let l_up = section_up(sc),
l_down = section_down(sc)

in
/* Are the sections neighbours? */
(ITG.I.L.are_neighbors(l_down,l_up, n) /\
/* Is down-linear a boundary? */
~ITG.I.L.is_boundary(l_down,n) /\
/* Is up-linear a boundary? */
~ITG.I.L.is_boundary(l_up,n) /\
/* Do we have a down- and up signal from linears in cut specification?

*/↪→
DOWN isin dom ITG.I.L.signals(l_up,n) /\ UP isin dom

ITG.I.L.signals(l_down,n)) /\↪→
/* Check if linears are is still reachable when disconnected */
let disconnected_network = get_disconnectedNetwork(n,l_down,l_up) in

l_up ~isin get_reachableNetworkSet(disconnected_network,l_down) /\
l_down ~isin get_reachableNetworkSet(disconnected_network,l_up)

end
end,

/* BCC modified for cluster cut
* Check for reachability after last disconnection.
*/
BCC: ITG.I.L.NetworkLayout >< ClusterCut -> Bool
BCC(n, cc) is

(all sc: SingleCut :- sc isin cc =>
let l_up = section_up(sc),

l_down = section_down(sc)
in

/* Are the sections neighbours? */
(ITG.I.L.are_neighbors(l_down,l_up, n) /\
/* Is down-linear a boundary? */
~ITG.I.L.is_boundary(l_down,n) /\
/* Is up-linear a boundary? */

E.2 Decomposition_COMMON 99

~ITG.I.L.is_boundary(l_up,n) /\
/* Do we have a down- and up signal from linears in cut

specification? */↪→
DOWN isin dom ITG.I.L.signals(l_up,n) /\ UP isin dom

ITG.I.L.signals(l_down,n)) /\↪→
/* Check if linears are is still reachable when

disconnected -- Disconnects all cuts every time */↪→
let disconnected_network = get_disconnectedNetwork(n,cc)

in↪→
l_up ~isin

get_reachableNetworkSet(disconnected_network,l_down)
/\

↪→
↪→

l_down ~isin
get_reachableNetworkSet(disconnected_network,l_up)↪→

end
end

),
/*
* SC1_M
* Obj.: Check for overlaps requirements, is the minimum distance satisfied?
* Type: (Manual Check) - Pre condition
*/
SC1_M: ITG.I.L.NetworkLayout >< SingleCut -> Bool
SC1_M(n,sc) is

let l_up_id = section_up(sc),
l_down_id = section_down(sc),
l_up = ITG.I.L.get_linear(l_up_id,n),
l_down = ITG.I.L.get_linear(l_down_id,n),
mb_up = ITG.I.L.get_markerboard(ITG.I.L.usig(l_down_id,n), n),
mb_down = ITG.I.L.get_markerboard(ITG.I.L.dsig(l_up_id,n), n)

in
(isOverlapDistanceSatisfied(mb_down,l_down) /\
isOverlapDistanceSatisfied(mb_up, l_up))

end,

/* SC1:
* Objective: Found overlap sections must not reside in the other generated

table.↪→
*/
SC1: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout

-> Bool↪→
SC1(n,n_down,n_up) is

let
t = ITG.mk_table(n),
down_routes = get_sub_routes(n_down,t),
up_routes = get_sub_routes(n_up,t)

in
(all r : ITG.I.Route :- r isin rng down_routes =>

(all s: SecId :- s isin ITG.I.overlap(r) =>
s isin ITG.I.L.sections(n_down)))

/\
(all r : ITG.I.Route :- r isin rng up_routes =>

(all s: SecId :- s isin ITG.I.overlap(r) =>
s isin ITG.I.L.sections(n_up)))

end,

100 E RSL Specifications

/* SC2:
* Objective: Found point requirements must not reference points that reside

in the other generated table.↪→
*/
SC2: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout

-> Bool↪→
SC2(n, n_down,n_up) is

let
t = ITG.mk_table(n),
down_routes = get_sub_routes(n_down,t),
up_routes = get_sub_routes(n_up,t)

in
(all r : ITG.I.Route :- r isin rng down_routes =>

(all s_id : SecId :- s_id isin dom ITG.I.points(r) =>
s_id isin ITG.I.L.sections(n_down)))

/\
(all r : ITG.I.Route :- r isin rng up_routes =>

(all s_id : SecId :- s_id isin dom ITG.I.points(r) =>
s_id isin ITG.I.L.sections(n_up)))

end,

/* SC3:
* Objective: Found marker boards must not reside in the other generated

table.↪→
*/
SC3: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout

-> Bool↪→
SC3(n, n_down,n_up) is

let
t = ITG.mk_table(n),
down_routes = get_sub_routes(n_down,t),
up_routes = get_sub_routes(n_up,t)

in
(all r : ITG.I.Route :- r isin rng down_routes =>

(all m_id : MbId :- m_id isin ITG.I.signals(r) =>
m_id isin dom ITG.I.L.marker_boards(n_down)))

/\
(all r : ITG.I.Route :- r isin rng up_routes =>

(all m_id : MbId :- m_id isin ITG.I.signals(r) =>
m_id isin dom ITG.I.L.marker_boards(n_up)))

end,
/* SC4:
* Objective: Found conflicting routes must not reside in the other generated

table.↪→
*/
SC4: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout

-> Bool↪→
SC4(n, n_down,n_up) is

let
t = ITG.mk_table(n),
down_routes = get_sub_routes(n_down,t),
up_routes = get_sub_routes(n_up,t)

in
(all r : ITG.I.Route :- r isin rng down_routes =>

(all r_id : RouteId :- r_id isin ITG.I.conflicts(r) =>
r_id isin dom down_routes))

/\

E.2 Decomposition_COMMON 101

(all r : ITG.I.Route :- r isin rng up_routes =>
(all r_id : RouteId :- r_id isin ITG.I.conflicts(r) =>

r_id isin dom up_routes))
end

/* Getters and adders */
value

get_applicableCuts : ITG.I.L.NetworkLayout >< MultiCut -> Cut-set
get_applicableCuts(n,mc) is

{c | c:Cut :- c isin mc /\
case c of

Cut_from_SingleCut(sc) -> cut_wf(n, sc),
Cut_from_ClusterCut(cc) -> cut_wf(n, cc)

end},

/* Apply cut according to direction (up or down) */
apply_bc : ITG.I.L.NetworkLayout >< SingleCut >< Direction -~->

ITG.I.L.NetworkLayout↪→
apply_bc(n,sc,d) is

let
l_down_id = section_down(sc),
l_up_id = section_up(sc),
l_down = ITG.I.L.get_linear(l_down_id,n),
l_up = ITG.I.L.get_linear(l_up_id,n),

disconnect_down = if d = DOWN then l_up_id else ITG.I.L.down(l_down)
end,↪→

disconnect_up = if d = DOWN then ITG.I.L.up(l_up) else l_down_id end,
disconnected_network = get_disconnectedNetwork(n, disconnect_down,

disconnect_up),↪→

-- Remove invalid marker boards at the interested side of the
disconnection↪→

extra_mb_removed_n =
if d = DOWN then remove_extra_mb(disconnected_network,l_up_id,d)
else remove_extra_mb(disconnected_network,l_down_id,d)
end

in
extra_mb_removed_n

end,

apply_bc : ITG.I.L.NetworkLayout >< ClusterCut >< Direction -~->
ITG.I.L.NetworkLayout↪→

apply_bc(n,cc,d) is
if cc = {} then n else

let
sc = hd cc,
sc_appliedNetwork = apply_bc(n,sc,d)

in
apply_bc(sc_appliedNetwork,cc \ {sc},d)

end
end,

/* Get disconnected network
*/

102 E RSL Specifications

get_disconnectedNetwork : ITG.I.L.NetworkLayout >< SecId >< SecId -~->
ITG.I.L.NetworkLayout↪→

get_disconnectedNetwork(n,secIdDown, secIdUp) is
let

points = ITG.I.L.points(n),
linears = ITG.I.L.linears(n),

linearsToDisconnect =
-- if down section is a linear
[l +> remove_nb(ITG.I.L.get_linear(l,n), UP) | l:SecId :- l

isin ITG.I.L.linears(n) /\ l = secIdDown] !!↪→
-- if up section is a linear
[l +> remove_nb(ITG.I.L.get_linear(l,n), DOWN) | l:SecId :- l

isin ITG.I.L.linears(n) /\ l = secIdUp],↪→

pointsToDisconnect =
-- if down section is a point
-- point end to disconnect: ITG.I.L.get_p_end_by_nb_id(s,s,n)
[p +> remove_nb(ITG.I.L.get_point(secIdDown,n),

ITG.I.L.get_p_end_by_nb_id(secIdDown, secIdUp, n)) |
p:SecId :- p isin ITG.I.L.points(n) /\ p = secIdDown] !!

↪→
↪→

-- if up section is a linear
[p +> remove_nb(ITG.I.L.get_point(secIdUp,n),

ITG.I.L.get_p_end_by_nb_id(secIdUp, secIdDown, n)) |
p:SecId :- p isin ITG.I.L.points(n) /\ p = secIdUp]

↪→
↪→

in
-- Update the network by adding the new boundaries
ITG.I.L.mk_NetworkLayout(linears !! linearsToDisconnect, points !!

pointsToDisconnect, ITG.I.L.marker_boards(n))↪→
end
pre ITG.I.L.are_neighbors(secIdDown, secIdUp, n),

/* Get disconnected network
*/
get_disconnectedNetwork : ITG.I.L.NetworkLayout >< ClusterCut -~->

ITG.I.L.NetworkLayout↪→
get_disconnectedNetwork(n,cc) is

if cc = {} then n
else let

sc = hd cc,
sc_disconnected = get_disconnectedNetwork(n, section_down(sc),

section_up(sc))↪→
in
get_disconnectedNetwork(sc_disconnected,cc \ {sc})

end
end

pre (all sc : SingleCut :- sc isin cc =>
ITG.I.L.are_neighbors(section_down(sc), section_up(sc), n)),↪→

remove_extra_mb : ITG.I.L.NetworkLayout >< SecId >< Direction ->
ITG.I.L.NetworkLayout↪→

remove_extra_mb(n,l,d) is
let

-- Get the extra marker boards to be removed (if exists)
extra_mbs = { ITG.I.L.signals(l,n)(-d)}

in
-- Update the network by deleting the extra marker board

E.2 Decomposition_COMMON 103

ITG.I.L.mk_NetworkLayout(ITG.I.L.linears(n), ITG.I.L.points(n),
ITG.I.L.marker_boards(n) \ extra_mbs)↪→

end,

/*
* Get all sections by discovering through neighbors.
* Recoursively accumalate all the sections in both directions.
*/
get_all_sections: ITG.I.L.NetworkLayout >< SecId-set >< SecId-set -~->

SecId-set↪→
get_all_sections(n,tv,v) is

if tv = {} then v -- If no
unvisited sections left, then finish↪→

else
let

current = hd tv, --
Select an element from to visit set↪→

visited = {current} union v, -- Add
current section to visited↪→

toVisit = (tv union ITG.I.L.get_neighbors(current,n)) \ visited --
Update toVisit and prevent endless loop↪→

in
get_all_sections(n,toVisit,visited) -- Call

function with updated args↪→
end

end,

/* Get all linears from given sections */
get_all_linears:ITG.I.L.NetworkLayout >< SecId-set -~-> SecId -m->

ITG.I.L.Linear↪→
get_all_linears(n,secs) is

[l +> ITG.I.L.get_linear(l,n) | l:SecId :- l isin secs /\ l isin
ITG.I.L.linears(n)],↪→

/* Get all points from given sections */
get_all_points : ITG.I.L.NetworkLayout >< SecId-set -~-> SecId -m->

ITG.I.L.Point↪→
get_all_points(n,secs) is

[p +> ITG.I.L.get_point(p,n) | p:SecId :- p isin secs /\ p isin
ITG.I.L.points(n)],↪→

/* Get all the signals from given sections */
get_all_signals : ITG.I.L.NetworkLayout >< SecId-set -~-> MbId -m->

ITG.I.L.MarkerBoard↪→
get_all_signals(n,secs) is

let
signal_ids = flatten({rng ITG.I.L.signals(sec,n) | sec:SecId :- sec

isin secs /\ sec isin dom ITG.I.L.linears(n) })↪→
in

[m +> ITG.I.L.get_markerboard(m,n) | m:MbId :- m isin signal_ids /\
m isin ITG.I.L.marker_boards(n)]

end,

/* Get reachable network */
get_reachableNetwork : ITG.I.L.NetworkLayout >< SecId -~->

ITG.I.L.NetworkLayout↪→

104 E RSL Specifications

get_reachableNetwork(n,s) is
let

-- Get all sections
sections = get_all_sections(n,{s},{}),
-- Get all linears from given sections
linears = get_all_linears(n,sections),
-- Get all points from given sections
points = get_all_points(n, sections),
-- Get all signals from given sections (signals only exists in linears)
signals = get_all_signals(n, sections)

in
-- Instantiate a new network layout
ITG.I.L.mk_NetworkLayout(linears,points,signals)

end
pre ITG.I.L.s_exists(s,n),

get_reachableNetworkSet : ITG.I.L.NetworkLayout >< SecId -~-> SecId-set
get_reachableNetworkSet(n,l) is

get_all_sections(n,{l},{}),

get_sub_routes: ITG.I.L.NetworkLayout >< ITG.I.InterlockingTable -~->
ITG.I.InterlockingTable↪→

get_sub_routes(n,t) is
[r_id +> ITG.I.get_route(r_id,t) | r_id: RouteId :- r_id isin dom t /\

ITG.I.source(t(r_id)) isin
ITG.I.L.marker_boards(n) /\↪→

ITG.I.dest(t(r_id)) isin
ITG.I.L.marker_boards(n)]↪→

pre ITG.I.L.is_wf(n)

/* Auxiliary functions */
value

remove_nb: ITG.I.L.Linear >< LinearEnd -> ITG.I.L.Linear
remove_nb(l,le) is

ITG.I.L.mk_Linear(ITG.I.L.neighbors(l) \ {le}, ITG.I.L.length(l)),

remove_nb: ITG.I.L.Point >< PointEnd -> ITG.I.L.Point
remove_nb(p,pe) is

ITG.I.L.mk_Point(ITG.I.L.neighbors(p) \ {pe}, ITG.I.L.length(p)),

/*
* Simpler representations of sections and signals
* For two sub-networks
*/
decomposed_sec_repr: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout ->

SecId-set >< SecId-set↪→
decomposed_sec_repr(n1,n2) is

(ITG.I.L.sections(n1), ITG.I.L.sections(n2)),

/*
* For multi cut
*/
decomposed_sec_repr: ITG.I.L.NetworkLayout-set >< (SecId-set)-set ->

(SecId-set)-set↪→
decomposed_sec_repr(n, secs) is

if n = {} then secs
else

E.2 Decomposition_COMMON 105

let h = hd n in
decomposed_sec_repr(n \ {h}, secs union {ITG.I.L.sections(h)})

end
end,

decomposed_sig_repr: ITG.I.L.NetworkLayout >< ITG.I.L.NetworkLayout ->
MbId-set >< MbId-set↪→

decomposed_sig_repr(n1,n2) is
(dom ITG.I.L.marker_boards(n1), dom ITG.I.L.marker_boards(n2)),

/* Check if overlap distance is satisfied */
isOverlapDistanceSatisfied: ITG.I.L.MarkerBoard >< ITG.I.L.Linear -> Bool
isOverlapDistanceSatisfied(mb, l) is

let mb_distance = ITG.I.L.distance(mb),
border_distance = ITG.I.L.length(l)

in
(MIN_SAFETY_DISTANCE <= mb_distance + border_distance)

end

end

106

APPENDIX F
C++ Code

This appendix contains the C++ files of the most importants parts of the decomposition
tool. The cut types and the main decomposition methods are part of the shown listings.

F.1 Cut Types
The listed header files are sufficient to observe the data types and relations between
the cuts.

F.1.1 Cut.h

#ifndef CUT_H
#define CUT_H

#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <set>
#include <list>
#include "RttTgenDkIxlComponent.h"

struct CutTypes {
typedef enum{

UNDEF = 0,
BORDERCUT = 1,
CLUSTERCUT = 2,
MULTICUT = 3

} cut_type_t;
};

class Cut : public RttTgenDkIxlComponent {
protected:

const CutTypes::cut_type_t type;

public:
Cut(std::string n, std::string oid = "<undefined id>" , CutTypes::cut_type_t t

= CutTypes::UNDEF)↪→
: RttTgenDkIxlComponent(n, oid), type(t) {}

virtual CutTypes::cut_type_t getCutType() {return type;}

bool isA(int) const;

108 F C++ Code

};

#endif

F.1.2 SingleCut.h

#ifndef SINGLECUT_H
#define SINGLECUT_H

#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <set>
#include <list>
#include "RttTgenDkIxlLinear.h"
#include "Cut.h"

class SingleCut : public Cut {
public:

SingleCut(std::string n, std::string oid, CutTypes::cut_type_t t =
CutTypes::UNDEF)↪→

: Cut(n, oid, t) {}
};

#endif

F.1.3 BorderCut.h

#ifndef BORDERCUT_H
#define BORDERCUT_H

#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <set>
#include <list>
#include "RttTgenDkIxlLinear.h"
#include "SingleCut.h"

class BorderCut : public SingleCut {
private:

RttTgenDkIxlLinear* linear_up;
RttTgenDkIxlLinear* linear_down;

public:
BorderCut(std::string oid)

: SingleCut("BorderCut", oid, CutTypes::BORDERCUT) {}

F.1 Cut Types 109

RttTgenDkIxlLinear* getLinearUp() {return linear_up;}
RttTgenDkIxlLinear* getLinearDown(){return linear_down;}

void setLinearUp(RttTgenDkIxlLinear* linear) { linear_up = linear; }
void setLinearDown(RttTgenDkIxlLinear* linear){ linear_down = linear;}

};

#endif

F.1.4 ClusterCut.h

#ifndef CLUSTERCUT_H
#define CLUSTERCUT_H

#include <iostream>
#include <sstream>
#include <string>
#include <list>
#include "Cut.h"
#include "BorderCut.h"

class ClusterCut : public Cut {
private:

std::list<BorderCut*> borderCuts;

public:
ClusterCut(std::string oid)

: Cut("CluterCut", oid, CutTypes::CLUSTERCUT) {}

std::list<BorderCut*> getBorderCuts(){return borderCuts;}

void setBorderCuts(std::list<BorderCut*> bcs) { borderCuts = bcs;}
};

#endif

F.1.5 MultiCut.h

#ifndef MULTICUT_H
#define MULTICUT_H

#include <iostream>
#include <sstream>
#include <list>
#include "Cut.h"
#include "BorderCut.h"
#include "ClusterCut.h"

110 F C++ Code

class MultiCut : public Cut {
private:

std::list<BorderCut*> borderCuts;
std::list<ClusterCut*> clusterCuts;

public:
MultiCut(std::string oid)

: Cut("MultiCut", oid, CutTypes::MULTICUT) {}

std::list<BorderCut*> getBorderCuts(){return borderCuts;}
std::list<ClusterCut*> getClusterCuts(){return clusterCuts;}

BorderCut* getBorderCut(std::string oid);
ClusterCut* getClusterCut(std::string oid);
Cut* getCut(std::string oid);

void setBorderCuts(std::list<BorderCut*> bcs) { borderCuts = bcs; }
void setClusterCuts(std::list<ClusterCut*> ccs) { clusterCuts = ccs; }

};

#endif

F.2 Main decomposition files
The main.cpp file will be the executable that triggers the main decomposition methods
placed in Decomposition.cpp.

F.2.1 main.cpp

#include "Decomposition.h"
#include "parser/DecompositionParser.h"
#include "xmlWriter/DecompositionXmlWriter.h"
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <unistd.h>
#include <cstdlib>

static void show_usage(){
std::cerr

<< "Usage:\n"
<< "\t-h,--help\t\tShow this help message" << endl
<< "\t-d,--destination\tSpecify the output destination path" << endl
<< "\t-c,--cut\t\tSpecify the cut file path" << endl
<< "\t-n,--network\t\tSpecify the network file path" << endl
<< "\t-v,--verbose\t\tVerbose mode" << endl
<< std::endl;

}

bool verbose = false;
string input_cut_path;
string input_network_path;

F.2 Main decomposition files 111

string out_path;

int main(int argc, char** argv){
int c ;
if (argc == 1) {

show_usage();
return 1;

}

// Manually check for path arguments first

while ((c = getopt (argc, argv, "hvd:c:n:")) != -1)
switch (c)
{

case 'h':
show_usage();
break;

case 'd':
cout << optarg << endl;
break;

case 'c':
input_cut_path = optarg;
break;

case 'n':
input_network_path = optarg;
break;

case 'v':
verbose = true;
break;

case '?':
/*
if (optopt == 'c')

fprintf (stderr, "Option -%c requires an argument.\n", optopt);
else

fprintf (stderr,
"Unknown option character `\\x%x'.\n",
optopt);

*/
return 1;

default:
abort ();

}
for (int index = optind; index < argc; index++){

printf ("Non-option argument %s\n", argv[index]);
}

Decomposition* decomposition = new Decomposition();
DecompositionParser* parser = new DecompositionParser();
DecompositionCommon* common = new DecompositionCommon();
DecompositionXmlWriter* xmlWriter = new DecompositionXmlWriter();

parser -> parse(input_network_path, input_cut_path);
RttTgenDkIxlInterlocking* interlocking = parser -> getInterlocking();
RttTgenDkIxlNetworkLayout* network = interlocking -> getNetworkLayout();
Cut* cut = parser -> getCut();
upDownNetworks_t upDownNetworks;
networks_t networks;

112 F C++ Code

switch(cut -> getCutType())
{

case CutTypes::UNDEF:
cout << "Cut Undefined, aborting..." << endl;
return 0;
break;

case CutTypes::BORDERCUT:
cout << "BorderCut Detected" << endl;
upDownNetworks = decomposition -> decompose(network, (BorderCut*) cut);

// write down network
interlocking -> setNetworkLayout(upDownNetworks.down);
xmlWriter -> xmlWriteMainDoc(out_path + interlocking -> getOid() +

"_down.xml", interlocking);↪→

// write up network
interlocking -> setNetworkLayout(upDownNetworks.up);
xmlWriter -> xmlWriteMainDoc(out_path + interlocking -> getOid() +

"_up.xml", interlocking);↪→
break;

case CutTypes::CLUSTERCUT:
cout << "ClusterCut Detected" << endl;
upDownNetworks = decomposition -> decompose(network, (ClusterCut*) cut);

// write down network
interlocking -> setNetworkLayout(upDownNetworks.down);
xmlWriter -> xmlWriteMainDoc(out_path + interlocking -> getOid() +

"_down.xml", interlocking);↪→

// write up network
interlocking -> setNetworkLayout(upDownNetworks.up);
xmlWriter -> xmlWriteMainDoc(out_path + interlocking -> getOid() +

"_up.xml", interlocking);↪→
break;

case CutTypes::MULTICUT:
cout << "MultiCut Detected" << endl;
networks = decomposition -> decompose(network, (MultiCut*) cut);
int cnt = 0;
for(const auto& n : networks){

interlocking -> setNetworkLayout(n);
xmlWriter -> xmlWriteMainDoc(out_path + interlocking -> getOid() + "_"

+ std::to_string(++cnt) + ".xml", interlocking);↪→
}
break;

}
return 0;

}

F.2 Main decomposition files 113

F.2.2 Decomposition.cpp

#include "Decomposition.h"
#include <stdio.h>
#include <string.h>

using namespace std;

Decomposition::Decomposition(){
common = new DecompositionCommon();

}

upDownNetworks_t Decomposition::decompose(RttTgenDkIxlNetworkLayout* network,
BorderCut* sc){↪→

RttTgenDkIxlLinear* l_down = sc -> getLinearDown();
RttTgenDkIxlLinear* l_up = sc -> getLinearUp();

string l_down_id = sc -> getLinearDown() -> getOid();
string l_up_id = sc -> getLinearUp() -> getOid();

RttTgenDkIxlNetworkLayout* downNetwork = common -> clone(network);
RttTgenDkIxlNetworkLayout* upNetwork = common -> clone(network);

upDownNetworks_t networks;
bool isDownSubnetCreated = common -> createSubnet(downNetwork, sc,

direction_t::DOWN);↪→
bool isUpSubnetCreated = common -> createSubnet(upNetwork, sc, direction_t::UP);
if (isDownSubnetCreated && isUpSubnetCreated){

networks.down = common -> reachableNetwork(downNetwork, l_down);
networks.up = common -> reachableNetwork(upNetwork, l_up);

}
return networks;

}

upDownNetworks_t Decomposition::decompose(RttTgenDkIxlNetworkLayout* network,
ClusterCut* cc){↪→

RttTgenDkIxlLinear* l_down = cc -> getBorderCuts().front() -> getLinearDown();
RttTgenDkIxlLinear* l_up = cc -> getBorderCuts().front() -> getLinearUp();

RttTgenDkIxlNetworkLayout* downNetwork = common -> clone(network);
RttTgenDkIxlNetworkLayout* upNetwork = common -> clone(network);

bool isDownSubnetCreated = common -> createSubnet(downNetwork, cc,
direction_t::DOWN);↪→

bool isUpSubnetCreated = common -> createSubnet(upNetwork, cc, direction_t::UP);

upDownNetworks_t networks;
if (isDownSubnetCreated && isUpSubnetCreated){

networks.down = common -> reachableNetwork(downNetwork, l_down);
networks.up = common -> reachableNetwork(upNetwork, l_up);

}

networks.down = downNetwork;
networks.up = upNetwork;
return networks;

}

114 F C++ Code

networks_t Decomposition::decompose(RttTgenDkIxlNetworkLayout* network, MultiCut* mc){
list<string> applicableCutOids = common -> getApplicableCutOids(network, mc);

if (applicableCutOids.size() == 0){
networks_t n = {network};
return n;

}
else{

string cutOid = applicableCutOids.front();
applicableCutOids.pop_front();
CutTypes::cut_type_t cutType = mc -> getCut(cutOid) -> getCutType();

upDownNetworks_t ns;
if (cutType == CutTypes::BORDERCUT){

ns = decompose(network, mc -> getBorderCut(cutOid));
list<BorderCut*> borderCuts = mc -> getBorderCuts();
borderCuts.remove(mc -> getBorderCut(cutOid));
mc -> setBorderCuts(borderCuts);

}
else if (cutType == CutTypes::CLUSTERCUT){

ns = decompose(network, mc -> getClusterCut(cutOid));
list<ClusterCut*> clusterCuts = mc -> getClusterCuts();
clusterCuts.remove(mc -> getClusterCut(cutOid));
mc -> setClusterCuts(clusterCuts);

}
else{

//Throw error
}

// make a deep of multi cut?
networks_t ns1 = decompose(ns.down, mc);
networks_t ns2 = decompose(ns.up, mc);

networks_t mergedNetworks = ns1;
mergedNetworks.splice(mergedNetworks.end(), ns2);

return mergedNetworks;
}

}

Bibliography
[1] A selection of projects which have used RAISE. url: http://spd-web.terma.

com/Projects/RAISE/project.html (visited on July 14, 2017) (cited on
page 8).

[2] About the project - Robustrails. url: http://www.robustrails.man.dtu.dk/
About-the-project (visited on July 13, 2017) (cited on page 3).

[3] Depth First Search and Breadth First Search in Python. url: http://eddmann.
com/posts/depth-first-search-and-breadth-first-search-in-python/
(visited on July 21, 2017) (cited on page 40).

[4] Alessandro Fantechi, Anne E. Haxthausen, and Hugo Daniel Macedo. “Compo-
sitional Verification of Interlocking Systems for Large Stations”. In: Proceedings
of SEFM’ 2017. Edited by Alessandro Cimatti and Marjan Sirjani. Volume 1046.
Lecture Notes in Computer Science. Springer International Publishing, 2017
(cited on page 18).

[5] Andreas Foldager. “A Graphical Domain-specific Language for Railway Interlock-
ing Systems , Et Grafisk Domænespecifikt Sprog for Jernbane-sikringsanlæg”.
und. 2015 (cited on pages 7, 68).

[6] Anne E. Haxthausen and Peter H. Østergaard. “On the Use of Static Checking in
the Verification of Interlocking Systems”. In: Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemination, Applications:
7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October
10-14, 2016, Proceedings, Part II. Edited by Tiziana Margaria and Bernhard
Steffen. Cham: Springer International Publishing, 2016, pages 266–278. isbn:
978-3-319-47169-3. doi: 10.1007/978-3-319-47169-3_19. url: http://dx.
doi.org/10.1007/978-3-319-47169-3_19 (cited on pages 1, 6).

[7] Hugo D. Macedo, Alessandro Fantechi, and Anne E. Haxthausen. “Compositional
Verification of Multi-Station Interlocking Systems”. In: Leveraging Applications
of Formal Methods, Verification and Validation: Discussion, Dissemination,
Applications, Part II. Volume 9953. Lecture Notes in Computer Science. Springer
International Publishing AG, 2016, pages 279–293 (cited on pages 4, 10, 63, 64).

[8] Hugo Daniel Macedo, Alessandro Fantechi, and Anne E. Haxthausen. “Composi-
tional Model Checking of Interlocking Systems for Lines with Multiple Stations”.
In: NASA Formal Methods: 9th International Symposium, NFM 2017, Proceed-
ings. Edited by Clark Barrett, Misty Davies, and Temesghen Kahsai. Springer
International Publishing, 2017, pages 146–162. isbn: 978-3-319-57288-8. doi:

http://spd-web.terma.com/Projects/RAISE/project.html
http://spd-web.terma.com/Projects/RAISE/project.html
http://www.robustrails.man.dtu.dk/About-the-project
http://www.robustrails.man.dtu.dk/About-the-project
http://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/
http://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/
https://doi.org/10.1007/978-3-319-47169-3_19
http://dx.doi.org/10.1007/978-3-319-47169-3_19
http://dx.doi.org/10.1007/978-3-319-47169-3_19

116 Bibliography

10.1007/978-3-319-57288-8_11. url: http://dx.doi.org/10.1007/978-
3-319-57288-8_11 (cited on page 17).

[9] Phil Nash. Catch: A modern, C++-native, header-only, test framework for
unit-tests, TDD and BDD - using C++98, C++03, C++11, C++14 and later.
original-date: 2010-11-08T18:22:56Z. July 2017. url: https://github.com/
philsquared/Catch (cited on page 59).

[10] Signalling Programme | UkBane. url: http : / / uk . bane . dk / Projects /
Signalling-Programme (visited on July 12, 2017) (cited on page 1).

[11] std::variant - cppreference.com. url: http://en.cppreference.com/w/cpp/
utility/variant (visited on July 22, 2017) (cited on page 44).

[12] The Danish Council for Strategic Research. Ministry of Higher Education
and Science. 2015. url: http://ufm.dk/en/research- and- innovation/
councils - and - commissions / former - councils - and - commissions / the -
danish-council-for-strategic-research (visited on May 27, 2015) (cited
on page 1).

[13] Linh Hong Vu. “Formal Development and Verification of Railway Control
Systems - In the context of ERTMS/ETCS Level 2”. PhD thesis. Technical
University of Denmark, DTU Compute, 2015 (cited on pages 1, 6, 12, 22, 29,
30, 42, 55, 56).

[14] Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. “Formal modelling and ver-
ification of interlocking systems featuring sequential release”. In: Science of Com-
puter Programming 133, Part 2 (2017). http://dx.doi.org/10.1016/j.scico.2016.05.010,
pages 91–115. issn: 0167-6423. doi: http://dx.doi.org/10.1016/j.scico.
2016.05.010. url: http://www.sciencedirect.com/science/article/pii/
S0167642316300570 (cited on page 6).

[15] Linh Hong Vu, Anne Elisabeth Haxthausen, and Jan Peleska. “A Domain-
Specific Language for Railway Interlocking Systems”. eng. In: Proceedings of
the 10th Symposium on Formal Methods for Automation and Safety in Railway
and Automotive Systems, Forms/format 2014 (2014), pages 200–209 (cited on
pages 1, 3).

https://doi.org/10.1007/978-3-319-57288-8_11
http://dx.doi.org/10.1007/978-3-319-57288-8_11
http://dx.doi.org/10.1007/978-3-319-57288-8_11
https://github.com/philsquared/Catch
https://github.com/philsquared/Catch
http://uk.bane.dk/Projects/Signalling-Programme
http://uk.bane.dk/Projects/Signalling-Programme
http://en.cppreference.com/w/cpp/utility/variant
http://en.cppreference.com/w/cpp/utility/variant
http://ufm.dk/en/research-and-innovation/councils-and-commissions/former-councils-and-commissions/the-danish-council-for-strategic-research
http://ufm.dk/en/research-and-innovation/councils-and-commissions/former-councils-and-commissions/the-danish-council-for-strategic-research
http://ufm.dk/en/research-and-innovation/councils-and-commissions/former-councils-and-commissions/the-danish-council-for-strategic-research
https://doi.org/http://dx.doi.org/10.1016/j.scico.2016.05.010
https://doi.org/http://dx.doi.org/10.1016/j.scico.2016.05.010
http://www.sciencedirect.com/science/article/pii/S0167642316300570
http://www.sciencedirect.com/science/article/pii/S0167642316300570

	Summary
	Sammenfatning
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Thesis Structure

	2 Background
	2.1 RobustRailS
	2.2 Railway Interlocking System
	2.2.1 Network Layout
	2.2.2 Interlocking Table

	2.3 Existing Tools
	2.3.1 RobustRailS Verification Tool

	2.4 GUI Tool
	2.5 Raise Specification Language

	3 Analysis
	3.1 Intended use of Tool
	3.2 Cuts and Decomposition Methods
	3.3 Border Cut
	3.4 Border Cut Conditions
	BCC 1
	BCC 2
	BCC 3
	BCC 4

	3.5 Soundness Conditions
	SC 1
	SC 2
	SC 3
	SC 4

	3.6 Decomposition Methods
	3.6.1 Single Cut Decomposition
	3.6.2 Cluster Cut Decomposition
	3.6.3 Multi cut Decomposition

	3.7 Other cut types
	Linear Cut
	Horizontal cut

	4 Requirements
	4.1 Functional Requirements
	4.2 Non-Functional Requirements
	4.3 RSL Requirements
	4.3.1 Types Specification
	Interlocking Types
	Network Layout
	Interlocking table
	Cut Types

	4.3.2 Decomposition Requirements
	Single Cut Decomposition Requirements
	Cluster Cut Decomposition Requirements
	Multi Cut Decomposition Requirements

	5 Design
	5.1 RSL Modules Overview
	5.2 Well-formedness of Cuts
	5.2.1 Well-formed Single Cut
	5.2.2 Well-formed Cluster Cut
	5.2.3 Well-formed Multi Cut

	5.3 Soundness of Cuts
	5.4 Decomposition Specifications
	5.4.1 Single cut Decomposition
	5.4.2 Cluster cut Decomposition
	5.4.3 Multi cut Decomposition
	Applying a Border Cut
	Reachable Network
	Disconnecting a Network
	Removing invalid marker boards

	5.5 XML schema
	5.6 Class Diagrams
	5.6.1 Cut Classes
	5.6.2 Parser Classes
	5.6.3 Domain

	5.7 Sequence Diagrams
	5.7.1 Parser Sequences
	5.7.2 Decomposition Sequences

	5.8 Adding a New Cut Type
	5.8.1 Specifications
	5.8.2 C++ tool

	6 Implementation & Tests
	6.1 The C++ Project Structure
	6.2 Parser
	6.3 XML Writer
	6.4 Cloning of networks
	6.5 Tests
	6.5.1 RSL Tests
	6.5.2 C++ Tests

	7 Experiments
	7.1 Goal of the Experiments
	7.2 Experimental Approach
	7.3 Mini Extended
	7.4 EDL
	7.5 Roskilde station

	8 Discussion
	8.1 Results
	8.2 Limitations
	8.3 Directions for Future Work

	9 Conclusion
	A Installing the tool
	A.1 Prerequisites
	A.1.1 Needed files

	A.2 Building
	A.2.1 Making shared libraries accessible

	B Using the tool
	B.1 Prerequisites
	B.2 Usage

	C Networks and Cuts in XML
	C.1 Original network
	C.1.1 mini-e.xml

	C.2 Cut Specifications
	C.2.1 mini-e_sc.xml
	C.2.2 mini-e_cc.xml
	C.2.3 mini-e_mc.xml

	C.3 Sub-networks
	C.3.1 After Single Cut
	mini-e_sc_down.xml
	mini-e_sc_up.xml

	C.3.2 After Cluster Cut
	mini-e_cc_down.xml
	mini-e_cc_up.xml

	C.3.3 After Multi Cut
	mini-e_mc_1.xml
	mini-e_mc_2.xml
	mini-e_mc_3.xml
	mini-e_mc_4.xml

	D Tests
	D.1 Decomposition_TEST
	D.2 RSL Results
	D.3 C++ Results

	E RSL Specifications
	E.1 Decomposition_DESIGN
	E.2 Decomposition_COMMON

	F C++ Code
	F.1 Cut Types
	F.1.1 Cut.h
	F.1.2 SingleCut.h
	F.1.3 BorderCut.h
	F.1.4 ClusterCut.h
	F.1.5 MultiCut.h

	F.2 Main decomposition files
	F.2.1 main.cpp
	F.2.2 Decomposition.cpp

	Bibliography

