=
—
—

i

Implementing Business Processes
using Internet of Things and
Cloud Infrastructure

Master thesis

Jens Paulsen
Kongens Lyngby 2017

DTU Compute
Department of Applied Mathematics and Computer Science




Master of Science in Engineering
Computer Science and Engineering

Implementing Business Processes using Internet of Things and Cloud Infrastructure
Master thesis

Jens Paulsen
s040533@student.dtu.dk

Technical University of Denmark
Department of Applied Mathematics and Computer Science

DTU Compute

Richard Petersens Plads
Building 324

2800 Kgs. Lyngby
DENMARK

Tel. +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk



Abstract

This thesis explores the characteristics of Internet of Things (IoT) devices and principles
in a proof of concept (poc) setup. This is explored due to the fact that the maturity
and interest in developing systems using these principles is increasing rapidly at the
moment. The poc setup will consist of an internet connected scale and a barcode
scanner sending measurements to a cloud platform. We find that augmenting these
devices with intermediary micro-controllers allows us to flexibly extend the limited
network capabilities of the devices to allow cooperation with a cloud platform (Platform-
as-a-Service) using the technologies and standards required.

The proof of concept explores the characteristics of IoT development, architecture,
security and performance from a practical point of view using Amazon Web Services
(AWS) technologies. We implement the poc system using these technologies, and find
that in most ways the AWS platform provides us the aforementioned characteristics
to a degree which lets developers build, verify and scale a PaaS system easily.

In the design and implementation we take into account resiliency against loss of
internet connection and power in the different components of the system to minimize
the need for technical assistance by the end-user or store personnel. Here we find that
the most common scenarios are very well covered using capabilities already provided
by operating systems, protocols and frameworks, but that more advanced failure
modes require advanced logic to let the system diagnose the issue. Also, we find
that if we cannot mitigate issues, the next best thing is to aid end-users and support
personnel with good status and diagnostics capabilities.

Further we explore how the moving of a business process - in this scenario we will
model a manual process using no digital hardware - from the analogue to the digital
domain influences this work process and how it is performed after being digitized.
We find several ways to improve the process by implementing fraud prevention using
the scale as a verification device. Furthermore, we identify ways to enhance the
shopping experience using smart phones during the shopping and a scale for checkout
verification. We chose not to implement this in the poc setup, as it diverges too far
from the hardware provided for the project and as it does not add sufficiently to the
ToT-characteristic exploration that is already established in the present scenario.







Preface

This report is written as the Masters Thesis in my studies to become a Master of
Science in Computer Science and Engineering at DTU. This report marks the final
project of the studies, where I will show that I am able to handle the problem solving
and analysis techniques thought at DTU, while at the same time applying the broad,
yet specialized, knowledge about information technology that I have gained during
these studies. Also, I will implement, at least part of the system, and test and evaluate
the characteristics in relation to the problem statement and requirements identified at
the start.

During my masters studies I have chosen the specialization of "Software Engi-
neering", which has shaped the collection of courses I have taken towards courses
specializing in software specification and modeling, although I have also had courses
involving web services, distributed systems and security, to name a few. Hence, this
report will probably have a strong emphasis towards analysis and modeling of the
system, as this is of personal interest to me. Luckily my supervisor Stig Hogh has
been good at keeping me focused on the practicalities of building the system and
making it ready for a demonstration of the parts of the system that I have actually
build, as the importance of the practical implementation is not to be underestimated
in this project.

I hope that readers of this thesis will enjoy reading about the intricacies of electronic
scales, Raspberry Pi’s and cloud services, as much as I have enjoyed working with
them.







Acknowledgments

I would like to thank my supervisor Stig Hggh for the support and time he has put
into helping me finish this project. He has certainly spend more time on counseling
me and giving me constructive feedback than I could have ever asked for.

Also, I would like to thank my beautiful wife for her never ending support and
cheering, and for giving med all the time and breathing room that she could afford me

during my thesis writing process. Without her support, this project would definitely
not have been possible.




Vi




Contents

Abstract

Preface

Acknowledgments

Contents

1 Introduction

2 Problem Statement

3 The Scenario
3.1  The weighing functionality . . . . . . .
3.2 The analog scenario . . ... ... ..
3.3 Description of the digital real world scenario . . . . . ... ... ..
3.4 The scenario implemented here . . . .

4 Analysis
4.1 Functional Requirements . . . . . . . .
4.2 Non-functional Requirements . . . . .
4.3 Business process modeling . . . . . . .
4.4  Requirements Delimitation . . . . . . .

5 Implementation
5.1 Business process delimitation . . . . .
5.2  Component Diagram . . . ... .. ..
5.3  Barcode Scanner . .. ... ......
54  Touch Display . . . ... ... .. ...
5.5 The Scale . . . ... ... ... ....
56 TheCloud . . . ... .. ... .....
5.7  Choice of implementation technologies

6 Conclusion

7 Glossary

Bibliography

vii

o ~go o O w

11

12
14
16

17
17
20
20
21
22
22
23

29
31
33



viii




CHAPTER ]
INnfroduction

Tt is the aim of this thesis to explore the characteristics of Internet of Things (IoT)
principles in a proof of concept (poc) setup. The poc setup will consist of an internet
connected scale sending measurements to a cloud platform. The proof of concept will
explore the characteristics of IoT development, architecture, security and performance
from a practical point of view using specific implementation technologies which will
be chosen during the analysis phase of the project. The design and implementation
will also take into account resiliency against loss of internet connection and power in
the different components of the system to minimize the need for technical assistance
by the end-user.

Further we will explore how the moving a business process - in this scenario we
will construct a manual process using no digital hardware - from the analogue to
the digital domain influences this work process and how it is performed after being
digitized. For example, it may be worth changing the steps in the work process to
make it more efficient in a digital system compared to the way the work process is
performed without the use of a computer.







CHAPTER 2
Problem Statement

In the field of Internet of Things devices, the computer industry and their customers
in the business- and consumer sector face several challenges including but not limited
to; security, resiliency, performance.

In this report we will use existing consumer and industry hardware to build a
setup for exploring the characteristics and challenges faced in making these devices
more flexible, secure, and updateable. The list of hardware chosen in the project is
listed here:

e A Mettler Toledo Geo 23 scale with tcp/ip and serial communication interface.
e A handheld scanner (Datalogic TD1120-BK-90)
e Two Raspberry Pi computers (a model 1B and a model 3B)

e A LED strip containing eight RGB diodes for connecting to a Raspberry Pi
(add-on module Blinkt!)

e A cellular modem for connecting these devices to the internet (Huawei AF22)

The devices listed above are used for exploring how we might design and build a
system consisting of semi-independent devices which are used together to fulfill a task
that a user might use these devices for. For this we choose a scenario of a self-service
grocery shopping system, inspired by the ones used in the supermarket chain Fgtex.
We use this scenario to explore the problems stated above, and how to solve them. It
is important to remember that we might as well have chosen another scenario used
in other industries, and we will try to model every independent device in the system
to be generic for usage in other systems, except of course for the business logic for
handling the shopping itself.






CHAPTER 3
The Scenario

Normally when building an IT system you would begin by for formalizing "a vision
of goals" for the system to end up fulfilling. These goals are quite abstract but lead,
together with identification of the personas(and their use cases) who are going to use
the system, to an identification of the formal requirements of the system to be build.
These requirements then become specific features to be implemented and tested. We
will not be pursuing the requirements engineering discipline quite as rigorously in this
project

We have chosen to relax the requirement elicitation and verification process
somewhat relative to the state-of-the-art requirements controls taught at DTU. We
have done so due to several factors. First of all "we" are only one person, therefore
the amount of coordination between team members is nonexistent, which lowers the
requirement for formal control mechanisms somewhat. Second reason being that
managing requirements rigorously adds overhead to the process of building the system,
and being only one team member we would rather prioritize time for actually building
the system than spending time managing the project for one person. Thirdly the focus
of this project is to a high degree the practical usage of the hardware components of the
system and their use in the system as a whole, and not the emphasis on requirement’s
management as such. Of course requirement management and system modeling are
still an essential part of system building and we think that we have found a good
balance of prioritizing the building of a practical demo system, with the requirements
of system modeling and requirements engineering in relation to the scope and emphasis
of the project. Now that this clarification and "apology" is out of the way, we can
begin building the system...

For implementing the proof of concept (poc) we need a scenario describing a
business process which can be implemented using the technologies chosen for this
project. The key technologies are the tcp/ip (or alternatively serial-connection)
connected scale and the cloud as the central data hub and data bus. By locking the
implementation of the poc to a clearly specified business process we avoid changing
the requirements of the implementation as we implement the different aspects of the
functionality specified during the analysis of the problem description. Formulated in
another way; by designing a scenario we lock the analysis to a predefined problem,
and hopefully are forced to consider different aspects of the scenario which would
perhaps not be considered if the problem statement were grabbed out of the air during
the implementation process. Though we still reserve the right to iterate through the
report and the problem statement several times during the project, at least we will be
forced to consider why we change the scenario and what impact is has on the rest of
the report.



6 3 The Scenario

3.1 The weighing funcfionality

For implementing the poc, we decided to use a "paying for groceries" scenario for
implementation of the system. Hence, this will be the running example upon which
all the documentation is modeled. It is important to note that the core concepts
of the scenario can be generalized to other situations in which a weighting process
takes place, data are collected and displayed from the cloud, and the scale is used
as a measurement or verification method in this process. This might be weighing of
goods as they are packed from a storage facility to be sent to a customer, where the
weighting functions as a verification that the correct goods have been packed, before
they are shipped to the customer. Another scenario might be the using the scale for
verifying the number of counted votes in a ballot. Here the manually counted votes
would be sorted in piles and counted with the extra step og weighing the votes to
verify that the number of counted votes correspond to the actual weight of the voting
paper. This has actually been proved to be a fairly accurate method[1]. The scenario
will also function as a use case for a customer persona who is going to use the system.
The reason we can simplify the specification process here, is that the poc is build
around the hardware components (scale, handscanner etc.), which are only used by
the customer. Also, all customers must (probably, if we decide so) follow the same
process when buying groceries in the self-service solution, except maybe differentiated
by the payment method they use. So basically we only have one use case for the
customers who use the IoT-devices, and the other personas, such as the supermarket
clerk, the system administrator, the system developer etc., are not taken into account
in the scenario or the demo-system (the poc) that we are going to build. The scenario
will be build around a business process description, which will also act as use case for
the actor/persona, which is the customer.

3.2 The analog scenario

In the classical (or analog, manual etc.) process of paying for groceries, the user
arrives at the cash register and places her groceries on the conveyor band, allowing the
supermarket employee to scan the groceries and subsequently receive payment from her.
While the first customer is packing her bags, the (checkout lane) escalator band can
process another customers groceries, by sending the groceries to a second compartment
in the excavator band. Thus, the band alternates between the two compartments,
keeping the supermarket employee busy scanning groceries, and accepting payments
while the flow of customers through the system is maximized. In Figure 3.1 you
see two swim lanes, one representing the customer, and the other representing the
employee at the escalator band. The customer keeps putting items on the belt until
the bag is empty, then proceeds to the end of the conveyor to pack her items. At any
time during the packing, the employee may choose to ask the customer for payment
method. The customer approaches the payment terminal, pays, and (hopefully) the
payment succeeds. If the customer has not finished packing she will do so after paying.
The employee keeps scanning groceries until no more are left, asks the customer for
payment, and hands her the receipt (and possibly change), before proceeding to the



3.3 Description of the digital real world scenario 7

next customer. It must be noted that we could have chosen to make the activity
diagram more complex by for example expanding on the payment sub-process, which
is just shown as an abstract element here. Or we could have expanded on the receive
payment step for the cashier and added more sub-steps depending on the payment
method chosen by the customer. Ultimately modeling business processes is always a
balance of keeping the diagram simple, while still encompassing the important steps
and activities necessary for capturing the important aspects of the system.

3.3 Description of the digital real world scenario

In this section of the report we will describe the scenarios on which the poc is
implemented. For this report the scenario will describe a business process wherein
an end customer must scan and pay for groceries bought in a supermarket (inspired
by the computerized self service queue implemented in Fotex supermarkets.) The
scenario will be described using both UML compliant diagrams and text descriptions.
The text below describes the steps shown in Figure 3.2 .

A customer enters the payment area with the goods she wishes to purchase. She
chooses a payment counter which is not already in use, or closed for maintenance
(maybe based on a color coded lamp attached to the top of the payment counter.
She places her groceries bag on the side of the counter, named the "in" counter. She
presses the “start” button on the display of the counter. The counter asks her if she
has brought her own groceries bag or not. After answering the question the customer
either places her own bag on the holder on the the side named the "out" side of the
counter, or places a plastic bag from the counter instead. The terminal asks the
customer to take one item from the "in" side store basket, scan it, and place it in the
"out" bag. This process continues until all groceries have been scanned. The customer
is not allowed to scan several goods at once, but must take it up, scan it, and place
the good on in the bag on the other side of the scanner. When all goods have been
scanned, the customer presses the pay button on the screen, and chooses payment
method. After payment has completed the customer can pick up the "out" bag and
leave the store. If during the scanning process an item where no barcode is present is
found, the customer can find the item on a search list. This may be relevant when for
example a vegetable has been picket up that does not contain a barcode. Vegetables
which are priced based on their weight are normally weighted in the store and given
a custom barcode presenting their weight and price. If the scanner cannot read a
barcode during scanning then the customer can manually enter the code if they can
read it. If they cannot read it, the customer may always call the employee who is
assigned to the self-service checkout.

When the customer has scanned her groceries, and proceeds to press the "proceed
to payment" button, the sef-service terminal may trigger a "random" check of that
requires the employee who is overseeing the self-service terminals to manually approve
the correctness of the scanned groceries vs. what the customer has actually placed
in her bag. The reason that this is listed as "random" in quotation marks is that it
may be semi-random based on pattern matching or machine learning which based on
a pattern or a confidence heuristic may trigger a call for an employee checkup. We



8 3 The Scenario

Customer Cashier

Place bag on counter

Place item on conveyor belt ]

Item placed
on conveyor

[Bag not empty] J/

[More items
J}Bag empty] on conveyor belt]
Be asked to choose

0o more items
on conveyor belt]

y

Place item in bag

Ask customer
for payment method

Receive Payment

Payment succeeds]
Hand customer receipt
and possibly change

[End of Conveyer
not empty]

[End osopveper empty]

Go to payment terminal

[Be asked by Cashier
for payment]

Pay by cash or credit card
(with subactions)

C—C)

gaymem succeeds]

[End of conveyer
not empty]

Go to end of conveyor
Place item in bag

[End of Conveyer
not empty]

[End of conveyer empty]

[End of conveyor empty]

Pick up bag

Figure 3.1: Activity Diagram for the manual process.

do not know if this pattern matching or machine learning is actually implemented in
current systems, and we will therefore defer this topic to the succeeding chapters of
analysis and implementation.

In the the real world, several other factors have to be taken into consideration,
such as if the payment does not succeed, the customer must cancel the process or



3.4 The scenario implemented here 9

possibly call an employee for help. We have chosen not to model these in the process,
but we do realize that in a real system in production, these exceptions would have to
be taken care of as well.

3.4 The scenario implemented here

In the implementation of this poc we will focus on a smaller subset of the larger
scenario described above. This will be elaborated upon in the upcoming chapters.
Due to the already given hardware for the project, the implementation of the scenario
will comprise a touchscreen for user interaction, a tcp/ip or serial-cable connected
scale for measuring the weight of the groceries, and a barcode scanner for scanning
the groceries. All of the elements in the setup described above are connected to a
common infrastructure in the cloud, (e.g. based on a Google or Amazon etc. cloud
infrastructure) for internet of things. This cloud infrastructure will contain all of the
business logic for the software functionality required by the scenario.



3 The Scenario

Customer

Place bag on "in" counter
Press start on touchscreen

Choose own bag or buy bag
Place bag on weight tray

Pick up item from "in" bag

[Barcode not found on item]

Press "Find item on li:

(with subactions)

CoO—({D

[Barcode found on item]

item

["In" bag not empty]

[Barcode not accepted by scanner]

>{Press "Enter barcode manually

[Barcode accepted by scanner] [Barcode found on item]

[Barcode found and item added to list]
Enter barcode and press
Place item in out bag | L

[Barcode found and item added to list]

['In" bag is empty]

Press "proceed to payment"

["Random: of shopping bag triggered, for employee to check bag

"Random" inspection of shopping bag not triggered
[ inspecti pping bag not triggered] [Employee matches bag contents with receipt]

Pay by cash or credit card approves

(with subactions)

CO—({D

[Payment succeeds]

Take receipt
and possibly change
Pick up bag

@<_[Employee reopens system for new customer]

[Employee suspects fraud]

Trouble!
(with subactions)

[

Search and find item

Figure 3.2: The digitized process.



CHAPTER 4
Analysis

In the analysis chapter we try to convert the business process diagrams into re-
quirements for the system to be build. These requirements should be as technology
independents as possible, as to not lock the developers of the system into specific
technologies. The technologies will be chosen later, based on an overall assessment of
the requirements, the available developers, maintainability of code etc. In reality most
of the hardware devices for the system were given beforehand, but the software and the
specific functionalities of the software have not been given yet, so the analysis process
is still warranted. We might also identify hardware requirements which the given
hardware does not possess. If this should happen we will note it, and try to find a
workaround. New requirements are added iteratively while the report is being written
and the system is being build in parallel. Features of the implemented system are
linked to the requirements as to be verified that they are fulfilled. Some requirements
will be deemed outside the scope of the poc, or be prioritized low and therefore not
implemented in the final poc, given limits in development time.

4.1 Functional Requirements

This section describes the functional requirements, or requirement attributes (RA)
identified for the poc system used in the scenario described in the previous section.
The functional requirements are elicited based on the flow in the business process
model.

RA1 The customer must be able to specifically start her own session on the system,
as to not confuse the customer if she approaches a terminal where the preceding
customer left the system in the middle of a transaction.

RA2 The customer must be able to choose if she wishes to buy a bag for the groceries,
or if she has brought her own.

RA3 The system must be able to verify that the customer actually places the groceries
which she scans on the scale after scanning them.

RA4 The customer must be able to continuously and easily scan groceries, until she
indicates to be done

RA7 The customer must always have a status of scanned groceries and summarized
cost on screen while the scanning is commencing

RAS5 The customer must be able to choose between several payment methods.



12 4 Analysis

RAG6 The system must be easily extendable with new payment methods.

RA8 The system must be able to ask the customer to put back a grocery item on the
scale, it the customer removes the item while the transaction has not finished.

RA9 The system must be able to determine if the customer replaces one scanned item
with another item during the scanning of all groceries.

RA10

4.2 Non-functional Requirements

In this section I will describe the non-functional requirements (or quality attributes,
QA) [16a] identified for the proof of concept setup. Non-functional requirements
encompass "quality attributes", which are not specific functionalities og the desired
system, as much as they are qualities inherent in the whole system as such. For
example a non-functional requirement that the system is "secure', is not the same
as the functional requirement that the system uses https for web communication.
While there are many possible non-functional requirements to add to a system, for
this specific system only the ones deemed relevant are mentioned below. Often many
quality attributes are important in a system, but they may very well conflict with
each other given limited development resources. For example a quality requirement
of maintainability may be made more difficult by other requirements(security, speed)
if they add more complexity to the system. Therefore we must often content with
the fact that all quality attributes are somewhat important but that some quality
attributes are prioritized higher or prioritized in favor of other quality attributes in
the specific context of the given system under development. Even though a specific
non-functional requirement is discussed below, it may not necessarily need to be
specifically implemented in the qualities of the system, if it is already sufficiently
covered by an existing system or third party framework which the poc integrates into.
For example security is important to the whole system, but if the cloud infrastructure
already implements sufficient security for our system, we may only need to assert that
the requirement has already been fulfilled by the cloud provider.

42,1 Response Time

[QA1] When the scale sends measurements to the cloud, these measurements must
be sent to business logic og the system, but also specifically to the touch display on
the console. We have chosen to prioritize optimization for low latency for sending
these measurements to the touch screen as for example a latency of several seconds
could possibly decrease the user experience, but worst case make the system unusable
if the users do not recognize that the scale and screen are out of sync. The system
uses soft-realtime requirements [16b], as data send between components of the system
never make the system unusable as such, but rather make the user experience worse
until the latency makes waiting time intolerable to the user.



4.2 Non-functional Requirements 13

4.2.2 Security Requirements

[QAZ2] In the security requirements for the project, all the devices connecting to each
other via the cloud infrastructure, are communicating over the internet. Here we must
ensure that all devices can authenticate, and ensure integrity and confidentiality [17b]
of the data sent by these communication channels.

4.2.3 Privacy Requirements

[QA3] While in the security section above, the requirements of the system to ensure
security in the communication between system elements, the users using the system
must also place a level of trust in the owners of the system; that the system owners
do not use the information that the users directly or indirectly give to them, are given
to third parties or used in ways which the users do not approve of. In a shopping
scenario this might be data mining the specific shopping habits of individual users to
send the targeted advertisements or selling the information gathered to third parties.
These privacy requirements may be fulfilled by having the supermarket adhering to
already established compliance laws, such as EU privacy laws. Also, if using one or
more cloud provider(s) for the system or parts of the system, these providers must
also adhere to national and EU laws.

4.2.4 Resiliency and Robustness Requirements

This project will have emphasis specifically on resiliency requirements and robustness
requirements. Resilience is the ability of the system to cope and recover from general
errors (e.g. hardware, software and communication errors) while being in production,
and robustness is the ability to handle unexpected erroneous input and/or program
errors internally in the system, as to not having to recover at all. The specific points
which have been identified as relevant to focus on in the system are elaborated in the
following subsections.

Data connection loss

[QA5] Upon loss of data connection between the components of the system, depending
on the communication channel which looses the connectivity, we have to consider the
severity and countermeasures available to us to mitigate the loss, and/or reestablish
connection automatically when the channel is available again.

Power loss

[QAG6] During a power loss the component of the system is completely unavailable.
Here the user must perhaps be notified of the failing component, and the component
should be able to automatically reestablish connection to the cloud when power is
reestablished.



14 4 Analysis

Software error

[QAT] If a software error should occur in any component of the setup, depending on
the specific service in the software in which the error occurs, the component may be
able to correct the error. If it is a service of the business specific logic, a watchdog
service may recover the failing software component, whereas if it is the kernel that
malfunctions, the possibilities for correction may be beyond the scope of this project.

Hardware error

[QA4] Similarly to the software error, a hardware error may be recoverable under
certain circumstances, but this will have to be supported by the specific hardware
chosen in the setup, possibly aided by support of the operating system running on the
hardware.

4.3 Business process modeling

When analyzing the business process for which the poc system is to be used, we
must also consider possible ways om optimize the flow of the business process. The
optimization of the business may both be relevant because the technologies used
to implement the system let us improve further on the established "old fashioned"
way of paying for groceries, but it may also be relevant to do because limitations in
the technology make it easier to change the business process to accommodate the
technology, than the other way around.

Scanning groceries after they have been placed on the scale

We have considered modeling the system so that the customer can place the item on
the scale, and then scan the item while it is placed on the scale, to save time and
let the scale settle while scanning. While this may save time and be a very practical
solution, we have chosen not to do so, as for a groceries shopping system the scanner
might be firmly mounted and not movable, as to make it easier for the customer to
move the item in front of the scanner with both hands instead of having to maneuver
the scanner with an attached power/data cord above the item. Also the customer
would have to remember to always place items with the barcode on top. In other use
cases, such as packaging similar boxed in a shipping facility it may be very relevant
to scan the item on the scale, as the items for shipping may be very similar (all are
boxes), while at the same time having highly trained operators working under time
pressure. In a shopping scenario the customer may be in a hurry, but at the same
time the system must be easy to use for all customers, both those with and without
routine in using the system.

Weighing groceries which are priced based on weight during checkout

Most supermarkets sell some fruit and vegetables as priced by their weight. Therefor
the customer must weight them on a scale in the groceries section and print a custom



4.3 Business process modeling 15

label which describes the type of vegetable, and the weight. This procedure could be
moved to the self-service terminal, where the customer would weight the vegetables
anyway, when going through the system. It would save the customer the hassle of
weighting the vegetables at the groceries section but give several disadvantages tot
the customer and store as well. Firstly the store might be interested in the customer
actually weighting the vegetables and printing the custom label, because this allows
the self service system to check that weight on the label is correct at checkout. The
customer could still cheat by setting the first scale to a cheaper vegetable. But this
could possibly be checked in the random inspections by the staff at the self servce
system. Also the customer may actually have an interest in weighing the vegetables
in the vegetables section, as it is difficult to add or remove vegetables when you are at
the self service system. If the customer only needs a certain amount of the vegetable,
she needs to be able to check when she is at the groceries, as she is then able adjust
the amount of vegetables in the bag.

Considering things not placeable on the scale

The system must also be able to handle objects to large to place on the scale, such
as beer crates, televisions sets etc. If the scanner is mounted and unmoveable, the
customer must be able to enter the barcode manually as a fallback method, but also
if the object is too large or too heavy to place on the scale, the system must be able
to exempt the item from weighting.

Mobile phone as scanner during shopping - Scale as end verification

If could also be investigated whether the customers could use their own smartphones
as barcode scanners, and scan the groceries while they put items into their baskets.
This concept is already being tested by the Danish supermarket giant Coop, and is
known as "Bip og Betal'[17a] [KUH00]. When the customers leave the store they pay
for the groceries packed and scanned in their bag. This is then secured by random
inspections by employees when customers leave the store. Here a scale could possibly
be a means of verification that the sum of the weight og the scanned items in the
bag match the values calculated by the system. While this business process helps
remove customers from the checkout lines and may allow the supermarket to have
fewer employees at the checkouts, we have chosen not to pursue this idea further.
But we do recognize that this may actually bring value to both the customer(ease
of shopping) and the supermarket(allows to reduce personnel and space reserved for
checkout).

Disruption by RFID profileration

At last the profileration of RFID tags would allow automatic scanning of the groceries,
with the scale as a verification of the summed weight of the items. This would be
an easy solution for the customers, if at the same time their customer loyalty card
or their phone could be asked for payment. This would change the business process
just like the Bip og Betal solution mentioned above. There are still problems with



16 4 Analysis

high prices for RFID scanners, the price of the tags themselves and difficulties in
scanning tags under different conditions [MdM17], but the technology is being used in
retail [Cat14], and maybe it will one day be more practical for stores to implement
this business process. We think the technology has potential, but for this project this
concept is to exotic that we will investigate it further.

4.4 Requirements Delimitation

We choose to delimit this project to work with the technologies relating to modeling
and implementing IoT and distributed systems using state-of-the-art technologies
approaches. Therefore we can initially ignore some of the above stated requirements.
Of the requirements elicited above, the bullets regarding payment [RA5] and [RAG]
can be ignored, as payment will not be build upon further in the project. Also, privacy
requirements regarding dataprocessing internally in the system will be ignored [QA3],
as they are prioritized very low in this poc system, but also often handled politically
(courts fine companies which break privacy laws), besides of technologically (user
controlled encryption, and one-way hashing of sensitive data.).



CHAPTER 5
Implementation

In this chapter we describe the software system which has been implemented based
on the requirements elicited in the previous chapter. The requirements have only
been described superficially, and can now be further elaborated upon for the most
important ones. When(if) the requirements have been elaborated upon to a degree
which is deemed sufficient for the development process to begin, we will start by
making the technology choices for the different parts of the system. It is important
to remember that the development of the system for this project happens iteratively
[16¢], where a rapid prototype testing the feasibility of high risk system features is
tried out first, and then developed upon by adding features according to their priority
of importance. This is the done in sprints, where after each sprint, the developer(s)
can demo the system to the external customers, or the internal users of the system and
correct misunderstandings introduced under the requirement elicitation, or customers
who realize that they actually want something completely different than they thought
that they asked for[06].

5.1 Business process delimitation

As mentioned in the previous chapter, we will only focus on a smaller subset of the
business process in the poc implementation. This subset is shown in 5.1, and the
individual steps are the same as in the fully modeled process, except that we have
simplified the whole process for the poc system.

5.1.1 Fraud Prevention

The system must handle fraud prevention, by checking that customers adhere to the
trust that is placed in them by the supermarket, when they are using the self-service
system. This check can be implemented and combined in several possible ways.

Scan and Place ltfem

When the customer scans an item, she must immediately place the item scanned on
the scale before she can scan another item. This will help ensure that the number of
items scanned matches the number of items the customer actually must buy. This
helps the customer to not make mistakes in the procedure.



18 5 Implementation

Customer

Place bag on "in" counter

Pick up item from "in" bag
[In" bag not empt
Place item in out bag

“In" bag is empty]

Press "proceed to payment”

Pay by cash or credit card
(with subactions)

C3—)

[Payment succeeds]

Take receipt
and possibly change

Pick up bag

Figure 5.1: The digitized process for implementation.

Checking the Weight of an Item against Database

When an item is placed on the scale after being scanned, the system verifies that the
weight of the item scanned, is approximately the same as the weight listed in the
database that contains all items. This helps prevent fraud if a customer repeatedly
scans an inexpensive item, and places more expensive items on the scale after scanning.
This type of fraud prevention will not stop a customer from scanning for example
one liter of cheap milk, and then placing a more expensive yogurt on the scale after
scanning, but it would still prevent some forms of fraud. Also this anti-fraud system
requires the supermarket to actually have the weights of all their groceries entered in
the database. This might incur significant cost on the supermarket, and perhaps not
be implemented in the real system.



5.1 Business process delimitation 19

Random Inspections by Staff

Even the customer should try to fool the system by placing more expensive items
of the same weight on the scale after scanning, the system might still encourage
customers not to do this, by blocking the payment step in the business process and
require manual approval by the supervising staff at the self-service checkouts. This
blockage of the payment would require staff to manually approve the scanned items,
and let payment proceed. These checks could happen on random, but could also be
semi-random, by for example happening more often if a customer triggers certain
patterns when scanning items. An example of such a pattern might be: (yogurt:1050g)-
> (milk:1050g)->(milk:1050g)->(milk:1010g)->(milk:1010g), or some other pattern,
wherein the median weights of two products with similar weights but different prices
are interchanged.

Checking that no items are removed during scanning

The last method to verify that customers are following the correct scanning procedure,
would be to ensure that no items are removed from the scale after they have been
scanned. This would both allow the staff to inspect all the items on the scale during a
random inspection, but also ensure that a customer could not exchange cheaper items
with more expensive ones after scanning has taken place, unless they weight exactly
the same (within some narrow margin).

5.1.2 Serverless architectures

For the overall server architecture we have considered a standard approach using a
server instance installed on a cloud server versus a new trend in system building;
the serverless[Boy00c] architecture. A serverless architecture allows us to forgo the
administration of servers in the cloud. Instead we can focus on writing individual
software functions for execution by a cloud computer whose underlying OS and appli-
cation server environment complexity is abstracted away to us. A service or program
which is developed by us, is then comprised of many small services (microservices
[Boy00b] ) which are orchestrated together to form the whole program/service to the
end-user/customer. The services are not seen by the end user, but only the whole
system as a blackbox. The serverless architecture allows us to outsource the server,
OS, and applications server environments, and instead only focus on our business
logic. Naturally we must place trust in the provider who manages the servers and
software stack, but as was the case with hosted/cloud computing, some use cases
make serverless/hosted systems best suited for the task, whereas other use cases
make locally hosted servers the most optimal choice. We have chosen to pursue the
serverless architecture for this project as it is encouraged and supported to varying
degree by all the major cloud computing providers (Google, Amazon, Microsoft). The
most immediate downside is that the field is somewhat new in comparison to the
classical way of setting up a cloud infrastructure, so there is not much standardization
in regards to technologies and practices for serverless computing, but the whole field
is nonetheless in rapid development and as the tech giants themselves are using this to



20 5 Implementation

a high degree [Boy00a], serverless computing is being pushed forward rapidly. Using a
serverless architecture encourages using microservices, as the serverless approach lets
you split up your program in smaller independent parts, and this split helps developers
to naturally divide the whole project into smaller specialized parts. If the developers
manage to follow this practice, the system will have high cohesion and low coupling
build in, and be easy to update piece by piece by independent developent teams.

5.2 Component Diagram

In modelling the system we begin by breaking the system as a physical entity into
subsystems or sub-components, which are easier to manage in regards to modeling them
in software, but also in relation to the physical location the different components are
going to be placed in the physical world. In 5.2, you can see the different components
of the system in a superficial view.

Scale {I

Cloud {I Touch Display {I

CD\ Barcode Scanner {I

Figure 5.2: Component Diagram of the whole system.

5.3 Barcode Scanner

The barcode scanner component is a semi-independent part of the system which
allows to scan the groceries before, after or during their placement on the scale. The
component can be further divided into two sub-components; the scanner and the
controller.



5.4 Touch Display 21

Barcode Scanner E

Handheld Scanner E Controller E Cloud E

Figure 5.3: Component Diagram of the scanner.

5.3.1 The scanner

The primary requirement of the scanner is that it only needs to be a common (and
relatively cheap) 2D scanner for scanning barcodes used for groceries in supermarkets.
The idea is to find a scanner using a common interface which represents scanners
in general. Some scanners appear to the operating system as a keyboard, as this is
the protocol that we as a minimum requirement wish to use, but other protocols are
common as well, so it will need further investigation to be able to settle on a protocol
which is the best suitable one for this specific purpose.

5.3.2 The Scanner Conftroller

The barcode scanner is connected to a controller unit, which connects the scanner to
the cloud infrastructure, by forwarding the scanned barcodes to the cloud. Also the
controller will be programmed to have high resilience towards power outage, program
failures, and hardware failures.

5.4 Touch Display

The touch display contains the user interface for the user to enter data and receive
instructions from the system during the expedition. Even though there is a display
and input buttons installed on the electronic scale which is part of the setup, we
have chosen not to use it in the project, as this is not as flexible as using a dedicated
touchscreen for user interaction. For example the touch screen allows to update the
user interface on a grand scale using updates to the software, whereas the scale, though
it can write text instructions to the user and receive number input from the user,
would limit the possibilites for interaction to the features offered by the scale. For
example in our setup we could show an instruction video on the touchscreen of how
the user is supposed to scan the groceries using the hand scanner. This would be
impossible to do on the ASCII display of the scale. To keep the experience of the user
interaction with the system consistent, we will try not to use the input and output
capabilities of the scale but instead use the touch screen exclusively if possible.



22 5 Implementation

5.5 The Scale

The scale component represents the whole setup of the scale as a blackbox which
communicates with the cloud. This entity also takes care of recovery in the event of
power failure or communication failure etc. I reality the scale component is made up
of several subcomponents as can be seen in 5.4.

5.5.1 The Hardware Scale

The scale which has been borrow for this project is a Mettler Toledo Scale model Geo
23, which contains an ethernet connection that is using TCP/IP for communication,
and also supports a rs-232 connection. The scale uses the communication protocol
SISC [99], so this is a given choice of protocol for the project.

5.5.2 The Scale Controller

As with the handheld scanner, the scale controller acts as an intermediary between
the scale and the cloud. As the scale essentially is a server to which the cloud must
connect to, to be able to request a weighing or control the settings of the scale. A lot
of difficulties arise if the cloud was to connect directly to the scale as the scale is build
to do. Therefore, a controller is installed in between the scale and the cloud. This
is also a confession to the fact that the scale is not a true Internet of Things device
in the sense that it can not itself connect to the cloud infrastructure, and that the
communication between them is not secured.

Scale E
Controller E Cloud E

Scale E

Figure 5.4: Component Diagram of the scale.

5.6 The Cloud

The Cloud represents the business logic for the proof of concept setup. While the scale,
the touchscreen and the scanner are just peripheral devices for the user to interact
with, the software (business) logic controlling the scenario is carried out by the cloud.
The challenge in the setup is to secure resilient real-time communication between the
external devices and the cloud.



5.7 Choice of implementation fechnologies 23

5.7 Choice of implementation technologies

For the implementation of the above modeled project, several technologies have to
be considered for all components of the system. As the project is conductd by one
person and under considerable time pressure, the choises of hardware and software
will both be influenced by what which programming languages and frameworks he
already knows. Also, the hardware choices will be guided by the hardware obtainable
within reasonable costs by the author. Of course the above mentioned limitations will
be weighted towards the required features of the project

5.71 Scale

Figure 5.5: The Mettler Toledo scale.

The scale is, as mentioned above, a Mettler Toledo Scale model Geo 23, which
contains an ethernet connection that is using TCP/IP for communication and a serial
port. The scale uses the communication protocol SISC, developed by Mettler, so this
is a given choice of protocol for the project. As the scale has been borrowed from
DTU and is the centerpiece around which the whole project evolves, this choice of
hardware is a given one.

5.7.2 Scanner

For the scanner component we wish to find a cheap handheld scanner which uses a
simple and common programming interface to be able to represent a broad range
of scanners. Also the scanner may be easier to replace in case it is broken or a
new supplier of scanner hardware is chosen. For the concrete project our choice of
scanner is the Datalogic Touch TD1120, as seen in 5.6. During the research to find
a suitable scanner, we found that several standard interfaces for handheld scanners
have been development for the Point of Sale industry such as OPOS, JavaPOS and
now UnifiedPOS (UPOS), though many vendors use their own proprietary interfaces.
In the scanner model we ended up purchasing, we looked for a support for Javapos,



24 5 Implementation

Figure 5.6: The handheld barcode scanner used.

as we are best at Java programming, but ended up actually being able to interface
directly to the scanner using a serial interface over USB.

5.7.3 Touch display

The touch display for interaction between user and poc-system will be an iPad 3rd
generation. We will not spend time developing an i0S application for the touch screen,
but rather implement the UI as a webpage. This will allow us to use other kinds of
tablets as touchscreens for the system, but also to update the app faster through the
browser, than having to push updates through an app store of a specific platform.
If performance or features are not satisfactory using a web-based approach, then
custom applications which are either side-loaded or submitted to the app store must
be implemented instead. But until performance has been established we would rather
decouple the software interface from the hardware which is executing it by using the
web browser engine for displaying the UL

5.7.4 Cloud infrastructure

Choosing the cloud infrastructure for building you application is a big choice for a
product, and maybe also for the company building the product. The same is the
case for our poc system, but luckily we are neither developing a real product, nor
do we have to consider scaling cost, when the project is this small. For investigating
the best cloud provider, we choose to make a quick survey of the largest providers -
Amazon, Microsoft and Google. All of them provide IoT frameworks. All of them
provide lambda clauses (anonymous functions), so superficially they all seem to offer
the services we might need. We have choosen to use the Amazon AWS cloud, as it
is by far the largest provider [Ram16], with what seems as the largest amount of
separate services. But we do recognize that we have not surveyed the market very
carefully, so the other providers may offer specific features which might be helpful for



5.7 Choice of implementation fechnologies 25

our scenario, though we are quite confident that the poc would be implementable on
all three providers’ platforms.

5.7.5 Blinkt! LEDs

Figure 5.7: The Blinkt RGB diode array.

The Blinkt LEDs are to be used for debugging and user notification. In a more
refined setup, the led would be placed more nicely, with labels attached, so that the
person using the system had a chance to try to resolve the error, or tell remote support
personnel which lights are blinking.

5.7.6 Choice of programming language

We have chosen to use Python3 as the language of choice, as it is sufficiently supported
on both the Raspberry Pi platforms and on the AWS platform. If Python3 is not
supported, we will use Java if possible. Also, for frontend web page coding, we will
have to use Javascript as this is what the most modern frameworks such as Angular
an node.js use for generating singlepage webpages.

5.7.7 AWS infrastructure components

For implementing the poc business logic in the cloud we orchestrate several AWS
services together to form the system. Several different Amazon services must work
together to fulfill the task of running the poc system.

The figure above describes the components comprising the system as it is build in
the AWS cloud.



26 5 Implementation

Proof of Concept System AWS structure diagram =

IAM module connects to

all Amazon services and
S3 bucket for webpage cdul handles authentication

Cj(eriace for downloading webpaqi—\ and access rights between AWS DynamoDB NOSQE

L > services
AWS IAM service E {»}

AWS API gateway E
EST Interface AngularJS webpag;

& B > ]
AWS IoT gateway E
Interface for IoT devices *
O [’] > Rules Engine [»]

O AWS Step FuncliunsE AWS Lamﬁlnstan:e@
Figure 5.8: The Structure diagram of the AWS services containing the business logic.

IAM service

The TAM service is a component shared between all AWS services, and handles
authentication and access rights between services, so that compromised services or
errors in services are cannot cause havoc in other services which are controlled by
the same owner. In a business critical system the rights would be of least privilege
between systems, and developers would also be shielded from each other, if there are
several teams with divided responsibilities.

S3 Bucket

The S3 service is a file sharing service, but can also be used to serve web-pages. Here
it will be used to serve the basic html-page for the touch interface, which in turn
invokes the node.js code that is the touch interface.

API Gateway

The touch interface mentioned above will call methods hosted using the AWS API
gateway service. The service will be authenticated either by client certificates or by
login and password on the web client.

loT Gateway + Rules engine

The Raspberry Pi’s connected to the scanner and the scale are communicating to the
AWS cloud using the AWS IoT framework, which uses IoT communication channels
based on MQTT [17c]. The clients authenticate using certificates which are also used
for communication encryption.



5.7 Choice of implementation fechnologies 27

Step Functions

The stepfunctions service can define business processes using statemachines. Normally
development of serverless systems involves building the systems to be stateless, but in
the case of the business process scenario we need to have separate states for knowing
when the customer is in the different states of the process in 5.1. We could also have
chosen to manage the state in the node.js client on the touch screen interface, and this
would probably scale better in a scenario with several terminals, but we also have to
consider the possibility of internet connectivity losses and being able to dynamically
change the business process from the serverside instead of having to make huge changes
to the touch screen client. If we can centralize the step functions to reside in the AWS
we have more freedom to change business processes if the touch screen controller can
be told by AWS which data it has to show in the given context. Given more time
we would like to explore the two ways to implement the state machine further, with
regard to performance, flexibility and reliability.

Lambda engine

The AWS Lamda engine allows the Step Functions engine to call anonymous functions
which can be instantiated for short time periods to solve small stateless jobs. Lambda
functions can be comprised to or themselves be a microservice. Lambda functions are
intended to have low coupling and high coherence, and to only run for short periods
of time if possible.

DynamoDB NOSQL

DynamoDB is a NOSQL intance hosted by AWS. For this poc a NOSQL database is
sufficient as we will be fetching item names, prices and weight of the item based on
the barcode scanned by the scanner. In a real-world setup we would consider using
a real SQL database, if we had to do data warehousing, data mining or other tasks
using complex data correlations. Sometimes you also use reading and dumping data
into a NOSQL database to attain good performance in easily predictable read/write
patterns and then copy the data to a SQL-database when you have time and the
system load is lower.

In the section above we hope to have described the AWS subsystems and their
interdependence in the poc system as we have chosen to model it.

5.7.8 The Scanner Implementation

The scanner is implemented using the scanners serial mode, which is recognized directly
as a serial interface in the Linux distribution installed on the Raspberry Pi to which it
is connected. The software running on the Raspberry Pi is waiting for the scanner to
plece sufficient characters in the serial buffer before sending them to the AWS cloud
using and IoT communication channel. The scanner does not receive commands from
the business logic in the cloud in the current state of the implementation. We have
tried to make the scanner component as simple as possible, and move the business



28 5 Implementation

logic to the cloud. When the scanner send an EAN-string to the cloud, it is the
responsibility of the Step Function engine to decide if the string arrives at a correct
time in the business process, and hence if the sting should be used, discarded, or if an
error message should be printed on the touch display to inform the user to follow the
correct process.

5.7.9 The Scale Implementation

In the implementation of the Scale component, the scale is sending measurements
continuously to the Raspberry Pi computer over a serial-connection. The choice of
the serial connection is only due to reducing complexity of the underlying connectivity
between scale and computer. We might as well have chosen to use a TCP/IP-
connection, but would then possibly have to consider security of the ethernet network,
and the possible error modes in the TCP/IP-stack. Therefore, we chose to use
the comparatively simple serial-interface until further the needs might change. The
scale continuously sends measurements to the Raspberry Pi computer, which is then
decides when to forward the measurement to the business logic in the cloud. The
Pi computer sends the measurement to the cloud when the scale has settled on a
steady weight, and when the cloud receives the measurement, it decides what to
do with this measurement based on the state in the Step Functions Engine. The
architecture of the scale sending continuously to the Raspberry Pi has been chosen
so that the programming in the Pi must not implement a large subset of the SICS
protocol to ask the scale for measurements. In stead a producer-consumer pattern has
chosen, as this simplifies reduces the complexity of the system without straining the
serial-connection bandwidth or the processor of the Raspberry Pi system. The Blinkt
LEDs are configured to show in color-codes, when a measurement is sent to the cloud.

5.7.10 Current State of System Implementation

Currently only the Scale and the Scanner components are implemented while the
AWS-system is still not completely functional. We have chosen not to test the system
in the current state, as we only have separate parts working without the AWS to
glue them together, but we will provide a demonstration of the finished pieces of the
poc-system and attempt to finish the AWS-system to make a working demo of the
whole system.



CHAPTER é
Conclusion

Cloud technology moves fast with new and rapidly changing standards, hence when
we move logic from the scale and scanner to the Raspberry Pi we are offered increased
flexibility in adopting new standards and frameworks for integrating the devices into
a cloud infrastructure. But a plugin system build into the devices, or a common
industry standard for IoT devices would help adoption and longevity of devices by
making them upgradeable. Though it is not currently a given thing that manufacturers
of consumer electronics wish to extend longevity of products, whereas business and
industry product manufacturers, like Mettler Toledo in this case, may wish to do so
for long term customer relations and because the products they develop are in use in
industry for many years.

What is needed is industry standards for securing the computing devices, making
them easy to update, both to possibly add new features but more importantly to
patch identified security holes or update security standards in these devices, if the
already implemented ones are outdated or flawed. In case of the scale and the scanner,
we need to move more control into flexible software, while still moving as much of the
business logic into "the cloud" or other external hardware. Only in more specialized
cases where latency or bandwidth limitations etc. are a problem to a centralized
business logic, does it make sense to movie compute power into the peripherals instead
of using "dumb" external devices in tandem with serverless architectures. An example
of this may be a credit card terminal that does part of the integrity checks locally
in a secure chip instead of sending all the credit card data to centralized servers for
authentication etc. The cloud providers of course continue to develop their PaaS
services, but we still need mature IoT frameworks to glue between the PaaS and
the devices, and hopefully have commonly used industry standards so that provider
lock-in will be less prevalent.

With regards to optimizing the business process of the groceries shopping scenario,
we must conclude that we have already modeled the most optimal process, until smart
phone scanning of the groceries is viable in the danish market. This change will
fundamentally change the process, as the number of cash registers and the roles of
the employees in the supermarket will change. Technologically there is no problem
implementing this system as it is already being tested in Denmark, and is being
actively used in other countries [KUHO0]. Here a scale for weighting the sum of the
scanned groceries might be part of the solution as a fraud prevention mechanism, in
contrast to the manual random inspections done today.

Sadly we did not implement as much of the modeled system as we hoped, and
hence a formal test of the system did not make sense in its current state. We hope to
be able to demonstrate a more complete system soon, where more of the resiliency



30 6 Conclusion

and robustness mechanisms can be demonstrated to work.



CHAPTER 7
Glossary

Checkout line - Point of sale (or POS) - point of purchase (POP). This is the place
where customers pay for their groceries after picking them up in the supermarket.

Escalator band - conveyor belt. This is the part of a classic checkout line where
the customer packs the groceries on a belt, while an employee scans the barcodes on
the items.

Self service - self-checkout. This is the system where a customer instead of going
to a checkout line, goes to scan the groceries, pay for them, and pack them herself.
We implement at Proof of Concept system doing this.

Scale - The scale can weight items, such as grocery items.

Handscanner - handheld scanner - barcode scanner or scanner. This is an electronic
scanner which is able to scan standardized International Article Numbers (EAN) coded
barcodes into a computer system.

Employee - Staff - Clerk. The persons who work at the supermarket and among
many things man the checkout lines and the self service systems.




32




Bibliography

[16b)]

[16¢]

[17a]

[17b]

[17¢]

[99]

[Boy00a]

Project Cartoon: How Projects Really Work (Version 1.5). July 24, 2006.
URL: http://www.projectcartoon . com/cartoon/2 (visited on Jan-
uary 15, 2017) (cited on page 17).

Non-Functional Requirement. In: Wikipedia. Page Version ID: 756105366.
December 22, 2016. URL: https://en.wikipedia.org/w/index.php?
title=Non- functional _requirement&oldid=756105366 (visited on
January 11, 2017) (cited on page 12).

Real-Time Computing. In: Wikipedia. Page Version ID: 754713139. Decem-
ber 14, 2016. URL: https://en.wikipedia.org/w/index.php?title=
Real-time_computing&oldid=754713139 (visited on January 11, 2017)
(cited on page 12).

Software Development Process. In: Wikipedia. Page Version 1D: 754769301.
December 14, 2016. URL: https://en.wikipedia.org/w/index.php?
title=Software_development _process&oldid=754769301 (visited on
January 17, 2017) (cited on page 17).

Bip Og Betal - Bip Dine Egne Varer Og Spring Kogen over. January 28, 2017.

URL: http://superbrugsen.dk/bip-og-betal/ (visited on January 28,
2017) (cited on page 15).

Information Security. In: Wikipedia. Page Version ID: 759506588. Jan-
uary 11, 2017. URL: https://en.wikipedia.org/w/index.php?title=
Information_security&oldid=759506588 (visited on January 11, 2017)
(cited on page 13).

MQTT. 2017. URL: http://mqtt . org/ (visited on January 29, 2017)
(cited on page 26).

Reference Manual - Standard Interface Command Set (SICS). 1999 (cited
on page 22).

Magnus Boye. Fra Monolit Til Microservice: Sadan Genbyggede Net-
flixz Sig Selv I Skyen. 2016-12-15T05:11:004-01:00. URL: https: //www.
version2.dk/artikel /monolit-microservice-saadan-genbyggede-
netflix-sig-selv-skyen-1070500 (visited on January 25, 2017) (cited
on page 20).


http://www.projectcartoon.com/cartoon/2
https://en.wikipedia.org/w/index.php?title=Non-functional_requirement&oldid=756105366
https://en.wikipedia.org/w/index.php?title=Non-functional_requirement&oldid=756105366
https://en.wikipedia.org/w/index.php?title=Real-time_computing&oldid=754713139
https://en.wikipedia.org/w/index.php?title=Real-time_computing&oldid=754713139
https://en.wikipedia.org/w/index.php?title=Software_development_process&oldid=754769301
https://en.wikipedia.org/w/index.php?title=Software_development_process&oldid=754769301
http://superbrugsen.dk/bip-og-betal/
https://en.wikipedia.org/w/index.php?title=Information_security&oldid=759506588
https://en.wikipedia.org/w/index.php?title=Information_security&oldid=759506588
http://mqtt.org/
https://www.version2.dk/artikel/monolit-microservice-saadan-genbyggede-netflix-sig-selv-skyen-1070500
https://www.version2.dk/artikel/monolit-microservice-saadan-genbyggede-netflix-sig-selv-skyen-1070500
https://www.version2.dk/artikel/monolit-microservice-saadan-genbyggede-netflix-sig-selv-skyen-1070500

34 Bibliography

[Boy0Ob] Magnus Boye. Tret Af It-Monolitten? Prov En Microservice. 2016-12-
16T05:03:35+01:00. URL: https://www.version2.dk/artikel/traet-
it-monolitten-proev-microservice-1070559 (visited on January 25,
2017) (cited on page 19).

[Boy00c] Magnus Boye. Slip for VM’s Og Containere: Serverless-Arkitektur Skaerer
Alt Andet End Kode Veek. 2016-12-21T05:09:004-01:00. URL: https://www.
version2.dk/artikel/slip-vms-containere-serverless-arkitekturen-
skaerer-alt-andet-end-kode-vaek-1071023 (visited on January 19,
2017) (cited on page 19).

[Cat14] Mary Catherine O’Connor. Can RFID Save Brick-and-Mortar Retailers
after All? April 17, 2014. URL: http://fortune.com/2014/04/16/can-
rfid-save-brick-and-mortar-retailers-after-all/ (visited on
January 28, 2017) (cited on page 16).

[KUH00] JOACHIM KUHLMANN SELLIKEN. Kuvickly Og Super Brugsen Vil Af-
skaffe Koer: Sadan Fungerer Den Nye App. 2015-11-05T09:01:004-01:00.
URL: http://www.computerworld.dk/art/235424/kvickly-og-super-
brugsen-vil-afskaffe-koeer-saadan-fungerer-den-nye-app (vis-
ited on January 28, 2017) (cited on pages 15, 29).

[MdM17] David Mckenzie and Suresh de Mel. Lessons from a Technology Flop:
RFID Works for Walmart but Not for Small Business Owners in Sri Lanka
| Higher Education and Development | U.S. Agency for International
Development. January 9, 2017. URL: https://www.usaid.gov/education/
development - higher - education /aug- 2016 - lessons - technology -
flop-rfid (visited on January 28, 2017) (cited on page 16).

[Ram16] David Ramel. Microsoft No. 2 Behind Amazon in Cloud Market Share
-. August 2, 2016. URL: https://rcpmag.com/articles/2016/08/02/
microsoft-behind-aws-in-cloud.aspx (visited on January 27, 2017)
(cited on page 24).


https://www.version2.dk/artikel/traet-it-monolitten-proev-microservice-1070559
https://www.version2.dk/artikel/traet-it-monolitten-proev-microservice-1070559
https://www.version2.dk/artikel/slip-vms-containere-serverless-arkitekturen-skaerer-alt-andet-end-kode-vaek-1071023
https://www.version2.dk/artikel/slip-vms-containere-serverless-arkitekturen-skaerer-alt-andet-end-kode-vaek-1071023
https://www.version2.dk/artikel/slip-vms-containere-serverless-arkitekturen-skaerer-alt-andet-end-kode-vaek-1071023
http://fortune.com/2014/04/16/can-rfid-save-brick-and-mortar-retailers-after-all/
http://fortune.com/2014/04/16/can-rfid-save-brick-and-mortar-retailers-after-all/
http://www.computerworld.dk/art/235424/kvickly-og-super-brugsen-vil-afskaffe-koeer-saadan-fungerer-den-nye-app
http://www.computerworld.dk/art/235424/kvickly-og-super-brugsen-vil-afskaffe-koeer-saadan-fungerer-den-nye-app
https://www.usaid.gov/education/development-higher-education/aug-2016-lessons-technology-flop-rfid
https://www.usaid.gov/education/development-higher-education/aug-2016-lessons-technology-flop-rfid
https://www.usaid.gov/education/development-higher-education/aug-2016-lessons-technology-flop-rfid
https://rcpmag.com/articles/2016/08/02/microsoft-behind-aws-in-cloud.aspx
https://rcpmag.com/articles/2016/08/02/microsoft-behind-aws-in-cloud.aspx

	Abstract
	Preface
	Acknowledgments
	Contents
	1 Introduction
	2 Problem Statement
	3 The Scenario
	3.1 The weighing functionality
	3.2 The analog scenario
	3.3 Description of the digital real world scenario
	3.4 The scenario implemented here

	4 Analysis
	4.1 Functional Requirements
	4.2 Non-functional Requirements
	4.2.1 Response Time
	4.2.2 Security Requirements
	4.2.3 Privacy Requirements
	4.2.4 Resiliency and Robustness Requirements
	Data connection loss
	Power loss
	Software error
	Hardware error


	4.3 Business process modeling
	Scanning groceries after they have been placed on the scale
	Weighing groceries which are priced based on weight during checkout
	Considering things not placeable on the scale
	Mobile phone as scanner during shopping - Scale as end verification
	Disruption by RFID profileration


	4.4 Requirements Delimitation

	5 Implementation
	5.1 Business process delimitation
	5.1.1 Fraud Prevention
	Scan and Place Item
	Checking the Weight of an Item against Database
	Random Inspections by Staff
	Checking that no items are removed during scanning

	5.1.2 Serverless architectures

	5.2 Component Diagram
	5.3 Barcode Scanner
	5.3.1 The scanner
	5.3.2 The Scanner Controller

	5.4 Touch Display
	5.5 The Scale
	5.5.1 The Hardware Scale
	5.5.2 The Scale Controller

	5.6 The Cloud
	5.7 Choice of implementation technologies
	5.7.1 Scale
	5.7.2 Scanner
	5.7.3 Touch display
	5.7.4 Cloud infrastructure
	5.7.5 Blinkt! LEDs
	5.7.6 Choice of programming language
	5.7.7 AWS infrastructure components
	IAM service
	S3 Bucket
	API Gateway
	IoT Gateway + Rules engine
	Step Functions
	Lambda engine
	DynamoDB NOSQL

	5.7.8 The Scanner Implementation
	5.7.9 The Scale Implementation
	5.7.10 Current State of System Implementation


	6 Conclusion
	7 Glossary
	Bibliography

