
Development of Cross-Platform
Mobile Application for

Pernexus Systems

Morten Zobbe
s132436

Kongens Lyngby 2015

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

The sales of smartphones and tablets have increased significantly over the past
few years. As more and more people use their mobile devices in their everyday
life, has the need for apps grown bigger and today hundreds of thousands of
different apps are available in the app stores. Until recently, mobile develop-
ers had to use platform specific tools when developing for the different mobile
operating systems. This meant that the developing process was costly if one
wanted to develop an app for more than one platform. But with the use of
new technologies, it is now possible to develop mobile apps for multiple mobile
operating systems at a time.

This thesis investigates the different cross-platform technologies that makes it
possible to develop for several mobile platforms at the same time. With the
different technologies it is now possible to reuse the same source code for multiple
platforms, which means that the development process is now faster and easier.
However, there are advantages and disadvantages of the different technologies
and these will be described in this thesis.

The thesis is prepared in collaboration with Pernexus Systems and the result
is an app developed with the cross-platform technology PhoneGap. The de-
velopment process with PhoneGap and the user experience of the app will be
evaluated and compared to the other cross-platform technologies. Which app-
development technology to use, shows to be dependent on whether you are
willing to sacrifice some of the user experience for the benefit of having a fast
and easy development process.

ii

Resumé

De seneste år er salget af smartphones og tablets eksploderet. I takt med, at
flere og flere folk bruger deres mobile enheder i hverdagen, er behovet for flere
apps blevet større og i dag findes der hundredetusindevis forskellige apps. Indtil
for få år siden, skulle udviklere bruge platformspecifikke værktøjer til at udvikle
til de forskellige mobile operativsystemer, hvilket betød en meget ressourcekræ-
vende proces, hvis man gerne ville udvikle til mere end én mobil platform. Men
ved hjælp af nye teknologier, er det i dag blevet muligt, at udvikle mobile apps
til flere mobile operativsystemer ad gangen.

Denne afhandling undersøger de forskellige cross-platform-teknologier, der gør
det muligt, at udvikle til flere mobile platforme på én gang. Med de forskellige
teknologier, kan man genbruge den samme kildekode til flere platforme, hvil-
ket betyder at udviklingsprocessen både bliver hurtigere og lettere. Dog er der
fordele og ulemper ved de forskellige teknologier, og disse vil blive beskrevet
nærmere i denne afhandling.

Afhandlingen er udarbejdet i samarbejde med Pernexus Systems og har re-
sulteret i en app, som er udviklet med cross-platform-teknologien, PhoneGap.
Udviklingsprocessen med PhoneGap samt brugeroplevelsen af app’en bliver eva-
lueret og sammenlignet med de andre cross-platform teknologier. Hvilken app-
udviklingsteknologi man skal bruge, viser sig at afhænge af, hvorvidt man er
villig til at ofre en del af brugeroplevelsen, til fordel for en hurtigere og lettere
udviklingsproces.

iv

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements
for acquiring an M.Sc. in Digital Media Engineering.

The thesis investigates the different cross-platform technologies used to make
mobile applications. It looks into the advantages and disadvantages of each
technology, to provide an answer to when a specific technology should be used.

During the thesis, a mobile application for three different platforms was devel-
oped, which is also documented in this report.

Lyngby, 15-June-2015

Morten Zobbe

vi

Acknowledgements

I would like to thank the people at Pernexus Systems without whom it would not
be possible to complete this thesis. Especially, I would like to thank Karsten
Torp for invaluable advice and guidance during this project. Furthermore, I
would like to thank Pernexus Systems for providing work laptop, software li-
censes, office space and a good work environment.

Additionally, I would like to thank my supervisor at Technical University of
Denmark (DTU), Stig Høgh for guidance and supervision towards completing
this thesis.

I would also like to thank my friends and family for continuous support and
encouragement during the project period.

viii

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Pernexus Systems . 2

1.1.1 Entrepriseportalen . 2
1.1.2 EP Mobile . 3

1.2 Thesis Problem . 4
1.2.1 Thesis Definition . 4

1.3 Report Structure . 5

2 Analysis 7
2.1 Prior work . 7

2.1.1 EP Mobile . 8
2.2 Domain Analysis . 9

2.2.1 Glossary . 9
2.2.2 General Knowledge of the Domain 10
2.2.3 Clients and users . 11
2.2.4 Environment . 11
2.2.5 Tasks and Procedures . 12

2.3 Requirements . 12
2.3.1 Functional Requirements 12
2.3.2 Non-functional Requirements 14
2.3.3 Use Cases . 14

x CONTENTS

2.4 Mobile Cross-platform Technologies 19
2.4.1 Web Apps . 19
2.4.2 Hybrid Apps . 20
2.4.3 Compiled to Native . 23

2.5 Choosing the Right Cross-platform Technology 26
2.5.1 Pros and cons . 26
2.5.2 Compared to the Requirements 29
2.5.3 The Choice . 30

2.6 Chapter Summary . 33

3 Design 35
3.1 Structure of pages . 35
3.2 EP Mobile design . 36

3.2.1 Server communication . 36
3.2.2 User interface . 37

3.3 AngularJS . 38
3.3.1 MVC Design Pattern . 39
3.3.2 Templates, Controllers & Services 40

3.4 Plugins . 42
3.5 Chapter summary . 42

4 Implementation 43
4.1 PhoneGap setup . 43

4.1.1 Project structure . 44
4.1.2 Gulp . 45
4.1.3 PhoneGap Build . 45

4.2 UI Framework . 45
4.2.1 MobileAngularUI . 46

4.3 Templates . 47
4.4 Controllers & Services . 48
4.5 REST calls . 49

4.5.1 Login . 50
4.5.2 Forms . 51

4.6 Using plugins . 51
4.6.1 Camera . 52
4.6.2 Geolocation . 52
4.6.3 FileTransfer . 53

4.7 Platform specific problems . 53
4.7.1 Windows Phone . 53
4.7.2 iOS . 54

4.8 Chapter summary . 55

CONTENTS xi

5 Evaluation & Discussion 57
5.1 Evaluation of PhoneGap . 57
5.2 PhoneGap vs. Other Cross-Platform Technologies 60

5.2.1 PhoneGap vs. Mobile Web Apps 60
5.2.2 PhoneGap vs. Xamarin 61

5.3 Cross-Platform vs. Native . 62
5.4 The Future of Cross-Platform Apps 64

5.4.1 Hybrid apps . 64
5.4.2 Compiled-to-native apps 65

5.5 Chapter summary . 66

6 Conclusion & Future Work 67
6.1 Findings . 67
6.2 Conclusion . 68
6.3 Future Work . 69

A Screenshots from EP Mobile 71

B Screenshots from the PhoneGap app 79

Bibliography 87

xii CONTENTS

Abbreviations

API Application programming interface

UI User interface

SDK Software development kit

RFID Radio frequency identification

IDE Integrated development environment

MVC Model-view-controller

App Application

Chapter 1

Introduction

Mobile applications have become a great part of our every day life. According to
Gartner[18] mobile app downloads will have exceeded 268 billion by 2017. With
an increasing global shipment of smartphones [17], it is fair to say that mobile
apps have become very popular. Different mobile operating systems forces de-
velopers to develop apps for each platform they want their app to support. The
most common mobile platforms are Android (78%), iOS (18.3%) and Windows
Phone (2.7%) [14]. To support these different platforms a developer typically
create native applications, which each is implemented in different programming
languages:

Mobile OS Programming Language
Android Java
iOS Objective-C / Swift

Windows Phone C#

What this means is, that it is not possible to reuse the source code when devel-
oping the same app for different platforms. A native app provides the best user
experience but requires a lot of experience and time to develop. User experience
is important because the user expects an app to behave a certain way that is
easy to use. If the app fails to do so, the user’s experience of the app will be
bad and he or she will unlikely use the app.

2 Introduction

Over the past few years a new technology to develop apps has emerged to
compete with native app development. The new technology is cross-platform
app development, which main goal is to develop apps with native performance
that works on as many platforms as possible. This thesis will focus on cross-
platform app development for an IT company called Pernexus Systems.

1.1 Pernexus Systems

Pernexus Systems was started in 2008. The people behind Pernexus have more
than 20 years of experience in working with utilities for construction and es-
pecially with construction projects with an infrastructure of pipes and cables.
Today Pernexus Systems has about 7 employees and is a relatively small IT
company, which main product is the development and maintenance of the web
portal, Entrepriseportalen.dk.

1.1.1 Entrepriseportalen

Entrepriseportalen.dk is a web portal for construction companies like HO-
FOR A/S and DONG Energy, who uses the web portal to manage their projects,
which often have many subcontractors. Entrepriseportalen is used as a link be-
tween the construction company and their subcontractors to ensure that all
parties of the project have the same updated blueprints, budgets and project
schedules. The different parties of the project can also send invoices to each
other through the web portal, while it makes sure that the government rules
on document management are met. To get a better idea of how companies use
Entrepriseportalen, an example will described in the following.

1.1.1.1 Example Usage of Entrepriseportalen

Figure 1.1 shows the following example:
Let us say that a water pipe has begun leaking. HOFOR A is the company
in charge of maintaining the water pipes in Copenhagen and they create a new
project in Entrepriseportalen for the leakage to be fixed. HOFOR then hire
a subcontractor B to fix the leakage. The subcontractor does the excavation
work to reach the broken pipe. The subcontractor has to fill out a form to doc-
ument the excavation work. Then the subcontractor fixes the pipe and another
form has to be filled out to document the work. A supervising engineer C is

Entrepriseportalen.dk
Entrepriseportalen.dk

1.1 Pernexus Systems 3

hired by HOFOR to supervise and verify the work done by the subcontractor.
The supervising engineer has to complete a form to document that the work is
executed correctly by the subcontractor. The subcontractor then closes the hole
and fills out a form that the work is done. When HOFOR has checked that the
work has been done correctly they close the project.

Figure 1.1: Example workflow between parties in construction project.

By handling the forms and documentation in the Entrepriseportalen website
makes sure that each party of the project has access to the relevant documents.
HOFOR can follow each step of the project and make sure that the work is
done correctly. Furthermore by having the documentation in Entrepriseportalen
makes it possible for the parties to bill each other directly through the web
portal.

1.1.2 EP Mobile

Pernexus Systems also offers a mobile application for Android to their customers.
This app is called EP Mobile and it is designed to ease the process of filling out
documents and forms when the workers are in the field. Before EP Mobile the
supervisors had to fill out the different documents and forms by hand, which

4 Introduction

they would later have to type into Entrepriseportalen. They would also have to
attach photos from the construction site manually. An advantage of the mobile
app is that they can complete the forms on the spot and attach the photos
directly. Another major advantage of filling out the documents in a mobile
application is that you can have the exact GPS location, which is very useful
for these projects.

In reference to the example above, the app is very useful when the supervising
is doing an inspection report of the work done. In EP Mobile the supervisor can
choose the form he wants to fill out from a list of forms related to the project.
When he chooses that he wants to fill out the inspection report, he is presented
with questions about the work that have been done on the construction site.
He can add pictures and GPS coordinates from the construction site to the
document directly through the app. The questions on the report are defined by
HOFOR themselves, to make sure they have the correct information, whether it
is needed for their own archives or in order to pay the subcontractors for their
work. When the supervising engineer has completed the inspection report, the
report is automatically send to the project in Entrepriseportalen, where it can
be viewed by the different parties involved in the project. The app also allows
the user to see project details and already filled out documents on the go.

1.2 Thesis Problem

With an increasing customer base, more and more customers are requesting the
EP Mobile app for iOS and Windows Phone. Pernexus Systems want to fulfill
the wishes of the customers and develop EP Mobile for iOS and Windows Phone.
The problem is that with only 2 full-time developers it would take almost all
of Pernexus’ time and resources to develop native apps for iOS, Android and
Windows. Therefore, it was decided by Pernexus to make a cross-platform app
that supports Windows Phone, iOS and Android. This app should eventually
have the same functionalities as EP Mobile so it will not be necessary to spend
time on maintaining two different apps.

1.2.1 Thesis Definition

The motivation for this thesis is to find what cross-platform mobile app tech-
nology that best fit Pernexus Systems’ needs. A cross-platform app will be
implemented using the chosen technology and will have to work on Windows
Phone and iOS. The technology used will be evaluated and compared to other

1.3 Report Structure 5

cross-platform technologies. The knowledge gathered from this thesis can be
taken into considerations for other companies that want to develop a mobile
application for several platforms.

1.3 Report Structure

The structure of the report and the contents of the different chapters will be as
follows:

1. Introduction - An introduction to the thesis problem.

2. Analysis - Description of prior work, definition of requirements for the
cross-platform app, use cases and an analysis of current cross-platform
app technologies.

3. Design - Description of the general architecture of the app and design of
the user interface.

4. Implementation - Description of the implementation of the cross-platform
app.

5. Evaluation & Discussion - An evaluation of the use of PhoneGap as
cross-platform technology, discussion of what cross-platform technology to
use and whether it is better to use cross-platform approach instead of a
native approach.

6. Conclusion & Future Work - Findings and a conclusion on the project
including future work.

6 Introduction

Chapter 2

Analysis

This chapter will analyze the prior work done at Pernexus Systems leading
up to this project. It will also conduct a domain analysis to introduce the
key concepts that are relevant for developing a cross-platform app at Pernexus
Systems. Functional and non-functional requirements will be defined and the
scope of the project will be delimited to that set of requirements.

This chapter will also introduce and analyze the different mobile cross-platform
solutions currently on the market. Pros and cons of these solutions will be
presented and will be compared to the requirements to find the best matching
cross-platform solution for Pernexus Systems.

2.1 Prior work

As introduced in Chapter 1, Pernexus Systems already offer an Android app for
the customers, called ‘EP Mobile’. This section will analyze the functionalities
of EP Mobile and describe them in detail to give an understanding what the
users can accomplish with the existing app.

8 Analysis

2.1.1 EP Mobile

The EP Mobile app has been on the market since January 2011 and has over
time and with constant feedback from the users, developed into including all the
functionalities that meet the users’ current needs and requirements. Hence, the
cross-platform app will eventually need to have the same functionalities. Below
are listed some of the main features of EP Mobile that the cross-platform app
needs to be able to replicate. Note that this is not what the cross-platform
app is required to be able to do within the scope of this project, due to the
limited time frame. The scope of this project will be explained further in the
requirements, Section 2.3.

EP Mobile allows the user to:

1. Login to Entrepriseportalen’s server

2. Choosing nearby projects from the map based on current location - (Figure
A.2)

3. Get a list of forms that can be completed, sorted by: - (Figure A.3)

(a) Last accessed project
(b) Name of project
(c) Distance to project
(d) Date the project was created

4. An overview of different projects where the user can access: - (Figure A.4)

(a) General information about the project
(b) Documents and images affiliated with the project
(c) Already completed forms

5. Fill out forms - (Figure A.5)

6. Uploading images to forms

7. Connect to a RFID scanner via Bluetooth and scan RFID tags1

As mentioned, these features should eventually be implemented in the cross-
platform app as well. Thus, to ease the process of development the cross-
platform app can use the same principles for communicating with the Entreprise-
portalen server.

1RFID (Radio-frequency identification) tags are used by some companies to identify dif-
ferent components in the ground.

2.2 Domain Analysis 9

As mentioned, the EP Mobile app has been under continuous development and
Pernexus has listened to the feedback from the users, which has led to the user
interface that can be seen in Appendix A. Since this user interface has been
developed based on the feedback from the users, it will be used as a reference
for the user interface of the cross-platform app.

2.2 Domain Analysis

In this section a domain analysis will be conducted to give the reader a better
understanding of the processes and glossary used in the development of the
cross-platform app. A domain analysis is “the process of identifying, collecting,
organizing, and representing the relevant information in a domain based on the
study of existing systems and their development histories, knowledge captured
from domain experts, underlying theory, and emerging technology within the
domain” [31].

The domain analysis will be based on the knowledge of the EP Mobile app, since
the new cross-platform app will aim to have the same features as EP Mobile
and follow the same design. The following describes the background information
that has been gathered from the EP Mobile system. This information will be
used to ease the development process of the cross-platform app.

2.2.1 Glossary

Company
A company can either be the main contractor who launches a project or
a subcontractor who does work on a certain project. These companies all
have employees that uses the Entrepriseportalen system.

User
A user is an employee in a company. The user has an account in the
Entrepriseportal and can use the account in the app as well.

Project
A construction project is called a project. This could for example be to
patch a leakage in a water pipe (See Example 1.1.1.1).

Form
A project can have many different forms depending on the type of project.
To follow Example 1.1.1.1 the forms for this project could be: Begin ex-
cavation work, Work on water pipe and Completed excavation work.

10 Analysis

Question
A question is a question on a form that the user can answer on the mobile
device.

Answer
An answer is an answer to a question on the form.

2.2.2 General Knowledge of the Domain

User

• A user is one user of the mobile app with an account
• A user can have access to multiple projects
• A user can have access to multiple forms in a project depending on

his rights

Project

• A project can have one or more affiliated users
• A project can have multiple forms
• A project can have multiple documents

Form

• A form can have one or more questions
• A form can have multiple images
• A form can have one or more sections
• A form can only have one header section

Question

• A question can only have one answer
• A question can be required, meaning the user must answer it

Answer

• An answer has a GPS position
• An answer has an answer time

2.2 Domain Analysis 11

• An answer can have a comment
• An answer can have an image
• An answer must be of one of the following types depending on the

question:
1. Yes or no (boolean) answer
2. An integer number
3. A decimal number
4. Short text
5. Long text
6. A date
7. A date and time
8. A time
9. A list of different options

• An answer can have a default value
• An answer can have a minimum and/or maximum value

2.2.3 Clients and users

The users of the app can either be supervisors or construction workers employed
by a company. The supervisors have access to other forms than construction
workers and vice versa. Both parties might want to access the project informa-
tion pages in the app to get a quick overview of the project. However, the main
use of the mobile client is to fill out forms, which they can do in the app while
they are on the construction site. Other parties impacted by the system will be
managers in the companies, who have an interest in the project process being
as easy and quick as possible to optimize the work.

2.2.4 Environment

The users of EP Mobile must have an Android mobile device, since EP Mobile
is only developed for Android. Entrepriseportalen.dk runs in all modern
browsers such as Google Chrome, Safari, Firefox and Internet Explorer, which
runs on modern desktop computers.

For the cross-platform app, Pernexus Systems wants it to run on iOS, Windows
Phone 8 and Android allowing the customers to bring their own mobile device,
whether it is a tablet or a smartphone. This enables the users to bring it to the
field and fill out the needed forms.

Entrepriseportalen.dk

12 Analysis

2.2.5 Tasks and Procedures

When a user has completed a form, the supervisor will go through the form and
approve it if its correct. Otherwise the user will be notified by the supervisor
and will have to make changes to the form. As soon as a form is approved
the project can move on to the next stage and the subcontractor(s) and/or
supervisor(s) will be notified. When all of the forms has been approved in a
project, the project supervisor can set the project as completed.

2.3 Requirements

The main problem of this project as described in Section 1.2, is to find the
mobile cross-platform solution that fits the requirements of Pernexus Systems
and apply this to make a cross-platform app. This will be described by the
non-functional requirements. The scope of this project will be reflected by the
functional requirements to what deemed fit to be able to implement during the
time frame of this project.

2.3.1 Functional Requirements

Functional requirements for the mobile cross-platform app as well as the server
will be defined, as the app will have to communicate with the Entrepriseportalen
server.

2.3.1.1 Mobile app

MFR1
User must be able to login using the same username and password he/she
uses for Entrepriseportalen.

MFR2
User must be able to fill out a form and submit it to the Entrepriseportalen
server.

MFR3
The user must only be able to fill out the forms that he/she has the rights
to complete.

2.3 Requirements 13

MFR4
The mobile app must be able to present a list of forms, that the user has
rights to complete, grouped by project.

MFR5
The user must be able to sort the list of forms from MFR4 either by
distance to the project, name of the project, last accessed project or date
of creation.

MFR6
Answers to questions on a form must be able to handle different data types
as explained in Section 2.2.2.

MFR7
User must be able to attach a picture to a answer.

MFR8
User must be able to attach a picture to a form.

MFR9
An answer must have a GPS position.

MFR10
An answer must have an answering time.

MFR11
The mobile app should be able to save files to the local filesystem on the
mobile device.

2.3.1.2 Server

SFR1
The server must be able to allow the mobile app to login using an access
token.

SFR2
The server must be able to provide a collection of forms that the user has
access to.

SFR3
The server must be able to save a form sent from the mobile app.

SFR4
The server must be able to handle image upload from forms.

14 Analysis

2.3.2 Non-functional Requirements

NFR1
The app must be able to run on Windows Phone 8 or above, iOS 8 or
above and Android API Level 15 or above.

NFR2
Maximum code for the app needs to be reused for all three platforms,
expediting the developing process and maintenance of the app.

NFR3
The app should strive towards a native look and feel.

NFR4
The priority of implementing the app should be for Windows Phone, iOS
and Android in that specific order.

NFR5
All developers at Pernexus Systems should be able to build the app from
their laptop, ensuring that if one developer is absent the app can be built
anyways.

2.3.3 Use Cases

The following use cases will give an overview of the features of mobile app. They
describe how the users can interact with the app to send forms and describe the
communication between the server and the mobile app.

Figure 2.1: Use Case Diagram 1: Authentication

2.3 Requirements 15

Use Case 1 Authentication

Primary Actors: • User

• Server

Brief: All requests to the Pernexus server requires an authenti-
cation token. The token will be obtained by the mobile
client when the user is authenticated through a login.

Postconditions: The user is authenticated.

Preconditions: None.

Triggers: The user submits his/her username and password on the
login screen.

Basic Flow:

1. The user is presented with a login page.

2. The user submit his/her username and password.

3. The credentials are verified by the server.

4. The server generates a authentication token.

5. The token is returned to the mobile app and saved.

6. The user is now authenticated.

Extensions: 3.a Invalid credentials:

1. Mobile client shows an error message

16 Analysis

Figure 2.2: Use Case Diagram 2: Retrieve Form

Use Case 2 Retrieve Form

Primary Actors: • User

• Server

Brief: When the user wants to complete a form he will need to
select the form from a list of available forms. These forms
are grouped by projects. To get a list of projects the user
selects how he want the projects sorted, either by distance,
name, date of creation or when it was last accessed.

Postconditions: The form with questions is presented in the mobile client.

Preconditions: The user is authenticated.

Triggers: The user selects a form from the list of forms.

Basic Flow:

2.3 Requirements 17

1. The user selects how the projects should be sorted.

2. The server generates a list of projects that has available forms, sorted by the
sorting criteria.

3. From the list of projects the user selects the project that contains the form he
wishes to complete.

4. The user is presented with a list of available forms on the project.

5. The user selects the form he wishes to complete.

6. Form data including questions are loaded from the server and presented to the
user.

7. The user is now able to fill out the form.

Extensions: None.

Figure 2.3: Use Case Diagram 3: Send Form

18 Analysis

Use Case 3 Send form

Primary Actors: • User

• Server

Brief: When the user has completed the form he/she can send it
to the server by pressing the send button.

Postconditions: The completed form is uploaded to the server.

Preconditions: The user is authenticated.

Triggers: The user presses the ‘Send’ button.

Basic Flow:

1. The user has filled out the form.

2. The user presses the ‘Send’ button.

3. The mobile app will send the answers to the server.

4. The mobile app will upload the images attached to the form.

5. The form is now sent.

Extensions: 2.a Not all required fields are filled out:

1. Mobile app shows an error dialog message.

2. Send the user back to step 1.

4.a Upload of images gone wrong:

1. Mobile app shows an error message.

2.4 Mobile Cross-platform Technologies 19

2.4 Mobile Cross-platform Technologies

To find the mobile cross-platform solution that fits Pernexus Systems’ require-
ments best, we need to look at what solutions are available on the market.
This section will describe the three major categories of cross-platform app tech-
nologies, web apps, hybrid apps and compiled-to-native apps and the difference
between these. Further detail about specific solutions within the three categories
will be presented.

2.4.1 Web Apps

Web apps are applications that run in the Internet browser and are typically
based on technologies such as HTML5, CSS and JavaScript. Web apps capitalize
on the wide-spread browser support and standardization of the web technologies
mentioned above. This standardization is also used in the web browsers on the
different mobile devices, giving the opportunity for web apps to run on mobile
devices as well as desktop computers. Through the use of different frameworks,
web apps can simulate a native application look and through the HTML5 API it
is possible to access different hardware functionalities, such as the camera and
GPS [1]. Different user interface frameworks such as jQuery Mobile [21] and
Sencha Touch [2] will optimize the user interface to fit the different screen sizes
of the different mobile devices to give the app a native look.

The main advantage of web apps is that only one application needs to be coded
and maintained and then it works on every platform. This means that the
development of an app for multiple platforms is fast, since only code for one app
is needed instead of three. Furthermore, web apps do not need to be installed
since the app runs directly on the web, hence the user will always use the latest
version. On the other hand, since the app only exists on the web it can only be
used when there is an internet connection available.

Another disadvantage of web apps is the extra time needed to render and down-
load the web pages from the Internet, which will affect the user experience. Even
though it is possible to use frameworks to optimize the look and feel of the web
app and mimic native apps, studies show that the use of these frameworks will
affect the application’s performance and hereby also the user experience [30].

20 Analysis

2.4.2 Hybrid Apps

Hybrid apps takes over where web apps left off. They combine features from
web apps and native apps by embedding a web app inside a native web container
(UIWebView in iOS and WebView in Android) that gives the web app access
to the underlying platform’s hardware features through different APIs. The
web app inside this native container is developed like a normal web app but can
make use of the mobile device hardware, which enhances performance. Therefore
hybrid apps are developed almost the same as web apps and a detailed knowledge
of the target platform is not required. Seeing that hybrid apps are capitalizing
on the same wide-spread technology as web apps, they will run on almost any
mobile platform. Just as for web apps, different frameworks for hybrid apps
exist, to give the app a native look and feel.

Hybrid apps have all the main advantages as web apps. The same code works
for every platform, which results in fast development and quick maintenance
across all platforms. Another advantage of hybrid apps is that the contents of
the app is loaded locally, which increases performance and makes it possible
to use the app without an internet connection. The typical and most popular
technology used to make hybrid apps is PhoneGap [4].

Figure 2.4: PhoneGap app architecture [5]

2.4 Mobile Cross-platform Technologies 21

2.4.2.1 PhoneGap

PhoneGap was originally created by Nitobi, which was purchased by Adobe Sys-
tems in 2011. In 2012 the PhoneGap code was donated to the Apache Software
Foundation under the name Apache Cordova. The Apache Software Founda-
tion ensures that PhoneGap is free and open-source under the Apache License.
Other software companies such as IBM and Microsoft contributes actively to the
project and PhoneGap has been downloaded over 1 million times and is used
by more than 400,000 developers, hence making the PhoneGap community very
large and thousands of apps has been released in the different mobile app stores
[3].

In Figure 2.4 is the main architecture of a PhoneGap application shown. As
mentioned, the hybrid app consists of a web app inside a native web container.
The web app can use different plugins provided by PhoneGap to access the
mobile operating system and hardware. PhoneGap even lets you develop and
use your own custom plugins to access the hardware of the mobile device.

PhoneGap offers a tool to build your hybrid app via a cloud service. This service
is called PhoneGap Build and can from a single web app created in HTML5, CSS
and JavaScript create apps for multiple platforms as shown in Figure 2.5. These
apps can then be distributed to the different mobile app stores and installed like
native ones.

Figure 2.5: Build apps for different platforms via PhoneGap Build [3]

A table of the supported platforms and their supported features are listed in
Figure 2.6.

22 Analysis

Figure 2.6: Table of the supported platforms and their supported features [4]

2.4.2.2 Telerik Platform

Telerik Platform [6] is a commercial tool that can be used to make cross-platform
apps. It is based on the PhoneGap technology but offers a wide range of extra
features that will ease the development process and a mobile user interface
powered by Kendo UI [7]. Telerik offers the tools to do:

• Rapid prototyping of the app through an app designer

• Build the app by drag and drop elements through an IDE

• Connect the app to your existing database

• Setup a test suite for the app

• Deploy the app to the different mobile platforms

Seeing that Telerik is build on the PhoneGap platform, it supports iOS, Android
and Windows Phone as well. Though, one major problem with the Telerik
Platform solution is that you buy into using their platform. You are restricted
to use their tools and use only what they offer. For example, you will not be
able to choose your own favorite UI framework and if new platform specific
technologies emerges, you will have to wait for Telerik to support them.

2.4 Mobile Cross-platform Technologies 23

2.4.3 Compiled to Native

Another technology used to create cross-platform apps is to make apps run
natively on the mobile platform when they are compiled. These apps will be
referred to as ‘compiled to native’ apps in this report. Two of the most popular
technologies that uses this approach is Appcelerator’s Titanium and Xamarin,
which both will be described in the following.

2.4.3.1 Appcelerator’s Titanium

Appcelerator’s Titanium [8] is a framework for writing native apps in JavaScript.
The main philosophy of Titanium is that there are several mobile development
APIs that can be normalized across platforms and be reused between platforms,
but some UI conventions, platform-specific APIs and features should be imple-
mented platform specific to provide the best user experience. It does not try to
achieve “write once - run everywhere” like web and hybrid apps. Instead Tita-
nium provides a JavaScript API with platform specific features, so the developer
can take advantage of the platform specific user interface.

In order to develop apps with Titanium the developer has to install the tools and
SDKs for the desired platforms just like when developing native apps. When
these are installed the developer can use Titanium Studio, an Eclipse based IDE,
to develop apps. The whole application is written in JavaScript and the native
user interfaces are accessed through the Titanium API. Developing with Tita-
nium Studio gives the developer the ability to debug the app directly through
the IDE and to test the app in the different platform simulators. Titanium
Studio will also build the final apps, which can be uploaded to the different app
stores.

In a Titanium application, the JavaScript source code will be embedded as a
string into a file in the native programming language (Java for Android and
Objective-C for iOS) and will be evaluated at runtime by a JavaScript inter-
preter. The interpreter creates a bridge between the JavaScript code and the
native code. For example, a JavaScript object from the source code will be
created in the parallel native code.

One of the great strengths of Titanium is the look and feel of the app. The
bridge between the platform specific UI components from the Titanium API and
the native UI controllers, will give the app the same animations and behavior
as a native app. Though, giving that the code for the user interface has to
be platform specific means that only some of the code can be reused across

24 Analysis

platforms, which will affect the time of development.

2.4.3.2 Xamarin

Xamarin[11] is another tool to build cross-platform apps that runs natively when
compiled. Xamarin was created in 2011 by the same people behind the Mono
project, an open-source implementation of Microsoft’s .Net framework [10].

Xamarin offers mobile cross-platform solutions built entirely in C#. Just like
for Titanium, the developer needs to install all the tools and SDKs needed to
create native apps for the different platforms, in order to compile apps for these
with Xamarin. When compiling apps for iOS in Xamarin they are compiled
directly to ARM assembly code, which runs natively. On Android the code is
compiled to native assembly code when the app is launched. This means that
the cross-platform apps developed in Xamarin runs natively and the idea behind
Xamarin is that anything you can do in a native developed app, you can do in
a Xamarin app.

Just like Titanium, is Xamarin not a cross-platform developing tool used to
develop “write once, run everywhere”-apps. As shown in Figure 2.7 only some
of the code can be shared between platforms, while the rest is platform specific
code and code for the user interface. According to Xamarin, on average 75% of
the code can be shared between platforms [9].

Figure 2.7: Code sharing between platforms in Xamarin

2.4 Mobile Cross-platform Technologies 25

Xamarin offers an IDE called Xamarin Studios that makes it easier to keep an
overview of the source code for different platforms. It also allows the developer
to debug the cross-platform app directly through the IDE and to design the app
UI through platform specific tools. When the Xamarin app is compiled from
Xamarin Studios is the result an application package, which can be deployed to
the different mobile app stores.

Xamarin has several great advantages, seeing that it can access all of the under-
lying platform’s API through native bindings. The native compilation will give
Xamarin apps a high performance as well as the possibility to give the app a
native look and feel. Another advantage is of course that it is possible to reuse a
big part of the code across platforms. Furthermore developers can build on their
existing skills in C# and do not have to know and learn Java and Objective-C.
[13] [12]

26 Analysis

2.5 Choosing the Right Cross-platform Technol-
ogy

We have now learned about the mobile cross-platform solutions that are cur-
rently available on the market and the concepts of web, hybrid and compiled to
native apps. To find the cross-platform technology that best meet the require-
ments stated in Section 2.3, we need to take a closer look at the features of each
technology and their advantages and disadvantages.

In [30] and [28], comparisons of cross-platform solutions for mobile applications
were conducted, though they did not include an evaluation of Telerik Platform
and Xamarin. Findings from these papers and the knowledge from the previous
sections will help us form a list of pros and cons for each technology, listed in
the following.

2.5.1 Pros and cons

To get a quick overview of the advantages and disadvantages of each of the mo-
bile cross-platform technologies a list of pros and cons has been made. These
lists will also later assist to give an overview of which platforms meet the re-
quirements for Pernexus’ cross-platform app.

Mobile web app
Pros Cons

• Supported by all platforms
• Write once, run everywhere
• Users always have newest version
• Fast development
• Easy to maintain
• Debugging through web browser

• No access to all hardware features
• Bad look and feel
• Bad performance with many fea-

tures

Mobile web apps are supported by almost every platform because each platform
has its own native browser. This also means that code only has to be written
once and it will run on every platform, which will speed up the developing time
and ease the maintenance, since only one source code has to be maintained.
The mobile web app is accessible through the web, which will ensure that the
user will always run the latest app but will also require the user to have an In-
ternet connection. The HTML5 API makes it possible to access most hardware

2.5 Choosing the Right Cross-platform Technology 27

features such as camera, GPS and accelerometer, but not all hardware features
are accessible with web apps. The authors’ experiments with web apps in [30]
showed that with a large amount of contents and animations, the performance
of the app is bad, which will affect the user experience. As mentioned in Section
2.4.1 the web app can simulate a native look with use of different UI frameworks.
But these will not give the same feel as the UI of a native app, because of slow
animations and the lack of native UI elements.

PhoneGap
Pros Cons

• Supports all major platforms
• Write once, run everywhere
• Access hardware features through

plugins
• Fast development
• Easy to maintain
• Apps built via cloud service

• No native feel
• In some cases difficult to debug

PhoneGap supports all major platforms and since the app is built around a
web app it has the same advantages of fast developing time, easy maintenance
and only one source code that fits all platforms as a web app. Furthermore, it
is possible to access the hardware of the underlying platform through different
plugins. Via PhoneGap Build it is possible to build the apps for all platforms
with one click. Even though the app is build around a web app, the authors in
[30] found that the performance of a PhoneGap app is comparable to a native
app. Though, the user will not be able to achieve the same feel as in a native
app since the UI does not consist of native UI elements.

Telerik Platform
Pros Cons

• Supports all major platforms
• Write once, run everywhere
• Access hardware features through

plugins
• Fast development
• Easy to maintain
• Apps built via IDE
• Easy to test

• No native feel
• Limited by the platform

28 Analysis

Since Telerik Platform is using the same technology as PhoneGap it has a lot
of the same advantages and disadvantages. Though, Telerik Platform provides
an IDE that might make development even faster with its design tools and test
suite. Just like PhoneGap and web apps the user will not have a native feel.
Another downside is that the developer is limited by the platform. For example,
when a new version of iOS or Android is launched, the developer will have to
wait for Telerik Platform to support the newest version.

Titanium
Pros Cons

• Native look and feel
• Access hardware features through

plugins
• Easy to design through IDE
• Easy to debug

• Does not support Windows
Phone

• Bad performance
• Platform specific code for UI
• Requires a lot of knowledge about

the framework
• Need all SDKs installed locally
• Limited by platform

As previously described, the great strength of an Appcelerator Titanium app is
that it can achieve a native look and feel by using native UI elements. Further-
more it can also access hardware features through different plugins. The IDE,
Appcelerator Studio, makes it easy to design and debug the app. Though one
major problem is that Titanium does not support Windows Phone. Compared
to PhoneGap and web apps you will need to write platform specific code for
the UI, which will affect the development time and the maintenance of the app.
In [30] the authors experienced bad app performance when a large amount of
content had to be handled. Furthermore. they experienced that Titanium re-
quires a lot of framework specific knowledge in order to develop the app, which
will affect developing time until a lot of experience has been gained. Just like
Telerik Platform, the developer is limited by the platform features.

2.5 Choosing the Right Cross-platform Technology 29

Xamarin
Pros Cons

• Native look and feel
• Access to all native features
• Near native performance
• Supports all major platforms
• Easy to debug

• Platform specific code
• Development time
• Need all SDKs installed locally

Through native bindings, Xamarin can access the underlying platform, thus
giving Xamarin apps the ability to utilize all native features and provide a near
native performance. These native bindings also provides access to native UI
elements, which will result in a native look and feel. Xamarin supports iOS,
Android and Windows Phone and through the IDE, Xamarin Studios or Visual
Studio, it is possible to debug the app. Just like Titanium the developer will
have to write platform specific code to utilize the native features and the native
UI. This will result in a increased development time and maintenance time, since
different pieces of source code has to be maintained. Furthermore, a Mac OSX
computer is needed to build apps for iOS and a Windows 8 PC to build apps
for Windows Phone.

2.5.2 Compared to the Requirements

We now have an overview of the advantages and disadvantages of the different
cross-platform technologies. To find what the best solution for Pernexus Systems
is, we will now compare the pros and cons and the features of each cross-platform
technology to Pernexus’ requirements (see Section 2.3).

Table 2.4 shows which platforms meet the different requirements from Section
2.3. NFR1 states that the app must support Windows Phone, iOS and Android.
Appcelerator Titanium does not support Windows Phone, thus we can exclude
it from our list of potential candidates.
With Xamarin we can obtain a native look and feel, whereas we are only able to
achieve a native look with use of UI frameworks for web, PhoneGap and Telerik
apps. NFR3 describes that the cross-platform app must strive towards a native
look and feel, giving Xamarin the advantage.
Because of the ability to achieve a native look and feel with Xamarin, means
that some code has to be platform specific. Therefore will the same code not be
used for all the platforms in Xamarin. Apps made with PhoneGap, Telerik and
web apps uses the same code for all platforms. NFR2 claims that maximum

30 Analysis

Technology

W
eb

ap
p

P
ho

ne
G
ap

T
el
er
ik

P
la
tf
or
m

A
pp

ce
le
ra
to
r

T
it
an

iu
m

X
am

ar
in

Supports iOS, Windows Phone & An-
droid

3 3 3 3

Native look and feel 3 3

Same code for all platforms 3 3 3

Access to GPS 3 3 3 3 3

Access to camera 3 3 3 3 3

Access to filesystem 3 3 3 3

R
eq
ui
re
m
en
ts

Connect to Pernexus’ server 3 3 3 3 3

Upload images 3 3 3 3 3

Locally build app to all platforms 3 3 3

Table 2.4: Technology features compared to the requirements.

code should be reused for all platforms, giving PhoneGap, Telerik and web apps
the advantage in this matter.
All technologies are able to access the GPS, camera and filesystem, except web
apps that does not have access to the filesystem. All technologies are also able
to connect to Pernexus’s server and upload images.
NFR5 states that all developers should be able to build the app from their
laptop. From the PhoneGap Build cloud service it is possible to build the app
for all platforms. Through the Telerik Platform IDE it is also possible to build
the app for all platforms. But since Xamarin is binding code to native code
the app must be built on a Mac OSX computer for iOS and on Windows 8 for
Windows Phone, meaning the developer would need both operating systems to
build the app for iOS and Windows Phone.

2.5.3 The Choice

We have now compared the requirements of the cross-platform app with the
functionalities of the different cross-platform technologies. Based on the findings

2.5 Choosing the Right Cross-platform Technology 31

we are ready to make a choice of what technology to use, to develop the cross-
platform app.

Mobile web app
The mobile web app has its advantages when it comes to distribution and
fast development time. But the user experience of a web app is very bad
compared to the other technologies and cannot be ignored. Therefore will
a web app not be the best choice of technology.

PhoneGap
PhoneGap apps uses the same source code for all platforms, which will
result in a fast development and maintenance time. Furthermore, it is
possible for all developers to build the app via PhoneGap Build, making
it the prime candidate for technology to use. Though, it is not possible to
achieve a native feel with PhoneGap, which might give the advantage to
Xamarin.

Telerik Platform
Telerik Platform has all the same advantages and disadvantages as Phone-
Gap. With the use of Telerik’s IDE it can even speed up the development
process and make it easier to debug the app, making Telerik Platform
another good candidate for the technology to use.

Appcelerator Titanium
The lack of support for Windows Phone has automatically excluded Ap-
pcelerator’s Titanium from the considerations since it is a must.

Xamarin
Xamarin’s ability to talk to the underlying platform’s API is the greatest
strength of Xamarin, which also will result in a native look and feel. But
this is also a weakness of Xamarin, meaning a part of the code needs to be
platform specific, resulting in longer development and maintenance time.
Though, because of its ability to give a great native look and feel it will
be a good candidate for the technology to use.

2.5.3.1 PhoneGap vs Telerik

As explained earlier, can the use of Telerik Platform’s IDE speed up the de-
veloping process of the app compared to PhoneGap. Though, the same result
can be achieved by using PhoneGap and at Pernexus they believe if the same
thing can be achieved by using an open-source project (like PhoneGap) without
any major cost, it should be used. Furthermore, Pernexus does not want to
be limited by Telerik Platform’s restriction, thus making PhoneGap the choice
over Telerik Platform.

32 Analysis

2.5.3.2 PhoneGap vs Xamarin

A big difference between PhoneGap apps and Xamarin apps is Xamarin’s ability
to achieve a high user experience with the use of native UI elements in the app.
Though, the development time will automatically be longer for Xamarin apps,
since some of the code has to be platform specific. Figure 2.8 shows an example
of how the developing time for different technologies versus the user experience
it can achieve. A native app can of course achieve the highest user experience,
but with native bindings Xamarin apps are able to achieve almost the same. The
lack of native UI elements will result in a lower user experience in a PhoneGap
app. But with a good response time and a UI framework to make it look native,
the user experience of a PhoneGap app will be acceptable. The low performance
of a web app will automatically lead to a lower user experience. Note that Figure
2.8 is not based on any actual data, but considerations based on the knowledge
from the previous sections.

Figure 2.8: Developing time vs. user experience for cross-platform technolo-
gies.

From this it seems that you are sacrificing user experience when lowering the
development time. This might have a huge effect on the decision of which cross-
platform technology to use depending on the kind of app you want to make. At
Pernexus they are developing an app for business use and user interface is not

2.6 Chapter Summary 33

a top priority. Of course they want the app to be intuitive and easy to use, but
most important is that the app works. Development time is therefore weighted
higher at Pernexus than the extra user experience that Xamarin can achieve,
making PhoneGap the choice of technology used to develop the cross-platform
app for Pernexus Systems.

2.6 Chapter Summary

This chapter described the prior work done leading up to this project by describ-
ing the functionalities of the already existing app from Pernexus Systems, ‘EP
Mobile’. It then analyzed the domain to give the user a better understanding of
the terms and processes used when developing the app. Requirements for the
cross-platform app was specified and three use cases of the app was described.
Existing mobile cross-platform technologies were analyzed including definitions
of web, hybrid and ‘compiled-to-native’ apps. A comparison of the different
cross-platform technologies with Pernexus’ app requirements was done in order
to find the best cross-platform solution for Pernexus Systems. PhoneGap was
chosen as the solution that fit best.

34 Analysis

Chapter 3

Design

This chapter will look into the design of the cross-platform mobile application
developed during this thesis. We will look into the design of the existing mobile
app from Pernexus Systems, ‘EP Mobile’ for Android. The general design of
the cross-platform app will take basis in the design of the ‘EP Mobile’ app using
the descriptions from the Domain analysis (Section 2.2).

As described in Section 2.4.2.1 a PhoneGap app consists of a single web appli-
cation that works across several platforms. This web application is built using
the AngularJS framework thus the structural design of the cross-platform app
will have to follow the design of a AngularJS web application.

3.1 Structure of pages

As mentioned above the content of a cross-platform PhoneGap app will be
developed as a web application. This web application will have different pages,
which will form the different views in the final app. To fulfill the requirements
from Section 2.3 the cross-platform app will need to have the following pages:

36 Design

Login
The login page where the user is able to login. This page will have to
communicate with the server for authentication.

List of forms
A page with a list of the forms the user has access to fill out. This page
will have to communicate with the server in order to retrieve the list of
forms.

Form
This page is the form with questions. It will have to communicate with the
server to retrieve the questions on the form and to upload the answered
form. The user should also be able to take pictures and upload these along
with the form. Furthermore, this page will also have to access the GPS in
order to attach the current location to the answers.

The already existing Android app ‘EP Mobile’ does communication with the
server via REST calls, which we can reuse in the cross-platform app. Fur-
thermore, the user interface design of ‘EP Mobile’ can also be reused for the
cross-platform app. How both the server communication and the user interface
can be reused, will be described in further detail in the following section.

3.2 EP Mobile design

Seeing that Pernexus already has a fully functional Android app, has the design
for communicating with the backend already been implemented. Since the app
has been around for a few years, it has gone through an iterative process to
meet the users’ needs. The continuing feedback from the users of ‘EP Mobile’
has given Pernexus a great knowledge of how the general application design and
user interface should be in order to give the best user experience.

3.2.1 Server communication

As mentioned earlier the current ‘EP Mobile’ app does communication with
the backend server following a RESTful architecture design approach [26]. Fig-
ure 3.1 shows the overall architecture of the REST calls from the mobile client.

For example, to retrieve the list of forms, the mobile client does a POST call
through HTTPS to the server that contains user credentials and the actual

3.2 EP Mobile design 37

Figure 3.1: The design of REST calls from the mobile client to the server.

request. The reason that Pernexus uses the POST method and not GET, is
that there is no length restrictions on the POST method. There is in most cases
a need to send a lot parameters with the request and these will be lost using the
GET method, because of data length restrictions. Furthermore, we are sending
sensitive data such as user credentials along with the request and this will not
be cached when using the POST method as opposite to GET.
The server needs the user credentials in order to retrieve the list of forms that
this specific user has access to. When the user has been authenticated on the
backend, the result will be send back in JSON format, which will then be handled
by the mobile client.

Using the REST calls will allow the user to:

• Login

• Retrieve the list of forms

• Retrieve the questions on the form

• Send the answers on a form

This approach will also be used in the cross-platform app and therefore no new
implementation will have to be done on the server side to handle this.

3.2.2 User interface

As earlier mentioned, the ‘EP Mobile’ app has been used by the customers over
the last few years. During this time the user interface (UI) of ‘EP Mobile’ has
been under continuous development. At Pernexus they have listened to feedback
from the users and changed the user interface accordingly. This knowledge of

38 Design

what gives the best user experience when using the app, will be used for the
UI design for the cross-platform app. Thus, the cross-platform app should aim
to have the same UI as ‘EP Mobile’. Appendix A contains some screenshots of
the current UI in ‘EP Mobile’ that the cross-platform app will try to aim for in
terms of UI design.

3.2.2.1 Home screen

Figure A.2 shows the screen that the user will see once he is logged in. From
this view he can quickly access the list of forms by pressing pressing the Forms
button. He can then choose how he wants the list to be sorted; either by
distance, name, last accessed or by date.

3.2.2.2 Form list

Figure A.4 shows the list of forms. Forms are grouped by projects and the user
is able to collapse each project to see the forms that he has access to fill out.
The user can fill out the form by tapping the name of the form.

3.2.2.3 Form

Figure A.5 is the form view where the user can fill out the form. A form has a
header section with some general questions and it can have sections of questions.

Figure A.6 shows the answer dialog that pops up when the user clicks to answer
a question. From here the user can also add pictures to the answer.

3.3 AngularJS

AngularJS is a JavaScript framework, which main goal is to assist with creating
single page application that only requires HTML, CSS and JavaScript. It is an
open source project that is maintained by Google [32]. A great advantage of
building a single page application is performance. An AngularJS application
only has one HTML page and the content of this page is changed with the use
of JavaScript. Therefore, the content is only loaded when needed and there
is no need to load a new HTML page when navigating to a new page, which

3.3 AngularJS 39

optimizes performance. AngularJS utilizes different concepts to separate the
different parts of the application to easy development. The main concept that
AngularJS is the Model View Controller pattern.

3.3.1 MVC Design Pattern

AngularJS uses the Model View Controller (MVC) design pattern to structure
and organize applications and address the problems of reusability and scalability
[29]. The MVC pattern consists of three parts:

Model
Represents the logical structure of data in an application. This could for
example be a user as seen in figure 3.2. Here the model is a user that has
a username and a password.

View
Represents the user interface - what the user sees and can interact with.
To stay with the example above, it could be a login page with input fields
where the user can enter his username and password.

Controller
Provides the link between the view and the model and handles the business
logic. It ensures that changes to the view update the model and changes
to the model updates the view; also known as two-way data binding. This
means that when the user enter his username, the model is updated with
the username from the view. This process is shown in figure 3.2.

Figure 3.2: How the model, view and controller updates in AngularJS.

40 Design

As we can see from figure 3.2 the controller is keeping the view and the model
separated. This means that no model is exclusively tied to a view, which proves
useful when having an application with many different views, which all can
use the same model. Furthermore, when developing for different platforms we
might want different views depending on the platform (screen sizes, placement
of buttons etc.) and since the model is not directly tied to the view we can use
the same model for the different views.

3.3.2 Templates, Controllers & Services

As mentioned earlier, AngularJS is a framework for building single page appli-
cations. With use of JavaScript, the content of the page is changed program-
matically by using templates. The application itself only consist of a single
index.html page and the templates are loaded into this page as they are needed.
The data that the user inputs in the templates needs to be handled accordingly
to the business logic. This is done in the controller.

3.3.2.1 Templates

A template can be categorized as a view. This is what the user can see and
interact with. The template is programmatically loaded into the application
view when it is needed. For the cross-platform app in this project we will need
to have a template for the user login, the list of forms and the form page itself.
The templates are shown as green in figure 3.3.

3.3.2.2 Controllers

As earlier described controllers are the link between the view and the model.
Furthermore it handles the manipulation of the data accordingly to the business
logic. For example it could handle that the user input of a username from the
view is converted to lowercase before updating it to the model. The controller
also keeps an eye on the model and when the model is updated it makes sure
the view is updated (as shown in figure 3.2).

3.3 AngularJS 41

3.3.2.3 Services

While controllers communicates and manipulates directly with the view, we
might want some code that is abstract and we can re-use. This is what services
in AngularJS can be used for. A service can be used in controllers through
dependency injection meaning that several controllers can use one or many dif-
ferent services. For our cross-platform app this approach is a good idea to
utilize, since we want to communicate with the server in many different views.

Figure 3.3: The architecture of the AngularJS application.

Figure 3.3 shows the overall architecture of the AngularJS web application for
a PhoneGap app. It consists of three templates (green): a login page, a page
to show the list of forms the user has access to and a page where the user can
fill out the form. Each template has a controller (red) to handle the business
logic. The application also has two services (purple). An EndpointService to
communicate with the server and a FileUploadService that allows the user to
upload pictures from a form to the server. The LoginController uses the End-
pointService to authenticate the user through a login. The EndpointService
does a REST call to the server with parametres defined in the LoginController.
Also the FormListController uses the EndpointService to retrieve the list of
forms. Again, the EndpointService does a REST call with parameters from the
FormListController. The FormController uses both the EndpointService and
the FileUploadService. The EndpointService is used to retrieve the questions
on the specific form and to send the answers to the server when the form is

42 Design

completed by the user. The FileUploadService is used to upload the pictures
the user has taken while he was completing the form.

3.4 Plugins

As earlier described in Section 2.4.2.1, the PhoneGap app needs different plugins
in order to access the platform hardware. In accordance with the requirements
(Section 2.3) for this cross-platform app, the user should be able to take pictures
and upload them along with the completed form. To take the pictures we need
access to the camera using the Camera plugin that comes along with PhoneGap.
The requirements state that there should also be a GPS location on the answers
on the form and therefore we need to access to the phone’s GPS. We can access
the GPS by using the Geolocation plugin from PhoneGap. To upload the pic-
tures to the server we can use the FileTransfer plugin from PhoneGap, which
makes it easy to upload files. All these plugins are provided and maintained
by PhoneGap to work cross-platform, which means that the code used in the
PhoneGap app to access the plugin will be the same, independently of platform.

3.5 Chapter summary

This chapter described the overall design of the cross-platform app. It de-
scribed how the app will be developed as a web application that works across
iOS, Android and Windows Phone. The app will be developed using the Angu-
larJS framework and using the MVC design pattern, which was described. The
overall architecture of the AngularJS app that will run in the PhoneGap web
container was described. In basis of the current Pernexus app ‘EP Mobile’, the
communication with the server through REST calls was described and will be
reused in the cross-platform app. Furthermore, the cross-platform app will aim
for having the same UI as ‘EP Mobile’. Lastly, the different plugins needed for
the app was described.

Chapter 4

Implementation

This chapter will describe how the cross-platform application built with Phone-
Gap was implemented on the basis of the design in Chapter 3. It describes the
setup of the application project that is needed in order to build the application
for the different platforms via PhoneGap Build. It describes the user interface
framework that was used to give the app a native look. Furthermore, this chap-
ter will describe the process of how the app is handling the communication with
the server, both in terms of REST calls and file upload. It will also describe how
the app is using hardware functionalities such as camera and GPS via plugins.

4.1 PhoneGap setup

In Chapter 3 we learned that a PhoneGap app is built as an AngularJS single
page web application. As described in Section 3.3.2, we make use of templates,
controllers and services to ease the process of development. This means that
during development we will have many different HTML pages (templates) and
many different JavaScript files (controllers and services). But the final app will
only consist of a single web page - index.html. In the following the process of
how we go from having many HTML pages to a single page application for each
platform.

44 Implementation

4.1.1 Project structure

Figure 4.1 shows the overall structure of the app project. On the left is the
project structure while the app is in development. The config.xml file handles
the configuration of the project. It tells PhoneGap which plugins to use, the
version number and define the image files for the app logos and splashscreens.
We can also define different configurations such as app orientation and HTTP
access control, which is very useful since we need the app to access Pernexus’
servers.

The src folder contains the files that we modify to build the cross-platform app.
In the html folder is the index.html file that is the single page that loads the
content from the templates as needed. The index.html is set up to use the
app.js script from the js folder and use the CSS from the UI framework (will
be explained further in Section 4.2). From the app.js script the index.html
knows what template to use when a link is pressed. For example, a link to
/login will make the index.html use the login.html template.

Each template uses a controller. These are located in the controller folder.
A controller can make use of a service and these services are located inside the
services folder.

Figure 4.1: Project structure from development to PhoneGap.

This structure eases the development since we have a file for each of our tem-
plates, controllers and services. Using designated folders for these files gives a
great overview of the different files that is in the project and makes it easy and
fast to do the implementation.

4.2 UI Framework 45

4.1.2 Gulp

Gulp [19] is a build tool that is used to develop larger pieces of software out of
many small pieces. What we can use this for in this project, is to put together a
single JavaScript file that contains all of our controllers, services and templates.

In figure 4.1 on the right we can see the structure of the project after is has
been built with gulp. What is unchanged is the config.xml that stays in the
same directory. The images and the index.html has been moved to the www
folder, which is now using the newly built app.min.js script instead of app.js.
As mentioned the app.min.js script contains the templates, controllers and
services, but it also contains the cordova.js script, which makes it possible for
the web application to talk to the native web container on the mobile device.

Furthermore, there is a css folder inside the www folder. Gulp also makes sure
that the CSS from the UI framework, which will be explained in the next section
(Section 4.2), is copied to the built project to give the app a native look.

4.1.3 PhoneGap Build

One of the main reasons we chose to use PhoneGap was that they offer the
feature to build the app for the different platforms in the cloud. For this,
PhoneGap offers a solution named PhoneGap Build [23]. The tool is very simple
to use. You simply upload a zip-file containing the project files built with gulp
(the files on the right side in figure 4.1) and PhoneGap will build the app for
each platform. PhoneGap uses different definitions from the config.xml to
configure the built app, such as which plugins to include. It only takes a few
seconds for PhoneGap Build to process and build the apps for the three different
platforms. As soon as they are built they can easily be downloaded from the
website and be deployed to the different app stores.

4.2 UI Framework

As earlier mentioned in Section 2.4.2, it is possible to obtain a native look in the
app with the use of a mobile user interface framework. A mobile UI framework
consists of HTML5, CSS and JavaScript and gives the application the ability
to use animations and gestures to give the app a native feel, and also give the
app a native look. The UI framework detects the device and screen size and

46 Implementation

optimizes the look for the given device. This is extremely useful when developing
cross-platform since mobile devices for all platforms have different screen sizes.

4.2.1 MobileAngularUI

For this app the MobileAngularUI framework [22] was used. While other mo-
bile UI frameworks such as ionic [20] and jQuery Mobile [21] are more well-
documented and further developed, they do not support Windows Phone, thus
they cannot be used for this project as by Pernexus’ requirement the app must
support Windows Phone. MobileAngularUI combines elements from AngularJS
and Twitter Bootstrap [24] and makes it possible to use native looking elements
such as:

• Navigation bars

• Side menus

• Buttons

• Tab navigation

• Input fields

• Dropdown menus

• Modals

We use these elements by simply using a pre-defined class in the HTML. Listing
4.1 shows how we use the classes navbar and navbar-app to make a navigation
bar in the app. The navbar-absolute-top places the navigation bar at the
top. Within the div with the navbar-brand class is the navigation bar title.
navbar-brand-center places the title in the center of the navigation bar. The
result of this can be seen in Figure 4.2.

Listing 4.1: How the navigation bar is implemented with MobileAngularUI.
1 <div class="navbar navbar-app navbar-absolute-top">
2 <div class="navbar-brand navbar-brand-center">
3 Worksportal
4 </div>
5 </div>

4.3 Templates 47

Figure 4.2: The navigation bar from MobileAngularUI.

4.3 Templates

As mentioned, the index.html loads the content of the app as it is needed. List-
ing 4.2 shows the body of the index.html file. The ng-app tag tells AngularJS
to use the PernexusMobile module and the ng-controller points AngularJS
to use the MainController. These are both defined in the app.js. Inside the
app-content div on line 6 is where the template is loaded and as mentioned
the app knows what template to use from the app.js.

Listing 4.2: index.html loads templates through ng-view

1 <body ng-app="PernexusMobile" ng-controller="
MainController">

2 <div class="app">
3 <!-- App Body -->
4 <div class="app-body">
5 <div class="app-content">
6 <ng-view ></ng-view >
7 </div>
8 </div>
9 </div>

10 </body>

Listing 4.3 shows an example of the Login template - the page where the user
login. In line 1 we can see that the template is using the controller “LoginCtrl”.
The different classes “scrollable”, “scrollable-content section” and “form-group”
are defined by our UI framework to give the page a native look. Inside the input
on lines 7-10 we are using ng-model to bind the data in the template to the
controller. This means that when the user inputs his username it will get bound
to the data model as explained in Section 3.3.1. This way the controller can
handle the input data from the user.

48 Implementation

Listing 4.3: From the login.html template
1 <div class="scrollable" ng-controller="LoginCtrl">
2 <div class="scrollable-content section">
3 <form role="form" ng-submit=’login()’>
4 <fieldset >
5 <div class="form-group">
6 <label >Brugernavn </label >
7 <input type="text"
8 ng-model="user.username"
9 class="form-control"

10 placeholder="Brugernavn">
11 </div>
12 ...

4.4 Controllers & Services

Listing 4.4 is an example of the controller used for the login process. It is
using the module “PernexusMobile.controllers.Login”, which is included in the
app.js so the app knows how to reference the controllers inside this module.
[’PernexusMobile.services’]means that the “Pernexus.services” module has
been injected and we can use the different services from this module. In line 2
we define the controller with a name, “LoginCtrl” and to use $scope and the
“EndpointService” from the “Pernexus.services” module. $scope is what bind
the data between the controller and the template. As we can see in line 3 the
$scope.user is defined and in Listing 4.3 line 8 we reference to this user with
ng-model.

In line 9 of Listing 4.4 we define the login function that is used in the template
when the user presses the login button. The login process is handled by a REST
call in the EndpointService, which is given the parameters with username and
password and a URL to where to do the REST call. This will be explained in
further detail in the following section.

4.5 REST calls 49

Listing 4.4: From the LoginController.js controller
1 angular.module(’PernexusMobile.controllers.Login ’, [’

PernexusMobile.services ’])
2 .controller(’LoginCtrl ’, function($scope ,

EndpointService) {
3 $scope.user = {
4 username: ’’,
5 password: ’’
6 };
7
8 //"Login function"
9 $scope.login = function () {

10 var param =
11 {
12 loginName: $scope.user.username.trim(),
13 password: $scope.user.password.trim()
14 };
15
16 EndpointService.doPost(param , "usercheck/

login", function(data) {
17 //"User has successfully logged in"
18 ...

4.5 REST calls

In order for the user to login, retrieve forms and send forms, the app needs
to communicate with the Pernexus server. This is done, as earlier mentioned
through REST POST calls. These POST calls are called from the EndpointService.doPost()
function in the “EndpointService”, which is shown in Listing 4.5.

The function takes the arguments: data, domain, successCallback and errorCallback.
data is the data that will be send with the POST request. The domain is the
domain on the server where we will do the request. successCallback and
errorCallback are functions that will be called whether the request is a suc-
cess or gives an error. To do the POST call we need a URL to the server. In line
2 we get this from the “EndpointConfigService”. The domain is then attached
to the server URL to get the full URL of where to do the request. We then use
the built-in $http service from AngularJS. If the call succeeds and there is a
result we call the successCallback function on the returned data. If the call
does not return a result the errorCallback function will be called.

50 Implementation

Listing 4.5: The doPost function in EndpointService to call POST methods
to the Pernexus server.

1 service.doPost = function(data , domain , successCallback ,
errorCallback) {

2 var url = EndpointConfigService.getUrl ();
3 url = url +"/"+domain;
4
5 $http.post(url , data)
6 .success(function(data) {
7 if(data.result)
8 {
9 successCallback(data);

10 }
11 else{
12 errorCallback(data);
13 }
14 })
15 .error(function(data , statusText) {
16 ...

4.5.1 Login

Listing 4.6 shows how the LoginController uses the doPost function to lo-
gin the user. The param contains the username and password. The domain
where we do the login request is described in the second argument. The third
argument is our success callback function. When the POST call succeeds the
returned data from the request, will contain a token that will be saved locally
on the mobile device along with the username. The login is saved using the
UtilsService.store() function so the app automatically will login the next
time the user launches the app. The window.location in line 10 will then load
the home template that the link is referring. The fourth argument that doPost
takes is the error callback function, which will call the logout function to clear
the configuration file that was saved locally on the device.

4.6 Using plugins 51

Listing 4.6: How the doPost function is used to login the user.
1 EndpointService.doPost(param , "usercheck/login", function

(data) {
2 var token = data.token;
3 var config = {
4 "userName": param.username ,
5 "userToken": token
6 };
7
8 EndpointService.setCredentials(param.username , token);
9 UtilsService.store(config);

10 window.location = "#/home";
11
12 }, function(data , status){
13 //"Invalid credentials - signing out to clear config"
14 service.logout ();
15 }
16 });

4.5.2 Forms

The doPost function is also used to retrieve and send forms. To get a list of
the forms we simply set parameters of how the returned forms should be sorted,
either by name, date or distance to the project, and how many forms we want
returned. These parameters are sent with the POST request and the device will
be returned a list of forms.

When the user wants to fill out a specific form, the app has to load it from
the server. Again we use the doPost function along with parameters to identify
the form, such as form ID. These forms all have questions that all have an ID.
This ID is used when the app sends the completed form back to the server. The
completed form is sent to the server including parameters that identify the form
(form ID) and an array of answers that includes the ID of the question in order
to pair the answer with a question.

4.6 Using plugins

As mentioned in Section 3.4 we need to use different PhoneGap plugins in or-
der to access the hardware functionalities on the mobile device. To meet the
requirements of the app we needed to use plugins for the camera, the GPS and

52 Implementation

to transfer files to upload images to the server. As mentioned earlier in this
chapter, we simply define in the config.xml which plugins we want to use and
they will be available.

4.6.1 Camera

Listing 4.7 shows the code used to add an image to a question on the forms.
We use the navigator.camera.getPicture function to open the camera (line
11). The function takes a success function, an error function and options. If the
camera succeeds taking a picture it will be added to the array of photos for that
question (line 12). We set the options in a variable to control different camera
options such as encoding type and image quality.

Listing 4.7: Add image with camera plugin.
1 service.addImage = function addImage(callbackFunction) {
2 var options = {
3 quality: 75,
4 sourceType: Camera.PictureSourceType.CAMERA ,
5 targetWidth: 1920,
6 targetHeight: 1920,
7 encodingType: Camera.EncodingType.JPEG ,
8 correctOrientation: true
9 };

10
11 navigator.camera.getPicture(function(imageData){
12 question.photos.push(imageData);
13 }, function(errorMessage){
14 //"Handle camera error"
15 }, options);
16 }

4.6.2 Geolocation

To get the GPS location we use the geolocation plugin. As seen in Listing 4.8
the plugin has a function called watchPosition which is called every time the
GPS location changes. It has a success function and an error function just like
the camera plugin. When a new GPS location is detected the latitude and
longitude is saved in a variable and we will always have the latest location of
the user.

4.7 Platform specific problems 53

Listing 4.8: Get GPS position with geolocation plugin.
1 navigator.geolocation.watchPosition(function(pos) {
2 position.x = pos.coords.latitude;
3 position.y = pos.coords.longitude;
4 }, function (posError) {
5 //"Handle Geolocation error"
6 });

4.6.3 FileTransfer

To upload the images to the server we can use the FileTansfer plugin provided by
PhoneGap. In Listings 4.9 is the code used to upload an image to the server. In
line 1 we simple make a new FileTransfer. From our EndpointConfigService
we get the URL of where the images will be uploaded to and save it in the
endpoint variable. We initiate the upload using the upload function with the
arguments of the image URI, the endpoint URL and a success function.

Listing 4.9: Upload image to
1 var ft = new FileTransfer ();
2 var endpoint = EndpointConfigService.

getFormPhotoUploadUrl ();
3 ft.upload(fileURI , encodeURI(endpoint), function(metadata

) {
4 $log.info("Image successfully uploaded.");
5 })

4.7 Platform specific problems

As described in Chapter 2, the major advantage of PhoneGap is, write once
- run everywhere; the same code works on every platform. But during the
implementation of the PhoneGap app this showed not to be completely true.

4.7.1 Windows Phone

As the main focus at first was on developing the app for Windows Phone a few
platform specific problems arose during the implementation. Testing the app
during development showed us that some things that worked in the iOS and
Android app, did not work when the app was deployed to Windows Phone.

54 Implementation

4.7.1.1 Debugging

Especially live debugging of the app was a major problem on Windows Phone.
There is no way of doing live debugging of a PhoneGap app on Windows Phone
and when a error arose there was no way of knowing where it was in the code.
Android Developing Studio comes with a tool called LogCat [25], which let you
monitor the apps running on the device and in the iOS simulator you can do the
same. But as mentioned, some code would run on iOS and Android but would
fail to run on Windows Phone, which led to many hours of sifting through the
code to find the errors.

4.7.1.2 UI

Some UI elements did not work properly on Windows Phone and had to be
optimized for fitting Windows Phone. This was mainly due to the UI framework
not being optimized for Windows Phone and some of the CSS had to be changed
in order for it to work. The PhoneGap app is running in a web container,
meaning that the app runs in a Internet Explorer container on Windows Phone.
Some of the CSS in AngularMobileUI is not optimized for Internet Explorer and
some of it needed to be changed in order to work properly.

Furthermore, AngularMobileUI is using Font Awesome to draw icons. On Win-
dows Phone 8 these icons showed up as squares and again a fix in the CSS had
to be made in order to get the icons to show. MobileAngularUI is not optimized
for Windows Phone, which resulted in the different UI elements being small and
difficult to see and press.

4.7.2 iOS

Deploying for iOS also led to unforeseen obstacles. To build the app for iOS in
PhoneGap Build some developer certificates are needed and have to be uploaded
to PhoneGap Build. These certificates can only be obtained from XCode on
Mac, meaning that you will need a Mac to be able to build the app for iOS.

When you want to submit your finished app to the AppStore this must be done
with an application called ‘Application Loader’, which can only be found on
a Mac running OS X. Again, to submit an app built with PhoneGap Build
requires a Mac.

4.8 Chapter summary 55

4.8 Chapter summary

This chapter described the process of implementing and building the cross-
platform app with PhoneGap. It described how the project should be structured
in order for the app to be built in the cloud with PhoneGap Build. It also
described how MobileAngularUI was used to give the app a native look. The use
of AngularJS and its use of templates, controllers and services for this app was
explained. How the communication via REST calls was done is also described
in this chapter. It covers how we make use of different PhoneGap plugins to
access the camera and GPS. Lastly, some of the platform specific problems that
arose during the implementation was described. Screenshots from the final app
can be seen in Appendix B.

56 Implementation

Chapter 5

Evaluation & Discussion

This chapter will discuss the process of developing cross-platform apps with
PhoneGap. Furthermore, it will be discussed whether PhoneGap was the right
choice of technology to use compared to other cross-platform technologies. The
question of it is worthwhile to develop cross-platform apps compared to native
apps will also be discussed, as well as the future of cross-platform technologies.

5.1 Evaluation of PhoneGap

This section will focus on an evaluation of using the PhoneGap technology
to make cross-platform mobile applications. The evaluation is based on the
experience gained during the implementation of the PhoneGap app described
in the previous chapter.

The evaluation will focus on the ease of development including the whole setup
needed to develop apps with PhoneGap. It will focus on the features that are
available when developing with PhoneGap including the user interface. Further-
more, the performance of the app will be evaluated along with development and
maintenance time. The distribution of the PhoneGap app to the different app
stores will also be evaluated as well as the opportunities for further development
of the app.

58 Evaluation & Discussion

Development environment
To set up the PhoneGap development environment is quite easy. You only
need to follow a few steps in order to be ready to develop. To setup Phone-
Gap with Gulp along with MobileAngularUI (see Section 4.1) requires
only a few more steps. Most IDEs offers plugins for code completion for
PhoneGap’s API. Building the app for all platforms was extremely easy
with PhoneGap Build and no need to install the different platform SDKs
was necessary.

Ease of development
To develop in PhoneGap does not require advanced knowledge, seeing
that the app is developed in HTML and JavaScript. Compared to Java,
Objective-C and C# that is used to develop native apps, is HTML and
JavaScript fast to learn and implementation can start almost right away.
However, some knowledge about how an AngularJS application is imple-
mented and how to use the UI framework properly is still needed. Phone-
Gap offers a starter project, which is a great starting point for develop-
ment.
In the Analysis (Chapter 2) it was described that a PhoneGap app was
“write once, run everywhere”, meaning that when the app was implemented
it would run on each of the desired platforms. Though, we learned from
Section 4.7 that this is not the whole truth. During implementation a
lot of Windows Phone-specific problems arose, which led to many hours
of debugging and optimizing the CSS for the app to be able to run on
Windows Phone. However, when these problems were fixed the same code
would run on every platform.

Speed and cost of development
The fact that it is easy to start implementing a PhoneGap app will of
course increase the speed of development. That the same code runs on
each platform is also a huge benefit, if not the biggest, to the speed of
development. Though, as explained above and in Section 4.7 during im-
plementation some platform specific problem arose. These problems, and
the fact that it is difficult to debug a PhoneGap app on Windows Phone,
had a large negative effect on the development time for this project.

Maintainability
Only one code has to be maintained for all three platforms, which means
that code for all three platforms is easy to maintain. Consequently, the
time spend on maintaining all three platforms is much less compared to
having three different source codes.

User interface
Even with the use of a UI framework that gave a native look, it was not
possible to achieve a native feel of the app. Gestures can be enabled

5.1 Evaluation of PhoneGap 59

using the UI framework but they do not feel native. MobileAngularUI
was chosen as the UI framework because it supports Windows Phone.
More evolved UI frameworks such as jQuery Mobile and ionic was the
first choice, but since they were not compatible with Windows Phone,
MobileAngularUI was used.
As explained in Section 4.7 there were some problems getting the UI to
work properly on Windows Phone, which has to be fixed by overwriting
the CSS from the UI framework. Furthermore, when the same code is used
for all three platforms they will have almost the same look. That is one
major problem when going for a native look. A native look on Windows
Phone is much different from a native look on iOS. This means that the
user will not experience a native feel of the app.

Access to device-specific features
PhoneGap provides an easy to use API to access device-specific features.
All major hardware features are available in PhoneGap and it is even
possible to create your own plugins to talk to the underlying platform.

Application speed
There is no noticeable difference between the performance of the Phone-
Gap app and a native app. The app opens fast and responds smooth to
user interactions like a native app.

Distribution
Another unforeseen problem encountered during the implementation was
that a Mac is actually needed to build PhoneGap apps for iOS. Phone-
Gap claims that the app can be built from the cloud service PhoneGap
Build and installing the SDKs for the different platforms is not necessary.
But as explained in Section 4.7, if the app has to be built for iOS some
certificates has to be uploaded to PhoneGap Build. These certificates has
to be obtained from a Mac OSX computer, meaning a Mac is needed for
developing iOS apps with PhoneGap. However, when these certificates are
uploaded, all developers with access to PhoneGap Build can build apps
for all platforms. Though, when the iOS app has to be deployed to the
App Store it has to be done through a tool for Mac OSX called Applica-
tion Loader, again making a Mac computer a necessity. This problem was
solved by purchasing a Mac Mini, which was used for the deployment of
the app to the iOS App Store.

Opportunities for further development
Seeing that the PhoneGap app is developed like a web app makes it easy
to expand further. New pages just needs to be added to the project and
link to these on the already existing pages.

To sum up, once you get over the hurdle of fixing the platform specific problems,

60 Evaluation & Discussion

the development with PhoneGap is fast and it is easy to start implementing the
app right away. A drawback with PhoneGap is that it not possible to achieve a
native feel, though as explained earlier this was not a problem for this project.

5.2 PhoneGap vs. Other Cross-Platform Tech-
nologies

In this section the PhoneGap approach is compared to other mobile cross-
platform technologies. PhoneGap might have seemed to be the best choice at
first but with the extra knowledge gathered during implementation this might
have changed and using another cross-platform technology might have been a
better choice.

5.2.1 PhoneGap vs. Mobile Web Apps

To skip the step of distributing the app to the different app stores with Phone-
Gap and waiting for Apple’s app review process, mobile web apps might have
been a better solution. The users still need an internet connection in order to
retrieve and send forms, therefore the web app will always be available to them.
Furthermore, it would make it easier to release an update across all platforms
at once and make sure that every user is running the latest version.
But as explained in Section 2.5, a problem is that web apps have limited access
to the underlying platform. As it is now, we need access to the platform’s filesys-
tem to save a configuration file with login details and details about the server.
Furthermore, we need to cache images and in web apps it is only possible to
cache 5MB data. This problem could be solved by using HTML5’s WebStorage
to locally store the configuration and having the user download the images each
time they request them, though it will decrease the user experience. However,
a future feature of the app is that it should be able to connect to devices via
Bluetooth, which will not be possible with a web app. The limited access to
the hardware along with the bad user experience in a web app, makes it clear
that PhoneGap was a better choice for this project. In a project where user
experience is not a priority or you need to reach a lot of people a mobile web
app could be a solution.

5.2 PhoneGap vs. Other Cross-Platform Technologies 61

5.2.2 PhoneGap vs. Xamarin

The fact that Xamarin has access to all native functionalities and can achieve
almost native performance as well as a native look and feel, makes it a very
attractive cross-platform solution. Though, the native bindings comes with a
price - development time. As mentioned in [9], Xamarin claims that on average
75% of the code can be reused across platforms in Xamarin projects. Which
means that 25% of the code is platform specific. In another DTU thesis project
by Tomasz Cielecki [27], he found that 69% of the code could be shared in his
Xamarin project. The platform specific code means that not only the develop-
ment time will be longer but time used maintaining the app will also be longer,
seeing that specific code for three different platforms, instead of one, has to be
updated. But this might be a sacrifice that you are willing to take if native use
and feel is important. As earlier explained and shown in Figure 5.1, more time
used on development can achieve a better user experience.

Figure 5.1: Developing time vs. user experience for cross-platform technolo-
gies.

To explore the difference in user experience further, a test could be conducted
to see how much difference in native look and feel there is between a PhoneGap
app and Xamarin app. The test could answer answer whether the difference is
noticeable and how much this means to the user. The results could be used to

62 Evaluation & Discussion

weigh in when making the choice of whether to use PhoneGap or Xamarin.

Another problem with Xamarin compared to PhoneGap is that a Mac OSX
computer is needed for iOS development and a Windows 8 computer is needed
for Windows Phone development. This means that the developer at Pernexus
would have to switch between computers when developing for the different plat-
forms. However, the use of Xamarin Studios with access to the platforms’ SDKs
makes it possible to debug the app. A lot of time was spent on debugging the
PhoneGap app for Windows Phone and could have been avoided using Xamarin.

In [28] findings show that when extra features are added to a PhoneGap app,
the memory usage increases. This indicates that a PhoneGap app with a lot of
functionalities might have a decrease in performance. With Xamarin’s nearly
native performance, an app developed in Xamarin will in most cases be able to
run as fast as possible.

The choice of whether to use Xamarin or PhoneGap depends on the ambitions of
app. If a native look and feel is important or the app has complex functionalities,
Xamarin might be the best choice. If you are able to compromise on the feel
and look in favor of a quick and easy development process, PhoneGap will be a
better choice.

5.3 Cross-Platform vs. Native

In this section it will be discussed if it is worth it to develop cross-platform apps
rather than native apps.

Development time
The biggest advantage of developing cross-platform apps compared to na-
tive is the major shortening of time used on development. To develop
with PhoneGap does not require any advanced knowledge and the devel-
oper can start implementing right away. Figure 5.2 shows an estimation of
the development time when developing apps for three different platforms
using the PhoneGap, Xamarin and native approach. Developing with
PhoneGap is fastest since you do not have to deal with platform specific
code. Furthermore once you have developed the code for PhoneGap it will
work for all platforms and no extra time is needed for the other platforms.
With Xamarin you need to develop platform specific, which increases im-
plementation time. Consequently extra time is added per extra platform,
since approximately 25% of the code will be platform specific. For native

5.3 Cross-Platform vs. Native 63

apps you do not have any code sharing between the projects. However,
there is a learning curve from when you have developed the first app and
reuse the logic from the first platform. Therefore the development time is
shorter for the next two platforms.

Figure 5.2: Estimated development time for 3 platforms.

User interface
As mentioned earlier, Xamarin creates native bindings to the underlying
platform thus achieving a native look and feel consisting of native UI
elements. This is not possible to achieve with PhoneGap and the feel and
look of the app will be bad compared to Xamarin and native apps, but
the implementation will be faster. Appcelerator Titanium and Xamarin
are examples on cross-platform technologies that provides a native look
and feel.

Performance
One would imagine that when Xamarin is only compiled to native and
not running directly native, this would affect the performance. Actually
experiments done by Harry Cheung [16] suggests otherwise. The tests
show that an app written in Xamarin is faster than the same app written
in Objective-C and Java respectively. Even though this might be unique
for his test case, it is hard not to ignore that a Xamarin app has as good,
if not better, performance than a native app. But there still might be
some cases where native development might be needed. When developing
high graphics consuming games for example, it is important to get the

64 Evaluation & Discussion

best performance as possible. With a native implementation it is easier
to control every aspect of your app and a native approach is therefore
applicable.

If a cross-platform app is just as good as a native, how come there is not more
cross-platform apps on the market? A reason might be that companies already
have invested in native apps, with teams making native apps and a native code
base. A restructure to develop cross-platform apps would therefore require a
major effort. Another reason might be that Xamarin has only existed for a few
years and there might be more experienced native developers than experienced
Xamarin developers.

Figure 5.3 illustrates a suggestion of when to use PhoneGap, Xamarin or a native
development approach. If the app has many users, user experience is most likely
important. An app with high complexity requires the best performance and a
native approach is there for most likely applicable. Though, if the app has low
complexity it is easy to develop in PhoneGap without having to compromise the
user experience including performance. As the complexity of the app increases
the developer might have to use Xamarin instead of PhoneGap to ensure a good
user experience.

5.4 The Future of Cross-Platform Apps

It is difficult to predict what the future of cross-platform apps holds, but with
the major reduction in time and cost of development a cross-platform app can
provide, it is very likely that we will see more and more cross-platform apps in
the app stores in the future.

5.4.1 Hybrid apps

PhoneGap, as it is now, will never be able to beat the user experience of a native
app. To close the gap between PhoneGap and native apps, the PhoneGap web
container needs to provide more features. It should provide native functionali-
ties to improve the feel of the app and increase the performance. Luckily, the
Cordova project is open-source and third-parties are able to build on top of the
project to provide developers with possibilities to achieve a native look and feel.

5.4 The Future of Cross-Platform Apps 65

Figure 5.3: When you should use PhoneGap, Xamarin or native development
approach.

5.4.2 Compiled-to-native apps

With its nearly native performance and native look and feel, there is no doubt
that Xamarin will grow bigger and bigger over the next few years. Additionally,
at their Build conference in April 2015 Microsoft announced that with the up-
coming Windows 10 it is now possible to use existing Android and iOS app code
for Windows Phone 10 apps. This is done using a tool called ‘Universal Platform
Bridges’ [15] that allows the developer to import the existing app project into
Visual Studio and with only few changes getting the app to run on Windows
10. Whether this approach will create more apps available for Windows Phone
will be interesting to follow.

66 Evaluation & Discussion

5.5 Chapter summary

This chapter included an evaluation of developing a cross-platform app using
PhoneGap. It discussed whether it would have been better to use another cross-
platform approach to optimize the implementation. Furthermore it discussed if
it is worthwhile to develop cross-platform apps instead of native apps. Lastly,
the chapter discussed the future of cross-platform development.

Chapter 6

Conclusion & Future Work

This chapter will present the findings gathered during this thesis. The project
as a whole will be concluded and future work needed for the app to be as good
as ‘EP Mobile’ will be described.

6.1 Findings

In Chapter 1 (Introduction) the findings were that to develop a native app for
Windows Phone, iOS and Android it must be done in three different program-
ming languages, which consequently will prolong the development process when
developing for all three platforms. Pernexus Systems want to offer their app
for all three platforms while still having a fast development process and an app
that is easy to maintain. For this, the solution was to develop an cross-platform
application.

Chapter 2 (Analysis) explored and analyzed the different cross-platform solu-
tions currently available on the market. Furthermore, the scope of the project
was described from Pernexus’ requirements for the cross-platform app. A com-
parison of the different mobile cross-platform technologies was made to find
what solution that best fit Pernexus’ needs. The pros and cons of each technol-

68 Conclusion & Future Work

ogy was presented and compared to the requirements. PhoneGap was chosen as
the technology to use for implementation of a cross-platform mobile app.

Chapter 3 and 4 (Design and Implementation) described the overall design and
implementation of the project. The PhoneGap app is mostly implemented as a
web app and the AngularJS framework was used to develop the app in HTML5,
JavaScript and CSS. Unforeseen platform specific problems for Windows Phone
arose during implementation, which led to a longer development time than first
anticipated.

In Chapter 5 (Discussion) the development process with PhoneGap and the final
application was evaluated. It is easy to start developing with PhoneGap, which
makes the development of an app really fast. The fact that the source code only
has to be written once for it to work on all platforms, is another huge advantage
of PhoneGap. However, the user experience of a PhoneGap app is reflected by
the user experience of the web app that the PhoneGap app consists of and is
behind other technologies such as Xamarin in terms of feel and look. While
this was not a problem for the users of Pernexus’ app, it might be relevant
for other developers and companies when choosing a cross-platform technology.
Though, is the development time considerably less when developing PhoneGap
apps than developing with Xamarin. And a small loss in user experience might
be acceptable compared to the cost and benefits of a fast development process.

6.2 Conclusion

The overall conclusion of this thesis is that for Pernexus Systems, PhoneGap
seems to be the best choice to develop a cross-platform mobile application. Even
though PhoneGap cannot achieve the same look and feel as a native applica-
tion, the user experience with a PhoneGap app is good enough for Pernexus’
customers. Other cross-platform development technologies such as Xamarin can
achieve the same native look and feel as a native app, but platform specific code
has to be written in order to achieve this, which consequently increases develop-
ment time. It is possible to achieve the same performance as a native app with
Xamarin, while having the ability to share 75% of the source code between plat-
forms. This makes the time of development of a cross-platform app for three
platforms significantly shorter than developing native apps for three different
platforms.

In the end, the choice of which development approach to use depends on the
project. If you are willing to sacrifice some of the native look and feel of your
app to achieve a fast development process, PhoneGap might be the choice over

6.3 Future Work 69

Xamarin. If native user experience is important Xamarin will be a better choice.

6.3 Future Work

The app implemented during this project is already in the Apple App Store and
in use by one of Pernexus Systems’ customers. As mentioned earlier, the future
releases of the cross-platform app should eventually have the same features as
the current Android app, EP Mobile. Features will gradually be added to the
cross-platform app until it reaches the same functionality as EP Mobile. When
the cross-platform app has the same features as EP Mobile will EP Mobile be
phased out and the focus will only be on the cross-platform app.

Right now the PhoneGap app has an uniform look across all platforms since the
same source code is used for each platform. This affects the user’s experience of
the app, since it is clear that the app is not built from native UI elements. A way
to avoid this perception is to create a custom UI that differs from any typical
UI element. It would make sense to create a user interface that is customized
for the customers needs and do not necessarily follow the UI guidelines for each
platform. This way Pernexus Systems can put their own touch on the app.

For PhoneGap to provide the same native user experience as for example Xa-
marin apps can achieve, it is necessary to give the PhoneGap container that
is connected to the underlying platform more functionalities. This could for
example include the ability to use native UI elements to give the app a native
look and feel and not a uniform look across all platforms.

70 Conclusion & Future Work

Appendix A

Screenshots from EP
Mobile

This appendix contains screenshots from the already existing Android app from
Pernexus Systems, EP Mobile.

72 Screenshots from EP Mobile

Figure A.1: Login screen in EP Mobile.

73

Figure A.2: Home screen in EP Mobile.

74 Screenshots from EP Mobile

Figure A.3: Sorting projects in EP Mobile.

75

Figure A.4: Project list in EP Mobile.

76 Screenshots from EP Mobile

Figure A.5: Form view in EP Mobile.

77

Figure A.6: Question view in EP Mobile.

78 Screenshots from EP Mobile

Figure A.7: Menu in EP Mobile.

Appendix B

Screenshots from the
PhoneGap app

This appendix contains screenshots from the PhoneGap app developed during
this project.

80 Screenshots from the PhoneGap app

Figure B.1: Login screen in PhoneGap app.

81

Figure B.2: Home screen in PhoneGap app.

82 Screenshots from the PhoneGap app

Figure B.3: Sorting projects in PhoneGap app.

83

Figure B.4: Project list in PhoneGap app.

84 Screenshots from the PhoneGap app

Figure B.5: Form view in PhoneGap app.

85

Figure B.6: Question view in PhoneGap app.

86 Screenshots from the PhoneGap app

Figure B.7: Menu in PhoneGap app.

Bibliography

[1] Html5 mobile compatibility. http://mobilehtml5.org/, Last accessed:
02/06/2015.

[2] Sencha touch. http://www.sencha.com/products/touch/, Last accessed:
02/06/2015.

[3] About phonegap. http://phonegap.com/about/, Last accessed:
03/06/2015.

[4] Phonegap. http://phonegap.com/, Last accessed: 03/06/2015.

[5] Phonegap day - ibm, phonegap and the entreprise
slideshow. http://www.slideshare.net/drbac/
phonegap-day-ibm-phonegap-and-the-enterprise, Last accessed:
03/06/2015.

[6] Telerik platform. http://www.telerik.com/platform, Last accessed:
03/06/2015.

[7] Telerik ui for phonegap. http://www.telerik.com/phonegap-ui, Last
accessed: 03/06/2015.

[8] Appcelerator titanium. http://www.appcelerator.com/product/, Last
accessed: 06/06/2015.

[9] Microsoft and xamarin partner globally to enable microsoft develop-
ers to develop native ios and android apps with c# and visual stu-
dio. http://xamarin.com/pr/xamarin-microsoft-partner, Last ac-
cessed: 07/06/2015.

http://mobilehtml5.org/
http://www.sencha.com/products/touch/
http://phonegap.com/about/
http://phonegap.com/
http://www.slideshare.net/drbac/phonegap-day-ibm-phonegap-and-the-enterprise
http://www.slideshare.net/drbac/phonegap-day-ibm-phonegap-and-the-enterprise
http://www.telerik.com/platform
http://www.telerik.com/phonegap-ui
http://www.appcelerator.com/product/
http://xamarin.com/pr/xamarin-microsoft-partner

88 BIBLIOGRAPHY

[10] Mono project. http://www.mono-project.com/, Last accessed:
07/06/2015.

[11] Xamarin. http://xamarin.com/, Last accessed: 07/06/2015.

[12] Xamarin - faq. http://xamarin.com/faq, Last accessed: 08/06/2015.

[13] Xamarin - introduction to mobile development. http://
developer.xamarin.com/guides/cross-platform/getting_started/
introduction_to_mobile_development/, Last accessed: 08/06/2015.

[14] Idc - smartphone vendor market share. http://www.idc.com/prodserv/
smartphone-market-share.jsp, Last accessed: 10/06/2015.

[15] Introducing the universal windows platform bridges. https://dev.
windows.com/en-us/uwp-bridges, Last accessed: 10/06/2015.

[16] Mobile app performance. https://medium.com/@harrycheung/
cross-platform-mobile-performance-testing-d0454f5cd4e9, Last
accessed: 10/06/2015.

[17] Android and ios squeeze the competition, swelling to 96.3% of the smart-
phone operating system market for both 4q14 and cy14, according to idc.
http://www.idc.com/getdoc.jsp?containerId=prUS25450615, Last ac-
cessed: 11/06/2015.

[18] Gartner says by 2017, mobile users will provide personalized data streams
to more than 100 apps and services every day. http://www.gartner.com/
newsroom/id/2654115, 2014 Last accessed: 11/06/2015.

[19] gulpjs. http://gulpjs.com/, Last accessed 28/05/2015.

[20] ionic framework. http://ionicframework.com/, Last accessed:
28/05/2015.

[21] jquery mobile. https://jquerymobile.com/, Last accessed: 28/05/2015.

[22] Mobileangularui. http://mobileangularui.com/, Last accessed:
28/05/2015.

[23] Phonegap build. https://build.phonegap.com/, Last accessed:
28/05/2015.

[24] Twitter bootstrap. http://getbootstrap.com/, Last accessed:
28/05/2015.

[25] Android logcat. http://developer.android.com/tools/help/logcat.
html, Last accessed: 31/05/2015.

[26] Allamaraju, S. RESTful Web Services Cookbook. O’REILLY, 2010.

http://www.mono-project.com/
http://xamarin.com/
http://xamarin.com/faq
http://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
http://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
http://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
http://www.idc.com/prodserv/smartphone-market-share.jsp
http://www.idc.com/prodserv/smartphone-market-share.jsp
https://dev.windows.com/en-us/uwp-bridges
https://dev.windows.com/en-us/uwp-bridges
https://medium.com/@harrycheung/cross-platform-mobile-performance-testing-d0454f5cd4e9
https://medium.com/@harrycheung/cross-platform-mobile-performance-testing-d0454f5cd4e9
http://www.idc.com/getdoc.jsp?containerId=prUS25450615
http://www.gartner.com/newsroom/id/2654115
http://www.gartner.com/newsroom/id/2654115
http://gulpjs.com/
http://ionicframework.com/
https://jquerymobile.com/
http://mobileangularui.com/
https://build.phonegap.com/
http://getbootstrap.com/
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/logcat.html

BIBLIOGRAPHY 89

[27] Cielecki, T. Environmental sensor monitoring tablet application designed
using cross-platform design patterns and frameworks. Masters thesis, Tech-
nical University of Denmark, January 2015.

[28] Dalmasso, I., Datta, S. K., Bonnet, C., and Nikaein, N. Survey,
comparison and evaluation of cross platform mobile application develop-
ment tools. Wireless Communications and Mobile Computing Conference
(IWCMC) (2013).

[29] Grant, A. Beginning Angularjs. Apress, 2014.

[30] Heitkötter, H., Hanschke, S., and Majchrzak, T. A. Compar-
ing cross-platform development approaches for mobile applications. Web
Information Systems and Technologies Volume 140 (2013), pp 120–138.

[31] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Pe-
terson, A. S. Feature-oriented domain analysis (foda) feasibility study.
Tech. rep., Carnegie Mellon University, 1990.

[32] Liang, Y. E. PhoneGap and AngularJS for Cross-platform Development.
Packt Publishing, 2014.

	Summary
	Resumé
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Pernexus Systems
	1.1.1 Entrepriseportalen
	1.1.2 EP Mobile

	1.2 Thesis Problem
	1.2.1 Thesis Definition

	1.3 Report Structure

	2 Analysis
	2.1 Prior work
	2.1.1 EP Mobile

	2.2 Domain Analysis
	2.2.1 Glossary
	2.2.2 General Knowledge of the Domain
	2.2.3 Clients and users
	2.2.4 Environment
	2.2.5 Tasks and Procedures

	2.3 Requirements
	2.3.1 Functional Requirements
	2.3.2 Non-functional Requirements
	2.3.3 Use Cases

	2.4 Mobile Cross-platform Technologies
	2.4.1 Web Apps
	2.4.2 Hybrid Apps
	2.4.3 Compiled to Native

	2.5 Choosing the Right Cross-platform Technology
	2.5.1 Pros and cons
	2.5.2 Compared to the Requirements
	2.5.3 The Choice

	2.6 Chapter Summary

	3 Design
	3.1 Structure of pages
	3.2 EP Mobile design
	3.2.1 Server communication
	3.2.2 User interface

	3.3 AngularJS
	3.3.1 MVC Design Pattern
	3.3.2 Templates, Controllers & Services

	3.4 Plugins
	3.5 Chapter summary

	4 Implementation
	4.1 PhoneGap setup
	4.1.1 Project structure
	4.1.2 Gulp
	4.1.3 PhoneGap Build

	4.2 UI Framework
	4.2.1 MobileAngularUI

	4.3 Templates
	4.4 Controllers & Services
	4.5 REST calls
	4.5.1 Login
	4.5.2 Forms

	4.6 Using plugins
	4.6.1 Camera
	4.6.2 Geolocation
	4.6.3 FileTransfer

	4.7 Platform specific problems
	4.7.1 Windows Phone
	4.7.2 iOS

	4.8 Chapter summary

	5 Evaluation & Discussion
	5.1 Evaluation of PhoneGap
	5.2 PhoneGap vs. Other Cross-Platform Technologies
	5.2.1 PhoneGap vs. Mobile Web Apps
	5.2.2 PhoneGap vs. Xamarin

	5.3 Cross-Platform vs. Native
	5.4 The Future of Cross-Platform Apps
	5.4.1 Hybrid apps
	5.4.2 Compiled-to-native apps

	5.5 Chapter summary

	6 Conclusion & Future Work
	6.1 Findings
	6.2 Conclusion
	6.3 Future Work

	A Screenshots from EP Mobile
	B Screenshots from the PhoneGap app
	Bibliography

