
The Author-Topic Model

Ólavur Mortensen

Kongens Lyngby 2017



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk



Summary

The goal of this thesis is to develop a scalable and user-friendly implementation
of the author-topic model for the Gensim framework. To this end, a variational
Bayes (VB) algorithm is developed to train the model.

In order to allow online training, stochastic variational inference is applied.
This removes the need to store all documents in memory, and allows us to keep
learning on new data.

Maximum Likelihood Estimation is applied to automatically learn the optimal
hyperparameters of the priors over words and over topics.

A blocking VB method is applied, inspired by blocking Gibbs sampling, that
relaxes the assumptions we make about the form of the posterior in the varia-
tional approximation. The resulting algorithm lends itself to optimizations that
decrease the memory complexity of the algorithm, and speed up training by
vectorizing the VB updates. Blocking VB also increases the variational lower
bound more per iteration than standard VB.

In order to illustrate useful examples of the model, as well as demonstrate usage
of the software, a tutorial is written and is accessible online. This tutorial uses
data exploration and similarity queries to gain insight about authors in a dataset
consisting of scientific papers from the NIPS conference.



ii



Preface

In the past few years, the machine learning community has seen an explosion
of high quality open source software, particularly in the Python programming
language. In natural language processing we have libraries such as Gensim
and SpaCy, in deep learning have Theano and TensorFlow, for general machine
learning we have SciKit Learn, and in probabilistic programming languages we
have MC Stan, and many others.

It is of great importance that machine learning tools are accessible. Too often
academic research projects end in low quality code and/or code that never sees
the light of day. When we develop machine learning software that is user-friendly
and fast, we enable everyone from first year university students to tenured pro-
fessors to industry professionals to tinker with the latest in machine learning
research.

The advent of faster personal computers and tools such as automatic differenti-
ation has enabled deep learning software like Theano. Software like this leads to
wide adoption of deep learning, which in turn leads to an explosion in interest
and new discoveries in the field.

In a similar fashion, fast inference in probabilistic models with high quality and
user-friendly implementations can lead to more interest and hence more research
in Baysian data analysis. This is one of the goals of this project.

The other primary goal with this project is scalability. Having fast and scalable
meachine learning tools lets us process much larger datasets at a much faster
rate, and is imperative to the usefulness of machine learning in industry.



iv

This project is conducted in order to obtain an Msc in engineering, specifically
in ”Mathematical Modelling and Computation”, from the Technical University
of Denmark.

A reader with a university level of understanding of statistics and programming
should be able to understand the basics of this report. For an in depth under-
standing, knowledge of Bayesian data analysis, machine learning and natural
language processing is required. Section 3 about the implementation discusses
Python code, so Python literacy is required to fully understand that section.

Lyngby, 22-January-2017

Ólavur Mortensen



Acknowledgements

The multidisciplinary nature of this project was very well complimented with
two great supervisors. I would like to thank Ole Winther from Cognitive Systems
at DTU for his academic and theoretical support, and Lev Konstantinovskiy
from RaRe Technologies for software development and open source support.



vi



Notation and abbreviations

Note that these tables do not list all the notation and abbreviations used.



viii

Mathematical notation:
log(x) The natural logarithm (base e) taken on x.
I(a = b) Identity function that yields 1 if a = b.
Γ(x) The Gamma function taken on x.
Ψ(x) The Digamma function taken on x.
D Number of documents in corpus.
Nd Number of words in document d.
A Set of authors in corpus.
a A single author identifier.
Ad Set of authors in document d.
Da Set of documents for author a.
K Number of topics.
k A single topic identifier.
V Number of unique words in vocabulary.
Vd Number of unique words in document d.
v A single vocabulary word.
βk Topic-word distribution for topic k.
θa Author-topic distribution for author a.
α θ’s hyperparameter
η β’s hyperparameter
wdn ∈ 1, ..., V Word n in document d.
zdn ∈ 1, ...,K Topic assignment of word n in document d.
xdn ∈ 1, ..., Ad Author assignment of word n in document d.
y−i All elements of the vector y except yi.
x· All elements of vector x along the specified axis.
Dir Dirichlet distribution
Unif Uniform distribution
Mult Multinomial distribution

Abbreviations:
BOW Bag-of-words
CVB Collapsed variational Bayes
LDA Latent Dirichlet Allocation
NLP Natural language processing
VB Variational Bayes



Figures, tables and algorithms



x Figures, tables and algorithms



List of Figures

2.1 Graphical model of the multinomial. See section 2.2.1 . . . . . . 7

2.2 Graphical model of the Dirichlet-multinomial. See section 2.2.2 . 9

2.3 Graphical model of the hierarchical Dirichlet-multinomial. See
section 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Graphical model of the author-topic model. See section 2.4 for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Graphical model of variational approximation. See section 2.4.2
for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 This figure illustrates how various methods in the AuthorTopic-
Model class are called during training. The solid arrows indicate
that one method calls another, while the dashed lines indicate
looping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Per-word lower bound for blocking and non-blocking VB algo-
rithms, see section 4.3.1 for details. . . . . . . . . . . . . . . . . . 49

4.2 Testing blocking (blue line) and non-blocking VB (red line) algo-
rithms on generated data. See section 4.3.1 for details. . . . . . . 50



xii LIST OF FIGURES

4.3 Comparison of online and offline algorithms in terms of bound
convergence. See section 4.3.2 for details. . . . . . . . . . . . . . 51

4.4 Comparison of online and offline algorithms in terms of bound
convergence. See section 4.3.2 for details. The initial bound is
included in these graphs. . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Test of hyperparameter MLE on NIPS data. See section 4.3.4 for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Execution time of training and bound evaluation as a function of
the number of documents in the corpus. See section 4.4 for details. 55

4.7 Execution time of training and bound evaluation as a function of
the average number of authors per document. See section 4.4 for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Execution time of training and bound evaluation as a function
of the number of unique words in the corpus. See section 4.4 for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Execution time of training and bound evaluation as a function of
the number of words per document. See section 4.4 for details. . 57

4.10 Execution time of training and bound evaluation as a function of
the number of topics. See section 4.4 for details. . . . . . . . . . 57

A.1 Graphical model of standard VB approximation. See section A
for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

C.1 Graphical model of LDA. See section C.1 . . . . . . . . . . . . . 80



List of Tables

1.1 Example of a topic. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Example of an author in the author-topic model. . . . . . . . . . 3

4.1 Testing blocking and non-blocking VB algorithms on generated
data. The table shows the final bound and the time it took to
train the model. See section 4.3.1 for details. . . . . . . . . . . . 50

4.2 Speed-up from vectorization. Number of topics K = 10. See
section 4.3.3 for details. . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Relative execution time (% of total execution time) taken by
Eq[log β] and γ in the non-vectorized code. . . . . . . . . . . . . 53

C.1 Complexity of algorithm. See section C.4 for details. . . . . . . . 84



xiv LIST OF TABLES



List of Algorithms

1 Training the author-topic model using VB. . . . . . . . . . . . . 26
2 Online training of the author-topic model using VB. . . . . . . . 28
3 Training the author-topic model using standard VB. . . . . . . . 69
4 Online training the author-topic model using standard VB. . . . 71
5 Training the author-topic model using CVB. . . . . . . . . . . . . 77
6 Training LDA using VB. . . . . . . . . . . . . . . . . . . . . . . . 80



xvi LIST OF ALGORITHMS



Contents

Summary i

Preface iii

Acknowledgements v

Notation and abbreviations vii

Figures, tables and algorithms ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1
1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Why do we need a new implementation? . . . . . . . . . . . . . . 4

2 Theory 5
2.1 Bayesian data analysis . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Probabilistic natural language processing . . . . . . . . . . . . . 6

2.2.1 The multinomial . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1.1 Maximum likelihood estimation in the multinomial 7

2.2.2 The Dirichlet-multinomial . . . . . . . . . . . . . . . . . . 8
2.2.2.1 Estimating beta in the Dirichlet-multinomial . . 9
2.2.2.2 Estimating eta in the Dirichlet-multinomial . . . 10
2.2.2.3 The Dirichlet prior . . . . . . . . . . . . . . . . . 10

2.2.3 Hierarchical Dirichlet-multinomial . . . . . . . . . . . . . 11
2.3 Topic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



xviii CONTENTS

2.4 The author-topic model . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1.1 Exchangeability . . . . . . . . . . . . . . . . . . 16
2.4.1.2 Approximate inference in the author-topic model 17

2.4.2 Variational Bayes algorithm . . . . . . . . . . . . . . . . . 18
2.4.2.1 Obtaining the lower bound . . . . . . . . . . . . 20
2.4.2.2 Obtaining the update equations . . . . . . . . . 23
2.4.2.3 Computing the lower bound . . . . . . . . . . . 24
2.4.2.4 VB algorithm . . . . . . . . . . . . . . . . . . . 25
2.4.2.5 Online VB . . . . . . . . . . . . . . . . . . . . . 25
2.4.2.6 Asymptotic complexity . . . . . . . . . . . . . . 29
2.4.2.7 Advantages with blocking VB . . . . . . . . . . 29

2.4.3 Evaluating a trained model . . . . . . . . . . . . . . . . . 30
2.4.3.1 Perplexity . . . . . . . . . . . . . . . . . . . . . 30
2.4.3.2 Conditional likelihood . . . . . . . . . . . . . . . 31
2.4.3.3 Topic coherence . . . . . . . . . . . . . . . . . . 31

2.4.4 Hyperparameter optimization . . . . . . . . . . . . . . . . 32
2.4.4.1 Dirichlet MLE . . . . . . . . . . . . . . . . . . . 33
2.4.4.2 Hyperparameter optimization in the author-topic

model . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Implementation 35
3.1 Gensim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Design philosophy . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Gensim crash-course . . . . . . . . . . . . . . . . . . . . . 37

3.2 Author-Topic model implementation . . . . . . . . . . . . . . . . 37
3.2.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Program flow . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4.1 Multiprocessing and distributed computing . . . 40
3.2.4.2 Corpus transformation . . . . . . . . . . . . . . 40
3.2.4.3 ”get document topics” not implemented . . . . . 40
3.2.4.4 Constructing missing author dictionaries . . . . 41
3.2.4.5 Update with new documents and authors . . . . 41
3.2.4.6 Serialized corpora . . . . . . . . . . . . . . . . . 41
3.2.4.7 Inference on held-out data . . . . . . . . . . . . 42
3.2.4.8 Potential memory problems with author dictio-

naries . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Results 45
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Comparison with an existing implementation . . . . . . . . . . . 46
4.3 Algorithmic development tests . . . . . . . . . . . . . . . . . . . 48



CONTENTS xix

4.3.1 Comparing blocking and non-blocking VB . . . . . . . . . 48
4.3.2 Comparing offline and online algorithms . . . . . . . . . . 50
4.3.3 Vectorization speed-up . . . . . . . . . . . . . . . . . . . . 52
4.3.4 Hyperparameter MLE . . . . . . . . . . . . . . . . . . . . 53

4.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 Empirical scalability . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Other factors in execution time . . . . . . . . . . . . . . . 54

5 Discussion 59

6 Conclusion 61

A Standard VB 63
A.0.1 Obtaining the lower bound . . . . . . . . . . . . . . . . . 63
A.0.2 Obtaining the update equations . . . . . . . . . . . . . . . 66
A.0.3 VB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.0.4 Online VB . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B Collapsed variational Bayes 73
B.1 Gaussian approximation . . . . . . . . . . . . . . . . . . . . . . . 74
B.2 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 76
B.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C Miscellaneous 79
C.1 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . . 79
C.2 Variational lower bound . . . . . . . . . . . . . . . . . . . . . . . 81
C.3 Per-document lower bound . . . . . . . . . . . . . . . . . . . . . 82
C.4 Asymptotic complexity of online VB algorithm . . . . . . . . . . 83
C.5 Vectorized updates details . . . . . . . . . . . . . . . . . . . . . . 84

C.5.1 A note about the sufficient statistics . . . . . . . . . . . . 85
C.5.2 Bound computation . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 87



xx CONTENTS



Chapter 1

Introduction

Author-topic models promise to give data scientists a tool to simultaneously
gain insight about authorship and content in terms of topics. The authors can
represent many kinds of metadata attached to documents, for example, tags on
posts on the web. The model can be used for data exploration, as features in
machine learning pipelines, for author (or tag) prediction, or to simply leverage
your topic model with existing metadata.

The author-topic model is very closely related to Latent Dirichlet Allocation
(LDA) (Blei et al. 2003 [BNJ03]), which is a very popular model in the field of
natural language processing.

There is a hands-on tutorial of the software that accompanies this thesis. This
tutorial can be viewed at:

• Tutorial link: http://nbviewer.jupyter.org/github/rare-technologies/
gensim/blob/develop/docs/notebooks/atmodel_tutorial.ipynb.

This tutorial gives examples as well as demonstrating the usage of the software,
and is an essential part of this thesis.

Section 2 covers the theory behind the model and the method we apply to train

http://nbviewer.jupyter.org/github/rare-technologies/gensim/blob/develop/docs/notebooks/atmodel_tutorial.ipynb
http://nbviewer.jupyter.org/github/rare-technologies/gensim/blob/develop/docs/notebooks/atmodel_tutorial.ipynb


2 Introduction

it. The goal of this section is to give some context, describe the model, as well
as the algorithm used to train the model.

Section 3 goes through some technical details with the implementation of the
model, to supplement the tutorial. We also introduce the open source package
which this algorithm was developed for, namely Gensim.

In section 4, we present various tests of the implementation. This section is
meant to supplement the tutorial.

It is recommended that the reader proceeds by reading the remainder of this
section and the theory section (2), then reads the tutorial before proceeding to
the implementation section (3).

In the remainder of this section, we give a gentle introduction to the author-
topic model by example, discuss some application areas, and motivate the need
for a new implementation.

1.1 Example

The author-topic model produces a set of latent topics as probability distri-
butions over words, and in turn represents authors as probability distributions
over the set of topics. A simple example is provided below.

An author-topic model with 10 topics is trained on a dataset. In table 1.1,
we see the top 10 most important words in one of the topics, along with their
probabilities. Notice that the model seems to have captured that one of the
topics in the dataset has something to do with electronics and signal processing.

Similarly, table 1.2 shows the most important topics for a particular author,
excluding the topics with probability below some threshold. Since the ID of the
topic in table 1.1 is 0, we conclude that this author does not have anything to
do with electronics and signal processing.

1.2 Applications

Naturally, topic modelling can be applied to automatic tagging and summa-
rization of documents in large datasets. Topic modelling can also be used for



1.2 Applications 3

Word Probability
chip 0.0146

circuit 0.01196
analog 0.0114
control 0.0100

implementation 0.00780
design 0.00726

implement 0.00636
signal 0.00633
vlsi 0.00594

processor 0.00565

Table 1.1: Example of a topic.

Topic ID Probability
9 0.423
3 0.421
5 0.111
4 0.0432

Table 1.2: Example of an author in the author-topic model.

classification, information retrieval, and to build recommender systems, for ex-
ample.

Topic models are not limited to text data. The ”documents” can represent
observations in many different kinds of data, and ”words” then represent features
of these observations. Topics then represent some type of components that
describe the latent structure of the data.

Ngo et al. 2016 [NEFY16] apply the author-topic model to fMRI (functional
magnetic resonance imaging) data to learn something about how various be-
havioural tasks relate to different areas of the brain. In this context, the authors
represent the behavioural tasks, words represent areas in the brain (specifically,
the magnitude of the activation in a voxel of the brain), and topics represent
”cognitive components” (i.e. some latent structure).

The author-topic model, like LDA, is applicable in analysis of genomic data.
The model can be used to learn commonalities between diseases or phenotypes
(physical characteristics of organisms) based on different genes, by learning
the author-topic representation with authors as diseases and phenotypes and
biomarkers as features (words). Such models can be used to help in the process
of designing medication, or in personalized healthcare.



4 Introduction

The author-topic model could be used to build a tag prediction system, or as
a component in a pipeline for such a system. If we have tagged documents,
for example posts on a website, we can learn an author-topic representation of
these tags. This representation would allow us to make similarity queries, i.e.
ask which tags are most similar to a particular tag. Furthermore, we could ask
which tags are most similar to the topic representation of a single document,
and tag that document with the tags that have similarity above some value.

Building complex machine learning systems such as the ones discussed above
is outside of the scope of this thesis, as the emphasis was on developing the
algorithm and implementation.

1.3 Why do we need a new implementation?

There are a few existing implementations of the author-topic model, but all of
these are either slow, not user-friendly, and/or have poor documentation.

There is one implementation that is reasonably fast, which is included in the
Matlab Topic Modeling Toolbox 1. This implementation suffers from a couple
of problems, however, which is that (1) it is not particularly user friendly, (2)
it is developed in a proprietary environment, and (3) it is not well documented.
Furthermore, it applies Gibbs sampling to train the model, whereas we would
rather have an implementation that uses variational Bayes (VB).

Reasons that VB is preferred over Gibbs sampling include:

• It is fast.

• It is easy to develop an online (streamable) algorithm.

• It is easy to develop a parallel algorithm.

The goal of this thesis is to develop a scalable and user-friendly implementation
of the author-topic model for Gensim. For this to become a reality, a VB
algorithm had to be developed, which will be described later in section 2.

1http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm


Chapter 2

Theory

The goal of this section is to give some context in terms of Bayesian data
analysis, natural language processing, and topic modelling, and to describe the
author-topic model and derive the VB algorithm to train it.

In section 2.1, we provide a very brief conceptual introduction to Bayesian data
analysis. Section 2.2 serves as introductory material for section 2.4, and contains
concepts that will be relevant throughout the report. We briefly discuss topic
models in general in section 2.3. In section 2.4, we describe the author-topic
model, derive the variational Bayes updates for the model, and describe some
algorithms using these updates, and more.

2.1 Bayesian data analysis

The author-topic model is what is often referred to as a Bayesian hierarchi-
cal model. What this means should become clear in the subsequent sections,
although a thorough treatment of the subject is far beyond the scope of this
report.

Intuitively, Bayesian data analysis is quite different from other types of data



6 Theory

modelling. Below, we discuss one interpretation of this distinction (as there are
many).

In classical data analysis, we write down a cost function that describes the
phenomena in the data that we want to capture. This cost function is minimized
to obtain the best possible model of the data.

In Bayesian data analysis, we posit a statistical procedure that describes
how the data was generated. In other words, we describe a causal model of the
phenomena in the data that we are interested in. A cost function must then be
derived from this model, such that we can optimize it.

Note at this point that these two paradigms do not cover all available data
analysis methods, but is a useful conceptual distinction.

As we see, what separates Bayesian data analysis apart is not so much its goal,
but rather its process. In the remainder of this section, and when we introduce
the author-topic model, we shall see that the crux of Bayesian data analysis is
that as we increase the complexity of the model, the difficulty of training the
model grows very fast.

2.2 Probabilistic natural language processing

Some simple models that are related to the author-topic model will be intro-
duced, and we discuss estimation in such models. The section introduces a
lot of the notation, theory and concepts that we will be using when dealing
with the author-topic model in section 2.4. We will cover graphical models and
estimation of random variables and parameters, among other things.

Throughout, we have documents consisting of a set of words wn for n ∈ {1, ..., N}
and wn ∈ {1, ..., V }, i.e. a document of length N with a vocabulary of size V .
At times, we also have documents d ∈ {1, ..., D} and words labelled wdn. A
collection of documents is referred to as a corpus.

In the subsequent sections, we will discuss a simple multinomial model, then a
Dirichlet-multinomial model, and finally a hierarchical version of the Dirichlet-
multinomial. The solution to the inference problem in these models will under-
line the difficulties in training the author-topic model.



2.2 Probabilistic natural language processing 7

Figure 2.1: Graphical model of the multinomial. See section 2.2.1

2.2.1 The multinomial

Consider a simple statistical model such that wn ∼ Mult(β) where β ∈ RV .
This model posits a generative process such that each word in the document is
drawn independently from the multinomial distribution, parametrized by β. In
other words, the probability that word wn takes on value v is p(wn = v|β) =
Mult(wn = v|β) = βv

1.

Figure 2.1 shows the multinomial in an illustration referred to as a graphical
model. The grayed out circle represents an observed quantity (the words, wn),
the symbol with no circle represents a parameter (β), and the box tells us that
this process repeats N times. As more complexity is added to these probabilistic
models, more concepts in graphical models will be explained.

2.2.1.1 Maximum likelihood estimation in the multinomial

In our treatment of these probabilistic models, we will for the most part concern
ourselves with estimation of random variables. β is not a random variable, but
a parameter; however, we can still estimate β. We can compute a maximum
likelihood estimate (MLE) of β by maximizing the log likelihood log p(w|β) =

log
∏
n p(wn|β) w.r.t. β. The MLE turns out to be β̂v = nv

V , where nv =∑
n I(wn = v), i.e. the number of words that take on value v. We will also

derive this estimate.

We write the log likelihood as

log p(w|β) = log
∏
n

p(wn|β) =
∑
n

log p(wn|β) =
∑
n

log βwn =
∑
v

nv log βv,

and then we form the Lagrangian by adding the constraint
∑
v β = 1,

`(β, λ) =
∑
v

nv log βv − λ(
∑
v

β − 1),

1Note that we implicitly assume that we draw one word from the multinomial. When n
words are drawn from the multinomial, the equation is somewhat different.



8 Theory

where λ is the Lagrange multiplier. To obtain the estimate that maximizes this
likelihood, we take the partial derivative of the Lagrangian w.r.t β and λ,

∂`(β, λ)

∂β
=
nv
βv
− λ, ∂`(β, λ)

∂λ
= −(

∑
v

βv − 1).

We let ∂`(β,λ)
∂β = ∂`(β,λ)

∂λ = 0, so

nv

β̂v
− λ̂ = −(

∑
v

β̂v − 1) = 0.

We see that
nv = β̂vλ̂,

so ∑
v

nv =
∑
v

β̂vλ̂ = V,

λ̂
∑
v

β̂v = V,

λ̂ = V,

and finally, since β̂v = nv

λ̂
and λ̂ = V , we have our MLE:

β̂v =
nv
V
.

2.2.2 The Dirichlet-multinomial

We take the multinomial model from the previous section, and add a Dirichlet
prior to the multinomial distribution over words. In figure 2.2, we can see that
β now depends on a parameter η ∈ RV+, and is thus a random variable, indicated
by the circle around it. As η is the parameter of the prior distribution, we refer
to it as a hyperparameter. We write this model as

β ∼ Dir(η),

wn ∼Mult(β).

We will discuss the significance of the Dirichlet prior in a later section, as it is a
crucial element in the author-topic model. For now, we shall discuss estimation
in the Dirichlet-multinomial model.



2.2 Probabilistic natural language processing 9

Figure 2.2: Graphical model of the Dirichlet-multinomial. See section 2.2.2

2.2.2.1 Estimating beta in the Dirichlet-multinomial

As mentioned, β is now a random variable. As the Dirichlet-multinomial is a
very simple model, we are able to estimate β directly through manipulation of
the joint probability distribution. We shall see later that it is not as easy to
estimate the random variables of interest in the author-topic model, and we thus
have to be more clever about it.

The joint probability distribution fully describes the model by assigning a prob-
ability to all combinations of all random variables, parameters and observed
quantities. The Dirichlet-multinomial has the joint probability

p(w, β|η) = Dir(β|η)
∏
n

Mult(wn|β).

To estimate β, we would like to know the posterior distribution, which is the
distribution over β conditioned on the data w. The posterior is equal to the
joint distribution divided by the marginal likelihood,

p(β|w, η) =
p(w, β|η)

p(w|η)
.

The marginal likelihood is obtained by integrating the joint distribution over β,

p(w|η) =

∫
p(β,w|η)dβ.

Unlike in the author-topic model, this integral can actually be solved analyt-
ically. However, we do not have to perform this calculation. Since we know
that the Dirichlet and multinomial are conjugate distributions, we know that
the posterior will be a re-parametrized Dirichlet. To find the parametrization



10 Theory

of the posterior, we continue by simplifying the joint distribution.

p(w, β|η) =
Γ(
∑
v ηv)∏

v Γ(ηv)

∏
v

βηv−1v

∏
n

∏
v

βI(wn=v)
v

=
Γ(
∑
v ηv)∏

v Γ(ηv)

∏
v

βηv−1v

∏
v

β
∑

n I(wn=v)
v

=
Γ(
∑
v ηv)∏

v Γ(ηv)

∏
v

β
ηv−1+

∑
n I(wn=v)

v

=
Γ(
∑
v ηv)∏

v Γ(ηv)

∏
v

βηv−1+nv
v . (2.1)

We recognize the last line as an unnormalized Dirichlet distribution with param-
eters ηv +nv. This means that the posterior is p(β|w, η) = Dir(η1 +n1, ..., ηV +
nV ). We can obtain a posterior estimate of β by using the mode, which is
mode(βv|w, η) = ηv+nv−1∑

v′ ηv′−V
.

2.2.2.2 Estimating eta in the Dirichlet-multinomial

We now have a new parameter in the model, namely η. As with the multinomial
model, the fact that η is a parameter, and not a random variable, doesn’t stop
us from estimating it.

Minka et al. 2003 [Min03] show how to compute the MLE of η using a relatively
simple optimization procedure similar to the one we used to estimate the β
parameter in the multinomial model. This method has been applied in LDA
to estimate the prior distributions, and we shall also use it for the author-topic
model. We shall describe how this method is applied to the author-topic model
in section 2.4.4, after we have described the inference algorithm.

Occasionally, one might put a prior on η, which is referred to as a hyperprior.
This would make η a random variable which we could make inference on through
Bayesian methods. It is, however, not usual to apply a hyperprior in LDA-like
models.

2.2.2.3 The Dirichlet prior

Placing the Dirichlet prior on the multinomial allows us to include some ”prior”
information into the model. It is possible to make many different kinds of



2.2 Probabilistic natural language processing 11

Figure 2.3: Graphical model of the hierarchical Dirichlet-multinomial. See
section 2.2.3

constraints on the multinomial through the Dirichlet prior. For example, we
can control how likely a word is a priori (before observing data).

We can control how sparse β is, in the sense that most of the density is allocated
to one word, although all words still have non-zero density (in that sense it’s not
strictly speaking sparse). The Dirichlet encourages sparsity when ηv < 1, ∀v.

The Dirichlet prior can also be viewed as a way of smoothing the multinomial
distribution. If we compare the multinomial MLE of β and the posterior mode
of the Dirichlet-multinomial, we see that the latter is a smoothed version of the
former, where every term gets a non-zero probability.

If η1 = η2 = · · · = ηV , we say that the Dirichlet is symmetric. In this case all
the words are equally likely a priori.

The Dirichlet and multinomial are conjugate distributions, which is very desir-
able in Bayesian models as it makes inference a great deal easier. We saw in
section 2.2.2 that a multinomial with a Dirichlet prior resulted in a Dirichlet
posterior with modified hyperparameters.

2.2.3 Hierarchical Dirichlet-multinomial

Adding an extra layer of complexity, we define a hierarchical model

βd ∼ Dir(η),

wdn ∼Mult(βd),

where each document has its private word distribution βd, but they are all linked
through the same prior. Figure 2.3 shows the model in graphical form.



12 Theory

Then the joint distribution becomes

p(w, β|η) =
∏
d

Dir(βd|η)
∏
n

Mult(wdn|βd),

and by very similar derivation as with the Dirichlet-multinomial, we get that
each document’s word distribution follows a Dirichlet such that p(βd|w, η) =
Dir(η1 + nd1, ..., ηV + ndV ).

2.3 Topic models

We will now describe topic models in general in more detail. This discussion will
be conducted in an intuitive manner to introduce the idea of topic modelling,
as the author-topic model is essentially an extension of a standard topic model.
We will also discuss some other extensions of the standard topic model.

An important concept in probabilistic topic models is the idea of a latent vari-
able. Typically, a latent variable indicates something about the state of an ob-
servation in the dataset. In topic models, assigning a word in a document to a
particular topic corresponds to estimating a latent variable. In the author-topic
model we have an extra latent variable, corresponding to author assignment.

For each document a topic model assigns a weight to each latent topic that
indicates to which degree the document expresses each topic. Similarly, for each
topic a weight is assigned to each word in the vocabulary. When these weights
represent probabilities, we are dealing with a probabilistic model. LDA is a
probabilistic topic model, and so is the author-topic model.

Topic models are a type of unsupervised learning; we have no target that we are
trying to predict, we are simply learning the structure of the data by making
some assumptions about the data. As with any unsupervised method, estimat-
ing the quality of the model is a difficult task, as we cannot simply compute the
error rate. In section 2.4.3, we discuss how to evaluate a trained topic model.

Intuitively, topic models are closely related to mixture models (i.e. clustering);
they can be viewed as a type of ”soft clustering” where each document exhibits
a partial belonging to each ot the classes (topics). Models such as the topic
model are thus referred to as mixed membership models.

It is common to use standard matrix decompositions of the Term Frequency
- Inverse Document Frequency (TF-IDF) matrix of your corpus as topic mod-



2.3 Topic models 13

elling techniques. Using Singular Value Decomposition (SVD) in this context
is referred to as Latent Semantic Indexing (LSI), or Latent Semantic Analy-
sis (LSA). It is also common to use Non-negative Matrix Factorization in this
setting.

One of the reasons why Bayesian modelling is so compelling is that we can
construct arbitrarily complex models relatively easily. It may not be clear how
to extend an author-topic model from NMF or LSI, but with a Bayesian model
this is quite easy. With that said, training such a model is often difficult.

There are many extensions of LDA, other than the author-topic model. There
is LDA-HMM (Hsu et al. 2006 [HG06]) which relaxes the exchangeability of
words (unigram model) in LDA and endows the model with a Markovian prop-
erty; in other words, the order of the words is important in LDA-HMM. The
dynamic topic model (DTM, Blei et al. 2006 [BL06]) gives a representation
that illustrates how topics in the corpus have evolved over time. Supervised
Latent Dirichlet Allocation (sLDA, Blei et al. 2008 [BMB08]) is a type of re-
gression model that estimates a response (output) variable based on the topic
assignments of the words in each document.

There is a topic model that is related to the author-topic model, but has little
to do with Latent Dirichlet Allocation, called the structural topic model (STM,
Roberts et al. 2013 [RSTA13]). STM draws the topic proportions, not from a
Dirichlet, but from a logistic-normal generalized linear model based on document
covariates. These covariates are first and foremost the word frequencies, and
secondly metadata attached to the documents. So in other words, the STM
generates topics based on arbitrary features in each document. If you add
author labels as features, you get a type of author-topic model; if you add the
date as a feature, you can get a type of dynamic topic model. The STM is thus
related to the author-topic model in the sense that you can leverage your model
by metadata, and learn something about the topical content in relation to that
metadata.

In the next section, we describe the author-topic model and algorithms to train
it. For a brief description of LDA, see appendix C.1 (it is recommended to read
section 2.4 first).



14 Theory

2.4 The author-topic model

As in the previous section, we describe the model by a set of linked probability
distributions,

θa ∼ Dir(α),

βk ∼ Dir(η),

xdn ∼ Unif(
1

|Ad|
),

zdn ∼Mult(θa, xdn = a),

wdn ∼Mult(βk, zdn = k),

where xdn ∼ Unif( 1
|Ad| ) means that the author of a word wdn is drawn uni-

formly with probability one over the number of authors in document d. zdn ∼
Mult(θa, xdn = a) means that we draw zdn from θa assuming that xdn = a. We
describe the intuition behind each of these parameters.

• θa is a probability vector such that θak is the probability that author a
writes about topic k.

• βk is, likewise, a probability vector such that the probability that word v
is used in topic k is equal to βkv.

• xdn is a latent variable that indicates which author is responsible for word
n in document d.

• zdn is also a latent variable and indicates which topic generated word n in
document d.

As with the simpler models in section 2.2, we illustrate the author-topic model
using a graphical model in figure 2.4.

We can interpret edges in the graph as dependence between two variables, e.g.
zdn depends on θa. Strictly speaking, the absence of an edge represents condi-
tional independence, e.g. when conditioned on zdn, wdn is independent of θa,
i.e. p(wdn|βk, zdn = k) does not depend on θa.

Intuitively, the author-topic model can be viewed as a process that generates
words in a document based on the authors of that document. Note that this
is more of a thought experiment that gives an intuitive understanding of the
model, rather than a realistic view of the model.



2.4 The author-topic model 15

Figure 2.4: Graphical model of the author-topic model. See section 2.4 for
details.

• For each author a ∈ {1, ..., A} draw θa ∼ Dir(α).

• For each topic k ∈ {1, ...,K} draw βk ∼ Dir(η).

• For each document d ∈ {1, ..., D}:

– Given document d’s authors, Ad.

– For each word in the document n ∈ {1, ..., Nd}.

∗ Assign an author to the current word by drawing xdn ∼ Unif( 1
|Ad| ).

∗ Conditioned on xdn, assign a topic by drawing zdn ∼Mult(θa).

∗ Conditioned on zdn, choose a word by drawing wdn ∼Mult(βk).

A great deal of complexity is added, going from the hierarchical Dirichlet-
multinomial in section 2.2.3 to the author-topic model. However, we see that all
the basic building blocks are contained in the hierarchical Dirichlet-multinomial.
Rather than drawing words from a multinomial that is conditioned on the doc-
ument, we now condition it on a topic, which in turn is drawn from a Dirichlet-
multinomial.

Note that when each document is attributed to exactly one author, and each
author is only attributed to one document, then the author-topic model is equiv-
alent to a standard topic model.



16 Theory

2.4.1 Inference

As in section 2.2, now that we have described the model we will now concern
ourselves with estimating the random variables and parameters of the model. In
Bayesian models such as the author-topic model, this is referred to as inference.
In particular, we are interested in inferring θ and β.

The joint probability distribution of the author-topic model is

p(θ, β, z, x, w|α, η,A)

= p(θ|α)p(β|η)p(x|A)p(z|x, θ)p(w|z, β)

=

A∏
a=1

Dir(θa|α)

K∏
k=1

Dir(βk|η)

D∏
d=1

Nd∏
n=1

Unif(xdn|Ad)

Mult(zdn|θa, xdn = a)Mult(wdn|βk, zdn = k). (2.2)

The posterior distribution is

p(θ, β, z, x|w,α, η,A) =
p(θ, β, z, x, w|α, η,A)

p(w|α, η,A)
,

but as mentioned in section 2.2.2, we cannot compute the marginal likelihood in
the author-topic model analytically. As is quite common with Bayesian models,
the marginal likelihood p(w|α, η,A) contains an integral that is not solvable
in closed form. This integral can approximated by numerical methods, but
such approximations are exponential in complexity, which renders such solutions
practically useless. In this situation, we say that the posterior is intractable.

The aforementioned problem is the crux of Bayesian inference. There exist
many different methods of approximating the posterior (without evaluating the
marginal likelihood). Choosing an inference method may be critical as both
computational cost and accuracy may vary by a lot.

2.4.1.1 Exchangeability

A very important concept in Bayesian modelling is exchangeability. We mention
it now because we require the joint distribution to discuss exchangeability.

A model is exchangeable if the joint distribution is invariant to permutation
of the indices of the variates. For example, consider a model that has some



2.4 The author-topic model 17

random variables θi, i ∈ [1, N ]. If p(θ1, ..., θN ) = p(θπ(1), ..., θπ(N)) where π
is any random permutation of the indices from 1 to N , then this model is
exchangeable.

If we look at the joint distribution of the author-topic model in equation 2.2,
we can imagine permutating all the indices a, k, d and n, and it is clear that
this would not change the value of the joint distribution. This means that the
author-topic model is exchangeable. We will discuss one consequence of this
later when we introduce an online algorithm.

2.4.1.2 Approximate inference in the author-topic model

We are not able to derive the solution to the model analytically, as we did in
section 2.2, so we need to approximate the posterior somehow. There are two
major candidates for this task for the author-topic model: Gibbs sampling and
variational Bayes.

We can liken Gibbs sampling to the method we used to obtain a solution to the
Dirichlet-multinomial model in section 2.2.2. The Dirichlet-multinomial is a con-
jugate model, so that the posterior is a re-parametrized Dirichlet. In the author-
topic model, we have conditional conjugacy, such that p(zdn|z−dn, x, θ, β, α, η, A)
and p(xdn|x−dn, z, θ, β, α, η, A) are both Dirichlet. This means that we can draw
samples from these conditional posteriors; in the Dirichlet-multinomial we draw
one sample and we are done, but in Gibbs sampling, we alternately draw samples
of xdn and zdn until convergence.

Rosen-Zvi et al. 2004 [RZGSS04] 2010 [RZGSS05] originally introduced the
author-topic model and applied Gibbs sampling. They used a method referred to
as blocking Gibbs sampling, where one relaxes the independence assumption be-
tween x and z and instead draws samples from p(zdn, xdn|z−dn, x−dn, θ, β, α, η,A).
Blocking improves convergence as we make less assumptions about the form of
the posterior. As we shall see later, we apply this blocking concept in a varia-
tional Bayes setting.

The second method, variational Bayes, we liken to our solution to the multino-
mial model in section 2.2.1. In the multinomial model, we derived a closed form
solution by directly optimizing the log likelihood. As discussed above, we do not
have access to the likelihood p(w|α, η,A). The idea in VB is thus to introduce
an approximate distribution so that we are able to maximize a lower bound on
the log likelihood. We describe this solution in detail in section 2.4.2.



18 Theory

VB and Gibbs sampling: advantages and disadvantages: A key differ-
ence between VB and Gibbs sampling is that in the former we optimize a lower
bound, and therefore we never approach the true solution, while in the latter
we converge towards the true posterior given enough iterations. VB converges
faster than Gibbs sampling at first, but eventually is overtaken by Gibbs sam-
pling. Therefore, if the accuracy attained with VB is not enough, and one is
willing to wait for the Gibbs sampler to converge to the desired accuracy, then
that may be the right choice. However, as we care a lot about computation
time and scalability, and VB has shown to give satisfactory results for LDA-like
models, it is fitting for our purposes.

Another advantage with VB is that it is easy to derive an online algorithm,
as done in Hoffman et al. 2013 [HBWP13]. We derive an online algorithm in
section 2.4.2.5.

Collapsed approximation: In collapsed Gibbs sampling, we only sample the
latent variables by integrating out all other random variables. Collapsed Gibbs
sampling tends to be more efficient than its standard version as we are sampling
in a lower dimensional space (Murphy 2012 [Mur12], p. 841).

Teh et al. 2007 [TNW07] introduced collapsed variational Bayes (CVB) to train
LDA, applying the same principle as in collapsed Gibbs sampling, and reported
faster convergence than standard VB.

Ngo et al. 2016 [NEFY16] presented CVB for the author-topic model, and
applied blocking in their model as well. CVB would be the natural next step in
an effort to improve the performance of the author-topic model algorithm. See
section B for a brief description of author-topic model training using CVB.

2.4.2 Variational Bayes algorithm

We pose the variational distribution q(θ, β, z, x) which approximates the poste-
rior. The variational distribution is fully factorized,

q(θ, β, z, x) = q(θ|γ)q(β|λ)q(x|µ)q(z|φ)

=
∏
a

q(θa|γa)
∏
k

q(βk|λk)
∏
d,n

q(xdn|µdn)
∏
d,n

q(zdn|φdn)

=
∏
a

Dir(θa|γa)
∏
k

Dir(βk|λk)
∏
d,n

Mult(xdn|µdn)
∏
d,n

Mult(zdn|φdn). (2.3)



2.4 The author-topic model 19

By introducing the variational parameters γ, λ, µ and φ, we make the assump-
tion that the model parameters are independent (note that zdn does not depend
on θ or x in q). This is not necessarily a realistic assumption, but one that lets
us approximate the solution.

Defining a fully factorized (all variables are independent) approximate distri-
bution is the standard method in variational Bayes. However, we shall use a
slightly different variational distribution. We describe this approximate distri-
bution now, and get into the details of why this particular distribution was
chosen in section 2.4.2.7.

We define the variational distribution as

q(θ, β, z, x) = q(θ|γ)q(β|λ)q(x, z|φ)

=
∏
a

q(θa|γa)
∏
k

q(βk|λk)
∏
d,n

q(xdn, zdn|φdn)

=
∏
a

Dir(θa|γa)
∏
k

Dir(βk|λk)
∏
d,n

q(xdn, zdn|φdn), (2.4)

where q(xdn = a, zdn = k|φdn) = φdnak. In this approximation, we assume that
x and z are dependent. This leads to an inference algorithm that has better
computational properties than the standard formulation. This formulation is
essentially blocking variational Bayes, as discussed in section 2.4.1.2.

Note that

φdnak =

{
q(zdn = k, xdn = a), if a ∈ Ad,
0 otherwise,

and
∑
k

∑
a φdnak = 1.

Figure 2.5 shows a graphical model, as in figure 2.4, of the model q(θ, β, z, x).

Even though the standard VB algorithm was not used in the end, it was the
logical first step towards variational inference. Therefore, the standard VB
algorithm is described in appendix A, for completeness. In the next section, we
continue with the blocking VB algorithm.



20 Theory

Figure 2.5: Graphical model of variational approximation. See section 2.4.2
for details.

2.4.2.1 Obtaining the lower bound

It can be shown that

log p(w|α, η,A) ≥ Eq[log p(θ, β, x, z, w|α, η,A)]− Eq[log q(θ, β, z, x)],

where Eq is the expectation over q(θ, β, z, x). The right-hand-side of the inequal-
ity above is denoted L and is referred to as the lower bound on the marginal
likelihood. The goal in variational inference is to make this lower bound as
tight as possible, thereby maximizing the marginal likelihood of the data. This
is possible because the lower bound is defined by only things that we can eas-
ily compute, that is the joint probability and the variational distribution. See
appendix C.2 for more information on the lower bound, including derivation of
the inequality above.

As we shall see later, we employ the simplest possible optimization scheme to
maximize the lower bound, that is, we take the derivative w.r.t. each parameter,
equate it to zero, and isolate the parameter. We do this for each index in each
variational parameter until the lower bound converges.

We obtain the lower bound to the marginal log likelihood.



2.4 The author-topic model 21

log p(w|α, η,A) ≥ Eq[log p(θ, β, x, z, w|α, η,A)]− Eq[log q(θ, β, z, x)]

= L(γ, λ, φ)

=
∑
a

Eq[logDir(θa|α)] +
∑
k

Eq[logDir(βk|η)] +
∑
d,n

Eq[logUnif(xdn|Ad)]

+
∑
d,n

∑
a∈Ad

Eq[logMult(zdn|θa)] +
∑
d,n,k

Eq[logMult(wdn|βk)]

−
∑
a

Eq[logDir(θa|γa)]−
∑
k

Eq[logDir(βk|λk)]−
∑
d,n

Eq[log q(xdn, zdn|φdn)]

(2.5)

We evaluate each of the expectations in the lower bound given above. To eval-
uate Eq[logDir(θa|α)] we write the Dirichlet in the form

Dir(θa|α) = exp

{(∑
k

(αk − 1) log θak

)
+ log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk)

}
,

which is in the form of an exponential family distribution. Note that we are
not assuming symmetric priors here, i.e. we are not assuming that αk = α ∀k.
Blei et al. 2003 [BNJ03] show that Eq[log θak] = Ψ(γak) − Ψ(

∑
k′ γak′), where

Ψ is the digamma function, which is the first derivative of log Γ. So the first
expectation is

Eq[logDir(θa|α)] =
∑
k

((αk − 1)Eq[log θak]) + log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk).

The rest of the Dirichlet expectations are derived in the same manner. We have
the expectations of the multinomials,

Eq[logMult(zdn|θ)] =
∑
k

∑
a∈Ad

∫
q(xdv = a, zdv = k)q(θak) log p(zdn|θ)dγ

=
∑
k

∑
a∈Ad

φdnakEq[log θak], (2.6)



22 Theory

because
∫
q(θak) log p(zdn|θ)dγ = Eq[log θak].

Eq[logMult(wdn|β)] =∑
a∈Ad

∑
k

∑
v

∫
I(wdn = v)q(xdn = a, zdv = k)q(λkv) log p(wdn = v|βkv)dλ

=
∑
a∈Ad

∑
k

∑
v

I(wdn = v)φdnakEq[log βkv], (2.7)

and similarly,

Eq[log q(xdn, zdn|φdn)] =
∑
a∈Ad

∑
k

φdnak log φdnak.

Finally, we have

Eq[logUnif(xdn|Ad)] = log
1

|Ad|
.

Recall that we compute the expectations of log θa and log βk using the digamma
function, as described above.

Before we write out the lower bound using the computed expectations, we in-
troduce a variable ndv, which indicates how many times dictionary word v is
observed in document d. The ndv variable simplifies the equations a bit, first
by eliminating the need of the identity function, second by letting us loop over
v rather than n. We also collect some of the terms in the equation, to make it
a bit shorter. Finally, we add constraints such that

∑
a∈Ad

∑
k φdvak = 1 ∀d, v

with corresponding Lagrange multipliers `dv.

L(γ, λ, φ) =∑
a

(∑
k

(αk − γak)Eq[log θak]− log Γ(
∑
k

γak) +
∑
k

log Γ(γak) + log Γ(
∑
k

αk)−
∑
k

log Γ(αk)

)

+
∑
k

(∑
v

(ηv − λkv)Eq[log βkv]− log Γ(
∑
v

λkv) +
∑
v

log Γ(λkv) + log Γ(
∑
v

ηv)−
∑
v

log Γ(ηv)

)
+
∑
d,v

ndv
∑
a∈Ad

∑
k

φdvak(Eq[log θak] + Eq[log βkv]− log φdvak)

+
∑
d,v

ndv
1

|Ad|
+
∑
d,v

`dv

((∑
a∈Ad

∑
k

φdvak

)
− 1

)
(2.8)



2.4 The author-topic model 23

2.4.2.2 Obtaining the update equations

To maximize the lower bound, we apply a simple coordinate ascent method: take
the derivative of L(γ, λ, φ) w.r.t. each of the variational parameters, equate it
to zero, and isolate the corresponding parameter.

The lower bound depends on φdvak via the terms

L[φdvak] = ndvφdvak(Eq[log θak] + Eq[log βkv]− log φdvak)

+ `dv

(( ∑
a′∈Ad

∑
k′

φdva′k′

)
− 1

)
, (2.9)

and the partial derivative of the lower bound w.r.t. φdvak is

∂L
∂φdvk

= ndvEq[log θak] + ndvEq[log βkv] − ndv log φdvk − 1 + `. (2.10)

Setting the derivative equals to zero and isolating φdvak yields

φdvk ∝ exp {Eq[log θak] + Eq[log βkv]} .

The normalization constant (note the ”proportional to” in the equation above)
is exp(1− `), although we just normalize φdvak directly, as we shall see later.

The lower bound depends on γ via the terms

L[γak] =

(αk − γak)(Ψ(γak)−Ψ(
∑
k′

γak′))− log Γ(
∑
k

γak) + log Γ(γak)

+
∑
d∈Da

∑
v

ndvφdvak(Ψ(γak)−Ψ(
∑
k′

γak′)). (2.11)



24 Theory

where we have defined the set Da = {d | a ∈ Ad}. The partial derivative is

∂L
∂γak

= (αk − γak)(Ψ′(γak)−Ψ′(
∑
k′

γak′))

+
∑
d∈Da

∑
v

ndvφdvak

(
(Ψ′(γak)−Ψ′(

∑
k′

γak′))

)
, (2.12)

This yields the update equation

γak = αk +
∑
d∈Da

∑
v

ndvφdvak.

The lower bound depends on λ via the terms

L[λkv ] =

(ηv − λkv)(Ψ(λkv)−Ψ(
∑
v′

λkv′))− log Γ(
∑
v

λkv) + log Γ(λkv)

+
∑
d

ndv
∑
a∈Ad

φdvak(Ψ(λkv)−Ψ(
∑
v′

λkv′)), (2.13)

and the partial derivate is

∂L
∂λkv

= (ηv−λkv)(Ψ′(λkv)−Ψ′(
∑
v′

λkv′))+
∑
d

ndv
∑
a∈Ad

φdvak(Ψ′(λkv)−Ψ′(
∑
v′

λkv′)),

(2.14)

which yields the last update equation,

λkv = ηv +
∑
d

ndv
∑
a∈Ad

φdvak.

2.4.2.3 Computing the lower bound

To measure convergence of the algorithm, we compute the lower bound L(γ, λ, φ).
Using that

φdvak =
exp{Eq[log θak] + Eq[log βkv]}∑

k

∑
a∈Ad

exp{Eq[log θak] + Eq[log βkv]}



2.4 The author-topic model 25

we can simplify the computation, by reducing the third line in equation 2.8, as
follows:∑

d,v

ndv
∑
a∈Ad

∑
k

φdvak(Eq[log θak] + Eq[log βkv]− log φdvak)

=
∑
d

∑
v

ndv log
∑
k

∑
a∈Ad

exp{θak + βkv}

=
∑
d

∑
v

ndv log
∑
k

exp{βkv}
∑
a∈Ad

exp{θak}. (2.15)

Of course, we do not need to worry about the Lagrange multipliers, as their
contribution to the lower bound can be assumed to be zero. Computing the
lower bound thus becomes easy.

2.4.2.4 VB algorithm

Algorithm 1 shows pseudo-code for training the author-topic model using the VB
updates we have derived in the previous sections. The outline of the algorithm
can loosely be described as follows.

• Initialize parameters.

• Until lower bound converges:

– For all combinations of d, v, a and k, update φ, γ and λ.

As indicated in the pseudo-code, updating the local variables (φ and γ) is often
referred to as the M-step, while updating the global variables (λ) is referred to
as the E-step.

The problem with algorithm 1 is that it requires us to store all variables in
memory, and φ can get quite huge (D×Vd×Ad×K, sparse matrix). Luckily, the
online algorithm, presented in the next section, alleviates our memory troubles.

2.4.2.5 Online VB

Hoffman et al. 2013 [HBWP13] describe an online VB algorithm referred to as
stochastic variational inference. We apply this method to our VB algorithm for



26 Theory

Algorithm 1 Training the author-topic model using VB.

function AT-VB(wdn, A, K, α, η, τ1, τ2)
Initialize γ and λ randomly according to a gamma distribution, and com-

pute Eq[log θak] and Eq[log βkv].
Compute L.
repeat

Set Lprev := L.
M-step.
for d = 1 to D do

for v = 1 ∈ Vd do
for k = 1 to K do

for a ∈ Ad do
φdvak ∝ exp {Eq[log θak] + Eq[log βkv]}.

end for
end for
Normalize φdvak to sum to 1 over k and a:

φdvak := φdvak/
(∑

a∈Ad

∑K
k=1 φdvak

)
end for

end for
for a = 1 to A do

for k = 1 to K do
γak := αk +

∑
d∈Da

∑
v ndvφdvak.

end for
end for
Compute Eq[log θak], as γ has been updated.
E-step.
for k = 1 to K do

for v = 1 to V do
λkv := ηv +

∑
d ndv

∑
a∈Ad

φdvak.
end for

end for
Compute Eq[log βkv], as λ has been updated.
Compute L.

until (L − Lprev)/Lprev < τ1
end function



2.4 The author-topic model 27

the author-topic model. The online algorithm allows us to let the documents
come in a stream, so that when we have looked at one document we can discard
it. It also allows us to keep learning if we obtain more data.

Simply put, we compute an estimate of λ for document t as λ̃kv := ηv +
Dntv

∑
a∈At

φtvak, as if this document represented the entire corpus. Next,

we interpolate between this ”local” variable λ̃ and the ”global” variable λ, as
λ := (1 − ρt)λ + ρtλ̃, where ρt = (τ0 + t)−κ. τ0 ≥ 0 is referred to as the offset
and κ ∈ (0.5, 1] as the decay.

We treat γ similarly as λ in the online algorithm. The reason these two pa-
rameters are treated differently than φ is that they both require a sum over
documents, which of course is not possible with an online algorithm.

This online algorithm is based on the idea that the lower bound can be written
in terms of each document (see appendix C.3),

L(γ, λ, φ) =
∑
d

Ld(γ, λ, φ).

We can then find combinations of φ and γ that are locally optimal (i.e. optimal
for Ld(γ, λ, φ)), and update λ accordingly.

Pseudo-code for the online algorithm can be seen in algorithm 2. As mentioned
in the previous section, this algorithm has much more manageable memory
requirements than the standard algorithm (also referred to as ”batch VB”). We
must store a φ matrix that is Vd × A ×K, which will be discarded as soon as
we move on to the next document. We have to store γ and λ, but their size is
quite manageable (A×K and K × V , respectively).

Updating the model w.r.t. all documents in the corpus is referred to as a
pass over the corpus. The number of M-steps, i.e. how often the inner loop is
repeated, is referred to as an iteration over a document. Conversely, in the offline
algorithm, updating all the variational parameters once is called an iteration.
We will be using these terms later.

It was mentioned previously that the author-topic model is exchangeable. If this
were not the case, we might not be able to formulate an online algorithm because
the state of a single document would depend on other factors that cannot be
accessed in that document. Clearly, this algorithm suffers from this problem to
some extent anyway, but in a way where it is possible to formulate an online
algorithm.



28 Theory

Algorithm 2 Online training of the author-topic model using VB.

function online-AT-VB(wdn, A, K, α, η, τ , τ0, κ)
Initialize γ and λ randomly according to a gamma distribution, and com-

pute Eq[log θak] and Eq[log βkv].
for t = 1 to ∞ do

Set ρt := (τ0 + t)−κ.
repeat

for v = 1 ∈ Vt do
for k = 1 to K do

for a ∈ At do
φvak ∝ exp {Eq[log θak] + Eq[log βkv]}.

end for
end for
Normalize φvak to sum to 1 over k and a:

φvak := φvak/
(∑

a∈At

∑K
k=1 φvak

)
end for
for a ∈ At do

for k = 1 to K do
γ̃ak := αk + |Da|

∑
v∈Vt

ntvφvak.
end for

end for
Compute Eq[log θak] based on a temporary estimate of γ.
γ̂ := (1− ρt)γ + ρtγ̃.

until Average absolute change in γ̃ is less than τ .
for k = 1 to K do

for v = 1 ∈ Vt do
λ̃kv := ηv +Dntv

∑
a∈At

φvak.
end for

end for
γ := γ̂
λ := (1− ρt)λ+ ρtλ̃
Compute Eq[log βkv] based on new estimate of λ.

end for
end function



2.4 The author-topic model 29

We also train on mini-batches, as described in Hoffman et al. 2013 [HBWP13].
The optimal λ̃S are found based on a batch of size S, and then scaled by 1/S
and interpolated as usual,

λ := (1− ρt)λ+
ρt
S
λ̃S .

2.4.2.6 Asymptotic complexity

In appendix C.4, we show that the asymptotic complexity of the algorithm and
bound evaluation are O(MVdAdK+VdAdK+KV ) and O(VdKAd+KV +AK),
respectively. Note that M is the number of iterations per document. These
results are useful both for comparing with other algorithms, and to use as a
sanity check when testing the scalability of the algorithm empirically, which we
will do in section 4.

We see that we need some data structure to store all the Ad and Da sets in.
The memory complexity of these are O(

∑
dAd) and O(

∑
aDa). That makes the

memory complexity of the algorithm O(VdAdK+AK+KV +
∑
dAd+

∑
aDa),

where the first three terms are the size of φt, the size of γ, and the size of λ.

2.4.2.7 Advantages with blocking VB

As mentioned in section 2.4.2, we factorize the variational distribution using the
blocking method, where we relax the assumption that the latent variables are
independent. This lead to the algorithm we saw in the previous section, while
a standard VB formulation leads to the algorithm in section A.

There are two reasons why blocking VB is preferred, which is that it

• avoids the need to store the variational analogue of the latent variables
(φ) by computing them implicitly in the other updates,

• and allows vectorization of the variational variable updates.

Avoiding the need to store φ brings the memory complexity of the algorithm
from O(VdAdK+AK+KV +

∑
dAd+

∑
aDa) down to O(AK+KV +

∑
dAd+∑

aDa). The standard VB formulation of the author-topic model does not lend
itself to this optimization, but luckily the blocking VB algorithm does.



30 Theory

The updates in blocking VB are somewhat simpler than in standard VB, and
together with the implicit computation of φ, this enables vectorization of the γ
and λ updates. Using standard libraries for linear algebra, we can greatly speed
up the updates by vectorizing them.

In theory, blocking VB should improve convergence as it makes less assumptions
about the form of the posterior. As we shall see in section 4, the blocking VB
algorithm has a slight advantage.

See appendix C.5 for details on the vectorized updates.

2.4.3 Evaluating a trained model

In this section, we discuss some measures to evaluate the quality of a trained
model.

2.4.3.1 Perplexity

The perplexity of a dataset D is given by

perplexity(D) = exp

(
− 1∑

d∈DNd

∑
d∈D

L(γ, λ, φ)

)
, (2.16)

where L(γ, λ, φ) is evaluated as discussed in section 2.4.2.3.

The lower bound is an estimate of the predictive performance of the model (the
log likelihood is at least as high as the lower bound). Thereby, the perplexity is
a measure of predictive performance as well.



2.4 The author-topic model 31

2.4.3.2 Conditional likelihood

Occasionally, the conditional likelihood is used as a measure of model perfor-
mance. The conditional likelihood can be computed as

p(w|θ, β,A) =
∏
d

∏
n

p(wdn|θ, β,Ad)

=
∏
d

∏
n

∑
k

∑
a∈Ad

p(wdn, zdn = k, xdn = a|θ, β,Ad)

=
∏
d

∏
n

∑
k

∑
a∈Ad

p(wdn|zdn = k, βk)p(zdn = k|xdn = a, θa)p(xdn = a|Ad)

=
∏
d

1

|Ad|
∏
n

∑
k

∑
a∈Ad

θakβkwdn
. (2.17)

As estimates of θ and β, we can use normalized versions of γ and λ to compute
the conditional likelihood.

The conditional likelihood can be useful to compare to a Gibbs sampler, for
example. In Teh et al. 2007 [TNW07], the conditional likelihood (which they
refer to as ”word probabilities”) is used to compare CVB and collapsed Gibbs
sampling performance when training LDA.

The conditional likelihood can also be used in the perplexity, in place of the
lower bound.

2.4.3.3 Topic coherence

While the lower bound (and thereby the perplexity) and the conditional likeli-
hood tell us how well the algorithm is converging, they generally don’t tell us
much about the quality of the topics (Chang et al. 2009 [CGWB09]).

Mimno et al. 2011 [MWT+11] had domain experts annotate the quality of
topics from a trained LDA model. They then devise a measure that they find to
be strongly correlated with the human annotator’s judgement of topic quality.
This measure is the topic coherence, computed as

C(t, V (t)) =

M∑
m=2

m−1∑
l=1

log
D(v

(t)
m , v

(t)
l ) + 1

D(v
(t)
l )

,



32 Theory

where D(v, u) is the number of documents where words v and u occur together
in (the co-document frequency), and D(v) = D(v, v) is the frequency of word v.

How does model fit not imply topic quality? The notion that the pre-
dictive power (like the lower bound) does not correlate with the quality of the
model may seem counter intuitive, so an explanation shall be provided.

Say we have trained several models with different random initializations. Nat-
urally, the lower bound will convey whether we need to keep training, or if the
model has indeed converged. Once all the models have been trained to conver-
gence, comparing the predictive power does not correlate strongly with human
judgement of the resulting topics.

These topic models essentially just do dimensionality reduction of the input
space, like a type of probabilistic matrix factorization. In fact, LDA is closely
related to mPCA (multinomial Principal Component Analysis), a particular
flavour of a probabilistic formulation of PCA. The models happen to give a
representation of the data that we perceive as ”topics”. As we do not directly
maximize the quality of the topics w.r.t. some measure that we care about, we
cannot expect the predictive performance of the model to convey this.

Author-topic coherence. The topic coherence measure was developed for
standard topic models, not the author-topic model. However, topic coherence
is a perfectly valid measure of topic quality, as the topics resulting from the
two models, LDA and author-topic models, have the same intuition behind
them. One might consider using co-author frequency instead, i.e. base the topic
coherence on the number of authors’ documents that word pairs occur together
in. This would require experimental results to discern whether this measure
indeed correlates with topic quality.

2.4.4 Hyperparameter optimization

As mentioned in section 2.2.2.2, we can apply an optimization procedure by
Minka et al. 2003 [Min03] to estimate the parameter of the Dirichlet distribu-
tion. This method applies Newton iterations to increase the log likelihood of
the data. Of course, in our case we do not know the likelihood, but what we
can do is maximize the lower bound w.r.t. the Dirichlet parameter.

First, we will describe the method presented in Minka et al. 2003 [Min03] to



2.4 The author-topic model 33

estimate the Dirichlet parameter, and then we will discuss how to apply it to
the author-topic model.

2.4.4.1 Dirichlet MLE

Given D = (p1, p2, ..., pN ) such that pi ∼ Dir(α1, ..., αK), ∀i, the log likelihood
of the data is defined as

log p(D|α) = N log Γ(
∑
k

αk)−N
∑
k

log Γ(αk) +N
∑
k

(αk − 1) log p̄k,

where p̄k = 1
N

∑
i pik. Basically, we want to maximize the log likelihood (equa-

tion above) w.r.t. the data (the pi’s ) which are drawn from a Dirichlet distri-
bution.

To maximize the log likelihood, we perform Newton iterations,

α← α−H−1g,

where gi and H−1 are the gradient and the Hessian of the log likelihood function,
respectively, defined as,

gi =
∂

∂αi
log p(D|α),

H−1ij =
∂2

∂αi∂αj
log p(D|α).

Minka et al. 2003 [Min03] show that we can compute H−1g very efficiently by
first defining

qjk = −NΨ′(αk)δjk,

z = NΨ′(
∑
k

αk),

where δjk is the Kronecker delta function. We define

b =

∑
j gj/qjj

1/z +
∑
j 1/qjj

.

The gradient can be simply computed as

gk = NΨ(
∑
j

αj) +NΨ(αk) +N log p̄k.



34 Theory

Finally we can compute

(H−1g)k =
gk − b
qkk

.

From the expression above, we observe that each Newton iteration has linear
complexity O(K).

2.4.4.2 Hyperparameter optimization in the author-topic model

We describe how the method in the section above applies to the author-topic
model. We shall describe it in terms of α, but using it to update η is equivalent.

As mentioned, we maximize the lower bound w.r.t. the hyperparameters. The
bound depends on α through the following terms,

L[α] =
∑
a

(∑
k

(αk − 1)Eq[log θak] + log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk)

)
,

which we can write as

L[α] = A
∑
k

(αk − 1)
∑
a

Eq[log θak] +A log Γ

(∑
k

αk

)
−A

∑
k

log Γ(αk).

We note that this expression is equivalent to the log likelihood expression in the
previous section if we set log p̄k =

∑
aEq[log θa]. We can thus apply the Newton

algorithm to update the Dirichlet parameters in the author-topic model.

Note that we can only perform a single update of α per iteration of the VB
algorithm. That is, when we update α, we have to update Eq[log θak] before we
can make another α update. Think of it this way: when we change α then the
current θ is no longer the optimal one (given α).

In Hoffman et al. 2013 [HBWP13], the step-size ρt is used in hyperparameter
estimation as well,

α← α− ρtH−1g.

As mentioned, a Newton iteration has complexityO(K). Averaging over Eq[log θak]
is O(A), making this method O(A+K). Similarly, updating η is O(K + V ).



Chapter 3

Implementation

The goal with this section is to motivate the design of the implementation,
describe some aspects of it, and discuss caveats and possible improvements.

First, we introduce the Gensim package, which this author-topic model imple-
mentation was developed for. After that, we discuss some technical details with
the implementation.

As this section is meant to supplement the tutorial ([Mor16]), it is recommended
that the tutorial is read first.

3.1 Gensim

Gensim is a library written in Python that aims to bridge the gap between
academic research in NLP and applications in the real world. While the gap is
not very large today in 2016, when Gensim was released in 2010 this was a real
issue. Gensim continues to be a popular NLP tool and to be at the forefront of
bringing the newest NLP research to the public.

An article describing Gensim was released in 2010 by Rehurek and Sojka [RS10],



36 Implementation

and Rehurek published his PhD dissertation in 2011 [Reh11] describing it in
more detail.

Gensim’s motto is ”Topic modelling for humans”, and in addition to topic mod-
elling, Gensim also contains a very popular implementation of the word embed-
ding algorithm ”Word2Vec”.

The primary goal of this project is to provide a quality implementation of the
author-topic model in the Gensim library. The quality of the implementation is
based on

• Speed

• Scalability

• User friendliness

In the next two sections, we introduce the guiding principles and usage require-
ments that guide the development of the author-topic model implementation.
As we shall see later, the author-topic model has a number of caveats to these
principles and requirements, but sticks to them as much as possible.

3.1.1 Design philosophy

We follow Gensim’s design philosophy, which can be read about in Rehurek et
al. 2010 [RS10].

The implementation must be user friendly. All models in Gensim have a
particular interface, so that once you learn how to use Gensim, you know how
to use all the models in Gensim.

The implementation should be corpus size independent. This is why so much
focus was on developing an online algorithm for the author-topic model. With
the online algorithm, the memory footprint of the model does not depend on
the number of documents (which can be quite large), but only the vocabulary
size, number of topics and number of authors.



3.2 Author-Topic model implementation 37

3.1.2 Gensim crash-course

All Gensim models have a particular interface and data structure. We briefly
introduce some of these concepts.

In Gensim, each document in a corpus is represented as a list of (word id,
word count) tuples, where word id is an integer ID of a word and word count
is the number of times that word has been observed in the document. This
representation is a type of bag-of-words (BOW) model, also called a unigram
model. A corpus may be a list of documents in this representation, or some sort
of an iterable.

A core concept in the Gensim framework is document streaming. Models must
(if possible) accept iterable corpora such that processing takes place on a per-
document basis.

In the Gensim pipeline it is common to use two functionalities: transformations
and similarity queries. Essentially, once a model is trained a user can transform
the data to the vector space as model[corpus] and submit queries to a similarity
object index = MatrixSimilarity(model[corpus]) as sims = index[query].

3.2 Author-Topic model implementation

The structure of the program is described very briefly, and we discuss docu-
mentation and unit tests. Some aspects of the implementation are discussed in
more detail, and possible improvements are suggested.

As mentioned previously, the author-topic model is quite similar to LDA. Fur-
thermore, the algorithm we have developed to train it is also similar to the
algorithm used to train LDA in Gensim. This has allowed us to make the struc-
ture of the author-topic model class (AuthorTopicModel) very similar to the
LDA class (LdaModel). The AuthorTopicModel class inherits the LdaModel

class, and overwrites methods if necessary, and adds methods if necessary.

Because the author-topic model and LDA code are so similar, all the Gensim
developers who are used to working on LDA can easily start working on the
author-topic model.

The author-topic model is a part of the Gensim codebase, which can be found
at https://github.com/RaRe-Technologies/gensim.

https://github.com/RaRe-Technologies/gensim


38 Implementation

Some of the sections below are relevant for users, others are more for the devel-
opers who will work further on this implementation in the future.

3.2.1 Documentation

The documentation consists of the docstrings in the code that describe the
classes and their methods. Webpages with the documentation are generated
automatically using Sphinx1. When the next version of Gensim is released, the
documentation will appear in the Gensim API reference2.

The goal of the documentation is to describe the code in rough terms, and to
check parameters and usage of individual classes and methods.

In contrast to the documentation, the role of the tutorial is to give users an
introduction to the author-topic model in Gensim, assuming some pre-existing
experience with Gensim, and to illustrate some useful examples.

3.2.2 Program flow

The goal of this section is to give a very basic understanding of how the program
is designed; the program is somewhat complex and thus requires close study to
be fully understood.

In figure 3.1, we see a flow chart that illustrates what happens in the class when
the model is trained. This is a very simplified illustration, as not all methods
and variables are shown.

The constructor (__init__) of the AuthorTopicModel class is called and ini-
tializes the class. As the constructor is called with a corpus and an author2doc

dictionary, the update method is called once initialization is complete. If, for
example, corpus was omitted when the constructor was called, the class would
be initialized, and then wait for further instructions.

When the update method is called from the constructor with a corpus and
an author2doc dictionary, the training starts. The update method alternately
calls log_perplexity to evaluate the lower bound, and the methods performing
the E-step and M-step, as in the pseudo-code in section 2.4.2, i.e. do_estep and
do_mstep respectively.

1http://www.sphinx-doc.org
2https://radimrehurek.com/gensim/apiref.html.

http://www.sphinx-doc.org
https://radimrehurek.com/gensim/apiref.html


3.2 Author-Topic model implementation 39

Figure 3.1: This figure illustrates how various methods in the AuthorTopic-
Model class are called during training. The solid arrows indicate
that one method calls another, while the dashed lines indicate
looping.

Mini-batches of size chunksize are sent to do_estep. Mini-batches are also
referred to as ”chunks”.

If automatic alpha and eta tuning are enabled, they are updated subsequently
to the E-step and M-step, respectively.

3.2.3 Unit tests

Unit tests of the author-topic model are designed to test as many aspects of the
model as possible. When anything in the Gensim codebase is changed, these
unit tests will run automatically and tell the developer whether (s)he has broken
something in the author-topic model.

The unit tests are essentially a retrofit of the tests of the LdaModel class. Tests
that do not make sense for the author-topic model are removed, some tests are
changed slightly to fit the author-topic model, and some new tests are introduced
as well.



40 Implementation

3.2.4 Details

In this section, we go through some details and caveats with the implementation,
in no particular order.

3.2.4.1 Multiprocessing and distributed computing

LDA in Gensim supports both multiprocessing and distributed computation,
but the author-topic model implementation does not do so at the moment.
Much of the infrastructure that allows both multiprocessing and distributed
computation is already in place, as the model inherits it from LDA. Therefore,
enabling these functionalities should be a relatively pain free task.

Multiprocessing will allow us to train the models much faster on a single ma-
chine.

Distributed computation spreads the computational load, as well as the stor-
age requirements, across a cluster of machines, allowing us to run far larger
experiments than we can on a single machine.

3.2.4.2 Corpus transformation

As mentioned earlier, Gensim models should have a model[doc] interface, where
doc is a BOW representation of a document. The author-topic model class
does this somewhat differently, by accepting the name of an author and simply
returning the corresponding row of γ (which in the class is a state variable
model.state.gamma). The interface is then model[author_name].

3.2.4.3 ”get document topics” not implemented

The class inherits the get_document_topics method from LDA, but it is not
clear what this method should do in the author-topic model. Therefore, this
method is overwritten such that it raises an error (with an appropriate message)
if called.



3.2 Author-Topic model implementation 41

3.2.4.4 Constructing missing author dictionaries

The author-topic model requires both a mapping from authors to documents
(author2doc) and from documents to authors (doc2author). However, given
one of these, the other one can be constructed automatically. There are therefore
functions implemented for this, so the class only requires one of them, and the
user also can construct the dictionary they are missing. construct_author2doc
and construct_doc2author can be found as functions in the atmodel.py file,
not as methods of the class.

3.2.4.5 Update with new documents and authors

The implementation has been designed to allow the user to train further on both
previously seen and unseen data. If this was not the case, the model would be
static; if new authors arrived in your data, you would have to train the entire
model from scratch.

The update method is based on the idea that the model is updated w.r.t. all
the authors in the input author2doc, rather than all the documents in the
input corpus. Consider an author that has been trained on 100 documents to
convergence, and now a single new document is added; in this case, if the author
is only trained on the new document, he will converge to that document and
”forget” all the 100 other documents.

When update(corpus, author2doc) is called, the following process takes place.

• Randomly initialize variational distribution of all new authors (i.e. add
rows to model.state.gamma).

• Combine input data with all previously seen data.

• Train on all documents of all authors in input author2doc.

3.2.4.6 Serialized corpora

Gensim models accept serialized corpora, i.e. data that is stored on the hard-
drive rather than in memory. This is possible in the AuthorTopicModel class,
but there are some caveats.



42 Implementation

Details on how to use the serialized functionality can be found in the tutorial
([Mor16]).

The MmCorpus (Matrix Market) format was chosen to use for serialization
because it is an indexable format, i.e. it is possible to retrieve some document
as doc = corpus[d]. Furthermore, Gensim has an API for this format.

The author-topic model requires that we know which author corresponds to
which documents, and we therefore need to know the index of the current doc-
ument when training. Under normal circumstances, this would be easy as the
corpus is processed from the first to the last document in sequence, so we just
need to keep track of the index. Updating the model on new unseen data (as
explained above) makes this difficult, and requires that we are able to retrieve
a document by its index.

Update and serialized corpora: When a serialized corpus is used, and up-
date is called with new documents, these new documents have to be added to
the corpus. Unfortunately, the MmCorpus format does not support concatenat-
ing the two corpora in an efficient way. Therefore, the entire corpus needs to be
re-serialized (i.e. read from disk, and written again to disk). This will become
more and more cumbersome as more data is added.

Adding the functionality to efficiently append documents to an MmCorpus in
the Gensim API would therefore make this process much faster.

3.2.4.7 Inference on held-out data

At the moment, the model does not support inference on held-out data. In the
context of the author-topic model, inference on held-out data would correspond
to inferring the topic distribution of a new author without modifying the model,
that is, updating γ for the new author without updating λ.

Implementing this functionality should be relatively simple. One could for ex-
ample use the following procedure.

• Add a row to γ (model.state.gamma).

• Call the inference method with collect_sstats=False (so that λ is
not updated).

• Remove the rows again from γ.



3.2 Author-Topic model implementation 43

The lack of this functionality also means that it is not possible to evaluate the
bound on held-out data. This is important in order to obtain a measure of how
well the model generalizes.

With this functionality, it would be possible to define the corpus transformation
operation model[corpus] to accept a set of documents as input, and infer the
author-topic distribution assuming all the input documents belong to a single
author.

3.2.4.8 Potential memory problems with author dictionaries

As discussed in section 2.4.2.6, the memory complexity of the author2doc and
doc2author dictionaries are O(

∑
dAd) and O(

∑
aDa), respectively. The mem-

ory requirement of these data structures thus scales with the number of docu-
ments, which is very undesirable for a streamable algorithm. In practice, how-
ever, these dictionaries will not cause problems, for the most part. If problems
do occur, it needs to be considered if some serialized data structure that has
O(1) look-up speed (as dictionaries do) can be used.



44 Implementation



Chapter 4

Results

In this section, the implementation is tested for various purposes. The imple-
mentation is compared to a pre-existing one, we test the blocking VB algorithm,
the online algorithm, vectorization speed up, and hyperparameter MLE. Lastly,
we show that the implementation scales as we would expect it to in accordance
with the theory.

Refer to the tutorial ([Mor16]) for examples and analysis of the author-topic
representation.

When the variational lower bound is plotted, the first point is excluded, for the
most part. The first bound is simply a function of the initialization of γ and
λ and thus is not informative when, for example, comparing two algorithms.
Furthermore, the first bound is usually much lower than the rest by orders of
magnitude, and excluding the first point therefore makes it easier to compare.
Assume that the initial bound is excluded unless otherwise stated.

4.1 Data

Three datasets were used in this project, the NIPS dataset (discussed in the tu-
torial [Mor16]), a data dump from StackExchange, and an artificially generated



46 Results

dataset.

The StackExchange dataset is only used in one particular test below. It can
be downloaded at https://archive.org/details/stackexchange. There are
several categories in this dataset, and the ”cooking” category was used. The
data was pre-processed in a similar manner to the NIPS dataset (as discussed
in the tutorial, [Mor16]).

For some of the experiments discussed in this section, artificial data is automat-
ically generated. This allows us to control all aspects of the data; for example,
we can control the number of authors per document and number of words per
document, which is useful for testing the scalability of the implementation in
section 4.4.

4.2 Comparison with an existing implementa-
tion

We compare the implementation we have developed with one that was available
before the start of this project. This is the Python-Topic-Model (PTM) 1. The
PTM implementation of the author-topic model applies blocking Gibbs sampling
to train the model.

We do not compare any type of model fit or topic coherence, but rather simple
tests show that our algorithm is significantly superior to the PTM algorithm.

Both algorithms, PTM and Gensim, are run on a small subset of the NIPS
dataset, pre-processed in exactly the same manner. Our algorithm is run for
100 passes over the data with 1 iteration per document, and the PTM algorithm
is run for 10 iterations of Gibbs sampling. The top 10 words from the resulting
topics from both algorithms are shown below.

Topics from Gensim author-topic model:

Topic 0: net, layer, memory, bit, character, classifier, node,

connection, code, machine

Topic 1: gaussian, bound, approximation, matrix, density, estimate,

generalization, class, log, sample

1https://github.com/arongdari/python-topic-model

https://archive.org/details/stackexchange
https://github.com/arongdari/python-topic-model


4.2 Comparison with an existing implementation 47

Topic 2: neuron, circuit, spike, signal, chip, analog, voltage,

cell, frequency, noise

Topic 3: rule, sequence, concept, fig, energy, instance, cell,

class, positive, neuron

Topic 4: cell, neuron, activity, field, connection, response,

visual, map, cortex, orientation

Topic 5: image, constraint, distance, solution, optimization,

graph, threshold, object, surface, dimensional

Topic 6: image, object, visual, signal, motion, component,

response, stimulus, filter, direction

Topic 7: hidden, recognition, speech, word, layer, trained,

hidden_unit, context, net, architecture

Topic 8: prediction, recurrent, noise, series, nonlinear,

sample, trained, better, table, signal

Topic 9: control, action, policy, reinforcement, optimal,

trajectory, dynamic, controller, robot, reinforcement_learning

Topics from PTM author-topic model:

Topic 0: register, sharply, open, establishes, bottom, cm, quasi,

th, blumer, involved

Topic 1: improvement_over, exploited, 5i, tic, arising, alarm,

coincides_with, self_organizing, lnp, obey

Topic 2: miss, identi, human_face, distributed_representation,

involved, workshop_on, earliest, perceive, infomax, mann

Topic 3: port, 5i, hint, identity_matrix, cross_entropy,

hidden_markov, representing, thinking, self_organizing, la_jolla

Topic 4: pling, naturally, rein_forcement, experimental, gr,

intend, open, chervonenkis, equiv, written_a



48 Results

Topic 5: charging, tolerance, naturally, gr, exploited, preserve,

aligned, opponent, active, be_interpreted

Topic 6: salk_edu, must_satisfy, facilitates, binding, barron,

recognition, unity, equipment, erroneous, localize

Topic 7: binding, gap_between, vivo, false, often, kolmogorov,

exploited, increased, reading, electric

Topic 8: erroneous, unity, ao, environment, occurrence, cannot_be,

active, reward, excitation, formant

Topic 9: chervonenkis, power_spectrum, twelfth, active, intend,

charging, blumer, nine, mann, hyperplanes

Our algorithm takes 2 minutes and 44 seconds, and already we see the some
topics emerging. These are some of the same topics as in the tutorial, such as
”circuits” and ”reinforcement learning”.

The PTM algorithm has not started to converge to any meaningful topics, even
after the 15 minutes and 47 seconds it took to train the model.

The difference between the two algorithms is evident.

4.3 Algorithmic development tests

Some algorithms and functionality that were developed are tested. The goal of
this section is to show that some of the key developments work as expected. In
addition, all tests show that the algorithm increases the bound.

4.3.1 Comparing blocking and non-blocking VB

In this section, we show that blocking VB not only increases the bound as fast
as standard VB, but that it in fact increases it faster. As mentioned in section
2.4.2.7, blocking VB should be better in theory, because it assumes the topic
and author assignments to be dependent variables.

Two programs were made for this test that are almost identical except for the
updates.



4.3 Algorithmic development tests 49

It turns out that the gain from blocking VB depends on the data. When both
algorithms are tested on a subset of the NIPS data, there is virtually no differ-
ence. We test both algorithms on a subset of the StackExchange data as well,
and in figure 4.1 we see that the blocking VB algorithm converges faster.

Most likely, the reason for this dependence on data is the number of docu-
ments per author and/or the number of authors per document; the higher these
numbers, the higher the amount of correlation between the two latent variables
(author assignment and topic assignment). Imagine you have one author per
document and one document per author (i.e. equivalent to standard LDA),
then the correlation between x and z has no significance, and whether or not
we apply blocking VB makes no difference.

The NIPS subset had 1.97 authors per document, while the StackExchange sub-
set had 3.91 authors per document, where the number of authors per document
is computed as

∑
dAd/D.

Figure 4.1: Per-word lower bound for blocking and non-blocking VB algo-
rithms, see section 4.3.1 for details.

To test this idea that when the number of authors per document is high, the
blocking VB algorithm does better, we generate some data. In figure 4.2, both
algorithms are tested again, with two different generated datasets. The only
difference between the two datasets is that the number of authors per document
is different, and we see that the bound converges faster.

However, as we see in table 4.1, there is a trade-off between speed and accuracy
with blocking VB, as blocking VB is slower than non-blocking VB. This is
no surprise, as the blocking algorithm requires us to sum over Ad × K when
normalizing φ.



50 Results

Figure 4.2: Testing blocking (blue line) and non-blocking VB (red line) algo-
rithms on generated data. See section 4.3.1 for details.

Avg. authors per doc Blocking (bound / sec) Non-blocking (bound / sec)
2.0 -6.2 / 7.9 -6.4 / 5.9
4.0 -6.26 / 6.5 -6.44 / 10.5

Table 4.1: Testing blocking and non-blocking VB algorithms on generated
data. The table shows the final bound and the time it took to
train the model. See section 4.3.1 for details.

The goal of applying blocking was to avoid storing φ and to enable vectorization.
However, these tests show that the blocking algorithm not only works, but that
it potentially has an advantage over standard VB. This advantage is, however,
a trade-off between model fit and training time.

4.3.2 Comparing offline and online algorithms

The algorithms are tested on a subset of the NIPS dataset. We test the offline
algorithm for 100 iterations, and the online algorithm for 100 passes and either
1 or 10 iterations per document.

In figure 4.3, we see the lower bound for each of the tests plotted against the
iteration number. The online algorithm outperforms the offline, and 10 itera-
tions per document slightly outperforms 1 iterations per document. The online
algorithm converges much faster in the early iterations, but the offline algo-



4.3 Algorithmic development tests 51

rithm catches up. However, we are not taking the time it takes to complete
each iteration (or pass).

Figure 4.3: Comparison of online and offline algorithms in terms of bound
convergence. See section 4.3.2 for details.

In figure 4.4, we again see the lower bound, this time plotted against the execu-
tion time. While the online algorithm has reached a higher bound in 100 passes
than the offline did in 100 iterations, it seems possible that the offline algorithm
will eventually overtake the online algorithm. However, it seems that it will
take such a long time for the offline algorithm to catch up that it is simply not
worth it (take note of the execution time listed in the x-axis).

Figure 4.4: Comparison of online and offline algorithms in terms of bound
convergence. See section 4.3.2 for details. The initial bound is
included in these graphs.



52 Results

Number of documents Size of vocabulary Number of authors Speed-up
90 681 166 6.6
286 2245 536 5.1
1740 8640 2720 2.4

Table 4.2: Speed-up from vectorization. Number of topics K = 10. See section
4.3.3 for details.

Comparing figure 4.3 and figure 4.4, we see that while the online algorithm
using 10 iterations per document outperformed the one using only 1 iteration
per document, the former is more than 6 times slower than the latter. As a side
note, we can conclude that increasing the number of iterations doesn’t seem to
be worth it.

4.3.3 Vectorization speed-up

The vectorized is compared to the non-vectorized code, to get an idea of the
speed-up gained. In table 4.2, we see a table with the dimensionality of the
problem and the speed-up. The speed-up is just t1/t2 where t1 is the time taken
by the vectorized code, and t2 the time taken by the non-vectorized version.

While the speed-up is quite significant, we see that it scales quite badly with the
size of the data. This is counter intuitive because the speed-up from vectoriza-
tion increases as the vectors and matrices involved increase in size. It turns out
that the reason for this is that the bottleneck of the algorithm when the dataset
is large is something we cannot vectorize, namely the update of Eq[log β].

In table 4.3, we see the relative time it takes to update Eq[log β] and γ in the
non-vectorized code. We see that as we increase the amount of data, the relative
time it takes to update Eq[log β] increases. This means that as the problem size
increases, the part we are optimizing by vectorizing the code becomes a smaller
part of the total computation taking place, thus the speed-up diminishes.

Furthermore, as the complexity of the Eq[log β] update is O(KV ), while the
complexity of the γ update is O(AdKVd), the former will grow more quickly.

While it is unforunate that the speed-up does not scale well, we still benefit
from vectorization at all scales.

The data in figure 4.3 were obtained by using a profiling tool, that runs a
program and outputs statistics such as the % of total execution time for each



4.3 Algorithmic development tests 53

Number of documents Update Eq[log β] (in %) Update γ (in %)
90 1.6 20.4
286 2.8 20.8
1740 9.3 19.6

Table 4.3: Relative execution time (% of total execution time) taken by
Eq[log β] and γ in the non-vectorized code.

line in the code.

4.3.4 Hyperparameter MLE

We check that the automatic learning of α and η using MLE, as described in
section 2.4.4, speeds up convergence by increasing the bound. In figure 4.5, we
have trained the model on the NIPS data, and the bound is shown in four dif-
ferent scenarios: without any optimization, with automatic learning of α, with
automatic learning of η, and with automatic learning of both hyperparameters.
As we see, the bound is increased as expected, and optimizing both hyperpa-
rameters gives even better results. We also note that optimizing the prior on
word probabilities η seems to improve the result more than optimizing the prior
on topic probabilities α.

Figure 4.5: Test of hyperparameter MLE on NIPS data. See section 4.3.4 for
details.



54 Results

4.4 Scalability

In this section, we will show how the execution time of the program scales with
various quantities; specifically, four variables of the data are tested, number of
documents (D), number of authors per document (Ad), size of vocabulary (V ),
number of words per document (Vd), and one parameter of the model is tested,
namely number of topics (K). We compare the scalability with the asymptotic
complexity (i.e. ”theoretical scalability”) derived in Appendix C.4 and also
discussed in section 2.4.2.5.

Three other factors that effect the execution time are the chunk size (size of mini-
bathces), number of passes over data, and number of iterations per document.
However, these were not tested empirically, but we shall discuss their effect later
in this section.

4.4.1 Empirical scalability

All the tests in this section are done on the generated data. We time the training
of the model as well as computing the bound on the corpus. All the results can
be seen in figures 4.6 to 4.10. All execution times are averaged over several runs
of the program.

The asymptotic complexity of the algorithm tells us that when we vary a single
of these factors, independently, we should expect to see a linear trend in the
execution time. All the plots in figure 4.6 to 4.10 show linear scalability w.r.t.
the different factors. Most notably, figure 4.6 is important in the context of an
online, corpus independent, algorithm.

As a side note, while figures 4.7 (right) and 4.10 (right) do not look 100% linear,
we attribute this to some side effects, and still interpret them as linear. The most
important thing is that these plots are defnitely note superlinear, for example
quadratic.

4.4.2 Other factors in execution time

As mentioned previously in this section, three other factors that effect the ex-
ecution time are the chunk size (size of mini-bathces), number of passes over
data, and number of iterations per document.



4.4 Scalability 55

Figure 4.6: Execution time of training and bound evaluation as a function of
the number of documents in the corpus. See section 4.4 for details.

The chunk size essentially dictates how many E-steps we do in a row before
we do a single M-step. For the most part, the M-step is very computationally
intensive to perform, which means that increasing the chunk size will lower the
training time. As a result, it is a good idea to keep the chunk size as big as
possible (but no larger than what can fit in memory). On the other hand,
the chunk size also affects the resulting representations; one may decide that
lowering the chunk size will improve the topics, and therefore will have to strike
a balance between the quality of the topics and the execution time.

If the running time for a single pass over the corpus is t, then the time for
running P passes is P · t, it is that simple. How many passes will be necessary
to converge will depend on the chunk size and the number of iterations per
document, so it is again a matter of striking a balance between model fit and
time.

The number of iterations dictates how many times we iterate over a single doc-
ument in the M-step. Clearly, increasing the number of iterations will increase
the execution time linearly. Once again, choosing the number of iterations is a
matter of compromising between model fit and training time.



56 Results

Figure 4.7: Execution time of training and bound evaluation as a function of
the average number of authors per document. See section 4.4 for
details.

Figure 4.8: Execution time of training and bound evaluation as a function of
the number of unique words in the corpus. See section 4.4 for
details.



4.4 Scalability 57

Figure 4.9: Execution time of training and bound evaluation as a function of
the number of words per document. See section 4.4 for details.

Figure 4.10: Execution time of training and bound evaluation as a function
of the number of topics. See section 4.4 for details.



58 Results



Chapter 5

Discussion

This projects attempts to develop the author-topic model in order to catch up
with many years of development of LDA, both on the theory side and in terms
of implementation in the Gensim community. It is therefore not surprising
that there is still work to be done. In this section, we summarize some of the
problematic aspects of the implementation and some general improvements that
can be made.

The discussion proceeds in order of importance (loosely), the most important
subjects appearing first.

As mentioned in section 1.3, the MatLab Topic Modeling Toolbox1 contains
an implementation of the author-topic model that is quite useful. It would
be very interesting to see a comparison between it, and our implementation.
The problem is that it does not compute any sort of evaluation metric which
would facilitate an objective comparison, for example, an approximation to the
likelihood (like in section 2.4.3.2). The MatLab Topic Modeling Toolbox is no
longer being maintained, so this requires someone else to become familiarized
with the implementation, and introduce some relevant evaluation metric.

While section 4.4 shows that the implementation scales well (as well as we expect
it to), a truly large scale experiment with real data should be made to test the

1http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm


60 Discussion

scalability in a real world setting. Such a test would also showcase the usefulness
of the implementation at scale.

It is important to be able to evaluate the model fit based on held-out data, but
as discussed in section 3.2.4.7, this is not possible at the moment. Enabling this
functionality has high priority in the further development of the implementation.
The level of difficulty of this task is not clear as one would have to decide
exactly what it means to make inference on held-out data (in the context of the
author-topic model), and possibly have to make some structural changes to the
program.

As discussed in section 3.2.4.6, the use of serialized corpora in the implemen-
tation is far from ideal. Improving this functionality has high priority in the
further development of the implementation, but can prove to be a difficult task.

As discussed in section 3.2.4.1, enabling multiprocessing and distributed com-
putation should be easy, relatively speaking, and would allow us to train models
much faster and to run far larger experiments.

It would be interesting to see a high-quality and scalable implementation of the
author-topic model that applies CVB in Gensim. However, the first natural
step in this direction is to apply CVB to LDA in Gensim, and develop that
implementation as far as we can. After that, doing the same for the author-
topic model should be relatively easy.

As mentioned in section 2.4.3.3, it may be a good idea to develop a topic co-
herence measure specifically for the author-topic model. This requires human
annotators to score topics in terms of quality from several trained models, so
that a topic coherence measure that correlates with the human judgement can
be devised empirically.

The potential memory problem with the author dictionaries, discussed in section
3.2.4.8, is not a high priority, as it may not pose a problem at all.



Chapter 6

Conclusion

A scalable algorithm was developed to train the author-topic model by ap-
plying stochastic variational inference as well as blocking. The algorithm was
implemented in a fashion that facilitates seamless integration with the Gensim
framework.

Useful examples of the topic model were demonstrated in a tutorial, and the
open source community quickly embraced this new feature in Gensim.

There is still work to be done. There are a number of caveats to the implemen-
tation, outlined throughout this thesis, and many of them can be alleviated.
Hopefully, the development will continue within the Gensim community.



62 Conclusion



Appendix A

Standard VB

The derivation of the algorithm given a standard VB approach is described. A
lot of details are left out, but everything should be clear if section 2.4.2 has been
read beforehand.

We pose the variational distribution q(θ, β, z, x) which approximates the poste-
rior. The variational distribution is fully factorized,

q(θ, β, z, x) = q(θ|γ)q(β|λ)q(x|µ)q(z|φ)

=
∏
a

q(θa|γa)
∏
k

q(βk|λk)
∏
d,n

q(xdn|µdn)
∏
d,n

q(zdn|φdn)

=
∏
a

Dir(θa|γa)
∏
k

Dir(βk|λk)
∏
d,n

Mult(xdn|µdn)
∏
d,n

Mult(zdn|φdn). (A.1)

Figure A.1 shows a graphical model, as in figure 2.4, of the model q(θ, β, z, x).

A.0.1 Obtaining the lower bound

We obtain the lower bound to the marginal log likelihood.



64 Standard VB

Figure A.1: Graphical model of standard VB approximation. See section A
for details.

log p(w|α, η,A) ≥ Eq[log p(θ, β, x, z, w|α, η,A)]− Eq[log q(θ, β, z, x)]

= L(γ, λ, φ, µ)

=
∑
a

Eq[logDir(θa|α)] +
∑
k

Eq[logDir(βk|η)] +
∑
d,n

Eq[logUnif(xdn|Ad)]

+
∑
d,n

∑
a∈Ad

Eq[logMult(zdn|θa)] +
∑
d,n,k

Eq[logMult(wdn|βk)]

−
∑
a

Eq[logDir(θa|γa)]−
∑
k

Eq[logDir(βk|λk)]−
∑
d,n

Eq[logMult(xdn|µdn)]

−
∑
d,n

Eq[logMult(zdn|φdn)] (A.2)

We evaluate each of the expectations in the equation above. To evaluate Eq[logDir(θa|α)]
we write the Dirichlet in the form

Dir(θa|α) = exp

{(∑
k

(αk − 1) log θak

)
+ log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk)

}
,

The first expectation is

Eq[logDir(θa|α)] =
∑
k

((αk − 1)Eq[log θak]) + log Γ

(∑
k

αk

)
−
∑
k

log Γ(αk)



65

where Eq[log θak] = Ψ(γak)−Ψ(
∑
k′ γak′).

The rest of the Dirichlet expectations are derived in the same manner. We have
the expectations of the multinomials,

Eq[logMult(zdn|θ)] =
∑
k

∑
a∈Ad

∫
q(xdv = a)q(zdv = k)q(θak) log p(zdn|θ)dγ

=
∑
k

∑
a∈Ad

µdnaφdnkEq[log θak], (A.3)

Eq[logMult(wdn|β)] =
∑
k

∑
v

∫
I(wdn = v)q(zdv = k)q(λkv) log p(wdn = v|βkv)dλ

=
∑
k

∑
v

I(wdn = v)φdnkEq[log βkv], (A.4)

and similarly,

Eq[logMult(zdn|φdn)] =
∑
k

φdnk log φdnk.

Eq[logMult(xdn|µdn)] =
∑
a∈Ad

µdna logµdna.

Finally, we have

Eq[logUnif(xdn|Ad)] =
1

|Ad|
.

We simplify the bound by introducing the ndv variable. We also collect some of
the terms in the equation, to make it a bit shorter. Finally, we add constraints
such that

∑
k φdvk = 1 ∀d, v with corresponding Lagrange multipliers `φdv, and



66 Standard VB

treat µ similarly.

L(γ, λ, µ, φ) =∑
a

(∑
k

(αk − γak)Eq[log θak]− log Γ(
∑
k

γak) +
∑
k

log Γ(γak) + log Γ(
∑
k

αk)−
∑
k

log Γ(αk)

)

+
∑
k

(∑
v

(ηv − λkv)Eq[log βkv]− log Γ(
∑
v

λkv) +
∑
v

log Γ(λkv) + log Γ(
∑
v

ηv)−
∑
v

log Γ(ηv)

)

+
∑
d,v

ndv

(∑
k

φdvk

((∑
a∈Ad

µdvaEq[log θak]

)
+ Eq[log βkv]− log φdvk

)
−
∑
a∈Ad

µdva logµdva

)

+
∑
d,v

1

|Ad|
+
∑
d,v

`φdv

((∑
k

φdvk

)
− 1

)
+
∑
d,v

`µdv

((∑
a

µdva

)
− 1

)
(A.5)

A.0.2 Obtaining the update equations

To maximize the lower bound, we apply a simple coordinate ascent method:
take the derivative of L(γ, λ, µ, φ) w.r.t. each of the variational parameters,
equate it to zero, and isolate the corresponding parameter.

The lower bound depends on φdvk via the terms

L[φdvk] = ndvφdvk

((∑
a∈Ad

µdvkEq[log θak]

)
+ Eq[log βkv]− log φdvk

)

+ `φdv

((∑
k′

φdvk′

)
− 1

)
, (A.6)

and the partial derivative of the lower bound w.r.t. φdvk is

∂L
∂φdvk

= ndv
∑
a∈Ad

µdvkEq[log θak] + ndvEq[log βkv] − ndv log φdvk − 1 + `φ.

(A.7)

Setting the derivative equals to zero and isolating φdvk yields



67

φdvk ∝ exp

{∑
a∈Ad

µdvkEq[log θak] + Eq[log βkv]

}
.

The normalization constant (note the ”proportional to” in the equation above)
is exp(1− `φ), although we just normalize φdvk directly, as we shall see later.

We move on to µ, the lower bounds depends on it via the terms

L[µdva] = ndv

(∑
k

φdvkµdvaEq[log θak]− µdva logµdva

)
+
∑
d,v

`µdv

((∑
a′

µdva′

)
− 1

)
,

the partial derivative is

∂L
∂µdva

= ndv

(∑
k

φdvkEq[log θak]− 1− logµdva

)
+ `µ,

which yields the update equation

µdva ∝ exp{log
1

|Ad|
+
∑
k

φdvkEq[log θak]},

where we ignore constant terms as in the φ update. We can of course simplify
this to

µdva ∝
1

|Ad|
exp{

∑
k

φdvkEq[log θak]}.

The lower bound depends on γ via the terms

L[γak] =

(αk − γak)(Ψ(γak)−Ψ(
∑
k′

γak′))− log Γ(
∑
k

γak) + log Γ(γak)

+
∑
d∈Da

∑
v

ndvφdvkµdvk(Ψ(γak)−Ψ(
∑
k′

γak′)). (A.8)



68 Standard VB

where we have defined the set Da = {d | a ∈ Ad}. The partial derivative is

∂L
∂γak

= (αk − γak)(Ψ′(γak)−Ψ′(
∑
k′

γak′))

+
∑
d∈Da

∑
v

ndvφdvkµdva

(
(Ψ′(γak)−Ψ′(

∑
k′

γak′))

)
, (A.9)

This yields the update equation

γak = αk +
∑
d∈Da

∑
v

ndvµdvkφdvk.

The lower bound depends on λ via the terms

L[λkv ] =

(ηv − λkv)(Ψ(λkv)−Ψ(
∑
v′

λkv′))− log Γ(
∑
v

λkv) + log Γ(λkv)

+
∑
d

ndvφdvk(Ψ(λkv)−Ψ(
∑
v′

λkv′)), (A.10)

and the partial derivate is

∂L
∂λkv

= (ηv−λkv)(Ψ′(λkv)−Ψ′(
∑
v′

λkv′))+
∑
d

ndvφdvk(Ψ′(λkv)−Ψ′(
∑
v′

λkv′)),

(A.11)

which yields the last update equation,

λkv = ηv +
∑
d

ndvφdvk.

A.0.3 VB algorithm

Algorithm 3 show pseudo-code using the VB updates derived in the previous
section.

Notice that in the µ update, we have removed the dependency on |Ad|, the
number of authors in the document, because it disappears in the normalization
term anyway.



69

Algorithm 3 Training the author-topic model using standard VB.

function AT-VB(wdn, A, K, α, η, τ1, τ2)
Initialize γ and λ randomly according to a gamma distribution.
Compute Eq[log θak] based on γ.
Compute Eq[log βkv] based on λ.
Compute L.
repeat

Set Lprev := L.
for d = 1 to D do

for v ∈ Vd do
for k = 1 to K do

φdvk ∝ exp
{∑

a∈Ad
µdvaEq[log θak] + Eq[log βkv]

}
.

end for
Normalize φdvk to sum to 1 over k:

φdvk := φdvk/
(∑K

k=1 φdvk

)
end for

end for
for d = 1 to D do

for v ∈ Vd do
for a ∈ Ad do

µdva ∝ exp{
∑
k φdvkEq[log θak]}.

end for
Normalize µdva to sum to 1 over a:
µdva := µdva/

(∑
a∈Ad

µdva
)

end for
end for
for a = 1 to A do

for k = 1 to K do
γak := αk +

∑
d∈Da

∑
v ndvµdvaφdvk.

end for
end for
Update Eq[log θak] based on γ.
for k = 1 to K do

for v = 1 to V do
λkv := ηv +

∑
d ndvφdvk.

end for
end for
Update Eq[log βkv] based on λ.
Compute L.

until (L − Lprev)/Lprev < τ1
end function



70 Standard VB

A.0.4 Online VB

Algorithm 4 show pseudo-code for the online VB algorithm. The online algo-
rithm is derived similarly to the one in section 2.4.2.5.



71

Algorithm 4 Online training the author-topic model using standard VB.

function online-AT-VB(wdn, A, K, α, η, τ , κ)
Initialize γ and λ randomly according to a gamma distribution.
Compute Eq[log θak] based on γ.
Compute Eq[log βkv] based on λ.
for t = 1 to ∞ do

Set ρt := (τ0 + t)−κ.
repeat

for v ∈ Vt do
for k = 1 to K do

φtvk ∝ exp
{∑

a∈At
µtvaEq[log θak] + Eq[log βkv]

}
.

end for
Normalize φtvk to sum to 1 over k:

φtvk := φtvk/
(∑K

k=1 φtvk

)
end for
for v ∈ Vt do

for a ∈ At do
µtva ∝ exp{

∑
k φtvkEq[log θak]}.

end for
Normalize µtva to sum to 1 over a:
µtva := µtva/

(∑
a∈At

µtva
)

end for
for a = 1 to A do

for k = 1 to K do
γ̃ak := αk + |Da|

∑
v ntvµtvaφtvk.

end for
end for
γ̂ := (1− ρt)γ + ρtγ̃
Update Eq[log θak] based on a temporary estimate γ̂.

until Average absolute change in γ̃ is less than τ .
γ := γ̂
for k = 1 to K do

for v ∈ Vt do
λ̃kv := ηv +Dntvφtvk.

end for
end for
λ := (1− ρt)λ+ ρtλ̃
Update Eq[log βkv] based on λ.

end for
end function



72 Standard VB



Appendix B

Collapsed variational Bayes

We give a brief overview of CVB before introducing the algorithm. We refer to
Ngo et al. 2016 [NY16] for more details. See section 2.4.1.2 for context.

In CVB, the variational distribution is given by

q(θ, β, x, z) = q(θ, β|x, z)
D∏
d=1

Nd∏
n=1

q(x, z|φdn), (B.1)

where φdn are the variational parameters, such that

φdnka =

{
q(zdn = k, xdn = a), if a ∈ Ad,
0 otherwise.

We note that the random variables θ and β are not decoupled in this variational
distribution. We also see that θ and β depend on the latent variables x and z,
rather than some variational parameter as in standard VB. The basic idea of
CVB is that the global variables θ and β are marginalized out of the variational
distribution, and only the latent variables q(x, y|φ) are estimated.



74 Collapsed variational Bayes

As in standard VB, we have the inequality that defines the lower bound,

p(w|α, η,A) ≥ Eq[log p(θ, β, x, z, w|α, η,A)] − Eq[log q(θ, β, x, z)]. (B.2)

By allowing q(θ, β|x, z) = p(θ, β|x, z, w, α, η, A), we can marginalize q(θ, β|x, y)
out of the lower bound. Now the lower bound becomes

L(φ) = Eq[log p(θ, β, x, z, w|α, η,A)]− Eq[log q(θ, β, x, z)]

= Eq[log p(θ, β, x, z, w|α, η,A)]− Eq[log p(θ, β|x, z, w, α, η, A)]

− Eq[log q(x, z)]

= Eq[log p(x, z, w|α, η,A)]− Eq[log q(x, z)]. (B.3)

This is our objective in CVB. We see that the objective only depends on the la-
tent variables x and z. As in standard VB, we add the Lagrangian, constraining
φdnak to sum to one.

Lλ(φ) = Eq[log p(x, z, w|α, η,A)]−Eq[log q(x, z)]+

D∑
d=1

Nd∑
n=1

(
λdn

K∑
k=1

A∑
a=1

(φdnka − 1)

)
.

We maximize the lower bound by taking its derivative w.r.t. the variational
parameters φdnka, equating it to 0, and isolating φdnka.

We skip the derivations required to obtain the update equations for φdnka, they
can be found in Ngo et al. 2016 [NY16]. The update equation turns out to be
the following.

φdnka =
exp(Eq(z−dn,x−dn)(log(η+N

−dn
··kwdn

)−log(V η+N−dn
··k· )−log(Kα+N−dn

·a·· )+log(α+N−dn
·ak· )))∑

a′
∑

k′ exp(Eq(z−dn,x−dn)(log(η+N
−dn

··k′wdn
)−log(V η+N−dn

··k′· )−log(Kα+N
−dn

·a′·· )+log(α+N−dn

·a′k′·)))
,

(B.4)

whereNdakwdn
is the number of times the dictionary word wdn has been observed

in document d where it was assigned to author a and topic k. A dot implies
that the corresponding indices are summed out. N−dndakwdn

indicates that wdn is
excluded.

B.1 Gaussian approximation

It is important to note one other step involved in CVB, which is Gaussian ap-
proximation. Essentially, when we obtain the update equations, they require



B.1 Gaussian approximation 75

the computation of some expectations of a particular form, one of them being
Eq(z−dn,x−dn)[log(V η+N−dn··k· )]. As N−dn··k· is a sum of independent Bernoulli ran-
dom variables, we can approximate its distribution with a Gaussian. Assuming
this, it turns out that

Eq(N
−dn
··k· ) =

∑
(d′,n′)6=(d,n)

∑
a∈Ad′

φd′n′ka,

V arq(N
−dn
··k· ) =

∑
(d′,n′) 6=(d,n)

 ∑
a∈Ad′

φd′n′ka

1−
∑
a∈Ad′

φd′n′ka

 .

Then a second order Taylor series approximation of the expectation we want to
evaluate becomes

Eq(z−dn,x−dn)[log(V η +N−dn··k· )] ≈ log(V η + Eq[N
−dn
··k· ]) +

V arq(N
−dn
··k· )

2(V η + Eq(N
−dn
··k· ))2

Deriving these Gaussian approximations for all the expectations in equation
B.4, we obtain the following update equation:

φdnka ∝ (η+Eq(N
−dn
··kwdn

))(V η+Eq(N
−dn
··k· ))−1(Kα+Eq(N

−dn
·a·· ))−1(α+Eq(N

−dn
·ak· ))

× exp
(
−

V arq(N
−dn
··kwdn

)

2(η + Eq(N
−dn
··kwdn

))2
+

V arq(N
−dn
··k· )

2(V η + Eq(N
−dn
··k· ))2

+
V arq(N

−dn
·a·· )

2(Kα+ Eq(N
−dn
·a·· ))2

−
V arq(N

−dn
·ak· )

2(α+ Eq(N
−dn
·ak· ))2

)
(B.5)

As the expectations and variances in equation B.5 only depend on φdnka, we see
that we do actually not need to keep track of Ndakwdn

.

The expectations and variances in equation B.5 are given below. The first term:

Eq(N
−dn
··kwdn

) =
∑

(d′,n′)6=(d,n)

 ∑
a∈Ad′

φd′n′ka

 I(wd′n′ = wdn)

V arq(N
−dn
··kwdn

) =
∑

(d′,n′) 6=(d,n)

 ∑
a∈Ad′

φd′n′ka

1−
∑
a∈Ad′

φd′n′ka

 I(wd′n′ = wdn)

The expectation and variance in the second term in the equation:

Eq(N
−dn
··k· ) =

∑
(d′,n′)6=(d,n)

∑
a∈Ad′

φd′n′ka



76 Collapsed variational Bayes

V arq(N
−dn
··k· ) =

∑
(d′,n′)6=(d,n)

 ∑
a∈Ad′

φd′n′ka

1−
∑
a∈Ad′

φd′n′ka


The expectation and variance in the third term in the equation:

Eq(N
−dn
·a·· ) =

∑
(d′,n′)6=(d,n)

∑
k

φd′n′ka

V arq(N
−dn
·a·· ) =

∑
(d′,n′) 6=(d,n)

(∑
k

φd′n′ka

)(
1−

∑
k

φd′n′ka

)

The expectation and variance in the fourth term in the equation:

Eq(N
−dn
·ak· ) =

∑
(d′,n′)6=(d,n)

φd′n′ka

V arq(N
−dn
·ak· ) =

∑
(d′,n′)6=(d,n)

(φd′n′ka) (1− φd′n′ka)

B.2 Parameter estimation

Once φdnka has been computed, θak and βkv can be estimated as

θak =
α+ Eq(N·ak·)

Kα+ Eq(N·a··)
=

α+
∑
d,n φdnkaI(a ∈ Ad)

Kα+
∑
d,n

∑
k′ φdnk′aI(a ∈ Ad)

, (B.6)

and

βkv =
η + Eq(N··kv)

V η + Eq(N··k·)
=
η +

∑
d,n,a φdnkaI(wdn = v)I(a ∈ Ad)

V η +
∑
d,n,a φdnkaI(a ∈ Ad)

. (B.7)

B.3 Algorithm

Algorithm 5 shows pseudo-code that ties all the equations described in the
sections above together. We make passes over the entire data until we reach our
convergence criterion based on the lower bound. We also keep iterating over
the same document until it has converged, based on whether the variational
parameters change significantly.



B.3 Algorithm 77

Algorithm 5 Training the author-topic model using CVB.

function AT-CVB(wdn, A, K, α, η, τ1, τ2)
Initialize φdnka := 1

A·K for all d, n, k and a.
Evaluate lower bound L, and compute θkv and βak using equation B.6 and

B.7.
repeat

Set Lprev := L.
for d = 1 to D do

repeat
for n = 1 to Nd do

for k = 1 to K do
for a = 1 ∈ Ad do

Update φdnka according to B.5.
end for

end for
Normalize φdnka (for d, n only):

φdnka := φdnka/
(∑

a∈A
∑K
k=1 φdnka

)
end for

until maxn∈Nd

{
1

A·K
∑
a∈Ad

∑K
k=1 |φdnka − φ′dnka|

}
< τ1.

end for
Compute L.

until (L − Lprev)/Lprev < τ2
end function



78 Collapsed variational Bayes



Appendix C

Miscellaneous

C.1 Latent Dirichlet Allocation

The LDA model is described very briefly, and an algorithm for training it is
outlined. It is recommended to read section 2.4 before reading this section.

The posterior distribution that describes LDA is

p(θ, β, z, w|α, η) = p(β|η)p(θ|α)p(z|θ)p(w|z, β)

=
K∏
k=1

Dir(βk|η)
D∏
d=1

Dir(θd|α)

Nd∏
n=1

Mult(zdn|θd)Mult(wdn|βk, zdn = k). (C.1)

LDA is represented as a graphical model in figure C.1.

The VB algorithm is derived in a similar fashion as described for the author-
topic model in section 2.4.2. In algorithm 6, the procedure for training LDA
using offline VB is outlined. This algorithm is equivalent to algorithm 1.



80 Miscellaneous

Figure C.1: Graphical model of LDA. See section C.1

Algorithm 6 Training LDA using VB.

function LDA(wdn, K, α, η, τ1, τ2)
Initialize γ and λ randomly according to a gamma distribution.
Compute L.
repeat

Set Lprev := L.
M-step.
for d = 1 to D do

for v = 1 to V do
for k = 1 to K do

φdvk ∝ exp {Eq[log θdk] + Eq[log βkv]}.
end for
Normalize φdvk to sum to 1 over k:

φdvk := φdvk/
(∑K

k=1 φdvk

)
end for

end for
for k = 1 to K do

γdk := αk +
∑
v ndvφdvk.

end for
E-step.
for k = 1 to K do

for v = 1 to V do
λkv := ηv +

∑
d ndvφdvk.

end for
end for
Compute L.

until (L − Lprev)/Lprev < τ1
end function



C.2 Variational lower bound 81

C.2 Variational lower bound

We show that the marginal likelihood has a variational lower bound defined as

log p(w|α, η,A) ≥ Eq[log p(θ, β, x, z, w|α, η,A)]− Eq[log q(θ, β, z, x)],

where q(θ, β, x, z) is the variational distribution.

Below, we obtain the marginal likelihood by integrating all the random variables
out of the joint distribution. Then we introduce the variational distribution
q(θ, β, x, z), formulate the marginal likelihood as an expectation, and finally
apply Jensen’s inequality to obtain the lower bound.

log p(w|α, η,A) = log

∫ ∫ ∑
x

∑
z

∑
w

p(θ, β, x, z, w|α, η,A)dθdβ

= log

∫ ∫ ∑
x

∑
z

∑
w

p(θ, β, x, z, w|α, η,A)q(θ, β, z, x)

q(θ, β, z, x)
dθdβ

= logEq

[
p(θ, β, x, z, w|α, η,A)

q(θ, β, z, x)

]
≥ Eq [log p(θ, β, x, z, w|α, η,A)]− Eq [log q(θ, β, z, x)]

= L(q). (C.2)

The Jensen’s inequality states that if ψ is a concave function, then ψ(E[X]) ≥
E[ψ(X)].

It can also be shown that

log p(w|α, η,A) = L(q) + KL(q||p),

where KL(q||p) is the Kullback-Leibler divergence taken on q and the posterior,
defined as

KL(q||p) = −Eq
[
p(θ, β, x, z|w,α, η,A)

q(θ, β, z, x)

]
.

We see that if q is allowed to take any form, it can come arbitrarily close to the
posterior; thus, the lower bound is reaches its maximum when the KL-divergence
vanishes. The more we constrain the form of q, the less tight the lower bound
will be.



82 Miscellaneous

C.3 Per-document lower bound

The lower bound is given by

L(γ, λ, φ) =∑
a

(∑
k

(αk − γak)Eq[log θak]− log Γ(
∑
k

γak) +
∑
k

log Γ(γak) + log Γ(
∑
k

αk)−
∑
k

log Γ(αk)

)

+
∑
k

(∑
v

(ηv − λkv)Eq[log βkv]− log Γ(
∑
v

λkv) +
∑
v

log Γ(λkv) + log Γ(
∑
v

ηv)−
∑
v

log Γ(ηv)

)
+
∑
d,v

ndv
∑
a∈Ad

∑
k

φdvak(Eq[log θak] + Eq[log βkv]− log φdvak)

+
∑
d,v

1

|Ad|
+
∑
d,v

`dv

((∑
a∈Ad

∑
k

φdvak

)
− 1

)
(C.3)

which can be represented as a per-document lower bound

L(γ, λ, φ) =
∑
d

Ld(γ, λ, φ) =

∑
d

1

D

∑
a

(
∑
k

(αk − γak)Eq[log θak]− log Γ(
∑
k

γak) +
∑
k

log Γ(γak)

+ log Γ(
∑
k

αk)−
∑
k

log Γ(αk))

+
1

D

∑
k

(
∑
v

(ηv − λkv)Eq[log βkv]− log Γ(
∑
v

λkv) +
∑
v

log Γ(λkv)

+ log Γ(
∑
v

ηv)−
∑
v

log Γ(ηv))

+
∑
v

ndv
∑
a∈Ad

∑
k

φdvak(Eq[log θak] + Eq[log βkv]− log φdvak)

+
∑
v

1

|Ad|
+
∑
v

`dv

((∑
a∈Ad

∑
k

φdvak

)
− 1

)
(C.4)



C.4 Asymptotic complexity of online VB algorithm 83

C.4 Asymptotic complexity of online VB algo-
rithm

We derive the asymptotic complexity of the online algorithm. These results are
useful both for comparing with other algorithms, and to use as a sanity check
when testing the scalability of the algorithm empirically, which we will do in
section 4. We also derive the asymptotic complexity of computing the lower
bound.

The asymptotic complexity of an algorithm is given by ”big O” notation, for
example as O(n). This essentially means that the algorithm’s running time is
on the order of n, although in reality it is somewhat more technical.

The complexity is given on a per-document basis; to obtain the complexity of
training on a corpus consisting of D documents, simply sum over the complexity
of each document.

First, we will obtain the complexity of each update (φ, γ and λ). For each
document d, there are VdAdK updates of φ, each costing O(1). Normalizing
each φdv costs O(AdK), so it costs O(VdAdK) per document. This makes the
complexity of the entire φ update O(VdAdK).

There are AdK updates of γ, each costing O(Vd). Updating Eq[log θak] costs
O(AdK), taking the Ψ function (in the Dirichlet expectation) to be constant
O(1). Interpolating between the local and global γ is O(AdK). This gives
O(AdKVd +AdK +AdK) = O(AdKVd).

In addition, if we say that the inner loop runs for a maximum of M iterations,
the complexity of the φ and γ updates are to be multiplied by M .

There are O(KVd) updates of λ per document, each costing O(Ad). Interpo-
lating costs O(KVd), and updating Eq[log βkv] costs O(KV ). Updating λ thus
costs O(KVdAd +KVd +KV ) = O(KVdAd +KV ).

The complexity of the algorithm is then O(M(VdAdK+AdKVd)+KVdAd+KV ),
which can be simplified to O(MVdAdK + VdAdK +KV ).

The asymptotic complexity of computing the lower bound is the sum of the per-
document bound O(VdKAd), the β bound O(KV ) and the θ bound O(AK),
giving O(VdKAd +KV +AK).

Table C.1 summarizes all the important complexities derived in this section.



84 Miscellaneous

Complexity
Full algorithm O(MVdAdK + VdAdK +KV )
φ O(VdAdK)
γ O(AdKVd)
λ O(KVdAd +KV )
Bound O(VdKAd +KV +AK)

Table C.1: Complexity of algorithm. See section C.4 for details.

C.5 Vectorized updates details

The vectorized updates are derived.

The γ update is

γ̃ak := αk + |Da|
∑
v

ntvφtvak,

which we can write as

γ̃ak := αk + |Da|
∑
v

ntv
exp{Eq[log θak]} exp{Eq[log βkv]}∑

a′∈At

∑
k′ exp{Eq[log θa′k′ ]} exp{Eq[log βk′v]}

.

Similarly, the λ update is

λ̃kv := ηv +Dntv
∑
a∈At

φtvak,

which we can write as

λ̃kv := ηv +Dntv
∑
a∈At

exp{Eq[log θak]} exp{Eq[log βkv]}∑
a′∈At

∑
k′ exp{Eq[log θa′k′ ]} exp{Eq[log βk′v]}

.

Right away, we can see that the denominator in φ can be pre-computed before
updating γ and λ. This quantity is the normalization factor of φ,

φt,norm :=
∑
a∈At

∑
k

exp{Eq[log θak]} exp{Eq[log βkv]}

We can write this as

φt,norm :=
∑
k

exp{Eq[log βkv]}
∑
a∈At

exp{Eq[log θak]},



C.5 Vectorized updates details 85

and vectorize the operation as

φt,norm := exp{Eq[log β·,v]}
∑
a∈At

exp{Eq[log θa,·]},

greatly speeding up the computation of the normalization factor in φ. φt,norm
is thus a Vt dimensional vector.

By rearranging γ’s update equation, we can compute a row of γ efficiently as

γ̃a,· := α+ |Da| exp{Eq[log θa,·]}
nt,·

φt,norm
exp{Eq[log β·,·]}T .

Treating the λ update similarly, we obtain the vectorized update, first defining
the sufficient statistic,

sstatst =

(∑
a∈At

exp{Eq[log θa,·]}

)
⊗ nt,·
φt,norm

λ̃k,· := η + (sstatst)k

In computing the sufficient statistics, we have applied the outer product ⊗ (or
more generally, the Kronecker product). sstatst is thus a K × V matrix.

We have now defined vectorized ways of updating λ and γ and of computing
the normalization factor in φ.

C.5.1 A note about the sufficient statistics

In practice, we interpolate between the sufficient statistics in the online algo-
rithm, that is

sstats := (1− ρt)sstats+ ρtsstatst.

While the way we described the online algorithm in section 2.4.2.5 η is added
every time we interpolate, in practice we only add η when we compute λ.

This choice is a matter of practicality in the implementation. It does change
how the algorithm converges, but whether it is for the better or for the worse is
not clear.



86 Miscellaneous

C.5.2 Bound computation

As we can see in section 2.4.2.3, computing the lower bound requires computing
φ·,norm, essentially. So to speed up bound evaluation, we use the same vectorized
method as described above to compute φ.



Bibliography

[BL06] David M Blei and John D Lafferty. Dynamic Topic Models. Inter-
national Conference on Machine Learning, pages 113–120, 2006.

[BMB08] David M. Blei, Jon D. McAuliffe, and David M. Blei. Supervised
Topic Models. Advances in Neural Information Processing Systems
20, 21(1):121–128, 2008.

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirich-
let Allocation. Journal of Machine Learning Research, 3:993–1022,
2003.

[CGWB09] Jonathan Chang, Sean Gerrish, Chong Wang, and David M Blei.
Reading Tea Leaves: How Humans Interpret Topic Models. Ad-
vances in Neural Information Processing Systems 22, pages 288—-
296, 2009.

[HBWP13] MD Hoffman, David M Blei, Chong Wang, and John Paisley.
Stochastic Variational Inference. 2013.

[HG06] Bo-June Hsu and James Glass. Style & topic language model adap-
tation using HMM-LDA. Emnlp-2006, (July):373–381, 2006.

[Min03] Thomas P. Minka. Estimating a Dirichlet distribution. Annals of
Physics, 2000(8):1–13, 2003.

[Mor16] Olavur Mortensen. The author-topic model: LDA
with metadata, http://nbviewer.jupyter.org/github/rare-
technologies/gensim/blob/develop/docs/notebooks/atmodel tutorial.ipynb.
2016.



88 BIBLIOGRAPHY

[Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective.
MIT Press, page 25, 2012.

[MWT+11] David Mimno, Hanna M Wallach, Edmund Talley, Miriam Leen-
ders, and Andrew McCallum. Optimizing Semantic Coherence in
Topic Models. Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, (2):262–272, 2011.

[NEFY16] Gia H. Ngo, Simon B. Eickhoff, Peter T. Fox, and B.T. Thomas
Yeo. Collapsed Variational Bayesian Inference of the Author-
Topic Model: Application to Large-Scale Coordinate-Based Meta-
Analysis. Proceedings of the International Conference on Pattern
Recognition in Neuroimaging (PRNI), 2016.

[NY16] Gia H. Ngo and B.T. Thomas Yeo. Paper that Ngo et al. hopefully
will release soon. 2016.

[Reh11] Radim Rehurek. Scalability of Semantic Analysis in Natural Lan-
guage Processing. PhD Thesis, page 147, 2011.

[RS10] Radim Rehurek and Petr Sojka. Software framework for topic mod-
elling with large corpora. In Lrec, pages 45–50, 2010.

[RSTA13] Margaret E. Roberts, Brandon M. Stewart, Dustin Tingley, and
Eduardo M. Airoldi. The structural topic model and applied social
science. NIPS 2013 Workshop on Topic Models, pages 2–5, 2013.

[RZGSS04] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-
topic model for authors and documents. Proceedings of the 20th
conference on Uncertainty in artificial intelligence, pages 487–494,
2004.

[RZGSS05] Michael Rosen-Zvi, Thomas Griffiths, Padhraic Smyth, and Mark
Steyvers. Learning author topic models from text corpora. Journal
of Machine Learning Research, V(October):1–38, 2005.

[TNW07] Yw Teh, D Newman, and M Welling. A Collapsed Variational
Bayesian Inference Algorithm for Latent Dirichlet Allocation. Nips,
19:1353–1360, 2007.


	Summary
	Preface
	Acknowledgements
	Notation and abbreviations
	Figures, tables and algorithms
	List of Figures
	List of Tables
	List of Algorithms

	Contents
	1 Introduction
	1.1 Example
	1.2 Applications
	1.3 Why do we need a new implementation?

	2 Theory
	2.1 Bayesian data analysis
	2.2 Probabilistic natural language processing
	2.2.1 The multinomial
	2.2.1.1 Maximum likelihood estimation in the multinomial

	2.2.2 The Dirichlet-multinomial
	2.2.2.1 Estimating beta in the Dirichlet-multinomial
	2.2.2.2 Estimating eta in the Dirichlet-multinomial
	2.2.2.3 The Dirichlet prior

	2.2.3 Hierarchical Dirichlet-multinomial

	2.3 Topic models
	2.4 The author-topic model
	2.4.1 Inference
	2.4.1.1 Exchangeability
	2.4.1.2 Approximate inference in the author-topic model

	2.4.2 Variational Bayes algorithm
	2.4.2.1 Obtaining the lower bound
	2.4.2.2 Obtaining the update equations
	2.4.2.3 Computing the lower bound
	2.4.2.4 VB algorithm
	2.4.2.5 Online VB
	2.4.2.6 Asymptotic complexity
	2.4.2.7 Advantages with blocking VB

	2.4.3 Evaluating a trained model
	2.4.3.1 Perplexity
	2.4.3.2 Conditional likelihood
	2.4.3.3 Topic coherence

	2.4.4 Hyperparameter optimization
	2.4.4.1 Dirichlet MLE
	2.4.4.2 Hyperparameter optimization in the author-topic model



	3 Implementation
	3.1 Gensim
	3.1.1 Design philosophy
	3.1.2 Gensim crash-course

	3.2 Author-Topic model implementation
	3.2.1 Documentation
	3.2.2 Program flow
	3.2.3 Unit tests
	3.2.4 Details
	3.2.4.1 Multiprocessing and distributed computing
	3.2.4.2 Corpus transformation
	3.2.4.3 "get_document_topics" not implemented
	3.2.4.4 Constructing missing author dictionaries
	3.2.4.5 Update with new documents and authors
	3.2.4.6 Serialized corpora
	3.2.4.7 Inference on held-out data
	3.2.4.8 Potential memory problems with author dictionaries



	4 Results
	4.1 Data
	4.2 Comparison with an existing implementation
	4.3 Algorithmic development tests
	4.3.1 Comparing blocking and non-blocking VB
	4.3.2 Comparing offline and online algorithms
	4.3.3 Vectorization speed-up
	4.3.4 Hyperparameter MLE

	4.4 Scalability
	4.4.1 Empirical scalability
	4.4.2 Other factors in execution time


	5 Discussion
	6 Conclusion
	A Standard VB
	A.0.1 Obtaining the lower bound
	A.0.2 Obtaining the update equations
	A.0.3 VB algorithm
	A.0.4 Online VB


	B Collapsed variational Bayes
	B.1 Gaussian approximation
	B.2 Parameter estimation
	B.3 Algorithm

	C Miscellaneous
	C.1 Latent Dirichlet Allocation
	C.2 Variational lower bound
	C.3 Per-document lower bound
	C.4 Asymptotic complexity of online VB algorithm
	C.5 Vectorized updates details
	C.5.1 A note about the sufficient statistics
	C.5.2 Bound computation


	Bibliography

