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Iterative tomographic reconstruction

Abstract
For medical and research purposes the quality of tomographic reconstructions is of ma-
jor importance. Priorconditioning may be a performance improving factor to iterative
methods, especially for tomographic reconstruction, but has only been derived for some
methods. For this purpose priorconditioned versions of the algebraic iterative methods
Kaczmarz and Cimmino are derived in this paper. The priorconditioning appears in form
of a priorconditioner matrix that acts as a first or second derivative operator, which causes
smoothing of the solution. For this project the methods priorconditioned Kaczmarz and
priorconditioned Cimmino were implemented and analyzed in Matlab. Investigations of
several test problems obtained by synthetic data showed that the priorconditioned meth-
ods performed better than Kaczmarz and Cimmino if the solution was very smooth. Here
we find that factors like shape and composition of the objects in the solution, amount of
noise in the data and choice of the priorconditioner matrix was important for the quality
of the reconstruction.
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1 Introduction and Motivation Iterative tomographic reconstruction

1 Introduction and Motivation
In tomography the information inside a body or an object is reconstructed using imaging
techniques. One of the best known applications is Computed Tomography (CT) scan for
medical use, where X-Rays are used to scan a body. Here the information from the set-up
of the X-Rays and data in form of damping of the X-Rays are used to formulate a math-
ematical problem, that can be solved with iterative tomographic methods. These types
of problems are called inverse problems, arising when recovering "interior" or "hidden"
information from "outside" [6]. As the mathematical problems in tomography usually are
very ill-conditioned, regularization methods are needed to obtain a solution. Here it can
be advantageous to use algebraic iterative methods since these methods are well suited for
tomography problems.

This is where priorconditioning enters the field: Priorconditioning is a way to optimize iter-
ative methods using prior information about the solution image. Especially in tomography-
problems priorconditioning derived for algebraic iterative methods may improve the re-
construction. So far priorconditioning has been derived for Tikhonov regularization and
the Conjugate Gradient method of Least Squares (CGLS) [6]. Here the priorconditioner
matrices act as a first or second derivative operator on the solution, which causes smooth-
ing in the reconstruction. For curiosity reasons and to improve the performance of the
algebraic iterative methods, we want to use the approach of priorconditioned CGLS to
derive priorconditioned versions of the algebraic iterative methods Cimmino and Kacz-
marz. Based on generalized Tikhonov we then want to derive priorconditioner matrices
appearing as a first or second derivative operator. To test the performance of Priorcon-
ditioned Cimmino (PCimmino) and Priorconditioned Kaczmarz (PKaczmarz) we want to
implement the methods in Matlab and analyze how these perform on several test problems.

As a priorconditioner matrix in form of a derivative operator is used, the matrix will cause
smoothing of the solution. Thus, we expect that PKaczmarz and PCimmino will produce
smooth reconstructions and may improve the performance of Kaczmarz and Cimmino on
test problems, where the solution is smooth.

Hjørdis Amanda Schlüter (s132757) 6



2 Krylov Subspace Method Iterative tomographic reconstruction

-50

20

0

50

10

100

f(
x
)

150

x
2

0

200

15
10

-10 5

x
1

0
-5

-10-20
-15

-15 -10 -5 0 5 10 15

x
1

-15

-10

-5

0

5

10

15

x
2

Figure 1: Quadratic form of a vector where the minimum is marked as a red dot.

2 Krylov Subspace Method
I want to motivate priorconditioning by introducing the method of Conjugate Gradients
for Least Squares (CGLS) and its priorconditioned version. CGLS is an iterative method
that belongs to the Krylov subspace methods. To derive the algebraic definition for this
method it is easier first to consider the method of Conjugate Gradients (CG), since CGLS
follows the same principle as CG. But since CG is associated with the Method of Steepest
Descent I will also present this method.

The derivation of the mentioned methods will follow the principles used by Jonathan
Richard Shewchuk [11].

CG is an iterative method to solve large systems of linear equations on the form

Ax = b, (1)

with respect to x. Where x is an unknown vector, b is a vector containing some data and
A is the coefficient matrix of size n× n. Here A must be symmetric and positive-definite.

As a way to solve equation (1) I consider the quadratic form of a vector:

f(x) = 1
2x

TAx− bTx+ c, (2)

where c is a scalar constant. For A being positive-definite and symmetric, the quadratic
form f has the property, that the minimum of this function is exactly the solution to
Ax = b. This can be illustrated by figure 1 for a given matrix A and data vector b.
Remark that the minimum of f is unique which is caused by the fact that A is a positive-
definite matrix and thus has full rank. To investigate this minimum I consider the gradient
of the quadratic form

∇f(x) = 1
2A

Tx+ 1
2Ax− b.

Hjørdis Amanda Schlüter (s132757) 7
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Figure 2: Method of Steepest Descent. The black lines represent the search lines, while
the arrows points in the opposite direction of the gradient.

But since A is symmetric the gradient can be rewritten as

∇f(x) = Ax− b. (3)

Setting ∇f(x) = 0 we arrive at equation (1), which is the original problem we want to
solve. So for A being symmetric and positive-definite we can find a solution to (1) by
minimizing f(x) in (2) with respect to x.

2.1 The Method of Steepest Descent

There are several methods using the minimum of the function f to solve the problem
Ax = b. For example the iterative Method of Steepest Descent: Starting at any point
x(0) we choose the next iteration vector x(1) based on the direction, where f decreases
most quickly (this is opposite to the direction ∇f(x(i))). From this direction vector we
draw a search line, where we find the next iteration vector at the minimum of the line.
The minimum will be found at the point where the gradient vector is orthogonal to the
search line. This procedure is illustrated for the previous example in figure 2 for the first
iteration vectors x(0), x(1), x(2), x(3) and x(4).

Mathematically the expression for the iteration vector x(k+1) can be written as

x(k+1) = x(k) + αkr
(k), (4)

Hjørdis Amanda Schlüter (s132757) 8
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where r(k) is the direction vector and αk is the step length for the iteration k. Since the
direction will be opposite to the direction ∇f(x(k)) we get from equation (3) that

r(k) = −∇f(x(k)) = b−Ax. (5)

The step length αk is chosen such that the previous and the present gradient vectors are
orthogonal to each other, so r(k)T

r(k+1) = 0. This leads to following expression for αk

αk = r(k)T
r(k)

r(k)TAr(k) . (6)

Depending on the problem, this method may converge very slowly towards the naive so-
lution x, since the gradient vectors for two following iterations must always be orthogonal
to each other. This often leads to a zigzag path towards the solution. Here the Conjugate
Gradient method may be a good alternative.

2.2 The Method of Conjugate Gradients

While the Method of Steepest Descent takes a lot of steps in the same direction, CG
tries to avoid this procedure and just take as many steps as there are orthogonal search
directions d(0), d(1), . . . , d(n−1). The idea behind CG is to transform a system like the one
shown in figure 2 where the contour lines are shaped like ellipses to a system where the
contour lines are shaped like circles. In the latter case two orthogonal projections would
lead to the solution for the 2-dimensional system if we use the coordinate axes as search
directions as seen in figure 3. So in this case the number of steps equals the number of
orthogonal search directions.
But for a system, where the contour lines are shaped like circles, two direction vectors
being orthogonal d(k)T

d(k+1) = 0 means that they are A-conjugate for the elliptical form

d(k)T
Ad(k+1) = 0. (7)

In this way we can transfer the properties of the circular form to the elliptical form. The
mathematical expression for an iteration in CG should follow the same set-up as for the
Method of Steepest Descent

x(k+1) = x(k) + αkd
(k),

where r(k) is the direction vector and αk is the step length for the iteration k. But
the direction vectors d(k) should be chosen in a smarter way. So instead of satisfying
d(k)T

d(k+1) = 0 they should now satisfy (7). This leads to the following equations for CG:

d(0) = r(0) = b−Ax(0), (8)

Hjørdis Amanda Schlüter (s132757) 9
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Figure 3: Method of orthogonal projections, where the coordinate axes are used as search
lines.

αk = r(k)T
r(k)

d(k)TAd(k) , (9)

x(k+1) = x(k) + αkd
(k), (10)

r(k+1) = r(k) − αkAd(k), (11)

βk+1 = r(k+1)T
r(k+1)

r(k)Tr(k) , (12)

d(k+1) = r(k+1) + βk+1d
(k). (13)

Figure 4 illustrates how the Conjugate Gradients method performs on the example used
for figure 1.

Considering the zero vector as the starting point x(0) I want to calculate the iteration
vectors x(1), x(2) and x(3) for the first iterations of CG:

Hjørdis Amanda Schlüter (s132757) 10
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Figure 4: The method of Conjugate Gradients.

x(0) = 0
d(0) = r(0) = b−Ax(0) = b,

x(1) = α0b (14)
r(1) = r(0) − α0Ad

(0) = b− α0Ab

d(1) = r(1) + β1d
(0) = b− α0Ab+ β1b = (1− β1)b− α0Ab

x(2) = x(1) + α1d
(1) = α0b+ α1((1− β1)b− α0Ab) = (α0 + α1(1− β1))b− α1α0Ab (15)

r(2) = r(1) − α1Ad
(1) = b− α0Ab− α1A((1− β1)b− α0Ab)

= b− (α0 + α1(1− β1))Ab+ α0α1A
2b

d(2) = r(2) + β2d
(1) = b− (α0 + α1(1− β1))Ab+ α0α1A

2b+ β2((1− β1)b− α0Ab)
= (1 + β2(1− β1))b− (α0 + α1(1− β1) + β2α0)Ab+ α0α1A

2b

x(3) = x(2) + α2d
(2) = (α0 + α1(1− β1))b− α1α0Ab

+ α2((1 + β2(1− β1))b− (α0 + α1(1− β1) + β2α0)Ab+ α0α1A
2b)

= (α0 + α1(1− β1) + α2(1 + β2(1− β1)))b (16)
− (α1α0 + α2(α0 + α1(1− β1) + β2α0))Ab+ α0α1α2A

2b.

Hjørdis Amanda Schlüter (s132757) 11
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Common for all parts in the sum of x(1), x(2) and x(3) are elements on the form

x(1) = _b
x(2) = _b+ _Ab
x(3) = _b+ _Ab+ _A2b,

where the spaces represent constants depending on the given iteration. Thus, all iteration
vectors contains linear combinations of Ai−1b for i = 0, . . . , k, where k represents the given
iteration. For the kth iteration we then get an expression on the form

x(k) =
k∑
i=1

γiA
i−1b = γ1b+ γ2Ab+ . . .+ γkA

k−1b,

where the constants γi are different for each iteration. Since the matrix A has full rank,
the vectors Ai−1b for i = 0, . . . , k will be linearly independent and as A has dimension
n× n, the vectors Ai−1b will span a subspace of Rn

x(k) ∈ span
{
b, Ab,A2b, . . . , Ak−1b

}
⊂ Rn. (17)

The definition of the Krylov subspace of order k is given by

Kk(A, b) = span
{
b, Ab,A2b, . . . , Ak−1b

}
,

so x(k) ∈ Kk(A, b).

CG thus finds a solution x(k) satisfying

x(k) = arg min
x

f(x) s.t x(k) ∈ Kk(A, b), (18)

where x is a solution to (1).

2.3 CGLS

In general CG is suited for solving expression (1) when A is square, symmetric and positive
definite. If A is of size m× n and m > n there no longer exists a unique solution x to the
problem Ax = b and thus we must solve a Least Squares problem:

x = arg min
x

‖Ax− b‖22 .

We can transform the least squares problem to a system of linear equations on the form
Ax = b if we investigate ‖Ax− b‖22:

‖Ax− b‖22 = (Ax− b)T(Ax− b)

Hjørdis Amanda Schlüter (s132757) 12



2 Krylov Subspace Method Iterative tomographic reconstruction

= (xTAT − bT)(Ax− b)
= xTATAx− 2xTATb+ bTb.

By differentiating ‖Ax− b‖22 with respect to x and solving when this expression is equal
to zero, we are able to find the minimum of ‖Ax− b‖22:

d ‖Ax− b‖22
dx

= 2ATAx− 2ATb.

Setting d ‖Ax− b‖
2
2

dx
= 0 the solution to the least squares problem is obtained for ATAx =

ATb. This is the so called normal equation, because b − Ax is normal to the range of A.
Now the Least Squares problem can be rewritten as

(ATA)x = (ATb). (19)

The expression is on the same form as Ax = b, where in this case the coefficient matrix is
given by ATA and the data vector is given by ATb.

In the following we introduce the Conjugate Gradient method for Least Squares (CGLS).
This method solves the Least Squares problem by solving (19). By defining ATA as my
coefficient matrix and ATb as my right-hand side we can follow the same procedure as for
CG to find the solution x.
The expression for the quadratic function we want to minimize in this case becomes

f(x) = 1
2x

TATAx− bTAx+ c. (20)

The minimum of f is then the solution to (19) with respect to x.
By replacing all occurrences of the matrix A by ATA and b by ATb, we can arrive at a
system, we are able to solve with this method.
The expression for the kth iteration will here be on the form

x(k) =
k∑
i=1

γi(ATA)i−1ATb = γ1A
Tb+ γ2(ATA)ATb+ . . .+ γk(ATA)k−1ATb.

Where x(k) now satisfies

x(k) ∈ span
{
ATb, (ATA)ATb, (ATA)2ATb, . . . , (ATA)k−1ATb

}
= Kk(ATA,ATb).

Arriving at the minimization problem

Hjørdis Amanda Schlüter (s132757) 13



2 Krylov Subspace Method Iterative tomographic reconstruction

x(k) = arg min
x

f(x) s.t x(k) ∈ Kk(ATA,ATb),

where f(x) is the quadratic function defined in (20) and x solves (19).

This can also be written as

x(k) = arg min
x

‖Ax− b‖22 s.t x(k) ∈ Kk(ATA,ATb). (21)

Hjørdis Amanda Schlüter (s132757) 14
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2.3.1 PCGLS

To introduce the Preconditioned Conjugate Gradient method for Least Squares (PCGLS),
I first take a look at the standard form of the Tikhonov regularization. Here I consider
the continuous formulation

min
f

{∥∥∥∥∫ 1

0
K(s, t)f(t)dt− g(s)

∥∥∥∥2

2
+ λ2 ‖f‖22

}

= min
f

{∫ 1

0

(∫ 1

0
K(s, t)f(t)dt− g(s)

)2
ds+ λ2

∫ 1

0
(f(t))2dt

}
, (22)

where
∫ 1

0 K(s, t)f(t)dt = g(s) is known as the first-kind Fredholm integral equation and
λ2 is a regularization parameter. Discretizing epxression (22) will lead to Tikhonov regu-
larization on discrete form

min
x

{
‖Ax− b‖22 + λ2 ‖x‖22

}
.

In general this method can be improved by using prior information about the solution to
the problem we are dealing with. For Tikhonov regularization this can be done by intro-
ducing a matrix L containing the prior information. Leading to the discrete generalized
form

min
x

{
‖Ax− b‖22 + λ2 ‖Lx‖22

}
. (23)

The matrix L is a finite difference approximation of a derivative of the function f(t) de-
fined in expression (22) [6].

Based on expression (23) it is possible to establish a preconditioned version of CGLS
following the same idea as for Tikhonov regularization. But since the expression for
CGLS is given by

x(k) = arg min
x

‖Ax− b‖22 s.t x(k) ∈ Kk(A, b),

I want to reformulate (23) by introducing a variable ξ = Lx. Now x can be written as
x = L−1ξ leading to the expression:

min
ξ

{∥∥∥(AL−1)ξ − b
∥∥∥2

2
+ λ2 ‖ξ‖22

}
.

Here the minimum is found with respect to ξ but rewriting x as x = L−1ξ this expression
also gives us the minimum with respect to x. By introducing the variable ξ = LX the
problem Ax = b we want to solve becomes AL−1ξ = b. Thus we can replace A by AL−1

in (21) to obtain a preconditioned solution for CGLS. Now the solution for any iteration
k using CGLS is given by

Hjørdis Amanda Schlüter (s132757) 15
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ξ(k) = arg min
ξ

∥∥∥(AL−1)ξ − b
∥∥∥2

2
s.t ξ(k) ∈ Kk((AL−1)TAL−1, (AL−1)T b), (24)

where x(k) = L−1ξ(k). The solution to (24) can be rewritten in terms of x(k). For this
purpose I want to check the first 3 iterations of x(k) using PCGLS. From (14),(15) and (16)
I know the first iteration vectors for ξ(k) replacing A by (AL−1)TAL−1 and b by (AL−1)T b

x(1) = L−1ξ(1) =α0L
−1(AL−1)T b

=α0L
−1L−TAT b

x(2) = L−1ξ(2) =(α0 + α1(1− β1))L−1(AL−1)T b− α1α0L
−1(AL−1)TAL−1(AL−1)T b

=(α0 + α1(1− β1))L−1L−TAT b− α1α0L
−1L−TATAL−1L−TAT b

x(3) = L−1ξ(3) =(α0 + α1(1− β1) + α2(1 + β2(1− β1)))L−1(AL−1)T b
− (α1α0 + α2(α0 + α1(1− β1) + β2α0))L−1(AL−1)TAL−1(AL−1)T b
+ α0α1α2L

−1((AL−1)TAL−1)2(AL−1)T b
=(α0 + α1(1− β1) + α2(1 + β2(1− β1)))L−1L−TAT b

− (α1α0 + α2(α0 + α1(1− β1) + β2α0))L−1L−TATAL−1L−TAT b

+ α0α1α2(L−1L−TATA)2L−1L−TAT b.

For the last part of x(3) we have that

L−1((AL−1)TAL−1)2(AL−1)T b = L−1L−TATAL−1L−TATAL−1L−TAT b

= (L−1L−TATA)2L−1L−TAT b.

We see that our iteration vectors are on the form

x(1) = __L−1L−TAT b

x(2) = __L−1L−TAT b+ __(L−1L−TATA)L−1L−TAT b

x(3) = __L−1L−TAT b+ __(L−1L−TATA)L−1L−TAT b+ __(L−1L−TATA)2L−1L−TAT b.

Thus x(k) ∈ Kk(L−1L−TATA,L−1L−TAT b).

Therefore the expression for the Preconditioned Conjugate Gradient method is given by

ξ(k) = arg min
ξ

∥∥∥(AL−1)ξ − b
∥∥∥2

2
s.t ξ(k) ∈ Kk((AL−1)TAL−1, (AL−1)T b), (25)

where ξ solves (AL−1)ξ = b. And x(k) = L−1ξ(k), with subject to
x(k) ∈ Kk(L−1L−TATA,L−1L−TAT b).

Since L acts as a preconditioner matrix for this problem we call this method Precon-
ditioned CGLS. In general we can call L a priorconditioner, since this matrix contains
the prior information of the solution to the problem [3]. Therefore from now on the term
"priorconditioner" will be used for the matrix L.
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3 Algebraic iterative methods
As an alternative to the Krylov Subspace method CGLS I want to introduce the algebraic
iterative methods. Here we differ between the so called row-action methods, that access
one row of the matrix A at a time and methods that access the rows simultaneously. In
this section I want to present one method from each of the two groups.

3.1 Kaczmarz’s Method

The following theory is based on work of Per Christian Hansen et al. [2].

Kaczmarz’s method is a iterative method for solving Ax = b involving computations on
one row of A at a time. Therefore we interpret the linear system Ax = b as:

r1 · x = a11x1 + a12x2 + . . .+ a1nxn = b1

r2 · x = a21x1 + a22x2 + . . .+ a2nxn = b2
...

rm · x = am1x1 + am2x2 + . . .+ amnxn = bm.

Note that ri for i = 1, 2, . . . ,m is a row vector and each equation ri · x = bi defines an
affine hyperplane in Rn. If the system Ax = b is consistent and has an unique solution
x, this will be the point in Rn where the affine hyperplanes intersect. The Kaczmarz’s
method uses an intuitive approach to find this intersection point. To begin with we project
the initial vector orthogonal on a given hyperplane, this vector we project orthogonal on
another hyperplane, continuing this procedure for all hyperplanes; this is called the Kacz-
marz sweep. One sweep is then one iteration compared to simultaneous methods and for
the next sweep the last projection vector is used as the start vector. The order in which
the hyperplanes are accessed is cyclic and could influence the speed of convergence. Often
the row ordering is cyclic in the following way: 1, 2, . . . ,m, 1, 2, . . . ,m, 1, 2, . . . ,m, . . ..

The method can be derived algebraically by interpreting the projection of x on a given
hyperplane i by taking a step ∆x such that x+∆x satisfies the equation bi−ri·(x+∆x) = 0:

bi − ri · (x+ ∆x) = 0 ⇔ ri ·∆x = bi − ri · x. (26)

To find an expression for ∆x we must solve equation (26) with respect to ∆x

∆x = (ri)†(bi − ri · x).

Here (ri)† denotes the Moore-Penrose pseudoinverse matrix of ri, where the matrix in this
case is a row vector. The Moore-Penrose pseudoinverse of an arbitrary matrix A is the
unique matrix that satisfies the four Moore-Penrose conditions [4]:

1. AA†A = A
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2. A†AA† = A†

3.
(
AA†

)T
= AA†

4.
(
A†A

)T
= A†A

In the following we make sure that rT
i

‖ri‖22
is the pseudoinverse of ri and satisfies the Moore-

Penrose conditions:

1.

rir
†
i ri = ri

rT
i

‖ri‖22
ri = rir

T
i

‖ri‖22
ri = ‖ri‖

2
2

‖ri‖22
ri = ri (27)

2.

r†i rir
†
i = rT

i

‖ri‖22
ri

rT
i

‖ri‖22
= rT

i

‖ri‖22

rir
T
i

‖ri‖22
= rT

i

‖ri‖22

‖ri‖22
‖ri‖22

= r†i (28)

3. (
rir
†
i

)T
=
(
ri

rT
i

‖ri‖22

)T

=
(

rT
i

‖ri‖22

)T

rT
i = ri

‖ri‖22
rT
i = ri

rT
i

‖ri‖22
= rir

†
i (29)

4. (
r†i ri

)T
=
(

rT
i

‖ri‖22
ri

)T

= rT
i

(
rT
i

‖ri‖22

)T

= rT
i

ri

‖ri‖22
= rT

i

‖ri‖22
ri = r†i ri (30)

Thus, (ri)† = rT
i

‖ri‖22
must be the pseudoinverse matrix of ri, which is uniquely defined.

We now get the following expression for the step size ∆x:

∆x = rT
i

‖ri‖22
(bi − ri · x).

And the update of an iteration vector for Kaczmarz’s method will then be given by:

x(k+1) = x(k) + ∆x(k) = x(k) + bi − ri · x(k)

‖ri‖22
rT
i .
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Initial vector

b1

b2

= r1   x

= r2   x

Solution

Figure 5: Illustration of Kaczmarz’s method for n = 2.

Thus we obtain the algebraic formulation of Kaczmarz’s method:

x(0) = initial vector
for k = 0, 1, 2, . . .

i = k (mod m)

x(k+1) = x(k) + bi − ri · x(k)

‖ri‖22
rT
i

end

Wherem iterations corresponds to one sweep over all rows of the matrix A. The algorithm
is illustrated for n = 2 in figure 5.
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3.2 Cimmino’s Method

The following theory is based on work of Per Christian Hansen et al. [2].

Cimmino’s method is an iterative method for solving Ax = b involving all rows simul-
taneously. Compared to CGLS this method also solves a Least Squares problem but a
weighted one:

x = arg min
x

∥∥∥M1/2(Ax− b)
∥∥∥2

2
,

where M is a diagonal matrix containing weighting factors.

Like Kaczmarz’s this method uses orthogonal projections on the affine hyperplanes. But
instead of projecting a vector on one hyperplane, the next iteration vector is found by an
average between the projection of the previous iteration vector on all hyperplanes

x(k+1) = 1
m

m∑
i=1

(
x(k) + ∆x(k)

)
= 1
m

m∑
i=1

(
x(k) + bi − ri · x(k)

‖ri‖22
rT
i

)

= x(k) + 1
m

m∑
i=1

bi − ri · x(k)

‖ri‖22
rT
i

This can be rewritten in matrix-form

x(k+1) = x(k) + 1
m

m∑
i=1

bi − ri · x(k)

‖ri‖22
rT
i

= x(k) + 1
m

(
rT

1
‖r1‖22

rT
2

‖r2‖22
. . .

rT
m

‖rm‖22

)
b1 − r1 · x(k)

b2 − r2 · x(k)

...
bm − rm · x(k)



= x(k) + 1
m


r1
r2
...
rm


T



1
‖r1‖22 1

‖r2‖22
. . .

1
‖rm‖22



b−

r1
r2
...
rm

x(k)



= x(k) +ATM−1(b−Ax(k))

Where we defined the diagonal matrix M =diag(m ‖ri‖22). Resulting in the algebraic
formulation of Cimmino’s method:
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x(0) = initial vector
for k = 0, 1, 2, . . .

x(k+1) = x(k) +ATM−1(b−Ax(k))
end
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4 Priorconditioned Versions
We now have investigated priorconditioning for both Tikhonov regularization and CGLS.
The algebraic iterative method Cimmino shares similarities with CGLS. Thus, based on
the knowledge from PCGLS we derive a priorconditioned version of Cimmino, using this
new information to obtain a priorconditioned version of Kaczmarz.

4.1 Priorconditioned Cimmino

The methods Cimmino and CGLS are similar since they both solve a Least Squares prob-
lem. Therefore it seems reasonable to follow the same principles in the derivation of Pri-
orconditioned Cimmino (PCimmino) used in PCGLS. I introduce a new variable ξ = Lx,
where L is the priorconditioner matrix containing prior information about the problem.
The linear system of equations I want to solve, Ax = b, now becomes AL−1ξ = b. I want
to derive Cimmino’s method such that the system AL−1ξ = b can be solved with respect
to ξ. The update of x using Cimmino’s method is given by

x(k+1) = x(k) + 1
m

m∑
i=1

bi − ri · x(k)

‖ri‖22
rT
i .

Replacing ri by riL−1 and x by ξ we can obtain the update for ξ:

ξ(k+1) = ξ(k) + 1
m

m∑
i=1

bi − riL−1 · ξ(k)

‖riL−1‖22

(
riL
−1
)T

= ξ(k) + 1
m

(
L−TrT

1
‖r1L−1‖22

L−TrT
2

‖r2L−1‖22
. . .

L−TrT
m

‖rmL−1‖22

)
b1 − r1L

−1 · ξ(k)

b2 − r2L
−1 · ξ(k)

...
bm − rmL−1 · ξ(k)



= ξ(k) + L−T 1
m


r1
r2
...
rm


T



1
‖r1L−1‖22 1

‖r2L−1‖22
. . .

1
‖rmL−1‖22



b−

r1
r2
...
rm

L−1ξ(k)



= ξ(k) + L−TATM̂−1(b−AL−1ξ(k)).

Where we defined the diagonal matrix M̂ =diag(m
∥∥riL−1∥∥2

2).

We want to find the solution of AL−1ξ = b with respect to ξ in terms of x. Therefore we
multiply L−1 by ξ(k+1):

L−1ξ(k+1) = L−1ξ(k) + L−1L−TATM̂−1(b−AL−1ξ(k)).

Thus, the solution in terms of x will be given by

Hjørdis Amanda Schlüter (s132757) 22



4 Priorconditioned Versions Iterative tomographic reconstruction

x(k+1) = x(k) + L−1L−TATM̂−1(b−Ax(k)).

Therefore the algebraic formulation of PCimmino is on the form

x(0) = initial vector
for k = 0, 1, 2, . . .

x(k+1) = x(k) + L−1L−TATM̂−1(b−Ax(k))
end.

Note that the matrices L−1 and L−T aren’t defined explicitly in the implementation, since
in case L is large, L−1 and L−T would use too much memory.
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4.2 Priorconditioned Kaczmarz

As Cimmino and Kaczmarz are close related to each other by the use of affine hyperplanes,
we derive Priorconditioned Kaczmarz (PKaczmarz) following the same principle used in
PCimmino. I introduce the new variable ξ = Lx and instead of solving Ax = b I want to
solve the linear system AL−1ξ = b. I want to derive Kaczmarz’s method such that the
system AL−1ξ = b can be solved with respect to ξ. The step length ∆ξ now has to satisfy
the equation bi − riL−1 · (ξ + ∆ξ) = 0:

bi − riL−1 · (ξ + ∆ξ) = 0 ⇔ riL
−1∆ξ = bi − riL−1 · ξ.

Thus the expression for ∆ξ will be given by

∆ξ =
(
riL
−1
)† (

bi − riL−1ξ
)
.

When we replace ri by riL−1 in the equations (27), (28), (29) and (30) we actually get

the result,
(
riL
−1)† =

(
riL
−1)T

‖riL−1‖22
, that satisfies the Moore-Penrose conditions. Therefore

the step length will be given by

∆ξ =
(
riL
−1)T

‖riL−1‖22

(
bi − riL−1 · ξ

)
= L−TrT

i

‖riL−1‖22

(
bi − riL−1 · ξ

)
.

And the update of an iteration vector will be on the form

ξ(k+1) = ξ(k) + ∆ξ(k) = ξ(k) + bi − riL−1 · ξ(k)

‖riL−1‖22
L−TrT

i .

This expression can be transformed to a system that can be rewritten in terms of x. So
we multiply L−1 by ξk+1 yielding:

L−1ξ(k+1) = L−1ξ(k) + L−1 bi − riL−1 · ξ(k)

‖riL−1‖22
L−TrT

i .

This is equivalent with

L−1ξ(k+1) = L−1ξ(k) + bi − riL−1 · ξ(k)

‖riL−1‖22
L−1L−TrT

i . (31)

And since x equals L−1ξ, equation (31) can be rewritten as

x(k+1) = x(k) + bi − ri · x(k)

‖riL−1‖22
L−1L−TrT

i . (32)
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Here the expression (32) will solve the linear system AL−1ξ = b with respect to ξ and for
simplicity this expression is rewritten in terms of x.

Thus, the algebraic formulation of Pkaczmarz will be on the form

x(0) = initial vector
for k = 0, 1, 2, . . .

i = k (mod m)

x(k+1) = x(k) + bi − ri · x(k)

‖riL−1‖22
L−1L−TrT

i

end.

Here m iterations will correspond to one sweep over all rows of the matrix AL−1.
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5 Priorconditioner matrix L

The priorconditioner matrix L contains prior information of the exact solution x to the
problem Ax = b. As stated in section 2.3.1 common choices of the L-matrix are finite
difference approximations to derivatives of the function f(t) which is the continuous form
of the vector x. These L-matrices have the property that the solution obtained will be
smooth [6].

5.1 Motivation by Tikhonov regularization

Our derivation of the L-matrices is motivated by the expression for generalized Tikhonov
regularization. Therefore I want to explain the relation between generalized Tikhonov and
the iterative methods PCimmino and PKaczmarz. When considering the expression for
generalized Tikhonov regularization:

min
x

{
‖Ax− b‖22 + λ2 ‖Lx‖22

}
,

the solution will be on the form

xλ,L =
(
ATA+ λ2LTL

)−1
ATb.

Using Generalized Singular Value Decomposition (GSVD) I want to analyze the solution
xλ,L. I decompose A and L into the matrices UA, ΣA, Θ and UL, ΣL, Θ respectively such
that

A = UAΣAΘ−1

L = ULΣLΘ−1.

Here UA and UL contain the left singular vectors of A and L respectively while the two
matrices share the right singular vectors contained in Θ. The matrices ΣA and ΣL are
non-negative, diagonal and stores the singular values for A, αi, and the singular values
for U , βi, in the diagonal. Using the decomposition of A and L we can obtain another
expression for xλ,L

xλ,L =
(
Θ−TΣT

AU
T
AUAΣAΘ−1 + λ2Θ−TΣT

LU
T
LULΣLΘ−1

)−1
Θ−TΣT

AU
T
Ab

=
(
Θ−TΘ−1

(
ΣT
AΣA + λ2ΣT

LΣL

))−1
Θ−TΣT

AU
T
Ab

=
(
Θ−TΘ−1

(
ΣT
AΣA + λ2ΣT

LΣL

))−1
Θ−TΣT

AU
T
Ab

= diag
(

1
α2
i + λ2β2

i

)
ΘΘTΘ−TΣT

AU
T
Ab

= diag
(

α2
i

α2
i + λ2β2

i

)
Σ−1
A ΘUT

Ab
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= ΘΦ̂Σ−1
A UT

Ab, (33)

where Φ̂ = diag
(

α2
i

α2
i + λ2β2

i

)
and Φ̂ is a diagonal matrix that stores the specified coeffi-

cients in the diagonal.

To show the similarity between Tikhonov regularization and Cimmino I will now investi-
gate Landweber’s method, which like Cimmino is an iterative algebraic method, in which
it is easier to express the filtered SVD solution. The minimization problem for Landweber
is a simple least squares equation

min
x
‖Ax− b‖22,

and by introducing the priorconditioner matrix L we can obtain the transformed problem

min
ξ

∥∥∥(AL−1
)
ξ − b

∥∥∥2

2
. (34)

The update of the iteration vector for the standard Landweber is given by

x(k+1) = x(k) + ωAT
(
b−Ax(k)

)
.

Where the update for priorconditioned Landweber can be obtained by substituting A by
A = AL−1 and x(k) by ξ(k). I now use Singular Value Decomposition (SVD) to rewrite
the solution ξ(k). I decompose A in the matrices U containing the left singular vectors,
V containing the right singular vectors and Σ containing the singular values σi in the
diagonal. Now A satisfies A = U Σ V

T. Following the same procedure as for Tikhonov
regularization we can express the priorconditioned Landweber solution x(k) in terms of the
SVD components. Using the expression for the update of the iteration vector that solves
the minimization problem (34), we get

ξ(k) = V Φ Σ−1
U

T
b,

where Φ =diag(1− (1− ωσ2
i )k). Since x(k) = L−1ξ(k) it follows that

x(k) = L−1V Φ Σ−1
U

T
b.

To show that there is a relation between Tikhonov and Landweber I use the GSVD com-
ponents for A and L to express the SVD components for the matrix AL−1:

AL−1 = UAΣAΘ−1
(
ULΣLΘ−1

)−1
= UAΣAΘ−1ΘΣ−1

L UT
L = UA

(
ΣAΣ−1

L

)
UT
L .

We see that UA and UL are unitary square matrices and ΣAΣ−1
L is a non-negative diagonal

matrix. Thus, the SVD of AL−1 will be on the form AL−1 = UA
(
ΣAΣ−1

L

)
UT
L , where

UA = U , ΣAΣ−1
L = Σ and UT

L = V
T. Using these expressions we can now rewrite the

solution x(k):
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x(k) = L−1ULdiag
(

1−
(

1− ωα
2
i

β2
i

))
ΣLΣ−1

A UT
Ab

= Θ Σ−1
L UT

L UL Φ ΣL Σ−1
A UT

A b

= Θ Σ−1
L Φ ΣL Σ−1

A UT
A b

= Θ Φ Σ−1
A UT

A b,

where Φ = diag
(

1−
(

1− ωα
2
i

β2
i

))
and remark that it is not important in which order the

diagonal matrices are multiplied by each other. Comparing this expression to the solution
x(k) for Tikhonov in terms of the GSVD components (33) we see that the only difference
in the solution using generalized Tikhonov and priorconditioned Landweber are the filter
factors Φ̂ and Φ.

The conclusion is that generalized Tikhonov regularization does not differ very much from
algebraic iterative methods like priorconditioned Landweber or PCimmino. Therefore it is
a reasonable assumption that L-matrices derived for generalized Tikhonov regularization
may also work for PCimmino. However we do not know if this approach will work for
PKaczmarz, since PKaczmarz doesn’t access the rows in the A-matrix simultaneously.
Thus we are not able to express the solution in terms of the SVD components and therefore
it is not possible to compare the PKaczmarz solution to the generalized Tikhonov solution.
Note that we use the L-matrices that we derive for Tikhonov, but we don’t know if these
matrices are a good choice for Kaczmarz’s method.

5.2 In one dimension

To obtain finite difference approximations I investigate f(t+ ∆t) and f(t−∆t) at a fixed
point t using Taylor expansions [8]. Where ∆t is the step size between the discretization
points that are used to obtain x.

f(t+ ∆t) = f(t) + ∆t · f ′(t) + 1
2(∆t)2 · f ′′(t) +O(∆t3) (35)

f(t−∆t) = f(t)−∆t · f ′(t) + 1
2(∆t)2 · f ′′(t) +O(∆t3). (36)

Here O(∆t3) is the truncation error of order 3. Using expression (35) I get the following
approximation of the first derivative:

f ′(t) ≈ f(t+ ∆t)− f(t)
∆t . (37)

Using both expressions (35) and (36) we can obtain an approximation of the second deriva-
tive at the point t.

f ′′(t) ≈ f(t+ ∆t)− 2f(t) + f(t−∆t)
(∆t)2 . (38)
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We discretize the variable t and define a vector T that contains all discretization points:

T =


t1
t2
...
tN

 ,

where ∆t = ti+1 − ti for i = 1, 2, . . . , N − 1. The discretization of f(t) using this vector T
will then give us the vector x:

x = f(T ) =


f(t1)
f(t2)
...

f(tN )

 .

An approximation of the first derivative of f(t) can now be obtained by using expression
(37)

f ′(t) ≈ 1
∆t


−1 1

−1 1
. . . . . .

−1 1

x = L1 x.

Here L1 will be the first derivative matrix of size (N − 1)×N .

On the same way we can obtain an approximation of the second derivative of f(t) by using
equation (38)

f ′′(t) ≈ 1
(∆t)2


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

x = L2 x.

Where L2 is the second derivative matrix of size (N − 2)×N .

For one-dimensional problems the matrices L1 and L2 are used as priorconditioners to test
the performance of PKaczmarz and PCimmino. Both L1 and L2 are not quadratic and
therefore they are not invertible. For this reason we introduce the nullspace of L1 and L2.

From the rank-nullity Theorem we can deduce the dimension of the null space [1]. The
L-matrices are linear transformations L : x −→ y, where x ∈ RN×1, y ∈ R(N−d)×1 and d
is the dth derivative of f(t). The rank nullity Theorem gives us the dimension of the null
space of L
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dim(x) = dim(Lx) + dim(N (L)).

Thus,

dim(N (L)) = dim(x)− dim(Lx) = N − (N − d) = d.

Therefore the null space of the L-matrices will be spanned by d vectors of size N × 1. I
define the matrix W which stores the vectors that span the null space of the L-matrices.
For the first derivative matrix d equals one so there must be a vector W1 such that
L1W1 = 0. Therefore the function f(t) must satisfy that f ′(t) = 0. Integrating over
f ′(t) = 0 we get that f(t) = k, where k ∈ R. Therefore I set k = 1/

√
N and can now

obtain the normalized vector W1 in the 2-norm that spans the null space of L1:

W1 =


1√
N
1√
N
...
1√
N

 .

For the second derivative matrix d equals two so there must be two vectors w2
1 and w2

2
such that L2W2 = L2

[
w1

2 w2
2

]
= 0. Again we see that the constant vector must be a

solution, since f(t) = k differentiated twice will give the zero vector. Thus

w2
1 =


1√
N
1√
N
...
1√
N


will satisfy that L2w

1
2 = 0. The other vector can be found by investigating the function

f(t). If f ′′(t) = 0, integrating twice over f with respect to t gives us, that f(t) = k · t+ c
for k, c ∈ R. Setting k = 1 and c = 0 we get that f(t) = t. With step size ∆t = 1 and
start point t = 1 discretizing f(t) gives us the vector

w2
22 =


1
2
...
N

 .

I normalize this vector and can now obtain w2
2: w2

2 = w2
22∥∥w2
22
∥∥ .

We now have that the two vectors w1
2 and w2

2 are normalized and linearly independent, so
they will span the null space of L2. Thus W2 =

[
w2

1 w2
2

]
.
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5.3 In two dimensions

For two-dimensional problems we still want to solve the system Ax = b, but x now stores
the information of a two-dimensional matrix X. Here X is a discretization of the function
f(t, v) which takes two variables as an input. We want to define the discretization vectors
T and V . T is the same vector as stated in the previous section. We define a new vector
V , that stores the discretization points for v. This vector has the same length as T :

V =


v1
v2
...
vN

 ,

where ∆v = vi+1 − vi for i = 1, 2, . . . , N − 1. Discretizing f with respect to these two
vectors will then give us the matrix X:

X = f(T, V ) =


f(t1, v1) f(t2, v1) . . . f(tN , v1)
f(t1, v2) f(t2, v2) . . . f(tN , v2)

...
... . . . ...

f(t1, vN ) f(t2, vN ) . . . f(tN , vN )

 =


x1 xN+1 . . . x(N−1)N+1
x2 xN+2 . . . x(N−1)N+2
...

... . . . ...
xN x2N . . . xN2

 .

X can now be transformed to the vector x by storing all columns of X in a long column
vector of size N2 × 1:

x = vec(X) =



x1
x2
...
xN
xN+1
xN+2

...
x2N
...
...

x(N−1)N+1
x(N−1)N+2

...
xN2



.

Before I now introduce the L-matrices for two dimensions I want to return to the definition
of the generalized Tikhonov regularization:

min
x

{
‖Ax− b‖22 + λ2 ‖Lx‖22

}
.
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I start to find the second derivative matrix L2
2 for two dimensions. I consider the continuous

case of x and define the second derivative of f(t, v) to be the sum of f differentiated twice
with respect to t and f differentiated twice with respect to v:

∇2f(t, v) = ∂2f

∂t2
+ ∂2f

∂v2 .

The second derivative of f(t, v) with respect to v on discrete form can now be found by
multiplying the L2-matrix for one dimension with X. This can be explained by the fact
that every column vector in the matrix X corresponds to a fixed value of t, while v is
varying. Now L2 multiplied by each column vector will give the second derivative with
respect to v for this fixed value of t. A similar principle works for the second derivative
of f(t, v) with respect to t on discrete form. We multiply X with the transposed of L. In
this way we find the second derivative with respect to t, since v is fixed in each row. We
now have

∂2f

∂v2 ≈ L2XI

∂2f

∂t2
≈ IXLT

2 .

I now return to the expression for the generalized Tikhonov regularization. As we want
to find the 2-norm of Lx we have two possibilities:

‖Lx‖22 =
∥∥∥L2XI + IXLT

2

∥∥∥2

F
or ‖Lx‖22 = ‖L2XI‖2F +

∥∥∥IXLT
2

∥∥∥2

F
,

where F denotes the Frobenius-norm. The norm
∥∥∥L2XI + IXLT

2

∥∥∥2

F
has a very large null

space due to the fact that there are many functions satisfying ∇2f = 0 [6]. Therefore I
choose ‖L2XI‖2F +

∥∥∥IXLT
2

∥∥∥2

F
as the 2-norm of Lx squared. Since the Frobenius-norm is

a matrix-norm that takes the square root of the sum of all elements squared, this will be
the same as storing the column vectors of the matrix in one long column vector and take
the 2-norm. Therefore the expression ‖L2XI‖2F +

∥∥∥IXLT
2

∥∥∥2

F
can be further reduced by

‖L2XI‖2F +
∥∥∥IXLT

2

∥∥∥2

F
= ‖vec(L2XI)‖22 +

∥∥∥vec(IXLT
2 )
∥∥∥2

2
, (39)

where vec(L2XI) denotes the long column vector that stores all columns of the matrix
L2XI below each other. Another way to express vec(L2XI) could be using a Kronecker
product [7]. For this purpose I first investigate the vector vec(L2XI).

vec(L2XI) = vec




1 −2 1
1 −2 1

. . . . . . . . .
1 −2 1



x1 xN+1 . . . x(N−1)N+1
x2 xN+2 . . . x(N−1)N+2
...

... . . . ...
xN x2N . . . xN2



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=



x1 − 2x2 + x3
x2 − 2x3 + x4

...
xN−2 − 2xN−1 + xN
xN+1 − 2xN+2 + xN+3

...

...
xN2−2 − 2xN2−1 + xN2


Separating this vector into N column vectors of identical magnitude we see that each of
these vectors correspond to L2 multiplied by one column in the matrix X. Investigating
the Kronecker product I ⊗ L2 gives

I ⊗ L2 =


1

1
. . .

1

⊗


1 −2 1
1 −2 1

. . . . . . . . .
1 −2 1



=




1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1


. . . 

1 −2 1
1 −2 1

. . . . . . . . .
1 −2 1





.

Multiplying this matrix I⊗L2 with the vector x yields the same expression as vec(L2XI),
since L2 is multiplied by each of the columns in the matrix X. Therefore we know
vec(L2XI)=(I ⊗ L2)x. In a similar way we can use a Kronecker product to express
the vector vec(IXLT

2 ). Here (L2⊗I)x will satisfy that vec(IXLT
2 )=(L2⊗I)x. For further

details and illustrations see Appendix.

We can now rewrite expression (39):

‖vec(L2XI)‖22 +
∥∥∥vec(IXLT

2 )
∥∥∥2

2
= ‖(I ⊗ L2)x‖22 + ‖(L2 ⊗ I)x‖22 .

Since the sum between the 2-norm squared of two vectors will be the same as defining a
new long vector that contains the two vectors one below the other and taking the 2-norm
squared of this vector, we have that:

‖(I ⊗ L2)x‖22 + ‖(L2 ⊗ I)x‖22 =
∥∥∥∥∥
(

(I ⊗ L2)x
(L2 ⊗ I)x

)∥∥∥∥∥
2

2
.
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Then we can define a new matrix L̂ such that

∥∥∥∥∥
(

(I ⊗ L2)
(L2 ⊗ I)

)
x

∥∥∥∥∥
2

2
=
∥∥∥L̂x∥∥∥2

2
.

Using QR-factorization we can now decompose the matrix L̂ into two matrices Q2 and
R2: L̂ = Q2R2. Here Q2 satisfies that QT

2Q2 = I and R2 is a upper triangular matrix that
has the same rank and null space like L̂. We now get

∥∥∥L̂x∥∥∥2

2
= ‖Q2R2x‖22 = (Q2R2x)T(Q2R2x) = xTRT

2Q
T
2Q2R2x = xTRT

2R2x = ‖R2x‖22 ,

since QT
2Q2 = I. But if

∥∥∥L̂x∥∥∥2

2
= ‖R2x‖22, we can choose our second derivative matrix L2

2
for two-dimensional problems to equal the matrix R2 that is composed by QR-factorization

of the matrix L̂ =
(

(I ⊗ L2)
(L2 ⊗ I)

)
.

The first derivative matrix L2
1 for two-dimensional problems can be found on a similar way.

In the continuous case of x I define the first derivative of f(t, v) to be the sum between
the partial derivative with respect to t and the partial derivative with respect to v:

∂f

∂t
+ ∂f

∂v
.

But the first derivative with respect to t and v will be similar to the expressions for
the second derivative, where L2 is replaced by L1 to obtain the first derivative in each
direction:

∂f

∂v
≈ L1XI

∂f

∂t
≈ IXLT

1 .

Therefore the derivation of L2
1 will follow the same principle as for L2

2, with the main
difference that L2 is replaced by L1. Thus, the first derivative matrix L2

1 can be obtained

by QR-factorization of the matrix L̂1 =
(

(I ⊗ L1)
(L1 ⊗ I)

)
, where L̂1 = Q1R1. Therefore

∥∥∥L̂1x
∥∥∥2

2
= ‖R1x‖22 ,

since QT
1Q1 = I. But then the first derivative matrix in two dimensions L2

1 will be given
by L2

1 = R1.

I want to define the null space of the L-matrices in two dimensions. We have that L2
1 = R1

and L2
2 = R2, where the R-matrices are upper triangular matrices of size N2 ×N2. But

for R1 the last row is equal to zero, while for R2 the last four rows are equal to zero. Thus,
we have that
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dim(N (L2
1)) = dim(x)− dim(L2

1x) = N2 − (N2 − 1) = 1.

And

dim(N (L2
2)) = dim(x)− dim(L2

2x) = N2 − (N2 − 4) = 4.

For the first derivative I consider the continuous case of x, the function f(t, v). This
function must satisfy that ∂f

∂t
+ ∂f

∂v
= 0. Integrating over f gives f(t, v) = c1 + c2 = c.

Setting c = 1/N we can now obtain the normalized vector W 2
1 of size N2 × 1 that spans

the null space of L2
1:

W 2
1 =


1
N
1
N...
1
N

 .

For the second derivative f(t, v) there will be four vectors that span the null space W 2
2 of

L2
2. Here the function f must satisfy ∇2f(t, v) = ∂2f

∂t2
+ ∂2f

∂v2 = 0. Integrating twice over
f gives f(t, v) = c1 + c2 + c3t+ c4v+ c5tv = c+ c3t+ c4v+ c5tv. We see that there are four
different groups of functions that appear in the expression of f(t, v). Thus we can obtain
four different vectors that span the null space of L2

2. Again we see that the constant vector
w2

1 = W 2
1 is part of the null space. When defining c = c4 = c5 = 0 and c3 = 1 we obtain

the function f(t, v) = t. Discretizing f(t, v) with step size ∆t = 1 and start point t = 1
gives us the N2 × 1 vector

w2
22 =



1
2
...
N
...
...
1
2
...
N



.

Normalizing this vector I can obtain the vector w2
2 = w2

22∥∥w2
22
∥∥

2
. The function f(t, v) = v

will also be a solution to ∇2f(t, v) = 0 and discretizing this function with ∆v = 1 and
start point v = 1 gives us the vector
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w2
33 =



1
1
...
1
2
2
...
2
...
...
N
N
...
N



.

Normalizing u yields another vector in the null space of L2
2: w2

3 = w2
33∥∥w2

33
∥∥

2
. The last vector

in the null space can now be obtained from the function f(t, v) = tv. Discretizing in t-
and v-direction the same way as before, we get

w2
44 =



1 · 1
2 · 1
...

N · 1
1 · 2
2 · 2
...

N · 2
...
...

1 ·N
2 ·N
...

N ·N



=



1
2
...
N
2
4
...

2N
...
...
N
2N
...
N2



.

We can obtain w2
4 by normalizing this vector: w2

4 = w2
44∥∥w2

44
∥∥

2
. Now the null space of L2

2

will be given by W 2
2 =

[
w2

1 w2
2 w2

3 w2
4

]
since all vectors w2

1, w2
2, w2

3 and w2
4 are linearly

independent and normalized.
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5.4 Inverse of L

For both PKaczmarz and PCimmino the inverse of the matrix L is used in the update of
the iteration vector x(k). But considering the L-matrices for one and two dimensions as
defined above, we see that these matrices are not square and thus, we can not easily invert
them. Therefore I want to specify how we deal with L-matrices that are rectangular. Here
I focus on the expression for generalized Tikhonov regularization:

min
x

{
‖Ax− b‖22 + λ2 ‖Lx‖22

}
. (40)

5.4.1 Case 1: L is square

Considering the case where L ∈ Rn×n is a square matrix and L has full rank: rank(L) = n,
the variable ξ = Lx can be introduced and (40) can be rewritten as

min
ξ

{∥∥∥(AL−1)ξ − b
∥∥∥2

2
+ λ2 ‖ξ‖22

}
(41)

and solved with respect to ξ. To find the solution with respect to x, we must multiply
L−1 by ξ: x = L−1ξ.

5.4.2 Case 2: L is rectangular with more rows than columns

In this case I consider a rectangular matrix L ∈ Rp×n, where p > n and rank(L) = n.
My idea is to introduce the Moore-Penrose pseudoinverse of L as defined in section 3.1
and replace L−1 by L† in expression (41). I use QR-factorization to decompose L into
the matrices Q and R: L = QR. Now I want to check if the matrix R−1QT satisfies the
conditions to be the pseudoinverse of L.

1. LL†L = QRR−1QTQR = QR = L

2. L†LL† = R−1QTQRR−1QT = R−1QT = L†

3.
(
LL†

)T
=
(
QRR−1QT

)T
= IT = I = QRR−1QT = LL†

4.
(
L†L

)T
=
(
R−1QTQR

)T
= IT = I = R−1QTQR = L†L

We see that all four Moore-Penrose conditions are satisfied so R−1QT must be the pseu-
doinverse of L. Thus we replace L−1 by L† = R−1QT in expression (41) and can now
obtain the minimization problem we want to solve

min
ξ

{∥∥∥(AR−1QT)ξ − b
∥∥∥2

2
+ λ2 ‖ξ‖22

}
. (42)

This can be simplified by introducing the variable ξ̂ = QTξ, where ξ = Qξ̂. We have that
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‖ξ‖22 =
∥∥∥Qξ̂∥∥∥2

2
=
∥∥∥ξ̂∥∥∥2

2
.

We can now replace ξ by Qξ̂ in expression (42)

min
ξ

{∥∥∥(AR−1)ξ̂ − b
∥∥∥2

2
+ λ2

∥∥∥ξ̂∥∥∥2

2

}
, (43)

where we have the relation
∥∥∥ξ̂∥∥∥2

2
= ‖ξ‖22. And ξ̂ can be rewritten as

ξ̂ = QTξ = QTLx = QTQRx = Rx ⇔ x = R−1ξ̂.

We can now solve expression (43) with respect to ξ̂ and find the solution in terms of x:
x = R−1ξ̂.

5.4.3 Case 3: L is rectangular with fewer rows than columns

This section is based on theory derived by Per Christian Hansen [6].

In this case I consider L ∈ Rp×n being a rectangular matrix where p < n and rank(L) = p.
From the rank-nullity Theorem we know that these L-matrices have a non-empty null
space. Therefore any Tikhonov solution x to (40) can be splitted into two components: A
component x0 ∈ N (L) that belongs to the null space of L and a component z that does
not. Now x equals z + x0 and the Tikhonov problem (40) becomes:

{
‖Az +Ax0 − b‖22 + λ2 ‖Lz‖22

}
.

Note that Lx0 = 0 since x0 ∈ N (L). By requiring that Az is orthogonal to Ax0 we can
obtain two independent problems that can be solved with respect to z and x0:

min
z

{
‖Az − b‖22 + λ2 ‖Lz‖22

}
min
x0
‖Ax0 − b‖22.

Since Az ⊥ Ax0 we can split Rn into the two components N (L) and N (L)⊥A so that
z ∈ N (L)⊥A and x0 ∈ N (L).

The derivation of the pseudo inverse of L in this case is very technical and requires defi-
nitions about oblique projectors and oblique pseudo inverses [6]. Therefore I will skip this
part and only mention information most relevant to my project.

By introducing oblique projectors associated to N (L)⊥A and N (L) we can rewrite our
minimization problems. Using the matrix W that spans the null space of L we can obtain
an expression of x0:

x0 = W (AW )†b.
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From this definition of x0 we can derive an expression for the oblique projector that is
associated to the null space of L. Using this information we end up with an expression for
L# such that our minimization problem for Tikhonov is on the form:

min
ξ

{∥∥∥(AL#)ξ − b
∥∥∥2

2
+ λ2 ‖ξ‖22

}
. (44)

The expression for L# will be given by:

L# = (I −W (AW )†A)L†,

where L† depends on the problem and the structure of L. In this case we consider L
having full rank and therefore L can be splitted into L = (Lleft, Lright), where Lleft is
square and has full rank. Thus, L† will in this case be on the form:

L† =
(
L−1
left

0

)
.

And an expression for (AW )† can be obtained by QR-factorization. Decomposing AW
into QAW and RAW we get: AW = QAWRAW . In case 2 we derived the Moore-Penrose
pseudo inverse for the matrix L which was given by L† = R−1QT. The same principle
will work in this case and thus, (AW )† = R−1

AWQ
T
AW . Now we arrive at the following

expression for L#:

L# = (I −W (R−1
AWQ

T
AW )A)

(
L−1
left

0

)
.

We can now solve the Tikhonov problem (44) with respect to ξ and find the solution in
terms of x: x = L#ξ.

For the second derivative matrix in two dimensions, L2
2, we encounter problems when

separating the matrix into Lleft and Lright and inverting the quadratic matrix Lleft, since
L2

2 has a structure as shown in the left part of figure 6. We see that most elements
in the diagonal and upper diagonal are nonzero, while some elements are equal to zero.
Thus Lleft will be rank-deficient and have no finite inverse. Considering N discretization
intervals for x, the zero elements appear in the diagonal as number N2 − N − 1 and in
the upper diagonal as number N2 − N . To get rid of the zero elements in the diagonals
we introduce a permutation matrix Π that repositions column number N2 − N − 1 and
N2 −N to the last columns in the matrix, while the last N2 −N + 1 columns are moved
two columns to the left. This proces is illustrated in figure 6. I define L = LΠ and can
now separate this matrix into Lleft and Lright. L

† will here be given by:

L
† =

(
L
−1
left

0

)
.
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To obtain the pseudo inverse with respect to L we permute L†: L† = ΠL†. Using this
expression for L† we can follow the same principle as for L-matrices that didn’t have zeros
in the diagonal to obtain the oblique pseudo inverse L#:

L# = (I −W (R−1
AWQ

T
AW )A)Π

(
L
−1
left

0

)
.

This approach opens the possibility to work with the matrix L2
2. Note that this only works

for this specific L-matrix. Further approaches could aim toward finding a procedure that
works for arbitrary L-matrices.
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Figure 6: Nonzero elements in the L2
2 matrix to the left and in the L†-matrix obtained

by using a permutation matrix to the right.
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6 Matlab implementation
The methods PCimmino and PKaczmarz are implemented in Matlab named PCimmino.m
and PKaczmarz.m. These methods use the function get_l.m from the AIR Tools package
to define the L-matrices for one-dimensional problems and the function get_L2.m to
define the L-matrices for two-dimensional problems. Multiplications with the inverse and
the transpose of the inverse of L in one dimension are performed using the functions
lsolve.m and ltsolve.m from the AIR Tools package. For two dimensions Per Christian
Hansen added modifications for the second derivative matrix as derived in section 5.4.3,
resulting in the functions lsolve2D.m and ltsolve2D.m.

Since I don’t use large test problems, where the resolution is high, I define the matrix
L#

(
L#
)T
AT explicitly to save computation time. A more general approach would be to

calculate L#
(
L#
)T
AT and L#

(
L#
)T
rT
i for PCimmino and PKaczmarz respectively in

each iteration to save memory space. In this case it would be possible to use the method
on larger test problems than possible with my approach. Note that for the last approach
the computation time will be K times longer than for the my approach. Here K is the
number of iterations for PCimmino and the number of sweeps over the rows of AL# for
PKaczmarz. Also note that longer computation time would especially be a disadvantage
for PCimmino since PCimmino, particularly for low noise levels, needs many iterations to
obtain a good reconstruction. A more efficient way could therefore be to write code that
uses the first approach for small and the last approach for large test problems.

As Matlab is optimized for matrix and vector operations but is slow at performing loops,
PKaczmarz performs really slow since we need a for loop to sweep over the rows of AL#

and a for loop to perform a given number of iterations. Therefore the code could be
improved by writing in a programming language that supports loops more effectively.
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7 Performance of PKaczmarz & PCimmino
To test the performance of PKaczmarz and PCimmino we created and used different test
problems in one and two dimensions. In the following I name Kaczmarz’s and Cimmino’s
method the standard version of PKaczmarz and PCimmino. In general the solution for a
reconstruction problem in tomography is a two-dimensional image that represents a slice of
a three-dimensional object. Therefore the main purpose of the one-dimensional problems
is highlighting the difference between the priorconditioned methods and their standard
versions. Another advantage is the simplicity of these problems which makes it easier to
analyze the effect of using a priorconditioner matrix.

7.1 Test problems from the "AIR Tools" package

The following test problems are created using the "AIR Tools" package in Matlab [5]. Note
that in all cases the datavector b is obtained by multiplying the coefficient matrix A by
the known solution x and adding an amount of noise; this phenomena is called "inverse
crime" since the same model is used to compute the reconstruction and to get test data
[6]. Therefore the following test problems may not be representative for how PKaczmarz
and PCimmino operate on real data. However the purpose of the following tests is to give
an impression of their performance; if the methods don’t yield good results for synthetic
data they won’t yield good results for real data either.

7.1.1 One dimension

In one dimension n = 900 discretization points are used to obtain the test problems. The
naive solution x will then have dimension 900 × 1, the datavector b will have dimension
900× 1 and thus, the coefficient matrix A will have dimension 900× 900.

7.1.1.1 "Deriv2"
The test problem "Deriv2" is a discretization of a first kind Fredholm equation and the
solution appears as a straight line from 0 to 0.0333. As there are no discontinuities in the
solution, the problem will be quite smooth. I used Kaczmarz, PKaczmarz, Cimmino and
PCimmino to reconstruct the solution at a 1% noise-level, results are illustrated in figure
7. Especially PCimmino was performing well for both the first and second derivative
used as L-matrices, but the second derivative actually produced an even better result.
PKaczmarz had some problems with the boundary points and produced worse results
than Kaczmarz. A similar trend can be recognized at the boundary points for Cimmino
and the reason for this behavior of Cimmino can be explained by the basis vectors of the
solution. For Landweber’s method the solution in terms of the SVD components of the
coefficient-matrix A will be on the form

x(k) = V ΦΣ−1UTb,

where Φ =diag
(
1−

(
1− ωσ2

i

)k). Here V contains the right singular vectors of the matrix
A, so the vectors in the columns of V will act as basis vectors for the solution. A similar
expression can be obtained for Cimmino by using SVD to decompose A: A = UΣV T. I
investigate the first three column vectors of the matrix V , since they act as basis vectors
for the Cimmino solution. The vectors are shown in figure 8. We see that the first basis
vectors are zero at the boundary points. Since the regularized solution for Cimmino is
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dominated by the first basis vectors, this may lead to problems in the reconstruction, as
the solution is not zero at both boundary points. So in this case the basis vectors do not
match with the structure of the solution. Compared to Cimmino, PCimmino produced
way better results because the priorconditioner matrix L can adjust for this factor.

For this test problem PKaczmarz was very sensible to higher noise-levels. At a 0.1%
noise-level PKaczmarz was able to produce better results than Kaczmarz especially for
the first derivative matrix L, but for higher noise-levels PKaczmarz performed worse.

In conclusion; for this specific test problem especially PCimmino was able to produce
much better results than Cimmino. In this case the priorconditioner matrix L is suited
for the problem using Cimmino since the priorconditioner can adjust for the problems we
get by the structure of the coefficient matrix. In comparison Kaczmarz and particulary
PKaczmarz performed worse for higher noise levels than Cimmino/PCimmino.
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Figure 7: Performance of PKaczmarz and PCimmino on the test problem "Deriv2".
PCimmino produces way better solutions than PKaczmarz.
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The first 3 basis vectors of the solution for "Deriv2"
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Figure 8: First basisvectors of the solution for the test problem "Deriv2". We see that
the vectors are zero at the boundary points.

7.1.1.2 "Gravity"
The test problem "Gravity" is the discretization of a 1D model in gravity surveying where
the solution is very smooth. The reconstructions for PKaczmarz and PCimmino at a 1%
noise-level are shown in figure 9. In this case all methods produced good solutions, but
the choice of the L-matrix is quite important for the quality of the reconstruction when
using the priorconditioned methods. For both PKaczmarz and PCimmino the second
derivative matrix performed way better than the first derivative. This may be caused by
the smoothness of the problem, since we recognized a similar trend for the smooth problem
"Deriv2". And the second derivative matrix may cause more smoothing of the solution
than the first derivative matrix does. Note that in this case the noise level did not have
that much influence on the quality of the reconstruction using PKaczmarz.
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Figure 9: Performance of PKaczmarz and PCimmino on the test problem "Gravity".
As both PKaczmarz, PCimmino and their standard versions produced good solutions the
error level indicates which method performs best. For the error plots the x-axis shows the
number of iterations.

7.1.1.3 "Phillips"
We derived the methods PKaczmarz and PCimmino in the hope that we could get better
solutions for smooth problems. Because not all problems are either smooth or piecewise
constant this test problem should give an indicate of how PKaczmarz and PCimmino
perform on a composition of both types of problems.

The test problem "Phillips" is a discretization of the ’famous’ first-kind Fredholm integral
equation deviced by D. L. Phillips. The solution is a combination of two constant parts
and a very smooth part, where the changes from constant to smooth and reverse order
forms two sharp corners. The reconstructions for the four different methods are shown in
figure 10. We see that all methods had difficulties to capture the corners in the solution,
but definitely Cimmino performed best. The first derivative matrix can improve the
solution of Kaczmarz, but PKaczmarz still wasn’t as good as Cimmino. Investigating
the basis vectors for the solution may give an explanation for the good performance of
Cimmino. Here the first three basis vectors are illustrated in figure 11. These vectors fit
well with the exact solution: The boundary points are close to zero and especially for
the third basis vector the structure matches the solution. So the first basis vectors, that
dominates the solution, creates best conditions for Cimmino to give a good reconstruction.
As there are piecewise constant parts in the exact solution the priorconditioner matrices
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cannot improve the good result of Cimmino, since they cause too much smoothing.
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Figure 10: Performance of PKaczmarz and PCimmino on the test problem "Phillips".
PKaczmarz produces a slightly better solution than Kaczmarz, while Cimmino performs
best. For the error plots the x-axis shows the number of iterations.
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Figure 11: The first three basis vectors of the solution for the test problem "Phillips".
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7.1.2 Two dimensions

In the following I define my coefficient matrix A by using the function paralleltomo.m
from the "AIR Tools" package that uses round(

√
2 ∗ N) parallel rays, N discretization

intervals and 60 angles from 3° to 180° to simulate a parallel beam test problem and
creates the matrix A. As there are round(

√
2 ∗N) parallel rays from 60 different angles,

60· round(
√

2 ∗N) data points are stored in data vector b. The number of discretization
intervals is set to N = 60 in most of the test problems in this section and thus the solution
x is an image consisting of N×N pixels. Note that x is reshaped to an vector of dimension
N2 × 1 for the calculations. The coefficient matrix A containing information about the
set up of the parallel beam geometry is of size 60· round(

√
2 ∗N)×N2.

7.1.2.1 Phantomgallery: "Smooth"
The phantom "Smooth" is obtained from the phantomgallery.m in the "AIR Tools"
package using the fourth smoothing function. The solution contains one large object that
is very smooth. To identify which priorconditioner matrix works best for this problem we
investigate PKaczmarz’s and PCimmino’s performance for the first and second derivative
L-matrix using a low noise-level (0.1%). The colormap "colorcube" is used to highlight
the noise in the reconstruction and the result is illustrated in figure 12. We see that
Pkaczmarz performed slightly better using the second derivative, while PCimmino only
produced a good result for the first derivative. Though PKaczmarz performed good,
noise appeared in the corners of the image. The reason for this is the set up of the
coefficient matrix: We use 60 different projection angles and 85 parallel rays, but not
many rays capture the pixels in the corners. This could also be an explanation why
PCimmino gives such a strange reconstruction for the second derivative matrix. Note
that the priorconditioners behaved very differently for the two methods. While the second
derivative matrix worked fine for PKaczmarz, it didn’t work at all for PCimmino.

Now the first derivative matrix for PCimmino and the second derivative matrix for
PKaczmarz were used to compare the priorconditioned methods with their standard
versions. I tested the methods for three different noise-levels, 0.01%, 0.1% and 1%. The
results for Cimmino and PCimmino are illustrated in figure 13. Comparing PCimminos
reconstructions with those of Cimmino it is remarkable that PCimmino gives better
results for all noise levels. Especially for higher noise levels the difference to Cimmino is
significant. But for all noise levels the striking differences between the reconstructions
obtained by PCimmino and the exact solution lie in the edges and in the corners of the
image. It seems like the priorconditioner matrix creates a smooth solution that make
some of the darker orange edges disappear and for higher amount of noise more edges
disappear. Apparently at 1% noise green noise pixels appear in the upper right and lower
left corner due to the few rays that capture these pixels. Even though the error for the
different noise levels indicates that PCimmino yields quite good reconstructions even for
higher noise levels.

Figure 14 shows the reconstructions for Kaczmarz and PKaczmarz, here like for Cimmino
and PCimmino the priorconditioned method worked better than the standard version
for all noise levels. But for higher noise levels the reconstruction got very bad for
PKaczmarz and even worse for Kaczmarz. Investigating the reconstructions, PKaczmarz
like PCimmino seemed to have problems in the edges and the corners of the image. For
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Kaczmarz we can still notice some of the dark orange edges in the reconstruction, while
they partially disappear using the priorconditioner matrix. Nevertheless PKaczmarz
seemed to perform quite good for lower noise levels on this test problem, but gave a
distorted reconstruction for a higher amount of noise like 1%.

In comparison PCimmino worked much better than PKaczmarz for higher noise levels.
However PKaczmarz worked slightly better for lower noise levels. Here PKaczmarz per-
formed better, since PCimmino for this test problem required many iterations to obtain a
good result. Nevertheless both methods had problems in reconstructing the sections that
lie in the corners and edges in the image. This may be a consequence of using priorcon-
ditioner matrices: If the sections in the corners and edges of the results are very noisy in
the reconstructions obtained by the standard methods, these sections are smoothed by the
priorconditioned methods. Due to few rays that capture the corners, the priorconditioned
methods may have difficulties in differing between noise and exact solution.
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Figure 12: Performance of PCimmino and PKaczmarz on the test problem "Smooth" for
different L-matrices. The second derivative matrix works slightly better for PKaczmarz,
while it works not at all for PCimmino. For the error plots the x-axis shows the number
of iterations.
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Figure 13: Performance of PCimmino compared with Cimmino on the test problem
"Smooth" for different noise levels. In all cases PCimmino produces the best result, but
especially for high noise levels there is a significant improvement in the reconstruction
using PCimmino. For the error plots the x-axis shows the number of iterations.
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Figure 14: Performance of PKaczmarz compared with Kaczmarz on the test problem
"Smooth" for different noise levels. Pkaczmarz gives the best reconstructions, but is very
sensitive to higher noise levels. For the error plots the x-axis shows the number of itera-
tions.
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7.1.2.2 Phantomgallery: "Threephases"
The phantom "Threephases" from the Phantomgallery is a random image containing the
pixel values 0, 0.5 and 1 arranged in domains. For this test problem five domains are used
and the seed for the random number generator is set to 2. Because the phantom is piecewise
constant I used the gaussian filter imgaussfilt.m in Matlab with standard deviation 2 to
create a smooth test problem containing smaller objects than the test problem "Smooth".
I tested PKaczmarz and PCimmino on this problem for the two different L-matrices and
noise level 0.1%. Here the colormap "hsv" seemed appropriate to illustrate the behavior
of the methods. The results are shown in figure 15. We see that PKaczmarz gave a
really good reconstruction using the first derivative matrix, which was way better than
the result obtained by Kaczmarz. The second derivative matrix didn’t work well for
PKaczmarz and even worse for PCimmino. Also the first derivative matrix worked badly
for PCimmino, here Cimmino performed better. As the reconstructions indicate, there
is a relation between the order of the derivatives and the intensity of the smoothness
in the image: For both PKaczmarz and PCimmino the second derivative matrix gives
smoother solutions than the first derivative. But since the methods work differently, the
L-matrices have different impacts on the reconstruction. For PKaczmarz the results were
less smooth than for PCimmino matching the exact solution better for this test problem.
Also none of the reconstructions obtained by the priorconditioned methods looked similar.
While the second derivative matrix for PKaczmarz caused red "smoothing stripes" in the
background, for PCimmino this derivative matrix induced a butterfly-like formation of
the objects and the background. Even though compared to the result for the previous
test problem PCimmino worked a lot better for this problem using the second derivative
matrix. In this case PCimmino captured the largest objects and the background, but
the solution is way to smooth. Note that this problem was not as smooth as the test
problem "Smooth", since the objects are smaller and the difference in the pixel values of
some neighbour pixels are larger.
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Figure 15: Performance of PKaczmarz and PCimmino on the test problem "Threephases"
for the different L-matrices compared to their standard versions. PKaczmarz performed
best of all using the first derivative matrix, while the reconstructions produced by PCim-
mino are way too smooth and worse than the result obtained by Cimmino. For the error
plots the x-axis shows the number of iterations.
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Figure 16: Performance of PKaczmarz and PCimmino on the test problem "Ppower1".
PKaczmarz performed best, while PCimmino produced a way too smooth solution. For
the error plot the x-axis shows the number of iterations.

7.1.2.3 Phantomgallery: "Ppower"
I created several test problems using the phantom "Ppower" from the phantomgallery that
creates a random image with patterns of nonzero pixels. Here I used different smoothness
intensities and different seeds for the random number generator. For these test problems
I used more discretization intervals: N = 80.
The previous test problems indicate that the second derivative only works for very
smooth problems, but the following test problems won’t be as smooth as "Smooth" or
"Threephases" and therefore I will use the first derivative matrix to obtain results from
PKaczmarz and PCimmino.

7.1.2.3.1 Ppower1
For the test problem "Ppower1" the phantom "Ppower" is obtained from the
phantomgallery.m using 0.3 as the ratio for nonzero pixels, 2 as smoothness in-
tensity and 2 as seed for the random number generator. Afterwards I perform smoothing
on the phantom using imgaussfilt.m with standard deviation 1 to obtain my test
problem. Here the shape of the objects in this solution is non-uniform compared to
the previous test problems. Using 0.1% noise I get the reconstructions shown in figure
16. PKaczmarz performed best followed by Kaczmarz, Cimmino and PCimmino. The

Hjørdis Amanda Schlüter (s132757) 54



7 Performance of PKaczmarz & PCimmino Iterative tomographic reconstruction

reconstruction obtained by PKaczmarz was good, but contained more noise than the
result for the test problem "Threephases". A reason for this may be the non-uniform
shape of the objects and a slightly lower smoothness intensity compared to "Threephases".
In constrast, PCimmino created a solution that was way too smooth.

Kaczmarz PKaczmarz

Test problem "Ppower2" 0.1% noise

exact

0

0.2

0.4

0.6

0.8

1

Cimmino PCimmino
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-1

10
0

10
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1st deriv

Cimmino

1st deriv

Figure 17: Performance of PKaczmarz and PCimmino on the test problem "Ppower2".
Kaczmarz performed best, but PKaczmarz produced a reasonable solution too. For the
error plot the x-axis shows the number of iterations.

7.1.2.3.2 Ppower2
As smooth problems in general may contain some parts that are piecewise constant the test
problem "Ppower2" should illustrate how the methods perform on piecewise constant prob-
lems. The phantom is obtained using 0.3 as the ratio for nonzero pixels, 20 as smoothness
intensity and 15 as seed for the random number generator. Here The result is illustrated
in figure 17. We see that Kaczmarz gave the best reconstruction, while PKaczmarz didn’t
perform too bad either. PKaczmarz seemed to smooth the errors in Kaczmarz’s solution,
but couldn’t make them disappear. This is caused by the piecewise constant parts in the
solution, PKaczmarz may not be able to recognize the difference between the noisy and
the piecewise constant parts and reconstructs all of it. On the other hand PCimmino
again gave a result that was way too smooth.
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7.1.2.3.3 Ppower3
Finally the test problem "Ppower3" was obtained using 0.3 as the ratio for nonzero pixels,
20 as smoothness intensity and 16 as seed for the random number generatior and then
separating this phantom into two parts. The left half contains very smooth objects,
where the smoothness is obtained by imgaussfilt.m in Matlab using standard deviation
2 and the right half contains two objects, whose edges are piecewise constant. Using a
noise level of 0.1%, the reconstructions are shown in figure 18. The error indicates that
Kaczmarz, PKaczmarz and Cimmino obtained almost the same quality in their results,
while PCimmino again performed bad due to too much smoothing. The reconstruction
obtained by PKaczmarz was slightly better than the others and quite interesting: The
right half was filled with the same amount of noise as Kaczmarz, while there appeared
less noise in the left half, especially between the two smooth objects. So this test
problem actually illustrates how much influence piecewise constant parts have on the
reconstruction for PKaczmarz compared to the smooth parts. What is common for
Kaczmarz, PKaczmarz and Cimmino is a noisy stripe that appeared in the upper right
corner of the reconstructions. This may be associated with the small piecewise constant
object in the same corner. As this object is very small it may cause even more noise in
it’s neighbourhood.
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Figure 18: Performance of PKaczmarz and PCimmino on the test problem "Ppower3".
PKaczmarz yielded the best reconstruction, while PCimmino had problems with the piece-
wise constant parts in the solution. For the error plot the x-axis shows the number of
iterations.
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7.2 Test problems from the real world

To get an impression of how the methods perform on real world problems we got in contact
with Mirko Salewski from the Department of Physics at DTU. He is doing research in the
field "Plasma Physics and Fusion Energy" and handed us some tomography problems from
his field.

7.2.1 "Analytic test case": Bi-Maxwellian distribution

For the test problem "Analytic test case" the coefficient matrix A and the solution x were
found analytically and the solution is a bi-Maxwellian distribution [10]. Here A is of size
282 × 3600 and the solution is an image consisting of 60 × 60 pixels. The datavector
b is synthetic and calculated by the matrix A and the solution x; here we added 0.1%
noise and used level 1 for the background Bremstrahlung level. The solution to this
test problem is even smoother than the problem "Smooth" used in the previous section,
since the contour lines for different intensities in the image are shaped like ellipses. In
contrast, for the problem "Smooth" the contour lines look like trapezoids with smooth
corners. The reconstructions obtained by PKaczmarz and PCimmino are shown in figure
19. PKaczmarz performed best for the second derivative closely followed by PCimmino
for the same derivative matrix. For both Kaczmarz and Cimmino the reconstructions
were slightly deformed by the noise. This trend reappeared more smooth in the results
for PKaczmarz and PCimmino using the first derivative. For the second derivative both
methods could achieve smooth reconstructions that didn’t have these deformations, were
more smooth and looking way more similar to the exact solution. Even though there is a
great difference in how the two methods achieve the good reconstructions. For PKaczmarz
the deformations appeared as wavy structures of the contour lines in the result for the
first derivative. These wavy structures were smoothed sectionwise in the solution for
the second derivative; otherwise the reconstructions for the first and second derivative
looked quite similar. For PCimmino using the first derivative the outer contour lines in
the reconstruction were not shaped like ellipses and therefore the reconstruction was not
good. This trend disappeared completely for the second derivative and a really good
solution was obtained. Since there was almost no relation between the reconstructions for
the first and second derivative, PCimmino especially for higher derivatives seem to assume
that the solution is absolutely smooth.
As this problem is extremely smooth, the second derivative matrix worked best as a
priorconditioner for both PKaczmarz and PCimmino.
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Figure 19: Performance of PKaczmarz and PCimmino on the test problem "Plasma -
Analytic test case". Both PKaczmarz and PCimmino obtain really good results for the
second derivative matrix. For the error plots the x-axis shows the number of iterations.
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7.2.2 "Trimmed": Fast-ion distribution in a fusion plasma

The test problem "Trimmed" was obtained by real data. Here the solution is the fast-ion
distribution function in a fusion plasma. This is a velocity-space tomography problem,
where the tomographies are calculated using measurements obtained by the fast-ion Dα

(FIDA) spectroscopy set-up [9]. The measurements were obtained from 5 different points
of views and this information about the geometry was stored in the coefficient matrix
A. Here A is of size 863 × 900. The distribution function x is an image consisting of
30× 30 pixels and the datavector is of size 863× 1. As the fast-ion distribution is difficult
to measure, the error in the data is at least 10%. The performance of PKaczmarz and
PCimmino for the test problem "Trimmed" using real data is illustrated in figure 21 in the
Appendix. The results are so bad, it is difficult to recognize any similarities between the
reconstructions and the exact solution. High error in the datavector and bad resolution in
the image may have caused these bad results for the methods. Therefore I tried synthetic
data instead, where I used A and the expected fast-ion distribution function x to compute
b in the same way as for the problem "Analytic test case". Using 0.1% noise the result
for this test problem is shown in figure 20. PKaczmarz and PCimmino performed okay
but not as good as for the "Analytic test case". All reconstructions were way to smooth,
but PKaczmarz gave the best result for the second derivative. Especially PCimmino
performed bad, since both reconstructions didn’t show the two small objects seen in the
solution. In this case the noise level cannot be a cause for the bad reconstructions, but
factors like low resolution and small objects in the solution may influence the quality of
the reconstructions.
Further investigations for higher noise levels showed that we couldn’t get good reconstruc-
tions, but even for noise levels of about 25% the results didn’t get as bad as for the real
data. So the amount of noise and the low resolution not necessarily explain the difference
between the results for real and synthetic data. Note that the better results for the syn-
thetic data may be caused by the fact that the same model is used to generate the test
data and compute the reconstruction. Otherwise the set-up for the measurements may
also have influence on the quality of the reconstruction: Too few views to obtain measure-
ments yielding areas that are not captured. I don’t know much about the physical aspects
or the set-up of FIDA used to obtain the measurements, however I want to point out that
the set-up may be an important factor for this methods to obtain a good solution, since
the information about the set-up is stored in the matrix A.
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Figure 20: Performance of PKaczmarz and PCimmino on the test problem "Trimmed".
PKaczmarz performs best for the second derivative, but all reconstructions are way too
smooth. For the error plot the x-axis shows the number of iterations.
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7.3 Summary of results and Analysis

Overall, the test problems showed that both PKaczmarz and PCimmino were able to give
good reconstructions for specific problems. Here factors like smoothness and composition
of the test problem, choice of the L-matrix, amount of noise in the data and structure of
the coefficient matrix seemed to be important to the quality of the reconstruction.

The test problems "Threephases" and the three "Ppower" problems represented test cases,
where the solution was not perfectly smooth in terms of size, shape and composition of
the objects in the solution. These problems illustrated how sensitive PCimmino is to less
smooth solutions: Small, non-uniform and piecewise constant objects caused significantly
worse performance of Cimmino. Here PKaczmarz is not that sensitive: The method
produced good results for small objects, slightly worse results for smooth objects with
non-uniform shape and worst results for solutions containing piecewise constant parts.
Even though the performance on problems of the latter kind was still almost as good as
for Kaczmarz. Nevertheless we can conclude: The smoothness and composition of the
solution is a factor that has influence on the quality of the reconstruction.

As the test problems "Gravity", "Threephases" and "Analytic test case" illustrates,
there is a relation between the order of derivative for the L-matrix and the smoothness
of the reconstruction: In both cases the second derivative matrix caused a smoother
solution than the first derivative matrix. Here the solution to the "Analytic test case"
and "Gravity" is exceptionally smooth, so the second derivative matrix is suited for this
kind of problem. However for "Threephases" the objects are small and not that smooth;
therefore the first derivative matrix was a better choice in this case.

The test problems "Smooth" and "Trimmed" using real data illustrated how sensitive
PKaczmarz is to noise. For a high amount of noise the reconstructions for Kaczmarz on
the test problem "Smooth" were that noisy that PKaczmarz gave a distorted reconstruc-
tion. At a noise level of about 10% PKaczmarz was not able to find a solution to the test
problem "Trimmed". PCimmino could not find a reasonable solution either, but this may
be caused by the fact that the objects are small and the resolution is low.

The one-dimensional problems "Deriv2" and "Phillips" illustrated that the structure of A is
crucial for the performance of the methods: For "Deriv2" the basis vectors of the solution
didn’t match with the exact solution, so Cimmino couldn’t produce a good result. Here
the priorconditioner matrix could adjust for this factor, so PCimmino could improve Cim-
mino’s reconstruction. In comparison for the partly piecewise constant problem "Phillips"
the basis vectors did match well with the problem, so Cimmino gave a good result. As
the L-matrices give smoother solutions, PCimmino performed worse than Cimmino.
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Especially the test problems "Threephases" and "Analytic test case" showed how different
the priorconditioned methods behave for the same priorconditioners. For PKaczmarz
there was a close relation between the solution for the different priorconditioners and
the solution of Kaczmarz. Here PKaczmarz performed a sectionwise smoothing on the
solution obtained by Kaczmarz. For PCimmino the difference between the solution
of PCimmino for the two L-matrices and the solution of Cimmino was more striking.
Here it seemed like PCimmino assumed the solution is very smooth and obtained a
solution that not necessarily was related to the solution produced by Cimmino. For really
smooth problems this behavior may be an advantage, but for less smooth problems like
"Threephases" this leads to bad reconstructions.

Note that for most of the test problems low noise levels were used and that most of the
data were obtained involving inverse crime. Thus, the results may not be representative.
Nevertheless the test problems were enough to determine whether or not it would be
worth it continue research on the priorconditioned algebraic iterative methods. And the
investigations gave first impressions of some of PKaczmarz’s and PCimmino’s strengths
and weaknesses.

It is striking that PKaczmarz is able to produce good results for all different kind of
smooth test problems using a low amount of noise, since the priorconditioner matrices
was derived for PCimmino only. Therefore it may be reasonable to do further research in
this field and derive the priorconditioner matrices suitable for PKaczmarz. The solution
for PKaczmarz and PCimmino may also be improved by making the methods work with
non-negativity or box constraints when prior information about the function values in
the solution is available.

The tomography problem "Trimmed" from the Department of Physics at DTU showed the
relevance of these methods for research reasons. Even though the approach for this test
problem was rather optimistic, since a high noise level and low resolution made it very
difficult to obtain good reconstructions. Nevertheless PKaczmarz produced reasonable
results for the synthetic data on the same problem. This is a step in the right direction.
A next approach may be to test PKaczmarz and PCimmino on more simple problems
obtained from real data to get a more realistic impression how the methods perform when
inverse crime is avoided.

PCimmino fulfilled our expectations, as this method created smooth solutions and in case
of very smooth test problems the performance of Cimmino was improved. A disadvantage
is PCimmino’s performance on less smooth problems, here the method is rather ineffective.
On the other hand we had no great expectations for PKaczmarz since the priorconditioners
were derived for PCimmino. Here our expectations were exceeded, since PKaczmarz for
low noise levels could handle different kinds of smooth problems.
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8 Conclusion
Using knowledge from priorconditioned CGLS we successfully derived and implemented
priorconditioned versions of Cimmino and Kaczmarz. Based on generalized Tikhonov
regularization we were able to establish priorconditioner matrices for PCimmino appearing
as discrete approximations of the first and second derivative operator. We used the same
approach for PKaczmarz, but didn’t know if these priorconditioner matrices were a good
choice for PKaczmarz.

In this project efficient implementation of PKaczmarz and PCimmino was of secondary
importance: The expression involving computations with the pseudoinverse and the
transpose of the pseudoinverse of the priorconditioner matrix was defined explicitly due
to this expression appeared in every update of the iteration vector. As we tested the
methods on smaller test problems this saved computation time. A general approach would
be to calculate the mentioned expression in every iteration to save memory space and
make it possible to use the methods on large problems. Otherwise a combination between
the two approaches matching with the size of the given problem may be a possibility
for future implementations. Also the programming language Matlab isn’t suitable for
iterative methods, especially row-action methods, since they involve many loops and
Matlab is optimized for matrix and vector operations. Here another programming
language supporting loops could improve the efficiency of the implementation.

We expected that PKaczmarz and PCimmino might improve the performance of Kacz-
marz and Cimmino on tomography problems where the solution was smooth. Here
our expectations for both methods were only met for test problems where the solution
was very smooth. PCimmino produced way too smooth reconstructions for problems
where the solution contained small, non-uniform or piecewise constant objects. For these
problems PKaczmarz performed way better. Here our expectations were exceeded since
the priorconditioner matrices were derived for PCimmino, but PKaczmarz could obtain
better solutions using this priorconditioners. Therefore it may be reasonable to do fur-
ther research in this field and derive the priorconditioner matrices suitable for PKaczmarz.

The analysis for different test problems showed that the performance of the priorcon-
ditioned methods depends on the specific test problem: Factors like smoothness and
composition of the test problem, amount of noise in the data and structure of the
coefficient matrix were most important to the quality of the reconstruction. Especially
PCimmino performed bad when the solution was less smooth. However PKaczmarz was
not that sensitive to the smoothness of the solution; here problems occurs when piecewise
constants parts appear in the solution. On the other hand PCimmino is way more robust
to noise in the data compared to PKaczmarz. For the specific test problem the choice
of the priorconditioner matrix is important: If the solution is very smooth, especially for
PKaczmarz a higher order derivative priorconditioner matrix is needed, while PCimmino
already creates a very smooth solution using the first derivative matrix.

Test problems from real data from the Department of Physics at DTU showed the
relevance of these methods for research reasons. Even though PKaczmarz and PCimmino
were not able to produce reasonable results for the real data due to a high amount
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of noise and low resolution. Nevertheless PKaczmarz produced reasonable results for
synthetic data on the same problem. As all test problems in this project work were
obtained by synthetic data, a next approach may be to test PKaczmarz and PCimmino
on more simple problems obtained from real data to get a more realistic impression how
the methods perform. Also the methods may be improved by introducing non-negativity
or box constraints when prior information about the function values in the solution is
available.
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Appendix

Investigation of the Kronecker product L2 ⊗ I

I investigate the vector vec(IXLT
2 ):

vec(IXLT
2 ) = vec




x1 xN+1 . . . x(N−1)N+1
x2 xN+2 . . . x(N−1)N+2
...

... . . . ...
xN x2N . . . xN2





1
−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2
1





=



x1 − 2xN+1 + x2N+1
x2 − 2xN+2 + x2N+2

...
xN − 2x2N + x3N

xN+1 − 2x2N+1 + x3N+1
...
...

x(N−2)N − 2x(N−1)N + xN2


.

Separating this vector into N column vectors of identical magnitude, we see that each of
these vectors correspond to the second derivative of three elements in each row of X. And
investigating the Kronecker product L2 ⊗ I gives me

L2 ⊗ I =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

⊗


1
1

. . .
1



=




1

1
. . .

1



−2

−2
. . .

−2




1
1

. . .
1


. . . . . . . . .


1

1
. . .

1



−2

−2
. . .

−2




1
1

. . .
1





.
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Multiplying this matrix L2 ⊗ I with the vector x gives me the same expression as
vec(IXLT

2 ). Therefore we must have that vec(IXLT
2 )=(L2 ⊗ I)x.

Figures
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Figure 21: Performance of PKaczmarz and PCimmino on the test problem "Trimmed"
using real data. All methods perform really bad and it is difficult to recognize similarities
between the reconstructions and the exact solution. For the error plot the x-axis shows
the number of iterations.
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