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Abstract

The goal of this thesis is the design, implementation and evaluation of a real-
time multicore audio processing platform. We propose a set of techniques and
rules that allow multiple audio effect tasks distributed among the cores in the
system to communicate and synchronize efficiently, given the constrained time
requirements of real-time audio processing. The T-CREST platform has been
used for the implementation. T-CREST is a time-predictable multi-processor
platform for real-time embedded systems. The proposed solution allows mul-
tiple audio effects with different sample processing rates and communication
requirements to be integrated in the same platform, using a network-on-chip
for interconnection. We finally present the evaluation of the system, showing
results that demonstrate its correct functionality under temporally constrained
environments. A discussion on the implementation and results is also provided.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science of the Technical University of Denmark (DTU Compute) in ful-
filment of the requirements for acquiring an M.Sc. in Computer Science and
Engineering.

During my M.Sc. studies at DTU, I have followed the study lines of ’Embedded
and Distributed Systems’ and ’Digital Systems’. In the courses related to digital
systems and computer architecture, such as ’Design of Digital Systems’, ’Design
of Asynchronous Circuits’, ’Computer Architecture and Engineering’ and ’Ad-
vanced Computer Architecture’, is where I have acquired most of the knowledge
on topics related to this thesis. Specially on the last one, where we designed
the initial version of the audio interface for Patmos. Another DTU course that
is related to this thesis is ’Audio Information Processing Systems’, which I took
as an elective course due to my great interest in digital audio systems, and has
provided me with valuable knowledge in algorithms for audio signal processing.

This thesis presents and discusses the design and implementation of the real-
time multicore audio processing platform. The report is structured with an ever
increasing level of detail. First of all, an overview of the digital audio processing
algorithms and the T-CREST platform is given, which is the one used for the
implementation. After that, the improvements done to the audio interface are
presented. The design and implementation are described next: first, the audio
effects are treated individually, and then solutions are proposed for the inte-
gration and synchronization of multiple effects in the multi-processor platform.
Afterwards, various aspects of the work are evaluated, showing numerical results
to prove the correct functionality of the system in different ways. Finally, the
results are discussed and the thesis is concluded.
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Chapter 1

Introduction

This chapter introduces the work presented in this thesis. It provides an overview
on the main topics that are related to the project and presents the outline of
the thesis.

Multicore platforms are becoming more and more common for audio processing
applications, due to the improvement in computation performance that they
provide. Some examples of this are audio software environments that run on
multi-processor computers, or embedded audio multicore Digital Signal Proces-
sors (DSP) the are found in many applications, such as hearing aids or portable
mobile devices. In this work, we focus in real-time audio processing applica-
tions, which means that the processing must be applied within an interval of
time that ensures that the delay of the signal is imperceptible for the human
ear. This requires that the temporal behavior of the processing platform must
be completely predictable in order to provide time guarantees.

The work presented in this thesis is addressed to network-on-chip based mul-
ticore platforms for real-time systems. An example of this is the T-CREST
platform, which is under continuous development by the Technical University
of Denmark. This is the platform chosen for the implementation of the audio
processing system, currently running on an Altera DE2-115 FPGA board.
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1.1 Multicore Platforms for Audio Processing

Multicore platforms appear to be a feasible way to increase computational power
in many applications, due to the heat dissipation and clock rate limitations of
single core processors. Multi-Processor System-On-Chips (MP-SoC) enable the
integration of various Intellectual Property (IP) cores on the same chip. These
IPs could be conventional processors, DSPs or hardware accelerators, as well as
I/O devices. Some of these IP cores, such as DSPs or Graphics Processing Units
(GPU), are very common in audio processing systems, because they provide a
considerable speed-up in the typical operations required in audio computation,
such as memory access instructions or arithmetic operations [1].

As the amount of computational resources in the system increases, more paral-
lelism is available, which can be exploited by performing concurrent processing
operations. Audio signals are processed in the digital domain as a stream of
samples. In many cases, algorithms have sequential dependencies, which limit
the amount of concurrent operations that can be performed. However, there
are many ways to take advantage of the parallelism provided by multi-processor
platforms.

One possible way to exploit this parallelism is to distribute the processing of
an algorithm with high computational requirements into threads that can be
concurrently executed on different cores. Another possible way is to use many
processors to compute individual algorithms simultaneously, which is exactly
what has been done in the work presented in this thesis. The individual pro-
cessing algorithms correspond to audio effects that are very common in music
applications, such as filters, delay lines, modulation effects or waveshaping tech-
niques. These effects are connected to each other forming sequential or parallel
chains, and the processing is distributed among the computational resources
available in the platform.

1.2 Network-on-Chip Based Multicore Platforms

One of the main challenges of multi-processor systems is to accomplish optimal
interconnection between the components in the platform. In some cases, the
interconnection element can decrease the performance of the platform consid-
erably. Traditionally, a shared bus has been used for communication by all the
components in the system, which could represent a bottleneck when the commu-
nication requirements are high, due to the limited bandwidth and concurrency.
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To overcome these restrictions, Networks-on-Chips (NoC) are used, which offer
flexibility and parallelism in intercommunication, as individual channels are
available between IP cores, depending on the requirements of the application.
An example of a multicore platform based on a NoC is shown in Figure 1.1.
Here, its basic components are shown, which are the Network Interfaces (NI),
routers (R) and links. Packets of data can be transferred between cores through
the NoC. The NIs allow the IP cores to send and receive data through the NoC.
The routers exchange data between them through the links, depending on the
path of packets from source to destination.

NI

R

IP NI

R

IP

R R

NI NIIP IP

Figure 1.1: Overview of a multicore platform with a set of IP cores, which
exchange data using a NoC (shown with a colored background).
The NIs and the routers are the components of the NoC, together
with the links between routers.

The usage of the NoC is essential in the implemented audio processing archi-
tecture, as the communication requirements of the system rely strictly on this
component to achieve real-time processing.

1.3 Real-Time Audio Processing

Some audio applications use off-line processing: in this case, the full audio signal
to be processed has been previously stored in some kind of memory system, and
there are no strict requirements of the time it takes to process. This is not the
case in real-time audio applications, where processing is done immediately as
the stream of samples is input into the system, and the resulting stream must be
output within a time interval that is perceived as instantaneous by the human
ear. Some possible examples of real-time audio systems are hearing aids, digital
audio communication systems such as streaming applications, or music effects.
The presented work focuses on the latter.

In order to provide real-time guarantees, the system must have a predictable
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temporal behavior. In this sense, the concept of Worst-Case Execution Time
(WCET) becomes crucial, which is the maximum possible time taken for a task
to execute. The platform used for processing must be designed in a way that
WCET is predictable and within an acceptable interval of time. The multicore
platform used here, T-CREST, is optimized for hard real-time systems, as it
provides resources and tools for analysis and reduction of WCET.

1.4 Source Access

The full code related to this project can be found in the T-CREST1 collection
of GitHub repositories. In particular, the code is distributed in the Patmos2

and Aegean3 repositories.

In the first one, an audio library, libaudio4, is found, which contains the C source
code related to the audio effects. This library also contains a README file,
which explains how to run audio applications on the FPGA board.

In the second one, a folder containing descriptions of some example audio appli-
cations is found, called audio apps5. A README file is also found here, where
the steps required to run these example applications in the board are explained.

1.5 Thesis Outline

The work presented in this thesis is the design, implementation and evaluation
of a real-time multicore audio processing platform, based on a Network-on-Chip.
For this, a set of audio effects has been implemented following conventional algo-
rithms. The effects are then merged together in the multicore platform, forming
chains of effects that are connected to each other. The thesis is structured as
follows:

• Chapter 2 introduces some fundamental concepts of digital audio, and
presents the main DSP algorithms for audio processing used in this project.

1https://github.com/t-crest
2https://github.com/t-crest/patmos
3https://github.com/t-crest/aegean
4https://github.com/t-crest/patmos/tree/master/c/libaudio
5https://github.com/t-crest/aegean/tree/master/audio_apps

https://github.com/t-crest
https://github.com/t-crest/patmos
https://github.com/t-crest/aegean
https://github.com/t-crest/patmos/tree/master/c/libaudio
https://github.com/t-crest/aegean/tree/master/audio_apps
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• Chapter 3 presents the T-CREST platform and overviews its tools and
components, focusing on the most relevant ones for this work.

• Chapter 4 recalls the audio interface for the Patmos processor that was
previously designed, and explains the improvements done with the addi-
tion of input/output buffers.

• Chapter 5 presents the implementation of the individual audio effects in
the Patmos processor, discussing the main design considerations.

• Chapter 6 explains the rules designed and followed in this project for the
correct synchronization of multiple audio effects, which are mapped to
different cores and form audio effect chains.

• Chapter 7 describes the implementation of the multicore audio processing
platform on T-CREST.

• Chapter 8 verifies the different parts of the implementation, showing nu-
merical results. It also provides discussion on some aspects of the system.

• Chapter 9 concludes the thesis.

• Appendices A, B and C contain some code listings related the audio in-
terface (Chapter 4), the individual effects (Chapter 5) and the multicore
implementation and evaluation (Chapters 7 and 8) respectively.
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Chapter 2

Digital Audio Signal
Processing Algorithms

This chapter provides background about the digital signal processing algorithms
that have been used in this project to implement the audio processing effects.
Section 2.1 briefly introduces the fundamentals of digital audio signal processing,
and its most important parameters are explained. After that, Section 2.2 classi-
fies and explains the algorithms used to create audio effects, showing signal-flow
graphs for a better understanding. Finally, Section 2.3 presents the architecture
of common DSP processors.

2.1 Fundamentals of Digital Audio

Sound can be described as a variation of pressure that propagates as a mechani-
cal wave through a medium, typically air. Humans perceive these vibrations on
their ears, and can hear them if the oscillation frequency is between 20Hz and
20 kHz approximately. Sound waves are referred to as acoustic signals in the
mechanical domain. Sound pressure level is typically measured in a logarithmic
scale using the Decibel (dB) unit, considering a reference pressure level which
is usually 20 µP on air. This value is known to be the lower audible threshold
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of the human ear. This is shown in Equation 2.1.

Lp = 20 log10
p

pref
[dB] (2.1)

In the electrical domain, however, sound waves are called audio signals. There-
fore, a digital audio signal can be defined as a representation of sound in the
digital domain.

The components that can be found in digital audio systems are the following:

• Acoustic-to-electric transducer, e.g. a microphone

• Analog-to-digital converter (ADC)

• Digital audio signal processing system

• Digital-to-analog converter (DAC)

• Electric-to-acoustic transducer, e.g. a loudspeaker

Not all audio systems need to contain all the parts mentioned above: for in-
stance, a digital synthesizer might only contain the last 3 parts mentioned: a
digital audio system which creates the sound, a DAC and a loudspeaker. Alter-
natively, a digital audio recorder will only contain the first 3 parts mentioned:
a microphone, an ADC and a processing system to store the audio signal in a
memory.

In order to treat signals in the digital domain, they need to be sampled. Two
of the most important parameters of digital audio are the sampling frequency
and the resolution.

• The sampling frequency sets the amount of audio samples used per
second, represented in Hertz (Hz). In order for the audio signal to be
represented correctly, the sampling frequency needs to satisfy the Nyquist
theorem [2, Chapter 2.5], which specifies the minimum sampling frequency
as double the bandwidth of the signal. As explained before, the maximum
frequency of audio signals is 20 kHz, therefore the Nyquist frequency is
40 kHz. Standard sampling frequency values found in the industry are
44.1 kHz or 48 kHz, and the latter is used in this project. Some higher
quality systems use values up to 192 kHz.
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• The resolution specifies the amount of bits used to represent each sample.
Depending on the resolution value, quantization might need to be done,
which is the process of mapping each audio sample to the closest value that
can be represented in a given resolution. The higher the resolution, the
less quantization error when converting the signal from analog to digital.
A standard value is 16-bit resolution, which is used in this project. If
higher quality is needed, 24-bit or 32-bit resolutions can be used. The
resolution is also directly related to the dynamic range of the digital audio
signal, which will increase with a higher resolution value.

These two parameters are very important as they are directly related to the
quality of the audio signal. Too low sampling frequencies will result in a loss of
information contained in the higher frequencies of the audio spectrum. Low res-
olution values will lead to bigger quantization errors and will introduce audible
noise. A clear example of this are old video game sounds, which used 8-bit to
12-bit audio. On the other hand, high sampling frequency or resolution values
will improve the signal quality, with the drawback of needing more storage space
and higher processing power.

Sampling frequency and resolution are also important parameters for the ADC
and DAC, as they will be more complex and expensive if they need to operate
at high values.

It is important to remind that most audio processing systems are stereo, which
means they have left and right input and output channels. The system imple-
mented in this project is also an stereo audio processor: that is why, in this
document, when an audio sample is mentioned, it actually corresponds to two
16-bit samples, for the left and right channels.

The power of an audio signal in the digital domain is measured in a logarithmic
scale as well, but the equation is different to the one used for mechanical sound
pressure level: the difference is that the reference value is not the lower threshold
of the audible range, but it is the maximum value that can be represented in the
digital domain for a given resolution. The unit for this measurement is called
dBFS (Decibels relative to Full Scale). For example, for a given resolution of n-
bits, the audio signal can be have a maximum value of 2n−1 (for a signed signal).
For the correct representation, the values must always be kept under this limit,
which corresponds to 0 dBFS (so all values must be negative). Therefore, for a
given sample i of an audio signal x, the amplitude level can be defined as shown
in Equation 2.2.

LFS(i) = 20 log10
xi

2n−1 [dBFS] (2.2)
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The equation above gives the peak (instantaneous) value. However, it is very
common to use RMS amplitude values instead, which are calculated over a
window of samples, and give a much more realistic value of the loudness of an
audio signal.

Finally, another parameter which acquires a great importance in real-time audio
signal processing is the latency, which can be defined as the time measured
between the instant when an audio sample is input to the system, and the point
in time when it is output. The latency can be measured either in time units
(usually ms) or in samples, for a given sampling frequency. In real-time audio, it
is extremely important to keep this value within a certain time interval so that
the output audio signal can be perceived as instantaneous at all times. This
topic is further discussed in Subsection 5.1.2, and an estimation of a tolerable
latency interval is given.

2.2 Digital Audio Effects

In this section, some digital audio signal processing algorithms are classified
and explained. A high level of abstraction is used to describe them (not any
specific software or programming language). The algorithms explained here are
important because they provide a theoretical overview of the digital audio ef-
fects implemented in this project, which will be presented in Chapter 5. Most
of the algorithms used follow different chapters of [3], so the reference to each
corresponding chapter is provided in the beginning of each subsection. Subsec-
tion 2.2.6 comes at the end of this section, showing how the audio effects can
be connected to each other.

2.2.1 Classification

Audio effects can be classified in many ways [3, Chapter 1]: for example, a per-
ceptual classification can be used to describe how humans hear them in terms
of rhythm, pitch, loudness, etc. In this project, however, a technical classifica-
tion is more suitable, depending on the algorithms used for the implementation.
This classification results in many different groups, but only some of them are
used in this project. They are the following:

• Filters and delays

• Modulation effects
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• Non-linear processing effects

• Spatial effects

The audio effects that belong to the mentioned groups are explained in Subsec-
tions 2.2.2 to 2.2.5.

2.2.2 Filters and Delays

Filter structures are very widely used in digital signal processing [3, Chapter 2].
They are also referred to as delay structures, because delayed samples of data
are used for calculations. Two of the most common digital filter structures used
are Finite Impulse-Response (FIR) and Infinite Impulse-Response (IIR) filters.

• FIR filters have a finite impulse response duration, because the output
sequence is the result of a weighted sum of the last input samples (N + 1
samples for an N order filter). Each one of the samples is multiplied with
the weighting filter coefficient bi, as shown in Equation 2.3.

y(n) =
N∑
i=0

bi · x(n− i) (2.3)

• IIR filters have an infinite impulse response duration, because the output
sequence is the result of a weighted sum of both the last N + 1 input and
N output samples, which results in feedback loops. The filter coefficients
are b for the input samples and a for the output samples. Equation 2.4
shows this.

y(n) = 1
a0

(
N∑
i=0

bi · x(n− i) −
N∑
j=1

aj · y(n− j)) (2.4)

In this project, FIR filters have not been used at all. The reason is that, usu-
ally, much higher order FIR filters are needed to achieve similar audio effects
than if IIR filters are used. This results in higher memory requirements and a
longer computation time, which is an important drawback for real-time audio
processing. That is why, in general, for digital audio processing, IIR filters are
much more common than FIR filters. However, FIR filters become very useful
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for audio applications when implemented as convolution filters, using the Short
Time Fourier Transform (STFT) algorithm. This kind of digital filter is not
used in this project, due to the processing limitations of the platform.

The IIR filter structure has been used to create many audio effects. Figure
2.1 shows the structure of a 2nd order IIR filter. As it can be appreciated, 5
multiplications need to be performed (a0 = 1), and 4 audio samples need to be
stored in memory (2 input, 2 output). This structure is the base of some of the
effects explained in the following sections.
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
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2a

)(nx )(ny

Figure 2.1: 2nd order IIR filter structure.

There are some more advanced digital implementations of IIR filters, such as the
parallel second-order form, shown in [4], which reduces the quantization noise.
This is useful when high filter orders are used, which is not the case of this
project. That is why, here, the traditional direct form has been used, shown in
Figure 2.1.

2.2.2.1 Basic EQ Filters

Equalization filters are very widely used in audio signal processing. They affect
the frequency spectrum of the signal, removing some frequency components
and possibly heightening others. The most common audio filters found, both
on analog or digital domain, are the following:

• Low-Pass (LP) filters remove the higher frequency components of the
signal. The most important parameters are the cut-off frequency (fc) and
the resonance or Q quality factor, which specifies the filter gain on the
cut-off frequency.

• High-Pass (HP) filters remove the lower frequencies of the signal. The
most important parameters are the same as for the low-pass filters.
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• Band-Pass (BP) filters let only the frequencies between a lower and an
upper limit to go through. These limits are given my the central or cut-off
frequency (fc) and the filter bandwidth (fb).

• Band-Reject (BR) filters do exactly the opposite as the band-pass fil-
ters, removing the frequency components between the lower and upper
limits.

Another very important parameter that is common for all filters is the filter
order, which specifies the slope of the filter: in other words, how fast the gain
decays outside the filter cut-off limits.

There are some other filter types that are also used for audio equalization, such
as the shelving filters, but they have not been implemented in this project.

Although there are many different possibilities to implement the LP/HP/BP/BR
filters in the digital domain, the chosen one uses the 2nd order IIR filter struc-
ture shown in Figure 2.1. The 2nd order IIR structure leads to the transfer
function presented in Equation 2.5.

H(z) = b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2 (2.5)

Modifying the values of the filter coefficients, certain frequencies can be atten-
uated. The coefficient values for the LP and HP filters are calculated from the
desired fc and Q parameters, following the equations shown in Table 2.1. The
K parameter is proportional to the desired fc value relative to the sampling
frequency used, fs, as shown in Equation 2.6.

K = tan(π fc
fs

) (2.6)

The BP and BR filters can be implemented in many different ways using IIR
filters. The implementation chosen in this project is based on a 2nd order IIR all-
pass filter structure, which is given by the following transfer function presented
in Equation 2.7.

A(z) = −c+ d(1− c)z−1 + z−2

1 + d(1− c)z −1− cz−2 (2.7)
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b0 b1 b2 a1 a2

Low-pass K2Q
K2Q+K+Q

2K2Q
K2Q+K+Q

K2Q
K2Q+K+Q

2Q·(K2−1)
K2Q+K+Q

K2Q−K+Q
K2Q+K+Q

High-pass Q
K2Q+K+Q − 2Q

K2Q+K+Q
Q

K2Q+K+Q
2Q·(K2−1)
K2Q+K+Q

K2Q−K+Q
K2Q+K+Q

Table 2.1: 2nd order IIR Filter coefficients for low-pass and high-pass filters.

Filter parameters c and d are calculated from the desired values fc and fb, given
the Equations 2.8 and 2.9.

c =
tan(π fb

fs
)− 1

tan(π fb

fs
) + 1

(2.8)

d = −cos(π fc
fs

) (2.9)

The all-pass filter equation shown does not affect the magnitude of the signal,
but it affects the phase for different frequencies. When combining the all-pass
filtered signal with the original input signal, BP and BR filters are achieved
because the phase shift of the all-pass filtered signal attenuates or cancels some
frequencies depending on the phase delay. This combination of the signals is
shown in Figure 2.2, where the BP or BR filtering is determined by the sign of
the combination.

5.0)(nx )(ny
)(zA

BRBP /
 /

Figure 2.2: Band-Pass/Band-Reject filter structures using 2nd order IIR all-
pass filter (sign indicates type of filter).
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2.2.2.2 Comb Filters

Comb filters are also known as basic delay filters, because the input signal is
combined with a delayed copy of it. The main difference between comb filters
and IIR/FIR filters is that, in the latter, the order N indicates how many of
the the last samples of the signal were combined, whereas in the former, the
order indicates how many delayed copies of the signal are combined, and the
delay is usually greater than a single sample. The computation of these filters
is rather simple, but they usually require more storage space, proportional to
the chosen delay length. The name comb filter refers to its transfer function,
which in the frequency spectrum looks like a comb because certain frequencies
are attenuated, which depend on the delay length.

Comb filters can be classified as FIR or IIR as well, depending on whether the
delayed signal is the input or the output. These two filter structures are shown
in Figures 2.3 and 2.4. These filters will change the timbre of the audio signal
if the chosen delay is smaller than 50 ms (this value corresponds to the lowest
audible frequency, 20Hz). If instead, the delay is greater, the effect of the comb
filter will be perceived as an echo. In the FIR filter, a single copy of the input
signal will be heard, while in the IIR, multiple copies will be repeated due to
the feedback loop.

g

)(nx )(ny

Mz

Figure 2.3: FIR comb filter structure.

g

)(nx )(ny

Mz

Figure 2.4: IIR comb filter structure.

An important consequence of processing sound using the presented filter struc-
tures is that the dynamic range of the signal gets altered. A simple way to
demonstrate this is by analyzing Equation 2.3, for a 2nd order FIR filter. If
all the coefficients, b0, b1 and b2 are 1, then the dynamic range of the output
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signal can be up to 3 times that of the input signal. This is totally undesired be-
cause the signal cannot represent values outside its dynamic range (values over
0 dBFS), so overflow/underflow situations might happen, which would corrupt
the output signal. To avoid this, normalization techniques are used to bring the
output signal to an acceptable range. There are many different ways to do this:
the most simple one is to reduce the amplitude of the output signal, which will
also cause a change in loudness. Another simple normalization method is to
saturate or clip the signal if it goes beyond the upper limit, but this can cause
distortion. In general, dynamic range modification is something that happens
in all kinds of signal processing, not only in the digital domain, and advanced
methods have been developed to take care of this, which are outside the scope
of this project.

2.2.3 Modulation Effects

Modulation is the temporal variation of certain parameters of a signal, which is
called the carrier [3, Chapters 2, 3]. This process is commonly used in telecom-
munications, where the information to be transmitted is usually contained by
the modulating signal.

In audio signal processing, however, modulation is used with a completely dif-
ferent purpose: the objective is to enhance certain properties of the carrier by
adding some temporal variations to achieve different effects. The most common
parameters to be modulated are the amplitude, the frequency or the phase of a
signal, but more complex parameters can also be modified, as will be shown here.
Depending on the modulating parameter and the properties of the modulation
signal, many different audio effects can be achieved.

2.2.3.1 Amplitude Modulation - Tremolo

This is probably the most simple and straightforward modulation effect used in
audio. The amplitude of the carrier signal is modulated using a Low Frequency
Oscillator (LFO), which is perceived as a periodical change in the signal volume.
LFO signals have a fundamental frequency that is under the audio range (lower
than 20 Hz). If higher frequency signals are used, the amplitude modulation
is perceived as a change in the timbre of the sound. The modulation signal is
usually a sinusoid, but different shapes might also be used.

This effect works specially well when long duration notes or chords are played.
It is usually found as a guitar effect, but can also be used in other instruments.
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Figure 2.5 shows the signal flow of the tremolo effect, where an external LFO
signal generator is required.

)(nx )(ny

~
Figure 2.5: Tremolo effect.

2.2.3.2 Frequency Modulation - Vibrato

If, instead of the amplitude, the frequency of the signal is modified using an
LFO, the resulting effect is called vibrato. It is perceived as a periodical change
of the pitch of a signal, usually as a sinusoid. Again, if the frequency is within
the audio range, the effect will affect the timbre of the original signal. This is
called a ring modulator.

It is common to find vibrato effect pedals for guitars or synthesizers. In the
digital domain, this effect can be implemented using a small sample delay array
with the size of the modulation amplitude in samples, M in this case. The
output sample index is determined by the modulation signal, which oscillates
around M/2 with an amplitude of M/2 and with the desired frequency. The
vibrato effect is shown in Figure 2.6, where the diagonal arrow indicates the
sample index modulation.

)(nx )(nyMz

Figure 2.6: Vibrato effect.

2.2.3.3 Time-Varying Filters

Time-varying filters are the result of applying modulation to the filter effects
shown in Subsection 2.2.2.1. Many different effects can be achieved doing this,
and some of them have been implemented in this project. The parameters that
are modulated are the filter coefficients for the IIR filters, and the delay sample
index for the comb filters (done in a similar way as in the vibrato effect).
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Two well-known effects that can be achieved by modulating the IIR filter co-
efficients are the wah-wah and the phaser. The first one is implemented as
a time-varying band-pass filter. The central frequency (and possibly also the
bandwidth) is modulated with a LFO signal, which results in time-varying filter
coefficients. Usually, the wah-wah effect is used in the electric guitar, where the
player can move the band-pass frequency using a expression foot pedal. How-
ever, a similar effect (also known as auto-wah) can be achieved if a LFO signal
is the modulation source. Figure 2.7 shows this effect, where the filtered signal
is combined with the original signal. g indicates the effect gain.

g

)(nx )(ny
g1

BP

Figure 2.7: Wah-wah effect.

The phaser effect is implemented in a similar way to the wah-wah, but, in this
case, the filter used is a band-reject filter (usually a series of filters are used, with
different modulation parameters). The frequency variation of the band-reject
filter causes different phases to be canceled, thus the name of the effect. The
phaser is shown in Figure 2.8.

g

)(nx )(ny
g1

BR BR

Figure 2.8: Phaser effect.

The last time-varying filter implemented in this project is the chorus, which
can be achieved as a 2nd order time-varying FIR comb filter. Each one of the
cascaded channels has a different delay length, and two LFO signals are used to
determine the sample index of each channel, in the same way as in the vibrato.

The goal of this effect is to increment the amount of sound sources to simulate
the behavior of many different musicians playing the same audio piece: these
musicians will always be slightly unsynchronized in time and pitch, and this
is emulated using delays with frequency modulations. The modulation signal
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for the cascaded channels of the chorus can be a sinusoid, but sometimes some
other sources are used, such as low frequency noise. In general, the choice of the
modulation signal type and its parameters are a whole research topic itself to
achieve the musically most pleasing results, but this is outside the scope of this
project, so simple sinusoidal LFOs have been used here, which give satisfactory
results. The chorus effect is shown in Figure 2.9.
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Figure 2.9: Chorus effect.

There are some other effects that are implemented as time-varying comb filters,
some of which are the resonator, the slapback and the flanger. These are im-
plemented in a similar way as the chorus effect, but with different delays and
modulation sources.

2.2.4 Non-Linear Processing Effects

Most digital signal processing is mainly based on linear systems, such as filter
structures as the ones explained in Subsection 2.2.2. However, lots of the analog
audio gear used for music or other applications have non-linearities, which give
a special character to sound [3, Chapter 4]. This gear includes valve amplifiers,
tape recorders, analog mixers, distortion pedals, loudspeakers, and so on.

During the last decades, analog systems have been used by many musicians,
performers, producers and sound engineers to enhance the audio signals in a
non-linear way. These non-linearities are caused by the imperfections of analog
components, but that does not mean that any analog component will improve
the quality of sound or add some color to it: in fact, these components are chosen
carefully by the engineers who develop these products, and lots of experience
and knowledge is required to achieve musically pleasant results.

In digital audio signal processing, the non-linear behavior of the mentioned sys-
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tems is emulated. To achieve results that are similar to analog components, these
ones need to be modeled very precise and carefully, which requires high com-
putational power. However, in most cases, more simple digital approximations
are done which achieve acceptable results (this is a topic that generates discus-
sion among experts). Finding a good balance between high-quality non-linear
processing and minimizing computational requirements is not an easy task. A
lot of listening and recording experience is required to adjust the non-linear
parameters of a particular system: this is an art form itself that is outside the
scope of this work. That is why, here, simple non-linear processing algorithms
have been used.

Non-linear processing is also known as waveshaping, because the shape of the
audio waveform is altered, thus modifying its frequency components as well.
This means that high frequencies are added and harmonic distortion is intro-
duced, which changes the character of the sound, possibly enhancing it or even
destroying it completely.

One of the widely used non-linear effects is the dynamic range compression,
where the amplitude level of the signal is measured (usually the RMS value
of a certain window is taken), and the signal is attenuated if a threshold is
exceeded. This is specially useful when mixing several audio signals in order
to ’glue’ them together (reducing the differences between the loudest and the
softest parts). The waveshaping effect is clear, as only the peaks of the audio
signals are modified and the softer parts remain unaffected.

Although compression has not been implemented in this project, there are some
other non-linear effects that have, such as overdrive and distortion.

2.2.4.1 Overdrive

Overdrive is a mixture of linear and non-linear processing, because the signal
gets linearly affected in the lower amplitude parts and is overdriven in the louder
parts, with a smooth transition between these two regions. The aim is to give a
warm and colorful characteristic to the sound in its loudest regions. This effect
tries to emulate the behavior of the analog components in valve amplifiers, tape
recorders, effects, and so on, where the signal gets slightly distorted on higher
levels, resulting in a warm overdrive sound.

The implementation of overdrive used here is defined by 3 regions, depending
on the amplitude of the input signal. The first 1/3 of the amplitude is the linear
zone, where the output is equal to double the input. Between 1/3 and 2/3 of
the amplitude, non-linear processing is applied. Finally, between 2/3 and 1, the



2.2 Digital Audio Effects 21

signal is simply clipped. This is shown in Equation 2.10.

f(x) =


2x if 0 ≤ x ≤ 1/3
3−(2−3x)2

3 if 1/3 ≤ x ≤ 2/3
1 if 2/3 ≤ x ≤ 1

(2.10)

This effect is shown in Figure 2.10, where the output values are shown as a func-
tion of the input. The linear and non-linear areas can be clearly distinguished.
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Figure 2.10: Overdrive effect: output signal y as a function of input x.

2.2.4.2 Distortion

This effect operates fully in the non-linear region, and the aim of it is to change
the timbre of the input signal by adding strong harmonics to achieve a ’harder’
sound. Distortion is a main characteristic of sound that has defined many new
genres such as rock, punk or metal, and has changed the way an instrument like
the electric guitar is approached. Another term that is also widely used is fuzz,
which usually refers to an even harder distortion sound.

A very common way to emulate the behavior of distortion pedals in the digital
domain is by the exponential function given in Equation 2.11.

f(x) = sgn(x) (1− e−α|x|) (2.11)



22 Digital Audio Signal Processing Algorithms

The α parameter sets the gain. In this project, this function has only been
implemented with a gain of α = 1 using the MacLaurin series. This creates a
very soft distortion effect. Having a gain different than 1 makes the MacLaurin
series diverge, so the implementation for a real-time system gets complex. That
is why, in order to have a harder distortion, another function has been used
from [5], where the distortion amount a is defined, then the parameter K is
calculated as shown in Equation 2.12.

K = 2a
1− a (2.12)

Then the distortion function depends just on K, and is calculated as in Equation
2.13.

f(x) = (1 +K) · x
1 + (K|x|) (2.13)

The distortion output as a function of the input is shown in Figure 2.11, where
it is shown how non-linear processing is applied on the whole dynamic spectrum
of the input signal, and how the output signal reaches saturation levels much
faster than for the overdrive effect.
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Figure 2.11: Distortion effect: output signal y as a function of input x.
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2.2.5 Spatial Effects

The human ear is able to retrieve information from the physical surroundings
just by listening to a sound: the position of the sound source can be approxi-
mately identified, both by the sound volume (which is inversely proportional to
the distance to the source) and by the difference of perception between left and
right ears. But not only does sound give information about the source, but also
about the surroundings: the sound will be perceived in a completely different
way depending on the environment. For example a small room, an open space or
a cathedral will have completely different behaviors and the listener can detect
this difference.

In order to model the behavior of human hearing in the digital domain, the
concepts of head-related transfer function and binaural techniques are important
[3, Chapter 5]. The first one tries to emulate the transfer function of the channel
between the sound source an the human ears, which depends on the distance and
position between source and receiver, and also on the human head shape. This
is done by yielding temporal and spectral differences in each ear. The second
concept, binaural techniques, are used to control the sound that is perceived in
each ear, and use head-related transfer functions to do this. This effect is easy to
perceive when listening to a sound with headphones: one has the impression of
being on a physical space and distinguishing the positions of the sound sources.

The two concepts mentioned above are useful for creating digital simulations
of physical spaces, and are widely used in audiovisual projects or for TV and
cinema (for instance, to create an evolving sound and bring the listener more
into the role). This is why these techniques are not so interesting for this project.
But there is a very interesting spatial effect that is widely used in audio signal
processing for music applications: it is called reverberation.

2.2.5.1 Reverberation

Reverberation is created with the reflections of sound in a physical space: these
reflections cause the sound to be perceived even when the source is not producing
it. Different rooms or spaces produce different reverberations, and and can
enhance the sound that is being played. This is the case of some auditoriums or
theaters, where the sound is enhanced by the room shape. In musical recordings,
this effect tries to be emulated by adding analog or digital reverberation to the
audio signal to improve its quality.

The reverberation usually contains 3 different parts:
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• The direct sound, which is what reaches the listener first.

• The early reflections, which are perceived as part of the direct sound,
changing some characteristics of it.

• The late reverberation, which is the tail of the reflected signal and gives
an idea of the size of the room.

The reverberation characteristic of a physical space is defined by its impulse
response (IR), which models the reflections of the objects and walls. When
a ’dry’ audio signal (no effect on it) is convolved with an IR, it seems to be
played in the physical space defined by the IR. This can be achieved in the
digital domain as an FIR filter where the order is as long as the length of
the IR (in samples). This implies several thousands of samples (durations up
to some seconds), so the FIR convolution becomes unpractical for real-time
audio purposes due to the large amount of computations required. However,
nowadays this is done using the Short-Time Fourier Transform (STFT), which
is computationally cheaper but introduces some delay.

Another implementation of the reverb effect in the digital domain was proposed
by J. A. Moorer [6], which is computationally more simple than the IR convolu-
tion, and has been used during decades to achieve satisfactory digital emulations
of reverberation. Moorer’s reverberator [7] is designed as shown in Figure 2.12,
where two stages can be distinguished. The first stage corresponds to the men-
tioned early reflections, and it is implemented as a tap delay line where samples
of different delays are added together to model the reflections on the walls. The
second stage consists of a bank of parallel IIR comb filters that act as low-pass
filters and simulate a smooth decay of the higher frequencies. After that, an
all-pass filter is added to increase the density of the echo effect.

The 2nd stage of Moorer’s reverb is based on Schroeder’s work, who designed
this structure that creates a dense impulse response. The all-pass filter used in
this second stage is shown in Figure 2.13.

2.2.6 Connections between Effects

It is very common in audio applications to combine many of the presented effects.
In music, this technique is widely used by many musicians and sound engineers
to apply more than one effect to the audio signal, thus changing the character
of the sound in many ways.
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Figure 2.12: Moorer’s reverberator.
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Figure 2.13: All-Pass filter structure used in Moorer’s reverberator.
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The effects are usually connected sequentially forming chains, where the stream
of output samples of one of them is input to the next effect. The audio signal
then flows through the effects found in the system. It is also very common to
find parallel chains, where the audio signal is split into two or more branches,
and separate processing is applied in each one of them. At some point, the
signals are merged together again (their samples are added).

The type of effects found in the chain and the order in which they are placed
defines the output sound of the system. If the same effects are combined in
different orders, the resulting sound might change. A clear example of this
could be a chain consisting of a low-pass filter and a distortion effect. If the
distortion effect is placed last in the chain, it will create harmonics in higher
frequencies. But if the low-pass filter is placed at the end, it will reduce the
harmonics previously created by the distortion effect.

Figure 2.14 shows a possible connection between some effects. The first effect
found in the chain is the wah-wah, and the signal gets then split into two parallel
effects, the delay and the distortion. At the end, the two branches are added
together again.

WAHWAH

DELAY

DISTORTION

in out

Figure 2.14: Possible setup of effects, forming sequential and parallel chains.

2.3 Architecture of DSP Processors

As it can be inferred from the presented algorithms, the most repeated opera-
tions in digital signal processing are the arithmetic addition and multiplication,
and the memory access operations to access filter coefficients, sample buffers,
modulation signals, and so on. The execution of a DSP algorithm is limited by
the amount of these operations required. But obviously it also depends on the
device used for computation.

Nowadays, there are many different types of processors optimized for each task.
In the audio processing field, it is very common to use powerful DSPs for a
wide variety of algorithms. But specialised devices for some tasks can also be
found, such as FFT processors to compute convolution reverb. As it is shown
in [4] and [8], Graphics Processing Units (GPU) are also widely used nowadays
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for audio processing, and can reduce execution time considerably due to their
high parallelism in data processing, for instance for high order IIR filtering.
However, sometimes the speed-up provided by GPUs might be limited, due
to sequential dependencies of audio signals. The work in [9] mentions that
higher processing power is achieved when integrating multiple processors into
the processing platform. Combinations of different types of processors into the
same platform might be an optimal solution to cover a wide range of processing
algorithms by distributing tasks.

Leaving some of those specialised processors aside, we focus on general purpose
DSP processors now. Some of the main requirements to speed-up computation
in these devices are listed here:

• High memory-access bandwidth: typical DSP operations, such as FIR
filters, IIR filters or FFTs, require moving large groups of samples and
coefficients from memory to arithmetic units. On multicore processors,
bandwidth is also required to move data between cores. Having large
buses allows moving data faster, for instance when high order filters need
to be computed.

• Local program and data memories, which can be caches or SPMs.
DSP algorithms generally spend most time in loops where they execute
the same operations. Having local memories means faster access to in-
structions of the loop and the data needed, such as filter coefficients or
multiplication products.

• High computational power: the main DSP arithmetic operations are
the multiplication and the addition, but logical and bitwise operations are
also needed, such as masking, bit-shifting and so on. The more resources
available to do these operations in parallel, the faster the execution time.
For instance, [10, Chapter 28] mentions that most powerful DSP units
from the late 90’s have separate ALUs, multipliers and barrel shifters in
order to parallelize these operations.

• Extended precision accumulators, which are used to store the results
of the multiplications without reducing the resolution, and thus minimiz-
ing the quantization noise added by the processing.

• Available parallelism: being able to execute many operations simulta-
neously reduces the execution time and allows execution of more complex
algorithms in real-time. An example of this would be being able to access
memory while performing a multiplication.

The processor used in this work to compute the presented DSP algorithms is
Patmos, which will be described in Section 3.2. Patmos is not a DSP processor,
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but a general-purpose real-time processor. Using Patmos to perform digital au-
dio processing in real-time limits the complexity of the algorithms that can be
implemented: in order to not exceed the execution time limits, the effects cannot
have complex arithmetics, such as high order filters or a big amount of multi-
plication operations. For instance, real-time FFT processing is unfeasible in
Patmos. That is why the audio effects implemented in this project are not com-
plex or very high quality, but they are enough for building a multicore audio
processing platform. The system has a high scalability, as it will be demon-
strated in Chapters 6 and 7, so powerful DSPs or GPUs could be integrated
into the network in the future to implement more complex algorithms.



Chapter 3

T-CREST Background

This chapter presents the T-CREST platform, which is used in this project as
the audio processing multicore platform. The chapter provides some aspects of
the background and current state of the T-CREST project. In Section 3.1, a
general overview is given. In the following Sections 3.2, 3.3, and 3.4, some parts
of the T-CREST platform are explained, which are the most relevant ones for
this project. They are the Patmos processor [11], the time-analysis tools [12]
and the Argo Network-on-Chip [13], [14].

3.1 Overview of the T-CREST Platform

T-CREST1 [15] is an open source research project that is continuously under
development. The goal of the T-CREST project is to develop a general-purpose
fully time-predictable multicore processor platform for embedded real-time ap-
plications. The T-CREST platform consists of a set of time-predictable re-
sources: these include not only processors, memories and communication net-
works, but also tools for time-analysis and measurement. The goal of these
resources and tools is both to reduce the Worst Case Execution Time (WCET)

1https://github.com/t-crest

https://github.com/t-crest
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of any set of tasks executed in the platform and to achieve high predictability
of the WCET to be able to provide timing guarantees.

Figure 3.1 shows the hardware side of the T-CREST platform, which consists of
a set of IP cores (4 in this case, on a 2-by-2 topology) connected by a message-
passing Network-on-Chip (NoC) to exchange data between them. Each of these
cores is a statically-scheduled RISC-style processor called Patmos, which is
equipped with a set of local memories (instruction and data caches and SPMs).
The NoC is the time-predictable Argo NoC. Both Patmos and Argo are spe-
cially designed for the T-CREST platform, although theoretically the NoC can
connect not only Patmos processors, but also other kinds of IPs with a compat-
ible interface [16]. The platform is also equipped with an off-chip shared RAM
memory, which has a memory controller that the cores can access by using a
memory-tree NoC. This one is not shown in Figure 3.1.
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Figure 3.1: Overview of the 2-by-2 T-CREST platform, showing the cores
connected by the NoC. The processors (P), Network Interfaces
(NI) and Routers (R) are shown. Main memory is not shown.

Before going deeper into each of the parts that compose the T-CREST platform,
one should know that there are different versions of it with different character-
istics: for instance the Argo NoC has both a Globally-Asynchronous Locally-
Synchronous (GALS) and a Globally-Synchronous version; for the Patmos pro-
cessor, there is also an older version designed in VHDL, while the newest version
uses the Chisel language. For this project, the T-CREST platform is built in
the Altera DE2-115 FPGA board [17], and uses the Chisel version of Patmos
with the Globally-Synchronous Argo NoC, synthesizable on FPGAs. The main
memory is an off-chip SRAM, and some other off-chip I/O components of the
board are used, such as the WM8731 audio CODEC presented in Section 4.1.
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3.2 The Patmos Processor

Patmos is a time-predictable 32-bit Very-Long Instruction-Word (VLIW) RISC
processor designed for embedded real-time applications [11]. In this work, Pat-
mos has been used as the main computational resource to process the audio
effects. Subsection 3.2.1 introduces the 5-stage pipeline architecture of Patmos,
and Subsection 3.2.2 explains the local/global memories and IO devices that it
has access to.

3.2.1 Architecture

Patmos consists of a classic RISC-style 5-stage pipeline, which is shown in Figure
3.2. For some instructions, some additional pipeline stages are used, which are
not shown in Figure 3.2. An example of this is the multiplication instruction,
which uses a parallel pipeline to the EX stage with a fixed length. Each one of
the 5 stages is briefly explained here:

• Instruction Fetch: on this initial stage, the next instruction (or next
two) are fetched from main memory or from the instruction cache. The
program counter is also updated.

• Instruction Decode: here, the instruction is decoded and control signals
are generated for the following stages. The operands are also read from
the register file on this stage.

• Execute: the predicate registers are read and the ALU instructions are
executed, if needed. Addresses for memory access are also calculated on
this stage when needed.

• Memory: the memory is accessed, either by a load or store operation.
This stage might cause a pipeline stall, if a cache miss happens.

• Write Back: on this final stage, the results are written into the destina-
tion registers.

As mentioned before, there is a separate stage for multiplication, which takes 3
cycles to execute in the current FPGA version (but it is still possible to issue one
multiplication per cycle). This stage is repeatedly used in this project because,
as it has been shown in Chapter 2, the two most common arithmetic operations
for audio signal processing are the addition and the multiplication. This stage
also represents an important limitation for the system: it can only perform fixed-
point multiplications. The floating-point multiplication instruction is a software
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Figure 3.2: 5-stage pipeline of Patmos, showing the Instruction Fetch (IF), In-
struction Decode (ID), Execute (EX), Memory (MEM) and Write-
Back (WB) stages.

routine which increases the execution time considerably. This has caused all the
audio effects to be implemented in fixed-point arithmetic in this project. A
deeper discussion on this is provided in Section 5.2.

It is also important to outline that, as said previously, Patmos is a dual-issue
processor. This means that it can issue two instructions simultaneously, and
this is because there are 2 copies of the 5-stage pipeline. One of them only
features a subset of the functions of the other, which means that only some of
the instructions are dual-issue. For instance, most ALU operations are dual-
issue (Figure 3.2 indeed shows two parallel ALUs), but memory operations are
single-issue, as data memory is only accessible form one of the pipelines.

3.2.2 Memory System and I/O Devices

Some of the most used operations for audio signal processing, together with the
addition and multiplication, are the memory access operations. Patmos uses
local and global address spaces to access different memories or devices. To access
the external SRAM memory or the instruction ROM where the bootloader is
located, the global memory space is used.

Patmos has different cache memories, which are used to hold copies of data that
the processor might use in the near future due to temporal or spatial locality.
These have single-cycle access, which prevent the processor from stalling due
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to longer main memory access. Some parameters of the caches are configurable
when building the platform, such as the size, the replacement policy and so on.
The 3 types of caches that Patmos features are the following:

• The stack cache acts as a window to the current global memory address
space. It acts as a circular buffer. The version of T-CREST used for this
project has a 1 kB stack cache.

• The data cache is used in addition to the stack cache to hold copies
of data, but this one is used for caching regular cached memory accesses.
The data cache used in this project is 4 kB, one-way set associative (direct
mapped), which means that each data block from main memory can only
go to one address on the cache.

• The instruction cache holds copies of instructions that have either tem-
poral or spatial proximity to the instruction that is currently under execu-
tion. In this project, a 8 kB method cache [18] has been used, which will
often hold copies of entire functions in the cache (if they fit). With this
type of caches, misses will only occur on call or return instructions. The
associativity is set to 32, which means that up to 32 methods can fit in the
cache. This value is quite high, but the instruction cache has proved to be
the most important timing bottleneck of the system, because it can slow
down the processing of the audio effects a lot due to instruction misses. A
FIFO replacement policy has been used.

Additionally, each Patmos core has local single-cycle access Scratch Pad Mem-
ories (SPM) mapped to the local address space. The SPM is a true dual-port
RAM, and Patmos has SPMs both for data (DSPM) and instructions (ISPM).
These can be used by the programmer to explicitly place frequently used data
or functions on them to avoid cache misses and to ensure to have constant
read/write times, which is essential for constrained WCET requirements. The
SPM is also used as a communication port for message passing, because it is
connected to the Network Interface of the Argo NoC. Unfortunately, the ISPM
could not be used in this project to reduce WCET in the multicore platform, as
it will be explained in Section 5.4.

Finally, the I/O devices are also mapped to the local memory space. Some of the
devices found in Patmos by default are the CPU info, the interrupt controller,
the timer and the UART. In addition, the designed audio interface (Chapter 4)
is also found as an I/O device on this project, and it is used for communica-
tion between Patmos and the WM8731 audio CODEC. Patmos interfaces these
hardware components using a subset of the standard Open Core Protocol [19].
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3.3 Compiler and Time-Analysis Tools

The Patmos Compiler [20] has been continuously used in this project. It is an
adaptation of the LLVM compiler [21], and allows the Patmos processor to run
C programs. Not only can it generate machine code for the Patmos ISA, but it
also has high integration with the WCET analysis tools.

The main driver of the Patmos compiler used in this work is patmos-clang,
which generates bitcode files from C source files and system libraries. One of
the main tasks of a compiler for real-time systems is to reduce the WCET as
much as possible.

An important software tool used mostly in the initial stages on this project is the
patmos-emulator, which is a C++ based simulator generated from the hardware
description of the processor. It behaves identically to the hardware processor,
and it has been used to test the functionality of the digital hardware blocks
designed in this project, which form the audio interface. Another simulator is
also provided, called pasim. This one provides a high-level model of Patmos,
and is therefore not so useful for hardware simulations.

Finally, the platin tool kit [12] is a key component of the T-CREST platform,
as it features a set of tools for WCET analysis. This tool kit uses PML (Platin
Metainformation Language) format files both for configuration and analysis.

The main driver used here is platin wcet, which performs static WCET anal-
ysis of a function specified by the user. The bounds for the for and while
loops must also be set by the user. Apart from the C file, the tool also needs a
PML file containing the configuration of Patmos (memory and cache sizes and
parameters). The steps needed to perform WCET analysis are the following:

• Compilation of the C program, specifying the function to be analysed by
the WCET tool.

• WCET analysis of the files generated by the compiler, using the platin
tool with the specified configuration file.

The WCET analyser supports both the commercial AbsInt aiT tool and an
internal platin tool. In this project, the platin tool has been used. When
finished, it reports the result of the WCET analysis, where the WCET of the
specified function is measured in clock cycles. However, the WCET analysis
results given by the tool have proved to be quite pessimistic, as they differ from
the experimental measurements, as shown in Subsection 7.2.1.
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3.4 Argo NoC

Argo is a statically-scheduled NoC which, together with the SPM of Patmos,
implements the message passing between the cores [13], [14]. Argo is used as
the main communication resource in this project: the Patmos cores that are
available in the platform take care of the computation of the audio effects, while
the audio signal travels from one core to another through Virtual Channels (VC)
on the NoC.

As Figure 3.1 shows, Argo is composed of Network Interfaces (NI) and a packet
switching structure, which consists of routers and links. The links provide con-
nections between the routers depending on the chosen topology: in this case,
the bitorus topology has been chosen, which is the one shown in Figure 3.1.

The way the packets travel through the routers from source to destination is
determined by the TDM schedule, which is explained in Subsection 3.4.1. After
that, Subsection 3.4.2 briefly explains the NI, which stands between Patmos
and the routers. Finally, Subsection 3.4.3 explains reconfiguration, one of the
features of the newest version of Argo.

3.4.1 TDM Scheduling

The Argo NoC uses Time-Division Multiplexing (TDM) [13], which means that
the resources of the NoC are shared over time between the VCs required by
the application. To achieve this, time is divided into TDM periods, and a
period is divided into time slots. The TDM period is determined by the off-line
scheduler, according to a description of the NoC topology and the required VCs
and their bandwidth. These parameters basically depend on the communication
requirements expressed as a task communication graph (in this project, each
audio effect corresponds to a task, and the communication requirements are
the signal flow through the effects). The schedule is stored in the NIs. TDM
avoids deadlocks and collisions, and ensures that all packets arrive in order, in
a guaranteed time range. This is ideal to reduce WCET.

Each time slot corresponds to a phit, which is the finest granularity unit of the
physical layer that the NoC can transfer. In this case, a phit is one 32-bit word.
A NoC packet is composed by one or more phits, and the packet length is equal
for all VCs in Argo. The TDM bandwidth for each channel is applied at a packet
level. A common value is 3 phits per packet, where the first phit is always the
packet header that contains information about the write address and the packet
route. It also contains information about the type of packet: in this project,
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the main type of packet used is the data packet to transfer audio samples, but
reconfiguration packets are also used if reconfiguration of the NoC is enabled.

A full TDM period is the sum of packets that have been statically assigned to
each VC by the scheduler (plus possibly some empty slots that avoid collisions),
where each packet contains the same amount of phits. The packets are injected
in the NoC by the NI, according to the static schedule table, in the order given
by the TDM schedule. The routers in the structure continuously transfer these
packets. When a TDM period finishes, the next period starts right away. If, at
some point in time, there is no data on a given time slot, the router does not
transfer any data. That could happen because a) the packet assigned to that
time slot does not travel through that router (i.e. it takes another path); b)
because there is no data being sent on that VC at that moment; or c) because
that slot was left empty by the scheduler to avoid collisions between packets.

For better understanding, Figure 3.3 shows an example of a possible TDM
period. There are 4 packets in the period, with 3 phits per packet (the first one
is the header, H). There are 3 VCs in the channel: c1 and c3 with a bandwidth
of 1, and c4 with a bandwidth of 2 packets. There is also an empty time slot,
which could have been assigned by the scheduler. The total TDM period is 13
time slots.

H P P H P P H P P H P P H P P

30 6 9 12 30

TDM period

1c 3c 1

4c
2

4c 1c

t

Figure 3.3: Example of a possible TDM schedule, where there are 4 packets of
3 phits corresponding to 3 VCs (c4 has a bandwidth of 2 packets).

3.4.2 Network Interface

The NI offers standard read/write transactions between the NoC and each Pat-
mos core in the platform [13]. It also takes care of the packet sending/reception
to/from the NoC.

As Figure 3.4 shows, the NI contains a TDM counter, a schedule table, a Direct
Memory Access (DMA) table, a receive unit and a reconfiguration controller
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(the last one is explained in Subsection 3.4.3). The counter indexes an entry
in the schedule table, which points to an entry in the DMA table. This entry
contains parameters of a DMA controller, and also the route that the packet of
that TDM slot should follow through the NoC. The TDM counters of all cores
are synchronized, so all NIs read the same schedule table entry all the time.

For each packet in the TDM period, the indexed DMA controller of the cor-
responding source node reads the data from the local SPM and transfers the
packet to the NoC router. This packet then travels through the routers and
links given the route saved in its header. Finally, when the packet arrives at its
destination NI, the receive unit takes care of writing the packet data into the
SPM address of the destination core, specified in the packet header.
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Figure 3.4: Network Interface of Argo, between Patmos and the router. Single
lines indicate control signals, and double lines indicate data.

Now that the process of sending data packets between cores through the NoC
has been explained, it is important to provide bounds of the time that it will
take for a packet to travel from the local source core to the remote destination
core. In this project, this is referred to as the worst-case packet latency and it is
the time that passes from when the local core starts sending the first phit of a
packet until the remote NI writes the last phit to its SPM. This value can vary
depending on where in the TDM period the core performs the send operation:
it will be faster if the sending starts right before the time slot assigned to that
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VC than if that time slot has just passed, because the NI will have to wait for
one full TDM period. The worst-case packet latency value, LPwc

, can be defined
as in Equation 3.1, where PTDM is the TDM period. The value 8 depends on
architecture details of the Argo NoC.

LPwc = PTDM + 8 [clock cycles] (3.1)

It is also important to mention that the NI operates in an overlapping way with
the processor, i.e. Patmos can perform other operations in parallel while the NI
is sending data (it should just take care of not overwriting the send data on the
SPM).

In this project, a message passing library called libmp2 has been used, which is
provided in the Patmos repository. It is built on top of the libnoc library that
interfaces the hardware directly. The libmp library offers some of the following
functions:

• mp create qport and mp create sport are used to create either a queu-
ing or a sampling NoC channel port. The channel id, the direction, the
buffer size and the number of buffers need to be specified. The queuing
communication has been used in this project, which means that the data
is stored in a queue of buffers in the receiver, instead of being overwritten.

• mp init ports needs to be called after creating all the ports on each core.

• mp nbsend and mp send send data through the NoC on the specified chan-
nel. A time-out value might also be given, in case sending fails. The
difference between the two functions is that the first one is non-blocking
and the second one is blocking. The blocking one has been used, which
waits until the send operation has been completed before performing the
next send on the same buffer, to make sure no data is lost.

• mp nbrecv and mp recv receive data from the NoC on the specified chan-
nel. Again, a time-out value can be set. The blocking function has also
been used for receiving.

• mp nback and mp ack are used by the receiver to send the acknowledge
signal and let the sender know that the data was received correctly. Again,
the blocking function has been used.

2https://github.com/t-crest/patmos/tree/master/c/libmp

https://github.com/t-crest/patmos/tree/master/c/libmp
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3.4.3 Reconfiguration

The Argo NoC supports reconfiguration, which allows performing mode changes
in real-time [13]. A mode change is the change of software tasks that are being
executed as a response to an external event. When this happens, a change in
the state of the NoC might be needed because new channels and bandwidths are
required, and old ones might disappear. This is the reconfiguration of the NoC.
On an audio application, a mode change means switching the audio effect chain
that processes the input sound. This could happen for instance when a guitar
player presses a foot-switch pedal to shift from one set of effects to another, and
the he/she should perceive the mode change as instantaneous. The implemen-
tation presented in this work supports mode changes among effect setups, and
NoC reconfiguration has been used in some cases to update the communication
channels according to the requirements of each effect configuration.

A set of available modes must be determined off-line by the scheduler: each mode
has its own TDM schedule. During run-time, the reconfiguration controller in
the NI holds the TDM schedule information of each mode. When the master
core invokes reconfiguration, it broadcasts a reconfiguration packet to all slaves.
The reconfiguration controllers in the NIs of the slaves will then update the
schedule table. The reconfiguration packet latency is the packet latency defined
in Equation 3.1. This means that the new mode is available at least 2 TDM
periods after the master issues the mode change (i.e. the new mode will start
with the beginning of the 3rd TDM period after mode change).

Finally, a slight drawback of supporting reconfiguration is that one VC with the
bandwidth of the reconfiguration packet is always needed between the master
core and each one of the slave cores. This means reserving some bandwidth for
these VCs in the TDM period.
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Chapter 4
Architecture of the Audio

Interface for Patmos

This chapter presents an audio interface for Patmos and the WM8731 audio
CODEC included in the Altera DE2-115 board. The design and digital imple-
mentation of an older version of this interface was previously done as a project
[22] for the course 02211 - Advanced Computer Architecture of DTU. The main
contribution done during this thesis is the addition of input and output audio
buffers, which will be explained in this chapter. The rest of the components will
be just overviewed.

In Section 4.1, the main characteristics of the WM8731 audio CODEC are briefly
introduced. Section 4.2 explains the components of the audio interface, focusing
on the input and output buffers, which are the latest addition. Finally, Section
4.3 describes the API for using the audio interface with Patmos.

4.1 WM8731 Audio CODEC

The WM8731 is a low-power stereo audio CODEC with integrated headphone
driver and line and microphone inputs [23]. It has 24-bit sigma-delta ADCs and
DACs. Sampling rates from 8kHz up to 96kHz are supported. The CODEC
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has two main interfaces: the control interface and the digital audio interface.

The control interface is controlled via an I2C bus. Here, some of the config-
uration parameters are defined, such as the input and output selections (line
in, microphone in, line out, headphone out), the audio resolution, the sampling
rate, the output volume, and so on. This configuration is always done in the
setup of each audio program. For this project, the 48kHz 16-bit option has been
chosen, which is a standard audio quality. However, the actual sampling rate is
not exactly 48, but 52.083 kHz. This is because the WM8731 requires a source
clock signal of 12.288 MHz to sample audio at 48 kHz. Instead, the provided
clock is 13.33 MHz, which is the Patmos frequency of 80 MHz divided by 6.
So the sampling rate is 48·13.33

12.288 = 52.083 kHz. This does not represent any
decrease in the performance or in the audio quality of the system because the
sampling rate is even greater than 48 kHz, so the Nyquist theorem is fulfilled.

The digital audio interface is used for the input and output of the digital audio
samples. This is done through 5 wires: DACDAT, DACLRC, ADCDAT, ADCLRC
and BCLK. The LRC signals are used for sampling synchronization: they provide
a pulse every sampling period. The DAT signals transfer the actual audio data,
bit by bit. Finally, the BCLK signal is a synchronization clock for every sample
bit.

The WM8731 supports many digital audio interfacing modes, and here the cho-
sen one is the DSP mode A. Briefly, this means that a LRC pulse comes every
256 BCLK cycles. After each pulse, first the 16 bits of the left channel sample
are transferred on every BCLK pulse, and then the 16-bits of the right channel.
After that, there is no data for the next 223 cycles, until the next LRC pulse
happens.

Both I2C signals and all the mentioned digital audio interfacing signals are
connected from the Altera DE2-115 FPGA to the WM8731 in the board. The
FPGA is intended to be used as a master, and the WM8731 is the slave.

4.2 Design of the Audio Interface

The designed audio interface [22] drives both the control signals and the digital
audio signals of the WM8731. On the other side, it is connected to the Patmos
processor as an I/O device. Patmos acts as the master and communicates via
the OCP protocol. This makes it easy for the programmer to read input audio
samples from registers and to write output audio data.



4.2 Design of the Audio Interface 43

The Audio Interface and its internal components are shown in Figure 4.1. The
HDL implementation of the input and output buffers can be found in appendix
A, which are the main contribution to the interface done in this project. The
rest of the components can be found at the Patmos GitHub repository1. Each
component does the following:

• AudioInterface: it is the top component, which connects the sub-compo-
nents between them, to Patmos via OCP or to the WM8731 audio CODEC
through the FPGA ports.

• AudioClkGen: it generates the 13.33 MHz XCLK and BCLK signals from
the 80 MHz clock of Patmos.

• AudioI2C: when Patmos writes new data in the configuration data and
address registers, this block transfers it to the WM8731 in the I2C format.
It then waits for the acknowledge from the CODEC.

• AudioADC and AudioDAC: these two blocks exchange the input and output
audio data respectively between Patmos and the audio CODEC, using
the explained DSP mode A format. The AudioADC generates the ADCLRC
pulse, and stores the data from ADCDAT in the left and right input audio
registers connected to the input buffer. The AudioDAC block does the
inverse process for the output.

• AudioADCBuffer and AudioDACBuffer: these are the input and output
buffers respectively. They exchange data with Patmos via handshaking,
and are essential to implement the flow control communication used in the
system, explained in Subsection 5.1.1. However, the latency of the system
is also increased by increasing the buffer sizes, and one must be careful
with this so that the real-time perception of audio is not lost.

As mentioned before, the buffers are the main contribution to the interface done
in this project (apart from minor changes in other components, to adapt to the
buffers). Their hardware implementation is shown in appendix Sections A.1 and
A.2. Some of the main characteristics of them are explained in the following
points:

• Both the AudioDACBuffer and the AudioADCBuffer are implemented as
circular FIFO buffers which wrap around, as explained in [10, Chapter 28].
For this, the buffer size must always be a power of 2, where the maximum
size is 256 (this value could easily be increased in a bigger platform).

1https://github.com/t-crest/patmos/tree/master/hardware/src/io

https://github.com/t-crest/patmos/tree/master/hardware/src/io
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• They have read and write pointers, whose bitlength is equal to the amount
of bits needed to represent the buffer length, for easy wrapping around
(for instance, 8-bit pointers for a 256-sample buffer). The pointers are
automatically incremented when a read or write is issued by Patmos or
by the AudioADC/AudioDAC blocks.

• A state machine takes care of the state of the buffer, with states for empty,
almost-empty, idle, almost-full and full situations. The state is idle when
the buffer is not empty, almost empty, full or almost full. The almost cases
are needed for when the buffer size is 2 samples, because a transition from
idle to empty or to full cannot be distinguished without these states.

• The state machines also generate empty and full flags. Patmos can read
audio data while the input buffer is not empty, and it can output data
while the output buffer is not full. If the output buffer is empty during a
time range longer than the sampling period, undesired interruptions will
be heard in the processed audio output because some samples have been
dropped out.

• Finally, the state machine of the AudioDACBuffer also drives the enable
signal of the AudioDAC block. The audio output is enabled only when the
DAC buffer is not empty (i.e. there is data to output). The AudioADC
enable signal is always high, and if the input buffer is full, input data is
overwritten in the buffer.

An important design decision has been to make the read/write pointers auto-
incrementing. This means that Patmos can read an input sample only once. If
a specific audio effect needs to buffer a group of samples, they need to be stored
somewhere else when reading. This is exactly what happens on the filter effects,
where a buffer is needed to store the newest input samples. These samples are
stored in the SPM because it is a fast access memory. This is represented in
Figure 4.2, showing that the samples for filter calculation are stored in the SPM.

write_pointer

read_pointer

ADC Buffer

I/O

PATMOS

DSPM

Figure 4.2: Representation of the input buffer and Patmos, showing how the
latest samples needed for filter calculation are transferred to the
data SPM.
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Another possibility would have been to be able to change the read pointer of
the buffer from Patmos, so that storing the input samples in the SPM would
not be needed. But this requires a more complex buffer (it would not be a FIFO
anymore) which is not needed for this project, as the data SPM is enough to
store the buffers of each effect.

4.3 API of the Audio Interface

Some functions for configuration and audio input/output from/to the audio in-
terface I/Os are provided in the libaudio2 C library for Patmos. These functions
are shown in the appendix Section A.3. The main function for configuration
is the setup function, which sets standard configuration parameters for the
WM8731 CODEC. The only choice is whether the input audio comes from the
line input or from the microphone input (which has a built-in preamp and is
useful for microphone or guitar signals). A function to change the volume has
also been provided, although it has not been used in this project.

Before starting the audio processing, the input and output buffer sizes must be
set. For this, the setInputBufferSize and setOutputBufferSize functions
are provided, which take an argument with the size value.

Finally, the two main functions used during processing are getInputBufferSPM
and setOutputBufferSPM: the first one reads data from the read pointer of
the ADC buffer and places it in given SPM address. The second one does the
opposite process. The way these functions work is the following:

• The getInputBufferSPM function first waits until the ADC buffer is not
empty. When it is not, it provides a read pulse to the AudioADCBuffer
block so that this one knows that Patmos is reading one sample and it can
update the read pointer. Then, the left and right audio data is copied to
the SPM.

• The setOutputBufferSPM function starts by copying the left and right
audio output samples from the SPM into the intermediate registers of the
AudioDACBuffer, and it then waits until the buffer is not full. When it is
not, Patmos issues a write pulse so that the data can be copied from the
intermediate register into the buffer.

2https://github.com/t-crest/patmos/tree/master/c/libaudio

https://github.com/t-crest/patmos/tree/master/c/libaudio


Chapter 5
Design and Implementation of

Audio Effects on Patmos

This chapter presents the considerations and decisions taken in the design and
implementation process of the audio effects for the Patmos processor. Some
given specifications are considered, such as the real-time approach to audio pro-
cessing and the characteristics of the software and hardware resources available
in the processor, as explained in Chapter 3. The design trade-offs are also ex-
plained and discussed. In this chapter, each effect is treated separately from
other effects, as an individual processing unit that runs on a single-core plat-
form.

These effects are based on the DSP algorithms for audio signal processing de-
scribed in Chapter 2. Many references have been found which provide an imple-
mentation of those effects in different languages such as C, Matlab or Python.
However, in all of them the processing is done off-line, not in real-time. That
is why the real-time implementation of these effects is a contribution to the
T-CREST project. The effects designed here will be connected to each other
to form audio effect chains on a multicore platform, which will be explained in
Chapters 6 and 7, also contributions to the T-CREST project.

First of all, Section 5.1 explains some of the main requirements that a real-
time digital audio processing system must accomplish. Section 5.2 then ex-
plores the benefits and drawbacks about one of the main discussions in the
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DSP world: fixed-point v.s. floating-point processing. Section 5.3 presents the
object-oriented style approach used to implement the audio effects on Patmos.
Finally, Section 5.4 lists and describes the main parameters and functions of the
effects implemented in this project.

5.1 General Requirements for Real-Time Audio
Processing

The design of real-time audio processing systems is a challenge compared to
that of off-line systems: in off-line processing, the entire piece of audio that
is to be processed is stored in the memory. This means that the signal has
defined start and end points, and some characteristics of it can be analysed
before starting to process, such as the dynamic range or the power of the signal.
These characteristics might be used for tuning some processing parameters.
Moreover, there are no strict requirements of the time needed for processing.
However, this is not the case in real-time audio: the system has no knowledge
of the audio signal except for what it can analyse from the current input. The
processing needs to be done sample-by-sample (or block-by-block), in a way that
it is possible to compute every sample within a certain time interval.

The most important requirement of a real-time audio system is that it must be
powerful enough to process the audio data ’in time’: for a given audio sampling
rate, this basically means that the processing time per sample must be
smaller than the sampling period. This is shown in Equation 5.1, and
the value ε is the time margin left between two consecutive samples, where the
processor is in idle state. Fs is the sampling rate, and tPn

is the time required
to process a sample for effect n.

tPn
+ ε = 1

Fs
[ s ] (5.1)

Figure 5.1 shows an overview of the path done by the audio signal in the single
core platform. As explained in Chapter 4, input and output buffers are used
to hold previous and next samples of the audio signal while Patmos is process-
ing. The picture in Figure 5.1 is important to understand the communication
paradigms explained in Subsection 5.1.1, and how the latency of the audio signal
for the single core platform is calculated in Subsection 5.1.2.
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Figure 5.1: Representation of the audio signal flow on the single core T-
CREST platform, with input and output buffers of the same size,
N .

5.1.1 Communication Paradigms

The communication paradigm used to exchange data between the components
of the system plays an essential role in the behavior of it. In [24, Chapter 2]
different communication methods are discussed. The book does not focus in any
specific application, but two interesting methods are explained which are valid
for the T-CREST audio processing platform. The components that form this
system are the audio input system (including the ADC and the input buffer),
the processing system (as many as the amount of Patmos cores) and the output
system (including the output buffer and the DAC).

• One of the paradigms is time-triggered communication, which is used
when there is a periodic exchange of data between the components. This
is the case of digital audio systems, because the samples arrive at a fixed
frequency. Time-triggered communication can be achieved using an inter-
rupt with a frequency equal to the sampling rate, indicating the arrival of
a new sample. The processor then computes the sample and waits until
the next interrupt happens: there is no need for handshaking with other
components. In this case, the processing of each sample must be computed
faster than the sampling period in absolutely all cases to avoid dropping
out samples.

• The other possibility is to perform flow control communication, where
there is no external synchronization signal. This is usually used when
the exchange of data is non-periodic, and the data arrival times might
be unconstrained. However, it is also useful for audio processing systems
because it provides flexibility in the processing time, as it will be shown
later. In this case, the processor computes one sample, and when it finishes
it sends it out and continuously requests the next one. Each component
needs to do some kind of handshaking with others.
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The communication paradigm chosen for this project is the second one, flow
control. To explain why, it is important to refer to Figure 5.1 and explain how
the system works. Just before the processing starts, both the input and output
buffers (of size N) are empty. When it begins, first the input buffer is allowed
to load fully, so no processing is done during the first N samples. On the N -th
sample, the processing starts, so the first sample that was input to the system is
processed and sent to the output buffer, which will directly send it to the DAC.
After this point, the input and output of audio data is done at a constant rate:
one sample every 1/FS . That means that there are always N samples inside
the system, distributed among the input buffer, the processing system and the
output buffer.

As shown in Equation 5.1, the time it takes for the processor to process one
sample is smaller than the sampling period. That means that some time after
the processor starts processing the first sample when the input buffer is full, this
one will get emptied completely and the output buffer will get full, because the
processing rate is faster than the sampling rate. So in the ’stationary’ situation,
the input buffer will be empty, and the output buffer full.

Now, the equation presented in 5.1 is not true for absolutely all cases: in some
minor cases, the processing time of an effect per sample might exceed the sam-
pling period. This happens because the processor uses caches to have fast access
to data and instructions, so the execution time will increase when cache misses
occurs. This situation is given just once in a long while: when the first sample
is processed, or when there is a mode change and new effects are loaded into
the cache.

And this is actually the reason why flow control communication has been chosen:
if time-triggered communication was used, interruptions would happen in the
audio signal when cache misses occur, because the processing would not be done
’in time’. However, if this happens with flow-control communication, the output
signal does not get interrupted as long as there are still samples in the output
buffer. In this case, the input buffer will store samples until the processor is
able to process in time again (i.e. fulfilling Equation 5.1). After some time, the
stationary situation would be given again, where the input buffer is empty and
the output buffer is full.

In general, it can be stated that the input and output buffers provide the system
with elasticity against audio drop-outs when cache misses happen. The size of
the buffers, N , must be chosen carefully to make sure that the output buffer is
large enough and the system is still able to output data uninterruptedly when
the WCET processing happens (on a cache miss, as explained). For a given effect
n, the WCET processing will be the sampling frequency (1/FS) multiplied by
some overhead value TOHn . This value gives an idea of how many sampling
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periods it takes to process a single sample. The output buffer must then be able
to hold at least TOHn

samples when a cache miss happens. This is shown in
Equation 5.2.

N ≥ dTOHne [ samples ] (5.2)

If this is accomplished, then the audio processing system can be considered a
hard real-time system, even if the processing of samples of each effect does not
fulfill Equation 5.1 in absolutely all cases.

The stationary case execution time will be given by Equation 5.1, where εn is
the time margin for effect n, and gives an idea of how long it will take for the
system to go back to the stationary state after a cache miss happens. However,
this is difficult to calculate, because for most effects εn is not a constant value.

5.1.2 Signal Latency

Another essential requirement for a real-time audio processing system is that
the processing time must be perceived as instantaneous by the human ear. This
means that signal latency from input to output must always be within a certain
time interval.

There are still many open discussions about what is an acceptable latency for
a digital audio processing system to be considered real-time. In [25] it is stated
that typical audio processing system latencies range from 0.5 to 10 ms, some
having up to 30 ms. It is also stated that, in one study, listeners were able to
perceive latencies greater than 15 ms as a delay. In [26], a discussion of the
latency of CSound is given. CSound is a sound computing system for major
operating systems such as Android or iOS. In this reference, it is mentioned
that a delay of 12 ms is acceptable. Many other resources also provide values
that are within the same range. With all these values in mind, an upper limit
of latency is decided for this project, which will be 15 ms. For the sampling
frequency of 52.083 kHz used, the 15 ms latency corresponds to 781 samples.

In a single core platform processing system as the one in Figure 5.1, the latency
depends solely on the size of the input and output buffers, N . As explained
before, there are always N samples inside the system, distributed among the
input buffer, the processing system and the output buffer. That means that the
latency of the audio signal in a single core platform (LSC , measured in samples)
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is constant and can be calculated as shown in Equation 5.3. Alternatively, the
latency can be converted from sample units to seconds simply dividing LSC by
the sampling frequency Fs.

LSC = N [samples] (5.3)

The calculation of latency on a single core platform is therefore simple. Never-
theless, it gets more complex on a multicore platform. This will be explained in
Section 6.5.

5.2 Fixed-Point v.s. Floating-Point Audio Pro-
cessing

Fixed-point and floating-point representations are the two main ways used by
DSP processors to store and process data. The fixed-point representation can
be used to represent signed or unsigned integers and fractions. The values are
equally spaced: the gap between them is fixed, thus the name. This does not
happen in the floating-point representation, which usually uses a minimum of 32
bits and has a mantissa and an exponent. Here, the gap between values is non-
constant: it is large between large numbers and small between small numbers.
Fixed-Point and Floating-Point DSPs have different pros and cons, which are
discussed in [10, Chapter 28], and also listed here:

• Complexity: the hardware architecture needed to perform floating-point
arithmetic is more complex than the one for fixed-point DSP. This is an
important drawback of floating-point processing.

• Price: as a consequence of a more complex architecture, floating-point
DSPs are usually more expensive than fixed-point processors.

• Dynamic range: floating-point DSPs have a much higher dynamic range
than fixed-point ones. In 32-bit representation, signed integers can rep-
resent values ranging from around −2.15 · 109 to 2.15 · 109, while same
bitlength floating-point values can represent values between ±3.4 · 1038

and ±1.2 · 10−38 (in the most used ANSI/IEEE standard). This is spe-
cially interesting in some audio effects, such as the filters, where the dy-
namic range of the output signal increases with the order of the filter.
Floating-point makes it easier to represent these values.
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• Development time: the development time of an audio processing al-
gorithm implementation is usually greater when fixed-point arithmetic is
used: this is because the programmer constantly needs to take care of
possible overflow/underflow situations of an arithmetic operation, due to
the limited dynamic range of fixed-point representation. The multiplica-
tion of two N -bit fixed-point values results in a 2N -bit fixed-point value,
which causes having to scale the values up and down constantly. Moreover,
the addition/subtraction of two N -bit values might result in a N + 1-bit
value, which again means that some scaling needs to be done. All of this
is avoided when floating-point arithmetic is used.

• Precision: the problem of having a non-constant bitlength in fixed-point
arithmetic operations means that resolution can be easily reduced when
scaling or rounding off is done (for instance, when throwing out the least
significant bit of the result of an addition). In each of these operations,
quantization error is introduced and the signal-to-noise ratio gets reduced.
The work presented in [27, Chapter 7] explains how the error introduced
can be calculated when scaling or quantization rounding off is done. The
error is not only introduced by the fixed-point representation of audio
samples, but also by fixed-point representation of filter coefficients or other
parameters that are multiplied to the samples.

The chosen representation for the audio effects implementation on T-CREST
is the fixed-point representation. This is mainly because the hardware multi-
plier that is available in the processor pipeline is a fixed-point multiplier, and
the floating-point multiplication takes much longer to execute, because it is a
software library function. Some tests were done to take this decision, where the
clock cycles that it takes for each of these operations to execute were measured.
The fixed-point multiplication takes 3 clock cycles to finish, while the floating-
point multiplication takes around 64. This difference is a key factor for this
decision, due to the strict timing requirements for real-time processing.

The works in [28] and [29] provide conversions from floating-point algorithms to
fixed-point, so that a programmer can easily write floating-point code and then
run it on a fixed-point DSP. However, this is not usable in this project because
these conversions are not optimized for real-time processing: they are only valid
for off-line processing.

The chosen fixed-point representation is the 16-bit Q0.15 representation, where
there is 1 sign bit and 15 fractional data bits. The precision is increased on inter-
mediate operations when multiplications are done, because the results of mul-
tiplications are stored in 32-bit registers, which are used as DSP-accumulators.
However, when the 32-bit products are added, downscaling is needed to avoid
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overflow, so resolution is reduced is those cases. The amount of bits that a value
needs to be scaled down depends on the amount of additions done. At the end,
the output samples are scaled back to 16-bits.

5.3 Object-Oriented Style Approach for Audio
Effects Processing

All the audio effects implemented in this project use an object-oriented style
approach: the idea is that all the parameters (filter coefficients, buffers and so
on) of each effect are stored as a data structure (similar to a class), so that
many instances of it can be created as objects. This means that, for instance,
if the user wants to use the delay effect twice in a chain, he/she just needs to
invoke 2 instances of the delay structure, and their parameters will be mapped
to different memory locations. However, this approach does not mean that all
the features of object-oriented languages are available here. Some of them, such
as inheritance or polymorphism, are not supported by the implemented audio
effect classes. Object-oriented programming is just used as an inspiration.

The audio library for Patmos, libaudio1, contains the data structures and the
processing functions of each effect. In the audio.h file, the classes for each effect
have been defined, and the C struct type has been used for this. Inside each
struct, the parameters of each effect are found. When one of these effects is
instantiated, it needs to be placed in the SPM for fast access to the data. The
execution time of each effect strongly depends on this. The only data that is
not placed in the SPM are the large arrays, needed in the following cases: a)
when long audio buffers need to be stored (such as for the vibrato, delay or
chorus effects), or b) when long modulation arrays need to be stored (such as
the vibrato or the wah-wah effects). In those cases, only the offset address of
the array is located in the SPM. The full array is placed in the external SRAM
memory. Appendix B contains some examples of the data structures and pro-
cessing functions of the effects. One of these structures, the one corresponding
to the tremolo effect, is shown in Listing 5.1 as an example, and its parameters
will be explained in Subsection 5.4.1.

1https://github.com/t-crest/patmos/tree/master/c/libaudio

https://github.com/t-crest/patmos/tree/master/c/libaudio


5.4 Implemented Audio Effects 55

1 struct Tremolo {
2 int pnt; // modulation pointer
3 int pnt_n ; // modulation pointer next
4 short frac; // fraction of modulation
5 short frac1Minus ; //1 - frac
6 int mod; // interpolated mod value
7 // SRAM Memory variables
8 int * mod_array ; // mod_array [ TREMOLO_P ]
9 short * frac_array ; // frac_array [ TREMOLO_P ]

10 };

Listing 5.1: Structure of the tremolo effect.

To place data on the SPM, the SPM C attribute has been used, which maps
the specified variables to the local memory address space. The user must take
care of mapping it to the correct address to avoid overwriting data. This can
be done with the mp alloc function of the message passing library, libmp. This
function is valid because, in the multicore platform, the same SPM is used for
data storage and for the message passing NoC. mp alloc reserves the specified
amount of bytes in the SPM and takes care of updating the offset address to
the next available position.

5.4 Implemented Audio Effects

After explaining how the effects are structured, it is interesting to show how the
setup and processing are done. Each one of the implemented effects has two
main functions: an allocation function, which is done during setup time (when
the application just starts running on the platform) and a processing function,
executed during run-time. The first one has no timing requirements. Some
memory space is reserved on the SPM for the effect parameters, and some of
them are initialized. If the effect needs to use the external memory, some space
is also allocated there using malloc. Modulation arrays are also initialized in
this stage when needed. The last address available in the SPM is also updated
in this function. On the second function, the input samples of the effect are
processed with the parameters on the SPM, and output samples are sent to the
next effect on the chain or output to the audio CODEC.

As explained previously, the amount of samples that each audio effect processes
on a run might be different, as some effects operate on blocks of samples. How-
ever, all the effects implemented in this project process one sample per run.
There is just one exception for this, which is an effect that processes 8 samples
per run, but this one is explained in Chapter 7, as it is only used to show that
the multicore platform also supports effects that operate on blocks of samples.
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One of the main drawbacks of the implementation of the effects related to WCET
is that it has not been possible to use the ISPM at all, because it is not available
for the multicore version of the platform (it is only available for the single-core
version), so the processing functions of each effect could not be stored there,
as it was initially intended. This is also why this project relies so much on the
instruction cache: being able to use the ISPM would allow freeing space in the
instruction cache, and WCET would be reduced as instruction misses would be
avoided. This would be specially noticeable in cold cache misses, which happens
in the first execution of an effect, or just after a mode change.

The following sections explain the implementation of each effect, based on the
DSP algorithms for audio effects explained in Chapter 2, so one must refer to
this chapter to understand what each effect does. For each one of them, the
main parameters are mentioned, and the allocation and processing functions are
explained. The code of some of these effects is shown in appendix B. The rest
can be found in the audio.c2 file of the libaudio library. Here is a list of the
implemented effects:

• Tremolo

• Vibrato

• IIR Filters

• Delay

• Wah-Wah

• Chorus

• Overdrive

• Distortion

5.4.1 Tremolo

The tremolo effect is perceived as a periodical volume oscillation. The ampli-
tude modulation of this effect is done using a sinusoidal signal stored in two
modulation arrays: one containing the integer part and another one containing
the fractional part. This is done to use linear interpolation, as shown in Figure
5.2. This improves the precision of the computation, because if interpolation
is not used, a great amount of noise is introduced to the signal. Equation 5.4

2https://github.com/t-crest/patmos/tree/master/c/libaudio/audio.c

https://github.com/t-crest/patmos/tree/master/c/libaudio/audio.c
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shows how the value f(x) is interpolated from its closest integer values, and the
fractional part frac.

f(x) = f(i+ 1) · frac + f(i) · (1− frac) (5.4)

frac
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Figure 5.2: Linear interpolation, using integer and fractional parts.

The struct Tremolo was already presented as an example in Listing 5.1. The
main parameters are the pointers to the integer and fractional modulation ar-
rays, the calculated modulation value, and the offset addresses of the integer
and fractional modulation arrays, which are stored in the external SRAM.

In the allocation function, alloc tremolo vars, some memory space is allocated
in the SRAM for the integer and fractional modulation arrays. The length is
given by the TREMOLO P macro, which defines the period of the modulation sig-
nal. The storeSinInterpol function is called, which calculates the modulation
array values given some parameters of the sinusoidal signal: the length, the off-
set and the amplitude. The modulation signal must oscillate between 0 and 1.
The modulation pointers are also initialized.

The processing function is the audio tremolo function, has three parts: on the
first part, the modulation pointers are incremented. On the second one, the
modulation value corresponding to the current sample is calculated by interpo-
lating the current integer and fractional modulation values. Finally, the output
sample is the result of multiplying the calculated modulation value ([0, 1] range)
with the input sample.
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5.4.2 Vibrato

The vibrato effect is perceived as a periodical variation of the pitch of the sound.
This effect has an audio buffer which is as long as the maximum vibrato length.
As the tremolo, it uses linear interpolation, but in this case the modulation
value is not multiplied to the sample: it is used as an oscillating pointer to the
audio buffer, so the output sample comes with a small time-varying delay.

The main parameters the struct Vibrato are again integer and fractional
modulation pointers and offsets. Additionally, an audio buffer is needed in
the SRAM, which is as long as the maximum delay, which is defined by the
VIBRATO L (buffer length) macro. Finally, 2 accumulator registers are also
needed, for the left and right audio channels.

The allocation function is called alloc vibrato vars, and it does similar steps
to the tremolo allocation function, except that the audio buffer is also allocated
in the SRAM and initialized to zero. The sinusoidal modulation signal oscillates
between zero and the VIBRATO L value.

The processing function is called audio vibrato. It calculates the modulation
value as in the tremolo processing function, but instead of interpolating between
modulation values, interpolation is done between samples of the audio buffer.
The 32-bit accumulator registers are used to hold the intermediate interpolation
values.

5.4.3 IIR Filters

The IIR filters are used to implement equalization filters, which subtract some
frequency components from the original sound. The C code of this effect is
shown in appendix Section B.1. As explained in Chapter 2, 4 types of IIR filters
have been implemented: HP, LP, BP and BR. All of them are 2nd order IIR
filters and have the same structure.

The main parameters of the struct Filter are the input and output circular
audio sample buffers (with a length of 3 samples for 2nd order filters), the A
and B arrays containing the filter coefficients, a pointer to the buffer position
and a type variable to know which one of the 4 filter types it is. Additionally,
there is a shiftLeft variable: this one is used to know how many positions
the output sample needs to be shifted left, due to possible overflow caused by
fixed-point arithmetic operations when the coefficients are too large.
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The alloc filter vars takes the cut-off frequency and Q (or bandwidth for
BP/BR) values, and uses the filter coeff hp lp or filter coeff bp br to
calculate the A and B coefficient arrays, depending on what type of filter it
is. This calculation is done following equations in Table 2.1. The coefficients
will usually be between -1 and 1, but if they are outside this range, all of them
are scaled down until they are within the range, and the shiftLeft variable
is also incremented on each scaling, indicating that output samples need to be
scaled up after processing. Each incrementation of the shiftLeft value will
result in a resolution loss due to the dynamic range, which wouldn’t happen if
floating-point processing was used, as explained before. In addition, the buffer
pointer is also initialized to the maximum value (2) here.

The audio filter function first places the input sample in the small audio
buffer. It then calls the filterIIR 2nd function, which implements a 2nd or-
der IIR filter. The way it does it is that it multiplies each input and output
sample with its coefficient, and keeps storing the additions of each product in
the accumulator register, shifting the result 2 positions to the right after each
addition due to a maximum possible overflow of 2 bits. After that, the function
checks if the resulting output sample is outside of the acceptable digital audio
range, [−1, 1]. If this is the case, it simply clips the output to the maximum
value. The output result is then stored as a 16-bit sample in the SPM, scaling
correctly according to the shiftLeft value. Finally, for the BR/BP filters, the
output value needs to be added/subtracted from the input value.

5.4.4 Delay

The delay effect is perceived as a repetition of the sound, similar to an echo.
The C code of this effect is shown in appendix Section B.2. The delay effect is
a 1st order IIR comb filter. It works in a similar way to the IIR filters, with
some differences.

The main parameters of the struct IIRdelay are the accumulators, and the
gains and delay values of each comb filter branches (2 for a 1st order filter). A
circular audio buffer is also needed, which is stored in the SRAM, and its offset
address and pointer are stored in the SPM.

The alloc delay vars function initializes the gains and delay values. The delay
value is given by the DELAY L value, which also sets the length of the audio buffer
stored in the external memory. The audio buffer is initialized to zero, and its
pointer is initialized to the maximum value.

The audio delay function calls the combFilter 1st function, which takes the
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input sample and the delay buffer to calculate the output sample. It uses the
accumulator to store intermediate products. Clipping is also done, if necessary,
as in the filterIIR 2nd function. The pointers are also decremented on each
run.

5.4.5 Wah-Wah

This effect is basically a BP filter with time-varying cut-off and bandwidth
values. The C code of this effect is shown in appendix Section B.3.

The struct WahWah has the same parameters as the struct Filter, with the
addition of multi-dimensional A and B arrays of coefficients, which are stored
in the external SRAM in the alloc wahwah vars allocation function. They are
calculated from sinusoidal modulations of FC and Fb. Pointers are also needed
for the A and B positions corresponding to the current iteration.

The audio wahwah function is very similar to audio filter, with the exception
that the values of the A and B arrays are updated on each iteration to achieve
time-varying Fc and FB values. The output signal is also mixed with the original
input signal, achieving a combination of both.

5.4.6 Chorus

This effect is the result of adding time-varying delays to the original signal,
which are perceived as multiple sources playing simultaneously with some time
and pitch differences. The chorus effect is a 2nd order FIR comb filter with
time-varying delay times on the cascaded signals. There are many possibilities
to implement this variation: low-frequency noise can be used as a modulation
signal. However, in this project a separate low-frequency sinusoidal signal has
been used for each cascaded branches.

The struct Chorus is similar to the struct IIRFilter, except that the gain
and delay arrays have one more value (3 for a 2nd order filter). Additionally,
there are 2 sinusoidal modulation arrays, one for each cascaded branch, and the
audio buffer has length CHORUS L which needs to be as long as the maximum
delay. These modulation signals and the rest of the parameters are initialized
in the alloc chorus vars function.

The audio chorus function is similar to the audio delay function, except that
the function called is combFilter 2nd. But before calling that function, the
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delay values stored in the SPM are updated according to the current position
in the modulation array.

5.4.7 Overdrive

The overdrive is the first one of the waveshaping effects implemented. The C
code of this effect is shown in appendix Section B.4. The overdrive is quite a
unique effect, as the processing done depends on the amplitude of the input
signal, as Equation 2.10 shows. Therefore, the execution time also depends on
this, as some processing parts are more complex than others.

The struct Overdrive is very simple, as it only requires stereo accumulators
for intermediate calculations. The alloc overdrive vars is again extremely
simple as there is no initialization or memory reservation required.

The audio overdrive function is what makes this effect different, because the
effect is different depending on the amplitude of the input sample. If the ampli-
tude is in the [0, 1/3] or [2/3, 1] ranges, the processing is very simple as almost
no computation is required. However if it is in the range [1/3, 2/3], many arith-
metic operations are needed, which increase WCET.

5.4.8 Distortion

The distortion is a non-linear effect, which adds more harmonic content and
compression than the overdrive. The implementation of the distortion effect
can be considered quite similar to that of the overdrive in the [1/3, 2/3] range.

The struct Distortion is simple, it only contains accumulators and some pa-
rameters that specify the amount of distortion and the scaling required. The
alloc distortion vars just calculates the distortion parameters given a dis-
tortion amount.

The audio distortion simply performs the arithmetic operations given by
Equation 2.13, and uses the accumulators for intermediate operations.
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Chapter 6

Design of Multicore Audio
Processing Platform

This chapter presents the considerations and steps taken to design the audio
processing T-CREST platform, together with a latency estimation of the sys-
tem. Here, the effects that were presented in Chapter 5 are put together in the
multicore platform, combining the processing power of multiple Patmos proces-
sors with the communication resources provided by the Argo NoC. Therefore,
this chapter represents a contribution both to the T-CREST project and to
real-time multicore audio processing in general.

Multi-processor architectures are very common nowadays, but it is not always
trivial to take advantage of the parallelism available in those architectures for
audio processing, due to the sequential character of many algorithms [1]. Some
of the most popular software environments for computer music have a mainly
sequential behavior: parallelism is usually exploited by running copies of the
algorithms on multiple threads distributed in the platform. This behavior is
also given in this project, as multiple effects are connected one after another
forming chains, so the sequential dependencies among them are clear. However,
as it will be shown, computational parallelism is achieved with a pipeline-
style approach.

The work presented in [30] discusses the use of local and shared memories for
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multicore audio processing with their respective advantages, and mentions a
message passing interface to transfer data explicitly between two cores. The
message passing is implemented in this project using the Argo NoC, which
provides faster communication than shared off-chip memory, and allows data
transfers to be overlapped with processing.

Section 6.1 briefly discusses task allocating for multicore audio applications, and
presents the simple static task allocation algorithm used in this project. After
that, Section 6.2 explains the advantages of using a NoC for message passing
in real-time audio processing. 6.3 is the most important section of this chapter,
as it presents the rules that must be followed to achieve correct synchronization
and communication between cores in the multicore platform. Section 6.4 then
discusses the main parameters of the Argo NoC, and finally, Section 6.5 explains
how the overall latency of the system is calculated for the multicore platform.

6.1 Static Task Allocation

The computation of audio effect chains in a multicore processing platform can
be done in various ways. In some cases, multiple cores are needed to process one
single audio effect, due to the heavy computation required. This is not the case
in this project, as all the effects are processed in real-time in a single core. It
might even be possible to process more than one effect in the same core in some
cases. Therefore, the problem faced here is about mapping audio effect units to
cores efficiently: the effects must be distributed in the platform in a way that
the use of computational resources (available Patmos cores) is optimized, and
the exchange of data between them must be constrained in time so that the
overall latency of the platform is kept within 15 ms, as discussed.

The distribution of effects into cores can be non-trivial in multiple effect setups
with complex communication requirements. It is similar to the problem of
assigning tasks in a Task Communication Graph to processing nodes in the
multicore platform [13]. An example of this is shown in Figure 6.1, where
each effect in the audio system corresponds to a task. The tasks are connected
to each other forming chains, and parallel chains might appear, such as the
ones in Figure 6.1 where two effects are processed in parallel and then merged
together on FX4. Feedback loops will not happen between effects (they already
appear in the internal structure of some of them). The assignment of the tasks
found in the communication graph to the multicore platform must respect the
communication requirements of all effects.

In this project, static task allocation has been used. This means that the map-
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(b) Core communication graph, showing the effect distribution in processors (PX) of
the multicore platform.

Figure 6.1: Example of statically allocating a Task Communication Graph to
a multicore platform.

ping of tasks into cores is done by an off-line allocator, so each effect is always
processed in the same core. There are many ways to do static task allocation,
some of them very advanced and complex, but what all have in common is
that some previous knowledge of the tasks is needed. In the multicore audio
processing system, the main parameter that the scheduler needs to know was
introduced in Section 5.1: it is the time required to process a sample for an
effect n, tPn

. Knowing this value and the sampling frequency, FS , the scheduler
can calculate utilization (U) values each effect, which is the processing time of
effect n relative to the sampling period (i.e. it corresponds to the amount of
time that the processor is not idle when processing this effect), as Equation 6.1
shows.

Un = tPn · Fs (6.1)

The utilization gives an idea of how much of the computational resources of the
processor an effect uses, and this value is used by the allocator to decide how
many effect it can place in a core. As a simple example, effects FX1 and FX2
in Figure 6.1b could have values of U1 = 50% and U2 = 35%: this means that
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they can be mapped to the same core, because the sum of their utilizations is
smaller than 100%.

In this project, the static mapping of tasks is done in a simple way, as it is
not the main point of focus of this work. Given the list of effects and their
communications, the allocator takes each effect one by one in the same order
as they appear in the chain, and places it on the next core, if the available
utilization of that core is greater than the utilization of the effect (i.e. the
effect ’fits’ on the core). In this way, the amount of NoC channels required
gets minimized, because the order of the effects in the chain is maintained. One
important restriction is that the parallel chains must be placed in separate cores,
due to simplifications explained in Subsection 6.3.2.

There are some other simple algorithms for static task allocation and schedul-
ing, such as greedy algorithms [31] that maximize the usage of computational
resources but create more NoC channels, as the effects are not placed in the
same order as in the chain.

Complex multicore platforms use elaborate task scheduling methods to solve
large graph theory problems. In the field of multicore audio processing, the
work presented in [8] mentions many existing applications that use dynamic task
scheduling (done in run-time) for resource optimization. In [9] and [32], complex
algorithms for optimization of task distribution for multicore audio processing
in real-time are also explained. A discussion on possible improvements in task
allocation and scheduling is provided in Section 8.2.

6.2 Message Passing NoC v.s. Shared Memory
Communication

The communication between cores in a multicore platform can be done in many
ways, but two main ways have been considered here: message passing NoC
communication and shared memory communication.

When shared memory communication is used, there is no need for a message
passing NoC at all (the multicore platform uses the memory-tree NoC to access
shared memory). The cores exchange data with each other through the shared
memory. In order to do this, all the cores need to agree on which memory
locations they will use for communication.

The main drawback of shared memory communication is that access times are
long (the SRAM memory is an external chip, and data cannot be cached). More-
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over, access time is not constant: it depends on how many cores are trying to
access the memory simultaneously. For WCET analysis, the worst-case memory
access time has to be considered, which assumes that the rest of the cores are
trying to access memory at the same time.

In this project, shared memory communication has been used only for those
signals with no strict time requirements: this includes the ready signals, which
all the cores use to indicate that they have already finished the setup functions,
and that they are ready to start processing audio. There is also an exit signal,
which the master core sets to high when the user decides to finish the applica-
tion. Additionally, other signals of this kind have been added to support mode
changes: one of them is the current mode signal, which holds the global mode
value. The others are reconfiguration sync signals, which are used by all cores
to indicate that they are ready to start the new mode.

On the other hand, a statically-scheduled NoC that uses TDM scheduling is
ideal for real-time applications with strict timing requirements. The Argo NoC
provides timing predictability and communication guarantees, so WCET can be
calculated to ensure that the signal latency from input to output of the platform
is kept below 15 ms. This is why the message passing Argo NoC has been used
as the communication resource to exchange the audio samples between cores.

6.3 Architecture and Synchronization of the Mul-
ticore Audio Processing Platform

This section explains the rules that need to be accomplished to achieve correct
communication among multiple effects that are placed on different cores and
connected to each other on a multicore platform. At this point, it is expected
that the effects have already been allocated to the cores in the platform, so the
starting point to define the rules is a system such as the one shown in Figure
6.1b, where the effect distribution is done but no parameters are assigned yet.
The rules presented here use the data rates of each effect to a) design the
communication channels and the send/receive buffers correctly, and b) define
the steps done in the execution of each effect to ensure the correct functionality
and synchronization of the system.

In Subsection 6.3.1, the Homogeneous Synchronous Data Flow is briefly ex-
plained, while Subsection 6.3.2 uses the basic concepts of 6.3.1 and defines gen-
eral rules to design the multicore audio processing platform.
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6.3.1 Synchronous Data Flow

Processing of audio effects on a multicore platform is an example of a Syn-
chronous Data Flow (SDF) [33] application. The work presented in [34, Chapter
3] explains SDF among some other models of computation. In SDF, the actors
in the system have an static order of execution. The actors in the audio pro-
cessing platform are the effects, and the order of execution is set by the signal
flow through the effect chain.

An interesting SDF type for this project is Homogeneous SDF, in which the data
rate of each actor is static (i.e. each effect always processes the same amount of
samples per iteration). Here, it is said that an actor fires when there is a token
on each of its inputs, so it produces a token on each output. In this project,
firing means starting the effect computation, and one token is equal to one audio
sample.

Audio processing is a multi-rate SDF model, where the firing rates of the actors
might not be identical: some actors require more than one input token to fire
once and produce multiple output tokens. In the audio field, these are the effects
that operate on blocks of samples. Taking this into account, Balance Equations
need to be defined to ensure that each actor can fire and communicate with other
actors correctly so that the system can work as intended. Figure 6.2 shows a
simple example of this, where actor A produces M tokens on its output each
time it fires, while actor B needs N tokens on its input to fire.

A BM N

Figure 6.2: Simple example of two actors with different data rates on an SDF
model.

The balance equation for this simple situation is shown in 6.2, where qX indicates
how many times actor X fires in order to have a constant data rate in the overall
system.

qAM = qBN (6.2)

The balance equation for the example of Figure 6.2 looks rather simple, but the
complexity grows when there are many actors in the system with multiple data
rates, because the equation needs to be fulfilled for each connection between
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actors. Moreover, the equation does not have a single solution: there are mul-
tiple possible solutions that will have an influence in the design of the system:
for the audio processing example, the memory requirements (buffer sizes), the
total latency and the sending/receiving overhead will be directly affected by the
solution chosen, as it will be shown in Subsection 6.3.2. For a general case, [34,
Chapter 3] suggests to use the least positive integer solution (i.e. each actor
fires as soon as it has enough input tokens).

6.3.2 Rules for Multicore Audio Synchronization

This subsection takes the basic concepts of multi-rate SDF explained in Subsec-
tion 6.3.1 and presents the rules followed in this project for the implementation
of the multicore audio processing platform. In audio applications, the paral-
lelism that can be achieved in processing is sometimes limited due to sequential
dependencies and feedback loops of the algorithms. A clear case when paral-
lelism can easily be achieved is when processing parallel audio chains that are
independent to each other. On the other hand, if the effects are sequential (i.e.
the results of effect i − 1 are needed to process effect i), computational paral-
lelism is achieved by pipelines of processor cores, which provide an increase in
the number of effects that can be processed in real-time compared to a single
core platform. The audio processing on the T-CREST platform uses a similar
approach to the flow decomposition approach presented in [32], where a sequence
of tasks is executed concurrently by chaining their inputs and outputs through
buffers, forming pipelines and parallel chains.

In the T-CREST multicore platform, each one of the effects that is mapped to a
core has receive and send buffers of different sizes on its input and output ports,
to exchange data with other effects on the same or different cores. The size of
these buffers and the amount of times each effect should run depends on the
other effects and their data rates. In this section, the minimum required buffer
sizes and the execution order are explained for 3 different types of effect setups.
It is very important to understand that this solution minimizes the buffer sizes
of each effect and the latency of the signal from input to output of the platform,
but it maximizes the overhead caused by sending/receiving audio samples. This
will be understood better after explaining the rules, in Subsection 6.3.3.

Figure 6.3 shows the most relevant parameters of an effect for synchronization,
which are independent of the type of processing done. They are the following:

• Si: amount of samples that effect i processes on each run (i.e. data rate,
or the amount of samples it needs to fire). This value is 1 in most of the
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effects implemented in this project. However, the rules presented here are
not limited only to those effects, as more complex effects with higher data
rates are also considered, to design a scalable and flexible system in terms
of data flow.

• Bt
i,j : size of the buffer at effect i, connected to effect j, measured in

samples. t sets if it is a receive or send buffer (i.e. sends to j or receives
from j): t = x, y (x and y mean input and output respectively, following
the typical DSP notation used in Chapter 2). The size of any buffer of
effect i must always be equal or grater than its data rate: Bti,j ≥ Si. This
is because the buffer needs to hold at least as many samples as the effect
will process once it fires.

xB10
yB12FX1

41 S

Figure 6.3: Effect FX1 with its send and receive buffer sizes, and a data rate
of 4 samples per iteration.

Some effects have one send and one receive channel (i.e. are connected to just
one effect on their ends), but some others might have more than one:

• Join effects have multiple receive channels (Figure 6.4). They connect
two or more audio signals together: before processing, the samples of each
input buffer are added. In order to simplify the platform, all the receive
buffers have the same size, equal to the maximum one required. Also,
the join effect requires that the relative latencies of all the chains that it
connects are the same.

Join

Figure 6.4: Join effect with 3 receive channels.

• Fork effects have multiple send channels (Figure 6.5). They split the
signal into different chains. As in the join effect, all the send buffers must
have the same size, equal to the maximum one required.

We look at the cores that form the multicore platform now. Each core might
process one or more effects, so there are 3 possible setups for a core:
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Fork

Figure 6.5: Fork effect with 3 send channels.

• Single effect cores (6.3.2.1), where the core processes just one effect, so
this effect receives and sends data through the NoC.

• Multiple independent effect cores (6.3.2.2), where the core processes
two or more independent effects, which are not connected to each other:
in this case, all effects exchange data using different NoC channels.

• Multiple effect-chain cores (6.3.2.3), where the core processes two or
more sequential effects which are connected on a chain: in this case, only
the first and last effects of the chain inside the core are connected to NoC
channels.

The receive and send buffer sizes of each effect depends not only on the effect
itself, but also on other effects it is connected to. This way, we can distinguish
among 3 possible Processing Types of effect i (P Ti), which can be:

• XeY if the send and receive buffer sizes of effect i are equal: Bxi,j = Byi,k
.

• XgY if the receive buffer size of effect i is greater than that of the send
buffer: Bxi,j > Byi,k.

• XlY if the receive buffer size of effect i is less than that of the send buffer:
Bxi,j < Byi,k.

The processing type of an effect is independent of whether the effect is or not a
join or fork, because, in those cases, the sizes of all receive or send buffers are
the same.

Depending on the data rate (Si), buffer sizes (Bti,j) and processing type (PTi)
values of an effect, there are 3 parameters which need to be set, because they
define how many times each effect receives, sends or fires on a run. A run is a
complete iteration of any core in the system: the whole computation piece that
is constantly repeated during execution, where all the effects in that core are
processed. We therefore say that the effects in a core fire once or many times in
every run of the processor. The parameters are listed here, and how they can
be calculated will be explained in the next subsections:
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• Receives per run (NR) indicates the amount of receive operations (re-
ceiving data from the previous effect(s) on the chain) executed on each
run of the effect.

• Sends per run (NS) indicates the amount of send operations (sending
data to the next effect(s) on the chain) executed on each run of the effect.

• Firings per send or receive (NF ) indicates the amount of firings done
(execution of the algorithm of the effect):

– per each send, in effects of type XgY .
– per each receive, in effects if type XlY .
– per send and receive, in effects of type XeY (the amount of send and

receives done per run is the same).

In the following sections, a set of rules is defined, which explain how these
important parameters are calculated for each effect, depending on the core setup.

6.3.2.1 Single Effect Cores

In this setup, each effect is mapped to a different core (i.e. each core processes
just one effect). An example of this case is shown in Figure 6.6, which shows a
possible setup of audio effects on a multicore platform. The system is composed
of a chain of audio effects FX0 to FX5, and each effect is assumed to be processed
on a separate core (a to f), so each core has just one effect. Core a corresponds
to the master core on the T-CREST platform, which is connected to the audio
interface and takes care of the audio input and output. Effects FX1 to FX5
are placed on slave cores. In the following lines, the calculation of the buffer
sizes and the NS , NR and NF parameters for effects that are individually placed
on each core is shown, and numerical examples corresponding to the S values
shown in Figure 6.6 are given for better understanding, interleaved with the
rules and shown in blue background.

The rules that apply for single core effects are the following:

1. Si and Bti,j must be a power of 2 always (to ensure that any division
between them is an integer number).

2. Byi,j = Bxj,i always. This means that the two buffers located between two
sequential effects (i.e. connected to the same channel) must have the same
size.
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Figure 6.6: Example of a multicore platform processing an audio effects chain,
with some given S (data rate) values. All the cores are single effect
cores.

3. Byi,j = Bxj,i = max(Si, Sj). This is because effect i must have send and
receive buffer sizes at least as large as the amount of samples it processes
on each firing.

In Figure 6.6: By0,1 = Bx1,0 = 4, By1,2 = Bx2,1 = 4, By2,3 = Bx3,2 = 16,
By3,4 = Bx4,3 = 16, By4,5 = Bx5,4 = 16, By5,0 = Bx0,5 = 16

4. Depending on the processing type of effect i (PTi) and the buffer sizes
of this effect (calculated following rules 1, 2 and 3 ), which receives audio
from j and sends audio to k (Bxi,j , B

y
i,k):

• If P Ti = XeY (Bxi,j = Byi,k):
– NRi = NSi = 1

– NFi = Bx
i,j

Si
= By

i,k

Si

Effects of type XeY are: FX1, FX3, FX4, FX5:
– i = 1, 3, 5 : NRi

= NSi
= NFi

= 1
– NS4 = NR4 = 1, but NF4 = 16/2 = 8

• If P Ti = XgY (Bxi,j > Byi,k):
– NRi = 1
– NSi = Bx

i,j

By
i,k

– NFi = By
i,k

Si
, which in this case indicates firings per send.
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The only effect of type XgY is FX0:
– NR0 = 1
– NS0 = 16/4 = 4
– NF0 = 4/1 = 4
– In total, the FX0 will execute 16 firings per run: 4 firings

per send with 4 sends per receive.

• If P Ti = XlY (Bxi,j < Byi,k):

– NRi = By
i,k

Bx
i,j

– NSi = 1
– NFi = Bx

i,j

Si
, which in this case indicates firings per receive.

The only effect of type XlY is FX2:
– NR2 = 16/4 = 4
– NS2 = 1
– NF2 = 4/1 = 4
– In total, the FX2 will execute 16 firings per run: 4 firings

per receive, and 4 receives per send.

5. Finally, the steps for each run of effect i are the following (including the
buffer read/write position updating instructions, which are not shown
here), depending on the processing type (PTi) and the NS , NR and NF
parameters calculated in rule 4 :

• If P Ti = XeY :
– Receive once (NRi

= 1)
– Fire NFi times.
– Send once (NSi

= 1)

Effects 1, 3 and 5 will receive once, fire once and send once.
Effect 4 will receive once, fire 8 times and send once.

• If P Ti = XgY :
– Receive once (NRi

= 1)
– Repeat NSi times:
∗ Fire NFi

times.
∗ Send once
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Effect 0 will receive once, and then { fire 4 times, send } 4 times.

• If P Ti = XlY :

– Repeat NRi
times:

∗ Receive once
∗ Fire NFi times.

– Send once (NSi = 1)

Effect 2 will { receive, fire 4 times } 4 times, and then send.

The steps for each run are quite simple for the XeY effect type, as receiving
and sending happens just once per run, so the send/receive rate is constant.
This does not happen for the XgY and XlY types, so the steps that need to be
executed are not so straightforward. These types of effects could be avoided if all
the effects in the system were designed as XeY types, as they would all process
the same amount of samples per run. This is feasible when the data-rates of
the effects in the system are similar, as the latency increment introduced by
increasing some buffers is not much. However, when there are big differences in
the data-rates of each effect, this might be unfeasible, because considering all
the effects as XeY will increase the latency notably. One can imagine a setup of
effects, where one of them needs 512 samples to fire. If the buffers of the rest of
effects are increased to match this value, the latency of the system will increase
and the real-time perception might be lost. Nevertheless, the proposed solution
using XgY and XlY effect types would keep the latency within an acceptable
time interval on those cases. Another possible solution would be to reduce the
amount of buffers of all the effects, and have larger internal buffers in those
effects with higher samples per firing. In that case, the latency would be the
same as in the proposed solution, but the overhead introduced in the system
due to receiving and sending would be larger for those effects.

In Subsection 7.1.1, it will be shown how the master core (a in the example) is
quite special (it is the first and last of the chain and must take care of the signal
latency), but for now it is easier to assume it works the same way as the others.
The rules shown in this section were applied to an example where there is just
one audio signal chain, but the same rules apply if there are multiple parallel
audio chains on single effect cores. In that case, there will be join and fork
effects. For a join effect, a receive operation means receiving on all its receive
channels, and for a fork effect, a send operation means sending to all its send
channels.
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6.3.2.2 Multiple Independent Effect Cores

Sometimes, for resource optimization purposes, many effects might be allocated
on the same core, as explained in Section 6.1. In this case, the effects might be
connected to each other or not. In multiple independent effect cores, the effects
mapped to this core are not connected to each other: they both receive and
send from/to different channels of the NoC. Figure 6.7 provides an example of
this case.
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Figure 6.7: Example of core a processing two independent effects n and m,
with some given S values.

The setup presented in Figure 6.7 is the following: effects n and m are mapped
to the same core, a. Effect n receives audio samples from effect i through NoC
channel Ci,n and sends to effect j through Cn,j , while effect m receives from
effect k through NoC channel Cm,k and sends to o through Cm,o. If these
two effects n and m were implemented on separate cores, the rules defined in
Subsection 6.3.2.1 would be considered, so the following would apply:

• Bxn,i = max(Sn, Si)

• Byn,j = max(Sn, Sj)

• Bxm,k = max(Sm, Sk)

• Bym,o = max(Sm, So)

In Figure 6.7, we assume Si = 4, Sj = 2, Sk = 1 and So = 32. This gives:

• Bxn,i = 4

• Byn,j = 2

• Bxm,k = 8

• Bym,o = 32
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The amount of samples that are processed on each effect on a run of the processor
is always given by the largest value between its receive and send buffers. In this
case, the values is 4 for n and 32 for m. Placing effects on the same core
means that, for each run, each one of them needs to process the same amount of
samples: otherwise, the data rates of the effects would be unbalanced, and this is
unwanted (it would only make sense if the effects had different sampling rates).
Therefore, if two or more effects are processed on the same core independently,
in order to calculate their receive and send buffer sizes, first the largest one of
them needs to be identified, and then the size of it might be modified: it must
take into account the S values of all the effects in the core and all the effects
connected to the core. This means that the largest buffer of both effects must
have the same size, to achieve the same data rate per run.

Going back to the setup of Figure 6.7, for core a which processes effects n and
m, the following rules can be defined:

• max(Bxn,i, B
y
n,j) = max(Si, Sk, Sn, Sm, Sj , So)

• max(Bxm,k, Bym,o) = max(Si, Sk, Sn, Sm, Sj , So)

For the S values given before:

• max(Bxn,i, B
y
n,j) = Bxn,i = 32

• Byn,j = 2, as before

• max(Bxm,k, Bym,o) = Bym,o = 32

• Bxm,k = 8, as before

Now, the amount of samples processed by each effect on a run is the same,
32.

It is important to mention that this will also affect the buffer sizes of effects that
are connected to this core, which makes the buffer size calculation an iterative
process.

Following with the example, the send buffer of core i must increase: Byi,n =
32, instead of 4.

Once the buffer sizes are defined, the same rules as before apply: the NRi
, NSi

and NFi
parameters of each effect and the execution order can be calculated in

the same way as in rules 4 and 5 of Subsection 6.3.2.1.
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6.3.2.3 Multiple Effect-Chain cores

Another possible setup is to have multiple effects connected to each other on a
single core: this is desired when possible, because it avoids sending data through
the NoC, and therefore reduces the overall latency of the audio processing sys-
tem.

To explain this case, Figure 6.8 is presented, where effects n and m are connected
on a chain inside core a.

x
mnBx

niB y
nmBFXn

1nS

y
mjBFXm

8mSinC mjC

a

Figure 6.8: Example of a core processing two effects n and m belonging to the
same audio chain, with some given S values.

To proceed in the same way as before, first of all the buffer sizes will be calculated
assuming the effects were placed in different cores, which would mean:

• Bxn,i = max(Sn, Si)

• Byn,m = Bxm,n = max(Sn, Sm)

• Bym,j = max(Sm, Sj)

In Figure 6.8, we assume the following values: Si = 4 and Sj = 16. This
gives:

• Bxn,i = 4

• Byn,m = Bxm,n = 8

• Bym,j = 16

But, as explained in Subsection 6.3.2.2, this would break the balance as the
effects would have different data rates per run. Moreover, if the effects on a
setup like this are of processing type XgY or XlY (i.e. have different receive
and send buffer sizes), the execution of them needs to be interleaved, otherwise
some data might be overwritten in the intermediate channel. This is too complex
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to be implemented in the audio processing T-CREST platform: in this project,
when there are multiple effects mapped to the same core, the execution of them
is sequential (i.e. the full processing of one must finish before the next one can
begin). So, to simplify the platform, all the effects on an effect-chain core are
of type XeY (same send and receive buffer sizes). This means that all effects
perform send and receive operations just once per run.

To match all the buffer size values, the largest data rate of the effects in the
core and the effects connected to it are taken:

• Bxn,i, Byn,m, Bxm,n, B
y
m,j = max(Si, Sn, Sm, Sj)

This results in:

• Bxn,i, Byn,m, Bxm,n, B
y
m,j = max(4, 1, 8, 16) = 16

So now it is clear that each one of the effects will process 16 audio samples on
each run. The NRi

, NSi
and NFi

values and the execution order can be then
determined as explained in Subsection 6.3.2.1 for effects of type XeY .

6.3.3 Reducing Send/Receive Overhead

As stated before, the rules proposed in Subsection 6.3.2 minimize the buffer
sizes and the latency of the audio signal. However, the overhead caused by
transferring data through the channels can be high in this case. The effects
on different cores use message passing for communication, implemented in the
T-CREST platform as the mplib library with the mp send, mp recv and mp ack
functions. These functions are part of the processing of each effect, so the more
often they are called, the more overhead is introduced.

Small buffer sizes mean high communication overhead (i.e. less samples are
transferred, thus sending needs to be done more often). An easy solution to
reduce this overhead is to increase the send and receive buffers, which will also
increase the latency of the signal, as it will be demonstrated in Section 6.5.
Therefore, a balanced compromise needs to be found between the buffer sizes
and the communication overhead introduced. The buffer sizes shall then be
increased if there is enough memory available for buffering (SPM in Patmos),
always taking into account that the overall latency of the system must be kept
under 15 ms.
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As a simple example, if, after following the rules, a given input buffer size is
Bxi,j = 8, it can be multiplied with an overhead reducing factor, for instance
4, so Bxi,j = 32. This means that the amount of receive operations done gets
divided by 4, but the latency introduced by this effect is 4 times larger.

6.4 Message Passing NoC Parameters

The buffer sizes of each NoC channel are given by the rules in 6.3.2, with some
possible overhead reducing factors applied to increase them. The hardware
resources of the NoC need to be shared among all the NoC channels according
to the communication requirements of the application. In the Argo NoC, this
is done by creating a custom NoC schedule to assign bandwidth only to those
channels needed by a given effect setup.

The NoC channel bandwidth is defined as the amount of packets per TDM
period, and the phits parameter determines the amount of words in a packet.
These concepts were introduced in Subsection 3.4.1. In this case the phits value
has been set to 3, which is the recommended value. This means that each packet
is composed of the header, one audio sample (2x16-bit) (or one acknowledge
signal) and one flag (used by the message passing library to indicate if the
message was read or not). So, one audio sample travels on each packet.

If the bandwidth value is increased, there are more packets in a TDM period,
which make the period longer. It is clear for the audio processing T-CREST
platform that the bandwidth values assigned to each channel need to be equal,
because the sampling rate of the system is constant, which means that, on
average, one sample travels on a NoC channel every sampling period. This is
independent of the buffer sizes: if a channel has a buffer of one sample, it will
transfer one sample every sampling period, while if it has a buffer of 8 samples, it
will transfer 8 samples every 8 periods. The difference is on how the samples will
be distributed in the NoC packets (which will affect the NoC latency), but the
bandwidth required is the same. It is also clear that the bandwidth value should
never be greater than the smallest buffer size in the system: if this happened,
empty slots would be found in the TDM period, as the channel will never have
as many samples as the bandwidth assigned to it. So the smallest buffer size is
an upper limitation when choosing the bandwidth value.

Additionally, NoC channels are also required in the inverse direction of the
audio signal flow, used for acknowledge signals, but these ones can have the
smallest possible bandwidth value, 1, as they do not transfer any data. Finally,
if NoC reconfiguration is enabled, the NoC scheduler creates additional channels
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between the master and the slave cores, to issue the reconfiguration signal.

The Argo NoC also supports multiple buffers on each channel. These buffers
act as a FIFO, allowing a sender to send data again to the next available buffer,
even if the receiver did not receive the previous data yet. In the audio processing
platform, the Argo NoC transfers data very fast compared to the time between
send operations of each core: this means that, when a sender core computes
some data and sends it to the NoC channel, the previous data will have already
arrived at its destination. However, there are some cases when data can get
accumulated on a buffer, for instance on a cache miss. That is why having
multiple send and receive buffers enhances the elasticity of the system against
cache misses even more, together with the effect of input and output buffers as
explained in Subsection 5.1.1.

A situation which requires a channel to have more send and receive buffers is
when the effect connected to it has different send and receive buffer sizes (i.e.
is of type XgY or XlY ). This is because this type of effect will have different
send and receive rates, so more buffering is required to prevent processors from
blocking due to not having enough send/receive buffers available.

6.5 Audio Processing Latency on a Multicore
Platform

The audio signal latency from input to output in the audio processing T-CREST
platform is proportional to the amount of processing applied to it. It can be
calculated by knowing the buffer sizes of each effect, and how the effects are
connected to each other (through the NoC or in the same core). In Subsection
5.1.2, the latency of the single-core processing system was calculated, which was
equal to its input and output buffer sizes, N . For multicore setups as the ones
described, the overall latency L measured in samples is the sum of three values:
the latency added by the input/output audio buffers (LIO), which is the same
as for the single core platform, equal to N ; the latency due to the effect buffers
(LFX) (6.5.1) and the latency of transferring data through the NoC (LNoC)
(6.5.2). This is shown in Equation 6.3. We recall the tolerable latency range
given in Subsection 5.1.2, which was 781 samples, corresponding to 15 ms. The
total latency of the system must then stay below 781 samples.

L = LIO + LFX + LNoC [ samples ] (6.3)
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It is important to point out that the latency value calculated, L, is the latency
of the system, and does not consider latencies possibly introduced by some
effects, as it could happen for instance in a big FFT. The effects designed for
the T-CREST platform have zero or almost-zero latency, therefore this one is
considered negligible.

6.5.1 Latency Added by the Effect Buffers

Buffering samples in send/receive ports of an effect adds latency to the audio
signal, and the more effects are chained, the longer the latency. When parallel
audio signal chains are implemented, the latency is equal to the longest one of
the chains. However, as previously explained, the implemented audio processing
platform requires that all the parallel chains have equal buffer size values, so it
does not matter which one is considered.

The latency does not depend on the execution time of each effect because it is
assumed that this one is always under the sampling period (except for the cache
miss cases, as explained). That means that the processing of each sample gets
synchronized with the sampling frequency, which allows being able to measure
latency in sample units.

For a chain (or chains) of effects with different data rates and receive and send
buffer sizes, it has been found that the latency is the sum of send buffer sizes of
all the effects (except for effect-chain cores, where only one send buffer needs to
be considered for all the effects in the core, and the size of it is the same for all
of them). This is because each effect can send data as soon as its send buffer
is full, which means that it has processed as many samples as the size of the
send buffer. At this point, the next effect in the chain receives the samples and
can start processing. The processing might be done faster in some cases, but
the system always gets synchronized to the sampling rate. This latency LFX is
shown in Equation 6.4, for an audio effects chain of N effects (effect-chain cores
are taken as a single effect, as explained), indexed 0, 1, 2, ..., N − 1.

LFX = By0,1 + By1,2 + By2,3 + ... + ByN−2,N−1 [ samples ] (6.4)

The relation between the buffer sizes and the latency can be better understood
now. It is also helpful to provide a numerical example in this case. Figure
6.9 is based on the effects setup found in 6.1b, and the buffer sizes have been
calculated following the rules explained in 6.3.2.
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Figure 6.9: Effect setup of Figure 6.1b, with some given S data rate values for
each effect, and buffer sizes as calculated following the rules.

The latency added by the effect buffers in Figure 6.9 is the sum of the output
buffers of each effect: 16 + 16 + 64 + 64 + 16 + 16 = 192 samples (in the
parallel chains of P1 and P2 just one of them was considered). This is easy to
check if the path of the samples through the system is analysed: P0 will send 16
samples to P1 and P2 when it has processed them, so the latency added by P0
is 16 samples; in the same way, P1 and P2 need to process 16 samples to fill in
their send buffers, so the accumulated amount is 32 samples; the latency added
by P3 is even greater, as it needs to process 64 samples before its send buffer
is full and it is ready to send; Following the chain, FX7 in P0 will output 16
samples after processing. The accumulated latency is 192 samples.

6.5.2 Latency Added by the NoC

The TDM period (PTDM ) in the Argo NoC is proportional to the amount of
channels and bandwidth values required. At this point, it is interesting to recall
the worst-case packet latency term introduced in 3.4.2, LPwc

= PTDM + 8,
measured in clock cycles. The NoC latency is proportional to LPwc .

The latency of a NoC channel Ci,j between effects i and j on different cores,
LCi,j

, is calculated shown in Equation 6.5, where BWi,j is the bandwidth of the
channel measured in samples and Bi,j is the buffer size assigned to the channel.
The equation gives an idea of how many TDM periods are required for the
full buffer to get transferred from source to destination. This latency value is
measured in the same unit as the packet latency, clock cycles. To convert it to
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samples, the amount of clock cycles per sample period must be known.

LCi,j = Bi,j
BWi,j

· LPwc [ clock cycles ] (6.5)

To provide a simple example, if a channel has a buffer of 16 samples and a
bandwidth of 2 samples, it means that 2 samples are assigned to each TDM
period, so it will take 8 periods for the full buffer to arrive at the destination.
To calculate the overall latency added by the NoC in a chain of audio effects, the
latencies of all the NoC channels need to be added. This is shown in Equation
6.6 for a set of N effects (0, 1, 2, ..., N−1) that form a chain of effects, and all the
connections between them are NoC channels. The value TCC is the sampling
period measured in clock cycles, which allows converting the NoC latency value
from clock cycles to sample units. If there are parallel chains, just one of them
needs to be considered, as the buffer sizes are equal in all chains.

LNoC = dLC0,1 + LC1,2 + LC2,3 + ... + LCN−2,N−1

TCC
e [ samples ] (6.6)

The LNoC value shown is a worst-case value, because the worst-case packet
latency was considered to calculate it. In many cases, this value will be under
one sample (because the sum of NoC channel latencies is below one sampling
period). But even in this case, a latency of 1 sample should be considered. In
general, the LNoC value should be quantized to its closest upper integer.

As an example, the setup presented in Figure 6.9 can be considered again. The
values of the NoC parameters can be assumed, for instance, as a bandwidth of 1
sample per packet, with a worst-case packet latency of 18 clock cycles. Following
Equation 6.5, the worst-case latency added by each channel of the system can be
determined. The values are calculated for all the channels in the system shown
in Figure 6.9:

LC01 = LC24 = LC67 = (16/1) · 18 = 288 clock cycles

LC45 = LC56 = (64/1) · 18 = 1152 clock cycles

Channels C03 and C34 are not considered as one of the parallel chains has already
been considered. Channel C12 is neither considered as it is not a NoC channel.
If the latencies of all channels are added, we get the total NoC latency in clock
cycles, according to Equation 6.6:
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LNoC = 288 · 3 + 1152 · 2 = 3168 clock cycles

This value can be then divided with the sampling period measured in clock
cycles, which in the current platform is calculated by dividing the processor
clock frequency, 80 MHz, with the sampling frequency of 52.083 kHz. The
value is 1536 cycles per sample. So the NoC latency measured in samples is
only d3168/1536e = 3 samples.



86 Design of Multicore Audio Processing Platform



Chapter 7

Implementation and WCET
Analysis of the Platform

This chapter shows the implementation of the audio processing platform and the
WCET analysis performed to guarantee its real-time functionality. Here, the
individual effects presented in Chapter 5 are combined in the multi-processor
system, forming sequential and parallel audio effect chains. The effects are
allocated into cores following the concepts and rules explained in Chapter 6. As
previously explained, the platform used for implementation is T-CREST, that
is why this chapter represents a contribution to the T-CREST project.

Section 7.1 presents the architecture and technical details of the chosen audio
processing platform implementation. First, how the system takes care of the
signal latency is explained, and then the software architecture is shown, in the
form of C data structures and functions. Section 7.2 shows both WCET analysis
and experimental execution time measurements done for each effect. The results
of the experimental measurements are used by the implemented effect allocator
to decide how to map audio effects to cores. The allocator is also presented
here.
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7.1 Architecture and Technical Details

The chosen T-CREST platform implementation is the 2-by-2 bitorus topology
with 4 Patmos processors, as the one previously shown in Figure 3.1, running
on the Altera DE2-115 FPGA board. There is a master core, which is a Patmos
processor connected to the audio interface component as an I/O device, and 3
slaves, standard Patmos cores. Therefore, the master core is in charge of audio
input/output, and the slaves are only used to process effects. All the cores have
the same cache and SPM sizes. The instruction cache has proved to be the
main bottleneck of the system, as its size and associativity values needed to be
increased to be able to compute all the effects in real-time. This is the main
reason why a platform with more cores has not been used: the large associativity
value of the instruction cache is a limitation for meeting the timing requirements
in the FPGA platform.

Subsection 7.1.1 first explains how the master core takes care of the signal
latency, a concept already discussed in Section 6.5. After that, the architecture
of the chosen implementation is described in Subsection 7.1.2, where the general
data structure of the effects is shown, and the main setup and audio processing
functions are overviewed.

7.1.1 Master Core Latency

In the current implementation of the platform, the master core needs to have
prior knowledge of the latency of the signal before audio processing starts. The
first and last effects of the chain are always placed in the master core, because
it is here where audio is input and output to and from the processing system.
This means that the audio signal needs to travel through the whole platform
between its entry and exit points, so it is important to show how the master
core handles this situation.

The master core can be seen as a multiple independent effect core (Subsection
6.3.2.2), because it contains at least two effects (first and last) independent to
each other, connected to components that are external to the core. The amount
of samples processed in each iteration of the core is then equal for all of its
effects. Additionally, all the effects mapped to this core are simplified as XeY
effects, which means that they all have the same send and receive buffer sizes.
This makes taking care of the signal latency easier.

Obviously, the master core cannot start outputting audio at the same time as
the first sample is input into the system, because there is nothing to receive on
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the last effect of the chain yet, so it would get stuck for a long time after calling
the mp recv function. Therefore, the master must wait until the signal has
travelled through all the cores in the chain until the last effect can receive and
output. In the current implementation, the master retrieves the latency value
from one of the header files generated by the effect allocator, which contains the
latency due to the effect buffers and the NoC, calculated using equations shown
in Subsections 6.5.1 and 6.5.2 (the latency added due to the I/O buffers is not
part of the core system, but of the audio interface component). But the latency
stored in the header is not measured in samples, but in iterations or runs of
the master core (amount of times it fully processes all the effects on it), so that
it knows after which iteration the audio signal can be output. This is shown
in Equation 7.1, where the latencies are added and divided by the amount of
samples processed per run by the master core, which is equal to any buffer on
it, BM , as all the effects are XeY . The value is quantized to its closest upper
integer.

LM = d LFX + LNoC
BM

e [ iter. ] (7.1)

As a simple example, we take a chain of N effects, where 0 (first) and N − 1
(last) are located in the master core. We assume a buffer size for these two
effects of 16 samples; the total latency of the effects is 48 samples and the one
of the NoC is 3 samples. According to Equation 7.1, LM = d(48 + 3)/16e = 4
iterations. This means that the master core will process only effect 0 for the
first 3 iterations, and it will start processing effect N − 1 on the 4th iteration.
Therefore, the master core will add a latency of a few samples to the system:
even if the samples are received with a latency of 51, it needs to wait for a value
proportional to its buffer size, in this case 16 · 4 = 64, to start outputting data.
This is due to the technical characteristics of the chosen implementation for the
platform, where the master core cannot start outputting samples in the middle
of an iteration. This means that the actual latency of the system in the example
is 64 samples, and not 51. Those extra 13 samples are buffered between effects.

7.1.2 Architecture of the Implementation

The individual effect structures and functions explained in Sections 5.3 and 5.4
are the base for the multicore platform implementation: here, a data struc-
ture that is general for all effects is created on top of the structures previ-
ously mentioned, which is called struct AudioFX and explained in Subsection
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7.1.2.1. The same object-oriented style approach has been used for this imple-
mentation. Similarly, the effect setup and audio processing functions, called
alloc audio vars and audio process respectively, are also built on top of the
functions of each individual effect. These two are overviewed in Subsections
7.1.2.2 and 7.1.2.3. The full C implementation of these structure and functions
can be found in the audio.c and audio.h files of the libaudio library of Patmos1.

7.1.2.1 The AudioFX Structure

The struct AudioFX uses an object-oriented style approach, which allows in-
stantiating audio effects as objects. It stores generic parameters of the effect
(ID, effect type, core number, buffer sizes, connections...), which need to be
set following the rules explained in Section 6.3. The structure can be found in
Listing 7.1.

1 // type of connection : first last , to NoC , or to same core
2 typedef enum {FIRST , LAST , NOC , SAME} con_t ;
3 // comparison of receive /send buffer sizes
4 typedef enum {XeY , XgY , XlY} pt_t;
5 // possible effects :
6 typedef enum {DRY , DRY_8S , DELAY , OVERDRIVE , WAHWAH ,
7 CHORUS , DISTORTION , HP , LP , BP , BR ,
8 VIBRATO , TREMOLO } fx_t;
9

10 struct AudioFX {
11 // effect ID
12 _SPM int * fx_id ;
13 // core number
14 _SPM int * cpuid ;
15 // connection type
16 _SPM con_t * in_con ;
17 _SPM con_t * out_con ;
18 // amount of send and receive channels (fork or join effects )
19 _SPM unsigned int * send_am ;
20 _SPM unsigned int * recv_am ;
21 // pointers to SPM data
22 _SPM unsigned int * x_pnt ; // pointer to x location
23 _SPM unsigned int * y_pnt ; // pointer to y location
24 // receive and send NoC channel pointers
25 _SPM unsigned int * recvChanP ;
26 _SPM unsigned int * sendChanP ;
27 // processing type
28 _SPM pt_t *pt;
29 // parameters : S, Nr , Ns , Nf
30 _SPM unsigned int *s;
31 _SPM unsigned int *Nr;
32 _SPM unsigned int *Ns;
33 _SPM unsigned int *Nf;

1https://github.com/t-crest/patmos/tree/master/c/libaudio

https://github.com/t-crest/patmos/tree/master/c/libaudio
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34 // in and out buffer size ( both for NoC or same core , in
samples )

35 _SPM unsigned int * xb_size ; //x buffer
36 _SPM unsigned int * yb_size ; //y buffer
37 // audio data
38 volatile _SPM short *x; // input audio x[2]
39 volatile _SPM short *y; // output audio y[2]
40 // Audio effect implemented
41 _SPM fx_t *fx;
42 // Pointer to effect struct
43 _SPM unsigned int * fx_pnt ;
44 // Boolean variable for last types : checks need to wait for

output
45 _SPM int * last_init ;
46 // Latency counter (from input to output )
47 _SPM unsigned int * last_count ;
48 _SPM unsigned int * latency ;
49 };
50

Listing 7.1: Parameters of the AudioFX structure.

Some of the parameters of Listing 7.1 are trivial. The ones that are not are
explained here:

• The send am and recv am parameters store information about how many
send or receive channels this effect is connected to (i.e. if it is a fork or a
join effect).

• The x pnt and y pnt parameters point to the location where the audio
data in the receive and send buffers is. This will be the buffer correspond-
ing to a NoC channel, if the effect is connected to the NoC. Otherwise, it
will be some location in the local SPM.

• The pt parameter defines the processing type of the effect: XeY , XgY or
XlY (these terms were introduced in Subsection 6.3.2). This is needed by
the audio process function to know which steps it should execute during
processing (sending, firing, receiving...) and how often.

• The S, Nr, Ns and Nf parameters were also introduced in Subsection
6.3.2.

• The x and y locations hold the audio samples, but are only used if the effect
is not connected to the NoC on its input or its output, respectively. When
it is connected, the audio samples are stored in the send and receive buffers
of the NoC channels, handled by the functions of the message passing libmp
library, and accessed by the x pnt and y pnt pointers.
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• The fx pnt parameter is a pointer to the actual audio effect structure
(delay, filter, distortion, and so on). It can point to any of the effects
presented in Section 5.4. That is why, at the beginning of this section, it
has been stated that the struct AudioFX is implemented on top of the
individual processing structures.

• Finally, the last init, last count and latency parameters are instan-
tiated only when the effect is the last one of the chain, so it needs to take
care of the audio signal latency, as explained. The latency parameter
contains the latency value in iterations. The last count is incremented
in each run at the beginning, and when it reaches the latency value, the
last init boolean value is set to true, indicating that the output of audio
data can begin.

7.1.2.2 The alloc audio vars Function

The alloc audio vars function can be found in the audio.c file of the libaudio
library. It takes care of the audio effect allocation and initialization, and needs
to be executed during setup time, before processing. It has no strict time
requirements. The main argument it takes is struct AudioFX *audioP, which
is a pointer to the effect object. The rest are values of the effect’s parameters.

The function takes care of storing each parameter in the local SPM, using the
mp alloc() function of the libmp library to keep track of the next available
address. As explained before, it does not store all the parameters of the struct
AudioFX, but only the relevant ones for the given effects (for instance, if the
effect is not the last of the chain, it does not make sense to store the parameters
related to latency). It also initializes some parameters.

The audio effect that is processed (delay, distortion...) is also given as an argu-
ment. This function calls the alloc <FX> vars function to allocate the effect
<FX> in the SPM. It can be any effect of the ones listed in Section 5.4. An im-
portant addition is an effect called DRY 8SAMPLES, which is unique in the sense
that it processes a block of 8 samples, instead of just one, as the rest of the
effects do. It does not make any actual processing, as it simply copies 8 input
samples to its output buffer each time it fires. However, this effect has been
created to show that the implemented multicore platform also supports effects
that process more than a single sample, and that combinations of effects with
different data-rates are synchronized correctly.

Finally, there is a function related to this one, named free audio vars, and it
is called just before exiting the program, to free the space that has been dynam-
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ically allocated in the external memory (such as audio buffers or modulation
arrays of the effects).

7.1.2.3 The audio process Function

The audio process function is shown in the appendix Section C.1. It is the
main function to process each effect, so it has strict real-time requirements.
Its only input argument is a pointer to the effect structure, struct AudioFX
*audioP. As stated before, this function is the same for all the effects in all
cores, but the effect object passed as an argument will have its own parameters,
so the function will act differently on each case. This function calls a differ-
ent processing function depending on the effect type (distortion, delay...). The
function called is audio <FX>, where again, <FX> can be any of the effects listed
in Section 5.4. The steps done by this function are briefly described here.

First of all, input and output audio data pointers xP and yP are created, which
will point to the location specified by x pnt and y pnt. The location can be
a NoC channel buffer or another SPM location. Then, the receiving, firing
(processing) and sending steps are executed. For this, the function checks the
processing type pt of the effect, and executes the steps in the correct order, as
many times as needed, depending on the Nr, Ns, Nf and S values. These steps
were defined in Subsection 6.3.2 for each processing type. The receiving and
sending process is executed on every channel, if the effect is a join or a fork. If
the effect is the first or last of the chain, the audioIn and audioOut functions
are called respectively, to exchange data with the audio interface I/O device. In
each step, the xP and yP pointers need to be incremented correctly.

If the effect is connected to the NoC, it calls the mp recv, mp send and mp ack
functions (the last one as many times as the receive). The timeout argument is
used to prevent the platform from getting stuck when there is any problem. In
the case of the mp send function, the sending process through the NI and the
Argo NoC will be overlapped with the computation: this means that the core
can continue processing after sending, as long as it does not get stuck because
there are no available send buffers. If the next effect in the chain is located in
the same core, then data is simply placed in an SPM location, where it can be
read by the next effect.
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7.2 WCET Analysis and Static Effect Allocation

The static allocation algorithm used in this project is strictly related to the
WCET analysis of each one of the implemented effects: in order to decide how
to distribute the effects through the multicore platform, the allocator must have
prior knowledge of the utilization of each effect, a concept introduced in Section
6.1. This way, it can decide which effects ’fit’ together in a core.

Subsection 7.2.1 shows the WCET analysis and execution time measurements of
each effect, and discusses how the values are interpreted. After that, Subsection
7.2.2 briefly explains some characteristics of the implemented task allocator.
Finally, 7.2.3 overviews the main audio processing program, which processes
the audio effects according to the effect distribution done by the allocator.

7.2.1 WCET Analysis and Execution Time Measurements

WCET analysis is essential for any real-time application. As explained in Chap-
ter 3, the goal of the T-CREST platform is to develop a multicore processor for
embedded real-time applications, so all the resources and tools of T-CREST
focus on prediction and reduction of WCET. One of those tools is the platin
WCET analysis tool, introduced in Section 3.3, which has been used in this
project for WCET analysis of each effect. Apart from the software analysis,
execution time has also been measured experimentally in the platform, simply
reading the CPU cycles just before and after the function to be analysed. All
the resulting values of the analysis and measurements must be compared to the
sampling period, which is 1536 clock cycles for the 80 MHz Patmos processor
with a sampling rate of 52.083 kHz. The execution time of each effect compared
to this value gives an idea of whether real-time processing is possible or not. If
this value is kept under 1536 cycles, the correct real-time functionality of the
system can be guaranteed, avoiding audio interruptions.

Table 7.1 shows both WCET analysis done using the platin tool (two columns
on the left) and experimental execution time measurements, as explained (two
columns on the right). In both cases, measurements with cold and warm caches
have been taken: on the first one, the caches are initially empty, so all the data
and instructions need to be loaded from main memory; on the second one, the
caches already hold the data and instructions of those functions, so execution
time is smaller. On the experimental measurements with warm caches, a range of
execution time values is found, so the bold font is used to mark the longest ones.
The functions analysed here are each one of the individual effects processing
functions. This means that the processing time related to NoC message passing
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Effect
WCET
platin

cold cache

WCET
platin

warm cache

Experimental
measurements

cold cache

Experimental
measurements
warm cache

Filter (LP/HP) 21819 4728 7812 372
Filter (BP/BR) 21819 12600 7812 379

Tremolo 5981 2228 3444 201-307
Vibrato 10393 5146 4872 373-556
Delay 22745 12172 5208 458-603

Wah-wah 24910 13921 8904 422-588
Chorus 27942 15626 6804 464-668

Overdrive 11806 6144 3444 178-1657
Distortion 15221 8718 5040 1108

Table 7.1: WCET analysis and experimental execution time measurements of
audio effect functions, using the platin tool for the analysis. The
values indicate the amount of clock cycles needed to process one
audio sample. The bold values show the worst-case values among
all the measurements done with warm caches.

is not taken into account here (i.e. only the firing part of the audio process
function is considered).

The measurements of Table 7.1 need to be compared to the sampling period
of 1536 clock cycles. Clearly, the WCET analysis done with platin reports
that none of the effects can be processed in real-time (all the values are above
1536), neither with cold caches nor with warm ones. However, when measured
experimentally, the values are much smaller, which means that the platin tool
analyses WCET in a very pessimistic way (for instance, it guesses worst-case
memory access times for every load/store instruction, which in reality is very
non probabilistic). That is why this tool has been set aside on this work.

Before interpreting the results, it must be stated that the overdrive is a special
effect, because the processing applied to it depends on the amplitude of the
input signal, so the execution time can vary a lot. Execution takes longest for
the [1/3, 2/3] amplitude range, but this does not happen very often, due to the
oscillating character of audio signals. That is why the measurements show a
wide range of values. In the last column of Table 7.1, the values of the rest of
the effects are within a range of around 200 clock cycles, while in the overdrive
there is a difference of up to 1469 cycles.

The experimental measurements of Table 7.1 show big differences between cold
and warm cache values: the speed-up is up to 21 (filter) with the warm ones,
and all the values corresponding to cold caches are over 1536, meaning that
execution-time per sample will be greater than the sampling period in this case.
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The warm cache values, instead, are all within the acceptable range (except for
the special overdrive effect, as explained). This means real-time processing is
possible when the cache is warm, so in order to define the utilization values of
the effects, experimental values corresponding to warm caches need to be con-
sidered. Therefore, it can be stated that the WCET corresponds to cold cache
values, which should reside somewhere between the cold cache measurements
and the results of WCET analysis. In Subsection 5.1.1 the cold cache WCET
situation was faced, showing that misses are not perceived as interruptions, due
to the flow-control communication paradigm used among the components of the
system.

Table 7.2 shows the experimental execution time measurements taken for the
whole audio process function, that is, including the time taken for message
passing on the NoC, buffer read/write position updating, and so on. The values
here are all taken with warm caches, as real-time processing relies on it. The
setup used for these measurements is a 2 core setup, where the master core just
exchanges audio samples with the interface, and the slave core receives data
from the master, processes and sends it back through the NoC. Execution of
each effect running in this slave core is measured, reading the CPU cycles on
every iteration of the processor. The values correspond to the initial executions,
after caches get filled but before all samples in the input buffer of the audio
interface are transferred to the output buffer (after they are transferred, the ex-
ecution time of a full iteration synchronises with the sampling period). Different
buffer sizes have been used, ranging from 1 to 16 samples. This shows how the
execution time per sample gets reduced when increasing the buffer sizes, due to
the reduction of NoC sending/receiving overhead.

If the values of Table 7.2 are analysed, this reduction in the overhead can be
clearly appreciated. If any of the effects is taken, the tremolo for instance, the
worst measured value relative to the sampling period is 610/1536 = 39.7%
for a buffer of 1 sample, but it is only 2962/24576 = 12% for a buffer of 16
samples. This proves that execution time is reduced by increasing the buffer
sizes, although this will also increase the latency of the signal. The percentage
values calculated, 39.7% and 12%, are actually utilization values. Another term
that was presented in Subsection 6.3.3 is the overhead reducing factor (ORF).
When an ORF of 16 is applied to the tremolo effect, the utilization decreases
from 39.7% to 12%.

Using the results of the measurements, a table has been created, where utiliza-
tion and ORF values have been assigned to each effect. This table is stored in
JSON format, and can be found in the audio apps folder of the aegean repository,
called FX List.json2. The information on this file is used by the static allocator

2https://github.com/t-crest/aegean/tree/master/audio_apps/FX_List.json

https://github.com/t-crest/aegean/tree/master/audio_apps/FX_List.json
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Effect

Buffer
size:

1 sample
(1536 CCs)

Buffer
size:

2 samples
(3072 CCs)

Buffer
size:

4 samples
(6144 CCs)

Buffer
size:

8 samples
(12288 CCs)

Buffer
size:

16 samples
(24576 CCs)

Filter
(LP/HP) 744 1080 1752 3096 5784

Filter
(BP/BR) 751 1087 1759 3103 5791

Tremolo 527-610 609-694 841-946 1366-2290 2290-2962
Vibrato 661-829 913-1264 1501-1753 2593-2776 5029-5113
Delay 891-1138 1311-1642 2151-2650 3831-4430 7191-8696

Wahwah 763-931 1099-1351 1771-2107 3451-3535 6475-6643
Chorus 752-1060 1172-1340 1928-2143 3571-3907 6679-7435

Overdrive 504-573 569-2027 790-879 959-1319 1479-2928
Distortion 1433 2421 4397 8349 16253

Table 7.2: Execution time measurements of the general audio process func-
tion, measured in clock cycles for different amounts of samples pro-
cessed, using the experimental results with warm cache. Values
taken before audio input buffer gets full (before processing period
synchronizes with audio sampling period).

to decide which effects can be combined into a single core, and how big the
buffer sizes shall be to reduce overhead.

The values in the FX List.json table are based on the worst case measurements
of Table 7.2, but they need to be oversized in most cases, in order to be conser-
vative and ensure that audio is processed ’in time’ in all cases. This is because
the utilization values measured could change when effects are combined in a
single core, for instance if the cache miss rate changes. Therefore, the utiliza-
tions given to the effects are either 0.5 for the ’lightest’ effects, or 1 for the
’heaviest’ ones. This means that the lightest effects with an utilization of 0.5
can be combined in the same core, while the ones with an utilization of 1 need
to be processed individually. The ORFs range from 4 to 16. These values have
been assigned taking into account results of Table 7.2 and have been oversized
following further experimental tests. They have proved to effectively reduce
overhead, but keep the signal latency in an acceptable range. Finally, it has
been also proved experimentally that it is possible to process the overdrive ef-
fect in real-time when an ORF value of 16 is assigned to it, even with the wide
range of execution times that it has.

Due to the difficulty of setting a WCET value for each effect, the input and
output buffer sizes have been oversized. A value of 128 samples seems to be
a good compromise between keeping latency low and avoiding interruptions on
WCET situations such as cache misses. The relation between WCET and the
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audio I/O buffer size was shown in Subsection 5.1.1.

7.2.2 Static Effect Allocator

The static allocator implemented in this project is simple but has proved to be
effective. The reason for this is that the main focus on this project is not on
task allocation, but on how the effects in the real-time audio processing system
synchronize and exchange data with each other effectively. The static task
allocation method used here was already presented in Section 6.1, explaining
how it minimizes the amount of communication channels required.

The designed allocator is the audioFXGen.py3 Python file, found in the Aegean
repository of T-CREST. It uses two JSON files: one of them is the FX List.json
file explained before, containing the utilization and ORF values of each effect,
and the other one is a description of the audio application to be executed in the
platform. Many of these files describing different audio effect setups have been
stored in the audio apps4 folder of the aegean repository, to be used as examples.
One of them is shown in Listing 7.2. It contains two modes, which means there
are two effect setups, allowing the player to switch between them. Each one
of the modes contains the names of the effects (the naming order defines their
position in the chain). Instead of an effect name, the list can contain an object
called “chains”: in this case, the signal is split in parallel chains, and then
merged together. In this example, parallel chains with delay and distortion
effects would be created in the first mode. Signal flow representations of the
two modes of this example are also shown in Figure 7.1.

1 { " modes " : [
2 [
3 " WAHWAH ", { " chains " : [
4 [ " DELAY " ],
5 [ " DISTORTION " ]]}
6 ],
7 [
8 " OVERDRIVE ", " VIBRATO ", "HP"
9 ]

10 ]}

Listing 7.2: Example of a possible audio effect setup in JSON format. There
are two modes, and the first one has two parallel audio chains.

The steps performed by the allocator for a given audio application are the
following:

3https://github.com/t-crest/aegean/tree/master/python/audioFXGen.py
4https://github.com/t-crest/aegean/tree/master/audio_apps/

https://github.com/t-crest/aegean/tree/master/python/audioFXGen.py
https://github.com/t-crest/aegean/tree/master/audio_apps/
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WAHWAH

DELAY

DISTORTION

in out

(a) Mode 1.

VIBRATOOVERDRIVE
in out

HP

(b) Mode 2.

Figure 7.1: Example of an audio application with two modes, corresponding
to the description in Listing 7.2.

• First of all, it assigns the effects of the application to the cores in the
multicore platform for each mode. It might report errors, for instance
when not all the effects could be placed due to space reasons, or because
the latencies of parallel chains cannot be balanced correctly. Initially, all
the cores have 100% free utilization (i.e. they are totally empty), except
for the master, which has an utilization of 50%, because it has to exchange
data with the audio interface.

• Then, the allocator connects the effects according to the application re-
quirements and to the placement of the effects in the platform. It assigns
IDs to each channel: some of them are NoC channels, some others are
virtual channels inside the same core.

• It calculates the buffer sizes for each effect. It does it as an iterative
process, following the rules explained in Subsection 6.3.2, and uses the
ORF values of each effect given in FX List.json to increase the buffer
sizes. The sizes are also increased when two or more effects are placed
on the same core in order to reduce overhead even more, but sizes are
currently limited to 32 samples as a measure to keep the latency low.

• It does an initial calculation of the latency. The final calculation is done
by another script, called audioLatencyCalc.py5, which uses the worst-case
packet latency value according to the TDM period of the NoC schedule.

• It creates a C header file, called audioinit.h, and stores it in the libaudio
library of the Patmos repository. An example of this file is shown in the
appendix Section C.2, which corresponds to the setup in Figure 7.1.

• It extracts the NoC channels and creates a NoC schedule XML file with
the custom setup for each mode described in the application. An example
of this file is shown in the appendix Section C.3, also from the setup of
Figure 7.1.

5https://github.com/t-crest/aegean/tree/master/python/audioLatencyCalc.py

https://github.com/t-crest/aegean/tree/master/python/audioLatencyCalc.py


100 Implementation and WCET Analysis of the Platform

Finally, as explained, the audioLatencyCalc.py script reports the latency of the
system, so that the user can check that it is within an acceptable range, under
15 ms. This script also generates the latencyinit.h file, located in the libaudio
library of Patmos as well, which contains the latency of each mode, measured
in iterations of the master core, as explained.

7.2.3 Main Audio Program

The main audio program implemented in this project is called audio main.c6.
It can be found in the audio apps directory of the Patmos repository, and has
been implemented in a flexible way so that it can be used to run different audio
applications described in the audio apps folder of Aegean. This C program
reads the schedule and latency generated by the allocator as audioinit.h and
latencyinit.h files. Here are the main steps it executes:

• First of all, during the setup stage, the thread functions are created in the
slave cores, as many as needed for the application.

• Then, on each core, the struct AudioFX objects are instantiated and
initialized for all the modes in the audio application. This is done by
reading the information about the effect distribution and the parameters
in the audioinit.h file, setting the buffer sizes of the effects and calling
the alloc audio vars function as explained in Subsection 7.1.2.2. NoC
channels are also created in this stage. When finished, the cores must
wait until all others have finished the setup stage before processing can
start. When this happens, the NoC channels are initialized. If there are
no errors during setup and initialization, processing can start.

• The cores execute the audio process function on all the effects assigned
to them in the current mode. This is repeated until the user presses a
button in the FPGA board, to finish the program.

• Additionally, the user might press another button of the FPGA to trigger
a mode change. In that case, the master core waits until all threads finish
processing their current functions, and enables a mode change using shared
memory communication. After this happens, all the cores in the system
process the effects according to the new mode. In a mode change, NoC
reconfiguration will also happen, if enabled, calling the noc sched set()
function of the libmp library to update the channels and bandwidth values
of the Argo NoC according to the new mode.

6https://github.com/t-crest/patmos/tree/master/c/audio_apps/audio_main.c

https://github.com/t-crest/patmos/tree/master/c/audio_apps/audio_main.c


Chapter 8

Evaluation and Discussion

This chapter presents the evaluation of the audio processing multicore platform,
showing different types of verifications. It also provides discussion on some of
the main topics related to this project.

The evaluation is found in Section 8.1, where 4 different types of verifications
are presented. The discussion is in Section 8.2, where some aspects and design
decisions of the implemented platform are reviewed.

8.1 Evaluation

Part of the evaluation of the implemented audio processing platform has already
been presented in Subsection 7.2.1, when it was shown how the processors are
able to process the effects in real-time with warm caches. However, further
verification of the system is done here in 4 parts. First of all, Subsection 8.1.1
verifies that the effect allocation process is done correctly, according to the
design rules presented in Chapter 6 and utilization values derived from execution
time measurements shown in Chapter 7. For this, an example application is
used, and the generated C header files and NoC schedule file explained, which
are shown in appendix C. Then, Subsection 8.1.2 evaluates the correctness of
the audio DSP algorithms used, focusing on the low-pass filter effect. After



102 Evaluation and Discussion

that, Subsection 8.1.3 verifies the synchronization and communication of the
effects in the system, as it shows that the stream of audio data flows through
the effects as expected, keeping the right order. Additionally, the verification
of the latency estimation is done, which ensures the real-time perception of
audio processing. Finally, in Subsection 8.1.4 audio applications with parallel
effect chains are tested, showing a numerical example where the samples of the
concurrent chains are added in the join effect, meaning that the parallel signals
are merged together.

8.1.1 Evaluation of the Task Allocation Algorithm

As stated before, the implemented static task allocation algorithm is light but
effective, and its behavior has proved to be correct for all the tests done. To
show this, an example application is used, which corresponds to the two modes
of effect setups shown in Figure 7.1 and Listing 7.2. The audioinit.h header
file created by the static allocator (audioFXGen.py, Subsection 7.2.2) for this
application is shown in the appendix Section C.2, as it is too long to be displayed
here. Most of the parameters shown in this file are trivial, but there are two
which are not:

• FX SCHED <X> is an array containing information about the effects setup
on mode <X> (one array is created for each mode). Each row in the array
corresponds to an effect, and the values found from left to right are the
effect ID, the core it must be placed in, the type of effect that it imple-
ments (delay, tremolo...), the input and output buffer sizes, the amount
of samples processed per firing (S) and its input and output connection
types (NoC, same core...). The effects in this array match the setups pre-
sented in Figure 7.1, and their buffer sizes fulfill the synchronization rules
as expected.

• The SEND ARRAY <X> and RECV ARRAY <X> arrays contain information about
how the effects are connected to each channel in the platform (NoC or same
core channels). The rows are the effects in the system, and when a value of
1 is found in the array, it means that the effect on that row is connected to
the channel ID assigned by the column. More than one 1’s might appear
in a row in the case of fork and join effects. This is what happens in the
first mode of the example shown in the appendix Section C.2. It can be
checked that the connections between the effects match the signal flow of
Figure 7.1 on each mode, showing that the allocator keeps the right order
of effects in the chain.
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As explained, the other file generated by the allocator is the NoC schedule file,
shown in the appendix Section C.3. The correctness of this one is easy to test,
as two communication fields are found, each one corresponding to a mode, and
the NoC channels created match the communication requirements shown in the
audioinit.c file of appendix Section C.2. In this example, the audio data NoC
channels have been given a bandwidth of 4 packets (this value has been found
to perform fairly well in most cases), while the channels in the inverse direction
have a bandwidth of 1, used only for acknowledge signals.

Our static task allocator has been tested in a similar way for many other effect
setups, even with more modes and more complex configurations, and the algo-
rithm was done correctly in all cases, even reporting errors when creating faulty
applications on purpose (with too many effects, or unbalanced parallel chains).

8.1.2 Evaluation of the Audio Processing Algorithms

The numerical evaluation of the DSP algorithms used for processing effects has
been done throughout all the development stages of the project. The UART
has been used as a debugging tool to print input, intermediate and output
audio sample values and ensure that all the calculations done corresponding to
the algorithms used are correct. As an example, part of the terminal console
is shown in Listing 8.1, which corresponds to printing the values of all the
coefficients and all the samples of an IIR filter. In this case, it is a low-pass
filter.

1 A [0]=14789 , Y[0]= -531 , B[0]=20 , X[0]= -1004
2 A[1]= -31091 , Y[1]= -565 , B[1]=40 , X[1]= -1004
3 A[2]=0 , Y[2]= -496 , B[2]=20 , X[2]= -1003
4 RESULT = -2448438
5 A [0]=14789 , Y[0]= -565 , B[0]=20 , X[0]= -1004
6 A[1]= -31091 , Y[1]= -598 , B[1]=40 , X[1]= -1003
7 A[2]=0 , Y[2]= -531 , B[2]=20 , X[2]= -1003
8 RESULT = -2579222
9 A [0]=14789 , Y[0]= -598 , B[0]=20 , X[0]= -1003

10 A[1]= -31091 , Y[1]= -630 , B[1]=40 , X[1]= -1003
11 A[2]=0 , Y[2]= -565 , B[2]=20 , X[2]= -1003
12 RESULT = -2705936

Listing 8.1: Coefficients, buffered samples and results for 3 executions of a 2nd
order IIR filter, corresponding to a low-pass filter effect.

The A and B arrays shown in Listing 8.1 have constant values, which correspond
to the 3 an and bn coefficients found in a 2nd order IIR filter, as explained in
Subsection 2.2.2. The values of the X and Y input and output audio sample
buffers are also shown, and it can be seen how some values get shifted from
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one iteration to the next. The RESULT value is the output sample, calculated
following the IIR filter Equation 2.4. The calculation of that equation can be
done manually for one of the executions shown in Listing 8.1. For instance, if
the middle execution is taken:

y(n) = (20 · (−1004)) + (40 · (−1003)) + (20 · (−1003)) − (14789 · (−565)) −
((−31091) · (−598)) − 0 = −10316893

This value needs to be divided by 4, because the samples in the 2nd order
IIR filter implementation are shifted 2 positions to the right, to avoid overflow
situations. When this is done, the resulting value is −2579223.25, which is close
to the −2579222 reported by the platform. The small differences are due to the
loss of precision of fixed-point arithmetic calculations because of the constant
scaling and round-off operations that need to be done. This verifies that the
algorithm is computed correctly. Similar numerical tests have been done with
all the algorithms implemented and all of them have proved to work as expected,
with some differences in the resolution loss.

In audio effects processing, a perceptual evaluation is also very important: it is
a way to ensure that the implemented algorithm actually generates the audible
results that are expected. This type of verification has also been used constantly
during this project, for tuning the parameters of the effects, such as filter coeffi-
cients, delay values, and so on. Sometimes, a time domain or frequency domain
visualization of the effect is helpful to verify that the behavior is the expected
one. The visual verification of the low-pass filter is shown in Figure 8.1, and has
been created by inputing a white noise signal with constant gain all frequencies
to the system and plotting the processed output with an FFT visualizer. It
can be clearly appreciated how the amplitude of the upper frequencies of the
spectrum is reduced.

8.1.3 Evaluation of the Synchronization of the System

In this subsection, the functionality of the multicore audio processing platform
is evaluated in terms of synchronization and data flow. On the first part of
the evaluation, the focus is on ensuring that all the steps are executed correctly
when processing (not the audio DSP algorithms themselves, but rather the NoC
sending and receiving operations, the read/write position updates and so on),
and that the audio signal travels through the cores uninterruptedly and in the
correct order, following the path specified in the JSON application description
file. The next verification consists of measuring the actual signal latency in the
platform, to confirm that it matches the expected value.
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Figure 8.1: Spectrum of the implemented low-pass filter effect for a white noise
input signal with constant gain all over the spectrum, showing the
decay of frequencies above the cut-off frequency.

To do this, a simple effect setup has been created, consisting only of dry audio
effects. These effects do not apply any processing to the signal, but just copy
their data from input to output. This means that the audio signal out of the
system should be exactly the same as the input signal. The application used
for the test is shown in Listing 8.2, and it can be appreciated how effects of
different firing rates have been mixed in the platform (the DRY effect fires on
every sample, while the DRY 8SAMPLES fires every 8 samples). The next Listing,
8.3, shows part of the header files generated by the allocator. As the 4th and
5th columns of the FX SCHED 0 array show, the input and output buffer sizes
of all effects in the system is 16, and some of them are combined in the same
core (for instance, effects 1 and 2 are mapped both to core 1, as the 2nd column
shows). The latency of the master core is also shown, which is 5 iterations.

1 { " modes " : [
2 [
3 "DRY", "DRY", "DRY", " DRY_8SAMPLES ", "DRY", "DRY"
4 ]
5 ]}

Listing 8.2: Audio application of chained dry effects.
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1 // FX_ID | CORE | FX_TYPE | XB_SIZE | YB_SIZE | S | IN_TYPE |
OUT_TYPE //

2 const int FX_SCHED_0 [7][8] = {
3 { 0, 0, 0, 16, 16, 1, 0, 2 },
4 { 1, 1, 0, 16, 16, 1, 2, 3 },
5 { 2, 1, 0, 16, 16, 1, 3, 2 },
6 { 3, 2, 1, 16, 16, 8, 2, 3 },
7 { 4, 2, 0, 16, 16, 1, 3, 2 },
8 { 5, 3, 0, 16, 16, 1, 2, 2 },
9 { 6, 0, 0, 16, 16, 1, 2, 1 },

10 };
11

12 // latency from input to output , measured in iterations
13 const unsigned int LATENCY [ MODES ] = {5, };

Listing 8.3: Part of the header files generated by the allocator, corresponding
to the application shown in Listing 8.2.

When generating this header file, the allocator also reports the latency of the
system in the terminal window. The values reported for the example application
of Listing 8.2 are shown in Listing 8.4. First of all, the overall latency is 3.99
ms, which is under 15 ms, considered acceptable. For other more complex
applications tested, it has always been under 10 ms. The latency that the master
core sees is the addition of the FX and NoC latencies, 65 samples. As explained
in Subsection 7.1.1, the master measures the latency in runs or iterations, which
means that the amount of samples needs to be rounded up to 5 · 16 = 80 (this
was shown in Equation 7.1), corresponding to the 5 iterations of the master
core. This means that 80 samples will be input to the master core from the
audio interface before there is any audio output. This is exactly the value that
the allocator reports, which, added to the 128 samples of the I/O buffer latency,
give the overall one, 208 samples.

1 ************** MODE 0 **************
2 IO Latency : 2.46 ms (128 samples ), FX Latency : 1.23 ms (64 samples )

, NoC Latency : 0.02 ms (1 samples )
3 Total Latency of FX and NoC :1.54 ms (80 samples )
4 TOTAL LATENCY : 3.99 ms (208 samples )

Listing 8.4: Latency report of the allocator, corresponding to the application
shown in Listing 8.2.

To prove the functionality of the platform for the example application shown
in Listing 8.2, The UART has been used in the master core, to print the input
and output data from and to the audio interface. Furthermore, the iteration
number is also printed. Two separate parts of this are shown in Listing 8.5,
corresponding to the iterations 11 and 15 of the master core.



8.1 Evaluation 107

1 ...
2 audio OUT: -4357 , -4150
3 audio OUT: 2093 , 2134
4 ******* ITERATION 11 *******
5 audio IN: 453 , 535
6 audio IN: -942, -825
7 audio IN: -2484 , -2327
8 audio IN: -3356 , -3176
9 audio IN: -3078 , -2905

10 audio IN: -1944 , -1798
11 audio IN: -417, -309
12 audio IN: 669 , 748
13 audio IN: 2421 , 2454
14 audio IN: 1884 , 1929
15 audio IN: -13211 , -12768
16 audio IN: -1642 , -1474
17 audio IN: 14430 , 14163
18 audio IN: 10890 , 10692
19 audio IN: 7646 , 7518
20 audio IN: -1703 , -1606
21 audio OUT: -2441 , -2283
22 audio OUT: 601 , 680
23 ...
24 ...
25 ...
26 ...
27 audio OUT: 4382 , 4366
28 audio OUT: 3362 , 3368
29 ******* ITERATION 15 *******
30 audio IN: 316 , 402
31 audio IN: -523, -415
32 audio IN: -2220 , -2066
33 ...
34 audio IN: -9205 , -8855
35 audio IN: 3739 , 3760
36 audio IN: 11522 , 11331
37 audio OUT: 453 , 535
38 audio OUT: -942, -825
39 audio OUT: -2484 , -2327
40 audio OUT: -3356 , -3176
41 audio OUT: -3078 , -2905
42 audio OUT: -1944 , -1798
43 audio OUT: -417, -309
44 audio OUT: 669 , 748
45 audio OUT: 2421 , 2454
46 audio OUT: 1884 , 1929
47 audio OUT: -13211 , -12768
48 audio OUT: -1642 , -1474
49 audio OUT: 14430 , 14163
50 audio OUT: 10890 , 10692
51 audio OUT: 7646 , 7518
52 audio OUT: -1703 , -1606
53 ******* ITERATION 16 *******
54 audio IN: -1088 , -973
55 audio IN: -5521 , -5290

Listing 8.5: Input and output audio data values printed by the master core in
the platform, corresponding to the setup of Listing 8.2.
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What Listing 8.5 shows is that the 16 audio samples that are input to the plat-
form in iteration 11 are output in iteration 15. This verifies two things: one of
them is that data is correctly processed in all effects (the values are unaffected,
as they are all dry effects), as the order of the samples in the stream is respected
and no data is lost, which means that communication and synchronization hap-
pen as expected; the second one is the correct estimation of the latency, which
can be checked taking one of the input samples, for instance the (453, 535) sam-
ple (two values because it is a stereo sample) that is the first input on iteration
11. The same sample is output in the first position in iteration 15, proving that
80 samples have been input in between: the 64 ones of iterations 11 to 14, and
the 16 ones of iteration 15 (because audio input happens before output on each
iteration). This value, 80 samples, is the value that was previously calculated.

Similar verifications have been done with multiple possible setups and effects of
different processing types (XeY , XgY and XlY ), and all of them have shown
to work as expected, with no data loss or unwanted reordering of the samples.
In all cases, the multicore platform processes the audio signal with the expected
behavior. It has also been constantly verified that the master core takes care
of the latency of the system correctly, even with parallel effect chains, as they
have the same latencies.

Additionally, mode changes without NoC reconfiguration have also been tested
with a wide range of applications and they show correct behavior. On a mode
change, the platform switches to the new setup correctly, and all the cores
start processing the effects corresponding to the new mode. The usage of NoC
reconfiguration in mode changes has only been tested for simple application
setups, and it has been verified that it functions as expected in those cases.

8.1.4 Evaluation of Parallel Audio Effect Chains

The last evaluation presented verifies that the implemented system supports
parallel audio effect chains. To show this, a simple audio application has been
created, with 3 modes, as presented in Listing 8.6. The first and second modes
consist of a single effect, the distortion and the overdrive respectively. On the
last mode, these two effects are placed in parallel chains. The results of this
verification are shown in Table 8.1. For the 3 modes, the same input samples
have been used, which are shown in the first column of the table. The next
columns show the output values of each mode.
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1 { " modes " : [
2 [
3 " DISTORTION "
4 ],
5 [
6 " OVERDRIVE "
7 ],
8 [
9 {" chains " : [

10 [ " DISTORTION "],
11 [ " OVERDRIVE " ]
12 ]}
13 ]
14 ]}

Listing 8.6: Application to verify the functionality of parallel audio chains.

Input Distortion Overdrive Parallel Chains
4376, 4308 24428, 24313 8752, 8616 16590, 16464

-15224, -15288 -30894, -30908 -28754, -28832 -29824, -29870
24327, 24261 32179, 32173 32767, 32767 32472, 32469

Table 8.1: Results of the verification of parallel audio chains, corresponding to
the modes presented in Listing 8.6 for 3 different input samples.

The values of the 2nd and 3rd columns of Table 8.1 are not of interest here, as
they are just the result of the DSP algorithms corresponding to the distortion
and overdrive effects for the given samples. The focus here is in comparing
those values with the last column. Before that, it must be explained that the
join effect found after parallel chains reduces the amplitude of each one of them,
otherwise the addition of two signals could result in an overflow. For two par-
allel chains, the amplitude of each signal is reduced to a half. Therefore, the
correct functionality of the 3rd mode of Listing 8.6 is verified in the last column
of Table 8.1: if the values of the 2nd and 3rd column are divided by 2 and
added, the resulting values match the ones in the last column. This shows that
the audio signals of parallel chains are actually added correctly, and that the
relative latencies of each chain does not get modified in an undesired way. Fur-
ther evaluation has been carried out with more numerical examples and longer
signals, and perceptual evaluation has also given correct results.

8.2 Discussion

In this section, some aspects of the presented design and implementation are
discussed. In many chapters of this work some discussion has already been
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provided, as it was needed to justify some design decisions. Among others, dis-
cussion has been provided on topics such as communication paradigms, WCET
analysis and reduction, methods for synchronization and communication of ef-
fects, and compromise between parameters such as buffer sizes and latency.
Some of these topics are briefly recalled here, and some new points of discussion
are introduced.

This section is divided in two subsections. The first one, 8.2.1, focuses on some
general aspects of the audio processing platform, and discusses strengths and
possible improvements of the system. The second Subsection, 8.2.2, briefly
recalls the allocation algorithm used in this project, and discusses some state of
the art allocation and scheduling solutions.

8.2.1 General Discusion

Real-time audio applications are challenging due to the constrained time re-
quirements for processing. The complexity of the algorithms to be computed
is limited by the resources of the chosen platform. In multicore platforms,
these resources are mainly distributed among processing units (IP cores) and
intercommunication resources, which exploit parallelism as computation and
communication are overlapped.

The T-CREST platform chosen for implementation is optimized for general-
purpose hard real-time applications. The implementation of audio DSP algo-
rithms in such a platform is possible, as it has been demonstrated, but the
complexity of them is limited by the computational resources available. During
the development of this project, some decisions have been taken to find a bal-
ance between the complexity of the implemented effects and the time required
for execution. Due to this, some of the algorithms slightly decrease the resolu-
tion of the signal, which might introduce some unwanted noise artifacts. We do
not consider that this affects the quality of the work presented here, as the goal
of the project is not to optimize the quality of the effects, but rather to design
a system where chains of effects are processed and synchronized efficiently and
with strict time guarantees.

In order to process complex audio algorithms with high resolution and minimal
error in real-time, multi-processor platforms are usually equipped with a set of
different IP cores that are specialized for each operation. The work presented in
[8] discusses the use of General-Purpose Graphics Processing Units (GPGPU)
as part of a multicore system to take care of the computationally most expensive
algorithms. As it is stated in [32], it is also common to find multi-processors
with DSPs or FPGAs interconnected with NoCs.
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In the current implementation, all the IP cores found in the system are Patmos
processors. However, the platform has been designed with high scalability, which
means that in theory not only Patmos processors are supported: other IP cores
shall also be integrated in the system if these can interface the Argo NoC, and
if the rules explained in Subsection 6.3.2 are accomplished. For instance, a
more powerful platform can be designed if hardware blocks optimized for audio
processing algorithms are included in the platform, such as high order IIR filter
blocks or FFT blocks. This kind of hardware implementation would not only
increase the computational power available in the platform, but would also
reduce WCET and improve its predictability, as the execution time would not
depend on the compiler or instruction cache hits anymore.

The main strengths of the T-CREST platform for audio processing are the
local SPM and the Argo NoC. The first one allows storing most of the effect
parameters in a fast access memory, to prevent the processor from stalling on
data cache misses. Moreover, it improves WCET predictability, as SPM access
time is constant.

As far as the Argo NoC is concerned, its TDM behavior is excellent for real-time
audio applications. Custom NoC schedules optimize the usage of the available
bandwidth to create only those channels that are required for a given applica-
tion, depending on the effect distribution on the platform, which in this case is
constant due to static task allocation. Furthermore, in the current implemen-
tation the data-rate of all the effects is the same and constant (i.e. each effect
processes one sample per sampling period) and so it is for the NoC channels, so
the available bandwidth is optimized. In general, all multicore audio applica-
tions require large amount of data to be transferred between the IP cores of the
system, so a TDM scheduled NoC seems like a very good solution for real-time
applications when off-line allocation or scheduling are used.

8.2.2 Task Allocation and Scheduling

The performance of an audio application relies on how the resources provided
in a multi-processor are employed. In this sense, correct distribution of tasks
among cores becomes essential to maximize the usage of available computational
resources. Moreover, the communication requirements of the application must
also be considered, as large amounts of overhead might be introduced to the
system if the allocation is not done efficiently.

Our static allocation algorithm, presented in Subsection 7.2.2, is simple but has
proved to perform an effective task distribution depending on their utilization
values, as the amount of NoC channels needed for an application gets mini-
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mized, therefore reducing message passing overhead and signal latency due to
data transfers through the NoC. This is achieved by mapping the effects to the
cores according to their order in the audio signal chain. However, the computa-
tional resources are not optimized in this way. For a given audio application, it
might happen that our allocation method is not able to place all the effects in
the 4-core platform. On the other hand, an scheduler which optimizes the pro-
cessing resources could find a way to distribute all of them efficiently, although
this would increase the communication requirements. In general, the algorithm
used must find a balance between optimizing the usage of computational and in-
tercommunication resources. But, as explained before, task allocation is not the
main focus of this work, so the performance of the algorithm used is considered
to be enough for this work.

The dependency between WCET analysis and task allocation has been experi-
enced in this project. If utilization rates of the effects are not estimated cor-
rectly, real-time processing might fail as one of the cores in the system is not
able to process in time, thus limiting the execution of the whole system. To
avoid this, the utilization values and overhead reducing factors have been over-
estimated, due to the unpredictability of combining effects on the same core,
as the compiler might change the order of the instructions, or the cache hit
rates might decrease. With more precise WCET values for each effect in every
possible combination, allocation could be done more precisely, without so much
overestimation required. In this case, longer chains of effects could fit in the
platform.

Task allocation and scheduling for audio applications is an advanced topic which
is constantly under development, as there is currently much research going on
in this field. The work presented in [9] approaches task scheduling as a graph
theory problem, where components or nodes are connected between each other
through edges. It then proposes solutions for the problem of task scheduling
in worker threads. In [32], a dynamic-scheduling solution is proposed, based
on events. Here, the scheduler is part of the platform and dynamically assigns
tasks to the available resources. These ones generate events when they are
ready to receive new tasks. An advantage of dynamic scheduling is that the
available resources can be optimized: the scheduler can minimize the amount
of cores needed to process tasks, freeing computation on other cores. When
WCET situations happen on some tasks, the scheduler will increase the amount
of cores used for computation.

As a future improvement, many of these algorithms could be integrated in the
implemented platform to maximize the usage of resources and schedule the
computation of audio effects efficiently.



Chapter 9

Conclusion

This chapter concludes the thesis. First of all, Section 9.1 briefly lists the
contributions made in this work and the results. After that, Section 9.2 proposes
the future work.

9.1 Contributions and Results

In this thesis we have contributed to real-time multicore audio processing,
proposing a solution which allows effects to communicate and synchronize effec-
tively, and using a TDM scheduled NoC to provide communication guarantees
within a time interval for all processors in the system. In addition, this work
also contributes to the T-CREST project, as audio processing has been used as
a test application for the multicore platform and the Argo NoC.

The following is a list of the steps that have been followed during the develop-
ment of this project, and the results obtained:

• We have improved the design of the audio interface for Patmos, integrating
circular input and output buffers which provide the processor with more
flexibility for real-time processing.
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• We have acquired knowledge on the main DSP algorithms that can be
applied for audio signal processing, and on how the different parameters
affect the sound.

• We have developed the integration of such DSP algorithms into the world
of real-time audio processing, implementing them in an efficient way, bal-
ancing the computation requirements with the complexity of the algo-
rithm, and finally optimizing WCET by making use of local memories.

• We have implemented a set of audio effects in C that run on a Patmos
processor, using the designed audio interface for audio input/output.

• We have designed a set of rules that allow using a multicore platform
to process different audio effects that are connected between each other
forming chains, taking care of balancing overhead associated to data trans-
fers with the latency of the signal, to ensure that real-time perception is
accomplished in all cases.

• We have implemented the multicore processing system on T-CREST plat-
form, which allows processing sequential and parallel chains of effects in
real-time.

• We have implemented audio mode changes, which allows having more than
one effect setup in a single application to switch among them at run-time.

• We have implemented a software tool which performs the allocation of
audio effect tasks, following the mentioned rules to distribute the effects in
the multicore platform, minimizing the usage of communication channels.

• Finally, we have verified the correct functionality of different aspects of
the implementation, such as the communication and processing on the
platform and the performance of the allocation algorithm. We have also
discussed the high scalability of the design, which allows integration of
other IP cores in the system.

9.2 Future work

The following improvements and extensions of the project are proposed as future
work, which would increase the performance of the system in many senses:

• Up to 12 different audio effects have been implemented in the T-CREST
platform. All of them are either filters (possibly with temporal variations)
or non-linear effects. As a future extension, the implementation of more
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and more complex effects is proposed, such as spatial or frequency-domain
effects.

• In relation to the previous point, the integration of hardware blocks that
implement audio processing algorithms is proposed, which would allow
more complex implementations of some effects, and would also reduce
WCET and improve its predictability, as explained.

• The usage of the instruction SPM is also recommended, as this would
reduce WCET considerably. In the current implementation, data cache
misses are minimized using a local data SPM, but instruction misses seem
to be an important limitation for real-time processing.

• Finally, a more complex static task allocation algorithm would maximize
the computational and communication resources of the platform, finding
a correct balance between these two.
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Appendix A
Audio Interface: Hardware

Design & API

This appendix includes Chisel and C code listings, which implement some of
the hardware and software parts of the audio interface designed for Patmos and
the WM8731 audio CODEC of the Altera DE2-115 board.

The first 2 Sections, A.1 and A.2, show the input and output buffers respectively.
As explained in chapter 4, these are not the only hardware components of the
interface, but they are the main ones that have been developed in this project.
The rest can be found in the Patmos GitHub repository1. Finally, Section A.3
shows the main C functions which form the software API to access the audio
interface from Patmos.

A.1 ADC Buffer

1 // FIFO buffer for audio input from WM8731 Audio coded .
2

3

4 package io
5

1https://github.com/t-crest/patmos/tree/master/hardware/src/io

https://github.com/t-crest/patmos/tree/master/hardware/src/io
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6 import Chisel ._
7

8 class AudioADCBuffer ( AUDIOBITLENGTH : Int , MAXADCBUFFERPOWER : Int)
extends Module {

9

10 // IOs
11 val io = new Bundle {
12 // to/from AudioADC
13 val audioLAdcI = UInt(INPUT , AUDIOBITLENGTH )
14 val audioRAdcI = UInt(INPUT , AUDIOBITLENGTH )
15 val enAdcO = UInt(OUTPUT , 1)
16 val readEnAdcI = UInt(INPUT , 1) // used to sync reads
17 // to/from PATMOS
18 val enAdcI = UInt(INPUT , 1)
19 val audioLPatmosO = UInt(OUTPUT , AUDIOBITLENGTH )
20 val audioRPatmosO = UInt(OUTPUT , AUDIOBITLENGTH )
21 val readPulseI = UInt(INPUT , 1)
22 val emptyO = UInt(OUTPUT , 1) // empty buffer indicator
23 val bufferSizeI = UInt(INPUT , MAXADCBUFFERPOWER +1) // maximum

bufferSizeI : (2ˆ MAXADCBUFFERPOWER ) + 1
24 }
25

26 val BUFFERLENGTH : Int = (Math.pow (2,
MAXADCBUFFERPOWER )). asInstanceOf [Int]

27

28 // Registers for output audio data (to PATMOS )
29 val audioLReg = Reg(init = UInt (0, AUDIOBITLENGTH ))
30 val audioRReg = Reg(init = UInt (0, AUDIOBITLENGTH ))
31 io. audioLPatmosO := audioLReg
32 io. audioRPatmosO := audioRReg
33

34 // FIFO buffer registers
35 val audioBufferL = Vec.fill( BUFFERLENGTH ) { Reg(init = UInt (0,

AUDIOBITLENGTH )) }
36 val audioBufferR = Vec.fill( BUFFERLENGTH ) { Reg(init = UInt (0,

AUDIOBITLENGTH )) }
37 val w_pnt = Reg(init = UInt (0, MAXADCBUFFERPOWER ))
38 val r_pnt = Reg(init = UInt (0, MAXADCBUFFERPOWER ))
39 val fullReg = Reg(init = UInt (0, 1))
40 val emptyReg = Reg(init = UInt (1, 1)) // starts empty
41 io. emptyO := emptyReg
42 val w_inc = Reg(init = UInt (0, 1)) // write pointer increment
43 val r_inc = Reg(init = UInt (0, 1)) // read pointer increment
44

45 // input handshake state machine (from AudioADC )
46 val sInIdle :: sInRead :: Nil = Enum(UInt () , 2)
47 val stateIn = Reg(init = sInIdle )
48 // counter for input handshake
49 val readCntReg = Reg(init = UInt (0, 3))
50 val READCNTLIMIT = UInt (3)
51

52 // output handshake state machine (to Patmos )
53 val sOutIdle :: sOutReading :: Nil = Enum(UInt () , 2)
54 val stateOut = Reg(init = sOutIdle )
55
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56 // full and empty state machine
57 val sFEIdle :: sFEAlmostFull :: sFEFull :: sFEAlmostEmpty ::

sFEEmpty :: Nil = Enum(UInt () , 5)
58 val stateFE = Reg(init = sFEEmpty )
59

60 // register to keep track of buffer size
61 val bufferSizeReg = Reg(init = UInt (0, MAXADCBUFFERPOWER +1))
62 // update buffer size register
63 when( bufferSizeReg =/= io. bufferSizeI ) {
64 bufferSizeReg := io. bufferSizeI
65 r_pnt := r_pnt & (io. bufferSizeI - UInt (1))
66 w_pnt := w_pnt & (io. bufferSizeI - UInt (1))
67 }
68

69 // output enable : just wire from input enable
70 io. enAdcO := io. enAdcI
71

72 // audio input handshake : if enable
73 when (io. enAdcI === UInt (1)) {
74 // state machine
75 switch ( stateIn ) {
76 is ( sInIdle ) {
77 // wait until posEdge readEnAdcI
78 when(io. readEnAdcI === UInt (1)) {
79 // wait READCNTLIMIT cycles until input data is written
80 when( readCntReg === READCNTLIMIT ) {
81 // read input , increment write pointer
82 audioBufferL ( w_pnt ) := io. audioLAdcI
83 audioBufferR ( w_pnt ) := io. audioRAdcI
84 w_pnt := ( w_pnt + UInt (1)) & (io. bufferSizeI - UInt (1))
85 w_inc := UInt (1)
86 // if it is full , write , but increment read pointer too
87 // to store new samples and dump older ones
88 when( fullReg === UInt (1)) {
89 r_pnt := ( r_pnt + UInt (1)) & (io. bufferSizeI -

UInt (1))
90 r_inc := UInt (1)
91 }
92 // update state
93 stateIn := sInRead
94 }
95 . otherwise {
96 readCntReg := readCntReg + UInt (1)
97 }
98 }
99 }

100 is ( sInRead ) {
101 readCntReg := UInt (0)
102 // wait until negEdge readEnAdcI
103 when(io. readEnAdcI === UInt (0)) {
104 // update state
105 stateIn := sInIdle
106 }
107 }
108 }
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109 }
110 . otherwise {
111 readCntReg := UInt (0)
112 stateIn := sInIdle
113 w_inc := UInt (0)
114 }
115

116

117

118 // audio output state machine : if enable and not empty
119 when ( (io. enAdcI === UInt (1)) && ( emptyReg === UInt (0)) ) {
120 // state machine
121 switch ( stateOut ) {
122 is ( sOutIdle ) {
123 when(io. readPulseI === UInt (1)) {
124 audioLReg := audioBufferL ( r_pnt )
125 audioRReg := audioBufferR ( r_pnt )
126 stateOut := sOutReading
127 }
128 }
129 is ( sOutReading ) {
130 when(io. readPulseI === UInt (0)) {
131 r_pnt := ( r_pnt + UInt (1)) & (io. bufferSizeI - UInt (1))
132 r_inc := UInt (1)
133 stateOut := sOutIdle
134 }
135 }
136 }
137 }
138 . otherwise {
139 stateOut := sOutIdle
140 }
141

142

143

144 // update full and empty states
145 when ( ( w_inc === UInt (1)) || ( r_inc === UInt (1)) ) {
146 // default : set back variables
147 w_inc := UInt (0)
148 r_inc := UInt (0)
149 // state machine
150 switch ( stateFE ) {
151 is ( sFEIdle ) {
152 fullReg := UInt (0)
153 emptyReg := UInt (0)
154 when( ( w_inc === UInt (1)) && ( w_pnt === ( ( r_pnt -

UInt (1)) & (io. bufferSizeI - UInt (1)) ) ) && ( r_inc ===
UInt (0)) ) {

155 stateFE := sFEAlmostFull
156 }
157 . elsewhen ( ( r_inc === UInt (1)) && ( r_pnt === ( ( w_pnt -

UInt (1)) & (io. bufferSizeI - UInt (1)) ) ) && ( w_inc ===
UInt (0)) ) {

158 stateFE := sFEAlmostEmpty
159 }
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160 }
161 is( sFEAlmostFull ) {
162 fullReg := UInt (0)
163 emptyReg := UInt (0)
164 when( ( r_inc === UInt (1)) && ( w_inc === UInt (0)) ) {
165 stateFE := sFEIdle
166 }
167 . elsewhen ( ( w_inc === UInt (1)) && ( r_inc === UInt (0)) ) {
168 stateFE := sFEFull
169 fullReg := UInt (1)
170 }
171 }
172 is( sFEFull ) {
173 fullReg := UInt (1)
174 emptyReg := UInt (0)
175 when( ( r_inc === UInt (1)) && ( w_inc === UInt (0)) ) {
176 stateFE := sFEAlmostFull
177 fullReg := UInt (0)
178 }
179 }
180 is( sFEAlmostEmpty ) {
181 fullReg := UInt (0)
182 emptyReg := UInt (0)
183 when( ( w_inc === UInt (1)) && ( r_inc === UInt (0)) ) {
184 stateFE := sFEIdle
185 }
186 . elsewhen ( ( r_inc === UInt (1)) && ( w_inc === UInt (0)) ) {
187 stateFE := sFEEmpty
188 emptyReg := UInt (1)
189 }
190 }
191 is( sFEEmpty ) {
192 fullReg := UInt (0)
193 emptyReg := UInt (1)
194 when( ( w_inc === UInt (1)) && ( r_inc === UInt (0)) ) {
195 stateFE := sFEAlmostEmpty
196 emptyReg := UInt (0)
197 }
198 }
199 }
200 }
201 }

A.2 DAC Buffer

1 // FIFO buffer for audio output to WM8731 Audio coded .
2

3

4 package io
5

6 import Chisel ._
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7

8 class AudioDACBuffer ( AUDIOBITLENGTH : Int , MAXDACBUFFERPOWER : Int)
extends Module {

9

10 // IOs
11 val io = new Bundle {
12 // to/from PATMOS
13 val audioLIPatmos = UInt(INPUT , AUDIOBITLENGTH )
14 val audioRIPatmos = UInt(INPUT , AUDIOBITLENGTH )
15 val enDacI = UInt(INPUT , 1) // enable signal
16 val writePulseI = UInt(INPUT , 1)
17 val fullO = UInt(OUTPUT , 1) // full buffer indicator
18 val bufferSizeI = UInt(INPUT , MAXDACBUFFERPOWER +1) // maximum

bufferSizeI : (2ˆ MAXDACBUFFERPOWER ) + 1
19 // to/from AudioDAC
20 val audioLIDAC = UInt(OUTPUT , AUDIOBITLENGTH )
21 val audioRIDAC = UInt(OUTPUT , AUDIOBITLENGTH )
22 val enDacO = UInt(OUTPUT , 1) // enable signal
23 val writeEnDacI = UInt(INPUT , 1) // used to sync writes
24 val convEndI = UInt(INPUT , 1) // indicates end of conversion
25 }
26

27 val BUFFERLENGTH : Int = (Math.pow (2,
MAXDACBUFFERPOWER )). asInstanceOf [Int]

28

29 // Registers for output audio data
30 val audioLIReg = Reg(init = UInt (0, AUDIOBITLENGTH ))
31 val audioRIReg = Reg(init = UInt (0, AUDIOBITLENGTH ))
32 io. audioLIDAC := audioLIReg
33 io. audioRIDAC := audioRIReg
34

35 // FIFO buffer registers
36 val audioBufferL = Vec.fill( BUFFERLENGTH ) { Reg(init = UInt (0,

AUDIOBITLENGTH )) }
37 val audioBufferR = Vec.fill( BUFFERLENGTH ) { Reg(init = UInt (0,

AUDIOBITLENGTH )) }
38 val w_pnt = Reg(init = UInt (0, MAXDACBUFFERPOWER ))
39 val r_pnt = Reg(init = UInt (0, MAXDACBUFFERPOWER ))
40 val fullReg = Reg(init = UInt (0, 1))
41 val emptyReg = Reg(init = UInt (1, 1)) // starts empty
42 io. fullO := fullReg
43 val w_inc = Reg(init = UInt (0, 1)) // write pointer increment
44 val r_inc = Reg(init = UInt (0, 1)) // read pointer increment
45

46

47 // output handshake state machine
48 val sOutIdle :: sOutWrote :: Nil = Enum(UInt () , 2)
49 val stateOut = Reg(init = sOutIdle )
50

51 // input handshake state machine
52 val sInIdle :: sInWriting :: Nil = Enum(UInt () , 2)
53 val stateIn = Reg(init = sInIdle )
54

55 // full and empty state machine
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56 val sFEIdle :: sFEAlmostFull :: sFEFull :: sFEAlmostEmpty ::
sFEEmpty :: Nil = Enum(UInt () , 5)

57 val stateFE = Reg(init = sFEEmpty )
58

59 // output enable register : For AudioDAC and for output conversion
60 val enOutReg = Reg(init = UInt (0, 1)) // starts low because its

empty
61 io. enDacO := enOutReg
62 val lastOutputReg = Reg(init = UInt (0, 1)) // indicator of last

output conversion
63

64 // state machine for last output conversion
65 val sCEWaitFirst :: sCEFirstPulse :: sCEWaitSecond :: Nil =

Enum(UInt () , 3)
66 val stateCE = Reg(init = sCEWaitFirst )
67

68 // register to keep track of buffer size
69 val bufferSizeReg = Reg(init = UInt (0, MAXDACBUFFERPOWER +1))
70 // update buffer size register
71 when( bufferSizeReg =/= io. bufferSizeI ) {
72 bufferSizeReg := io. bufferSizeI
73 r_pnt := r_pnt & (io. bufferSizeI - UInt (1))
74 w_pnt := w_pnt & (io. bufferSizeI - UInt (1))
75 }
76

77 // audio output handshake : if output handshake enabled
78 when ( enOutReg === UInt (1)) {
79 // state machine
80 switch ( stateOut ) {
81 is ( sOutIdle ) {
82 // wait until posEdge writeEnDacI
83 when(io. writeEnDacI === UInt (1)) {
84 // write only when its not empty (for last conversion

case)
85 when( emptyReg === UInt (0)) {
86 // write output , increment read pointer
87 audioLIReg := audioBufferL ( r_pnt )
88 audioRIReg := audioBufferR ( r_pnt )
89 r_pnt := ( r_pnt + UInt (1)) & (io. bufferSizeI - UInt (1))
90 r_inc := UInt (1)
91 }
92 // update state
93 stateOut := sOutWrote
94 }
95 }
96 is ( sOutWrote ) {
97 // wait until negEdge writeEnDacI
98 when(io. writeEnDacI === UInt (0)) {
99 // update state

100 stateOut := sOutIdle
101 }
102 }
103 }
104 }
105 . otherwise {
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106 stateOut := sOutIdle
107 r_inc := UInt (0)
108 }
109

110

111

112 // audio input handshake : if enable and not full
113 when ( (io. enDacI === UInt (1)) && ( fullReg === UInt (0)) ) {
114 // state machine
115 switch ( stateIn ) {
116 is ( sInIdle ) {
117 when(io. writePulseI === UInt (1)) {
118 audioBufferL ( w_pnt ) := io. audioLIPatmos
119 audioBufferR ( w_pnt ) := io. audioRIPatmos
120 stateIn := sInWriting
121 }
122 }
123 is ( sInWriting ) {
124 when(io. writePulseI === UInt (0)) {
125 w_pnt := ( w_pnt + UInt (1)) & (io. bufferSizeI - UInt (1))
126 w_inc := UInt (1)
127 stateIn := sInIdle
128 }
129 }
130 }
131 }
132 . otherwise {
133 stateIn := sInIdle
134 }
135

136

137

138 // update output handshake enable register
139 when ( emptyReg === UInt (0)) { // if not empty , always enable
140 enOutReg := UInt (1)
141 }
142 . otherwise { // empty
143 when ( lastOutputReg === UInt (1)) { // if last output

conversion , enable
144 enOutReg := UInt (1)
145 }
146 . otherwise {
147 enOutReg := UInt (0)
148 }
149 }
150

151 // when last conversion finishes :
152 when( lastOutputReg === UInt (1)) {
153 // if stateFE is not empty anymore , or if it is but conversion

ends
154 when( stateFE =/= sFEEmpty ) { // if state is not empty anymore
155 lastOutputReg := UInt (0)
156 }
157 . otherwise { // state machine to detect 2nd convEndI pulse
158 switch ( stateCE ) {
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159 is ( sCEWaitFirst ) {
160 when(io. convEndI === UInt (1)) {
161 stateCE := sCEFirstPulse
162 }
163 }
164 is ( sCEFirstPulse ) {
165 when(io. convEndI === UInt (0)) {
166 stateCE := sCEWaitSecond
167 }
168 }
169 is ( sCEWaitSecond ) {
170 when(io. convEndI === UInt (1)) {
171 lastOutputReg := UInt (0)
172 stateCE := sCEWaitFirst
173 }
174 }
175 }
176 }
177 }
178 . otherwise {
179 stateCE := sCEWaitFirst
180 }
181

182

183

184

185 // update full and empty states
186 when ( ( w_inc === UInt (1)) || ( r_inc === UInt (1)) ) {
187 // default : set back variables
188 w_inc := UInt (0)
189 r_inc := UInt (0)
190 // state machine
191 switch ( stateFE ) {
192 is ( sFEIdle ) {
193 fullReg := UInt (0)
194 emptyReg := UInt (0)
195 when( ( w_inc === UInt (1)) && ( w_pnt === ( ( r_pnt -

UInt (1)) & (io. bufferSizeI - UInt (1)) ) ) && ( r_inc ===
UInt (0)) ) {

196 stateFE := sFEAlmostFull
197 }
198 . elsewhen ( ( r_inc === UInt (1)) && ( r_pnt === ( ( w_pnt -

UInt (1)) & (io. bufferSizeI - UInt (1)) ) ) && ( w_inc ===
UInt (0)) ) {

199 stateFE := sFEAlmostEmpty
200 }
201 }
202 is( sFEAlmostFull ) {
203 fullReg := UInt (0)
204 emptyReg := UInt (0)
205 when( ( r_inc === UInt (1)) && ( w_inc === UInt (0)) ) {
206 stateFE := sFEIdle
207 }
208 . elsewhen ( ( w_inc === UInt (1)) && ( r_inc === UInt (0)) ) {
209 stateFE := sFEFull
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210 fullReg := UInt (1)
211 }
212 }
213 is( sFEFull ) {
214 fullReg := UInt (1)
215 emptyReg := UInt (0)
216 when( ( r_inc === UInt (1)) && ( w_inc === UInt (0)) ) {
217 stateFE := sFEAlmostFull
218 fullReg := UInt (0)
219 }
220 }
221 is( sFEAlmostEmpty ) {
222 fullReg := UInt (0)
223 emptyReg := UInt (0)
224 when( ( w_inc === UInt (1)) && ( r_inc === UInt (0)) ) {
225 stateFE := sFEIdle
226 }
227 . elsewhen ( ( r_inc === UInt (1)) && ( w_inc === UInt (0)) ) {
228 stateFE := sFEEmpty
229 emptyReg := UInt (1)
230 lastOutputReg := UInt (1) // indicator of last output

conversion
231 }
232 }
233 is( sFEEmpty ) {
234 fullReg := UInt (0)
235 emptyReg := UInt (1)
236 when( ( w_inc === UInt (1)) && ( r_inc === UInt (0)) ) {
237 stateFE := sFEAlmostEmpty
238 emptyReg := UInt (0)
239 }
240 }
241 }
242 }
243 }

A.3 API Functions

1 /*
2 * @ brief Writes the supplied data to the address register ,
3 sets the request signal and waits for the acknowledge signal .
4 * @ param [in] addr the address of which register to write to.
5 Has to be 7 bit long.
6 * @ param [in] data the data thats supposed to be written .
7 Has to be 9 Bits long
8 * @ reutrn returns 0 if successful and a negative number if

there was an error .
9 */

10 int writeToI2C (char* addrC ,char* dataC ) {
11 int addr = 0;
12 int data = 0;
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13

14 // Convert binary String of address to int
15 for(int i = 0; i < 7; i++) {
16 addr *= 2;
17 if (* addrC ++ == ’1’) addr += 1;
18 }
19

20 // Convert binary String of data to int
21 for(int i = 0; i < 9; i++) {
22 data *= 2;
23 if (* dataC ++ == ’1’) data += 1;
24 }
25

26 // Debug info:
27 printf (" Sending Data: %i to address %i\n",data ,addr);
28

29 * i2cDataReg = data;
30 * i2cAdrReg = addr;
31 * i2cReqReg = 1;
32

33

34 while (* i2cAckReg == 0) {
35 printf (" Waiting ...\n");
36 // Maybe input something like a timeout ...
37 }
38 for (int i = 0; i <200; i++) { * i2cReqReg =0; }
39

40 printf (" success \n");
41

42 return 0;
43 }
44

45 /*
46 * @ brief Sets the default values
47 * @ param [in] guitar used to select the input : line in or mic in
48 */
49

50 void setup (int guitar ) {
51

52 /*
53 //----------Line in ---------------------
54 char * addrLeftIn = "0000000";
55 char * dataLineIn = "100010111"; // disable Mute , Enable

Simultaneous Load , LinVol : 10111 - Set volume to 23 (of 31)
56 writeToI2C ( addrLeftIn , dataLineIn );
57

58 char * addrRigthIn = "0000001";
59 writeToI2C ( addrRigthIn , dataLineIn );
60 */
61

62 // ----------Headphones ---------------------
63 char * addrLeftHead = " 0000010 ";
64 char * dataHeadphone = " 001111001 "; // disable simultaneous

loads , zero cross disable , LinVol : 1111001 (0 db)
65 writeToI2C ( addrLeftHead , dataHeadphone );
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66

67 char * addrRightHead = " 0000011 ";
68 writeToI2C ( addrRightHead , dataHeadphone );
69

70 // -------- Analogue Audio Path Control -----
71 char * addrAnalogue = " 0000100 ";
72 if( guitar == 0) {
73 char * dataAnalogue = " 000010010 "; // DAC selected , rest

disabled , MIC muted , Line input select to ADC
74 writeToI2C ( addrAnalogue , dataAnalogue );
75 }
76 else {
77 char * dataAnalogueGuit = " 000010101 "; // MIC selected to ADC ,

MIC enabled , MIC boost enabled
78 writeToI2C ( addrAnalogue , dataAnalogueGuit );
79 }
80

81

82 // -------- Digital Audio Path Control -----
83 char * addrDigital = " 0000101 ";
84 char * dataDigital = " 000000001 "; // disable soft mute and

disable de -emphasis , disable highpass filter
85 writeToI2C ( addrDigital , dataDigital );
86

87

88 // --------- Digital Audio Interface Format ---------
89 char * addrInterface = " 0000111 ";
90 char * dataInterface = " 000010011 "; // BCLK not inverted , slave ,

right -channel -right -data , LRP = A mode for DSP , 16- bit audio ,
DSP mode

91 writeToI2C ( addrInterface , dataInterface );
92

93

94 // -------- Sampling Control ----------------
95 char * addrSample = " 0001000 ";
96 char * dataSample = " 000000000 "; // USB mode , BOSR =1, Sample Rate

= 44.1 kHz both for ADC and DAC
97 writeToI2C ( addrSample , dataSample );
98

99 printf (" FINISHED SETUP !\n");
100 }
101

102

103 int isPowerOfTwo ( unsigned int x) {
104 while (((x % 2) == 0) && x > 1) /* While x is even and > 1 */
105 x /= 2;
106 return (x == 1);
107 }
108

109 /*
110 * @ brief sets the size of the input (ADC) buffer . Must be a power

of 2
111 * @ param [in] bufferSize length of the buffer
112 * @ return returns 0 if successful and a 1 if there was an error .
113 */
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114 int setInputBufferSize (int bufferSize ) {
115 if( isPowerOfTwo ( bufferSize )) {
116 printf (" Input buffer size set to %d\n", bufferSize );
117 * audioAdcBufferSizeReg = bufferSize ;
118 return 0;
119 }
120 else {
121 printf (" ERROR : Buffer Size must be power of 2\n");
122 return 1;
123 }
124 }
125

126 /*
127 * @ brief sets the size of the output (DAC) buffer . Must be a

power of 2
128 * @ param [in] bufferSize length of the buffer
129 * @ return returns 0 if successful and a 1 if there was an error .
130 */
131 int setOutputBufferSize (int bufferSize ) {
132 if( isPowerOfTwo ( bufferSize )) {
133 printf (" Output buffer size set to %d\n", bufferSize );
134 * audioDacBufferSizeReg = bufferSize ;
135 return 0;
136 }
137 else {
138 printf (" ERROR : Buffer Size must be power of 2\n");
139 return 1;
140 }
141 }
142

143 /*
144 * @ brief reads data from the input (ADC) buffer into Patmos
145 * @ param [in] *l pointer to left audio data
146 * @ param [in] *r pointer to right audio data
147 * @ return returns 0 if successful
148 */
149 int getInputBufferSPM ( volatile _SPM short *l, volatile _SPM short

*r) {
150 while (* audioAdcBufferEmptyReg == 1);// wait until not empty
151 * audioAdcBufferReadPulseReg = 1; // begin pulse
152 * audioAdcBufferReadPulseReg = 0; // end pulse
153 *l = * audioAdcLReg ;
154 *r = * audioAdcRReg ;
155 return 0;
156 }
157

158 /*
159 * @ brief writes data from patmos into the output (DAC) buffer
160 * @ param [in] l left audio data
161 * @ param [in] r right audio data
162 * @ return returns 0 if successful
163 */
164 int setOutputBufferSPM ( volatile _SPM short *l, volatile _SPM short

*r) {
165 // write data first : it will stay in AudioInterface , won ’t go to
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166 // AudioDacBuffer until the write pulse
167 * audioDacLReg = *l;
168 * audioDacRReg = *r;
169 while (* audioDacBufferFullReg == 1); // wait until not full
170 * audioDacBufferWritePulseReg = 1; // begin pulse
171 * audioDacBufferWritePulseReg = 0; // end pulse
172

173 return 0;
174 }



Appendix B
Examples of some Audio

Effects

This appendix shows the C implementation for Patmos of some of the audio
effects that have been used in this project. The effects shown here are the
Filter (B.1), the Delay (B.2), the Wah-wah (B.3) and the Overdrive (B.4).
These are not the only effects that have been implemented, but it is enough to
show this ones here to understand the implementation. All the effects imple-
mented can be found in 2 C files of the Patmos GitHub repository: audio.c1

and dsp algorithms.c2.

Some words to explain each of these effects have been given in chapter 5. For
each effect, the parts of code shown here are the effect struct (i.e. the class),
the allocation function and the processing function. Additionally, the DSP
algorithm implementation function might be shown when needed.

B.1 Filter

1 struct Filter {
2 int accum [2]; // accummulator accum [2]

1https://github.com/t-crest/patmos/tree/master/c/libaudio/audio.c
2https://github.com/t-crest/patmos/tree/master/c/libaudio/dsp_algorithms.c

https://github.com/t-crest/patmos/tree/master/c/libaudio/audio.c
https://github.com/t-crest/patmos/tree/master/c/libaudio/dsp_algorithms.c
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3 short x_buf [3][2]; // input buffer
4 short y_buf [3][2]; // output buffer
5 short A[3]; // [a2 , a1 , 1]
6 short B[3]; // [b2 , b1 , b0]
7 int pnt; // audio input pointer
8 int sftLft ; //x or y buffer pointer
9 int type; // to choose between HP , LP , BP or BR

10 };

1 unsigned int alloc_filter_vars (_SPM struct Filter *filtP , unsigned
int LAST_ADDR , int Fc , float QorFb , int thisType ) {

2

3 // calculate filter coefficients (2 nd order )
4 filtP ->type = thisType ;
5 if (filtP ->type < 2) { // HP or LP
6 filter_coeff_hp_lp (3, filtP ->B, filtP ->A, Fc , QorFb ,

&filtP ->sftLft , 0, thisType ); // type: HPF or LPF
7 }
8 else { // 2 or 3: BP or BR
9 filter_coeff_bp_br (3, filtP ->B, filtP ->A, Fc , (int)QorFb ,

&filtP ->sftLft , 0);
10 }
11

12 filtP ->pnt = 2;
13

14 LAST_ADDR += ( sizeof ( struct Filter ));
15

16 return LAST_ADDR ;
17 }

1 int audio_filter (_SPM struct Filter *filtP , volatile _SPM short
*xP , volatile _SPM short *yP) {

2 // increment pointer
3 filtP ->pnt = ( filtP ->pnt + 1 ) % 3;
4 // first , read sample
5 filtP -> x_buf [filtP ->pnt ][0] = xP [0];
6 filtP -> x_buf [filtP ->pnt ][1] = xP [1];
7 // then , calculate filter
8 filterIIR_2nd (& filtP ->pnt , filtP ->x_buf , filtP ->y_buf ,

filtP ->accum , filtP ->B, filtP ->A, &filtP -> sftLft );
9 // check if it is BP/BR

10 if(filtP ->type == 2) { // BP
11 filtP -> accum [0] = ( (int)xP [0] -

(int)filtP -> y_buf [filtP ->pnt ][0] ) >> 1;
12 filtP -> accum [1] = ( (int)xP [1] -

(int)filtP -> y_buf [filtP ->pnt ][1] ) >> 1;
13 }
14 else {
15 if(filtP ->type == 3) { // BR
16 filtP -> accum [0] = ( (int)xP [0] +

(int)filtP -> y_buf [filtP ->pnt ][0] ) >> 1;
17 filtP -> accum [1] = ( (int)xP [1] +

(int)filtP -> y_buf [filtP ->pnt ][1] ) >> 1;
18 }
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19 else { // HP or LP
20 filtP -> accum [0] = filtP -> y_buf [filtP ->pnt ][0];
21 filtP -> accum [1] = filtP -> y_buf [filtP ->pnt ][1];
22 }
23 }
24 // set output
25 yP [0] = ( short )filtP -> accum [0];
26 yP [1] = ( short )filtP -> accum [1];
27

28 return 0;
29 }

1 int filterIIR_2nd (_SPM int *pnt_i , _SPM short (*x)[2] , _SPM short
(*y)[2] , _SPM int *accum , _SPM short *B, _SPM short *A, _SPM
int * shiftLeft ) {

2 int pnt; // pointer for x_filter
3 accum [0] = 0;
4 accum [1] = 0;
5 for(int i=0; i <3; i++) { // FILTER_ORDER_1PLUS = 3
6 pnt = (* pnt_i + i + 1) % 3; // FILTER_ORDER_1PLUS = 3
7 // SIGNED SHIFT ( arithmetical ): losing a 2-bit resolution
8 accum [0] += (B[i]*x[pnt ][0]) >> 2;
9 accum [0] -= (A[i]*y[pnt ][0]) >> 2;

10 accum [1] += (B[i]*x[pnt ][1]) >> 2;
11 accum [1] -= (A[i]*y[pnt ][1]) >> 2;
12 }
13 // accumulator limits : [ (2ˆ(30 -2 -1)) -1 , -(2ˆ(30 -2 -1)) ]
14 // accumulator limits : [ 0x7FFFFFF , 0 x8000000 ]
15 // digital saturation
16 for(int i=0; i <2; i++) {
17 if ( accum [i] > 0 x7FFFFFF ) {
18 accum [i] = 0 x7FFFFFF ;
19 }
20 else {
21 if ( accum [i] < -0 x8000000 ) {
22 accum [i] = -0 x8000000 ;
23 }
24 }
25 }
26 y[* pnt_i ][0] = accum [0] >> (13 -* shiftLeft );
27 y[* pnt_i ][1] = accum [1] >> (13 -* shiftLeft );
28

29 return 0;
30 }

B.2 Delay

1 struct IIRdelay {
2 int accum [2]; // accummulator accum [2]
3 short g[2]; // gains [g1 , g0]
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4 int del [2]; // delays [d1 , d0]
5 int pnt; // audio input pointer
6 // SRAM Memory variables
7 short (* audio_buf )[ DELAY_L ]; // audio_buff [2][ DELAY_L ]
8 };

1 unsigned int alloc_delay_vars (_SPM struct IIRdelay *delP , unsigned
int LAST_ADDR ) {

2

3 // initialise delay variables
4 // set gains : for comb delay :
5 delP ->g[1] = ONE_16b ; // g0 = 1
6 delP ->g[0] = ONE_16b * 0.5; // g1 = 0.5
7 // set delays :
8 delP ->del [1] = 0; // always d0 = 0
9 delP ->del [0] = DELAY_L - 1; // d1 = as long as delay buffer

10 // pointer starts on top
11 delP ->pnt = DELAY_L - 1;
12

13 // alloc audio array
14 delP -> audio_buf = malloc ( DELAY_L * 2 * sizeof ( short )); //

short audio_buf [2][ DELAY_L ]
15

16 // empty buffer
17 for(int i=0; i< DELAY_L ; i++) {
18 delP -> audio_buf [0][i] = 0;
19 delP -> audio_buf [1][i] = 0;
20 }
21

22 LAST_ADDR += ( sizeof ( struct IIRdelay ));
23

24 return LAST_ADDR ;
25 }

1 int audio_delay (_SPM struct IIRdelay *delP , volatile _SPM short
*xP , volatile _SPM short *yP) {

2 // first , read sample
3 delP -> audio_buf [0][ delP ->pnt] = xP [0];
4 delP -> audio_buf [1][ delP ->pnt] = xP [1];
5 // calculate IIR comb filter
6 combFilter_1st (DELAY_L , &delP ->pnt , delP ->audio_buf , yP ,

delP ->accum , delP ->g, delP ->del);
7 // replace content on buffer
8 delP -> audio_buf [0][ delP ->pnt] = yP [0];
9 delP -> audio_buf [1][ delP ->pnt] = yP [1];

10 // update pointer
11 if(delP ->pnt == 0) {
12 delP ->pnt = DELAY_L - 1;
13 }
14 else {
15 delP ->pnt = delP ->pnt -1;
16 }
17

18 return 0;
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19 }

1 __attribute__ (( always_inline ))
2 int combFilter_1st (int AUDIO_BUF_LEN , _SPM int *pnt , short

(* audio_buffer )[ AUDIO_BUF_LEN ], volatile _SPM short *y, _SPM
int *accum , _SPM short *g, _SPM int *del) {

3 accum [0] = 0;
4 accum [1] = 0;
5 int audio_pnt = (* pnt+del [0])% AUDIO_BUF_LEN ;
6 accum [0] += (g[0]* audio_buffer [0][ audio_pnt ]) >> 2;
7 accum [1] += (g[0]* audio_buffer [1][ audio_pnt ]) >> 2;
8 audio_pnt = (* pnt+del [1])% AUDIO_BUF_LEN ;
9 accum [0] += (g[1]* audio_buffer [0][ audio_pnt ]) >> 2;

10 accum [1] += (g[1]* audio_buffer [1][ audio_pnt ]) >> 2;
11 // accumulator limits : [ (2ˆ(30 -2 -1)) -1 , -(2ˆ(30 -2 -1)) ]
12 // accumulator limits : [ 0x7FFFFFF , 0 x8000000 ]
13 // digital saturation
14 for(int i=0; i <2; i++) {
15 if ( accum [i] > 0 x7FFFFFF ) {
16 accum [i] = 0 x7FFFFFF ;
17 }
18 else {
19 if ( accum [i] < -0 x8000000 ) {
20 accum [i] = -0 x8000000 ;
21 }
22 }
23 }
24 y[0] = accum [0] >> 13;
25 y[1] = accum [1] >> 13;
26

27 return 0;
28 }

B.3 WahWah

1 struct WahWah {
2 int accum [2]; // accummulator accum [2]
3 short x_buf [3][2]; // input buffer
4 short y_buf [3][2]; // output buffer
5 short A[3]; // [a2 , a1 , 1]
6 short B[3]; // [b2 , b1 , b0]
7 int pnt; // audio input pointer
8 int wah_pnt ; // modulation pointer
9 int sftLft ; //x or y buffer pointer

10 // SRAM Memory Variables
11 int * fc_array ; // fc_array [ WAHWAH_P ]
12 int * fb_array ; // fb_array [ WAHWAH_P ]
13 short (* a_array )[ WAHWAH_P ]; // for A coefficients :

a_array [3][ WAHWAH_P ]
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14 short (* b_array )[ WAHWAH_P ]; // for B coefficients :
b_array [3][ WAHWAH_p ]

15 };

1 unsigned int alloc_wahwah_vars (_SPM struct WahWah *wahP , unsigned
int LAST_ADDR ) {

2

3 // shift left is fixed !
4 wahP -> sftLft = 1;
5

6 // modulation arrays
7 wahP -> fc_array = malloc ( WAHWAH_P * sizeof (int)); // int

fc_array [ WAHWAH_P ]
8 wahP -> fb_array = malloc ( WAHWAH_P * sizeof (int)); // int

fb_array [ WAHWAH_P ]
9 wahP -> a_array = malloc ( WAHWAH_P * 3 * sizeof ( short )); //

short a_array [3][ WAHWAH_P ]
10 wahP -> b_array = malloc ( WAHWAH_P * 3 * sizeof ( short )); //

short b_array [3][ WAHWAH_P ]
11

12 // store sin Arrays of Fc and Fb
13 storeSin (wahP ->fc_array , WAHWAH_P , WAHWAH_FC_CEN ,

WAHWAH_FC_AMP );
14 storeSin (wahP ->fb_array , WAHWAH_P , WAHWAH_FB_CEN ,

WAHWAH_FB_AMP );
15

16 // calculate band -pass filter coefficients
17 for(int i=0; i< WAHWAH_P ; i++) {
18 filter_coeff_bp_br (3, wahP ->B, wahP ->A, wahP -> fc_array [i],

wahP -> fb_array [i], &wahP ->sftLft , 1);
19 wahP -> b_array [2][i] = wahP ->B[2];
20 wahP -> b_array [1][i] = wahP ->B[1];
21 wahP -> b_array [0][i] = wahP ->B[0];
22 wahP -> a_array [2][i] = 0;
23 wahP -> a_array [1][i] = wahP ->A[1];
24 wahP -> a_array [0][i] = wahP ->A[0];
25 }
26

27 wahP -> wah_pnt = 2;
28

29 LAST_ADDR += ( sizeof ( struct WahWah ));
30

31 return LAST_ADDR ;
32 }

1 int audio_wahwah (_SPM struct WahWah *wahP , volatile _SPM short
*xP , volatile _SPM short *yP) {

2 // update filter coefficients
3 wahP ->B[2] = wahP -> b_array [2][ wahP -> wah_pnt ]; // b0
4 wahP ->B[1] = wahP -> b_array [1][ wahP -> wah_pnt ]; // b1
5 // b2 doesnt need to be updated : always 1
6 wahP ->A[1] = wahP -> a_array [1][ wahP -> wah_pnt ]; // a1
7 wahP ->A[0] = wahP -> a_array [0][ wahP -> wah_pnt ]; // a2
8 // update pointers
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9 wahP -> wah_pnt = (wahP -> wah_pnt +1) % WAHWAH_P ;
10 wahP ->pnt = (wahP ->pnt +1) % 3;
11 // first , read sample
12 wahP -> x_buf [wahP ->pnt ][0] = xP [0];
13 wahP -> x_buf [wahP ->pnt ][1] = xP [1];
14 // then , calculate filter
15 filterIIR_2nd (& wahP ->pnt , wahP ->x_buf , wahP ->y_buf ,

wahP ->accum , wahP ->B, wahP ->A, &wahP -> sftLft );
16 // Band -Pass stuff
17 wahP -> accum [0] = ( (int)xP [0] - (int)wahP -> y_buf [wahP ->pnt ][0]

);
18 wahP -> accum [1] = ( (int)xP [1] - (int)wahP -> y_buf [wahP ->pnt ][1]

);
19 // mix with original : gains are fixed
20 wahP -> accum [0] = ( (int)( WAHWAH_WET_GAIN *wahP -> accum [0]) >> 15

) + ( (int)( WAHWAH_DRY_GAIN *xP [0]) >> 15 );
21 wahP -> accum [1] = ( (int)( WAHWAH_WET_GAIN *wahP -> accum [1]) >> 15

) + ( (int)( WAHWAH_DRY_GAIN *xP [1]) >> 15 );
22 // set output
23 yP [0] = ( short )wahP -> accum [0];
24 yP [1] = ( short )wahP -> accum [1];
25

26 return 0;
27 }

B.4 Overdrive

1 struct Overdrive {
2 int accum [2]; // accummulator accum [2]
3 };

1 unsigned int alloc_overdrive_vars (_SPM struct Overdrive *odP ,
unsigned int LAST_ADDR ) {

2

3 LAST_ADDR += ( sizeof ( struct Overdrive ));
4

5 return LAST_ADDR ;
6 }

1 int audio_overdrive (_SPM struct Overdrive *odP , volatile _SPM
short *xP , volatile _SPM short *yP) {

2 // THRESHOLD IS 1/3 = 0 x2AAB
3 // input abs:
4 unsigned int x_abs [2];
5 for(int j=0; j <2; j++) {
6 x_abs [j] = abs(xP[j]);
7 if( x_abs [j] > (2 * 0 x2AAB )) { // saturation : y = 1
8 if (xP[j] > 0) {
9 yP[j] = 0 x7FFF ;
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10 }
11 else {
12 yP[j] = 0 x8000 ;
13 }
14 }
15 else {
16 if( x_abs [j] > 0 x2AAB ) { // smooth overdrive : y = ( 3 -

(2 -3*x)ˆ2 ) / 3;
17 odP -> accum [j] = (0 x17FFF * x_abs [j]) >> 15 ; //

result is 1 sign + 17 bits
18 odP -> accum [j] = 0 xFFFF - odP -> accum [j];
19 odP -> accum [j] = (odP -> accum [j] * odP -> accum [j]) >>

15;
20 odP -> accum [j] = 0 x17FFF - odP -> accum [j];
21 odP -> accum [j] = (odP -> accum [j] * 0 x2AAB ) >> 15;
22 if(xP[j] > 0) { // positive
23 if(odP -> accum [j] > 32767) {
24 yP[j] = 32767;
25 }
26 else {
27 yP[j] = odP -> accum [j];
28 }
29 }
30 else { // negative
31 yP[j] = -odP -> accum [j];
32 }
33 }
34 else { // linear zone: y = 2*x
35 yP[j] = xP[j] << 1;
36 }
37 }
38 }
39

40 return 0;
41 }



Appendix C
Audio Processing Function in

the Multicore Platform

This appendix shows 2 C files and one XML file. The C files are some of the
most important ones related to the multicore audio processing platform. The
first one, shown in Section C.1, is the C implementation of the main audio pro-
cessing function for the T-CREST multicore platform. This function is named
audio process, and can be found in the audio.c1 file of the libaudio library
for Patmos. Some parts of it are hidden (to reduce the extension of the code),
which are related to the processing of each one of the implemented audio effects,
some of which are shown in appendix B. The second one, shown in Section C.2,
is an example of the audioinit.h header file containing the description of the
effect setup, and generated by the task allocator. It corresponds to the audio
application shown in Listing 7.2. Finally, the XML file is the custom NoC con-
figuration XML file generated by the scheduler, also corresponding to Listing
7.2.

C.1 audio process function

1 int audio_process ( struct AudioFX * audioP ) {
2 int retval = 0;

1https://github.com/t-crest/patmos/tree/master/c/libaudio/audio.c

https://github.com/t-crest/patmos/tree/master/c/libaudio/audio.c
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3 /* ---------X and Y locations ----------- */
4 volatile _SPM short * xP;
5 volatile _SPM short * yP;
6 if (* audioP -> in_con != NOC) { // same core : data =** x_pnt
7 xP = ( volatile _SPM short *) *( audioP -> x_pnt +0);
8 }
9 if (* audioP -> out_con != NOC) { // same core: data =** y_pnt

10 yP = ( volatile _SPM short *) *( audioP -> y_pnt +0);
11 }
12

13 else { // NoC: data =*** y_pnt
14 yP = ( volatile _SPM short *) *( _SPM unsigned int *)
15 *( audioP -> y_pnt +0);
16 }
17

18 /* ------------------SEND/ PROCESS /RECEIVE ---------------------*/
19

20 unsigned int ind; // index used for each operation
21 unsigned int offs; // can be x_offs or y_offs , depending on XgY

or XlY
22

23 switch (* audioP ->pt) {
24 case XeY:
25 // check if it is 0, is last and needs to wait due to latency
26 if( (* audioP -> cpuid != 0) || (* audioP -> out_con == SAME) ||
27 (* audioP -> out_con == NOC) || (* audioP -> last_init == 0) ) {
28 // RECEIVE ONCE
29 if (* audioP -> in_con == NOC) {
30 // receive from all recv channels
31 for(int i=0; i <* audioP -> recv_am ; i++) {
32 if( mp_recv (( qpd_t *) *( audioP -> recvChanP +i),
33 TIMEOUT ) == 0) {
34 if (* audioP -> cpuid == 0) {
35 printf ("RECV TIMED OUT !\n");
36 }
37 retval = 1;
38 }
39 }
40 // update X pointer after each recv
41 xP = ( volatile _SPM short *) *( _SPM unsigned int *)
42 *( audioP -> x_pnt +0);
43 // after receiving , add all signals into recvChanel [0]
44 int shift_am = *audioP -> recv_am - 1;
45 for(int i=1; i <(* audioP -> recv_am ); i++) {
46 volatile _SPM short * xnxtP =
47 ( volatile _SPM short *) *( _SPM unsigned int *)
48 *( audioP -> x_pnt +i);
49 for(int j=0; j <(* audioP -> xb_size ); j++) {
50 xP [2*j] = (xP [2*j]>> shift_am ) +
51 ( xnxtP [2*j]>> shift_am );
52 xP [2*j+1] = (xP [2*j+1]>> shift_am ) +
53 ( xnxtP [2*j+1]>> shift_am );
54 }
55 }
56 }
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57 else { // same core
58 if( (* audioP -> cpuid == 0) &&
59 (* audioP -> in_con == FIRST ) ) {
60 audioIn (audioP , xP);
61 }
62 }
63 // PROCESS Nf TIMES
64 switch (* audioP ->fx) {
65 case DRY:
66 for( unsigned int i=0; i < *audioP ->Nf; i++) {
67 ind = 2 * i * (* audioP ->s);
68 audio_dry (& xP[ind], &yP[ind ]);
69 }
70 break ;
71 case DELAY : ;
72 _SPM struct IIRdelay *delP = (_SPM struct IIRdelay *)
73 *audioP -> fx_pnt ;
74 for( unsigned int i=0; i < *audioP ->Nf; i++) {
75 ind = 2 * i * (* audioP ->s);
76 audio_delay (delP , &xP[ind], &yP[ind ]);
77 }
78 break ;
79 /*
80 MORE EFFECTS HERE: NOT SHOWN
81 */
82

83 default :
84 if( get_cpuid () == 0) {
85 printf (" effect not implemented yet\n");
86 }
87 break ;
88 }
89 // ACKNOWLEDGE ONCE AFTER PROCESSING
90 if (* audioP -> in_con == NOC) {
91 // acknowledge to all recv channels
92 for(int i=0; i <* audioP -> recv_am ; i++) {
93 if( mp_ack (( qpd_t *) *( audioP -> recvChanP +i),
94 TIMEOUT ) == 0) {
95 if (* audioP -> cpuid == 0) {
96 printf ("ACK TIMED OUT !\n");
97 }
98 retval = 1;
99 }

100 }
101 }
102 // SEND ONCE
103 if (* audioP -> out_con == NOC) { // send to NoC
104 // before sending , copy send data to all send channel

buffers
105 for(int i=1; i <(* audioP -> send_am ); i++) {
106 volatile _SPM short * ynxtP =
107 ( volatile _SPM short *) *( _SPM unsigned int *)
108 *( audioP -> y_pnt +i);
109 for(int j=0; j <(* audioP -> yb_size ); j++) {
110 ynxtP [2*j] = yP [2*j];



146 Audio Processing Function in the Multicore Platform

111 ynxtP [2*j+1] = yP [2*j+1];
112 }
113 }
114 // send to all send channels
115 for(int i=0; i <(* audioP -> send_am ); i++) {
116 if( mp_send (( qpd_t *) *( audioP -> sendChanP +i),
117 TIMEOUT ) == 0) {
118 if (* audioP -> cpuid == 0) {
119 printf ("SEND TIMED OUT !\n");
120 }
121 retval = 1;
122 }
123 }
124 }
125 else { // same core
126 if( (* audioP -> cpuid == 0) &&
127 (* audioP -> out_con == LAST) ) {
128 audioOut (audioP , yP);
129 }
130 }
131 }
132 // if it is last and needs to wait
133 else {
134 *audioP -> last_count = *audioP -> last_count + 1;
135 if (* audioP -> last_count == *audioP -> latency ) {
136 *audioP -> last_init = 0;
137 // printf (" latency limit reached !\n");
138 }
139 }
140 break ;
141 case XgY:
142 // RECEIVE ONCE
143 if (* audioP -> in_con == NOC) { // receive from NoC
144 // receive from all recv channels
145 for(int i=0; i <* audioP -> recv_am ; i++) {
146 if( mp_recv (( qpd_t *) *( audioP -> recvChanP +i),
147 TIMEOUT ) == 0) {
148 retval = 1;
149 }
150 }
151 // update X pointer after each recv
152 xP = ( volatile _SPM short *) *( _SPM unsigned int *)
153 *( audioP -> x_pnt +0);
154 // after receiving , add all signals into recvChanel [0]
155 int shift_am = *audioP -> recv_am - 1;
156 for(int i=1; i <(* audioP -> recv_am ); i++) {
157 volatile _SPM short * xnxtP =
158 ( volatile _SPM short *) *( _SPM unsigned int *)
159 *( audioP -> x_pnt +i);
160 for(int j=0; j <(* audioP -> xb_size ); j++) {
161 xP [2*j] = (xP [2*j]>> shift_am ) +
162 ( xnxtP [2*j]>> shift_am );
163 xP [2*j+1] = (xP [2*j+1]>> shift_am ) +
164 ( xnxtP [2*j+1]>> shift_am );
165 }



audio process function 147

166 }
167 }
168 // REPEAT Ns TIMES :
169 for( unsigned int j=0;j <* audioP ->Ns; j++) {
170 // PROCESS Nf TIMES
171 offs = 2 * j * (* audioP -> yb_size );
172 switch (* audioP ->fx) {
173 case DRY:
174 for( unsigned int i=0; i < *audioP ->Nf; i++) {
175 ind = 2 * i * (* audioP ->s);
176 audio_dry (& xP[offs+ind], &yP[ind ]);
177 }
178 break ;
179 case DELAY : ;
180 _SPM struct IIRdelay *delP = (_SPM struct IIRdelay *)
181 *audioP -> fx_pnt ;
182 for( unsigned int i=0; i < *audioP ->Nf; i++) {
183 ind = 2 * i * (* audioP ->s);
184 audio_delay (delP , &xP[offs+ind], &yP[ind ]);
185 }
186 break ;
187 /*
188 MORE EFFECTS HERE: NOT SHOWN
189 */
190 default :
191 if( get_cpuid () == 0) {
192 printf (" effect not implemented yet\n");
193 }
194 break ;
195 }
196 // ACK: ONLY ONCE AT THE END
197 if(j == (* audioP ->Ns - 1)) {
198 if (* audioP -> in_con == NOC) {
199 // acknowledge to all recv channels
200 for(int i=0; i <* audioP -> recv_am ; i++) {
201 if( mp_ack (( qpd_t *) *( audioP -> recvChanP +i),
202 TIMEOUT ) == 0) {
203 retval = 1;
204 }
205 }
206 }
207 }
208 // SEND ONCE
209 if (* audioP -> out_con == NOC) {
210 // before sending , copy send data to all send channel

buffers
211 for(int i=1; i <(* audioP -> send_am ); i++) {
212 volatile _SPM short * ynxtP =
213 ( volatile _SPM short *) *( _SPM unsigned int *)
214 *( audioP -> y_pnt +i);
215 for(int j=0; j <(* audioP -> yb_size ); j++) {
216 ynxtP [2*j] = yP [2*j];
217 ynxtP [2*j+1] = yP [2*j+1];
218 }
219 }
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220 // send to all send channels
221 for(int i=0; i <* audioP -> send_am ; i++) {
222 if( mp_send (( qpd_t *) *( audioP -> sendChanP +i),
223 TIMEOUT ) == 0) {
224 retval = 1;
225 }
226 }
227 // update Y pointer after each send
228 yP = ( volatile _SPM short *) *( _SPM unsigned int *)
229 *( audioP -> y_pnt +0);
230 }
231 }
232 break ;
233 case XlY:
234 // REPEAT Nr TIMES :
235 for( unsigned int j=0; j <* audioP ->Nr; j++) {
236 // RECEIVE ONCE
237 if (* audioP -> in_con == NOC) {
238 // receive from all recv channels
239 for(int i=0; i <* audioP -> recv_am ; i++) {
240 if( mp_recv (( qpd_t *) *( audioP -> recvChanP +i),
241 TIMEOUT ) == 0) {
242 retval = 1;
243 }
244 }
245 // update X pointer after each recv
246 xP = ( volatile _SPM short *) *( _SPM unsigned int *)
247 *( audioP -> x_pnt +0);
248 // after receiving , add all signals into recvChanel [0]
249 int shift_am = *audioP -> recv_am - 1;
250 for(int i=1; i <(* audioP -> recv_am ); i++) {
251 volatile _SPM short * xnxtP =
252 ( volatile _SPM short *) *( _SPM unsigned int *)
253 *( audioP -> x_pnt +i);
254 for(int j=0; j <(* audioP -> xb_size ); j++) {
255 xP [2*j] = (xP [2*j]>> shift_am ) +
256 ( xnxtP [2*j]>> shift_am );
257 xP [2*j+1] = (xP [2*j+1]>> shift_am ) +
258 ( xnxtP [2*j+1]>> shift_am );
259 }
260 }
261 }
262 // PROCESS Nf TIMES
263 offs = 2 * j * (* audioP -> xb_size );
264 switch (* audioP ->fx) {
265 case DRY:
266 for( unsigned int i=0; i < *audioP ->Nf; i++) {
267 ind = 2 * i * (* audioP ->s);
268 audio_dry (& xP[ind], &yP[offs+ind ]);
269 }
270 break ;
271 case DELAY : ;
272 _SPM struct IIRdelay *delP = (_SPM struct IIRdelay *)
273 *audioP -> fx_pnt ;
274 for( unsigned int i=0; i < *audioP ->Nf; i++) {
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275 ind = 2 * i * (* audioP ->s);
276 audio_delay (delP , &xP[ind], &yP[offs+ind ]);
277 }
278 break ;
279 /*
280 MORE EFFECTS HERE: NOT SHOWN
281 */
282 default :
283 if( get_cpuid () == 0) {
284 printf (" effect not implemented yet\n");
285 }
286 break ;
287 }
288 // ACK ONCE
289 if (* audioP -> in_con == NOC) {
290 // acknowledge to all recv channels
291 for(int i=0; i <* audioP -> recv_am ; i++) {
292 if( mp_ack (( qpd_t *) *( audioP -> recvChanP +i),
293 TIMEOUT ) == 0) {
294 retval = 1;
295 }
296 }
297 }
298 }
299 // SEND ONCE
300 if (* audioP -> out_con == NOC) {
301 // before sending , copy send data to all send channel

buffers
302 for(int i=1; i <(* audioP -> send_am ); i++) {
303 volatile _SPM short * ynxtP =
304 ( volatile _SPM short *) *( _SPM unsigned int *)
305 *( audioP -> y_pnt +i);
306 for(int j=0; j <(* audioP -> yb_size ); j++) {
307 ynxtP [2*j] = yP [2*j];
308 ynxtP [2*j+1] = yP [2*j+1];
309 }
310 }
311 // send to all send channels
312 for(int i=0; i <(* audioP -> send_am ); i++) {
313 if( mp_send (( qpd_t *) *( audioP -> sendChanP +i),
314 TIMEOUT ) == 0) {
315 retval = 1;
316 }
317 }
318 }
319 break ;
320 }
321

322 return retval ;
323 }
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C.2 audioinit.h

1 # ifndef _AUDIOINIT_H_
2 # define _AUDIOINIT_H_
3

4

5 // input / output buffer sizes
6 const unsigned int BUFFER_SIZE = 128;
7 // amount of configuration modes
8 const int MODES = 2;
9 // how many cores take part in the audio system (from all modes )

10 const int AUDIO_CORES = 4;
11 // how many effects are on each mode in total
12 const int FX_AMOUNT [ MODES ] = {5, 5, };
13 // maximum amount of effects per core
14 const int MAX_FX_PER_CORE [ AUDIO_CORES ] = {2, 1, 2, 1, };
15 // maximum FX_AMOUNT
16 const int MAX_FX = 5;
17 // FX_ID | CORE | FX_TYPE | XB_SIZE | YB_SIZE | S | IN_TYPE |

OUT_TYPE //
18 const int FX_SCHED_0 [5][8] = {
19 { 0, 0, 0, 16, 16, 1, 0, 2 },
20 { 1, 1, 4, 16, 16, 1, 2, 2 },
21 { 2, 2, 2, 16, 16, 1, 2, 2 },
22 { 3, 3, 6, 16, 16, 1, 2, 2 },
23 { 4, 0, 0, 16, 16, 1, 2, 1 },
24 };
25 const int FX_SCHED_1 [5][8] = {
26 { 0, 0, 0, 64, 64, 1, 0, 2 },
27 { 1, 1, 3, 64, 64, 1, 2, 2 },
28 { 2, 2, 11, 64, 64, 1, 2, 3 },
29 { 3, 2, 7, 64, 64, 1, 3, 2 },
30 { 4, 0, 0, 64, 64, 1, 2, 1 },
31 };
32 // pointer to schedules
33 const int * FX_SCHED_P [ MODES ] = {
34 ( const int *) FX_SCHED_0 ,
35 ( const int *) FX_SCHED_1 ,
36 };
37 // amount of NoC channels (NoC or same core) on all modes
38 const int CHAN_AMOUNT = 9;
39 // amount of buffers on each NoC channel ID
40 const int CHAN_BUF_AMOUNT [ CHAN_AMOUNT ] = { 3, 3, 3, 3, 3, 3, 3, 1,

3, };
41 // column : FX_ID source , row: CHAN_ID dest
42 const int SEND_ARRAY_0 [5][ CHAN_AMOUNT ] = {
43 {1, 0, 0, 0, 0, 0, 0, 0, 0, },
44 {0, 1, 1, 0, 0, 0, 0, 0, 0, },
45 {0, 0, 0, 1, 0, 0, 0, 0, 0, },
46 {0, 0, 0, 0, 1, 0, 0, 0, 0, },
47 {0, 0, 0, 0, 0, 0, 0, 0, 0, },
48 };
49 const int SEND_ARRAY_1 [5][ CHAN_AMOUNT ] = {
50 {0, 0, 0, 0, 0, 1, 0, 0, 0, },
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51 {0, 0, 0, 0, 0, 0, 1, 0, 0, },
52 {0, 0, 0, 0, 0, 0, 0, 1, 0, },
53 {0, 0, 0, 0, 0, 0, 0, 0, 1, },
54 {0, 0, 0, 0, 0, 0, 0, 0, 0, },
55 };
56 // pointer to send arrays
57 const int * SEND_ARRAY_P [ MODES ] = {
58 ( const int *) SEND_ARRAY_0 ,
59 ( const int *) SEND_ARRAY_1 ,
60 };
61 // column : FX_ID dest , row: CHAN_ID source
62 const int RECV_ARRAY_0 [5][ CHAN_AMOUNT ] = {
63 {0, 0, 0, 0, 0, 0, 0, 0, 0, },
64 {1, 0, 0, 0, 0, 0, 0, 0, 0, },
65 {0, 1, 0, 0, 0, 0, 0, 0, 0, },
66 {0, 0, 1, 0, 0, 0, 0, 0, 0, },
67 {0, 0, 0, 1, 1, 0, 0, 0, 0, },
68 };
69 const int RECV_ARRAY_1 [5][ CHAN_AMOUNT ] = {
70 {0, 0, 0, 0, 0, 0, 0, 0, 0, },
71 {0, 0, 0, 0, 0, 1, 0, 0, 0, },
72 {0, 0, 0, 0, 0, 0, 1, 0, 0, },
73 {0, 0, 0, 0, 0, 0, 0, 1, 0, },
74 {0, 0, 0, 0, 0, 0, 0, 0, 1, },
75 };
76 // pointer to receive arrays
77 const int * RECV_ARRAY_P [ MODES ] = {
78 ( const int *) RECV_ARRAY_0 ,
79 ( const int *) RECV_ARRAY_1 ,
80 };
81

82 # endif /* _AUDIOINIT_H_ */

C.3 NoC Schedule XML file

1 <?xml version =’1.0 ’ encoding =’UTF -8 ’?>
2 <nocsched xmlns:xi =" http: // www.w3.org /2001/ XInclude " version ="0.1">
3 <description >NoC TDM scheduling </ description >
4 <platform height ="2" width ="2">
5 <topology linkDepth ="0" routerDepth ="3" routerType ="sync"

topoType =" bitorus "/>
6 </ platform >
7 <application >
8 <configurations >
9 <communication comType =" custom " phits ="3">

10 <channel bandwidth ="4" from="(0 ,0)" to="(1 ,0)"/>
11 <channel bandwidth ="1" from="(1 ,0)" to="(0 ,0)"/>
12 <channel bandwidth ="4" from="(1 ,0)" to="(0 ,1)"/>
13 <channel bandwidth ="1" from="(0 ,1)" to="(1 ,0)"/>
14 <channel bandwidth ="4" from="(1 ,0)" to="(1 ,1)"/>
15 <channel bandwidth ="1" from="(1 ,1)" to="(1 ,0)"/>
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16 <channel bandwidth ="4" from="(0 ,1)" to="(0 ,0)"/>
17 <channel bandwidth ="1" from="(0 ,0)" to="(0 ,1)"/>
18 <channel bandwidth ="4" from="(1 ,1)" to="(0 ,0)"/>
19 <channel bandwidth ="1" from="(0 ,0)" to="(1 ,1)"/>
20 </ communication >
21 <communication comType =" custom " phits ="3">
22 <channel bandwidth ="4" from="(0 ,0)" to="(1 ,0)"/>
23 <channel bandwidth ="1" from="(1 ,0)" to="(0 ,0)"/>
24 <channel bandwidth ="4" from="(1 ,0)" to="(0 ,1)"/>
25 <channel bandwidth ="1" from="(0 ,1)" to="(1 ,0)"/>
26 <channel bandwidth ="4" from="(0 ,1)" to="(0 ,0)"/>
27 <channel bandwidth ="1" from="(0 ,0)" to="(0 ,1)"/>
28 </ communication >
29 </ configurations >
30 </ application >
31 </ nocsched >


	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Multicore Platforms for Audio Processing
	1.2 Network-on-Chip Based Multicore Platforms
	1.3 Real-Time Audio Processing
	1.4 Source Access
	1.5 Thesis Outline

	2 Digital Audio Signal Processing Algorithms
	2.1 Fundamentals of Digital Audio
	2.2 Digital Audio Effects
	2.2.1 Classification
	2.2.2 Filters and Delays
	2.2.2.1 Basic EQ Filters
	2.2.2.2 Comb Filters

	2.2.3 Modulation Effects
	2.2.3.1 Amplitude Modulation - Tremolo
	2.2.3.2 Frequency Modulation - Vibrato
	2.2.3.3 Time-Varying Filters

	2.2.4 Non-Linear Processing Effects
	2.2.4.1 Overdrive
	2.2.4.2 Distortion

	2.2.5 Spatial Effects
	2.2.5.1 Reverberation

	2.2.6 Connections between Effects

	2.3 Architecture of DSP Processors

	3 T-CREST Background
	3.1 Overview of the T-CREST Platform
	3.2 The Patmos Processor
	3.2.1 Architecture
	3.2.2 Memory System and I/O Devices

	3.3 Compiler and Time-Analysis Tools
	3.4 Argo NoC
	3.4.1 TDM Scheduling
	3.4.2 Network Interface
	3.4.3 Reconfiguration


	4 Architecture of the Audio Interface for Patmos
	4.1 WM8731 Audio CODEC
	4.2 Design of the Audio Interface
	4.3 API of the Audio Interface

	5 Design and Implementation of Audio Effects on Patmos
	5.1 General Requirements for Real-Time Audio Processing
	5.1.1 Communication Paradigms
	5.1.2 Signal Latency

	5.2 Fixed-Point v.s. Floating-Point Audio Processing
	5.3 Object-Oriented Style Approach for Audio Effects Processing
	5.4 Implemented Audio Effects
	5.4.1 Tremolo
	5.4.2 Vibrato
	5.4.3 IIR Filters
	5.4.4 Delay
	5.4.5 Wah-Wah
	5.4.6 Chorus
	5.4.7 Overdrive
	5.4.8 Distortion


	6 Design of Multicore Audio Processing Platform
	6.1 Static Task Allocation
	6.2 Message Passing NoC v.s. Shared Memory Communication
	6.3 Architecture and Synchronization of the Multicore Audio Processing Platform
	6.3.1 Synchronous Data Flow
	6.3.2 Rules for Multicore Audio Synchronization
	6.3.2.1 Single Effect Cores
	6.3.2.2 Multiple Independent Effect Cores
	6.3.2.3 Multiple Effect-Chain cores

	6.3.3 Reducing Send/Receive Overhead

	6.4 Message Passing NoC Parameters
	6.5 Audio Processing Latency on a Multicore Platform
	6.5.1 Latency Added by the Effect Buffers
	6.5.2 Latency Added by the NoC


	7 Implementation and WCET Analysis of the Platform
	7.1 Architecture and Technical Details
	7.1.1 Master Core Latency
	7.1.2 Architecture of the Implementation
	7.1.2.1 The AudioFX Structure
	7.1.2.2 The alloc_audio_vars Function
	7.1.2.3 The audio_process Function


	7.2 WCET Analysis and Static Effect Allocation
	7.2.1 WCET Analysis and Execution Time Measurements
	7.2.2 Static Effect Allocator
	7.2.3 Main Audio Program


	8 Evaluation and Discussion
	8.1 Evaluation
	8.1.1 Evaluation of the Task Allocation Algorithm
	8.1.2 Evaluation of the Audio Processing Algorithms
	8.1.3 Evaluation of the Synchronization of the System
	8.1.4 Evaluation of Parallel Audio Effect Chains

	8.2 Discussion
	8.2.1 General Discusion
	8.2.2 Task Allocation and Scheduling


	9 Conclusion
	9.1 Contributions and Results
	9.2 Future work

	Bibliography
	A Audio Interface: Hardware Design & API
	A.1 ADC Buffer
	A.2 DAC Buffer
	A.3 API Functions

	B Examples of some Audio Effects
	B.1 Filter
	B.2 Delay
	B.3 WahWah
	B.4 Overdrive

	C Audio Processing Function in the Multicore Platform
	C.1 audio_process function
	C.2 audioinit.h
	C.3 NoC Schedule XML file


