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Abstract

This thesis deals with the application of offset free control, using a model predictive controller, on

the process of producing silicon wafers operating in a stable state subject to unknown disturbances.

Because of the disturbances the process would experience offset errors in the outputs.

A linear model was derived from a non-linear model developed through the work of Nico Werner in

his PhD thesis. The model was then analysed to verify that it could be used as a basis for the model

predictive control. A simple disturbance model used in the estimation of the unknown disturbances

and used in the control to achieve offset free control.

The control solution was implemented and simulated in MATLAB, excited by different disturbances

and evaluated, with respect to the controllers ability to keep the controlled outputs at their steady

states.

The results showed that the controller was able to control and track reference changes to the system.

They also showed that it could remove offset errors in the crystal diameter, with a small offset in

the the lower zone height. This is due to the uncontrollable marginally stable poles in the system.
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CHAPTER 1

Introduction

1.1 Motivation

The motivation for this thesis work is both practical and academic. Topsil GlobalWafers A/S is

looking into using linear models for their control scheme and gain an insight into using offset free

control. The presented work successfully investigates linear control methods, and linear offset

estimation, for possible future implementation at Topsil GlobalWafers A/S.

Topsil GlobalWafers A/S is a supplier of ultra pure silicon to the semiconductor industry. They

produce custom made silicon wafers, which are placed under strict requirements with respect

to the crystal properties. The silicon is produced by melting raw polycrystalline silicon crystals

and regrowing it into a refined monocrystalline silicon crystal using a seeding crystal1. This

process happens in a pressurised chamber that needs to be both automatically controlled by a

computer and supervised by an operator. Currently, the implemented controller used in their

process is based on the non-linear model designed by Nico Werner, through his PhD work at

IKZ[1] and later work at Topsil GlobalWafers A/S, which is using a constrained model predictive

control to grow the silicon crystal, that replaced conventional PID controllers. It showed signifi-

cant improvement of the yield in the produced crystals and it reduced the workload for the operators.

The research is new focusing on two areas of the current setup, one is the use of a linear model,

the other is offset free control. The model is based on complex non-linear mathematics, that not

every technician or engineer that has to maintain the system can understand. The mathematical

techniques for non-linear models are more rigorous and much less general. They want to find out if

a linear model is able to provide the same prediction accuracy as the non-linear model for their

control system. It is common knowledge that control designers use a linear model when possible,

and only deviate from this when the non-linearities cannot be controlled through linear control

methods. The linear model analysis techniques are also more general, easy to understand and use.

Hence a linear state space model is developed and analysed in this thesis.

1This process is further explained in the chapter: Introduction

1



2 CHAPTER 1. INTRODUCTION

A disadvantage is that the controller used does not take into account unknown disturbances, that

causes an offset error on the size of the produced silicon crystal, reducing the potential yield.

These disturbances can be caused by actuator errors, sensor errors, mismatch in the model and

external disturbances and they are not directly measurable. There is a lot of research on the topic

of offset control for linear models, with such work covered in [2], [3], [4], [5], [6]. Unknown

disturbance cannot be directly measured by sensors, they can however, be can be detected indirectly

by estimators. With the combination of a linear model based predictive controller and a state

estimator such as a Kalman filter, the disturbances can be estimated and rejected by the controller.

The model predictive controller is chosen because multiple inputs and multiple output problems

are handled naturally, and the limitations and boundaries of a process can be respected. By using

a linear model of the system the Kalman filter can remove the noise from the measurements and

estimate both the real values of the measurements and the real values of the disturbances. When

the disturbances have been estimated it is relatively straightforward to remove their effect on the

process and achieve zero offsets.

1.2 Process Introduction

Topsil GlobalWafers A/S is a global supplier of Ultrapure silicon wafers. Silicon is mostly used

in electronics. Examples include integrated circuits, detector and sensor devices, MEMS fabri-

cation, optoelectronic components, and solar cells. Ultra pure silicon wafers are mainly used

for high-power electronics because they require very specific material characteristics, such as

homogeneous resistivity, which is the property that quantifies how the flow of the electrical current

is opposed. A low resistivity means that the electricity can flow more easily through the material. [7]

At Topsil GlobalWafers A/S they use the Float Zone (FZ) technique, a contact-less inductive heating

growing method using a float zone machine. This method is required for ultra pure crystal growth,

as the silicon does not come in contact with any contaminating surfaces during the process. For this

reason, the produced silicon crystals achieve a much higher purity than the traditional Czochralski

(CZ) method. The CZ method uses a crucible to contain and heat the polycrystalline silicon.

A float zone machine consists of a pressurized chamber, which is equipped with inductive coil and

is filled with gas that is inert to silicon[8], and two spindles, one on the top of the chamber which

holds the polycrystalline silicon to be melted and one at the bottom, holding the seeding crystal

from which the monocrystalline silicon is to be grown. The coil emits a radio frequency magnetic

field which is controlled by a generator, and the pistons are able to rotate and push and pull the

crystals.

The float zone process can be divided into seven chronological phases. The following is a summary

of the basic process steps. See [8] are more detailed explanation.
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Figure 1.1: Image of the production hall at Topsil GlobalWafers A/S. To the left is shown a float
zone machine in an open position. In the green boxes are the crystal holders that contains and pulls
the silicon. In the red box is the pressurised chamber. When used in production, the two holders
locked into the chamber and sealed.

• Growing the feed tip

This is the preparation step to produce suitable conditions for creating the thin neck. With

the magnetic field the tip of the polycrystal is melted off. The seed crystal is moved upwards

into the molten drop of the polycrystal to form the feed tip. When the feed tip has been

established the process moves on to the thin neck phase.

• Growing the thin neck

The seed crystal is moved downward with a relatively high pull rate, creating a thin neck.

The necking process is necessary to create a dislocation-free crystal, before the cone phase.

Here the diameter of the monocrystal is reduced from the seed crystal size of about 5 mm to

2-3 mm. This is done to remove dislocations in the crystal [9]. The crystal is now ready to

be grown to the full diameter.

• Creating the molten zone

The area of the molten zone is expanded such that the crystal can start to increase in diameter.

Notably in this phase, the pull rates of the pistons are kept constant, and the molten zone is

adjusted with the heater power to stabilise it.

• Growing the cone shape

In this phase, the crystal is increased in diameter creating a cone. It is controlled by changing

the heater power and the pull rate of the feed crystal.

• Landing

The landing is the phase where the crystal shape is changed from a cone to a cylinder. The

desired diameter of the crystal has been reached.
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• Growing the cylinder

This is the phase where the crystal diameter is kept constant. The pull rates and the heater

power is also kept constant. This part of the process in a stable state. At this state the process

is in a stable state, and it is from this portion of the crystal that is used for wafers.

• Closing the crystal

When the feed crystal is about to be completely melted, the heater power is adjusted to

compensate for the heat transport effect that occurs due to the reduced length. In this phase,

it is important not to close the crystal too quickly as there is a bowl of molten material in

the crystal. If this bowl is encapsulated in the crystal without allowed cooling, it can cause

a fracture in crystal, and effectively breaking the crystal and equipment as liquid silicon

leaks out. When the crystal has successfully been closed, the process ends, and the new

monocrystallize silicon is brought to post processing.

Figure 1.2 shows the inside of the pressurised chamber. Here the process is in the growth phase

"Growing the cylinder". A clear picture of the molten zone can be seen (the bright yellow zone),

flowing from the top crystal through the eye of the coil and unto the growing crystal. The line

dividing bright yellow zone and the orange zone is called the melting line. The material below is

heated liquid silicon. The crystallisation line cannot be seen in this picture as it is obfuscated by

the machine.

Figure 1.2: Inside the pressurised chamber.

Figure 1.3 shows a finished silicon ingot ready to be cut into wafers. The left part of the crystal

shows the cone phase, where the diameter is increased to the desired size and the right, shows the

cylinder phase where the diameter is kept constants.
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Figure 1.3: Finished Silicon ingot.

Figure 1.4: A picture of finished and cut silicon wafers.

The finished product is thin silicon wafers which are shown in figure 1.4. These wafers are ready to

be made into high-efficiency semiconductor devices.

1.3 Thesis scope

This master thesis is the final part of the master’s degree in Automation and Robot technology at the

Technical University of Denmark, showing the accumulated skills and knowledge of the student.

The objectives of this project are to investigate the possibility of using linear models for control

of the float zone process. As control design of non-linear models are complex and control design

with linear models is a well researched area. However, non-linear model based controllers are
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more likely to be able to control the system with a better performance. Therefore an analysis of

the linear model must be conducted such that it can be shown that it is able to calculate a accurate

approximation of the response of the non-linear model. Finally a offset free controller will be

designed, such that any model mismatch or disturbance that causes offset errors in the crystal

diameter can be removed.

The main objectives of this thesis are to:

• Apply linear modelling techniques to the non-linear differential equations.

• Validate the linear model by calculating the approximation errors.

• Analyse of the linear model.

• Design a Model Predictive Controller.

• Design an Observer with disturbance estimation to achieve offset free control.

• Run simulated tests of the controlled process under disturbances.

The linear model will be based on the non-linear model from the PhD work of Nico Werner [1].



CHAPTER 2

The Float Zone Process Model

This chapter presents a model for the float zone process. The equations and model parameters

have been derived and identified in the PhD thesis of Nico Werner [1]. The model is based on

physical conservation laws, such as energy and mass balances. This section gives a summary of the

non-linear differential equations from [1], which are describing the dynamical behaviour of the

float zone process.

Figure 2.1: Sketch of the float zone process in the cone phase (From [1]). Shown are the state,
input and auxiliary variables

Figure 2.1 shows a cross section sketch of the float zone process in the cone phase. The poly-

crystalline silicon is placed in the feed holder and the mono-crystalline silicon is held in the

crystal holder. From this point, the mono-crystalline silicon will be called the ’crystal’ and the

7



8 CHAPTER 2. THE FLOAT ZONE PROCESS MODEL

polycrystalline silicon will be called the feed or feed crystal. The table 2.1 shows the variables of

the process and their respective units.

The adjustable variables in the process are the generator power Pgen, the pull rates of the feed

holder vF and the crystal holder vC . There is also a rotation around the length of the crystal rods,

however, these rotations are not modelled.

The solid feed crystal is molten off by inductive heating, which causes the molten material to flow

from the feed crystal through the inductor hole on top of the solidifying crystal. The total melt

volume Vtot consists of multiple parts: (a) The visible part Vvi, (b) the volume of the melt bowl

Vbo which is hidden in the crystal, and (c) a volume which is covered by the inductor. Part (c) is

assumed to be constant and it is not considered in the process dynamics [1]

The melting rate is determined by the negative change of the feed crystal length LF with respect to

the melting line and the feed holder. The melting line is the horizontal line dividing the melting

front from the solid material. The crystallisation rate is determined by the change in the crystal

length LC with respect to the crystallisation line and the crystal holder. The crystallisation line is

the horizontal line that divides the crystallised solid from the melt. A positive melting rate gives a

decreasing feed crystal length and a positive crystallisation rate gives an increasing crystal length.

The angle of the feed crystal αF is the measured directly above the melting line with respect to the

vertical axis and the angle of the crystal φC is measured on the line of crystallisation.

Variable unit Note

RC [mm] Radius of the monocrystal
RF [mm] Radius of the poly crystal
hC [mm] Distance from the crystallization line to the inductor bottom
hF [mm] Disturbance from the melting line to the inductor top
DC [mm] Diameter of the monocrystal
DF [mm] Diameter of the feed crystal
Vvi [cm3] Volume of the visible melt.
Vbo [cm3] Volume of the hidden melt bowl
VFr [cm3] Volume of the hidden solid feed residual
Ugen [kV] Adjustable generator voltage
Uind [kV] The voltage in the inductor coil
Pgen [kW] Generator power
Pind [kW] The Power output of the inductor coil
vCr [mm/min] The rate of crystallization in the monocrystal
vMe [mm/min] The rate of melting in the feed crystal
vC [mm/min] The adjustable pull rate of the crystal holder
vF [mm/min] The adjustable pull rate of the feed holder

Table 2.1: Table of variables and their respective units.

The upper zone height hF is the height between the upper edge of the inductor and the melting

line and the lower zone height hC is the height between the lower edge of the inductor and the
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crystallisation line.

The size of the produced monocrystalline rod is measured in diameter DC , however, the model uses

its radius RC . In short, both are used to describe the same thing. The size of the monocrystalline

rod is determined by the angle φC at the crystallisation line as seen in sub figure 2.2b. The size of

the diameter poly-crystalline rod is predetermined, however, its radius RF is used in the model to

determine the dynamics of the melt volume.

2.1 Non-Linear Model equations

In this section, the non-linear differential equations of the FZ process are presented. They are

modelled in Werner [1].

2.1.1 Angle of the Feed rod

The angle of the feed rod αF is used to determine the radius of the feed crystal. In this project, the

change in the angle is assumed to be constant.

d

dt
(αF ) = 0 (2.1)

2.1.2 Radius of feed and crystal rods

The differential equations for feed radius RF and crystal radius RC are described using the

relationships according to the triangle in figure 2.2a.

dRF /dLF = − tan(αF ) (2.2)

where the change in the length of the feed rod can be described as the melting rate The melting rate

can be described as the change in length of feed rod

vMe = − d

dt
(LF ) (2.3)

The crystallization rate can be described as the change in the length of the crystal rod

vCr = d

dt
(LC) (2.4)

and equation 2.3 leads to the following differential equation for the radius of the feed rod

d

dt
(RF ) = vMe tan(αF ) (2.5)

in which αF is the angle of the feed rod. Following the same relationship rule in figure 3.2(b) in

[1], with respect to the crystal rod

d

dt
(RC) = vCr tan(φC) (2.6)

where φC is the angle of the crystal rod at the crystallization line.
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(a) (b)

Figure 2.2: From [1].

2.1.3 Heights of the upper and lower zone

The zone heights is where the input variables creates a relation to the other state variables. The

upper zone height as show in figure 2.1 is given by

hF = HF − LF (2.7)

where HF is the height from the edge top of the inductor to the feed holder and LF is the length of

solid feed. The derivative gives

d

dt
(hF ) = d

dt
(HF )− d

dt
(LF ) (2.8)

since the melting rate vMe is defined as the change in the height of the upper zone and the pull rate

of the feed vF is defined as the change of the length of the solid feed, equation 2.8 can be written

as the difference of the rate of melting and the feed pull rate.

d

dt
(hF ) = vMe − vF (2.9)

The same procedure can be done for the height of the lower zone, which gives

d

dt
(hC) = d

dt
(Hc)−

d

dt
(LC) = vC − vCr (2.10)

where hC is the lower zone height, HC is the length from the crystal holder to the edge of the

inductor bottom, LC is the length of the crystal. In a stationary case, the zone heights are constant,

which implies the melting rate and the feed pull rate must be equal and that the crystallisation rate

and the crystal pull rate must be equal too.

2.1.4 Volume of Visible Molten Material

The dynamics between the melt mass and the melt volume is described by the mass of the visible

melt and the mass of the melt bowl hidden in the crystal. This equation is important for the mass

balance in the process.

mmelt = mvi +mbo (2.11)

The derivative of the melt mass is described as

d

dt
(mmelt) = d

dt
(mvi) + d

dt
(mbo) (2.12)
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which can be rewritten as the incoming and outgoing melt flows

d

dt
(mmelt) = −ṁF − ṁC (2.13)

where the ṁC is the change in the crystal mass due to crystallization and the mF is the change in

the feed crystal mass due to melting. The term −mF describes the flow of the melt mass from the

feed crystal, which has to be negative due to that the mass of the feed crystal is reduced, in order to

produce melt.

The derivative of the visible melt mass is described by equation 2.11 and 2.13

d

dt
(mvi) = −ṁF − ṁC −

d

dt
(mbo) (2.14)

The derivatives of the visible melt and the melt bowl can be written as

ρM V̇vi = d

dt
(mvi)

ρM V̇bo = d

dt
(mbo)

(2.15)

where V̇vi is the derivative of the visible melt volume, V̇bo is the derivative of the melt bowl volume

and ρM is the density of the melt.

The derivative V̇vi considering equation 2.14 and 2.15 becomes

ρM V̇vi = −ṁF − ṁC − ρM V̇bo (2.16)

The change of the solid feed mass above the line of melting can be calculated as the volume of a

cone. See [1] appendix A.33. which leads to

d

dt
(mF ) = ρSπR

2
F L̇F + V̇Fr (2.17)

where ρS is the density of the solid material, V̇Fr is the change of the volume in the solid feed

residual and RF is the radius of the feed crystal at the line of melting. See figure 2.1. The complete

derivative of the melt feed is described by equation 2.17 and 2.3

ṁF = ρS(V̇Fr − πR2
F vMe) (2.18)

The same substitutions can be done for the change in the crystal mass ṁC , which leads to the

following equation

ṁC = ρS(πR2
CvCr − V̇bo) (2.19)

Substituting equations 2.16, 2.18 and 2.19 the equation for V̇vi is obtained. the parameters aFr and

abo are introduced as fitting parameters to overcome errors in the approximation.

ρM
d

dt
(Vvi) = ρS(πR2

fvMe − aFrV̇Fr)− ρSπR2
CvCr − (ρM − ρS)aboV̇bo (2.20)

The stationary growth conditions, in which all derivatives are equal to zero, the following relation

holds

R2
F vF = R2

CvC (2.21)

which means that the stationary radius RC can be calculated using only the feed pull rate vF . the

crystal pull rate vC and the stationary feed radius RC .
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2.1.5 Volume of the Melt Bowl

The volume of the melt bowl Vbo is not directly measurable during an experiment, however in

Werner [1] it was discovered that the behaviour of the bowl could be found to be an interpolating

function depending on the crystal radius RC . The equation is in the form

Vbo =
3∑
i=1

[ai (RC − a0)] (2.22)

where ai are model parameters used to fit the interpolation. The derivative of Vbo is

V̇bo = ṘC

3∑
i=1

[
i ai (RC − a0)i−1

]
(2.23)

is applied in the melt volume equation in 2.1.4.

2.1.6 Solid Feed Residual Volume

The mass equation of the solid feed material consists of two parts, one part above the line of melting

and one part below hidden by the melted material, which is called the solid feed residual. In Werner

[1] the feed residual is described by a interpolating function of the feed rod radius

VFr =
3∑
i=1

di (RF − d0)i (2.24)

The derivative of the residual VFr then depends of the feed radius and its derivative

V̇Fr = ṘF

3∑
i=1

idi(RF − d0)i−1 (2.25)

is applied to the melt volume in section 2.1.4

2.1.7 Radius of the Melt Neck

The melt neck radius RN was found experimentally to be a linear relationship with the full zone

height hG, however it is only linear if the crystal radius is larger than 20 mm [1]. The melt neck is

considered negligible for crystal radius under 20 mm.

d

dt
(RN ) = nh(ḣF + ḣC) (2.26)

where nh is a model parameter, ḣF is the derivative of the upper zone height and ḣC is the derivative

of the lower zone height.

2.1.8 Angle of the Crystal Rod

The angle of the crystal rod is found by solving the angle of the melt on the crystal rod. This is

done by solving the Laplace-Young equation that describes the force equilibrium of a point on a

melted drop. See Werner [1] and Coriell and Cordes [10] for a detailed analysis and explanation.
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It is clear that the melt angle is dependent on the visible melt, the radius of the feed and crystal

rods and the corresponding zone heights. However, for the cone, landing and growing phases,

it is assumed the melt angle is dependent on the visible melt, the radius of the crystal rod and

the corresponding zone height and the radius of the melt neck. The derivative becomes a partial

differential equation which describes the dynamical behaviour of the melt angle. The variables V̇vi,

ṘC , ḣC and ṘN are calculated by their respective differential equations 2.20, 2.6, 2.10 and 2.26.

The total differential equation for the melt angle becomes

φ̇C = av
∆φM
∆Vvi

V̇vi + ar
∆φM
∆RC

ṘC + ah
∆φM
∆hC

ḣC + aN
∆φM
∆RN

ṘN (2.27)

where the model parameter av, ar, ah, aN are used to handle approximation errors. The difference

quotients
∆φM
∆Vvi

,
∆φM
∆RC

,
∆φM
∆hC

,
∆φM
∆RN

are all assumed to depend on the crystal rod radius [1] and

through experiments a look-up table was developed for each quotient, as seen in table 2.2. From the

table 2.2 the signs of the quotients show: That a positive change in the melt volume will introduce

a positive change in the crystal angle, a positive change in the lower zone height, crystal diameter

or the melt neck will give a negative effect on the crystal angle.

RC ∆φM/∆Vvi ∆φM/∆RC ∆φM/∆hC ∆φM/∆RN
[mm] [◦/cm3] [◦/mm] [◦/mm] [◦/mm]
10 72.27 -25.52 -23.65 -6.77
15 29.06 -20.47 -14.03 -3.91
20 15.45 -15.85 -8.56 -2.38
25 9.269 -12.34 -5.44 -1.59
30 6.22 -9.95 -3.83 -1.16
35 4.54 -8.69 -2.98 -0.87
40 3.43 -7.50 -2.33 -0.71
45 2.73 -6.81 -1.91 -0.55
50 2.15 -5.87 -1.60 -0.45
55 1.73 -4.99 -1.36 -0.34
60 1.43 -4.58 -0.87 -0.31
65 1.23 -4.31 -0.75 -0.27
70 1.06 -4.02 -0.71 -0.24

Table 2.2: Lookup table containing quotients for the crystal angle
φC (From [1])

2.1.9 Inductor Coil Power

The power output of the conductor in the feed and crystal rods are given by a first order equation,

as generator needs time to change the voltage output.

d

dt
(Pind) = 1

τP
(KP Pgen − Pind) (2.28)

which Pind is the power output of the inductor going into the rods, τP is the time constant, KP is

a gain constant which is the amount of power lost between the generator power and the induced
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power and Pgen is the power output of the generator. The power output of the generator cannot be

directly adjusted on the FZ machines. Instead the equation 2.28 is converted to DC voltages. Ugen
becomes the adjustable variable used to manipulate the heater power.

U̇ind = 1
τP

(KPUgen − Uind) (2.29)

2.1.10 Rate of melting & Rate of crystallization

This describes the amount of heat energy required to change from solid to liquid Qmelting or liquid

to solid Qcrystalize
Q = q0 m (2.30)

where q0 is the latent heat coefficient of silicon, which is the specific energy needed to change a

silicon mass from solid to a liquid or the opposite. The melting and crystallisation rates can be

described by the required power to create a mass flow

ṁF = −PF,melting
q0

(2.31)

ṁC = −PF,Crystallize
q0

(2.32)

where PF,melting is the power used for melting, PF,Crystalize is the released power due to crys-

tallization and. The energy in the rods is also lost due to radiation. The power term Ploss is

approximated as a function of the radius of a rod.

Ploss = ζloss R
3
2 (2.33)

These powers are used in a quasi-steady state balance equation for the feed and crystal rods.

0 = PF − PF,loss − PF,melting (2.34)

0 = PC − PC,loss + PC,crystalize (2.35)

where PF and PC is the induced in the feed and crystal rods, PF,loss and PC,loss is the power lost

due to radiation, PF,melting is the power used in the melting process nad PC,crystalize is the power

released due to crystallization. The variables PF and PC have been modelled using a heuristic

approach in Werner [1]. The equations are modelled to reflect the following effects

• The induced power is increased if the power of the inductor increases.

• The induced power is increased if the radius if the corresponding rod increases.

• The induced power decreases if the corresponding zone height increases.

Using this approach the following equations was found to fulfil the requirements.

PF = Pind,FR
rF
F (1− f0hF )f1 (2.36)

PC = Pind,CR
rC
C (1− c0hC)c1 (2.37)
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where Pind is the amount of the inductor power that acts on the respective rods. The variables rF ,

rC , f0, f1, c0 and c1 are model parameters that is used to fit the equations with the experimental

data found in Werner [1]. The terms Pind,F and Pind,C are adjusted by the generator voltage

Pind,F = pFU
eF
ind (2.38)

Pind,C = pCU
eC
ind (2.39)

where pF , pC , eF and eC are model parameters used to fit the equation with experimental data.

The melting and crystallization rates can now be deducted. From equations 2.18, 2.31 and 2.34 a

equation for the melting rate vMe is found

vMe = PF − PF,loss
q0ρSπR2

F

+ V̇Fr
πR2

F

(2.40)

and a equation for the crystallization rate can be found from equations 2.19, 2.35 and 2.32

vCr = PC,loss − PC
q0ρSπR2

C

+ V̇bo
πR2

C

(2.41)

and their respective derivatives are

v̇Me = 1
q0ρSπR2

F

(
ṖF − ṖF,loss − 2ṘF

RF
(PF − PF,loss)

)
+ 1
πR2

F

(
V̈Fr − 2ṘF

RF
V̇Fr

)
(2.42)

v̇Cr = 1
q0ρSR2

C

(
ṖC,loss − ṖC − 2ṘC

RC
(PC,loss−PC

)
)

+ 1
πR2

C

(
V̈bo − 2ṘC

RC
˙Vbo

)
(2.43)





CHAPTER 3

Model Analysis

In this chapter the linear model will be presented, which will form the basis for the controller and

estimator design. The linear model will be represented in state space, as the non-linear equations

are known and the conversion between ODE and state space is straight forward. The linear model

will be found from a chosen operation point, from which an analysis of the stability of the linear

model will be carried out.

3.1 Non-Linear Model

The non-linear model was presented in 2. The chosen states are show in the following non linear

state space representation 3.1. The model contains nine ordinary differential equations where

the state vector are x = [RF RC hF hC φC Vvi RN Uind vMe vCr], with the input variables

u =
[
Ugen vF vC

]
and the disturbance d =

[
αF
]
.



ṘF

ṘC

ḣF

ḣC

φ̇C

V̇vi

ṘN

U̇ind

v̇Me

v̇Cr



=



vMe tan(αF )
vCr tan(φC)
vMe − vF
vC − vCr

av
∆φM
∆Vvi

V̇vi + ar
∆φM
∆RC

ṘC + ah
∆φM
∆hC

ḣC + aN
∆φM
∆RN

ṘN

ρS(πR2
fvMe − aFrV̇Fr)− ρSπR2

CvCr − (ρM − ρS)aboV̇bo
nh(ḣF + ḣC)

1
τP

(KPUgen − Uind)

1
q0ρSπR2

F

(
ṖF − ṖF,loss − 2ṘF

RF
(PF − PF,loss)

)
+ 1
πR2

F

(
V̈Fr − 2ṘF

RF
V̇Fr

)
1

q0ρSR2
C

(
ṖC,loss − ṖC − 2ṘC

RC
(PC,loss−PC

)
)

+ 1
πR2

C

(
V̈bo − 2ṘC

RC
˙Vbo

)


(3.1)
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3.1.1 Operation Point

The operation point for this analysis has been chosen to be at the point where the crystal diameter

is 6 inches (152.4 mm) and assumed that this point is stationary. The initial values for the states

are determined from measurements of a production run1. The operation point in the dataset are not

equilibrium points, due to offsets in the measurement and estimation, however, these values can

be used as an initial point for the stationary calculation. First the assumption must be made that

the process in this point is at an equilibrium, which means that all the derivatives must be equal to

zero, the generator voltage must be equal to the inductor voltage of the system Ugen = Uind and

that the feed rod angle αF and the crystal angle φC are equal to zero. The feed pull rate must be

equal to the melting rate vF = vMe and the crystal pull rate must be equal to the crystallisation rate

vC = vCr. Remembering equation 2.21, which tells that a stationary growth can be found when

the two sides are equal. Using these assumptions and the equation 2.21 a stationary point xss can

be calculated.

The operation point values xe and the steady state values xss are shown in table 3.1. Note that

the crystal angle φC and the crystallization rate vCr have been adjusted to fit stationary growth

conditions.

RF RC hF hC φC Vvi RN Uind vMe vCr

[mm] [mm] [mm] [mm] [◦]
[
cm3

]
[mm] [kV ]

[
mm

min

] [
mm

min

]
xe 170.04 152.40 5.379 9.361 0.08 152.787 10.195 7.856 2.014 2.46
xss 170.04 152.40 5.379 9.361 0 152.787 10.195 7.856 2.014 2.510

Table 3.1: Table of state variables of chosen operation point xe and the adjusted
steady state point xss

3.1.2 Step Response of The Non-Linear Model

In this section the step responses of the non-linear model are evaluated. This is a important step in

understanding the dynamic behaviour of the model. Figure 3.1 shows the response of the crystal

diameter DC , as this is the most important variable, in three simulations a, b and c and figure 3.2

shows in corresponding inputs. Each simulation has a duration of 30 minutes, a change in the

inputs is carried out in the time interval 3 min ≤ t ≤ 30 min , with a step size of 1% of the inputs

steady state values.

In (a) the feed and crystal pull rates are kept constant at the equilibrium point and the generator

voltage Ugen is increased by 1% after 3 minutes. This increases the induced power in both the feed

and crystal rods. The dynamic behaviour of the crystal diameter have three phases.

1These datasets are confidential and have been provided by Topsil GlobalWafers A/S.
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Figure 3.1: Step Response - State variables

In the first phase, the diameter starts increasing when the change is introduced. This due to an

acceleration in the induced power, which increases the melting rate and moves the melting line

further away from the inductor, increasing the upper zone height. The crystallisation rate of the

crystal rod decreases due to extra energy from the inductor, which moves the crystallisation line

further away from the inductor. This increases the volume of the melt and also creates a melt

overhang that increases the angle of the crystal rod and the crystal diameter grows.

After about 6 minutes the crystal diameter starts decreasing, which is the second phase of the

response. The second phase is due to the deceleration in the induced power as it settles at its new

value. The crystallisation rate now begins to increase and the melting rate begins to decrease,

this causes a decrease in the volume of the melt. The crystal angle in decreased due to the melt

overhang disappearing and the crystal diameter begins to shrink.

In the third phase, after about 20 minutes, of the response, the process has begun to settle. The

melting and crystallisation rate, the crystal diameter, melt volume and crystal angle settles at the

original steady state values. This is because of the mass balance since there is no extra material

introduced into the system, which can only be done by increasing the feed pull rate, which can

be seen in figure 3.1 (b). The full state response for simulation (a) can be seen in appendix 7.2 in

figure 1.
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Figure 3.2: Step Response - Input Variables

In figure 3.1(b) the generator voltage Ugen and crystal pull rate vC are kept constant. The feed pull

rate vF is increased by 1% of the steady state value. In other words, the feed rod is pushed faster

downwards, increasing the amount of material that is put into the process.

The response in (b) in intuitively easier to follow. The increased feed pull rate decreases the upper

zone height, moving the melting line closer to the inductor, which increases the melting rate. The

increased melting rate increases the amount of melt in the process, which increases the crystal angle

due to the appearance of a melt overhang. This increases the crystal diameter. The crystal diameter

settles to a new equilibrium in about 12 minutes because the melting rate settles. The process will

be at an equilibrium point if the inductor power, crystallisation and melting rates are constant.

The full state response for simulation (b) is located in appendix 7.2 in figure 2.

In figure 3.1(c) the inductor and feed pull rate are kept constant. The crystal pull rate is increased

by 1% of the steady state This causes the crystal rod to be pulled faster downwards away from the

inductor. This action increases the crystallisation rate because the amount of power induced in the

crystal rod decreases. The crystal diameter decreases because the amount of melt on the crystal rod

decreases and the increase in the lower zone height.
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To summarise the crystal diameter can only be increased or decreased permanently by manipulating

either the feed pull rate vF or the crystal pull rate vC as seen in 3.1(b) and (c) respectively. The

inductor power Ugen can be used to improve the transients that occur when manipulating the pull

rates, which is a behaviour that will be used in the control design.

3.2 Linear Model

The non-linear state space model is to be linearised, such that the dynamic and transient behaviour

can be approximated and the system can be represented by state space. The non-linear model is

linearised around the equilibrium point xss with a Jacobian linearisation. The linearisation will

produce a linear time invariant model that is based on deviations from the linearised point.

State Space Representation

The continuous time invariant state space formulation is given as

ẋ(t) = Ax(t) + Bu(t) + Edd(t)

y(t) = Cx(t)
(3.2)

where A is the state dynamics matrix, with the state vector x(t) = [RC hF hC φC Vvi RN Uind vMe

vCr], the input dynamics matrix B with the input vector u(t) =
[
Ugen vF vC

]
. The output

dynamics matrix C. Ed is the unknown disturbance dynamics matrix, with the disturbance vector

d(t). The system matrices are found by Jacobian linearisation of the non-linear model as described

in [11].

The continuous model 3.2 have been discretized assuming a zero-order hold, with regards a chosen

sample time and is given by
xk+1 = Fxk + Guk

yk = Cxk
(3.3)

where F is the discrete state dynamics matrix, G is the discrete input dynamics matrix, Gd and xk,

uk and dk are the discrete state, input and disturbance vectors in discrete time. The discrete model

will be used for the design of the model predictive controller.

3.3 Stability Analysis

A stability analysis aims to give an answer to if the process has a stable or unstable response, where

an unstable response is almost always an unwanted behaviour in the system, but it can be made

stable under the right conditions which will be discussed in 3.5. The stability of this process will be

determined by an analysis of the eigenvalues. Eigenvalues and eigenvectors are an important tool
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for the stability analysis and the dynamic responses of linear models. In short the eigenvalues of

the state dynamics matrix are the poles of the system and are often used in when analysing multiple

input multiple output systems (MIMO) [11].

To be able to define the stability of the process, an equilibrium point must be defined. A point xe is

an equilibrium point for the process if the process starts or remains at this point in the absence of

inputs and disturbances. An equilibrium point can be defined as a stationary state point (see [11,

page 119]).

A unique equilibrium point is found if A is non-singular. A matrix is singular if and only if the

determinant is equal to zero.

Location of eigenvalues

The eigenvalues λ of the linear model are found by calculating the characteristic polynomial of

the state matrix A. The stability of the process is determined by the location of the eigenvalues.

It is stated in [12, page 24-33] that the system is asymptomatically stable if all the negative and

negative complex eigenvalues will be stable and the response will be oscillating. If any of the

eigenvalues are positive, then the system response is unstable. A special case is when one or more

of the eigenvalues are zero, the system can then be stable or unstable in any equilibrium point and

there are infinite equilibrium points.

The calculated eigenvalues of the linear model linearized around the operating point are

λ =



0
0
0

−0.005 + 0.009i
−0.005− 0.009i
−0.022

0
−0.009
−0.050



(3.4)

which shows that the system is stable, as there are no positive eigenvalues. The response of

the system will also show some oscillating behaviour because of the complex eigenvalue pair

−0.005±+0.009i. However there are also multiple zero eigenvalues; which means that the system

is not asymptotically stable since the system is only stable if all eigenvalues have a non-zero

negative real part, however it could be marginally stable. The system is marginally stable if zero

eigenvalues are simple. Since the zero eigenvalues are repeated they are not simple. However the

system can also be marginally stable if the eigenvectors Vλ associated with the zero eigenvalues are

linearly independent.
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The eigenvectors to the zero eigenvalues are

Vλ=1,2,3,7 =



0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0



(3.5)

which shows that the eigenvectors are linearly independent of each other. The system can be called

marginally stable, which also shows in the system response, the process will stabilize at a new

equilibrium if perturbations happens on the zero eigenvalues. It also means that the system is stable

around a equilibrium subspace, which can hold infinite equilibrium points.

3.4 Linear Response

In this section the linear model is tested against the non-linear model, to verify that it can accurately

depict the response of the non-linear system. It should be noted as stated in section 3.2 that by

the definition of the linearisation, the linear model is only accurate within a small deviation from

the operation point. The numerical accuracy of the linear model will be evaluated by the mean

square error. The MSE calculates the average value of the residuals, the differences between two

models, which always have a positive value. The closer the MSE is to zero, the better the depiction

is, which in this case is the linear model. The equation for the MSE is

MSE = ‖ylinear − ynonlinear‖
2

N
(3.6)

where ylinear is the output of the linear model, ynonlinear is the output of the non-linear value

and N is the number of samples in the outputs. The MSE method is, however, sensitive to large

residuals as it weighs those more heavily than small residuals, however since the simulations are

deterministic in nature, there will not be relatively large residuals, as these most often occur when

noise is present. Another method could have been the mean absolute error.

Figure 3.3 shows three simulations of the crystal diameter. For each simulation the inductor power

is increased by 1%(3.3(a, black)), 5%(3.3(b, blue)) and 9%(3.3(c, red)). and the respective of the

non-linear model and the linear model.

Figure 3.4 shows the respective step changes corresponding to the three simulations. In Figure 3.3

the non-linear model shows that the crystal diameter peaks at about 156 mm, and the linear model

follows the same dynamic and the MSE value is close to zero 3.2. This means that the linear model

can accurately calculate the non-linear model within a 1% change in the inductor power. However

in figure 3.3 (b) there is clearly a difference in the dynamic responses of the two models and the
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Figure 3.3: Comparison of the non-linear model (full line) and
the linear model (stripped line) with different increases in inductor
power: 1% black line (a), 2% blue line (b) and 9% red line (c).

MSE value has increased. In figure 3.3 (c) there a large deviation between the two models and there

is even a difference in the dynamic behaviour as seen at time 4 min. The MSE is significantly larger.

MSE 1% 5% 9%
RC 1× 10−4 0.2739 2.2217

Table 3.2: The MSE value for the crystal diameter RC . Each
column represents the step size in the inductor voltage Ugen

’

This behaviour means that when the linear model becomes increasingly unable to calculate the

non-linear model, if the inputs are changed from the steady state value. A change between 1%

to 5% gives a fairly accurate depiction, however a larger step would increase the non-linearities

behaviour which the linear model is not able to calculate.
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Figure 3.4: Black line: 1% step change of steady state value. Blue
Line: 5% step change of steady state value. Red Line: 9% step
change of steady state value

3.5 State Space Analysis

Controllability and Observability

Before designing a control system, several properties of the linear model has to be investigated,

namely controllability and observability, and the sub-properties stabilizability and detectability.

Many of the controller design methods depends on this properties to be fulfilled.

3.5.1 Reachability

Reachability gives an answer to the question: is there a sequence of control inputs which will bring

the initial state to any final state. The fastest way to ensure that the system is fully reachable is

to check if the reachability matrix M has full rank. A matrix has a full rank when the number of

linearly independent columns is equal to the number of rows. The reachability matrix number of

rows equal the number of states in the system matrix. The reachability matrix is often called the

controllability matrix, as it is the same calculation done in continuous time [11] and it is described

as

M =
[
G FG F2G ... Fn−1G

]
(3.7)

where F is the state matrix, G is the input matrix and n is the number of states. The rank of

reachability matrix M is found to be

rank(M) = 5 (3.8)

The reachability matrix has only 5 linear independent column, which by the definition in [11,

page 140], since it should have a rank of 9, which makes it not fully reachable, or fully controllable.
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3.5.2 Stabilizability

Since the system is not fully reachable, it has to be investigated if it is stabilizable. A system

is stabilizable if the unstable eigenvalues are in the controllable subspace, in other words, the

controller is able to stabilise the unstable behaviour and if the uncontrollable eigenvalues are stable

[11]. This done by using the first decomposition Theorem in [11, page 154]. First, the system

is decomposed into a controllable and uncontrollable subspace to investigate the uncontrollable

properties of the system. A similarity transformation from x to x̄ is used with the transformation

matrix V .

x̄ = V−1x (3.9)

such that the transformed system has the same structure and dynamic response of the original

system. The state vector will be composed of the controllable x̄c and uncontrollable x̄uc eigenvalues.

[
x̄c

x̄uc

]
k+1

= F̄x̄+ Ḡu

y = C̄x̄

(3.10)

where the state dynamics matrix F̄ is now given as

F̄ = V−1AV =
[

F̄11 F̄21

0 F̄22

]
(3.11)

and the input dynamics Ḡ and the output dynamic C̄ matrices are given as

Ḡ = V−1A =
[
Ḡ1

0

]
(3.12)

C̄ = CV =
[
C̄1 C̄2

]
(3.13)

Where the controllable subspace is given by

x̄c,k+1 = F̄11x̄c,k + G1uk

yk = C̄1x̄c,k
(3.14)

and the uncontrollable subspace in discrete time is given by

x̄uc,k+1 = F̄22x̄uc,k + 0uk
yk = C̄2x̄uc,k

(3.15)

and the uncontrollable subspace in continous time can be given by the same structure

¯̇xuc,t = Ā22x̄uc,t + 0ut
yt = C̄2x̄uc,t

(3.16)



3.5. STATE SPACE ANALYSIS 27

The eigenvalues of the continuous time uncontrollable subspace matrix Ā22 are

λ22 =


−6.6243× 10−6

0
0
0

 (3.17)

The uncontrollable eigenvalues are marginally stable which means the system is stabilizable.

3.5.3 Observability

Observability gives an answer to the question: Is it possible to determine the value of all the states

given the knowledge available in the system output. Again the procedure to find the observability

matrix is to use the observability matrix O and check if this has full rank. The observability matrix

is given by

O =
[
C CA CA2 ... CAn−1

]T
(3.18)

where A is the state matrix, C is the output dynamics matrix and n is the number of rows is F .

The rank controllability matrix O is found to be

rank(O) = 9 (3.19)

The observability of this system is found to be fully observable. Which in practice means that each

state can be observed by the controller. If the system was found to be not fully observable the

control designer would have to design an observer.





CHAPTER 4

Control Theory

4.1 Model Predictive Controller

The chosen controller for this system is the model predictive controller. This controller is an

optimal controller that solves a given optimisation problem, such as minimization or maximisation

of a cost function. Usually minimization of the error between the output measurement and the

reference. It uses a prediction horizon to calculate the optimal control signal, with the advantage of

solving the problem considering system constraints. This gives the advantage to using the controller

for sensitive systems, where the plant needs to be operated near the boundaries and systems with

careful safety constraints.

In this thesis, a model predictive controller is chosen with is a quadratic cost function and is using

a moving prediction horizon. A moving horizon implementation means that the optimisation

calculations are updated each time there is new information in the form of new measurements. The

MPC calculates the optimal input sequence for the length of the prediction horizon, however only

the first value in the sequence is used, such that the output is regulated. This approach is called the

moving horizon control. An additional application is that the output of the plant needs to track a

given reference or there is a disturbance that needs to be rejected.

][h] ...

Figure 4.1: A sketch of the measured, predicted, and input variables in a
model predictive control scheme. (By Martin Behrendt - CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=7963069)

29



30 CHAPTER 4. CONTROL THEORY

A moving prediction horizon as seen in figure 4.1 uses a window with a finite number of samples,

from sample k to k + Np (the horizon, blue line) to predict the future output of the plant ( the

dotted brown line), and at each new time sample the window is moved [13] [14] [2] . The longer the

horizon is chosen to be the better steady state performance the controller is going to have, however,

the computation time also increases, which means that if the sampling time of the controller is

shorter than the computation time, the online computation approach will be impossible.

4.1.1 Unconstrained MPC Design

The basic formulation of the MPC is the unconstrained case, where no boundary conditions are

taken into account. The most common formulation is where the optimization variable is a control

move δu instead of the normal control signal of uk [13]. The objective function is chosen to be a

minimization of the controlled output zk and reference rk error vector. A weighted 2-norm is used

when solving the least square problem. The dynamic quadratic program becomes

min
U

φz = 1
2

N∑
k=0
‖zk − rk‖2Wz

s.t. xk+1 = Fxk + Guk

zk = Czxk k = 0, 1, ..., N − 1

yk = Cyxk k = 0, 1, ..., N − 1

(4.1)

where the error vector is weighted with Wz and the prediction horizon is written as Np. Both

the prediction horizon and the weight Wz are the tuning parameters for this controller. The cost

function in 4.1 can be expressed in standard QP problem notation with the following vector notation,

called the weighted least squares problem

min φ = 1
2x
′Hx+ gx+ p (4.2)

U∗ = min φ = 1
2

N∑
k=1
‖ΓU − b‖2Wz

b = R−Φxk

(4.3)

which is a compact form of the system matrices based on the system’s controlled outputs. The

recursive formulation in 4.4 bring the formulation to the form in 4.2 since most QP solver use this

notation

φ =1
2

N∑
k=1
‖ΓU − b‖2Wz

=1
2(ΓU − b)′Wz(ΓU − b)

=1
2U
′Γ′WzΓU − (Γ′Wzb)′U + 1

2b
′Wzb

=1
2U
′HU + g′U + p

(4.4)

where the matrices H, g and p described as

H = U ′Γ′WzΓU = Γ′UWzΓU (4.5)
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g = −(Γ′Wzb)′U = −Γ′UWzb

= −Γ′UWz(R− Φxk)

= ΓUWzΦxk − ΓUWzR

(4.6)

The control law of the controller becomes

U∗ = −H−1 · g (4.7)

where the hessian matrix H and the linear coefficient vector g expresses the internal gains of the

controller.

Mx = ΓUWzΦ

Mr = ΓUWz

g = Mxx+MrR

(4.8)

The parameters Φ, Γ and b are found from the output prediction equation Z

Z = Φxk + ΓU + ΓDD (4.9)

where the parameters Γu, Γd and Φ hold the information of systems behaviour for the prediction

horizon.

R =


r1

r2
...

rNp

 Z =


z1

z2
...

zNp

 U =


u0

u1
...

uNp−1

 D =


d1

d2
...

d(Np−1)

 (4.10)

W̄z =


Wz,1 0 0 0

0 Wz,2 0 0
...

...
. . .

...

0 0 0 Wz,Np

 (4.11)

where rNp ∈ <nz is the vector for the reference values, zNp ∈ <nz is the vector for the controlled

output predictions, U is the vector of predicted inputs, and D is the vector of predicted disturbances.

The expanded weighting matrix W̄z is the a diagonal matrix containing the output weight matrix

Wz for each time sample in the prediction horizon. The parameters φ, Γu and ΓD are expressed as

Φ =



CzA
CzA2

CzA3

...

CzANp


(4.12)

ΓU =



H1,u 0 0 · · · 0
H2,u H1,u 0 · · · 0
H3,u H2,u H1,u · · · 0

...
...

...
. . .

...

HNp,u HNp−1,u HNp−2,u · · · H1,u


(4.13)
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where Hu is the impulse response coefficients of the system with respect to input matrix.

Hi,u = CzAi−1B (4.14)

To summarise the QP formulation, which is solved with the MATLAB function quadproc, for the

unconstrained model predictive controller becomes

min
U

= 1
2U
′HU + g′U

H = Γ′UWzΓU
g = Mxxk +MrR

(4.15)

Unconstrained MPC with Weighed Rate of Movement

A regularized therm φ∆u is added to the problem, such that input can be weighted. In a LQR

formulation it is the absolute value of the control signal uk that is weighted, however since this

signal can change erratic regardless of the weight, the control move ∆ukis considered instead. This

will allow the controller to produce a smooth output. It should be noted that the same effect can

be produced by having the control signal uk run at the rate of input constraint, however this is not

practical as the constraints are recommend for limitations in the process and actuators and not for

controller tuning.

The following cost function is added to the original cost function in equation 4.1.

min
U

φ∆u = 1
2

N−1∑
k=0
‖∆uk‖2Wu

(4.16)

such that the complete cost function becomes

min
U

φ = 1
2

N∑
k=1
‖z − r‖2Wz

+ 1
2

N−1∑
k=0
‖∆uk‖2Wu

(4.17)

The new cost function in equation 4.16 can be written as

‖∆uk‖2W∆u
= ‖uk − uk−1‖2W∆u

φ∆u = 1
2U
′H∆uU + g′∆uU

(4.18)

where the hessian H∆u and g∆u are given by

H∆u =


2W∆u −W∆u

−W∆u 2W∆u −W∆u

−W∆u 2W∆u −W∆u

−W∆u W∆u

 (4.19)

g∆u = −


W∆u

0
...

0Np

 (4.20)
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The complete quadratic program becomes:

min
U

= 1
2U
′HU + g′U

H = Γ′UWzΓU +H∆u

g = g + g∆u

= Mxxk +MrR+Mu−1

(4.21)

It is to be noted that the gain matrices Mx, Mr and Mu−1 does not change with time, they are time

invariant which means that they can be calculated offline during the design phase of the controller,

however the matrix g and H change at each time step, as the states and references change and they

have to be calculated online.

4.1.2 Input rate constrained MPC

As the states earlier the nature of the MPC is that it can handle constraints naturally, since using

quadratic programming allows the use of constraints to solve the system with linear inequalities,

linear equalities and upper and lower bounds. Here the input rate constraint will be presented as a

linear inequality, as the equipment in practise are bounded by rate limits. The objective function of

the controller with the linear inequalities becomes

min
U

φ = φz + φ∆u = 1
2

N∑
k=1
‖zk − rk‖2Wz

+ 1
2

N−1∑
k=0
‖∆uk‖2Wu

(4.22)

s.t.

xk+1 =Fxk + Guk

zk =Czxk k = 0, 1, ..., N − 1

yk =Cyxk k = 0, 1, ..., N − 1

∆umin ≤∆uk ≤ ∆umax k = 0, 1, ..., N − 1

(4.23)

This enables the specification of minimum and maximum rates of change of the control move.

The constraint was implemented in the following way such that it can be used in the quadratic

programmer.


∆Umin
∆Umin

...

∆Umin

 ≤

−I I 0 ... 0

0 −I I
. . .

...
...

. . . . . . . . . 0
0 ... 0 −I I




U1

U2
...

UN−1

 ≤


∆Umax
∆Umax

...

∆Umax

 (4.24)
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The quadratic program now can be formulated as

min
U

= 1
2U
′HU + g′U

H = Γ′UWzΓU +H∆u

g = g + g∆u

= Mxxk +MrR+Mu−1

s.t.

∆umin ≤ ∆uk ≤ ∆umax

(4.25)

There are of course also implementations of constraints for upper and lower bound of the absolute

value of the control signal and output constraints. However, since no information about these

constraints is known, these implementations will not be included in this thesis.

4.2 Kalman Filter

The Kalman filter was invented by R. E. Kalman in 1960, in a publication describing a discrete-data

linear filtering solution. The Filter is based on linear stochastic difference equations. It estimates

the states of a process at each time sample, called the time update, by using a form of feedback

control in the form of (noisy) measurements, called the measurement update. The time update is

responsible for estimating the next value of the current state and error covariance. The measurement

update is responsible for calculating the current estimate of the state, in other words correcting the

measured value.

4.2.1 State estimation

The Kalman filter algorithm used in this thesis is a discrete Steady State Kalman filter. The model

used for the filter is deterministic in nature but is augmented with stochastic terms. The linear

model 3.3 with the stochastic terms wk and vk is given as

xk+1 = Fxk + Guk + wk

yk = Cxk + vk
(4.26)

where wk and vk are defined as [
wk

vk

]
∈ Niid

([
0
0

]
,

[
Q 0
0 R

])
(4.27)

where Q and R are the process noise covariance and measurement noise covariance respectivly.

Measurement update

At each new time sample the residual or innovation error ek is computed from the estimated output

ŷk−1 and the measured output yk

ŷk−1 = Cx̂k−1

ek = yk − ŷk−1
(4.28)
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The Kalman gain Kf,k can be calculated as

Re,k = CPk−1C′ + R

Kf,k = Pk−1C′R−1
e,k

(4.29)

the corrected state estimate x̂k and the error covariance Pk can be calculated from the Kalman gain

Kf,k

x̂k = x̂k−1 + Kf,kek

Pk = Pk−1 −Kf,kRe,kK′f,k
(4.30)

Time update

The estimates of the state x̂k is used to estimate the next evolution and is done after the new control

signal have been calculated.

x̂k+1 = Fx̂k + Guk + Gddk

Pk+1 = FPkF′ + Qk

(4.31)

4.2.2 Filter Parameters

In a practical application, the measurement noise covariance R can be measured before the design

of Kalman filter, by taking some off-line measurements. The process noise covariance Q is more

difficult to determine before the filter is designed. As a designer one can try to guess the parameters

of Q and R, before applying the filter. In this thesis the neither the process or measurement

noise is known, and the plant is view as a deterministic process. Here the ratio between Q and R
will determine the amount of confidence that is placed either the model or the measurements. If

Q >> R means that the variance of the process could be large and the measurements are trusted

more than the plant model. The values of the Kalman gains will be large and this will lead to a fast

estimation, which is less robust to higher frequencies of noise. If Q << R gives that the variance

of the measurements are larfe, and the process model is trusted more. This case will have a small

Kalman gain and the process will be estimated slower, however, is less sensitive to noise. [11,

page 439]

4.2.3 Disturbance Estimation

The Kalman filter is excellent at estimating the states in the presence of noise that is zero-mean

and white. However the accuracy degrades in the presences of non-zero mean disturbances, which

as a result the controller will not be able to reject these disturbances. The Kalman filter needs to

have disturbance estimation implemented. The goal of the disturbance estimation is to eliminate

steady state errors in the controlled outputs. This will improve the closed loop robustness against

disturbances and noisy measurements. The steady state error can be removed by having one or

more integrators in the control loop. There are two most known methods to eliminate the steady

state error. One is taking from ’classical’ control theory, where as with a PI controller, the control

objective is augmented with a integration of the tracking error. However this method leads to



36 CHAPTER 4. CONTROL THEORY

extra tuning parameters, which means more computations, and that a anti-wind up algorithm may

be needed[14]. The other method is to augment the estimator with integrating states, by using

disturbance models as described in [5].

In this thesis the discrete linear model 3.3 is augmented with a disturbance model, in this case a

constant non-zero disturbance is modelled. The resulting model for the Kalman filter results in

[
xk+1

dk+1

]
=
[
F Gd

0 I

] [
xk

dk

]
+
[
G
0

]
uk +

[
wk

εk

]

y =
[
C Cd

] [xk
dk

]
+ vk

(4.32)

where dk is the disturbance vector, Gd is the input disturbance matrix and Cd is the output distur-

bance matrix. Usually the disturbance models are found through model identification techniques,

however in research there are two general choices for the disturbance model [15].

• Choosing Gd = 0 and Cd = I, is called the output disturbance model

• Choosing Gd = I and Cd = 0, is called the input disturbance model

The two choices can be combined such that the disturbance model will take into account of both

input and output disturbances. The following assumptions are made based on [5], which have to be

fulfilled for offset free control.

1. The pair (F,G) is controllable or at least is stabilizable.

2. The pair (F,C) is detectable.

3. The number of controlled variables nz, cannot be greater than the number of manipulated

variables nu. nz ≤ nu

4. The augmented system needs to be detectable. The matrix in 4.33 must have full column

rank as stated in [5] and [16]. [
I − F −Gd
C Cd

]
(4.33)

For condition 4 to be satisfied the number of disturbances must be equal or less than the number of

measurements.

4.2.4 Disturbance Rejection

Given the disturbance estimate the state and input new steady state values are computed by solving

the following equation [
I− F −G

C 0

] [
xss

uss

]
=
[

Gddk

−Cddk

]
(4.34)
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where the new steady state values xss and uss are then substituted from the estimated states and

input in the controller, which will drive the the system away from the effects of the disturbances.[
xss

uss

]
= Γdd̂k (4.35)

where Γd and ΓR are determined by

ΓD =



H1,d Cd 0 · · · 0

H2,d H1,d Cd
. . .

...

H3,d H2,d H1,d
. . . 0

...
...

...
. . .

...

HN,d HN−1,d HN−2,d · · · H1,d


(4.36)

where Hd are the impulse response coefficients of the system with respect to input and disturbance

matrices

Hi,d = CzFi−1Gd (4.37)

This changes the control formulation to incorporate the disturbance models and the controller

will be able to calculate the optimal control signal for a system under disturbances. The control

formulation can now be written as

min
U

φ = 1
2

N∑
k=1
‖z − r‖2Wz

+ 1
2

N−1∑
k=0
‖∆uk‖2Wu

s.t. x̂k+1 = Fx̂k + Guk + Gdd̂k

zk = Czx̂k

yk = Cyx̂k + Cddk

(4.38)





CHAPTER 5

Applied Control

In this section, the design decisions that was made during the design of the model predictive

controller will be presented. For the controller design, the model variables used are introduced and

followed by the tuning strategy used in the design.

The complete controller design follows the sketch of figure 5.1, the reference rK and the estimated

measured controlled variables zk will create the error signal e for the model predictive controller,

which calculates the next control move ∆u for the process. The output of the float zone process is

measured and which is fed to the Kalman filter, that will estimate correct value and estimate the

disturbances if there are any.

Controller System
rk ek ∆uk yk

Estimator

d̂k

−

ẑk

Figure 5.1: Control system structure

The control structure for the float zone process is as follows: The states x are defined as: The crystal

rod radius RC , The upper zone height hF , the lower zone height hC , the visible melt volume Vvi,

the radius of the melt neck RN , the voltage in the inductor Uind, the melting rate of the feed rod

vMe and finally the crystallization rate of the crystal rod vCr. The measured variables y are the

state variables, as all states are assumed to be measurable In the real application this is not the

case. The manipulated variables u are the generator voltage Ugen and the pull rate of the feed rod

vF . The pull rate of the crystal rod is kept constant in steady state. This is done to prevent sudden

pulls in the crystal, which can introduce dislocations in the crystal rod. The measured disturbance

variable is the radius of the feed rod RF . The angle of this rod is assumed constant αF = 0. The

controlled variables are the crystal radius RC and the lower zone height hC . A summary of the

structure can be seen in the list below.

39
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• The state vector: x =
[
RC hF hC φC Vvi RN Uind vMe vCr

]T
• The measurement vector: y =

[
RC hF hC φC Vvi RN Uind vMe vCr

]T
• The input vector: u =

[
Ugen vF

]T
• The measured disturbance vector: dm =

[
RF
]T

• The controlled states vector: z =
[
RC hC

]T
The controller used in implementation for the rest of the thesis is a the input rate constrained MPC

with weighted control moves. The MPC has the following structure and constraints.

min
U

φ = φz + φ∆u = 1
2

N∑
k=1
‖zk − rk‖2Wz

+ 1
2

N−1∑
k=0
‖∆uk‖2Wu

(5.1)

s.t.

xk+1 =Fxk + Guk + Gdmdm,k

zk =Czxk k = 0, 1, ..., N − 1

yk =Cyxk k = 0, 1, ..., N − 1

∆umin ≤∆uk ≤ ∆umax k = 0, 1, ..., N − 1

(5.2)

5.1 Controller Tuning

The goal of the final tuning is to resemble the controller response that could be used for implemen-

tation on the process at Topsil GlobalWafers A/S. The tuning of the closed loop response works

by adjusting the weight matrices Wz and W∆u as well as the prediction horizon as it is stated in

section 4, in order to achieve the desired performance of the system. Several methods are available

when choosing a tuning strategy such as trial-and-error and Bryson’s rule [11], which tunes the

weight by using a normalisation of the maximum allowed values of the state values and input

moves. The trial-and-error method was used in this thesis, as the maximum allowed values of the

state and control moves are not known, however, some time domain specifications for a reference

response, have been given by the supervisors from Topsil GlobalWafers A/S. The system is allowed

to use about 20 minutes to settle at a new reference value, with an over dampened response, and

the control action have to be limited to give a smooth input response.

As such several simulations are performed to analyse the impacts of the weights on the response

of the float zone process, four cases are developed. The prediction horizon has been chosen to

be N = 180 samples, with a sample time of 1 sample per. second. It could be argued that

the prediction horizon could be chosen with a bigger horizon, however, this would increase the

computational time for each time step, and the chosen sample time gives a stable response. In each

case, four different tunings, denoted as (1), (2), (3) and (4) respectively, are analysed and the best
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candidate is chosen to be kept constant in the next case.

The first case in figure 5.2 shows the tuning of the control moves with W∆u, a reference is made on

the crystal diameter DC , while the lower zone height hC is to be kept at the steady state value. The

diagonal values of W∆u and Wz used for the control move are shown in table 5.1.

# W∆u Wz

Ugen vF RC hC

1 1 1 1 1
2 1e3 1e3 1 1
3 1e6 1e6 1 1
4 1e9 1e9 1 1

Table 5.1: First case of four iteration of Tuning parameters for figure 5.2.

In sub figure 5.2a the reference change response is shown for the four different tunings. By studying

the control signals in sub figure 5.2c and 5.2d it can be seen that tuning (1) and (2) fluctuate wildly

and these tunings are easily discarded, however, control actions of tuning (3) and (4) is almost

indistinguishable. Subfigure 5.2b shows a better picture of (3) and (4). Here (4) is not able to move

the lower zone height to the reference point. As such tuning (3) is chosen as the best candidate for

the input weights.

The second case shows the tuning of the controlled variable, DC the crystal diameter with Wz . A

reference step change is made in the crystal diameter reference, while the lower zone height is to

be kept at the steady state value. The weights of the tuning are shown in table 5.2 which are used in

simulations shown in figure 5.3. The weights on the crystal radius are changed in each iteration

and the lower zone height is kept constant. In sub figure 5.3c it can be seen the tuning (1) and (2)

still has a very aggressive response.

# W∆u Wz

Ugen vF RC hC

1 1e6 1e6 1e-1 1
2 1e6 1e6 1e-2 1
3 1e6 1e6 1e-3 1
4 1e6 1e6 1e-4 1

Table 5.2: Second case of four iterations of tuning
parameters.

The third case shows the tuning of the controlled variable hC , the lower zone height, with Wz . A

reference step change is made in the crystal diameter reference, while the lower zone height is

to be kept at the steady state value. The weights of the tuning are shown in table 5.3 which are
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(a) Reference change response for
the crystal diameter DC .
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(b) The response of the lower zone
height hC .

0 10 20 30
7.75

7.8

7.85

7.9

7.95
(1) (2) (3) (4)

(c) The control signal for the genera-
tor voltage Ugen.
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(d) The control signal for the feed
pull rate vF .

Figure 5.2: Four different tunings are shown, named 1 to 4. Here
the weight of the control move are changed iteratively

used in simulations shown in figure 5.4. The weights on the lower zone height are changed in each

iteration.

The control action of the generator voltage in sub figure 5.4c all show reasonable responses. The

control action of the feed pull rate in sub figure 5.4d tuning (1) still gives an oscillating response,

and tuning (2) and (3), a more smooth response. In sub figure 5.4a tuning (3) and (4) have a smooth

over damped response which was the goal of the tuning strategy. However tuning (4), has a slower

settling time. Tuning (3) is chosen as the best tuning.

Finally, the weights are changed slightly to give the final response as shown in figure 5.5. The final

weights used are shown in 5.4, and will be used through the rest of the thesis.
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Figure 5.3: Four different tunings are shown, named 1 to 4. Here the weights of the crystal radius
are changed iteratively

# W∆u Wz

Ugen vF RC hC

1 1e6 1e6 1e-3 1e1
2 1e6 1e6 1e-3 1e2
3 1e6 1e6 1e-3 1e5
4 1e6 1e6 1e-3 1e7

Table 5.3: Third case of four iterations of tuning
parameters.
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Figure 5.4: Controller tuning of the lower zone height

# W∆u Wz

Ugen vF RC hC

1 1e6 1e6 2.5e-3 1e5

Table 5.4: Forth case of iterations of tuning param-
eters for the model predictive controller. This table
is matched with figure 5.5.
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Figure 5.5: Final Tuning of the controller





CHAPTER 6

Results of the offset free Control

This chapter deals with the application of the presented offset free control method on the non linear

float zone process presented in chapter 2. The performance of the system in rejecting non-zero

mean constant disturbances will be evaluated, as the goal of the offset free control is to keep

the crystal diameter at the reference in the presences of disturbances. Firstly, the system will be

evaluated without disturbances with a change in reference. Secondly the system will be simulated

with different disturbances. The system will be evaluated with a disturbance in the inputs, namely

in the generator voltage, the feed pull rate and the crystal pull rate to simulate faulty actuators.

Then the system will be evaluated with a change in the poly crystal radius, which will be viewed as

a unknown disturbance. Lastly, the system will be evaluated with disturbances in the state variables,

this will simulate a model mismatch between the non-linear system and the linear model.

6.1 Summary: Results of Model Analysis

The eigenvalues of the linear model at the chosen operation point shows that there are repeated

zero eigenvalues λ = 0 in the uncontrollable subspace. This results in a subspace of uncontrollable

behaviour if those modes are excited. This means for the design of the controller that it is only

valid if these states are not excited. As the scope of the thesis is not to remodel the given model,

these uncontrolled eigenvalues cannot be made controllable, by introducing new inputs.

This means for that for the offset free control that there are some disturbances that the controller

is not able to reject and the closed loop response might stable in the controlled variables, with a

offset error, and unstable in some of the states as the controller will continuously try to bring the

controlled variables to steady state.

6.2 Application of the Offset Free Control

This section deals with the application of the offset free control on the non linear model. The

offset free control consists of the linear model based predictive controller and a Kalman filter
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that estimates the size of the disturbances which the controller uses to remove the effect of the

disturbances and move the system to the steady state values. The disturbances are considered to

have a non zero mean with zero variance. The system will be evaluated by examining the controlled

outputs, the manipulated variables and the constraints imposed on the manipulated variables, and

discussing their responses to the disturbances.

The offset free controller is designed with the control formulation stated in equation 6.1 that is

subject to equation 6.2.

min
U

φ = φz + φ∆u = 1
2

N∑
k=1
‖zk − rk‖2Wz

+ 1
2

N−1∑
k=0
‖∆uk‖2Wu

(6.1)

s.t.

xk+1 =Fx̂k + Guk + Gdd̂k

zk =Czx̂k k = 0, 1, ..., N − 1

yk =Cyx̂k + Cdd̂k k = 0, 1, ..., N − 1

∆umin ≤∆uk ≤ ∆umax k = 0, 1, ..., N − 1

(6.2)

where are the system matrices F , G, Cz and Cy, found by the linearisation method described in

3.2 and the disturbances matrices Gd and Cd are defined as identity matrices and the estimated

disturbance vector d̂k defined as a nd × 1 vector where nd = ny, ny is the number of measured

outputs and nd is the number of integrating disturbances. The diagonal weight matrices used

have been determined in section 5.1. The constraints on ∆u are ∆umin = 0.05kV min−1 and

∆umax = 0.05mm min−1.

The static steady state Kalman filter is designed with regards to section 4.2.2 with the following

model [
x̂k+1

d̂k+1

]
=
[
F Gd

0 I

] [
x̂k

d̂k

]
+
[
wk

εk

]

ŷk =
[
CyCd

]
+ vk

(6.3)

where the covariance matrix of the model noise Qw,ε is chosen with large diagonal variances and

the covariance of the measurements Rv is chosen to be a diagonal matrix with much lower values

of Q. The numerical values are Qw,ε = 1 and Rv = 0.001. Thus, a fast estimation of the states

and disturbances is achieved.
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6.2.1 Disturbance in the Generator Voltage

Figure 6.1 on the following page shows the response of the controlled system with a disturbance on

the generator voltage that has a mean of 0.1% of the nominal steady state value which corresponds

to the generator is delivering 0.78 V more than expected. A open loop response with a change in

the generator voltage will result in a transient response of the crystal diameter that is asymptotically

stable around the steady state, however the lower zone height will move toward a new steady state

value that is defined by equation 2.10 and 2.42.

Sub figure 6.1a and 6.1b the responses of the crystal diameter and the lower zone height. It can be

seen that both variables experience a temporary effect of the disturbance in the generator voltage,

however the controller rejects the disturbance such that both variables settles at their steady state

values after about 20 minutes after the disturbance is introduced. In sub figure 6.1c the distur-

bance enters after 5 minutes (red stripped line), the controller (blue line) then starts rejecting the

disturbance by lowering the generator voltage. The yellow line shows the input that the system

experiences, which is a combination of the disturbance and the control signal. The feed pull rate in

sub figure 6.1d reacts to the change in lower zone height introduced by the change in generator

voltage. The designed controller is able to completely reject a disturbance in the generator voltage.

Figure 6.2 on page 51 shows the disturbance in the generator and the estimated disturbances

affecting the states in the system. It is clearly seen that there are estimation errors. This is caused

by two factors. First the non-linearities that cannot be captured by the linear disturbance model and

that the disturbance model is not meant to model the disturbances accurately, since adding the a

disturbance that does not occur in the plant introduces model mismatch. However the integrating

disturbance can be used in the control action for offset free control, which can clearly be seen in

sub figures 6.1a and 6.1b.

6.2.2 Disturbance in the Pull Rates

Figure 6.3 on page 52 shows the response of the controlled system with a disturbance on the feed

pull rate with a mean of 0.1% of steady state, which results in the feed pull rate is increased 0.0021

mm per. min. A open loop response with a change in the feed pull rate would show a that the

crystal diameter and lower zone height would increase or decrease and move to a new equilibrium

point due to the increase or decrease of material in the system.
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Figure 6.1: System response to a disturbance in the generator
voltage. In sub figure c and d, the red striped line is the real value
of the disturbance, the yellow thick line is the true input as viewed
by the system, the blue line is the control signal.
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Figure 6.2: Disturbance estimate of a disturbance in the generator voltage
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In sub figure 6.3a and 6.3b a small error occurs on the crystal diameter and the lower zone height.

The error in the crystal diameter is quickly rejected, the lower zone height however, has a slower

rejection, but the disturbance is completely rejected. It can be seen in 6.3d that the disturbance (red

line) is rejected by the controller (blue line) by lowering the feed pull rate. This seen by the system

as a transient response that settles at the same steady state value as before the disturbance, which

will move the lower zone height back to its steady state.
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Figure 6.3: System response to a disturbance in the feed pull rate. In sub figure c and d, the red
striped line is the true value of the disturbance, the yellow thick line is the true input as viewed by
the system, the blue line is the control signal.

Figure 6.4 on the next page shows the response of the controlled system with a disturbance on the

crystal pull rate with a mean of 0.1% of steady state, which results in a increased pull rate of 0.0025

mm/min. A open loop response with a step change in the crystal pull rate would show a increase or

decrease of the crystal diameter and a increase or decrease of the lower zone height, as the crystal

would see a sudden difference in the crystallization rate. The system would however stabilize to

the new crystal pull rate.

In sub figure 6.4a it shows that the crystal diameter can be stabilized and the offset is removed.
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However, in sub figure 6.4b the lower zone height has a non zero offset. This is caused by the

restriction on the controller that the crystal pull rate cannot be changed by the controller during

this phase. The controller cannot fully remove the effect of the disturbance by only changing the

generator voltage and feed pull rate as one of the uncontrollable eigenvalues have been excited.
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Figure 6.4: System response to a disturbance in the crystal pull rate.

6.2.3 Model Mismatch in Crystal Angle

Figure 6.5 on the following page shows the response of the controlled system with a disturbance

on the crystal angle with a mean of 0.0057◦, which would simulate a model mismatch. A open

loop response would show a increasing crystal diameter, which would increase the diameter of the

crystal. Sub figure 6.5b shows that the controller is not able to keep the lower zone height at its

steady state, when a disturbance enters in the crystal angle. However, it is able to reject the offset

in the crystal diameter.
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Figure 6.5: System response to a disturbance in the crystal angle.
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6.2.4 Feed Rod Diameter Disturbance

Figure 6.6 shows the response of the controlled system with a disturbance on the feed crystal rod

diameter, to show that the diameter of the poly crystal rod can fluctuate. A change in the diameter

will change the volume of melt in the system. Sub figure 6.6a shows that the controller is able to

reject the disturbance and move the crystal diameter to a zero offset. However, as previously the in

lower zone height settles with a small offset as seen in sub figure 6.6b.

0 10 20 30

151.5

152

152.5

153

153.5

154

(a)

0 10 20 30

9.3615

9.362

9.3625

9.363

9.3635

9.364

(b)

0 10 20 30

7.852

7.854

7.856

7.858

7.86

7.862

(c)

0 10 20 30

1.9

2

2.1

2.2

2.3

(d)

Figure 6.6: System response to a disturbance in the radius of the poly rod.





CHAPTER 7

Conclusions and Future work

7.1 Conclusion

In summary, this thesis investigated the possibility of using a linearised model of the float zone

process described in Werner [1] to design a offset free model based predictive controller.

A non-linear model was given and was analysed by step responses to be able to understand the

behaviour of the float zone system. By using a Jacobian linearisation method around a given

operation point a linear time invariant model was found. The model was then simulated against

the non-linear to verify that it could accurately be used to model the system. Then a stability

was performed on the linear model. It was found that the model is marginally stable around the

operation point. A controllability and observability analysis was then performed. The system

was found not to be fully controllable, which means some of the states in the system cannot be

controlled, however the uncontrollable states was found to be marginally stable. The system was

found to fully observable, based on the assumption that all states could be measured in order to

simplify the control problem.

A model predictive controller was designed on the basis of the linear model. This controller was

chosen for its natural ability to optimally calculate control inputs for multi input multi output

systems and keep the system within boundaries . The controller was designed to control the

mono-crystal diameter and the distance between the solid part of the mono-crystal and the inductor

and to be able to track reference changes. The controller was detuned, the crystal pull rate was

removed as a manipulated variable, and the weights on the states and the inputs was designed such

that only smooth control actions, that would not activate the constraints, could be taken and such

that a reference change would result in a smooth increase in the crystal diameter over about 20

minutes.

A disturbance estimator was proposed and designed. A Kalman filter was used to estimate the

disturbances, by augmenting the original linear model with a disturbance model. The disturbance

model was chosen to both be able to estimate disturbances in the inputs and outputs of the system.
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The model design of the disturbance estimator was kept as simple identity matrices. The estimated

disturbances was given to the controller such that it reject the disturbances and remove the offset

errors in the controlled outputs.

The disturbance estimator and controller was combined and different disturbances was introduced

into the system. The controller was able to completely reject disturbances in the controlled variables

and return them to their steady state values. However, the controller showed a degraded performance

when disturbances was introduced as model mismatches or a disturbance in mono-crystal pull rate.

It was shown that in the tested cases the offset could be removed in the crystal diameter, at the

expense of the lower zone height having a offset.

7.2 Further study

Further study of the design of the disturbance models could be conducted in order to achieve better

results. The Uncontrollable zero eigenvalues should also receive a deeper study, to see if they really

are zero eigenvalues or if this is a modelling issue.
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Figure 1: Open loop response to a input change in the generator voltage
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Figure 2: Open loop response to a input change in the feed pull rate
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Figure 3: Open loop response to a input change in the crystal pull rate
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Figure 4: Figure of all states, with the three different input disturbances
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Figure 5: Figure of all states, with a disturbace in the diameter of the feed crystal
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Figure 6: Figure of all states, with a model mismatch in the crystal angle
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