
Model Checking Geographically
Distributed Railway Control

Systems

Michel Bøje Randahl Nielsen

Kongens Lyngby 2016

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

Summary (English)

The goal of this project is to investigate model checking as a veri�cation method
for analysis of distributed railway control systems wrt. safety.

To drive this investigation an engineering concept of a distributed railway in-
terlocking system is conceived and described. The concept is distilled into an
abstract generic model in a model checking language. Furthermore is a tool
developed to assist in generating concrete models from the generic model, that
are both valid and constrained to help reduce the state space to be searched
when model checking the concrete model instances.

The outcome of the project is not only a veri�ed engineering concept, an abstract
model of the concept and a tool to assist in exploring concrete instances an
abstract model, -but also an example of how an engineering concept can be
modeled as an abstract model and veri�ed through model checking.

ii

Summary (Danish)

Målet med dette projekt er at undersøge model checking som metode til veri�-
cering og analyse af sikkerheden i distribuerede tog kontrol systemer.

For at motivere undersøgelsen er et konkret engineering koncept udarbejdet og
beskrevet. Konceptet er derefter destileret ned til en abstrakt generisk model i
et model checker sprog. Yderligere, er et værktøj udviklet til at assistere med
at generere instanser af den generiske model som er korrekte og afgrænsede,
således at de reducerer det tilstandsrum som skal gennemsøges af et model
checker værktøj.

Resultatet af projektet er ikke bare et veri�ceret engineering koncept, en ab-
strakt model af konceptet og et værktøj til at hjælpe med at udforske modelen
gennem konkrete instanser, men er også et eksempel på hvordan et konkret en-
gineering koncept kan modeleres som en abstrakt model og veri�ceres gennem
model checking.

iv

Preface

This thesis was prepared at DTU Compute in ful�lment of the requirements for
acquiring an M.Sc. in Computer Science and Engineering.

The thesis deals with the investigation of use of model checking as a means of
veri�cation of safety properties in railway interlocking systems.

The thesis has been written in the period from April 1 2016 to October 21
2016 under supervision of associate professor Anne Elisabeth Haxthausen and
professor Alessandro Fantechi, and is worth 35 ECTS credits.

The thesis consists of the following report and an associated CD that contains
source code �les of a tool generated as part of the project, a compiled executable
version of the tool and samples of generated models and XML �les which can
be used in the process of generating models.

Lyngby, 21-October-2016

Michel Bøje Randahl Nielsen

vi

Acknowledgements

I would like to thank my supervisor Anne Elisabeth Haxthausen for all her
guidance and support throughout the project.

I would also like to thank Alessandro Fantechi who not only has acted as co-
supervisor during the project giving advises, but also has introduced me to the
�eld of model checking prior to the project.

Furthermore would I like to thank Hugo D. Macedo for helping out with the
RobustRails tools.

At last would I like to thank my parents and sister for all their support, -
especially my dad for assisting with proof reading parts of the thesis and my
sister Melanie for helping out printing drafts and helping with producing the
�nal prints.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Content of the thesis work . 3

2 Railway Domain 5

2.1 Terminology and Components of Railway Systems 5

2.1.1 Recent Developments . 7

2.2 Safety Measures and Interlocking Systems 7

2.3 Route Reservation Methods . 9

3 Formal Speci�cation and Veri�cation of Software Systems 11

3.1 Common Methods for Ensuring Corectness in Software Systems . 12

3.1.1 Type Checking . 12

3.1.2 Testing . 13

3.1.3 Peer Reviews and Pair Programming 13

3.1.4 Model Checking . 13

3.2 Model Checking . 14

3.2.1 Deriving and Specifying Formal Models for Model Checking 14

3.2.2 Temporal Logic and Veri�cation of Properties 15

x CONTENTS

4 The UMC modeling language 19

4.1 About UMC . 19

4.2 Structure and Semantics . 20

4.2.1 Class de�nitions . 20

4.2.2 Object declarations . 22

4.2.3 Abstraction rules . 23

4.3 UCTL properties . 23

5 An Engineering Concept of a Geographically Distributed Inter-
locking System 25

5.1 The overall idea . 25

5.2 The Communication Scheme - Two-phase Commit Protocol . . . 26

5.3 Route Reservation . 28

5.4 Releasing the Reserved Track Segments - Sequential Release . . . 29

5.5 A Practical Implementation of the System 30

5.6 Discussion . 30

6 Modeling the Geographically Distributed Interlocking System
in UMC 33

6.1 De�ning the Model in UMC . 33

6.1.1 The Train Class . 34

6.1.2 The Linear Class . 39

6.1.3 The Point Class . 47

6.2 Model Properties . 50

6.2.1 No Collision . 51

6.2.2 No Derailments . 52

6.2.3 Progress property - arrival of all trains at their destinations 54

6.2.4 No message loss . 55

6.3 Scenarios . 56

6.3.1 A Successful Route Reservation 56

6.3.2 A train traversing its successfully reserved route 58

6.3.3 Point positioning during reservation 61

6.3.4 Point malfunction during reservation 62

6.3.5 Attempt to reserve a route intersecting with an already
reserved route . 64

6.4 Discussion . 66

6.4.1 Train lengths and movement on track segments 67

6.4.2 Point Lengths . 68

6.4.3 Point Machine . 68

6.4.4 Repairment of malfunctioning points 68

CONTENTS xi

7 Model generating tool 71

7.1 Functionality of the Tool . 72

7.1.1 Track Layout and Route Extraction from XML �les . . . 73

7.1.2 Route Validation . 75

7.1.3 Enforcement of length constraints 77

7.1.4 Creation of Object Instantiations and Modeling Language
Speci�c Constructs . 80

7.2 Implementation . 86

7.2.1 Modules . 88

7.3 Extending the Model Generator to support other modeling lan-
guages . 96

8 Experiments 97

8.1 Performing the experiments . 97

8.2 Experiments performed . 98

8.2.1 Two trains and varying route lengths 98

8.2.2 Varying number of trains 102

8.2.3 Experiments with particular layouts from XML �les . . . 103

8.3 Discussion . 105

9 Future work 107

9.1 Generic model enhancements . 107

9.1.1 Repairment of faults . 108

9.1.2 Point Machines . 108

9.1.3 Modeling more types of faults 108

9.2 Usability and performance improvements for the tool 109

9.2.1 Enhance the user experience with a route selection GUI . 109

9.2.2 Extend tool to support more modeling languages 109

9.2.3 Model checking of huge railway networks 109

10 Conclusion 111

A User Guide for the Model Generating Tool 113

A.1 Model generation through the model generator tool 113

A.2 Model generation using the scripting tools 114

A.3 Model checking the generated models with the UMC web tool . . 121

B UMC BNF 123

C Generic UMC Model 127

D UMC model delta 137

xii CONTENTS

E Tool Source Code 141
E.1 Compiler version and third party packages 141
E.2 Auxiliary dependency �les . 142

E.2.1 Project �les and compile order 142
E.2.2 Sample XML �le used to bootstrap the typeprovider library143

E.3 Source code . 143
E.3.1 Utils.fs . 143
E.3.2 InterlockingModel.fs . 145
E.3.3 UMCTrainClass.fs . 156
E.3.4 UMCLinearClass.fs . 158
E.3.5 UMCPointClass.fs . 162
E.3.6 UMC.fs . 165
E.3.7 XMLExtraction.fs . 175
E.3.8 ScriptTools.fs . 181
E.3.9 MiniModelGenerator.fs 185
E.3.10 Prelude.fsx . 187
E.3.11 Script.fsx . 187

E.4 Tests . 188
E.4.1 Tests.Utils.fs . 188
E.4.2 Tests.InterlockingModel.fs 191

F Experiment Scripts 193
F.1 SimpleTwoTrains.fsx . 193
F.2 BranchManyTrains.fsx . 195

G XML sample 197

Bibliography 203

Chapter 1

Introduction

Our world is becoming increasingly more automated, improving our living con-
ditions and providing comfort and safety. Today, di�cult tasks such as, for
example, controlling an aircraft is by large either controlled by or assisted by
automation, and currently tech companies and car manufacturers are pushing
the limits for autonomous car driving. As we apply automation to more ar-
eas and expand responsibilities of already automated systems, -the complexity
increases. This increasing complexity becomes a huge task to handle for the
engineers designing the systems. Often systems are so complex that it is impos-
sible for the engineers to get a full overview of the given system and con�dently
predict its behavior.
Model checking is a methodology which was invented to help analyse such com-
plex systems, and has been successfully applied, for example, in the analysis of
concurrent systems.

Trains has become an essential part of many peoples life. In big cities millions of
people commute daily to school or jobs by di�erent variations of train systems,
such as inter city trains, urban railways, streetcars, subways or light railways.
Every day goods and people are transported within and across borders all over
the world by trains. And in some places high speed trains are means of trans-
portation which is competitive with other typical ways of fast transportation
such as airplanes.

2 Introduction

When designed and utilized properly, railway transportation has potential to
out-compete many other means of transportation in regards to e�ciency. As
focus on energy consumption increases around the world, it is very likely that
railway transportation will get even more attention in the future.

Even though transportation by train is one of the safest means of transportation
today, fatal accidents still happens. In 2016 alone, at least three major train
accidents has occurred.
Early 2016 a fatal accident happened in Germany where two trains ended up
in a frontal collision on a two-way track. The cause for this incident has been
revealed to be a human error caused by a track operator, who accidentally sent
warning signals to the wrong recipients instead of the two trains that were on a
collision course[mInB16]. Later on in 2016, again two trains ended up in a head-
on frontal collision in Italy, and yet again the investigations seems to point to a
human track operator error. Yet again later on in 2016 another train accident
happened in New Jersey, where a train ran through an end-of-track-barrier and
into a wall at high speed, once again a human error happened and there was no
fail-safe technology to take over and prevent the accident.

Railway systems are in general very safe and the probability of a train being
involved in an accident is quite small compared to other means of transportation.
However, guarenteing safety in huge railway systems with many intersections
and lots of tra�c can be very challenging. Thus the invention of, so called,
interlocking systems which are systems that serve to ensure safe operations of
the trains.
There are many other challenges in railway systems, such as scheduling and
liveness of trains, and sometimes solutions to these challenges interfere with
how the interlocking system operates. This leads to an interest in optimizing the
interlocking systems, which in the end possibly makes them even more complex.

Given that so many people rely on trains for transportation, it is naturally
important that an e�ort is put into ensuring safety, availability and reliability.
Railway interlocking systems has indeed been analyzed many times before with
regard to both safety and liveness.

In this thesis work an engineering concept of a geographically distributed in-
terlocking system, sporting a sequential release mechanism for increased utility
of the given railway network, is explored and analyzed through model check-
ing. The work has been done in the context of the RobustRailS research
project[Col, Hax] in which research on formal veri�cation of railway control sys-
tems is pursued. An important motivating factor for using model checking, is
that it is a veri�cation method recommended in railway signalling safety guide-
lines for software, speci�ed by the European Committee for Electrotechnical
Standardization [CEN11].

1.1 Content of the thesis work 3

The work in this thesis is especially inspired by the work described in [Fan12] and
[Pao10], where the idea of a geographically distributed interlocking system using
a two-phase commit protocol for route reservation, -is presented and modeled.
Furthermore does the work presented in this thesis draw a lot of inspiration
from the work in [VHP16], where formal methods are applied to verify safety
properties of a new Danish interlocking system that features a sequential release
mechanism for increased utility of railway network capacities.

1.1 Content of the thesis work

This section describes the chapters of the thesis work that are to follow this
chapter.

chapter 2 - Railway Domain
Brie�y explains the basic concepts and terminology of the rail way domain. The
chapter serves to prepare the reader for the rest of the thesis work where the
terminology will be used extensively.

chapter 3 - Formal Speci�cation and Veri�cation of Software Systems
Gives a brief outline of common methods of ensuring correctness in software
systems, and ends up brie�y explaining the concept of model checking which is
the method used in this thesis work.

chapter 4 - The UMC modeling language
Introduces the modeling language utilized for this project.

chapter 5 - An Engineering Concept of a Geographically Distributed
Interlocking System
Describes an engineering concept for a distributed railway interlocking system
conceived as part of this project.

chapter 6 - Modeling the Geographically Distributed Interlocking Sys-
tem in UMC
Describes the translation of the engineering concept into an abstract generic
model that can be used for model checking.

chapter 7 - Model generating tool
Describes an implementation of a tool for generating concrete model instances
based on the generic model.

chapter 8 - Experiments

4 Introduction

Presents and elaborates over a set of model checking experiments performed
with di�erent concrete model instances.

chapter 9 - Future work
Elaborates over ideas for extensions to the tool and improvements for the ab-
stract generic model are presented.

chapter 10 - Conclusion
Sums up the work and yields conclusions in relation to the project.

Chapter 2

Railway Domain

What cannot be imagined cannot

even be talked about.

Ludwig Wittgenstein

2.1 Terminology and Components of Railway

Systems

The railway domain is almost two centuries old, and thus it makes sense that a
distinctive terminology for talking about railway systems has developed. Fortu-
nately the English terminology has evolved di�erently in Europe and America.
In this thesis work, the European terminology will be used.

The basic elements that make up a railway system, are points, signals, inter-
locking systems, track circuits, main tracks (linear tracks), loops and sidings.
A point (switch in American terminology) is a branching from the main track
with a mechanical functionality to switch between the main track and the
branch. In old systems points required a human operator to manipulate a hand-
operated lever, however in modern railway systems the points are operated by

6 Railway Domain

a point machine which is an electric device that can perform the switching and
can be operated from afar.
In context of a railway layout a point can be described as a straight path with a
branch into a diverging path, they do however have many di�erent shapes and
multiple points can be composed into complex intersections. Generally speak-
ing, a point can be in one of two states (or positions) which are referred to as
plus and minus, where plus denotes that the point is positioned such that the
the point connects in a straight line, and minus denotes that the point connects
to a diverging path.

Following drawings illustrate the described elements.

Figure 2.1: Illustration of a point switched to a minus position, a loop, a siding
and a track circuit sensor.

A signal can either be a physical signal light which, for example communicates
the occupation status of the coming track segment. A signal can also be a virtual
signal communicating speed limitations or wait and go messages directly to the
operator through an electronic interface in the train, or communicated directly
to an autonomous train control system. What is general for the term signal is
that it represents a way of communicating things such as stop and go messages
or speed up and slow down messages to trains operating on a railway network.

The main tracks (linear track) are the regular train tracks, and the term loop
describes a track which branch out from the main tracks and rejoins them again
at a later point. The term siding refers to a branching track with a dead end
which often is used for maintenance of the trains. A track circuit is an electrical
sensor which can detect the absence or presence of a train on a track segment.
Finally an interlocking system, is a control system which is responsible for safe
operation of the trains, which at the most basic level involves controlling the sig-
nals to avoid con�icting train movements and controlling the points positioning
so they are set accordingly for a passing train.

2.2 Safety Measures and Interlocking Systems 7

2.1.1 Recent Developments

As communication devices like GSM (Global System for Mobile Communica-
tions) become more reliable and cheaper, and other micro processors likewise, it
naturally becomes more relevant to use such technologies in systems like railway
control systems.

The railway industry is already in progress of moving from physical light signals
to virtual signals in the form of cab signaling systems. In a cab signaling system,
virtual signals send to the trains are communicated directly to the train operator
by some kind of interface.

Another advancement is the automation of train systems, and especially metro
systems in big cities. In these systems the trains are made completely au-
tonomous and so is all signaling and point switching. Autonomous systems
requires more and advanced sensors, but could potentially factor out some of
the human errors that often lead to fatal accidents. As of now, train automa-
tion is mostly seen in metro railway systems, because such railway systems are
smaller and more con�ned from the surroundings than typical railway systems
are.

2.2 Safety Measures and Interlocking Systems

Train operation is in general a safe way of transportation relative to other means
of transportation, which by large is because of the con�ned nature of trains,
since the movement of a train is limited to the given railway track layout. This
reduces the safety concerns for operation of individual trains to concerns such
as avoiding derailing accidents. This is done by making sure points remain in
stable and correct positions, and by making sure the train is operating within
the speed limits. However, safety becomes an even bigger concern when multiple
trains are utilizing the same railway tracks as collisions becomes possible.

Many measures both in the large and in the small are taken to minimize the risk
of accidents. In the small, track circuit sensors are for example designed such
that they will constantly indicate presence of a train when there is a failure in
the sensor.

In the large safety is ensured through an interlocking system. Railway systems
are often composed of a central operation control center, an interlocking sys-
tem and a signaling system which is either fully or partially controlled by the

8 Railway Domain

interlocking system.

At the central operation control, the itinerary plan is created and the execution
of the plan is carefully monitored by observing the states of signal lights and
sensors on the railways. The light signals can be controlled from the central
control center, however the control usually goes through an interlocking system
which ultimately is responsible for maintaining safety while executing the plan.

The interlocking system will constantly monitor sensor readings and location
data for the trains and take actions to ensure that accidents are prevented.
It does so by keeping a record the current train routes and by controlling the
points and signals, where the signals constitutes of stop and go signals and
signals to speed up or slow down. Traditionally the train routes were registered
in interlocking control tables, and then the interlocking system would generate
a proper execution order for the routes.

In order to guarantee the safety of the trains in the railway system, following
requirements must be met.[TV09]

• Track sections in front of the train must be clear from other trains until
it has passed.

• Points on the route of the train must be set to the correct positions.

• Speed changes of a train must be applied in su�cient time in order to slow
down or speed up to reach permitted speed.

The noble task of the interlocking system is to avoid following situations at all
times.

• Head to head collision, which can happen if two trains coming from oppo-
site directions are able to occupy the same track segment. This is probably
the most fatal type of error.

• Head to tail collision, this can again happen if two trains are able to occupy
the same track segment at the same time.

• Derailment, a derailment of a train can happen if the train traverses a point
which is switched to the wrong direction or if the point is performing the
mechanical switching while the train is traversing it.

There are multiple ways for interlocking systems to ensure that the above sit-
uations are avoided. The simplest way, is to require routes to be fully reserved

2.3 Route Reservation Methods 9

before permitting a train to traverse it, and not allowing other trains to traverse
routes reserved by other trains.

In the case of trains operated by humans, there is still a risk of trains vio-
lating reserved routes. To counter this, some interlocking systems uses �ank
protection, which means that points neighboring other points on the reserved
route, will be locked into a positioning such that they are disconnected from
the point on the reserved route. This will e�ectively divert foreign trains from
over-running the reserved route.

2.3 Route Reservation Methods

One of the most common methods of ensuring safety along the route of a train,
is to fully reserve the whole route and marking it as locked such that no other
trains can use it. However, to ensure liveness it is necessary to release the route
again at some point. One approach, called sequential release, is to release a track
segment as soon as the train which reserved it has left it. Another approach is to,
strictly, not release anything on the reserved path until the train has completely
�nished its route. The latter approach is the simplest approach to making the
system safe, however it also leads to a poorer utilization of available resources
than what can be achieved with sequential release.

Another more extreme version of sequential release, is to de�ne so called moving
safety distance blocks around the trains based on their braking distance. This
approach requires very precise sensory data input, but can in theory optimize
the utilization of resources. One problem with this approach is that the moving
block is more of a continuous event rather than discrete and this makes it more
di�cult to model check.

10 Railway Domain

Chapter 3

Formal Speci�cation and
Veri�cation of Software

Systems

Program testing can be a very

e�ective way to show the presence

of bugs, but it is hopelessly

inadequate for showing their

absence.

Edsger W. Dijkstra

Automation has an increasing important role in modern society. From simple
tasks such as dispensing sodas to thirsty customers, to more important tasks
such as handling money transactions, to more complex tasks such as ensuring
safety on railways, in airplanes or even controlling cars autonomously.

The automation is implemented by engineers and software developers who are
nothing but humans, and humans tend to make errors. Given the continuous
increase in complexity, these systems are bound to contain at least a few er-
rors. We have already experienced many incidents through history where a

12 Formal Speci�cation and Veri�cation of Software Systems

bug or faulty implementation manifested itself and led to disasters such as fatal
overdoses of radiation1 or huge loss of money and wasted e�ort2.

3.1 Common Methods for Ensuring Corectness

in Software Systems

Given that the consequences of a faulty implementation can be so severe and
have such awful consequences, it is very important that engineers and software
developers are able to guarantee the safety of the systems they develop. Thus
ensuring correctness and safety in software systems is an important pursuit,
and many techniques and methodologies has been investigated and utilized with
varying degrees of success through time.

3.1.1 Type Checking

Back in the 1970's, the American military were increasingly concerned about
safety, correctness and composeability of the software they produced, and as a
result they ended up sponsoring the development of the strongly typed program-
ming language Ada. The strong typing system and the type checker, assisted
developers to construct more safe and correct software. Ada quickly came to
be one of the preferred languages to be used when developing safety critical
software, -not only for the American army but also in industries such as the
aerospace industries.

Recently a dependently typed programming language Idris[BRA13] has been
developed facilitating types as �rst-class language constructs and with the goal
of making dependent types and proof assistant features more accessible for soft-
ware developers.

1Between 1985 and 1987 patients were given an overdoses of radiation due to a concurrent
programming error.[Wikc]

2In 1999 a mars orbiter probe crashed uncontrollably into the atmosphere of Mars. Inves-
tigation later revealed that two communicating sub-systems were implemented with di�erent
units of measures in mind.[Wika]

3.1 Common Methods for Ensuring Corectness in Software Systems 13

3.1.2 Testing

Perhaps the most common approach to ensuring safety and correctness in soft-
ware systems is testing, where especially unit-testing has catched on in popu-
larity. Unit testing is used for both black box and white box testing systems,
and has been very popular in the industry since its fairly easy to understand
and apply. The popularity of software testing, has even lead to new software de-
velopment methodologies such as Test Driven Development (TDD), where tests
are speci�ed before the actual functionality is implemented.

However, as Edsger Dijkstra famously stated in 1969, testing can only reveal the
presence of bugs and not the absence. This drawback is attempted tackled with
methods such as property-based-testing, where test oracles are de�ned as a set
of generalized properties, and used together with a randomized testing strategy
that gradually attempts to narrow down the randomization to �nd errors that
break the properties.[CH11].

3.1.3 Peer Reviews and Pair Programming

Another commonly applied method of verifying software, is through peer re-
views or pair programming. Peer reviews, also known as code reviews, is a
simple methodology where code written by one programmer is reviewed by
another more experienced programmer who analyses the code for errors and
maintainability. Pair programming, involves two programmers sitting together
while developing the actual code.
The rationale behind both of these methods, is that drawing from the experience
of more than just one developer when producing code will lead to more correct
and maintainable software.
However, human veri�cation is costly compared to automated veri�cation, and
is rarely enough to fully guarantee correctness in a system.

3.1.4 Model Checking

The last but not least important method of veri�cation to be mentioned here,
is model checking. Model checking �rst started out as a technique for verifying
correctness in hardware systems, however it has slowly spread to the domain of
software veri�cation as well. Model checking is essentially about verifying a set
of temporal logic properties by rigorously exploring the state space of a modeled
system.

14 Formal Speci�cation and Veri�cation of Software Systems

Model checking requires careful modeling of the subject system, since even a
normal 32-bit integer in a program will expand the state space to search with a
factor of 232, which quickly becomes very costly to verify. Therefore, to model
check a system, it is necessary to distill and abstract the system into a simple
model which still re�ects the subject system but does so in a way that drastically
limits the increase in state space to verify.
Model checking is the type of veri�cation which is studied and described in this
thesis work, with one of the motivations being that it is a veri�cation method
that promises a complete rigorous veri�cation of the subject modeled system.

3.2 Model Checking

As previously mentioned, model checking is about verifying a set of properties
in a system by exploring the state space of the given system. The challenge,
however, is to derive a model which represents the behavior of the subject system
but with less state space to explore.

Exploring the state space of most systems as they are, is in most cases infeasible.
For example, verifying a program dependent on three 32bit integers, would alone
require exploration of 296 states. Even by using a computer system capable of
exploring 93 ∗ 1015 states per second, the endeavor of checking all these states
would take more than 27000 years. 3 To model check a system, it is therefore
necessary to distill the behavior of the subject system into an abstract model
which is able to represent the system with fewer states.

3.2.1 Deriving and Specifying Formal Models for Model

Checking

In general there are two common methods of deriving such a model. One way
is to use the informal description of the system requirements and behavior and
formulate it in a formal language. And the other common way is to either
automatically extract the model from an existing Software or Hardware imple-
mentation or manually derive a formal model through reverse engineering.

The model is typically speci�ed in a formal model checking language as a set of
functions, data types and a transition system which describes the behavior of
the system and utilizes the de�ned functions and data types.

3The Chinese super computer Sunway TaihuLight, has been bench marked to be able to
perform 93 peta FLOPS (�oating point operations per second).

3.2 Model Checking 15

3.2.2 Temporal Logic and Veri�cation of Properties

A temporal logic language constitutes of the normal propositional description
language (conjunctions, disjunctions and negations) which are used in describing
the properties of a given state, and furthermore a set of temporal operators
which are used in describing the transitions between the states. The most
commonly used temporal languages used in model checking are LTL (Linear
Temporal Logic), CTL (Computational Tree Logic) and CTL* which is a less
restrictive superset of CTL.

The two most de�ning operators in temporal logic is the eventually operator
typically denoted F and the global operator which is typically denoted G. The
F operator is used to assert that a given property will hold true in some future
state, while the G operator speci�es that a given property must hold true in
every state on a path.
The speci�ed properties are often categorized into one of two categories, where
the �rst is a type of safety property, and the second is a type of liveness property.
Safety properties must hold true at all times, so those properties uses the G
operator, while the liveness properties must ensure some state eventually is
obtained and thus uses the operator F . Since G is used to specify that something
must hold true along all states in a path, it can be used specify that a set of
properties which are critical for safety, must hold true at all times. Since the
F operator is used to specify that some property eventually will become true,
it can for example specify that some locked resource will be free again in the
future such that a given process wont be waiting forever, and thus the property
can be used to specify liveness.

3.2.2.1 Linear Temporal Logic (LTL)

LTL is the simplest of the three above mentioned temporal logic languages. It
constitutes the temporal connectives G and F mentioned above and furthermore
the connectives X ("next") and U ("until"). The next operator X speci�es that
the given proposition must hold true in the state following the current. The
until operator U is an in�x operator written as pUq where p, q are propositions,
the until operator states that p must hold true in all states on the path until q
is satis�ed. LTL is called linear because the properties must hold over a linear
path.

16 Formal Speci�cation and Veri�cation of Software Systems

3.2.2.2 Computational Tree Logic (CTL)

The logic language of CTL consists of the same operators as in LTL, however
CTL is a branching tree logic which means that it is possible to reason about
the branches in the tree that unfolds when iteratively expanding all possible
states from the transition model to a tree with the initial state as root. CTL
therefore also speci�es an existential quanti�er E and an universal quanti�er A.
The existential quanti�er E is used to speci�c that the given property hold true
along at least one path in the unfolded state space tree, whereas the universal
quanti�er A speci�es that the property must hold true along all branches. CTL
is restricted such that any of the other temporal operators in the language must
be preceded by a quantifying operator.

Following are illustrations of the various combinations of CTL operators in use.

Figure 3.1: EX(black) describes that there exists a path where the next state
must be black. EG(black) describes that there exists a path where
all the states must be black. AX(black) describes that for all paths
the next state must be black. AG(black) describes that for all
paths all the states must be black.

3.2 Model Checking 17

Figure 3.2: EF(black) describes that there exists a path where some future
state must be black. E(gray U black) describes that there exists a
path where all states must be gray up to a black state. AF(black)
describes that for all paths there exists some future state which is
black. A(gray U black) describes that for all paths all states must
be gray up to a black state.

18 Formal Speci�cation and Veri�cation of Software Systems

Chapter 4

The UMC modeling
language

This chapter gives a brief introduction to the UMC modeling language[Maz09]
and tool-set, which has been used in this project for modeling and veri�cation.
It might be useful to refer to Appendix B to get a complete picture of the
grammar of the language, and to refer to Appendix C and Appendix D to see
a concrete speci�cation made with the language. This chapter solely aims at
introducing the subset of the language which has been utilized in this project.

4.1 About UMC

UMC is a modeling language that seeks to make model checking more approach-
able to non-expert users. The language essentially enables a user to specify
textual representations of UML state diagrams, and lends a part of its syntax
to the way transitions are described in UML state diagrams.
The language has been designed to be a target language for a more high level
language or graphical tool to generate. Therefore, the language itself has been
implemented with very limited static type checking capabilities. This also means
that the language, for example, doesn't have generalizing functions. The lan-
guage is object oriented and enables the user to specify a set of generic classes

20 The UMC modeling language

and a set of object instantiations of the given classes. The classes encapsulates
all mutation, such that the only way for objects to manipulate the state of
another object is by means of synchronous operations or asynchronous signals
which are queued up in an event queue for each object.

4.2 Structure and Semantics

A full UMC model description consists of a set of class de�nitions, a set of object
instantiations and a set of abstractions. And an abstract skeleton of an UMC
model looks as follows.

Class classname_1 i s
. . .
end classname_1 ;

Class classname_n i s
. . .
end classname_n ;

Objects
objectname_1 : classname . . . ;
objectname_n : classname . . . ;
. . .

Abst rac t i ons {
Action . . . −> . . .
State . . . −> . . .
. . .

}

Following subsections describes the components presented above.

4.2.1 Class de�nitions

A class de�nition describes a set of synchronous operations, a set of asynchronous
signals, a set of variables, a set of states and a set of state transitions. The
skeleton of a class in UMC looks as follows.

Class classname i s
S i gna l s

4.2 Structure and Semantics 21

. . .
Operat ions
. . .

Vars
. . .

State . . . = . . .
T ran s i t i on s :

State1 −> State2 { . . . }
. . .

end classname ;

The signals de�nes a set of asynchronous messages that can be send to the event
queue of an object of the given class that de�nes the signals. A signal has a
name and an arbitrary number of arguments that it caries along from the sender
to the recipient. It is possible to de�ne the types for the arguments, however,
they are not statically type checked. The arguments carried along with a signal
are simply treated as immutable values making it impossible for a recipient of
a signal to manipulate variables of a sender.

The operations de�nes a set of synchronous operations to be invoked on an
object of the given class. Just like the signals, the operations also de�nes a set
of arguments, but furthermore does the operations also de�ne a return value to
be returned from the transition in the object they are invoked upon. Just as
with the signals, the arguments carried along with an operation are treated as
immutable values such that the recipient cannot mutate the state of variables
on the sender object.

The vars de�nes a set of variables which are used to keep an internal state in
an object of the given class. The variables can be integers, booleans, object
references or arrays.

The state describes a set of modes that an object of the given class can be in.
It is possible to de�ne nested states and multiple nested states, however in this
project only one layer of states has been used in each of the classes. Note that
the �rst listed state automatically de�nes the initial starting state of the given
class.

The transitions describes a set of transitions between the de�ned states. The
transitions are described with a syntax similar to the syntax used to describe
state transitions in UML state diagrams. The syntax for a transition looks as
follows.

22 The UMC modeling language

eventName[guardExpression]/action

Where the eventName is either an operation or a signal, which are said to,
essentially, trigger the transition. The guardExpression is an expression that
evaluates to a boolean value, where the expression can be composed of any of
the class variables and arguments carried along with the triggering signal or
operation. At last, the action is the action carried out when the transition
is �red. An action in this context can be any composition of statements and
typical imperative constructs such as if statements, for loops and while loop. The
statements permit mutation of the state of the class variables, or sending out
signals or invoking operations upon other objects. Note that if the triggering
event is an operation, the action will end with a return statement returning
whichever type the operation de�nes as return type. Even if the operation does
not specify a return type, it will still have an implicit return value of zero. It
is however valid to omit the return statement in the action, but in that case an
implicit return statement returning zero will be executed at the end of an action
when model checking the model.

In the expressions used as part of the statements or in the guards, it is possible
to use the typical binary operators such as +, −, <, > and = for integers
and logical and and logical or for booleans. Signals and operations are simply
invoked on objects by su�xing the given object reference with .eventName
where eventName is the name of the operation or signal to be invoked on the
given object. Array indexes can be accessed and mutated through the classical
square bracket notation array[index], however they can also simply be treated
as lists by using the .head and .tail operations.

4.2.2 Object declarations

Once the classes has been de�ned, a set of objects can be declared from the
classes. These object declarations essentially de�nes a concrete model, while the
classes alone de�nes the generic model behavior.

The object declarations looks as follows.

object_name : class_name
(object_attr ibute_1 => in i t ia l_va lue_1 ,
. . . ,
ob ject_attr ibute_2 => in i t i a l_va lue_2) ;

object_name : class_name ;

4.3 UCTL properties 23

Here the object attributes refers to the local variables declared on the given
class. Note that it is possible to de�ne default initial values for variables in
classes, and in that case it is not necessary to specify any initial value for the
given variable in the object instantiation.

4.2.3 Abstraction rules

An abstraction is essentially a construct that captures a given situation for the
whole model. For example the situation where a variable on a speci�c object
has a certain value, or the situation where a speci�c object is in a particular
state.

The abstractions can be de�ned either as a state-abstraction or as an action-
abstraction. State-abstractions captures a certain type of state in the model
based on a conjunction of propositions that tests the variables or states of one
or more of the de�ned objects. Action-abstractions captures the situation in the
model where an operation or a signal are invoked or emitted. In this project
only one action-abstraction has been de�ned, and that is an abstraction that
captures the situation where the UMC model checker determines that a recipient
of a signal or operation, has no handling for the given signal/operation for the
current state of the receiving object. When the UMC model checker encounters
such a situation, it will emit a lostevent signal on an implicit object called ERR.
This particular action-abstraction has been very useful in the modeling process,
where it helped track down states for which a given signal was not handled.

Note that the state-abstractions can only be de�ned as conjunctions. So if the
user prefers to use a disjunction, he must exploit De Morgan's Law and specify
the abstraction as a negation of a conjunction where all the conjunct propositions
inside the conjunction are negated.

4.3 UCTL properties

Independently of the actual model, a set of properties can be speci�ed in a UMC
tailored modal logic syntax called UCTL, which de�nes the same modal logic
operations as de�ned in CTL.

What is special for UMC and UCTL, is that the previously mentioned abstrac-
tions are used in the de�nition of properties.

24 The UMC modeling language

Chapter 5

An Engineering Concept of
a Geographically

Distributed Interlocking
System

This chapter describes the engineering concept of the railway interlocking sys-
tem which is to be modeled.
The system described is inspired by the idea of an interlocking system where
the trains need to reserve their intended route before being permitted to tra-
verse it and, with a distributed communication setup which is dependent on the
geographical layout of the railway track circuits.

5.1 The overall idea

The fundamental purpose of the system, is to ensure that no two trains ever
end up in a dangerous situation where they both occupy the same track. This
situation is avoided by requiring that trains reserve their route before traversing

26

An Engineering Concept of a Geographically Distributed Interlocking

System

it. To reserve a route, the train must gather consensus about the reservation
from all the track elements which constitute the route.

In the described railway interlocking system, the network is composed of track
elements, consisting of linear track segments and point segments which all are
equipped with a track circuit type sensor.

The concept evolves around trains reserving routes through a two-phase commit
protocol that attempts at collecting a consensus between the elements that
composes a given route. Furthermore does the concept involve a sequential
release mechanism for releasing reserved routes as they are traversed by the
reserving train.

In the view of the consensus gathering protocol, the track elements assume the
role of communication nodes which can be queried for reservation. Each node
maintains a local state and is informed about relevant neighboring nodes as a
route is reserved. The system is a distributed system, with all communication
being propagated through the nodes based on their geographical relationships.

The following sections describes the two-phase commit protocol and the sequen-
tial release mechanism.

5.2 The Communication Scheme - Two-phase

Commit Protocol

A two phase commit protocol, is a distributed consensus algorithm which coordi-
nates a set of processes that all participate in the same distributed transaction.
The protocol helps determine whether to commit or cancel a given transac-
tion across a set of distributed processes. In the case of the geographically
distributed interlocking system, the processes corresponds to the nodes in the
railway network, and the agreed transaction is a route reservation for a given
train.

The protocol requires an assigned coordinator responsible for initiating the com-
mit, which for the given type of railway interlocking system corresponds to a
train.

The protocol has two phases of message correspondences, each consisting of a re-
quest message being send out to all participating nodes and a response message
being communicated back to the coordinator. In the case of the geographically

5.2 The Communication Scheme - Two-phase Commit Protocol 27

distributed interlocking system, the nodes are linked either virtually or physi-
cally in a sequential fashion corresponding to the given route. A request message
is propagated through all participating nodes, and as the request reaches the
very last node, the given node will initiate a response message to be propagated
back through all the participating nodes.

Figure 5.1: Illustrating the concrete two-phase commit protocol used for route
reservations. The First Node, Intermediate Nodes and Last Node
represents the track elements in the system.

The �rst phase, commonly referred to as the "voting phase", starts with the
coordinator sending out a query message which then is propagated through
the network of nodes. The initial query message will contain details and data
of what is to be committed. If all nodes agree to the query, the last node
will initiate an acknowledgment message to be propagated back through the
network. If, however, one of the nodes disagrees to the query, the disagreeing
node will initiate a negative acknowledgment message to be propagated back to
the coordinator.
In this phase, a node might choose to disagree if it detects the presence of a
train on the track element, which is not the train that initiated the reservation
request, or it might disagree simply because the given node already is involved
in a reservation request initiated by another train.

The second phase, commonly referred to as the "completion phase", is usu-
ally initiated by the coordinator after receiving the positive acknowledgment
message from the �rst phase. However, in the case of the geographically dis-
tributed interlocking system, the nodes are connected in a sequential fashion
and the coordinating train has nothing new to add to the communication. Thus
the immediate node following the train in the communication chain, will act as
coordinator. Had the system been communicating in a distributed fashion with-
out regards to geographical relationships between the nodes, then the messages
would need to be communicated back to the original coordinator (the train).
When the �rst node in the communication chain receives a positive acknowledg-
ment message from the �rst phase, it immediately initiates a commit request,
which informs the nodes to commit the awaiting transaction.

28

An Engineering Concept of a Geographically Distributed Interlocking

System

As each node receives the commit request it will prepare to enforce the transac-
tion. If any node fails the conditions for performing the transaction it will emit
a disagree message which is to be propagated out to all the nodes involved in the
transaction. Upon receiving a disagree message, the nodes which have already
committed the transaction will attempt a rollback to their previous states, and
the nodes which have yet to commit will abandon the pending transaction.
In the case of the geographically distributed interlocking system, the commit
message will cause the points on the route to apply the positioning requested
for the given route. A disagree event will simply cause the nodes to abandon
the pending reservation and go back to a non reserved state that indicates they
are ready to receive new requests.
When the last node in the system has received the commit message, it will ini-
tiate an agree message to be propagated back through the nodes. When the
�rst node, on which the train is located, receives the agree message, it will
communicate an ok message back to the train.

5.3 Route Reservation

The individual nodes need not know the details of the track layout, instead the
knowledge of the track layout can be either centralized and/or be known by the
trains. In the conceived concept, the nodes are informed of their neighbors with
regards to a speci�c route reservation. The initial route reservation request,
which the train sends out, will contain an ordered list of the nodes involved in
the route. As the reservation request is propagated through the network to the
involved nodes, each node will record its neighbors for the given route.
However, the knowledge about routes in the system is not entirely enough, an
overview of the railway network layout must still be duly maintained, and it
is assumed that all routes has been veri�ed against the current layout of the
railway network.

Alternatively could the nodes be initialized or bootstrapped with knowledge
about their immediate neighbors. This con�guration would serve the purpose
of rejecting impossible routes. However if the routes has already been veri�ed
against the concrete track layout prior to even attempting the reservation, then
this interconnection check performed in the nodes is redundant and perhaps
unnecessary.

One bene�t of de�ning the interconnections between the nodes using routes in-
stead of de�ning the interconnections statically and locally on the nodes them-
selves, is that it is easier to change the software representation of layout of
the railway network, as the physical network changes over time, as an e�ect of

5.4 Releasing the Reserved Track Segments - Sequential Release 29

maintenance work and extensions of the physical railway network.

5.4 Releasing the Reserved Track Segments - Se-

quential Release

To increase the usage and utility of the given railway track system, a sequential
release mechanism can be implemented. The purpose of such a mechanism is to
make reserved nodes available for other trains to reserve and use, as they are
no longer needed by the original train which reserved them. As the individual
track segments reserved for a given route, detects �rst the presence and then the
absence of a train -they will go back into a state that de�nes them as available
for new reservations.

The alternative to a sequential release mechanism would be to hold all nodes
in a reserved state until the reserving train has reached its route destination.
This, however, would reduce the availability of the track elements resulting in
a poor usage of the network as a whole as the nodes will be held in a reserved
state for a longer time than if they were released immediately after use.

Figure 5.2: Illustration of the sequential release mechanism for a train located
at P1 and L2 with an original route from L1 to L2. Since the
train is no longer occupying L1, the track is released.

Figure 5.3: The state transitions happening as the presence of a train is de-
tected at a track element by its track circuit sensor, followed by
detection of the absence of a train.

30

An Engineering Concept of a Geographically Distributed Interlocking

System

5.5 A Practical Implementation of the System

The linear track segments and points in the system would be equipped with track
circuit sensors to detect presence or absence of trains. Furthermore can each of
the linear segments and points be equipped with radio communication hardware
to enable wireless communication with each other, and small processing units
for maintaining state wrt. reservation status in the system and handling of the
reservation negotiation protocol.
The train can likewise be equipped with radio communication hardware and
a processing unit for handling the reservation negotiation protocol. At last,
can the train processing unit be responsible for communicating the result of a
reservation to the train operator.

For an implementation of the given system to be safe, it would have to somehow
rule out human errors. A human train operator could accidentally miss a signal
to stop and potentially create a dangerous situation by violating an already
reserved route. The obvious way to counter this problem, would be to make the
trains fully automated. However, the system could also be implemented with a
mechanism in the trains that automatically breaks if it detects that it is about
to violate a reserved track section. The protection against human errors could
furthermore be enhanced by implementing �ank protection, such that points
neighboring a reserved route will position themselves to divert trains away from
the reserved route.

At the software level, the overall implementation architecture would be a dis-
tributed system consisting of isolated processes, each with the responsibility of
handling route reservation requests. At least three types of processes would be
needed, one for the train, one for the linear track nodes and one for the point
nodes.

5.6 Discussion

The core idea behind the presented concept, is that a route must be fully reserved
before a train can traverse it, and since it is not possible for other trains to
reserve segments of an already reserved route, this should very much prevent
collision between trains. This, however, only holds true if either the trains are
fully automated or if they implement some sort of fail-safe brake, since human
operators potentially still can violate reserved routes.

An important motivation for making the interlocking system distributed instead

5.6 Discussion 31

of centralized, is that it allows on of smaller subsets of the network to be veri�ed
independently, as also discussed in [Fan12]. In contrast, changes made to a fully
centralized system where everything is highly interdependent, requires the whole
network to be veri�ed, which can be quite costly with regard to computational
resources, -especially for large networks.

The concept could be extended to support reservations of partial routes or even
moving block reservations. However this would require a lot more work to be
done with regards to ensuring liveness in the system, in order to avoid trains
ending up in deadlock situations. By fully reserving a route and only permitting
trains to traverse they have reserved, it is trivial to check the system with regards
to liveness.

32

An Engineering Concept of a Geographically Distributed Interlocking

System

Chapter 6

Modeling the
Geographically Distributed

Interlocking System in UMC

This chapter describes the modeling of the Geographic interlocking system de-
scribed in the previous chapter. The model speci�cally models the two-phase
commit protocol for reserving train routes, and the physical movement of the
trains over their respective routes in the railway network layout.

6.1 De�ning the Model in UMC

The geographically distributed interlocking system has been speci�ed in the
UMC modeling language with initial inspiration drawn from a model originally
speci�ed by the student Marco Paolieri from University of Firenze[Pao10].

The model consists overall of the three types of components modeled in UMC
classes. The classes constitutes a Train class representing trains, a Linear class
representing linear track segments and a Point class points. Each of the UMC
classes contain a set of variables, a set of incoming signals, a set of class-states

34 Modeling the Geographically Distributed Interlocking System in UMC

and a set of state transition de�nitions. Essentially, it is the state transitions
which re�ects the behavior of a given component.
The Point class and Linear class each basically models a track element commu-
nication node and a physical track circuit sensor, while the Train class models
the communication node in a train and the trains physical movement across its
route in the railway network.

All the components are modeled such that it is possible to de�ne physical lengths
as abstract discretized length units. The purpose of this, is to be able to model
situations where a train overlaps multiple track elements, and speci�cally model
train movement transitions over neighboring track segments. All elements use
the same abstract unit length, and the train movement is modeled such that
a train moves in discretized steps of one unit in each movement step. At all
times, the model keeps track of the location of each section that makes up the
length of each train in order to model the movement of the trains across multiple
segments in the railway network.

The actual use of the classes is described in the next chapter, which describes a
tool for instantiating the objects to compose a full model based on the classes.

This section informally describes the speci�cation details of the generic classes
and their signals, variables, state transitions and behavior.

Note that the full source code for the following described classes can be found
in Appendix C.

6.1.1 The Train Class

The Train class models the behavior of a train in a railway system with a geo-
graphically distributed interlocking system. The train is responsible for reserv-
ing its own route by sending out a reservation request message, and simulates
moving through its route by keeping track of its own position on the route and
invoking operations on the track element nodes that it passes on its route.
The Train class supports trains of varied lengths and models the movement of
the train such that it is possible for a train to partially cover a track element or
even cover multiple track elements.

6.1 De�ning the Model in UMC 35

6.1.1.1 Variables

The train contains variables describing its route and for keeping track of its
exact position on the route.

• requested_point_positions is an array of Boolean values that describes the
required position of each point on the route of the train.

• train_length is an integer value that determines the length of the train.

• route_segments is an array of object references containing references to
the track element nodes constituted by communication nodes representing
the linear track segments and point segments.

• route_index is an integer that indicates how far in the route the train has
traveled. The value corresponds to an index in route_segments.

• occupies is an array of object references. The array has same length as
the train and contains references to the nodes which the train currently
covers with its length.

• front_advancement_count is an integer variable which describes the cur-
rent location of the front of the train within the track segment that the
train currently occupies.

• track_lengths is an integer array which describes the lengths of the track
segments contained in route_segments. The two arrays track_lengths and
route_segments corresponds index-wise.

6.1.1.2 Incoming signals and outgoing signals

The Train class exposes two signals which can be send to the instantiated train
objects.

• a no signal indicating rejected reservation of its route.

• an ok signal indicating successful reservation of its route.

Only one signal is ever emitted from the objects of the Train class, and that is
the initial reservation request signal denoted req.
The req signal has the signature

req(sender, route_index, route_segments, req_point_configurations)

36 Modeling the Geographically Distributed Interlocking System in UMC

where the variables are described as

• sender which is a reference to the train itself.

• route_index which is used as an index for the route_segments array, and
is set to a value of zero with the initial request from the train to refer to
the �rst element of the route.

• route_segments which is an array containing references to the track el-
ements and points on the route of the train, which constitutes of linear
track segments and point track segments.

• req_point_con�gurations which is an array of boolean values indicating
the required position of each of the points along the route.

Besides sending and receiving signals, the train also invokes sensorO� and sen-
sorO� operations on objects of the Linear class or Point class.
The received and emitted signals and operations of the objects of the Train
class, are illustrated below.

Figure 6.1: The incoming and outgoing signals and operations of objects of
the Train class.

6.1.1.3 States

The train class has following states

• READY which denotes that the train is ready to perform a reservation.

• WAIT_OK which denotes that the train has send out reservation request
for a route and is awaiting response.

• MOVEMENT which denotes that the train is currently moving over its
route in the network.

• ARRIVED which denotes that the train has arrived at its destination.

6.1 De�ning the Model in UMC 37

6.1.1.4 State transitions

Below is a state diagram illustrating the states and transitions between the
states. In the diagram, the transitions has been simpli�ed as much as possible
to improve readability, notably a set of aliases has been declared at the bottom.
After the diagram follows a set of high level descriptions of the state transitions.

Figure 6.2: State diagram for the Train class. The diagram follows the UML
convention for state diagrams, where each transition is labeled
with �eventName [guardExpression] / action�, where eventName
in this case is an incoming signal, guardExpression, is the require-
ment to be able to take the transition and action is the action
performed when the transition is taken. The symbol - signi�es
absence or empty statement.

READY -> WAIT_OK
Requires: -
E�ect: Sends the initial request to the �rst node in the route of the train.

WAIT_OK -> READY
Requires: The train has received the signal no.
E�ect:
The train has received a rejection signal for its reservation request and goes back
to its READY state.

WAIT_OK -> MOVEMENT
Requires: The train has received the signal ok.

38 Modeling the Geographically Distributed Interlocking System in UMC

E�ect:
The train has received the �nal acknowledgment which indicates that the full
reservation of its route has been completed successfully, and therefore transitions
into the MOVEMENT state.

MOVEMENT -> MOVEMENT
Requires: The train has not reached the end of the �nal node on its route.
E�ect:
The train is traversing the track elements on its route and is triggering track
circuit sensors as it traverses over the track elements on the route. At each
transition the train determines if it has reached the end of a track, by evaluating
whether or not the front of the train has reached the end of the length of the
current track it occupies. When the front of the train moves into a new track
segment, it triggers the the track circuit by invoking the sensorOn operation on
the given track element. When the rear of the train leaves a track segment, it
triggers the track circuit sensor o�, by invoking the sensorO� operation on the
given track element.
At each transition the occupies array is updated to re�ect which track segments
the train covers. The head of the occupies array represents the rear of the train
and the last element of the array represents the front of the train.

The algorithm used for train movement is presented below in the UMC language
with comments in italics. Furthermore, to understand the �ow of the movement
better, it might be bene�cial to refer to the Scenario section later in this chapter,
where a concrete example is explained in details.

Listing 6.1: Train Movement Transition

MOVEMENT −> MOVEMENT {
−
[not (route_index = route_segments . l ength − 1 and
track_lengths [route_index] − 1 = front_advancement_count)] /

- - determine if we have reached the end of the current track
at_end_of_track : bool :=

track_lengths [route_index] − 1 = front_advancement_count ;
i f at_end_of_track = true then {
front_advancement_count := 0 ;
- - if the route index is not the last of the route segments array
i f route_index < route_segments . l ength − 1 then {
- - the train enters the next track on the route
route_index := route_index + 1 ;
- - modeling that the track circuit sensor on the next track detects the train
route_segments [route_index] . sensorOn (s e l f) ;

} ;
} e l s e {

front_advancement_count := front_advancement_count + 1 ;
} ;
- - update the occupies array
r ea r : obj := occup i e s . head ;

6.1 De�ning the Model in UMC 39

next_rear : obj := occup i e s . t a i l . head ;
occup i e s := occup i e s . t a i l + [route_segments [route_index]] ;
- - if the rear of the train has left a track segment
i f r e a r != next_rear then {
� modeling that the past track circuit sensor detects absence of the train
r ea r . s en so rOf f (s e l f) ;

} ;
}

MOVEMENT -> ARRIVED
Requires: The train has reached the end of the length of the �nal track element
on its route.
E�ect: The train has successfully traversed its route and has reached its desti-
nation.

6.1.2 The Linear Class

The Linear class models the behavior of a node representing a linear track
segment equipped with a track circuit sensor. The class models the receival and
forwarding of of route reservation negotion messages, and models track circuit
sensor responses to a train that's moving across its length.

6.1.2.1 Variables

The Linear class contains variables describing its immediate neighbors relative
to a reserved route, a reference to the train currently occupying the linear track
segment, and the length and amount of free capacity of the linear track segment.

• next is an object reference to the next neighboring track segment or point
on a reserved route. The variable is null when the node is in the non
reserved state.

• prev is an object reference to the previous neighboring track segment or
point on a reserved route. The variable is null when the node is in the
non reserved state.

• train is an object reference to the train which is currently occupying the
node. This variable is null if no train is occupying the node.

40 Modeling the Geographically Distributed Interlocking System in UMC

6.1.2.2 Incoming and outgoing signals and operations

Incoming signals
The Linear class describes a set of signals involved in negotiating a full route
reservation between the nodes representing the track segments in the network.
These signals are:

• req which is a reservation request, with the same parameter signature as
the req signal described under the Train class.

• ack which is an acknowledgment signal send in response to a request.

• nack which is a negative-acknowledgment signal send in response to a
failed request.

• commit which signi�es a request for the current reservation to be enforced.

• agree which is an acknowledgment signal send in response to a commit
signal.

• disagree which is a negative-acknowledgment signal send in response to a
failed commit.

Operations
The class speci�es two operations which are invoked by other objects:

• sensorOn which is an operation invoked by a Train class object. This
operation models that a sensor has been triggered on by a train when it
moves onto the track.

• sensorO� which is an operation invoked by a Train class object. This
operation models that a sensor has been triggered o� by a train when it
leaves the track.

The sensorOn and sensorO� operations, essentially models the triggering of a
track circuit sensor.

Outgoing signals
The outgoing signals are the same as incoming signals, but also includes the
train signals ok and no.
The incoming and outgoing signals and operations are illustrated below.

6.1 De�ning the Model in UMC 41

Figure 6.3: The incoming and outgoing signals and operations of objects of
the Linear class, with signals colored black and operations colored
blue.

6.1.2.3 States

The Linear class contain following states:

• NON_RESERVED which denotes that the given node is currently free.

• WAIT_ACK which denotes that that the node has received a reserva-
tion request and now is awaiting an ack response message from the �rst
acknowledgment phase of the two-phase commit protocol.

• WAIT_COMMIT which denotes that the node is awaiting a commit re-
quest message from the second phase of the two-phase commit protocol. In
this state, the node is ready to prepare the enforcement of the reservation.

• WAIT_AGREE which denotes that the node is awaiting an agree response
message from the second acknowledgment phase of the two-phase commit
protocol. In this state the node is ready to enforce the reservation in the
case of consensus among all the nodes.

• RESERVED which denotes that a reservation has been enforced, and
therefore the node is currently reserved. The node is thus ready for the
reserving train to traverse over the track segment associated with the node.

• TRAIN_IN_TRANSITION which denotes that a train is currently mov-
ing on the track segment associated with the node.

6.1.2.4 State transitions

The set of state transitions involving the states NON_RESERVED,
WAIT_ACK, WAIT_COMMIT, WAIT_AGREE and RESERVED, triggered

42 Modeling the Geographically Distributed Interlocking System in UMC

by the signals req, ack, commit and agree, basically describes the behavior of the
two-phase commit protocol. In these transitions, an incoming signal is either
passed along to a neighboring node, or a new phase of the two-phase commit
protocol is started when the node is either �rst or last on the route.

The transitions involving the states NON_RESERVED, WAIT_ACK,
WAIT_COMMIT, WAIT_AGREE and RESERVED, triggered by the signals
nack and disagree, describes the behavior of the two phase protocol when a
route reservation fails. A route reservation is successful if no other trains are
occupying any of the track segments along the route, and when all the track
elements on the route are involved in the same two-phase commit protocol. On
the other hand, a route reservation fails if another train is occupying one of the
track elements on the route, or when another train has already engaged one of
the track element nodes in a reservation request.

The transitions involving the states TRAIN_IN_TRANSITION, RESERVED,
and NON_RESERVED triggered by the operations sensorOn and sensorO�,
describes the movement of a train over the track segment. The transitions also
models the sequential release behavior of a track segment, where a train �rst
enters a reserved track segment triggering the track circuit sensor on, and then
leaves the track segment triggering the track circuit sensor o� causing the given
track element to be free and non-reserved again.

To give an overview of the state transitions, a state diagram of the Linear class
is presented below.
Following the diagram, are the individual state transitions described informally.

6.1 De�ning the Model in UMC 43

Figure 6.4: State diagram for the Linear class. The diagram follows the UML
convention for state diagrams, as also described in the �gure for
the Train state diagram. Furthermore is it important to note that
the diagram omits descriptions of the actual performed actions for
brevity.

NON_RESERVED -> WAIT_ACK
Requires: a received request where the sender must be the train currently
occupying the track segment.

44 Modeling the Geographically Distributed Interlocking System in UMC

E�ect:
The current track element node has received an initial route reservation request.
The next variable is updated based on the route information and the request is
forwarded to the track element node on the route.

NON_RESERVED -> WAIT_ACK
Requires: a received request with a route where the current track element is
not the �rst or last.
E�ect:
The next and prev �elds are updated in the current node based on the route
information provided with the reservation request. The request is forwarded to
the next track element node on the route.

NON_RESERVED -> WAIT_COMMIT
Requires: a received reservation request with a route in which the current
track element is the last.
E�ect:
The prev variable is updated with the route information, and an ack signal is
send to the previous track element node on the route.

WAIT_ACK -> WAIT_COMMIT
Requires: an ack signal has been received, and the current node is not the
�rst track element node on the route, which is veri�ed by checking that the prev
variable is not null.
E�ect:
An ack signal is passed on to the previous track element node on the route.

WAIT_ACK -> WAIT_AGREE
Requires: an ack signal has been received and the track element node is the
�rst on the route, which is veri�ed by checking that the prev variable is null.
E�ect:
A commit signal is passed on to the next track element node on the route.

WAIT_COMMIT -> WAIT_AGREE
Requires: a commit signal has been received and the track element node is not
the last on the route, which is veri�ed by checking that the next variable is not
null.
E�ect:
A commit signal is passed on to the next track element node on the route.

WAIT_COMMIT -> RESERVED
Requires: a commit signal has been received by the current node, and the
track segment it represents is the last element on the route, which is veri�ed by
checking that the next variable is null.

6.1 De�ning the Model in UMC 45

E�ect:
An agree signal is send to the previous track element node on the route.

WAIT_AGREE -> RESERVED
Requires: an agree signal has been received by the current node, and the track
segment it represents is not the �rst on the route, which is veri�ed by checking
that the prev variable is not null.
E�ect:
An agree signal is send to the previous track element node on the route.

WAIT_AGREE -> TRAIN_IN_TRANSITION
Requires: an agree signal has been received by the current node, and the track
segment it represents is the �rst on the route, which is veri�ed by checking that
the prev variable is null.
E�ect:
An ok signal is send to the train, indicating that the route has now been suc-
cessfully reserved.

RESERVED -> TRAIN_IN_TRANSITION
Requires: a sensor on registration which is triggered by a train object invoking
the sensorOn operation on the current track element, modeling the triggering
of a track circuit.
E�ect:
The train variable is set to the value of the sender of the operation.

TRAIN_IN_TRANSITION -> NON_RESERVED
Requires: a sensor o� registration which is triggered by a train object invok-
ing the sensorO� operation, modeling that the track circuit sensor goes from
registering presence of a train to registering absence.
E�ect:
This transition models the sequential release functionality, releasing the node as
the train leaves it by setting its train variable to null.

WAIT_ACK -> NON_RESERVED
Requires: a nack signal has been received.
E�ect:
If the represented track segment is the �rst on the route, then a no signal is
send to the train which is occupying the track segment, else a nack signal is
send to the previous track element node on the route.
Since the node was awaiting an ack signal, and since ack signals are send in
the direction of the prev node, the current node only need to forward the nack
signal in that direction.

WAIT_COMMIT -> NON_RESERVED

46 Modeling the Geographically Distributed Interlocking System in UMC

Requires: a disagree signal has been received.
E�ect:
If the represented track segment is not the last on the route, then a disagree
signal is send to the next node on the route.
Since the node was awaiting a commit signal which are send in the direction
of the next node, it must forward the disagree signal in that direction. It is
furthermore, only possible for disagree signals to occur in the second phase of
the two-phase commit protocol, and therefore the disagree signals only need
handling for the transitions relevant to this part of the phase.

WAIT_AGREE -> NON_RESERVED
Requires: a disagree signal has been received.
E�ect:
If the current node represents the �rst track segment on the route, then a no
signal is send to the train which is occupying the track segment represented by
the node, else the disagree signal is forwarded to the previous track element
node on the route.

RESERVED -> NON_RESERVED
Requires: a disagree signal has been received.
E�ect:
If the node represents a track segment which is not the last, then a disagree
signal is send to the next node on the route.

NON_RESERVED -> NON_RESERVED
Requires: a req signal has been received, but a train is already occupying the
track segment, and the sender of the request is di�erent from the train which is
occupying the track segment.
E�ect:
A nack signal is send to the sender of the request signal.

WAIT_ACK -> WAIT_ACK,
WAIT_COMMIT -> WAIT_COMMIT,
WAIT_AGREE -> WAIT_AGREE,
RESERVED -> RESERVED,
TRAIN_IN_TRANSITION -> TRAIN_IN_TRANSITION
Requires: a request signal has been received.
E�ect:
The node is already in the process of being reserved, so it sends a nack signal
to the sender of the request.

6.1 De�ning the Model in UMC 47

6.1.3 The Point Class

The Point class is very similar to the Linear class. However, the Point class
deviates from the Linear class because points only can be intermediate nodes on
a route, and also because they model the track switching behavior of a point in a
railway system. Although the nodes representing points are very similar to the
nodes representing linear track segments, the points are required to be in correct
position before they can agree to a given reservation. If a positioning of a point
fails it will emit disagree signals to both its neighbors to communicate that the
reservation has failed and that the current reservation should be canceled.

6.1.3.1 Variables

The Point class de�nes the same variables as the Linear class, but with two
additional variables which are

• requested_position which is a Boolean variable that indicates a requested
position for the point for a speci�c train route.

• current_position which is a Boolean variable that indicates the current
positioning of the point. A value of True is to be interpreted as a plus
positioning, and a value of False as a minus positioning.

6.1.3.2 Incoming signals, Operations, Outgoing signals

The incoming signals, operations and outgoing signals are the same as for the
Linear class, with the only exception being that no point will ever communicate
directly with a train in the reservation process, so no ok or no signals are ever
sent from points.

48 Modeling the Geographically Distributed Interlocking System in UMC

Figure 6.5: The incoming and outgoing signals and operations of the objects of
the Point class. With signals colored black and operations colored
blue.

6.1.3.3 States

The states are the same as for the Linear class including an additional state
POSITIONING, which indicates that a point is currently performing a position-
ing switch between tracks, and a state MALFUNCTION which indicates that
the current point has malfunctioned.

6.1.3.4 State transitions

The set of state transitions are almost identical to the state transitions in the
Linear class, besides the fact that only transitions relevant for intermediate
nodes on a route are implemented, and additional state transitions for the PO-
SITIONING state are de�ned, and a transition for the MALFUNCTION state
has been added.

To give an overview of the state transitions for the Point class, a UML state
diagram is presented below. The additional transitions for Point class are in-
formally described after the diagram.

6.1 De�ning the Model in UMC 49

Figure 6.6: State diagram for the Point class. The diagram follows the UML
convention for state diagrams, as described under the Train class
state diagram. Furthermore does the diagram abstract away
the actual actions taken in the transitions, and de�nes an alias
In_position of a proposition that tests the current positioning of
the point against the requested positioning.

WAIT_AGREE -> POSITIONING
Requires: the node representing the point has received an agree signal, but

50 Modeling the Geographically Distributed Interlocking System in UMC

the requested positioning is di�erent from the current positioning of the point.
E�ect: The point goes into the POSITIONING state.

POSITIONING -> RESERVED
Requires: -
E�ect: The positioning is successfully performed. The point sends an agree
signal to its previous neighbor.

POSITIONING -> MALFUNCTION
Requires: -
E�ect: The point malfunctions while performing the positioning. It emits
disagree signals to both its neighbors indicating that the current reservation
should be canceled.

POSITIONING -> POSITIONING
Requires: the node representing the point has received a req signal.
E�ect:
The point is currently busy performing its positioning, and therefore the reser-
vation request must be rejected. The node representing the point, sends a nack
signal to the sender of the request.

6.2 Model Properties

The whole purpose of formally specifying the system, is such that it can be
model checked for certain relevant properties. In the case of an interlocking
system, the properties of main interest are safety properties. These properties
speci�es the most critical situations that must be be avoided in the system,
no matter what scenarios it is exposed to over its operational time. The two
most important safety properties to verify for an interlocking system, is the no
derailment property and the no collision property.

It can also be relevant to check the system for liveness or progress to verify the
absence of deadlocks between trains or messages. However, the modeled system
in this project also models possible malfunctions of points, and thus a simple
global check for progress in the model would fail, since a malfunction would
prevent the trains from passing the malfunctioning point. However, it is still
relevant to verify that the system allows the trains to reach their destinations
when no malfunctions occur, and thus a progress property is de�ned which
veri�es the arrival of trains for the state path branches where no malfunction
has occurred.

6.2 Model Properties 51

Properties can also be used as a debugging tool and for verifying the consistency
of a model. A property which checks for consistent handling of all signals in
the model, is an example of such a property. This type of property is mainly of
interest as a tool to spot modeling mistakes while deriving the generic model,
and to verify modeling assumptions.

Following sub sections describes the individual properties which are veri�ed for a
concrete model. Speci�cally when using UMC as modeling tool, it is possible to
de�ne abstractions which is a language construct for captures a given situation
in the system. These abstractions are core components when specifying model
properties in UMC. In this section, each property is formally described together
with its associated abstractions.

6.2.1 No Collision

The no collision property, is a safety property specifying that no two trains must
ever be able to occupy the same space on the modeled railway network. For the
modeled trains with discretized lengths, this means that no parts of any two
trains must ever be present at the same track segment at the same time.

The Train class speci�es an array occupies which has the same length as the
discretized length of the train, and is maintained with references to the track
elements which the train occupies when traversing its route. The occupies array
thus keeps track of the full location at all times for the given train. To verify
that no parts of any two trains are ever at the same track segment, it is necessary
to check that there is no intersection between the track segments which the two
trains occupies.

The no collision property uses an abstraction trains_at_di�_positions, which
captures the situation in the model where there is no intersection between any
two trains.

The trains_at_di�_positions abstraction can be formally described with the
following predicate, which is a conjunction over all pairs of trains (t1,t2) in the
system.

∧
(t1,t2)∈TrainPairs

 ∧
i∈I,j∈J

t1.occupies[i] 6= t2.occupies[j]


where I = {i|0 ≤ i < t1.length} and J = {j|0 ≤ j < t2.length}, and TrainPairs

52 Modeling the Geographically Distributed Interlocking System in UMC

is the set {(t1, t2)|t1 ∈ trains ∧ t2 ∈ train ∧ t1 6= t2} where trains is the set of
all trains in the system.

The no collision property simply veri�es that the above abstraction is valid
globally over all paths.

no collision

AG (trains_at_di�_positions)

6.2.2 No Derailments

The no derailment property, is a safety property which speci�es that no train
must occupy a point which is in progress of performing a mechanical positioning
between track segments. In a real life situation if a train were to traverse over
a point while the point were performing the mechanical switch, a derailment of
the train might occur.

This property requires two types of abstractions. It uses a set of abstractions
that specify that a given point is in its positioning state, and a set of abstractions
that specify detection of a train on the individual points.

A set of abstractions specifying the absence of trains at points is de�ned as
follows:

For all points p, an abstraction no_train_on_p is de�ned as follows:

State p.train = null

The set of abstractions capturing the situations where a point is positioning is
formally expressed as follows:

For all points p, an abstraction positioning_p is de�ned as follows:

inState(p.POSITIONING)

The property can now be de�ned using the no_train_on_p and positioning_p
abstractions:

no derailment

6.2 Model Properties 53

AG(
∧

p∈points
positioning_p =⇒ no_train_on_p)

where points is the set of all points in the system.

When checking this property, a claim could be made that the given property
only checks whether or not a train is detected on a point while its positioning. To
strengthen the claim of the property, another property can be de�ned to validate
that at all times when a train is present on a point it is correctly detected by
the point.

To create this property, an abstraction capturing the state where a given train
is occupying a speci�c point, must be speci�ed. The abstraction can be de�ned
as a disjunction over the train parts, where each predicate component checks if
the given train part is equal to the given point.

For each pair (t ,p) in the set {(t, p)|t ∈ trains∧p ∈ points} where trains is the
set of all trains and points is the set of all points in the system, the abstraction
t_on_p is formally de�ned as follows:

∨
i∈{0..t .length−1}

t .occupies[i] = p

Using the abstractions no_train_on_p and t_on_p , the property for verifying
the triggering of sensors on points, can now be formally de�ned as:

Trains correctly detected at points

AG

 ∧
(t1,t2,p)

(t1_on_p ∨ t2_on_p) =⇒ ¬no_train_on_p


where (t1,t2,p) is a triple from the set {(t1, t2, p)|t1 ∈ trains∧t2 ∈ trains∧t1 6=
t2 ∧ p ∈ points} where trains is the set of all trains and points is the set of all
points in the system.

This property essentially validates the claim that the points always detects the
presence of trains.

In the current model, the trains are always detected, but if the model were to be
extended to also model sensor failures, then the no derailment property would
have to use the t_on_p abstraction.

54 Modeling the Geographically Distributed Interlocking System in UMC

6.2.3 Progress property - arrival of all trains at their des-

tinations

It is not enough to verify that a model is safe. For the model to be of any use, it
should also be veri�ed that the trains will progress to reach their destinations in
the modeled network. This is both to verify that the generic model is speci�ed
correctly, and to verify that the trains in a concrete model doesn't just end up
being stuck in a deadlock preventing them from reaching their destinations.
Since the generic model models the event that a point may malfunction during
the run, the property for verifying arrival of trains must disregard these states.

A simple property can be de�ned for checking if there is any possibility that
the trains will arrive at their destinations. This property simply uses a set of
abstractions that captures the situation where each of the trains has changed
state to ARRIVED.

A set of abstractions t_arrived, specifying the arrival of a train t at its desti-
nation, can be formally de�ned as follows:

For each train t in trains an abstraction t_arrived is de�ned as

State: inState(t .ARRIVED)

where trains represents the set of all trains in the system.

The property can now be de�ned formally as

Will arrive

EF AG

(∧
t∈trains

t_arrived

)

With this property it is possible to show that there eventually exist a state in
the system in which all the trains have arrived.

However of interest to know in which cases the trains doesn't arrive. The mal-
functioning of points is supposedly the only thing that should be stopping the
trains from arriving, -disregarding the speci�cation of models with routes that
creates deadlocks.

To prove that the malfunction is the only thing stopping the trains from arriving,
abstractions for capturing the malfunction states are needed.

6.2 Model Properties 55

For each point p, an abstraction p_malfunction is de�ned

State: inState(p.MALFUNCTION)

For the property, what informally needs to be veri�ed, is that there do not exist
a state-path to a �nal state where it is not the case that both of the trains have
not arrived and until (up to) this �nal state there has been no malfunctions in
the points.
De�ning the property for verifying the claim, can be done using the CTL con-
struct "until" (U) and the special UMC language construct "�nal" which denotes
a state from which there are no more possible transitions to take.

no malfunctions when trains hasn't arrived

¬E

¬
 ∨

p∈points
p_malfunction

 U

(
final ∧ ¬

(∧
t∈trains

t_arrived

))

6.2.4 No message loss

Messages are an important part of the modeled distributed system, and it is
therefore of interest to know whether or not all messages are handled for all
possible cases. Being able to verify this, has been a great help when de�ning
the generic model, and has helped in tracking down unhandled signals.

The UMC model checker triggers a special lostevent action on a special ERR
object, when an object is incapable of handling an incoming signal in its
current state. This action can be captured with an Action abstraction dis-
carded_message, and can be de�ned directly in the UMC language as follows

Action: lostevent -> discarded_message

The property for checking for lost messages, can be de�ned using the UCTL
"next" construct. With this construct, a property can be de�ned which veri�es
that for all state-paths it will never hold that a message is discarded during a
transition from a state to a next state.

The property can be directly speci�ed in UMC as follows

no message loss

AG not (EX discarded_message true)

56 Modeling the Geographically Distributed Interlocking System in UMC

6.3 Scenarios

To give an idea of how the system functions with regards to movement of the
trains and the reservation through the two phase commit protocol, a set of
scenarios are described and illustrated in this section.

Each scenario is illustrated with a drawing indicating the intended routes of one
or more trains, next the events playing out during the scenario are illustrated
through a sequence diagram with state transitions indicated at the relative time
they occur.

6.3.1 A Successful Route Reservation

A successful reservation involves a train which sends out a request to reserve a
speci�c route in the railway network. In the following scenario, the train train1
sends out a request to reserve the route composed of the track segments L1, L2
and the point P1. In this scenario the point P1 is already positioned correctly
in relation to the route reservation. A simple drawing of the scenario setup is
presented below.

Figure 6.7: A scenario of a successful reservation of a route composed of the
linear track segments L1, L2 and the point P1. Both the linear
elements have a length of two, the point have a length of one and
the train a length of two.

The full two phase commit reservation is illustrated in the sequence diagram
below.

6.3 Scenarios 57

Figure 6.8: Sequence diagram of a successful reservation of a route composed
of the linear track segments L1, L2 and the point P1.

58 Modeling the Geographically Distributed Interlocking System in UMC

6.3.2 A train traversing its successfully reserved route

In the current scenario the traversal of the route reserved in the previous sce-
nario, is illustrated and described.

The movement of a train when it traverses its route in the model is rather
involved, and a lot of things is going on, therefore the sequence diagram for
the movement is followed up by a textual description commenting on the events
playing out.

6.3 Scenarios 59

Figure 6.9: Sequence diagram of the events playing out as train1 traverses its
reserved route composed of the linear track segments L1, L2 and
the point P1.

60 Modeling the Geographically Distributed Interlocking System in UMC

1. train1 : WAIT_OK -> MOVEMENT
The train object initializes its front_advancement_count variable to re-
�ect where the front of the train is located on the sub-segments of the
current linear track (L1). The front_advancement_count counts in-
dex values from zero and the the train has a length of 2, and thus the
front_advancement_count is initialized to a value of one.

2. train1 : MOVEMENT -> MOVEMENT
The front of the train enters the next track segment on its route, which is
P1. During this transition, a sensorOn operation is invoked on P1.
It is determined by the value of the front_advancement_count that the
train has reached the end of L1, and therefore the variable route_index ,
which re�ects the trains position in relation to its route, -is incremented
to a value of one.
Since the train has entered a new track segment and the front of the train
now is located at the beginning P1, the front_advancement_count vari-
able is updated to a value of zero to re�ect this.
The sensorOn operation on the point P1 is invoked, and when the oper-
ation returns, the occupies array is updated to [L1,P1] such that it now
re�ects that train1 is occupying L1 and P1.

3. P1 : RESERVED -> TRAIN_IN_TRANSITION
train1 is detected at P1, which is emulated by the invoked sensorOn oper-
ation. P1 updates its train variable to re�ect that train1 now is occupying
the point.

4. train1 : MOVEMENT -> MOVEMENT
The front of train1 enters L2 and the rear of train1 leaves L1. During
this transition, operations are invoked by train1, on L2 and on L1.
Since the front of the train has entered a new track segment, the
front_advancement_count variable is updated to a value of zero. Like-
wise, the route_index variable is incremented to a value of two which,
through its route array, re�ects that the train now is at L2.
train1 invokes the sensorOn operation on L2, and when the operation
returns, the occupies array is updated to re�ect that train1 now covers
P1 and L2. After that, train1 invokes the sensorO� operation on L1.

5. L2 : RESERVED -> TRAIN_IN_TRANSITION
train1 is detected at L2. The train variable is updated to reference train1
to re�ect that a train is now occupying L2.

6. L1 : TRAIN_IN_TRANSITION -> NON_RESERVED
The absence of train1 is detected, emulated by the invoked sensorO�
operation on L1. Since the model models a system with sequential release,
L1 is released by setting the variable train to null and by entering a
NON_RESERVED state.

6.3 Scenarios 61

7. train1 : MOVEMENT -> MOVEMENT
The front of train1 advances over L2 and the rear of train1 leaves P1.
During this transition, an operation is invoked by train1, on P1.
The advancement of the front of the train on L2, is re�ected in the model
by incrementing the front_advancement_count variable to a value of one.
The occupies array is updated to a value of [L2,L2] to re�ect that train1
now only occupies L2.

8. P1 : TRAIN_IN_TRANSITION -> NON_RESERVED
The absence of train1 is detected, emulated by the invoked sensorO�
operation on P1. P1 is released, which is re�ected in the model by setting
the train variable to a value of null and by entering a NON_RESERVED
state.

9. train1 : MOVEMENT -> ARRIVED
The train has arrived at its �nal destination.

6.3.3 Point positioning during reservation

During a reservation of a route, points must be positioned correctly in relation
to the reserved route, before the route can be fully reserved. In the following
scenario, the point P1 is positioned such that it connects L1 and L2, however
the wished route requires the point to be positioned such that it connects L1 to
L3. A simple drawing of the scenario setup is presented below.

Figure 6.10: A scenario of where a positioning of the point P1 occurs during
reservation a route composed of the linear track segments L1, L3
and the point P1.

To simplify the diagram, only the second phase of the two phase commit protocol
has been drawn, since this is where the positioning occurs.

62 Modeling the Geographically Distributed Interlocking System in UMC

Figure 6.11: Sequence diagram of a scenario where a positioning of the point
P1 occurs during the reservation of a route composed of the
linear track segments L1, L3 and the point P1.

6.3.4 Point malfunction during reservation

During the reservation of a route, a point might malfunction which consequently
causes the route reservation to fail. In the following illustrated scenario, the
train train1 attempts to reserve a route consisting of the track segments [L1,
L2] and the point P1, however the point P1 is positioned such that it doesn't
connect to L2 and therefore it must �rst be positioned, before the route can
be successfully reserved. The point therefore enters its positioning state during

6.3 Scenarios 63

the reservation process, but fails to perform the mechanical track switching and
therefore emits disagree signals to its neighbors to signal that the reservation
should be aborted. A simple drawing of the scenario setup is presented below.

Figure 6.12: A scenario of a malfunctioning point P1 during reservation a
route composed of the linear track segments L1, L2 and the
point P1.

To simplify the diagram, only the second phase of the two phase commit protocol
has been drawn, since this is where the malfunctioning can occur.

64 Modeling the Geographically Distributed Interlocking System in UMC

Figure 6.13: Sequence diagram of a scenario where the point P1 malfunctions
during the reservation of a route composed of the linear track
segments L1, L2 and the point P1.

6.3.5 Attempt to reserve a route intersecting with an al-

ready reserved route

If a requested route reservation intersect with an already reserved route, the
requested route reservation must be aborted. In the following illustrated sce-
nario, the train train2 has successfully reserved a route composed of the linear
track segments L1, L3 and the points P1, P2. The train train1 now attempts to
reserve the route consisting of the linear track segments L2, L4 and the points

6.3 Scenarios 65

P1, P2, however the route intersects with the already reserved route at P1 and
P2, and must therefore be aborted.

Figure 6.14: A scenario of an attempt to reserve a route that intersects with
an already reserved route, where the attempted reservation is a
route composed of the linear track segments L1,L3 and points
P1, P2, and the already reserved route is composed of the linear
track segments L2, L4 and the points P1, P2.

66 Modeling the Geographically Distributed Interlocking System in UMC

Figure 6.15: Sequence diagram of a scenario of an attempt to reserve a route
that intersects with an already reserved route, where the at-
tempted reservation is a route composed of the linear track seg-
ments L1, L3 and points P1, P2, and the already reserved route
is composed of the linear track segments L2, L4 and the points
P1, P2.

6.4 Discussion

The developed model, does a good job at modeling the conceived engineering
concept presented in the previous chapter, by itself. But improvements can still
be made to make the model re�ect a real implementation better and to make
the model checking more e�cient. Especially can constraints be enforced on the
model to improve model checking e�ciency.

Following is a set of discussions of di�erent aspects of the model that was pre-
sented in this chapter.

6.4 Discussion 67

6.4.1 Train lengths and movement on track segments

In the model, it is possible to specify any length of trains, linear track segments
and points. This gives a lot of freedom wrt. modeling choices, for example
does it allows modeling of tracks that are physically longer than the trains.
This is essentially �ne if one wants to model that the trains traverse over very
long tracks. However, with respect to how the state tree expands and unfolds
during the model checking, the tracks which are longer than trains becomes
quite meaningless and generates unnecessary state expansion since, the train
has to move in discrete steps over the long track. As illustrated below, a train
of length two moving over a linear track segment of length �ve requires four
movement steps which all occur within the given track segment.

Figure 6.16: A train of length 2 moves over a linear track segment of length 5.
This kind of model does not add anything meaningful since the
train just will stay in the same movement to movement transition
for a few more states.

Yet another complication that can arise as consequence of non-constrained
lengths of especially trains and linear track segments, is deadlocks. If a train
is much longer than the track segment at its destination, the rear of the train
will be located at another track segment or point making it impossible for other
trains to pass.

To lessen the state expansion due to trains moving over very long tracks and to
avoid obvious deadlocks, a constraint could be made for the length of the track
segments such that no track segment can be longer than the train that traverses
it.
In the case where a track segment is exactly the same length as the train that
traverses it, the model essentially models that the train is in transition over a
long track segment, because the train only occupies sections of the given track
segment.

The generic model already supports having di�erent length representations of
the same track segment between the individual trains, since each Train class

68 Modeling the Geographically Distributed Interlocking System in UMC

contains an array track_lengths which de�nes lengths of each of the track seg-
ments on its route. However, it is not possible to de�ne constrains directly in
UMC for these lengths, so the veri�cation that routes obey these constraints is
left over to a tool described in the next chapter.

6.4.2 Point Lengths

In the current model, it is possible to create points of any lengths one desire,
however, one could argue that points of lengths higher than one, would be quite
meaningless since a point only really represents a track segment containing a
branch to two other track segments.

In all experiments conducted in this project based on the model, points of length
one has solely been used.

6.4.3 Point Machine

The point has been modeled such that the mechanical action is performed in
a synchronized manner. If the model were implemented in a real life system,
exactly as speci�ed, the points would block the propagation of the agree mes-
sage of the two phase commit protocol. In a real system, it would be ideal to
let the point node delegate the action of performing the mechanical switching
between tracks, to a point machine asynchronously. In a better designed sys-
tem, the point node would send a request to perform the switching to its point
machine asynchronously as soon as the point has received the commit request
from the second phase of the two phase commit protocol. This would make the
communication in the system faster, since the commit requests wouldn't have
to wait at each point for it to perform the mechanical positioning.

6.4.4 Repairment of malfunctioning points

The system get locked down into an impossible state when a point malfunctions,
because there is no way for the points to go back into a non reserved state from
a malfunctioning state. This makes it less trivial to verify the progress of the
system, since the malfunctioning state of a point locks down reservation of any
route in the model that includes the given point. So when model checking the
model for progress, the malfunction states must be ignored.To �x this problem,

6.4 Discussion 69

a simple state transition could be added to the point, simulating that it has
been repaired and is now available for reservation again.

70 Modeling the Geographically Distributed Interlocking System in UMC

Chapter 7

Model generating tool

Model checking languages, are often made to be target languages for other lan-
guages or tools to translate into, and this is also the case for UMC. UMC is great
for specifying the generic behavior of components that make up a system, but
creating concrete models by instantiating objects from the generic components,
can however be cumbersome and can easily result in a wrongly speci�ed model
which leads to false model checking results. Furthermore is it easy to specify a
model that results in ine�cient model checking.
In the case of the model presented in the previous chapter, there are multiple
things the user would have to verify manually if specifying a concrete model
himself / herself. For example, there is an important relationship between the
objects, such as the relationship between overlapping train routes. The model is
furthermore very generic, and makes it possible to specify some very ine�cient
models.

To deal with these issues and making the process of creating models simpler,
a model generating tool has been developed in the F# programming language.
This chapter describes the goals, workings and implementation of the tool.

72 Model generating tool

7.1 Functionality of the Tool

When manually specifying a geographic interlocking model based on the generic
components in UMC, the user must specify initial values such as the routes,
track lengths of all the track components, the correct location of the train and
the required positioning of the points on the routes. All these values need to be
speci�ed correctly when creating the model. If not speci�ed correctly, the model
will either not work or give false results. Furthermore is there performance to
be gained in the model checking, by enforcing constraints on the models.

The primary goal of the tool is to assist the user in composing and generate
a valid model. This is achieved by enabling the user to specify a model in a
tiny DSL (Domain Speci�c Language) in a F# script, or by loading an existing
railway network layout and prede�ned routes from an XML �le. The XML �les
in this case are produced as part of the RobustRails project[?] by the Lyngby
Railway Veri�cation Tool-set (LRVT) [VHP16], which contain a graphical
tool that was implemented in another masters project at DTU[Fol15].

The model generating tool described in this chapter validates a given input
model speci�cation, rejects it if it contains invalid routes or if it violates con-
straints, and �nally generates a full model with properties ready to be model
checked if the model is valid.

The current implementation of the model generating tool is only able to generate
models in the UMC model checking language. However, the tool has been
implemented with other modeling languages in mind such that it is possible to
reuse the core parts of the implementation in extending and adding support for
other modeling languages.

The functionalities of the tool are

• Track Layout and Route Extraction which is the extraction of rele-
vant data from XML �les.

• Route Composition which is the ability to compose multiple routes into
one.

• Route validation which is the validation of the user de�ned routes
against a concrete network layout, and against each other to avoid ob-
vious deadlocks.

• Enforcement of length constraints which is about constraining the
produced models such that they are more performant during model check-
ing and avoids obvious deadlocks.

7.1 Functionality of the Tool 73

• Object Creation which is the instantiation of the concrete model objects
that together compose a �nal model.

• Model Composition which is the composition of the generated objects
and properties, and the merging with a generic model description to form
a valid executable model.

7.1.1 Track Layout and Route Extraction from XML �les

The model generating tool can use specially formatted XML �les generated by
the graphical tool of LRVT. These XML �les contains a description of a concrete
track layout and a set of possible routes for the given track layout.

A snippet of the network de�nition is presented below, and the full version can
be found in Appendix G.

1 <network id="mininetwork">
2 <trackSec t i on id="b10" length="100" type=" l i n e a r ">
3 <neighbor r e f=" t10 " s i d e="up"/>
4 </ t rackSec t i on>
5 <trackSec t i on id=" t10 " l ength="87" type=" l i n e a r ">
6 <neighbor r e f="b10" s i d e="down"/>
7 <neighbor r e f=" t11 " s i d e="up"/>
8 </ t rackSec t i on>
9 <trackSec t i on id=" t11 " l ength="26" pointMachine=" spskt11 "

type="point ">
10 <neighbor r e f=" t10 " s i d e="stem"/>
11 <neighbor r e f=" t12 " s i d e=" plus "/>
12 <neighbor r e f=" t20 " s i d e="minus"/>
13 </ t rackSec t i on>
14 <trackSec t i on id=" t12 " l ength="3783" type=" l i n e a r ">
15 <neighbor r e f=" t11 " s i d e="down"/>
16 <neighbor r e f=" t13 " s i d e="up"/>
17 </ t rackSec t i on>
18 . . .
19 <markerboard d i s t ance="50" id="mb10" mounted="up" track="b10"/>
20 <markerboard d i s t ance="50" id="mb11" mounted="down"

track=" t10 "/>
21 <markerboard d i s t ance="50" id="mb13" mounted="up" track=" t12 "/>
22 . . .
23 </network>

The network de�nition contains a list of trackSection de�nitions, each specifying
a track section element which can be either a linear or a point. Each track section
also lists its immediate neighbors. This information is essentially what de�nes
a network layout.

The network de�nition also contains a list of markerboards, where each marker

74 Model generating tool

board contains a �eld track that refers to a trackSection. The model generator
tool does not use the marker board de�nitions when extracting and generating
a network layout. The marker boards are, however, referenced in the route
de�nitions, which each refer to marker boards as the beginning and end of a
given route. The markerboard de�nitions are therefore used by the tool to look
up start and end trackSections for each route.

Following is a snippet of the route de�nitions in the routetable list de�nition in
the XML �les.

1 <rou t e t ab l e id="min i r ou t e tab l e " network="mininetwork">
2 <route id="r_1a" source="mb10" de s t i n a t i on="mb13" d i r="up">
3 <cond i t i on type='point ' va l='plus ' r e f ='t11 ' />
4 <cond i t i on type='point ' va l='minus ' r e f ='t13 ' />
5 <cond i t i on type=' s i gna l ' r e f ='mb11 ' />
6 <cond i t i on type=' s i gna l ' r e f ='mb12 ' />
7 <cond i t i on type=' s i gna l ' r e f ='mb20 ' />
8 <cond i t i on type=' trackvacancy ' r e f ='t10 ' />
9 <cond i t i on type=' trackvacancy ' r e f ='t11 ' />

10 <cond i t i on type=' trackvacancy ' r e f ='t12 ' />
11 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
12 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
13 . . .
14 </ route>
15 . . .
16 </ rou t e t ab l e>

Each route de�nes a source and destination which are references to marker-
boards de�ned in the network de�nition. The model generating tool, uses these
references to look up the trackSections for the start and end of the given route.
A route also has an id �eld, and when specifying a model to be generated, the
user will need to refer to these id �elds.
Each route de�nition furthermore speci�es a set of condition elements, which is
divided by types into a set of trackvacancy elements, a set of point elements, a
set of mutualblocking elements and a set of signal elements. The trackvacancy
elements de�ne the route sections between the source and destination of the
route. It is assumed that the set of trackvacancy elements always is listed in the
same order as the intended route in the network. The mutualblocking elements
specify which other routes share track sections with the current route, the signal
elements specify markerboards that must be closed when setting the route, and
the point elements specify the required positioning of points on the route. Of
the condition elements, only the elements of type trackvacancy and point are
extracted and used by the model generating tool.

The model generating tool extracts the layout to be used later for validation of
the user de�ned route compositions. Only the routes with route ids speci�ed
as input by the user, will be extracted. It is possible, though, for the user to

7.1 Functionality of the Tool 75

specify a composition of multiple routes, by providing a list of route ids.

7.1.2 Route Validation

Generally speaking, when using the prede�ned routes speci�ed in the XML �le,
the individual routes will be well formed since they were generated and veri�ed
by the LRVT which generated them.
In the model generating tool, it is, however, still possible for the user to pick
two routes that con�icts. The user could for example choose two routes that
start out at the same location in the track layout. Furthermore does the model
generating tool allow the user to compose multiple routes into one, -so some
validation must still be performed even for prede�ned routes.

Since it is also possible for the user to de�ne a custom network layout and routes
in a script, the model generating tool will by default perform validation on all
routes speci�ed, such as validating that a given route is a valid route in relation
to the provided track layout.

The common validation for both the prede�ned routes from the XML �le, and
the custom routes speci�ed in a script, are validations of all the routes to check
if they are valid in the provided layout. A set of routes are essentially valid if
there is no obvious deadlock or con�ict between the routes.

The route validation checks the following set of properties:

• Di�erent beginning. No two trains must have routes that start at the
same track segment in the network.
If two trains were to start at exactly the same track segment, there would
be a collision right from the beginning.

• Di�erent end. No two trains must have routes that end at the same
section in the network.
If two trains were to have the same �nal destination in a network, an obvi-
ous deadlock would occur since only one of the trains would be permitted
to reserve and traverse its route.

• No exact opposite routes. No two trains must have routes such that
the trains start and ends at exact opposite sections in the network.
An obvious deadlock would occur and none of the trains would be permit-
ted to reserve and traverse its route.

76 Model generating tool

• No same routes. No two trains must have exactly the same routes.
Either a collision would occur or an obvious deadlock would prevent any
progress in the system.

A model obeying any of the �rst three conditions, will naturally also obey the
last condition, which means that the model generating tool don't need to actively
validate this condition when it has validated the other mentioned conditions.

The validation required for individual routes, which are either composed prede-
�ned routes or custom routes from a script, are

• Itinerary elements must be transitively wellformed in the layout.
This is a validation that checks that all the neighboring track elements in
the speci�ed routes has a legal transitive relation in the track layout. Two
neighboring route segments are invalid in a layout if there is no direct
connection between them. The route segments must also obey the nature
of points such that all routes go through points, from stem to fork or fork
to stem, but never from fork to fork (as illustrated in �gure 7.1).

• A train route must start and end at linear track segment types.
Trains should never start or stop on a point track segment, but always
start and end at linear track segments.

All of the above conditions are veri�ed for each of the routes speci�ed as input
by the user as either a script or input values to the model generating program
using XML �les.

Following is an illustration of valid and invalid routes.

7.1 Functionality of the Tool 77

Figure 7.1: Illustrating examples of valid and invalid routes. The �rst is an
invalid route that goes from point to point. The second is an
invalid route that skips an element in the layout. The third is
also an invalid route that goes from fork to fork through a point.
The last two routes are examples of well formed routes.

7.1.3 Enforcement of length constraints

The generic UMC model essentially allows for any length to be de�ned for
all the classes. As mentioned in the discussion in the previous chapter, the
modeling freedom in de�ning lengths, can lead to various problems, where the
�rst described problem is related to the performance of the model checking and
the second described problem is a possible deadlock.

Both problems can be solved, by enforcing a set of constraints when generating
models.

• All routes must start and end with a track segment of exactly
the same length as the train.

78 Model generating tool

This constraint must be enforced in order to prevent a train from causing
a potential deadlock. If a train is allowed to be longer than its destination
track segment, it might occupy more than just the �nal track segment,
which might prevent other trains from progressing to their destination. If
a train is allowed to be longer than the start track segment it might lead
to a collision between two trains right from the beginning.

• No track segment length de�ned in a route must be longer than
the train owning the route.
Constraining the track segment lengths such that they are exactly the same
length or smaller than the train traversing them, improves performance of
the model checking since it prevents the expansion of unnecessary move-
ment states within the same track length. A train with a length smaller
than the track segment that it traverses, will not add anything meaning-
ful to the model compared to a train traveling over a track segment with
exactly the same length as the train.
If a track segment is supposed to be modeled to be longer than the train,
then it is good enough that the track in the model has exactly the same
length as the train since this still will represent that the train is in tran-
sition over the track when the length of the train is solely on that track.

• The longest train determines the length of intersecting track
segments between routes.
For any to trains with intersecting routes, the train with the longest length
determines the length of the intersecting route segments.
If the trains are of equal length, then all their intersecting track segments
must be of equal length.
If given two trains of di�erent lengths with an intersecting track segment
described in the route of the longest train, that is shorter than the length
of the shortest train, then the intersecting track segment length in the
route of the shortest train must be exactly the same length as the length
speci�ed in the route of the longest train.
If given two trains with di�erent lengths with an intersecting track segment
described in the route of the longest train to be of the same length as the
longest train, then the length of the intersecting track segment in the route
of the shortest train, must be exactly the length of the shortest train.

As already pointed out it is not e�cient to traverse a track segment longer than
the train that traverses it. This essentially justi�es the last two constraints.

For the last constraint, the longest train must determine the length of the in-
tersecting track segments for the shorter train, such that if the length of the
intersecting segment is equal to the length of the longest train, then the length

7.1 Functionality of the Tool 79

of the given track segment must be set to the exact value of the shortest train
for its own route.

Observe that it is still possible to model tracks that are shorter than the lengths
of the trains, this is such that very long trains covering multiple tracks can be
modeled as well. Also note that only train lengths of two or higher are mean-
ingful in this model, since a train of size one would be unable to simulate the
overlapping transition between two tracks. A train of size one would essentially
be re�ecting a train jumping between tracks and not transitioning smoothly
between them.

Following formula describes the length constraint for an intersecting track seg-
ment, which is represented as L1 in the route of the longest train T1 and as
L1' in the route of the shortest train T2.

(T2.length ≤ L1.length ≤ T1.length ∧ L1′.length = T2.length)∨

(T2.length > L1.length < T1.length ∧ L1′.length = L1.length)

Note that the previously mentioned constraints must still hold true. For example
if the the intersecting track segment is at the beginning or end of a route it must
still obey to the constraint that the given track segment should be exactly as
long as the train holding the route. Note also that are points constrained and
defaulted to a length of one, which means that they are disregarded in the
description of length constraints.

Three scenarios with intersecting routes between two trains Train1 and Train2
are illustrated below. In the scenarios Train2 has a length of two and Train1
has a length of four, and the relevant intersecting track section is L3 for the
two �rst scenarios and L4 in the last. In the two �rst scenarios Train1 con-
straints Train2 s length representation of L3, and L4 in the last scenario. All the
presented scenarios are examples of values that obeys the described constraint.

80 Model generating tool

Figure 7.2: Three scenarios with intersecting routes where the length repre-
sentations are obeying the constraints.

7.1.4 Creation of Object Instantiations and Modeling

Language Speci�c Constructs

The key objective for the tool is to generate wellformed objects that together
compose a concrete model.

The most de�ning element of the models, are the train routes which most of
the object initializations depend upon. In the case of generating UMC models,
the tool will generate three types of objects which are concrete instantiations
of the generic class components described in the previous chapter. These are
object instantiations of the Train class, the Linear class and the Point class.
Furthermore will the tool generate the UMC speci�c abstraction de�nitions and
model checking properties.

The generation of a UMC model is illustrated below, where it can be seen that
objects, abstractions and properties are generated based on a railway layout and

7.1 Functionality of the Tool 81

a set of routes.

Figure 7.3: A model is generated from a speci�cation of a railway network
and a set of routes. The speci�cation is turned into objects, ab-
stractions and properties, using the generic model which the class
de�nitions represents.

In this sub-section, concrete instantiations are illustrated with examples of ob-
ject instantiations, abstraction de�nitions and model checking property de�ni-
tions, for the UMC model described in the previous chapter. All the instanti-
ation examples are based on the railway network model illustrated below. The
model has two trains with routes consisting of the elements [L1, P1, L2, P2,
L4] and [L4, P2, L3] where components pre�xed L refer to linear track sections
and components pre�xed P are points. The points in the diagram have been
illustrated with explicit PLUS and MINUS positionings in the form of plus and
minus symbols.
A concrete example of a set of object instantiations, abstractions and properties
can also be found in Appendix D, using the same example model as presented
here, but with slightly di�erent naming.

Figure 7.4: Example of a concrete model with two trains and two routes, which
is used as running example in all of the following subsections.

82 Model generating tool

7.1.4.1 Object Initializations

Point Objects The point objects are the simplest type of object instantiations
for the UMC model.
For the given model in the diagram, the point object instantiations are simply
as follows

P1: Point;
P2: Point;

(7.1)

The points don't need to be instantiated with any parameters because of the
way the Point class is speci�ed in the UMC model. As speci�ed in the Point
class, the point objects will be instantiated with a default positioning value of
true (PLUS).

Linear Objects The linear objects are also quite simple, as all that is needed
in the instantiation, is to instantiate the linears with information about the
absence or presence of a train.

For the model in the diagram, the linear object instantiations would be as
follows.

L1: Linear (train => train1);
L2: Linear;
L3: Linear;
L4: Linear (train => train2);

(7.2)

The train variables are only initialized for the linears which are at the beginning
of a given train route. When no value is speci�ed, the train variable simply
defaults to null.

Train objects The train objects are the most involved objects as they contain
information about track segment lengths which must be speci�ed consistently
across the trains, the initial occupies variables used for for simulating train
movement, and �nally the routes which must be valid between the trains.

The instantiation based on the running example model in �gure 7.4 is as follows

7.1 Functionality of the Tool 83

train1: Train(
route_segments => [L1,P1,L2,P2,L4],
track_lengths => [3,1,2,1,3],
train_length => 3,
occupies => [L1, L1, L1],
requested_point_positions => [null,True,null,True]);

train2: Train(
route_segments => [L4,P2,L3],
track_lengths => [3,1,3],
train_length => 3,
occupies => [L4, L4, L4],
requested_point_positions => [null,False]);

(7.3)

The array route_segments must be initialized with the ordered train route, such
that the routes are valid between the trains in the same layout.
Likewise must the track_lengths array be initialized with the length value of
the index-wise corresponding elements of the route_segments array, in a way
such that the length of a given element obeys the length constraints between
the route descriptions of the trains. As previously mentioned, points are always
instantiated with a length of one.
The occupies array must be exactly same length as the train, and it must be
�lled with references to the �rst track segment of the given train route.
The requested_point_positions array, must be de�ned such that it refers index-
wise to the route_segments array. The requested_point_positions array is sim-
ply �lled with null values for the indexes which does not correspond to points
on the route, and it only needs to de�ne values up to the index of the last point
element in the route array.

7.1.4.2 Generation of Language Speci�c Constructs

Speci�c for the UMC modeling language is that it has special constructs called
abstractions which are used in the de�nition of the model checking properties.
The concrete de�nitions of the abstractions are, like the the objects, dependent
on the given model layout and routes.

Following are concrete examples of de�nitions based on the formally speci�ed
abstractions and properties that were formally described in the model checking
section of the previous chapter.

84 Model generating tool

The no collision property
The no-collision property is generic since it simply validates the abstraction
trains_at_di�_positions globally over all paths. For the running model exam-
ple, the property is simply de�ned as follows

AG (trains_at_di�_positions)

The trains_at_di�_positions abstraction
The trains_at_di�_positions abstraction is rather involved, and cannot be gen-
eralized so well in the language of UMC. In the tool, a cross product of the
indexes of any two trains occupies arrays are generated, and based on this a set
of conjunctions are composed, each specifying that two any two indexes of the
occupies arrays must be di�erent.
The instantiation based on the running example model is presented below.

State train1.occupies[0] / = train2.occupies[1] and
train1.occupies[0] / = train2.occupies[2] and
train1.occupies[1] / = train2.occupies[2] and
train1.occupies[2] / = train2.occupies[1] and
train1.occupies[2] / = train2.occupies[0] and
train1.occupies[1] / = train2.occupies[0] and
train1.occupies[0] / = train2.occupies[0] and
train1.occupies[1] / = train2.occupies[1] and
train1.occupies[2] / = train2.occupies[2] -> trains_at_di�_positions

(7.4)

The no derailment property
As mentioned in the previous chapter, the no derailment property uses a set
of abstractions de�ning absence of trains on points, and a set of abstractions
de�ning positioning of points.

Using the running example, the absence of trains on points are declared as
follows by the model generator tool.

State p1.train = null -> no_train_on_p1
State p2.train = null -> no_train_on_p2

(7.5)

And the abstractions specifying points in positioning states, are declared as
follows, using the running example model.

State inState(p1.POSITIONING) -> position_p1
State inState(p2.POSITIONING) -> position_p2

(7.6)

7.1 Functionality of the Tool 85

The no derailment property can now be speci�ed, for the running model exam-
ple, using above abstractions.

AG(
position_p1 implies no_train_on_p1 and
position_p2 implies no_train_on_p2)

(7.7)

The progress property
The progress property which speci�es that trains eventually will arrive at their
destinations, simply uses one abstraction which captures the the global state
where a train has arrived in the system.
Using the running example model, an abstraction is simply de�ned for each of
the trains as follows.

State inState(train1.ARRIVED) -> train1_arrived
State inState(train2.ARRIVED) -> train2_arrived

(7.8)

The property can now be declared as follows, for the running example model.

EF AG (train2_arrived and train1_arrived)

As mentioned in the previous chapter, the above property only veri�es that there
exist states where the trains will reach their destinations. However, the claim is
that the trains will arrive in all cases where the points on the routes functions
correctly without malfunctions. And to verify this claim for the current model,
a special property can be created as described in the previous chapter.

The property requires a set of abstractions, each capturing the situation where
a point has entered a MALFUNCTION state.

State inState(p2.MALFUNCTION) -> p2_malfunction
State inState(p1.MALFUNCTION) -> p1_malfunction

(7.9)

The property for verifying the claim, can then be de�ned as follows

not E[not (p2_malfunction or p1_malfunction) U
(�nal and not (train2_arrived and train1_arrived))]

(7.10)

(For a more elaborate explanation of this property, refer to the formal speci�ca-
tion of the given property in the previous chapter)

86 Model generating tool

The no message loss property
The property for checking that all messages are handled in the system, is inde-
pendent of the actual model, and therefore the abstraction discarded_message,
and the property that veri�es that for all state paths no message will ever be
lost, -can both be used directly as they are de�ned in the previous chapter.
Thus, for the running example model, the abstraction discarded_message is
simply de�ned as

Action: lostevent -> discarded_message

and the property itself is de�ned as

AG not (EX discarded_message true)

7.2 Implementation

The model generating tool has been implemented in the programming language
F#. F# was, �rst of all, chosen due to familiarity and experience, but also
because F# provides a special set of tools for conveniently parsing data �les
such as XML �les with minimal e�ort.[PGS16]
Other considered languages and frameworks were the Idris programming lan-
guage, which is a functional language that provides dependent types as �rst
class citizen as a core facility[BRA13], and RAISE (Rigorous Approach to For-
mal Software Engineering) RSL (RAISE Speci�cation Language)[Hax14].

Using Idris was discarded due to lack of practical experience with the language,
and using RSL was discarded due to the lack of out-of-the-box facilities for, for
example, working with XML �les.

Both an executable model generating program and simple scripting DSL (Do-
main Speci�c Language) library has been implemented, both using the same
set of core functions for validation, constraint veri�cation and internal model
representation and composition.

The executable program can be given an XML �le path as input together with a
set of route de�nitions to generate a complete model, but has been simpli�ed to
only generate models where trains and linear segments all have a length of two
and points a length of one. The scripting DSL gives full freedom in specifying
lengths of trains and track segments, but still validates wrt. the constraints.

The source code used in the program and scripting DSL tools is divided into
four main modules which are Utils, InterlockingModel, UMC, XMLExtraction
and MiniModelGenerator.

7.2 Implementation 87

Below an informal diagram is presented, showing the dependency relationship
between all of the �les containing the main modules, and where in the model
generating process they are used.

Figure 7.5: Overview of the Tool components. Arrows points to where a given
module is used.

The source code for all of the �les can be found in Appendix E.

• The Utils module contains general types and functions which has no con-
crete relationship to the model generation.

• The InterlockingModel module de�nes generalized types and functions for
de�ning a model, furthermore does it contain an higher order function
validateAndGenerateModel which performs all validation and constraint
veri�cation on a model, and can be applied to a speci�c model generating
function, such as for example, a function for generating a UMC model.

• The UMC module de�nes a set of functions for instantiating models in
the UMC language, and de�nes a speci�c UMC model generating function
which can be passed on to the higher order function validateAndGener-
ateModel de�ned in the InterlockingModel module.

• The XMLExtraction module de�nes functionality for reading XML �les
and constructing an internal F# data type representation of the model to
be generated.

• TheMiniModelGenerator module contains the entry point for the execute-
able program, and performs basic validation of the user inputs.

88 Model generating tool

The scripting library tools are implemented in the ScriptTools module which
exposes a set of simple types and functions that can be used as a small DSL
directly from an F# script �le.

Each of the mentioned modules are de�ned in its own �le, and are divided into
several sub modules that each contain functions related to the same aspect of
the model generator.

A model can be generated either based on a speci�cation in a script, or from
the compiled MiniModelGenerator program which can be provided with a set of
user input arguments including a �le path to an XML �le containing a network
layout and prede�ned routes.

Descriptions on how to use the tool to generate models, can be found in Ap-
pendix A.

7.2.1 Modules

This subsection provides a high level description of each of the main modules
involved in the model generation.

7.2.1.1 Utils module

This module contains common functionality such as functions for generating all
possible paired combinations of values from a list or cross products from two
lists, and types and functionality for error handling.
The module notably de�nes a type Result, a computation expression resultFlow
and a computation expression maybe, -which all are used extensively throughout
all of the other modules.

The type Result<'T1, 'T2> and the Computation Expression result-
Flow
The Result type carries a generic success type ('T1) and a generic error type
('T2). This type is used throughout the whole program and libraries to handle
error cases and to collect and propagate errors out to the user.
The Result type is de�ned as follows

1 type Result <' succes s , ' e r ro r> = Ok of ' s u c c e s s
2 | Error of ' e r r o r

7.2 Implementation 89

The Result type is extended with a set of operators and functions for compos-
ability of values and functions using the Result type. The type is extended with
functions for common list operations such as reduce and fold, and a special F#
construct called a Computation Expression[PS14].
The type and its associated Computation Expression together form a Monad-
pattern[wikb]. The implemented monad pattern, used for the Result type, is
more commonly known as the Either Monad pattern.1

Monad patterns makes it syntactically convenient to compose value wrapping
types and functions that returns types of the same value wrapping type.

To implement a Monad pattern, a function bind and a function return must be
de�ned.
The return function is simply a function that takes a simple value of an arbitrary
type as input and returns the same value wrapped in the type used for the monad
pattern (eg. the Result type). The type used in a monad pattern is commonly
referred to as a monadic type.
The bind function is a higher order function that takes two arguments as input,
a value of arbitrary type wrapped in the monadic type, and a continuation
function that takes a value of the same arbitrary type, as the �rst argument,
-as input and returns a result which is another arbitrary type wrapped in the
monadic type. The bind function essentially unwraps the �rst argument from
the monadic type, and applies the result to the continuation function, after
which the result of the continuation function is returned.
The abstract type signatures for the bind and return functions are sketched
below

return : 'a− > M 'a

bind : M 'a − > ('a− > M 'b)− > M 'b

where 'a and 'b are arbitrary types and M is the monadic type. The bind
function is also commonly implemented as the binary operator �=, and such
an operator is also de�ned for the Result type in the model generating tool
implementation.
In order for a type to be classi�ed as monadic and to be optimally composable,
the bind and return functions must obey the three Monad Laws[wikb], which
essentially describes how to compose the bind and return functions.

1F# 4.1 will be released late 2016 and will implement a type Result with the exact same
signature. Therefore the name Result has been chosen in this implementation, instead of the
name Either.

90 Model generating tool

The Computation Expression for the Result type is instantiated into a construct
named resultFlow, and is used extensively throughout the implementation for
error handling and propagation of error messages.

The maybe Computation Expression construct
F# de�nes a standard library type Option<'T> for constructing optional types
that can be either be None or a value of type 'T.
The Utils module implements a Computation Expression construct maybe to
help composing values of type Option and functions returning the type Option.
The de�ned Monad is often referred to as the Maybe Monad, thus the name
maybe for the construct in this implementation.

7.2.1.2 InterlockingModel module

This module contains all the basic type de�nitions necessary for describing an
interlocking system model. Furthermore does the module de�ne sub-modules
containing functions for verifying that a given model is sound with regards to
the routes and with regards to the length constraints.
At last the module de�ne an higher order function validateAndGenerateModel
which takes a model generating function as input and generates a textual re-
pressentation of a valid model.
The module contains the sub modules TypeDe�nitions, RouteConstruction,
RouteValidation, LengthConstraints andModelGeneration. The TypeDe�nitions
module contains all the basic types for representing a concrete railway model
in F#. The module RouteConstruction contains functions for composing mul-
tiple routes together to form one route. The module RouteValidation contains
functions for validating a set of routes against each other, and against a railway
network layout. The module LengthConstraints contains functions for checking
that the length constraints within and between between intersecting routes, are
obeyed. The ModelGeneration contains functions that uses the functions from
the other modules, to validate and compose valid models, most important, the
sub module de�nes the validateAndGenerateModel function.

The core type de�nitions representing the internal representation of the concrete
railway model components, are presented below.

1 type TrainId = TrainId of s t r i n g
2 type TrainIds = TrainId l i s t
3

4 type Linear Id = Linear Id of s t r i n g
5

6 type PointId = PointId of s t r i n g
7

8 type Po intPos i t i on = Plus | Minus

7.2 Implementation 91

9

10 type RouteSegment =
11 | LinearRouteSegment of Linear Id ∗ l ength : i n t
12 | PointRouteSegment of PointId ∗ r equ i r ed_pos i t i on :

Po in tPos i t i on
13 type RouteSegments = RouteSegment l i s t
14

15 type RouteDirect ion = Up | Down
16

17 type Route = Route of RouteSegments ∗ RouteDirect ion
18 type Routes = Route l i s t
19

20 type Train = { id : TrainId
21 route : Route
22 l ength : i n t }
23 type Trains = Train l i s t
24

25 type Linear = { id : L inear Id
26 t r a i n : Train opt ion }
27 type Linear s = Linear l i s t
28

29 type Point = { id : PointId
30 po s i t i o n : Po in tPos i t i on }
31 type Points = Point l i s t
32

33 type LayoutSegment =
34 | LinearLayoutSegment of id : s t r i n g
35 | PointStemLayoutSegment of id : s t r i n g
36 | PointForkLayoutSegment of id : s t r i n g ∗ po s i t i o n :

Po in tPos i t i on
37

38 type RailwayNetworkLayout = Map< LayoutSegment , LayoutSegment>
39

40 type ModelObjects = { t r a i n s : Map<TrainId , Train>
41 l i n e a r s : Map<LinearId , Linear>
42 po in t s : Map<PointId , Point> }
43 type ValidatedModelObjects = Val idated of ModelObjects
44

45 type ModelGeneratorFunction = Val idatedModelObjects −> s t r i n g

These types together describe the internal representation of a given model in the
tool implementation, and the functions implemented in the InterlockingModel
module all deal with one or more of these types.
Notably, is the type ModelObjects used to represent the objects that must be
initialized in the modeling language to compose the concrete model. The simple
wrapper type ValidatedModelObjects is de�ned to represent a model that has
been validated.
The RailwayNetworkLayout type describes a railway network as a mapping from
a LayoutSegment to a LayoutSegment. Consequently, the network layout is
naturally only represented as connections from left to right, which also represents
the Up direction. This means that when a route in the Down direction is to be

92 Model generating tool

veri�ed against the layout, it is reversed before the veri�cation.

The last type de�nition ModelGeneratorFunction, is a signature description of
a general function that can produce a concrete model in a string representation,
based on a valid model. The InterlockingModel module itself implements such a
function for outputting the 'raw' internal F# model representation as a string,
but more importantly does the UMC module implement such a function as well
for generating a textual representation of a full UMC model. The type is used
in the signature of the function validateAndGenerateModel which is the only
function in the module used from the other modules. The type signature and
implementation of the function is presented below.

1 va l validateAndGenerateModel : ModelGeneratorFunction −>
2 RailwayNetworkLayout −>
3 ModelObjects −>
4 Result<s t r i ng , s t r i ng>
5

6 let validateAndGenerateModel : modelGenFun = fun l ayout ob j e c t s −>
7 va l idateTra inRoutes layout ob j e c t s
8 >>= checkLengthContraints
9 >>= updateTrainLocat ions

10 >>= (modelGenFun >> Ok)

Note that signatures and functions normally aren't de�ned together like this in
F#, but for the sake of presentation the evaluated type of the function is shown
above the function in this code fragment.

As can be seen from the presented code, the function makes use of the bind
operator described in the Utils module, for chaining together functions that
produce Result types.
The function �rst makes sure the routes are validated by applying the vali-
dateTrainRoutes function, the result from that function is applied through the
bind operator to the checkLengthContraints which veri�es that the length con-
straints are obeyed. Next the result is applied through the bind operator to the
updateTrainLocations function which updates the track elements in the model
with regards to presence of trains. At last the result is applied through the
bind operator to the modelGenFun function which for example can be a refer-
ence to the UMC model generating function. If at any of the bindings an error
is returned, the error will simply be propagated out as an error result of the
validateAndGenerateModel function.

The last thing to note about the InterlockingModel module, is that it de�nes
a class interface ModelCheckingPropertyDe�nitions which simply act as a tem-
plate for the actual properties to be implemented. The interface de�nitions is
presented below.

1 type ModelCheckingPropertyDef in i t ions =

7.2 Implementation 93

2 abs t r a c t NoCo l l i s i on : s t r i n g
3 abs t r a c t Al lTra insArr ived : s t r i n g
4 abs t r a c t NoDerailment : s t r i n g
5 abs t r a c t TrainsDetectedOnPoints : s t r i n g
6 abs t r a c t AllMessagesHandled : s t r i n g

7.2.1.3 UMC module

The UMC module imports the source �les UMCLinearClass.fs, UMCPoint-
Class.fs and UMCTrainClass.fs, which each simply contains a string represen-
tation of the three generic classes de�ned in UMC (The Linear class, the Point
class and the Train class). At the end of the model generation, these string rep-
resentations are simply concatenated and prepended to the generated objects
and abstractions of the model. The motivation for containing the generic UMC
class information this way instead of having them in separate �les, is simply
such that the type checker will yield an error if the �les doesn't exists.

The UMC module basically contains functions for generating a full textual UMC
model. The module contains the sub modules AbstractionDe�nitions, ModelOb-
jectInstantiations and Properties. The AbstractionDe�nitions module de�nes
functions for generating concrete UMC abstractions, the ModelObjectInstanti-
ations module de�nes functions for generating the set of UMC object instan-
tiations for a �nal model, and the Properties module de�ne the functions for
generating and composing UMC model properties.

The UMC module furthermore implements the ModelCheckingPropertyDe�ni-
tions interface (described in the InterlockingModel module) in a class that has
a constructor which takes a set of validated model objects and instantiates each
of the model properties.

At last the UMC module de�nes a function composeModel, which utilizes func-
tions from the UMC module to implement a function of the type ModelGen-
eratorFunction, that generates and composes a full textual UMC model. Since
the function has the type signature ModelGeneratorFunction, it can be used
directly together with the validateAndGenerateModel function from the Inter-
lockingModel module, to generate a valid full UMC model.

7.2.1.4 XMLExtraction module

This module de�nes functionality for extracting and composing an internal
model representation, based on a given XML �le. The module notably uses

94 Model generating tool

the special F# Type provider library for parsing and handling XML �les.
The module contains the sub modules BasicObjectExtraction, LayoutExtraction,
RouteExtraction and ModelGenerationFromXML. The module BasicObjectEx-
traction, de�nes functions for extracting and creating the basic components
required for creating an internal model. The LayoutExtraction module de�nes
functions for extracting and constructing an internal railway network layout
representation from an XML �le. The module RouteExtraction de�nes func-
tions for extracting a set of routes from an XML �le and generating an internal
model representation. The ModelGenerationFromXML module, �nally de�nes
a type ModelGenerationParameters and the function generateModelFromXML.
The ModelGenerationParameters type is a record type holding a reference to
a concrete model generating function with the type signature ModelGenerator-
Function, a �le path to an XML �le and a �eld routes which is a list of lists
of route ids to be extracted from the XML �le. Each list of ids describes a
composition of multiple routes.

1 type ModelGenerationParameters =
2 { modelGeneratorFunction : ModelGeneratorFunction
3 xml_file_path : s t r i n g
4 route s : s t r i n g l i s t l i s t }

The generateModelFromXML function has following type signature, which re-
turns a result that can be either a string representation of a �nal composed
model, or an error message describing for example the violation of a constraint
during the validation of a model.

val generateModelFromXML : ModelGenerationParameters -> Result<string,string>

The function uses the extraction functions described in the other sub modules
to extract and compose an internal representation of the model, which it then
proceeds to apply to the validateAndGenerateModel function from the Interlock-
ingModel module to validate and generate a �nal concrete model instantiation
in the modeling language of interest.

7.2.1.5 MiniModelGenerator module

TheMiniModelGenerator module de�nes the entry point for the compiled model
generator tool. The entry point is de�ned as a function main that takes an
array of user provided arguments, parses them, generates a model and outputs
the string representation of the given model instantiation in the console.
The module de�nes functionality for parsing user input such as lists of route
ids, referring to the route ids of routes in an XML �le, and a type ModelOutput
with following type signature

7.2 Implementation 95

1 type ModelOutput = UMC
2 | Raw // r ep r e s en t i ng the raw F# ob j e c t s

which describes the available textual model outputs, and are either a raw string
representation of the internal model in F#, or a concrete UMC model which
can be used directly as input to a UMC model checking tool.

7.2.1.6 ScriptingTools module

The scripting tools module describes a set of very simple types for specifying a
concrete model, and exposes one function generateUMCModel which validates,
composes and generates a concrete UMC model based on a simple type repre-
sentation of the model.
The simple types for de�ning a model are listed below

1 type SimpleTrackSegment =
2 | LLinear of name : s t r i n g
3 | LPointFork of name : s t r i n g ∗ Po intPos i t i on
4 | LPointStem of name : s t r i n g
5

6 let (<+>) (e l 1 : SimpleTrackSegment)
7 (e l 2 : SimpleTrackSegment) = el1 , e l 2
8

9 type SimpleLayout = (SimpleTrackSegment ∗ SimpleTrackSegment) l i s t
10

11 type SimpleRouteElement =
12 | RLinear of name : s t r i n g ∗ l ength : i n t
13 | RPoint of name : s t r i n g ∗ po s i t i o n : Po in tPos i t i on
14 type SimpleRoute = SimpleRouteElement l i s t
15

16 type SimpleTrain =
17 { id : s t r i n g
18 ; l ength : i n t
19 ; route : SimpleRoute
20 ; r ou te_d i r e c t i on : RouteDirect ion }
21 type SimpleTrains = SimpleTrain l i s t
22

23 type LayoutType = CustomLayout of SimpleLayout
24 | XMLLayout of path : s t r i n g
25

26 type SimpleModelArgs =
27 { t r a i n s : SimpleTrain l i s t
28 ; l ayout : LayoutType
29 ; show_stats : bool
30 ; ou tput_f i l e : s t r i n g opt ion }

The types and operator basically forms a small DSL like language which the user
can use to de�ne a set of trains with routes and a network layout, and apply

96 Model generating tool

these to the generateUMCModel function to produce a full and valid textual
UMC model.

A guide on how to compose a script can be found in Appendix A.

7.3 Extending the Model Generator to support

other modeling languages

The code has been structured such that it can be used as a library for generating
models. To implement support for more model checking languages, one could
de�ne a module similar to the UMC module, for generating the textual string
representations in the given modeling language. The module must furthermore
implement a function with the signature of the type ModelGeneratorFunction,
which then can be used as input to the validateAndGenerateModel function
from the InterlockingModel module, to produce validated concrete models in
the target modeling language.

Chapter 8

Experiments

Logic takes care of itself; all we

have to do is to look and see how

it does it.

Ludwig Wittgenstein

During the project, many experiments has been performed with concrete models
based on the presented generic UMC model.
This chapter describes a few of the experiments and presents the results from
performing model checking on concrete models. Speci�cally, a set of experiments
has been set up to investigate the scalability of the model with regards to the size
of the railway network and number of trains. Investigating the model checking
performance with regards to scalability, essentially serves to benchmark the
performance of the generic model devised in this project.

8.1 Performing the experiments

The experiments performed in this project, refers to the generation of a concrete
model instantiations with a set of train routes based on a speci�c type of network

98 Experiments

layout, and at last the model checking of said model instantiation.
The three �rst types of model instantiations used in the following sections, has
been generated using the scripting tools described in the previous chapter, and
the concrete scripts used can be found in Appendix F.
The last set of experiments was performed with models generated from XML
�les by using the executable model generating tool.

The generated UMC models are loaded and model checked through an online
service with a web-interface[Mazb]. The online service is hosted on a server with
an Intel Xeon 2x2.66 GHz Quad-Core processor and 24 GB of Memory. The
online service might be used simultaneously by other clients, and furthermore
does the server host other applications, which all might impact the execution
time of the model checking.

8.2 Experiments performed

This section describes to sets of di�erent experiments performed to test the
scalability of the model.
One set of experiments seeks to investigate the scalability of the model with
regards to the length of train routes, and the other set of experiments seeks to
investigate the scalability of the model with regards to number of active trains
in the model.

8.2.1 Two trains and varying route lengths

The �rst set of experiments seek to investigate the performance of the model
when it is instantiated with long train routes.
All the model instantiations contains two trains, each with a route as long as
possible. The model instantiations are based on the layout below, which contains
a set of reconnecting branch loops which can be perceived as stations.
For the given set of experiments, models from one to ten stations has been
generated. Out of these ten models, it was possible to model check the �rst
eight within reasonable time.

8.2 Experiments performed 99

Figure 8.1: Drawing of the model type which is generated for the experi-
ments. The generated layouts have a varying number of recon-
necting loops, or stations.

The results from model checking the �rst eight models, are presented in the
table below, where the model names refer to the number of stations in the given
model.

One Two Three Four Five Six Seven Eight
Route lengths [5;3] [9;7] [13;11] [17;15] [21;19] [25;23] [29;27] [33;31]
Number of linears 4 7 10 13 16 19 22 25
Number of points 2 4 6 8 10 12 14 16
Number of route sub-segments 13 25 37 49 61 73 85 97
Number of shared points 1 3 5 7 9 11 13 15
Number of shared linears 1 2 3 4 5 6 7 8

Time for Trains correctly detected on points 0.3 5.7 48.4 242.1 1005.0 - - -
Time for No collisions 0.2 1.7 7.8 25.2 72.6 176.8 381.2 952.1
Time for No derailments 0.2 1.3 7.5 25.0 74.2 180.0 394.9 795.1
Time for Will arrive 0.2 0.9 6.0 14.1 67.7 140.2 273.3 567.3
Time for No message loss 0.1 0.9 4.8 14.9 42.3 96.7 212.4 408.6
Total time used checking properties 0.7 4.9 26.2 79.2 256.8 593.7 1261.9 2723.2

Number of states explored 736 6795 28768 84314 198868 406409 750228 1283696

Table 8.1: Resulting data from experiments performed with two trains and
varying number of stations from one station to eight stations. All
time values are given as seconds and the route lengths of the in-
volved trains are presented as a list.

All the listed properties evaluated to true in the model checking.

Following listing describes the variables presented in the table.

• Route lengths are presented as a list of values separated by ';', where each
value refers to the length of a route. The length of a route describes how
many track segments, consisting of points and linear segments, which the
route covers.

• Number of linears is the total number of linear segments in the network.

• Number of points is the total number of points in the network.

100 Experiments

• Number of route sub-segments is the sum of all of the sub-segments which
both of the routes covers, where a sub-segment is either a point or a part
of a linear segment.

• Number of shared points is the total number of points shared between all
of the routes.

• Number of shared linears is the total number of linears shared between all
of the routes.

• Time for Trains correctly detected on points presents the time used
for verifying the property Trains correctly detected on points through
model checking. As can be seen in the table, the property is signi�cantly
more time consuming to model check, and therefore it has been skipped
for the last three models.

• Time for No collisions is the time used for model checking the property
No collision.

• Time for No derailments is the time used for model checking the prop-
erty No derailments.

• Time for Will arrive is the time used for model checking the property
Will arrive.

• Time for No message loss is the time used for model checking the
property No message loss.

• Total time used checking properties is the sum of the time used for model
checking each property. However, to ease the comparison of the models,
-the sum excludes the time used for checking the property Trains cor-
rectly detected on points since this property has only been checked for
the �rst �ve models.

• Number of states explored is the total number of states explored by the
model checker in its pursuit of verifying the properties.

All the described properties are described in chapter 6.

Following are two plots of the obtained data. First a plot of the number of
states explored in relation to the number of stations, and next a plot illustrating
the time spend on model checking the properties in relation to the number of
stations.

From the plot below it can be observed that the number of states increases with
an exponential growth as the number of stations increases and the routes gets
longer.

8.2 Experiments performed 101

Figure 8.2: Plot of the states explored for each number of stations

The following plot, clearly show that the two safety propertiesNo collision and
No derailments are guilty of the majority of time spend on model checking
properties.

Figure 8.3: Stacked plot of the running times of each property for each number
of stations

102 Experiments

8.2.2 Varying number of trains

This set of experiments seeks to investigate how the model performs with regards
to the number of active trains in the model, and speci�cally with regards to
trains with intersecting routes.

The concrete models to be used, are based on the branching network layout
presented in the drawing below.

Figure 8.4: Drawing of the model used as basis for creating experiments with
multiple trains.

Even though the devised script for generating the models is able to create bigger
networks with room for more trains, only the layout presented in the drawing
above was used, since model checking couldn't even be performed within rea-
sonable time for just four trains with intersecting routes.

A table of the data obtained from model checking concrete model scenarios with
two, three and four trains, are presented below.
The model with four trains didn't succeed in being model checked within rea-
sonable time, however was reported by the model checker that it had explored
more than seven million states.
Also note that the shared points and shared linears here describes the total
number of intersecting points and linears between any two routes.

8.2 Experiments performed 103

Two Three Four
Route lengths [7;7] [7;7;7] [7;7;7;7]
Number of linears 9 9 9
Number of points 6 6 6
Number of route sub-segments 20 30 40
Number of shared points 4 8 16
Number of shared linears 1 3 6

Time for No collisions 0.9 78.6 -
Time for No derailments 0.7 79.8 -
Time for Will arrive 0.5 40.5 -
Time for No message loss 0.4 49.1 -
Total time used checking properties 2.5 248.0 -

Number of states explored 2750 234691 7000000+

Table 8.2: Resulting data from experiments with varying number of trains.

All the listed properties evaluated to true in the model checking.

8.2.3 Experiments with particular layouts from XML �les

Following experiments were performed with models generated by the executable
model generating program with XML �les containing layouts and routes.

104 Experiments

Mini Twist Threelines
Route lengths [6;4] [5;5;5] [6;6;7]
Number of linears 6 8 13
Number of points 2 2 6
Number of route sub-segments 17 24 28
Number of shared points 1 3 5
Number of shared linears 1 2 2

Time for No collisions 0.4 8.4 91.9
Time for No derailments 0.3 8.1 96.3
Time for Will arrive 0.2 3.7 40.9
Time for No message loss 0.2 6.2 68.1
Total time used checking properties 1.1 26.4 297.2

Number of states explored 1473 34978 223294

Table 8.3: Resulting data from experiments with models generated from XML
�les.

Twist Three trains Threelines
Route lengths [5;5;5] [7;7;7] [6;6;7]
Number of linears 8 9 13
Number of points 2 6 6
Number of route sub-segments 24 30 28
Number of shared points 3 8 5
Number of shared linears 2 3 2

Time for No collisions 8.4 78.6 91.9
Time for No derailments 8.1 79.8 96.3
Time for Will arrive 3.7 40.5 40.9
Time for No message loss 6.2 49.1 68.1
Total time used checking properties 26.4 248.0 297.2

Number of states explored 34978 234691 223294

Table 8.4: Resulting data from experiments with models generated from XML
�les.

Here it is interesting to observe the dramatic di�erence between the two models
Twist and Threelines which both involves three trains and three routes. Com-
paring the data from the Threelines model with the model using three trains
from the experiment in the previous subsection, it seems that its the number of
linears and points that make the di�erence. The Threelines model takes longer
to model check and, has a total count of linears and points of 19, while the model
with three trains from the previous subsection has a total count of linears and

8.3 Discussion 105

points of 15. The number of shared points and linears and the lengths of the
routes are all smaller for the Threelines model. So it must be the number of
points and linears that makes the di�erence here.

8.3 Discussion

As has been shown through the experiments, model checking concrete models
with just two trains at the time is feasible for routes of limited lengths.
The increase in states to explore is however exponential which displays an im-
portant limitation of the model with regards to length of routes. It is certainly
feasible to model check routes with lengths shorter than the ones presented in
the experiments, but if they get much longer the state space explosion will be
too signi�cant to perform any model checking.

The experiments performed with more than two trains displayed an even more
drastic explosion in states to explore, and the model with four trains was im-
possible to model check within a reasonable time frame.

It is worth re�ecting over the fact that one of the reasons why model checking
becomes much harder as the number of trains with intersecting routes increases,
is by large due to the reservation protocol. When model checking any model
with more than one train and with intersecting routes, one of the trains will
always be the �rst to succeed in reserving a route and the rest of the trains will
keep attempting to reserve until they succeed as well. This results in a lot of
fruitless attempts at reserving routes without success.

One way to improve the models performance, might be to abstract away the
concept of route reservation rejection, such that trains will patiently wait for
their routes to be reserved instead of reattempting reservations until success.
The nodes representing the track segments and points, could for instance be
equipped with a queue for reservations, in which it will queue up reservation
requests while it is reserved, and as soon it is free it will pick up the �rst reser-
vation request from the queue and complete that reservation. The downside of
this model, though, is that it moves further away from the original engineer-
ing concept, and perhaps the abstract model would be too far from anything
realistically possible.

Another way to solve the problem of model checking models with multiple trains,
might simply be to use the model as it is, and model check each pair of two
trains with intersection routes by themselves. This opens up for model checking
the model in parallel, by assigning the veri�cation of each pair of intersecting

106 Experiments

routes to its own process.
A challenge with this approach might be to verify progress and liveness proper-
ties for models with many trains. in order to con�dently verify the whole model
as sub-models in parallel, one would somehow have to prove that checking for
liveness and progress for each pair would be the same as checking the whole
model for liveness and progress.

Chapter 9

Future work

Even though a satisfying generic UMC model and a tool for generating concrete
models, has been implemented, there is still possible work to be done. Notably
the the generic UMC model can still be improved to better re�ect a real life
implementation, and the model generating tool can be extended with support for
generating models in other modeling languages and be improved wrt. usability.

This chapter brie�y elaborates over ideas for tool extensions, model improve-
ments and usability enhancements for the tool.

9.1 Generic model enhancements

This section describes a few ideas for enhancement of the generic UMC model
speci�cation. Even though the ideas are described in the context of the generic
UMC model conceived in this project, the ideas are more general as such and
would also apply to a model speci�ed in any other model checking language.

108 Future work

9.1.1 Repairment of faults

As mentioned in the discussion section of chapter 6, malfunctioning of a point
will cause the point go into a MALFUNCTION state with no further transitions
to take, and this essentially blocks trains from reserving and passing the given
point. The fact that trains, in some cases, are prevented from reserving and
traversing their route, makes checking the system for liveness impossible since
liveness per de�nition requires the system to be deadlock free.

The current model could simply be enhanced such that points are able to tran-
sition back into a functioning state of availability again. This transition could
represent that the point has been repaired.

9.1.2 Point Machines

In the discussion section of chapter 6, it is mentioned that the current model of
the points is slightly detached from how a point would realistically operate in a
life implementation.

The UMC model could simply be enhanced with a Point machine class and
each Point class object would then have responsibility for one point machine,
as described in the discussion of chapter 6. Modeling the points this way would
also be more true to the nature of the two phase commit protocol, where changes
ideally are to be enforced upon receiving the commit request -and not upon
receiving the �nal agree response.

9.1.3 Modeling more types of faults

The model could be extended such that it models more types of faults and
malfunctions. For instance, it could model failing track circuit sensors, such
that all points and linear segments are able to randomly emit a false presence
of a train, and letting reservation attempts fail as a consequence.

However, one should be careful about how the faults are modeled, since modeling
of even a simple failure, leads to an increase of the size of the state space to be
explored when model checking the properties.

9.2 Usability and performance improvements for the tool 109

9.2 Usability and performance improvements for

the tool

9.2.1 Enhance the user experience with a route selection

GUI

As the tool is implemented now, all user interaction either goes through the
console or through user de�ned scripts. A user might greatly bene�t from having
a graphical user interface where he can de�ne a �ne grained route in a track
layout diagram and de�ne the lengths of the individual tracks.

9.2.2 Extend tool to support more modeling languages

Even though the UMC language does a great job at modeling especially dis-
tributed systems such as the one presented in this work, it could still be of
interest to explore other types of modeling languages and approaches.
Another modeling language might for example have better performance charac-
teristics.

9.2.3 Model checking of huge railway networks

As brie�y discussed in the experiments chapter, the current model might not be
feasible if applied to large railway networks with many trains.

A way to solve this problem, could perhaps be to parallelize the model check-
ing such that every pair of intersecting routes are model checked in their own
process. And If any of the processes �nd any of the properties to be false, the
given property has failed for the model as a whole.

It seems intuitive for the current model, that if it is veri�ed for any pair of two
trains with intersecting routes that no collision will happen, then there shouldn't
be any collisions for any pairs of three trains in the system either. And the same
could be said for verifying for derailment. This seems intuitive with the current
model, since it require routes to be fully reserved from start to end. However,
checking for liveness or progress properties might not be as trivial to check in
parallel and would perhaps require other methods of veri�cation.

110 Future work

Chapter 10

Conclusion

In this thesis an engineering concept of a distributed railway control system has
been devised. The concept uses a two-phase commit protocol as a means for
trains to reserve routes, and trains are required to fully reserve their assigned
route before being permitted to traverse it.

The engineering concept has been distilled into an abstract model in the object
oriented modeling language UMC. The abstract model describes three classes,
each encapsulating the generic behavior of a communication node representing
either a train, point or linear track segment. The model has been de�ned such
that only the trains are aware of their routes and the connection layout in the
railway network. The model has been de�ned such that all the physical length
of all the involved elements can be described.

To ease the generation of objects from the generic classes, and to compose
concrete models that obey a set of constraints, a tool has been developed in
the programming language F#. The tool enables a user to generate concrete
models that are valid and has the best possible characteristics with regards to
performance under model checking. The user can use the tool as a library and
small DSL to de�ne models in a script, or specify a set of routes to be used from
an XML �le containing both routes and a railway network layout.

Using the developed model generating tool, a set of models has been gener-

112 Conclusion

ated and analyzed by model checking of safety and progress properties, and the
running times and number of explored states has been recorded and compared.

For the analyzed models, the model checking has indeed revealed that all the
speci�ed safety and progress properties are valid. However, the recorded per-
formance characteristics resulting from the model checking, also shows that the
model su�ers from state space explosion and doesn't scale particularly well for
multiple trains and very long routes.
As discussed, the solution to this problem of scalability, could be to change the
model itself with the risk of ending up with a model that doesn't re�ect the
engineering concept. However, as also mentioned, a better solution might be
parallelize the model checking in a divide and conquer fashion such that all pairs
of trains are veri�ed by themselves in parallel.

A division of a concrete model into sub-models might be a feasible solution
for verifying safety properties, however more research must be performed in
this regard, especially with regards to verifying progress and liveness properties
which might be the biggest challenge.

All in all, it has been shown in this project how an engineering concept can be
turned into an abstract model speci�cation, and veri�ed through model check-
ing. The UMC language has shown to be a great tool for describing distributed
systems, by enabling the user to essentially describe a set of state machines and
the communication between them.
Model checking, is a very useful tool for creating program speci�cations that
can be veri�ed. However, model checking by itself is merely a way to develop
an validated abstract speci�cation, and the software implementation itself must
in many cases still be developed in traditional ways based on the speci�cation.
And so, model checking does not completely eliminate the need for rigorous
testing, strong type systems and so on.
What model checking most importantly brings to the table, is a veri�ed speci-
�cation for the system to be implemented, thus a good way to implement safe
systems might be to use a combination of all mentioned methods together.

Appendix A

User Guide for the Model
Generating Tool

This appendix chapter serves to give a brief introduction on how to use the
model generating tool developed as part of the project.

First a section that covers model generation through the compiled program
is presented, and after that a section which covers how to compose a model
through a script. At short guide on how to model check the generated models
is presented.

A.1 Model generation through the model gener-

ator tool

Generating a model with the model generator tool, requires either Linux with the
open source .Net platform Mono or a Windows platform with .Net. Furthermore
does the tool require that the user has an XML �le of the type generated from
the LRVT tool set mentioned in chapter 7.
In the following examples it will be assumed that the user is using the Mono
platform to execute the tool, and the examples will use the sample.xml �le from

114 User Guide for the Model Generating Tool

Appendix G.

To generate a model, the user must �rst decide upon a set of routes which
the model should evolve around. Examining the layout and routes listed in
Appendix G, we decide to make a route that goes from b10 to t14 and another
route that goes from t14 to t20.
Examining the route lists and markerboard de�nitions in the XML �le, we
conclude that a route from b10 to t14 can be composed of the two routes with
ids 'r_1a' and 'r_4_', and furthermore that the route from t14 to t20 is de�ned
by the route with id 'r_5a'.

An UMC model with the chosen routes can now be generated by executing
following command.

mono MiniModelGenerator.exe sample.xml umc [r_1a,r_4_] [r_5a]

If everything goes right, the UMC model will be written out in the console.
To save it in a �le, you can simply use the Linux pipeline operator '>' to pipe
the resulting model into an output �le.

A.2 Model generation using the scripting tools

There are multiple ways of generating a model from a script, and in fact the
user has the full freedom of the F# core libraries at his disposal when creat-
ing scripts since the scripts are just normal F# scripts. This has indeed been
exploited when generating multiple models for the experiments (see the experi-
ments scripts in Appendix F).

However, the scripting tools also de�nes a very simple set of types that can be
used like a simple DSL to specify a model, furthermore is it possible to load a
layout from an XML �le and use that in a script as well. These two approaches
will be described here.

The scripts are executed using the F# interactive program which is bundled
with all installations of F#, and is usually a program called fsharpi.

When creating a new script, it must have the �le extension of '.fsx', and in the
�rst lines of the script one must import the tools and types to be used.
A Prelude.fsx script has been created with the purpose of simplifying the process
of creating new scripts. Loading the Prelude script will simply cause the required
�les to be loaded. (Note that the new script must be de�ned at the same

A.2 Model generation using the scripting tools 115

location as the Prelude script). Next the namespaces InterlockingModel and
ScriptingTools must be imported. Thus a basic starting script looks as follows.

1 (∗ l oad ing the pre lude s c r i p t ∗)
2 #load "Prelude . f s x "
3

4 (∗ import ing r equ i r ed modules ∗)
5 open In te r l ock ingMode l
6 open Sc r ip t i ngToo l s

The type like used in scripts to describe models, is presented below.

1 type SimpleTrackSegment = LLinear of name : s t r i n g
2 | LPointFork of name : s t r i n g ∗

Po intPos i t i on
3 | LPointStem of name : s t r i n g
4 let (+>) (e l 1 : SimpleTrackSegment) (e l 2 : SimpleTrackSegment) =

el1 , e l 2
5 type SimpleLayout = (SimpleTrackSegment ∗ SimpleTrackSegment) l i s t
6

7 type SimpleRouteElement =
8 | RLinear of name : s t r i n g ∗ l ength : i n t
9 | RPoint of name : s t r i n g ∗ po s i t i o n : Po in tPos i t i on

10 type SimpleRoute = SimpleRouteElement l i s t
11

12 type SimpleTrain =
13 { id : s t r i n g
14 ; l ength : i n t
15 ; route : SimpleRoute
16 ; r ou te_d i r e c t i on : RouteDirect ion }
17 type SimpleTrains = SimpleTrain l i s t
18

19 type LayoutType = CustomLayout of SimpleLayout
20 | XMLLayout of path : s t r i n g
21

22 type SimpleModelArgs =
23 { t r a i n s : SimpleTrain l i s t
24 ; l ayout : LayoutType
25 ; show_stats : bool
26 ; ou tput_f i l e : s t r i n g opt ion }

The script tools furthermore exposes two simple functions to be used by a user.

printRawLayout(path : string)

generateUMCModel(model_args : SimpleModelArgs) : unit

The printRawLayout permits the user to explore the layout in an XML �le, by
printing out a simple representation of the layout in the same format as layouts
can be de�ned by the user. The function generateUMCModel takes record of

116 User Guide for the Model Generating Tool

arguments as input, and based on the requirements speci�ed in the record, the
function will generate a model.

An example of using the printRawLayout in a �le script.fsx is illustrated in the
following listing (using the sample.xml �le)

1 #load "Prelude . f s x "
2 open In te r l ock ingMode l
3 open Sc r ip t i ngToo l s
4 let path = "sample . xml"
5 printRawLayout path

Executing this �le with the F# interactive fsharpi program.

fsharpiscript.fsx

Prints following output in the console.

1 LLinear "b10" <+> LLinear " t10 "
2 LLinear " t10 " <+> LPointStem " t11 "
3 LLinear " t12 " <+> LPointFork (" t13 " , Plus)
4 LLinear " t14 " <+> LLinear "b14"
5 LLinear " t20 " <+> LPointFork (" t13 " ,Minus)
6 LPointStem " t11 " <+> LLinear " t10 "
7 LPointStem " t13 " <+> LLinear " t14 "
8 LPointFork (" t11 " , Plus) <+> LLinear " t12 "
9 LPointFork (" t11 " ,Minus) <+> LLinear " t20 "

10 LPointFork (" t13 " , Plus) <+> LLinear " t12 "
11 LPointFork (" t13 " ,Minus) <+> LLinear " t20 "

Which illustrates the connections between linear segments (LLinear), point
stems (LPointStem) and point forks (LPointFork). It is now trivial to look
at the mappings and choose a route in the layout.

Based on the presented layout, a user could for example decide to de�ne a route
from �b10� to �t14�, going through the elements �b10�, �t10�, �t11�, �t12�, �t13�
and �t14�. And another route from �b14� to �t20�, going through �b14�, �t14�,
�t13� and �t20�. These routes must now each be de�ned for a train and the user
must decide the lengths of the train and segments.

The user can de�ne a train using the record type SimpleTrain.

1 { id = "1"
2 ; l ength = 3
3 ; route = [RLinear (name = "b10" , l ength = 3)
4 ; RLinear (name = " t10 " , l ength = 3)
5 ; RPoint (name = " t11 " , p o s i t i o n = Plus)
6 ; RLinear (name = " t12 " , l ength = 3)
7 ; RPoint (name = " t13 " , p o s i t i o n = Plus)

A.2 Model generation using the scripting tools 117

8 ; RLinear (name = " t14 " , l ength = 3)]
9 ; r ou te_d i r e c t i on = Up }

Here the user have chosen that the length of the modeled train should be a value
of three and all its linear segments likewise, furthermore has the user decided
that the route should go in the Up direction, since the route connects left to
right in the described layout. Furthermore, has the user determined the required
positionings of the points should both be Plus.

The user chooses to de�ne the other train with a length of two and assigns it to
the remaining route.

1 { id = "2"
2 ; l ength = 2
3 ; route = [RLinear (name = "b14" , l ength = 2)
4 ; RLinear (name = " t14 " , l ength = 2)
5 ; RPoint (name = " t13 " , p o s i t i o n = Minus)
6 ; RLinear (name = " t20 " , l ength = 2)]
7 ; r ou te_d i r e c t i on = Down }

The two train de�nitions can simply be represented together as a list, as follows.

1 let t r a i n s : SimpleTrains = [
2 { id = "1" ; l ength = 3
3 ; route = [RLinear (name = "b10" , l ength = 3)
4 ; RLinear (name = " t10 " , l ength = 3)
5 ; RPoint (name = " t11 " , p o s i t i o n = Plus)
6 ; RLinear (name = " t12 " , l ength = 3)
7 ; RPoint (name = " t13 " , p o s i t i o n = Plus)
8 ; RLinear (name = " t14 " , l ength = 3)]
9 ; r ou te_d i r e c t i on = Up }

10 { id = "2"
11 ; l ength = 2
12 ; route = [RLinear (name = "b14" , l ength = 2)
13 ; RLinear (name = " t14 " , l ength = 2)
14 ; RPoint (name = " t13 " , p o s i t i o n = Minus)
15 ; RLinear (name = " t20 " , l ength = 2)]
16 ; r ou te_d i r e c t i on = Down }]

At last to produce an UMC model, the user can apply the trains together with
a set of arguments in a record to the function generateUMCModel, as follows.

1 generateUMCModel {
2 t r a i n s = t r a i n s
3 l ayout = XMLLayout path
4 show_stats = true
5 output_f i l e = Some "mymodel . txt " }

Here the input arguments to the functions speci�es that the de�ned trains should
be used, the layout should be extracted from an XML �le previously speci�ed

118 User Guide for the Model Generating Tool

by the path value. Furthermore does the inputs describe that a set of summary
statistics must be shown together with the model that has been generated, and
at last that the resulting model should be saved to the �le �mymodel.txt�. If a
None type was given instead of a Some type with a �lename, the script would
simply print the model to the console instead of saving it to a �le.

Composing all the described script fragments into one script, results in the
following script.

1 #load "Prelude . f s x "
2 open In te r l ock ingMode l
3 open Sc r ip t i ngToo l s
4 let path = "sample . xml"
5 printRawLayout path
6 let t r a i n s : SimpleTrains = [
7 { id = "1" ; l ength = 3
8 ; route = [RLinear (name = "b10" , l ength = 3)
9 ; RLinear (name = " t10 " , l ength = 3)

10 ; RPoint (name = " t11 " , p o s i t i o n = Plus)
11 ; RLinear (name = " t12 " , l ength = 3)
12 ; RPoint (name = " t13 " , p o s i t i o n = Plus)
13 ; RLinear (name = " t14 " , l ength = 3)]
14 ; r ou te_d i r e c t i on = Up }
15 { id = "2"
16 ; l ength = 2
17 ; route = [RLinear (name = "b14" , l ength = 2)
18 ; RLinear (name = " t14 " , l ength = 2)
19 ; RPoint (name = " t13 " , p o s i t i o n = Minus)
20 ; RLinear (name = " t20 " , l ength = 2)]
21 ; r ou te_d i r e c t i on = Down }]
22 generateUMCModel {
23 t r a i n s = t r a i n s
24 l ayout = XMLLayout path
25 show_stats = true
26 output_f i l e = Some "mymodel . txt " }

And executing the script using the F# interactive program results in the fol-
lowing output.

1 LLinear "b10" <+> LLinear " t10 "
2 LLinear " t10 " <+> LPointStem " t11 "
3 LLinear " t12 " <+> LPointFork (" t13 " , Plus)
4 LLinear " t14 " <+> LLinear "b14"
5 LLinear " t20 " <+> LPointFork (" t13 " ,Minus)
6 LPointStem " t11 " <+> LLinear " t10 "
7 LPointStem " t13 " <+> LLinear " t14 "
8 LPointFork (" t11 " , Plus) <+> LLinear " t12 "
9 LPointFork (" t11 " ,Minus) <+> LLinear " t20 "

10 LPointFork (" t13 " , Plus) <+> LLinear " t12 "
11 LPointFork (" t13 " ,Minus) <+> LLinear " t20 "
12 model wr i t t en to f i l e mymodel . txt

A.2 Model generation using the scripting tools 119

(Note that it is not required to print the layout again)

The script could also have been de�ned such that a custom layout is de�ned in
the script. In that case, the script could instead look as follows.

1 #load "Prelude . f s x "
2 (∗ import ing r equ i r ed modules ∗)
3 open In te r l ock ingMode l
4 open Sc r ip t i ngToo l s
5

6 let network : SimpleLayout =
7 [LLinear "1" <+> LPointFork ("1" , Plus)
8 LLinear "3" <+> LPointFork ("1" , Minus)
9 LPointStem "1" <+> LPointStem "2"

10 LPointFork ("2" , Plus) <+> LLinear "2"
11 LPointFork ("2" , Minus) <+> LLinear "4"]
12

13 let t r a i n s : SimpleTrains =
14 [{ id = "1"
15 ; l ength = 2
16 ; route = [RLinear ("1" , 2)
17 RPoint ("1" , Plus)
18 RPoint ("2" , Plus)
19 RLinear ("2" , 2)]
20 ; r ou te_d i r e c t i on = Up }
21 { id = "2"
22 ; l ength = 3
23 ; route = [RLinear ("3" , 3)
24 RPoint ("1" , Minus)
25 RPoint ("2" , Minus)
26 RLinear ("4" , 3)]
27 ; r ou te_d i r e c t i on = Up }]
28

29 generateUMCModel { t r a i n s = t r a i n s
30 ; l ayout = CustomLayout (network)
31 ; show_stats = true
32 ; ou tput_f i l e = Some "mymodel . txt " }

Notice that for this script the layout argument for the generateUMCModel func-
tion is of of type CustomLayout, and in the previous script the type XMLLayout
was used.

The produced delta (-omitting the generic classes) of the model, is presented in
following listing.

1 STATS:
2 {num_of_trains = 2 ;
3 t ra in_lengths = [2 ; 3] ;
4 route_lengths = [4 ; 4] ;
5 total_route_sub_segments = 14 ;
6 t o t a l_ l i n e a r s = 4 ;
7 to ta l_po int s = 2 ;
8 shared_points = 2 ;

120 User Guide for the Model Generating Tool

9 shared_l inear s = 0 ;}
10

11 MODEL:
12

13 . . . omitted . . .
14

15 Objects
16 train_1 : Train (
17 route_segments => [l inear_1 , point_1 , point_2 , l inear_2] ,
18 t rack_lengths => [2 , 1 , 1 , 2] ,
19 t ra in_length => 2 ,
20 occup i e s => [l inear_1 , l inear_1] ,
21 requested_point_pos i t ions => [nul l , True , True , nu l l]) ;
22

23 train_2 : Train (
24 route_segments => [l inear_3 , point_1 , point_2 , l inear_4] ,
25 t rack_lengths => [3 , 1 , 1 , 3] ,
26 t ra in_length => 3 ,
27 occup i e s => [l inear_3 , l inear_3 , l inear_3] ,
28 requested_point_pos i t ions => [nu l l , False , False , nu l l]) ;
29

30 l inear_1 : Linear (t r a i n => train_1) ;
31

32 l inear_2 : Linear (t r a i n => nu l l) ;
33

34 l inear_3 : Linear (t r a i n => train_2) ;
35

36 l inear_4 : Linear (t r a i n => nu l l) ;
37

38 point_1 : Point ;
39

40 point_2 : Point ;
41 Abst rac t i ons {
42 State : i nS ta t e (train_1 .ARRIVED) −> train_1_arr ived
43 State : i nS ta t e (train_2 .ARRIVED) −> train_2_arr ived
44 State : point_1 . t r a i n = nu l l −> no_train_on_point_1
45 State : point_2 . t r a i n = nu l l −> no_train_on_point_2
46 State : i nS ta t e (point_1 .POSITIONING) −> posit ioning_point_1
47 State : i nS ta t e (point_2 .POSITIONING) −> posit ioning_point_2
48 State : point_1 . cur r ent_pos i t i on = True −> point_1_in_plus
49 State : point_2 . cur r ent_pos i t i on = True −> point_2_in_plus
50 State : point_1 . cur r ent_pos i t i on = True −> point_1_in_minus
51 State : point_2 . cur r ent_pos i t i on = True −> point_2_in_minus
52 State : train_1 . occup i e s [0] /= train_2 . occup i e s [0] and

53 train_1 . occup i e s [0] /= train_2 . occup i e s [1] and

54 train_1 . occup i e s [0] /= train_2 . occup i e s [2] and

55 train_1 . occup i e s [1] /= train_2 . occup i e s [0] and

56 train_1 . occup i e s [1] /= train_2 . occup i e s [1] and

57 train_1 . occup i e s [1] /= train_2 . occup i e s [2] −>
tra in s_at_d i f f_pos i t i on s

58 State : train_1 . occup i e s [0] /= point_1 and

59 train_1 . occup i e s [1] /= point_1 −> train_1_not_on_point_1
60 State : train_1 . occup i e s [0] /= point_2 and

61 train_1 . occup i e s [1] /= point_2 −> train_1_not_on_point_2
62 State : train_2 . occup i e s [0] /= point_1 and

A.3 Model checking the generated models with the UMC web tool 121

63 train_2 . occup i e s [1] /= point_1 and

64 train_2 . occup i e s [2] /= point_1 −> train_2_not_on_point_1
65 State : train_2 . occup i e s [0] /= point_2 and

66 train_2 . occup i e s [1] /= point_2 and

67 train_2 . occup i e s [2] /= point_2 −> train_2_not_on_point_2
68 Action : l o s t e v en t −> discarded_message
69 }
70

71 −− s a f e t y property :
72 −− no i n c i d en t
73 −− no t r a i n s occupy the same l o c a t i o n node at the same time
74 AG (t ra in s_at_d i f f_pos i t i on s) ;
75

76 −− s a f e t y property :
77 −− no t r a i n s are l o ca t ed at any ' point ' whi l e i t i s changing i t s

p o s i t i o n
78 AG (pos it ioning_point_1 imp l i e s no_train_on_point_1 and

79 pos i t ioning_point_2 imp l i e s no_train_on_point_2) ;
80

81 −− property to v e r i f y that a l l t r a i n s are c o r r e c t l y detec ted at
po in t s

82 AG ((not (train_1_not_on_point_1 and train_2_not_on_point_1)
imp l i e s not no_train_on_point_1) and

83 (not (train_1_not_on_point_2 and train_2_not_on_point_2) imp l i e s
not no_train_on_point_2)) ;

84

85 −− prog r e s s property that s p e c i f i e s that
86 −− a l l t r a i n s has a r r i v ed at t h e i r d e s t i n a t i o n s
87 EF AG (train_1_arr ived and tra in_2_arr ived) ;
88

89 −− no s i g n a l i s ever l o s t in the system
90 AG not (EX {discarded_message } t rue) ;

As can be seen in the above listing, the stats are presented at the beginning
followed by the generic model which has been omitted for the presented code,
and thereafter comes the object instantiations, abstraction de�nitions and at
last the properties for the generated model.

A.3 Model checking the generated models with

the UMC web tool

The produced model from a script or from the tool program, can now be model
checked with the UMC model checking tool.

This tool is exposed as a service at the site http://fmt.isti.cnr.it/umc/V4.
2/umc.html.

http://fmt.isti.cnr.it/umc/V4.2/umc.html
http://fmt.isti.cnr.it/umc/V4.2/umc.html

122 User Guide for the Model Generating Tool

When entering the site, choose 'Model De�nition' from the menu at the left,
and after that choose 'Edit a new Model' from the new menu point. An online
editor is now displayed in the browser with an existing model skeleton. Delete
the skeleton before proceeding. After deleting the skeleton open the generated
model �le and copy everything after the MODEL: except for the properties at
the end of the �le. Insert the model into the online editor and click the 'Load
Current Model' button.

When the model is done loading, a new menu is presented and options for
exploring the model are shown. To model check the generated properties of
the generated model, simply copy the properties from the �le containing the
model, and click the 'Modelcheck L2TS ..' button. A small box opens at the
bottom of the screen. Paste in the properties into the box and click the 'Check
the Formula' button on the right side of the screen. Now all the properties will
be model checked for the given model, and if they are all evaluated to be true,
then the model has been veri�ed with regards to the given properties. In the
event that one or more properties evaluates to false, then the model has failed
the veri�cation. In this case it is possible to get a trace to the failing states by
clicking the 'Explain the Result' button at the right side of the screen.

Appendix B

UMC BNF

This Appendix chapter presents the BNF grammar for the UMC modeling lan-
guage.
The BNF is extracted from the UMC User Guide and presented here for
completeness.[Maza]

{item} denotes 0 or more occurrences of the item
[item] denotes 0 or 1 occurrence of the item
�item� denotes a terminal character sequence
�item | item � denotes indicates alternative items

1

2 Model : := { Class } { Object }
3

4 Class : := " c l a s s " ClassName " i s "
5 [" S i gna l s "
6 Signal , {" , " S i gna l }]
7 ["Operat ions " Operation , {" , " Operation }]
8 ["Vars" Att r ibute {" , " Att r ibute }]
9 [" State " " top" "=" Composite

10 {" State " Statepath "=" State }]
11 [" Trans i t i on s " {Trans i t i on }]
12 "end ; " [ClassName]
13

14 S igna l : := SignalName [" (" ParamName [" : " TypeName]
15 {" , " ParamName [" : " TypeName] }
16 ") "]

124 UMC BNF

17

18 Operation : := OpName [" (" Name [" : " TypeName]
19 {" , " Name [" : " TypeName] }
20 ") "] [" : " TypeName]
21

22 Attr ibute : := AttrName [" : " TypeName] [":=" Stat icExpr] " ; "
23

24 State : := Composite | P a r a l l e l
25

26 Composite : := StateName { " , " StateName}
27 [" De fer s " Defer {" , " Defer }]
28

29 Pa r a l l e l : := Name { "/" Name}
30 [" De fer s " Defer {" , " Defer }]
31

32 StateName : := Name | " f i n a l " | " i n i t i a l "
33

34 Defer : := EventName [" (" ParamName {" , " ParamName } ") "]
35

36 Trans i t i on : := Statepaths "−(" Tr igger [Guard] ["/" Act ions] ")−>"
Statepaths

37

38 Statepaths : := Statepath | " (" Statepath {" , " Statepath } ") "
39

40 Statepath : := [" top . "] Name { " . " Name}
41

42 Trigger : := "−" | EventName [" (" ParamName {" , " ParamName } ") "]
43

44 Guard : := " [" BoolBoolExpr "] "
45

46 Actions : := [Stm {" ; " Stm}]
47

48 Object : := "Object " ObjName " : " ClassName [I n i t i a l i z a t i o n s]
49

50 I n i t i a l i z a t i o n s : := " (" AttrName "=>" Stat icExpr
51 { " , " AttrName "=>" Stat icExpr } ") "
52

53 - - action statements
54

55 Stm : := Assignment
56 | S igna lSending
57 | Operat ionCal l
58 | Funct ionCal l
59 | ConditionalStm
60 | LoopStm
61 | VarDecl
62 | ReturnStm
63 | ExitStm
64

65 Assignment : := TargetExpr ":=" Expr
66

67 Signa lSending : := ObjExpr " . " SignalName [" (" Expr {" , " Expr} ") "]
68

69 Operat ionCal l : := ObjExpr " . " OpName [" (" Expr {" , " Expr} ") "]
70

125

71 Funct ionCal l : := TargetVar ":=" ObjExpr " . " OpName [" (" Expr {" , "
Expr} ") "]

72

73 ConditionalStm : := " i f " BoolBoolExpr [" then"] "{" Act ions "}" [
" e l s e {" Act ions "}"]

74

75 LoopStm : := " f o r " LoopIndex " in " IntExpr " . . " IntExpr "{" Act ions
"}"

76

77 VarDecl : := VarName " : " TypeName
78

79 ReturnStm : := " return " [" (" Expr {" , " Expr} ") "]
80

81 ExitStm : := " ex i t "
82

83 TargetExpr : := AttrName [S e l e c t i o n] | VarName [S e l e c t i o n]
84

85 S e l e c t i o n : := " [" IntExpr "] "
86

87 - - names and expressions
88

89 Expr : := " ("Expr") " | BoolBoolExpr | IntExpr | ObjExpr | VectorExpr
90

91 BoolBoolExpr : := BoolExpr {"and" BoolExpr}
92 | BoolExpr {" or " BoolExpr}
93 | "not" BoolExpr
94 | BoolExpr
95

96 BoolExpr : := " true " | " f a l s e "
97 | AttrName [S e l e c t i o n] | VarName [S e l e c t i o n]
98 | Expr "=" Expr
99 | Expr "/=" Expr

100 | IntExpr r e l op IntExpr
101

102 ObjExpr : := " nu l l " | AttrName [S e l e c t i o n] | VarName [S e l e c t i o n]
103 | ObjName | " s e l f " | " t h i s "
104

105 IntExpr : := Number | AttrName [S e l e c t i o n] | VarName [S e l e c t i o n]
106 | (Intexpr intop IntExpr ") " | VectorExpr " . head"
107

108 VectorExpr : := " [] " | AttrName | VarName | VectorExpr "+"
VectorExpr

109 | VectorExpr " . t a i l "
110

111 Stat icExpr : := Number | ObjName | " nu l l " | " s e l f " | " t h i s "
112

113 r e l op : := ">" | ">=" | "<" | "<="
114

115 intop : := "+" | "−" | "∗" | "/" | "mod"
116

117 TypeName : := " in t " | " bool " | " obj " | ClassName
118 " i n t [] " | " bool [] " | " obj [] " | ClassName" [] "

126 UMC BNF

Appendix C

Generic UMC Model

This chapter contains the source code for the three generic classes that together
de�nes the modeled concept.

1 Class Train i s
2 S i gna l s : ok , no ;
3

4 Vars :
5 requested_point_pos i t ions : bool [] ;
6 t ra in_length : i n t = 2 ; - - how many track segments does the train occupy
7 route_segments : obj [] ;
8 route_index : i n t := 0 ; - - current location on the route
9 occup i e s : obj [] ; - - the tc and pt objects which the train currently occupies

10 front_advancement_count : i n t ; - - a variable for keeping track of the trains front
advancement over a track

11 t rack_lengths : i n t [] ; - - same number of elements as route_segments
12

13 State Top = READY, WAIT_OK, MOVEMENT, ARRIVED
14

15 Trans i t i on s :
16 - - send out initial reservation request to the �rst node on route
17 READY −> WAIT_OK {
18 − /
19 route_segments [0] . req (s e l f , 0 , route_segments ,

requested_point_pos i t ions) ;
20 }
21

22 - - when the train reservation is rejected we just keep cycling between
WAIT_OK and READY

128 Generic UMC Model

23 WAIT_OK −> READY { no }
24

25 - - train receives acknowledgment that the route has been reserved successfully
26 - - the front_advancement_count va r i ab l e i s i n i t i a l i z e d to r e f l e c t the

t r a i n s f r on t l o c a t i o n on the t rack
27 WAIT_OK −> MOVEMENT { ok / front_advancement_count := tra in_length

− 1 ; }
28

29 MOVEMENT −> MOVEMENT {
30 −
31 [not (route_index = route_segments . l ength − 1 and

32 t rack_lengths [route_index] − 1 = front_advancement_count)] / - - at
end of track

33 at_end_of_track : bool := track_lengths [route_index] − 1 =
front_advancement_count ; - - determine if we have reached the end of the
current track

34 i f at_end_of_track = true then { - - the train has reached the end of its
current track

35 front_advancement_count := 0 ;
36 i f route_index < route_segments . l ength − 1 then { - - the

route_index i s not the l a s t
37 - - train enters next track
38 route_index := route_index + 1 ;
39 route_segments [route_index] . sensorOn (s e l f) ; - - the next track

detects the train
40 } ;
41 } else {
42 front_advancement_count := front_advancement_count + 1 ;
43 } ;
44 - - update the occupies array
45 r ea r : obj := occup i e s . head ;
46 next_rear : obj := occup i e s . t a i l . head ;
47 occup i e s := occup i e s . t a i l + [route_segments [route_index]] ;
48 i f r ea r != next_rear then { - - determine if the rear of the train has left a track
49 r ea r . s en so rOf f (s e l f) ; - - the past track detects that the train does not occupy it

anymore
50 } ;
51 }
52

53 MOVEMENT −> ARRIVED {
54 −
55 [route_index = route_segments . l ength − 1 and - - at last track segment of

route
56 t rack_lengths [route_index] − 1 = front_advancement_count] - - at end

of track
57 }
58 end Train
59

60

61 Class Linear i s
62 S i gna l s :
63 req (sender : obj , route_index : int , route_elements : obj [] ,

r equested_point_pos i t ions : bool []) ;
64 ack (sender : obj) ;
65 nack (sender : obj) ;

129

66 commit (sender : obj) ;
67 agree (sender : obj) ;
68 d i s a g r e e (sender : obj) ;
69

70 Operat ions :
71 sensorOn (sender : obj) ;
72 s en so rOf f (sender : obj) ;
73

74 Vars :
75 next : obj ;
76 prev : obj ;
77 t r a i n : obj := nu l l ;
78

79 State Top = NON_RESERVED, WAIT_ACK, WAIT_COMMIT, WAIT_AGREE,
RESERVED, TRAIN_IN_TRANSITION

80

81 Trans i t i on s
82 - - �rst node receive request
83 NON_RESERVED −> WAIT_ACK {
84 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
85 [route_index = 0 and sender = t r a i n and route_elements . l ength >

0] /
86 prev := nu l l ;
87 next := route_elements [1] ;
88 next . req (s e l f , 1 , route_elements , requested_point_pos i t ions) ;
89 }
90

91 - - intermediate node receive request
92 NON_RESERVED −> WAIT_ACK {
93 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
94 [t r a i n = nu l l and (route_index > 0 and route_index+1 <

route_elements . l ength)] /
95 prev := route_elements [route_index − 1] ;
96 next := route_elements [route_index + 1] ;
97 next . req (s e l f , route_index + 1 , route_elements ,

requested_point_pos i t ions) ;
98 }
99

100 - - initial reservation request for last node
101 - - starts ack phase
102 NON_RESERVED −> WAIT_COMMIT {
103 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
104 [t r a i n = nu l l and route_elements . l ength = route_index+1] /
105 prev := route_elements [route_index − 1] ;
106 next := nu l l ;
107 prev . ack (s e l f) ;
108 }
109

110 - - intermediate node receive ack
111 WAIT_ACK −> WAIT_COMMIT {
112 ack (sender)
113 [prev /= nu l l] /

130 Generic UMC Model

114 prev . ack (s e l f) ;
115 }
116

117 - - �rst node receive ack
118 - - and starts commit phase
119 WAIT_ACK −> WAIT_AGREE {
120 ack (sender)
121 [prev = nu l l] /
122 next . commit (s e l f) ;
123 }
124

125 - - intermediate node receives commit
126 WAIT_COMMIT −> WAIT_AGREE {
127 commit (sender)
128 [next /= nu l l] /
129 next . commit (s e l f) ;
130 }
131

132 - - last node receive commit
133 - - and starts agree phase
134 WAIT_COMMIT −> RESERVED {
135 commit (sender)
136 [next = nu l l] /
137 prev . agree (s e l f) ;
138 }
139

140 - - intermediate node receive agree
141 WAIT_AGREE −> RESERVED {
142 agree (sender)
143 [prev /= nu l l] /
144 prev . agree (s e l f) ;
145 }
146

147 - - �rst node receive agree
148 - - and sends ok to the train
149 WAIT_AGREE −> TRAIN_IN_TRANSITION {
150 agree (sender)
151 [prev = nu l l and t r a i n /= nu l l] /
152 t r a i n . ok ;
153 }
154

155 - - train moves onto current node
156 RESERVED −> TRAIN_IN_TRANSITION {
157 sensorOn (sender) /
158 t r a i n := sender ;
159 }
160

161 - - sequential release
162 - - reset train
163 TRAIN_IN_TRANSITION −> NON_RESERVED {
164 s en so rOf f (sender) /
165 t r a i n := nu l l ;
166 }
167

168 - - nack received

131

169 - - forwards and goes into non-reserved
170 WAIT_ACK −> NON_RESERVED {
171 nack (sender) /
172 i f prev = nu l l then { - - is �rst node on itinerary
173 t r a i n . no
174 } else { - - is not �rst node
175 prev . nack (s e l f)
176 } ;
177 }
178

179 - - disagree received
180 - - forwards and goes into non-reserved
181 WAIT_COMMIT −> NON_RESERVED {
182 d i s a g r e e (sender) /
183 i f next /= nu l l then { - - not last node on itinerary
184 next . d i s a g r e e (s e l f)
185 } ;
186 }
187

188 - - disagree received
189 - - forwards and goes into non-reserved
190 WAIT_AGREE −> NON_RESERVED {
191 d i s a g r e e (sender) /
192 i f prev /= nu l l then { - - not �rst node on itinerary
193 prev . d i s a g r e e (s e l f)
194 } else { - - is �rst node
195 t r a i n . no
196 } ;
197 }
198

199 - - disagree received
200 - - forwards (if there is someone to forward to) and goes into non-reserved
201 RESERVED −> NON_RESERVED {
202 d i s a g r e e (sender) /
203 i f next /= nu l l then { - - not last node on itinerary
204 next . d i s a g r e e (s e l f)
205 } ;
206 }
207

208 - - reservation request received
209 - - however a train is already on the track, so a nack is returned to sender
210 NON_RESERVED −> NON_RESERVED {
211 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
212 [t r a i n /= nu l l and sender /= t r a i n] /
213 sender . nack (s e l f) ;
214 }
215

216 - - reservation request received
217 - - however, the node is already in wait-ack, so it returns a nack to sender
218 WAIT_ACK −> WAIT_ACK {
219 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
220 sender . nack (s e l f) ;
221 }

132 Generic UMC Model

222

223 - - reservation request received
224 - - however, the node is already in wait-commit, so it returns a nack to sender
225 WAIT_COMMIT −> WAIT_COMMIT {
226 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
227 sender . nack (s e l f) ;
228 }
229

230 - - reservation request received
231 - - however, the node is already in wait-agree, so it returns a nack to sender
232 WAIT_AGREE −> WAIT_AGREE {
233 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
234 sender . nack (s e l f) ;
235 }
236

237 - - reservation request received
238 - - however, the node is already reserved, so it returns a nack to sender
239 RESERVED −> RESERVED {
240 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
241 sender . nack (s e l f) ;
242 }
243

244 - - reservation request received
245 - - however, a train is in transition on the node, so it returns a nack to sender
246 TRAIN_IN_TRANSITION −> TRAIN_IN_TRANSITION {
247 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
248 sender . nack (s e l f) ;
249 }
250 end Linear
251

252

253 - - points are always intermediate nodes
254 - - so we don't need to check if they are �rst or last in the guards
255 Class Point i s
256 S i gna l s :
257 req (sender : obj , route_index : int , route_elements : obj [] ,

r equested_point_pos i t ions : bool []) ;
258 ack (sender : obj) ;
259 nack (sender : obj) ;
260 commit (sender : obj) ;
261 agree (sender : obj) ;
262 d i s a g r e e (sender : obj) ;
263

264 Operat ions :
265 sensorOn (sender : obj) ;
266 s en so rOf f (sender : obj) ;
267

268 Vars :
269 next : obj ;
270 prev : obj ;
271 r eques ted_pos i t i on : bool ;

133

272 cur r ent_pos i t i on : bool := True ;
273 t r a i n : obj := nu l l ;
274

275 State Top = NON_RESERVED, WAIT_ACK, WAIT_COMMIT, WAIT_AGREE,
POSITIONING, RESERVED, TRAIN_IN_TRANSITION, MALFUNCTION

276

277 Trans i t i on s :
278 - - initial reservation request
279 NON_RESERVED −> WAIT_ACK {
280 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
281 prev := route_elements [route_index − 1] ;
282 next := route_elements [route_index + 1] ;
283 r eques ted_pos i t i on := requested_point_pos i t ions [route_index] ;
284 next . req (s e l f , route_index + 1 , route_elements ,

requested_point_pos i t ions) ;
285 }
286

287 - - receiving and forwarding ack
288 WAIT_ACK −> WAIT_COMMIT {
289 ack (sender) /
290 prev . ack (s e l f) ;
291 }
292

293 - - receiving and forwarding commit
294 WAIT_COMMIT −> WAIT_AGREE {
295 commit (sender) /
296 next . commit (s e l f) ;
297 }
298

299 - - if the point is positioned as required for the given route reservation
300 - - receiving and forwarding agree
301 WAIT_AGREE −> RESERVED {
302 agree (sender)
303 [cu r r ent_pos i t i on = reques ted_pos i t i on] /
304 prev . agree (s e l f) ;
305 }
306

307 - - if the point is not positioned as required for the given route
308 - - goes into positioning state
309 WAIT_AGREE −> POSITIONING {
310 agree (sender)
311 [cu r r ent_pos i t i on /= reques ted_pos i t i on] /
312 −
313 }
314

315 - - successfully performing positioning
316 POSITIONING −> RESERVED {
317 − /
318 cur r ent_pos i t i on := not cur r ent_pos i t i on ;
319 prev . agree (s e l f) ;
320 }
321

322 - - simulating sudden malfunction of positioning system
323 - - and sending disagrees to neighbor nodes

134 Generic UMC Model

324 POSITIONING −> MALFUNCTION {
325 − /
326 prev . d i s a g r e e (s e l f) ;
327 next . d i s a g r e e (s e l f) ;
328 }
329

330 - - train moves onto current node
331 RESERVED −> TRAIN_IN_TRANSITION {
332 sensorOn (sender) /
333 t r a i n := sender ;
334 }
335

336 - - sequential release
337 - - reset all train
338 TRAIN_IN_TRANSITION −> NON_RESERVED {
339 s en so rOf f (sender) /
340 - - [sender = train] /
341 t r a i n := nu l l ;
342 }
343

344 - - nack received and forwarded
345 WAIT_ACK −> NON_RESERVED {
346 nack (sender) /
347 prev . nack (s e l f) ;
348 }
349

350 - - disagree received and forwarded
351 WAIT_COMMIT −> NON_RESERVED {
352 d i s a g r e e (sender) /
353 next . d i s a g r e e (s e l f) ;
354 }
355

356 - - disagree received and forwarded
357 WAIT_AGREE −> NON_RESERVED {
358 d i s a g r e e (sender) /
359 prev . d i s a g r e e (s e l f) ;
360 }
361

362 - - disagree received and forwarded
363 POSITIONING −> NON_RESERVED {
364 d i s a g r e e (sender) /
365 next . d i s a g r e e (s e l f) ;
366 }
367

368 - - disagree received and forwarded
369 RESERVED −> NON_RESERVED {
370 d i s a g r e e (sender) /
371 next . d i s a g r e e (s e l f) ;
372 }
373

374 - - reservation request received
375 - - however, the node is already in wait-ack, so it returns a nack to sender
376 WAIT_ACK −> WAIT_ACK {
377 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /

135

378 sender . nack (s e l f) ;
379 }
380

381 - - reservation request received
382 - - however, the node is malfunctioning
383 MALFUNCTION −> MALFUNCTION {
384 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
385 sender . nack (s e l f) ;
386 }
387

388 - - reservation request received
389 - - however, the node is already in wait-commit state and returns nack to the sender
390 WAIT_COMMIT −> WAIT_COMMIT {
391 req (sender , route_index , route_elements , r eques ted_pos i t i on) /
392 sender . nack (s e l f) ;
393 }
394

395 - - reservation request received
396 - - however, the node is already in wait-agree state and returns nack to the sender
397 WAIT_AGREE −> WAIT_AGREE {
398 req (sender , route_index , route_elements , r eques ted_pos i t i on) /
399 sender . nack (s e l f) ;
400 }
401

402 - - reservation request received
403 - - however, the node is already in positioning state and returns nack to the sender
404 POSITIONING −> POSITIONING {
405 req (sender , route_index , route_elements , r eques ted_pos i t i on) /
406 sender . nack (s e l f) ;
407 }
408

409 - - reservation request received
410 - - however, the node is already reserved and returns nack to the sender
411 RESERVED −> RESERVED {
412 req (sender , route_index , route_elements , r eques ted_pos i t i on) /
413 sender . nack (s e l f) ;
414 }
415

416 - - reservation request received
417 - - however, the node is occupied by a train and returns nack to the sender
418 TRAIN_IN_TRANSITION −> TRAIN_IN_TRANSITION {
419 req (sender , route_index , route_elements , r eques ted_pos i t i on) /
420 sender . nack (s e l f) ;
421 }
422 end Point

136 Generic UMC Model

Appendix D

UMC model delta

Example of the appended delta part of a concrete UMC model generated by the
tool.
In the generated model, the presented code would be appended to the code from
the previous appendix chapter, thus the code presented here can be seen as a
delta of a generated model.

1 Objects
2 train_0 : Train (
3 route_segments =>

[l inear_b10 , l inear_t10 , point_t11 , l inear_t12 , point_t13 , l inear_t14] ,
4 t rack_lengths => [2 , 2 , 1 , 2 , 1 , 2] ,
5 t ra in_length => 2 ,
6 occup i e s => [l inear_b10 , l inear_b10] ,
7 requested_point_pos i t ions => [nul l , nu l l , True , nu l l , True , nu l l]) ;
8

9 train_1 : Train (
10 route_segments => [l inear_b14 , l inear_t14 , point_t13 , l inear_t20] ,
11 t rack_lengths => [2 , 2 , 1 , 2] ,
12 t ra in_length => 2 ,
13 occup i e s => [l inear_b14 , l inear_b14] ,
14 requested_point_pos i t ions => [nul l , nu l l , False , nu l l]) ;
15

16 l inear_b10 : Linear (t r a i n => train_0) ;
17

18 l inear_b14 : Linear (t r a i n => train_1) ;
19

20 l i near_t10 : Linear (t r a i n => nu l l) ;

138 UMC model delta

21

22 l i near_t12 : Linear (t r a i n => nu l l) ;
23

24 l i near_t14 : Linear (t r a i n => nu l l) ;
25

26 l i near_t20 : Linear (t r a i n => nu l l) ;
27

28 point_t11 : Point ;
29

30 point_t13 : Point ;
31

32 Abst rac t i ons {
33 State : i nS ta t e (train_0 .ARRIVED) −> train_0_arr ived
34 State : i nS ta t e (train_1 .ARRIVED) −> train_1_arr ived
35

36 State : point_t11 . t r a i n = nu l l −> no_train_on_point_t11
37 State : point_t13 . t r a i n = nu l l −> no_train_on_point_t13
38

39 State : i nS ta t e (point_t11 .POSITIONING) −> pos i t ion ing_point_t11
40 State : i nS ta t e (point_t13 .POSITIONING) −> pos i t ion ing_point_t13
41

42 State : point_t11 . cur r ent_pos i t i on = True −> point_t11_in_plus
43 State : point_t13 . cur r ent_pos i t i on = True −> point_t13_in_plus
44 State : point_t11 . cur r ent_pos i t i on = False −> point_t11_in_minus
45 State : point_t13 . cur r ent_pos i t i on = False −> point_t13_in_minus
46

47 State : i nS ta t e (point_t11 .MALFUNCTION) −> point_t11_malfunction
48 State : i nS ta t e (point_t13 .MALFUNCTION) −> point_t13_malfunction
49

50 State : train_0 . occup i e s [0] /= train_1 . occup i e s [0] and

51 train_0 . occup i e s [0] /= train_1 . occup i e s [1] and

52 train_0 . occup i e s [1] /= train_1 . occup i e s [0] and

53 train_0 . occup i e s [1] /= train_1 . occup i e s [1] −>
tra in s_at_d i f f_pos i t i on s

54

55 State : train_0 . occup i e s [0] /= point_t11 and

56 train_0 . occup i e s [1] /= point_t11 −> train_0_not_on_point_t11
57

58 State : train_0 . occup i e s [0] /= point_t13 and

59 train_0 . occup i e s [1] /= point_t13 −> train_0_not_on_point_t13
60

61 State : train_1 . occup i e s [0] /= point_t11 and

62 train_1 . occup i e s [1] /= point_t11 −> train_1_not_on_point_t11
63

64 State : train_1 . occup i e s [0] /= point_t13 and

65 train_1 . occup i e s [1] /= point_t13 −> train_1_not_on_point_t13
66

67 Action : l o s t e v en t −> discarded_message
68 }
69

70 - - safety property:
71 - - no incident
72 - - no trains occupy the same location node at the same time
73 AG (t ra in s_at_d i f f_pos i t i on s) ;
74

139

75 - - safety property:
76 - - no trains are located at any 'point' while it is changing its position
77 AG (pos i t ion ing_point_t11 imp l i e s no_train_on_point_t11 and

pos i t ion ing_point_t13 imp l i e s no_train_on_point_t13) ;
78

79

80 - - property to verify that all trains are correctly detected at points
81 AG ((not (train_0_not_on_point_t11 and train_1_not_on_point_t11)

imp l i e s not no_train_on_point_t11) and (not
(train_0_not_on_point_t13 and train_1_not_on_point_t13)
imp l i e s not no_train_on_point_t13)) ;

82

83 - - progress property that speci�es that
84 - - all trains has arrived at their destinations
85 EF AG (train_0_arr ived and tra in_1_arr ived) ;
86

87 - - property that speci�es that
88 - - there does not exist a �nal state where at least one train has not arrived
89 - - and in all states leading to this �nal state, no points have malfunctioned
90 not E[not (point_t11_malfunction or point_t13_malfunction) U

(f i n a l and not (tra in_0_arr ived and tra in_1_arr ived))] ;
91

92 - - no signal is ever lost in the system
93 AG not (EX {discarded_message } t rue) ;

140 UMC model delta

Appendix E

Tool Source Code

This chapter lists the source code for the implemented model generator tool and
related �les. All the code has been developed on a linux platform using emacs
as editor and executed with Mono, however F# is primarily a .Net language,
and therefore it should be possible to run the code on a windows platform with
the latest Visual Studio installation. (even though this hasn't been tested)

The code also de�nes a small set of unit tests de�ned using the testing library
XUnit[mad] and a few property based tests using the FsCheck[maa] library. The
tests are listed last in this chapter in its own section.

E.1 Compiler version and third party packages

As mentioned, the tool has been developed on a linux platform using the open
source .Net platform Mono and an fsharp compiler targeted at Mono.
The tool has been developed using the following versions.

• Mono JIT compiler version 4.6.1

• F# 4.0 (Open Source Edition)

142 Tool Source Code

The tool utilizes a set of third party libraries which have been installed
through the package .Net manager Nuget[mac]. Most notably, the package
FSharp.Data[mab] has been used as it contains the F# type provider library
for parsing XML �les.

Following is a listing of the packages and version numbers used for this project.

• FsCheck (2.6.2)

• FsCheck.Xunit (2.6.2)

• FSharp.Data (2.3.2)

• xunit (2.1.0)

• FSharp.Core (4.0.0.1)

E.2 Auxiliary dependency �les

E.2.1 Project �les and compile order

F# source code �les must be compiled in a certain order, this order is usually
de�ned in a project �le with the su�x 'fsproj', however these �les also contains
a lot of noise and irrelevant information. Here a snippet of the so called Item-
Groups are listed. This information essentially contains the compile order of
the source code �les where the �les must be compiled in the listed order.

The source code project is represented in the following listing.

1 <ItemGroup>
2 <Compile Inc lude=" Ut i l s . f s " />
3 <Compile Inc lude=" Inte r lock ingMode l . f s " />
4 <Compile Inc lude="UMCTrainClass . f s " />
5 <Compile Inc lude="UMCLinearClass . f s " />
6 <Compile Inc lude="UMCPointClass . f s " />
7 <Compile Inc lude="UMC. f s " />
8 <Compile Inc lude="XMLExtraction . f s " />
9 <Compile Inc lude=" Scr ip tToo l s . f s " />

10 <Compile Inc lude="MiniModelGenerator . f s " />
11 <None Inc lude="App . c on f i g " />
12 </ItemGroup>

The test project is represented by following listing.

E.3 Source code 143

1 <ItemGroup>
2 <Compile Inc lude="Tests . U t i l s . f s " />
3 <Compile Inc lude="Tests . Inte r l ock ingMode l . f s " />
4 </ItemGroup>

E.2.2 Sample XML �le used to bootstrap the type-

provider library

See Appendix G

E.3 Source code

E.3.1 Utils.fs

1 module Ut i l s
2

3 open System
4

5 /// Generate a l l unique products with va lue s from a given l i s t
6 /// where no product conta in s a pa i r o f i d e n t i c a l va lue s
7 let rec uniqueProducts (xs : ' a l i s t) : (' a ∗ ' a) seq = seq {
8 match xs with

9 | x : : xs −>
10 for y in xs do

11 y i e l d x , y
12 y i e l d ! uniqueProducts xs
13 | _ −> () }
14

15 /// Generate a l l c r o s s products o f two sequences
16 let c ro s sProductOfL i s t s xs ys = seq {
17 for x in xs do

18 for y in ys do

19 y i e l d x , y }
20

21 /// Generate 'n choose k ' combinat ions o f va lue s from l i s t xs
22 /// where n i s l ength o f xs and each combination i s o f l ength k
23 let combinat ions (k : i n t) (xs : ' a l i s t) : (' a l i s t) seq =
24 let rec loop (k : i n t) (xs : ' a l i s t) : (' a l i s t) seq = seq {
25 match xs with

26 | [] −> ()
27 | xs when k = 1 −> for x in xs do y i e l d [x]
28 | x : : xs −>
29 let k ' = k − 1
30 for ys in loop k ' xs do

31 y i e l d x : : ys
32 y i e l d ! loop k xs }

144 Tool Source Code

33 loop k xs
34 |> Seq . f i l t e r (L i s t . l ength >> (=)k)
35

36 // In F# 4.1 the Result type w i l l be in the core l i b r a r y with
exac t l y the same d e f i n i t i o n

37 type Result <' succes s , ' e r ro r> = Ok of ' s u c c e s s
38 | Error of ' e r r o r
39 with

40 s t a t i c member map (f : ' a −> 'b) (x : Result <'a , ' e r ro r >) :
Result <'b , ' e r ro r> =

41 match x with

42 | Ok x −> Ok (f x)
43 | Error e r r −> Error e r r
44 /// Binding value in r e s u l t to parameter o f a cont inuat i on

func t i on
45 s t a t i c member bind (x : Result <'a , ' e r ro r >) (cont inueat ionFun

: ' a −> Result <'b , ' e r ro r >)
46 : Result <'b , ' e r ro r> =
47 match x with

48 | Error e r r −> Error e r r
49 | Ok x −> continueat ionFun x
50

51

52 // Computation−Express ion d e f i n i t i o n f o r the Result type .
53 // The de f ined Result type has same f u n c t i o n a l i t y as
54 // the more commonly known Either monad de f ined in Haske l l and

other languages .
55 // The reason why i t ' s c a l l e d Result in t h i s code , i s because
56 // (soon to−be−r e l e a s e d) F# 4.1 w i l l have a Result type de f ined in

i t s core l i b r a r y .
57 type Resu l tBu i lde r () =
58 member t h i s . Bind (x , f) = Result<_,_>.bind x f
59 member t h i s . Return (x : ' a) : Result <'a , ' e r ro r> = Ok x
60 let r e su l tF low = new Resu l tBu i lde r ()
61

62 let pr i va t e t r av e r s eRe su l t s (f : ' a −> Result <'b , ' e r ro r >) (xs :
' a l i s t)

63 : Result <'b l i s t , ' e r ro r> =
64 let fo lderFun (head : ' a) (t a i l : Result <'b l i s t , ' e r ro r >) :

Result <'b l i s t , ' e r ro r> =
65 r e su l tF low { let ! (h : 'b) = f head
66 let ! (t : ' b l i s t) = t a i l
67 r e turn h : : t }
68 let i n i t i a l_ v a l = Ok []
69 // f o l d i n g from r i gh t to l e f t in order to maintain o r i g i n a l

order o f the input l i s t (xs)
70 L i s t . fo ldBack fo lderFun xs i n i t i a l_ v a l
71

72 let pr i va t e sequenceResu l t s (xs : Result <'a , ' e r ro r> l i s t) :
Result <'a l i s t , ' e r ro r> =

73 t r a v e r s eRe su l t s id xs
74

75 let pr i va t e reduceResu l t s (f : ' a −> ' a −> Result <'a , ' e r ro r >) (xs
: Result <'a , ' e r ro r> seq)

76 : Result <'a , ' e r ro r> =

E.3 Source code 145

77 let reducerFun = fun x y −> resu l tF low {
78 let ! x ' = x
79 let ! y ' = y
80 let ! combined = f x ' y '
81 r e turn combined }
82 xs |> Seq . reduce reducerFun
83

84 let pr i va t e f o l dRe su l t s
85 (f : ' a −> 'b −> Result <'b , ' e r ro r >) (i n i t i a l :

Result <'b , ' e r ro r >) (xs : ' a l i s t)
86 : Result <'b , ' e r ro r> =
87 let fo lderFun (s t a t e : Result <'b , ' e r ro r >) (x : ' a) :

Result <'b , ' e r ro r> =
88 Result<_,_>.bind s t a t e (f x)
89 Seq . f o l d fo lderFun i n i t i a l xs
90

91 // Extending the Result type with a s e t o f f un c t i on s f o r handl ing
Result types

92 type Result with

93 /// Appl ies a func t i on (' a −> Result) on a l l e lements in a l i s t
94 /// and l i f t s the l i s t o f r e s u l t s to a Result conta in ing a l i s t
95 s t a t i c member t r a v e r s e f xs = t r av e r s eRe su l t s f xs
96

97 /// L i f t s a l i s t o f Resu l t s to a Result with a l i s t
98 s t a t i c member sequence xs = t r av e r s eRe su l t s id xs
99

100 /// Reduces a l i s t o f Result<a , . . > to a Result<a , . . >
101 /// us ing a func t i on a −> a −> Result<a , . . >
102 s t a t i c member reduce f xs = reduceResu l t s f xs
103

104 /// Fold over a l i s t o f ' a with an i n i t i a l va lue o f 'b
105 /// and a func t i on ' a −> 'b −> Result <'b , . . >
106 s t a t i c member f o l d f i n i t i a l xs = f o l dRe su l t s f i n i t i a l xs
107

108 /// A bind operator f o r conven i ent ly cha in ing toge the r
109 /// func t i on s that produce Result types from non−Result types
110 s t a t i c member (>>=) (a : Result <'a , ' e r ro r >, f : ' a −>

Result <'b , ' e r ro r >) : Result <'b , ' e r ro r> =
111 Result<_,_>.bind a f
112

113

114 // computation expr e s s i on d e f i n i t i o n f o r the Option type (c a l l e d
Maybe in other languages)

115 type MaybeBuilder () =
116 member t h i s . Bind (m : ' a option , f : ' a −> 'b opt ion) : 'b

opt ion =
117 Option . bind f m
118 member t h i s . Return (x : ' a) : ' a opt ion = Some x
119 let maybe = new MaybeBuilder ()

E.3.2 InterlockingModel.fs

1 namespace In te r l ock ingMode l
2

146 Tool Source Code

3 open Ut i l s
4

5 [<AutoOpen>]
6 module TypeDef in i t i ons =
7 type TrainId = TrainId of s t r i n g
8 type TrainIds = TrainId l i s t
9

10 type Linear Id = Linear Id of s t r i n g
11

12 type PointId = PointId of s t r i n g
13

14 type Po intPos i t i on = Plus | Minus
15

16 type RouteSegment = LinearRouteSegment of Linear Id ∗ l ength :
i n t

17 | PointRouteSegment of PointId ∗
r equ i r ed_pos i t i on : Po in tPos i t i on

18 type RouteSegments = RouteSegment l i s t
19

20 type RouteDirect ion = Up | Down
21

22 type Route = Route of RouteSegments ∗ RouteDirect ion
23 type Routes = Route l i s t
24

25 type Train = { id : TrainId
26 route : Route
27 l ength : i n t }
28 type Trains = Train l i s t
29

30 type Linear = { id : L inear Id
31 t r a i n : Train opt ion }
32 type Linear s = Linear l i s t
33

34 type Point = { id : PointId
35 po s i t i o n : Po in tPos i t i on }
36 type Points = Point l i s t
37

38 /// Elements f o r composing a ra i lway network layout
39 type LayoutSegment = LinearLayoutSegment of id : s t r i n g
40 | PointStemLayoutSegment of id : s t r i n g
41 | PointForkLayoutSegment of id : s t r i n g ∗

po s i t i o n : Po in tPos i t i on
42

43 type RailwayNetworkLayout = Map<LayoutSegment , LayoutSegment>
44

45 /// A c o l l e c t i o n o f ob j e c t s to be i n s t a n t i a t e d in the end model
46 type ModelObjects = { t r a i n s : Map<TrainId , Train>
47 l i n e a r s : Map<LinearId , Linear>
48 po in t s : Map<PointId , Point> }
49 type ValidatedModelObjects = Val idated of ModelObjects
50 type ModelGeneratorFunction = Val idatedModelObjects −> s t r i n g
51

52

53 (∗ Extending the types with f i e l d a c c e s s f unc t i on s ∗)
54 type TrainId with

E.3 Source code 147

55 s t a t i c member value : TrainId −> s t r i n g = fun (TrainId v)
−> v

56

57 type Linear Id with

58 s t a t i c member value : L inear Id −> s t r i n g = fun (L inear Id
v) −> v

59

60 type PointId with

61 s t a t i c member value : PointId −> s t r i n g = fun (PointId v)
−> v

62

63 type RouteSegment with

64 s t a t i c member l ength : RouteSegment −> in t = function

65 | LinearRouteSegment (_, l en) −> len
66 // Al l po in t s has been s imp l i f i e d to have a l ength o f

one
67 | PointRouteSegment _ −> 1
68

69 type Route with

70 s t a t i c member segments : Route −> RouteSegments =
71 fun (Route (segments ,_)) −> segments
72 s t a t i c member d i r e c t i o n : Route −> RouteDirect ion =
73 fun (Route (_, d i r)) −> d i r
74

75 type ModelObjects with

76 member t h i s . t r a i nL i s t : Trains =
77 t h i s . t r a i n s |> Map. t oL i s t |> L i s t .map snd
78 member t h i s . p o i n tL i s t : Points =
79 t h i s . po in t s |> Map. t oL i s t |> L i s t .map snd
80 member t h i s . l i n e a r L i s t : L inear s =
81 t h i s . l i n e a r s |> Map. t oL i s t |> L i s t .map snd
82

83 (∗ Creat ing s t a t i c a c c e s s f unc t i on s f o r record f i e l d s ,
84 with the f unc t i on s having the same name as i t s f i e l d ∗)
85

86 [<Compi lat ionRepresentat ion (Compi lat ionRepresentat ionFlags . ModuleSuf f ix)>]
87 module Train =
88 let id : Train −> TrainId = fun t −> t . id
89 let route : Train −> Route = fun t −> t . route
90 let l ength : Train −> in t = fun t −> t . l ength
91

92 [<Compi lat ionRepresentat ion (Compi lat ionRepresentat ionFlags . ModuleSuf f ix)>]
93 module Linear =
94 let id : L inear −> Linear Id = fun tc −> tc . id
95 let t r a i n : Linear −> Train opt ion = fun tc −> tc . t r a i n
96

97 [<Compi lat ionRepresentat ion (Compi lat ionRepresentat ionFlags . ModuleSuf f ix)>]
98 module Point =
99 let id : Point −> PointId = fun p −> p . id

100 let po s i t i o n : Point −> PointPos i t i on = fun p −> p . po s i t i o n
101

102 [<Compi lat ionRepresentat ion (Compi lat ionRepresentat ionFlags . ModuleSuf f ix)>]
103 module LayoutElement =
104 let id : LayoutSegment −> s t r i n g = function

105 | LinearLayoutSegment id −> id

148 Tool Source Code

106 | PointStemLayoutSegment id −> id
107 | PointForkLayoutSegment (id ,_) −> id
108

109 /// Helper type used in the va l i d a t i o n proce s s .
110 /// The type i s used where route s or route segment l eng th s

need va l i d a t i o n
111 /// and can r ep r e s en t a s imple su c c e s s or an e r r o r case with a

d e s c r i p t i o n
112 type Succes sResu l t = Result<unit , s t r i ng>
113 /// I n f i x operator f o r combining s imple un i t r e s u l t s
114 let (&&&) (a : Succes sResu l t) (b : Succes sResu l t) :

Succes sResu l t =
115 match a with

116 | Ok () −> b
117 | Error _ −> a
118

119 /// Functions f o r con s t ruc t i ng route s
120 [<AutoOpen>]
121 module RouteConstruction =
122 /// S t i t ch two route fragments toge the r to one route
123 let s t i t chRoutePa i r (route1 : Route) (route2 : Route) :

Result<Route , s t r i ng> =
124 let s t i t c h : RouteSegments −> RouteSegments −>

RouteDirect ion −> Route =
125 fun route1_elements route2_elements d i r e c t i o n −>
126 let s t i t c h ed = L i s t . concat [route1_elements ; L i s t . t a i l

route2_elements]
127 Route (s t i t ched , d i r e c t i o n)
128

129 let must_have_same_direction : Route −> Route −> s t r i n g =
130 s p r i n t f """
131 route1 and route2 must have same d i r e c t i o n
132 route1 : %A
133 route2 : %A
134 """
135 let (| D i f f_d i r e c t i on s |_|) (r1 : Route , r2 : Route) =
136 let (Route (_, d i r 1)) = r1
137 let (Route (_, d i r 2)) = r2
138 i f d i r1 <> d i r2
139 then Some(must_have_same_direction r1 r2)
140 else None
141

142 let r1_must_end_where_r2_starts : Route −> Route −> s t r i n g
=

143 s p r i n t f " route1 must end where route2 s t a r t s \ nroute1 :
%A\nroute2 : %A"

144 let (| NoCommonStichPoint |_|) (r1 : Route , r2 : Route) =
145 let (Route (r1_elements , _)) = r1
146 let (Route (r2_elements , _)) = r2
147 match r1_elements , r2_elements with

148 | r1_elements , (r 2_ f i r s t : :_)
149 when r1_elements <> []
150 && Li s t . l a s t r1_elements = r 2_ f i r s t −> None
151 | _ −> Some (r1_must_end_where_r2_starts r1 r2)
152

E.3 Source code 149

153 match route1 , route2 with

154 | D i f f_d i r e c t i o n s (error_msg) −> Error error_msg
155 | NoCommonStichPoint (error_msg) −> Error error_msg
156 | Route (route1_elements , d i r) , Route (route2_elements ,_) −>
157 Ok (s t i t c h route1_elements route2_elements d i r)
158

159 let s t i t chRoute s (route s : Routes) : Result<Route , s t r i ng> =
160 route s
161 |> Seq .map Ok
162 |> Result<_,_>. reduce s t i t chRoutePa i r
163

164 /// Functions f o r check ing i f r ou te s are va l i d toge the r in a layout
165 module RouteVal idat ion =
166 /// Checks that a route i s has a l i n e a r as s t a r t and end
167 let pr i va t e routeHasLinearStartAndEnd (route : Route) :

Succes sResu l t =
168 let route_segments = Route . segments route
169 match Seq . head route_segments , Seq . l a s t route_segments with

170 | LinearRouteSegment _, LinearRouteSegment _ −> Ok ()
171 | _ −> route_segments
172 |> s p r i n t f " route i s must have a l i n e a r as s t a r t

and end\n%A"
173 |> Error
174

175 /// Checks that a g iven route i s l e g a l in a g iven layout
176 let pr i va t e route I sVa l id InLayout (layout :

RailwayNetworkLayout) (route : Route)
177 : Succes sResu l t =
178 // he lpe r func t i on f o r l ook ing up an element in the layout
179 let tryFind = fun from_element −>
180 Map. tryFind from_element layout
181

182 // he lpe r func t i on that eva lua t e s i f two segments are
connected

183 let areConnected : LayoutSegment −> LayoutSegment −> bool =
184 fun from_element to_element −>
185 match tryFind from_element with

186 | Some(to_element ') when to_element ' = to_element −>
true

187 | _ −> f a l s e
188

189 let l i nea rToL inear : s t r i n g −> s t r i n g −> bool = fun

from_id to_id −>
190 let from_linear , to_l inear = LinearLayoutSegment

from_id , LinearLayoutSegment to_id
191 areConnected from_linear to_l inear
192

193 let l inearToPoint : s t r i n g −> s t r i n g −> PointPos i t i on −>
bool =

194 fun from_id to_id pos −>
195 let f rom_linear = LinearLayoutSegment from_id
196 let to_stem = PointStemLayoutSegment to_id
197 let to_fork = PointForkLayoutSegment (to_id , pos)
198 areConnected from_linear to_stem | | areConnected

from_linear to_fork

150 Tool Source Code

199

200 let pointToLinear : s t r i n g −> PointPos i t i on −> s t r i n g −>
bool =

201 fun from_id pos to_id −>
202 let from_stem = PointStemLayoutSegment from_id
203 let from_fork = PointForkLayoutSegment (from_id , pos)
204 let to_l inear = LinearLayoutSegment to_id
205 // Since the Route−e lements doesn ' t s p e c i f y stem or

f o rk
206 // −we have to t ry both to see i f they e x i s t s in the

layout
207 areConnected from_stem to_l inear | | areConnected

from_fork to_l inear
208

209 let pointToPoint : s t r i n g −> PointPos i t i on −> s t r i n g −>
PointPos i t i on −> bool =

210 fun from_id from_pos to_id to_pos −>
211 let from_stem = PointStemLayoutSegment from_id
212 let from_fork = PointForkLayoutSegment (from_id ,

from_pos)
213 let to_stem = PointStemLayoutSegment to_id
214 let to_fork = PointForkLayoutSegment (to_id , to_pos)
215 areConnected from_stem to_stem
216 | | areConnected from_stem to_fork
217 | | areConnected from_fork to_stem
218 | | areConnected from_fork to_fork
219

220 /// checks that a connect ion between two given e lements
e x i s t in the cur rent layout

221 /// b a s i c a l l y we look up in the layout map to see i f the re
e x i s t a mapping from

222 /// a route element to the other g iven route element
223 let connect ionExist InLayout : (RouteSegment ∗

RouteSegment) −> bool =
224 function

225 | LinearRouteSegment (L inear Id from_id , _) ,
226 LinearRouteSegment (L inear Id to_id , _) −>
227 l i nea rToL inear from_id to_id
228 | LinearRouteSegment (L inear Id from_id , _) ,
229 PointRouteSegment (PointId to_id , pos) −>
230 l inearToPoint from_id to_id pos
231 | PointRouteSegment (PointId from_id , pos) ,
232 LinearRouteSegment (L inear Id to_id , _) −>
233 pointToLinear from_id pos to_id
234 | PointRouteSegment (PointId from_id , from_pos) ,
235 PointRouteSegment (PointId to_id , to_pos) −>
236 pointToPoint from_id from_pos to_id to_pos
237

238 let ver i fySegmentPai r : RouteSegment [] −> Succes sResu l t =
fun segment_pair −>

239 let segment1 , segment2 = segment_pair . [0] ,
segment_pair . [1]

240 match connect ionExist InLayout (segment1 , segment2) with

241 | t rue −> Ok ()
242 | f a l s e −>

E.3 Source code 151

243 s p r i n t f "no connect ion between t rack s [%A −> %A
] " segment1 segment2

244 |> Error
245

246 match Route . d i r e c t i o n route with

247 | Up −> Route . segments route
248 | Down −> Li s t . rev (Route . segments route)
249 |> Seq . windowed 2
250 |> Seq .map ver i fySegmentPair
251 |> Seq . reduce (&&&)
252

253 /// v e r i f y i n g that two given route s can be used toge the r in a
model without obvious deadlock

254 let pr i va t e noObviousConf l i c t (Route (route1_segments , _))
(Route (route2_segments , _))

255 : Succes sResu l t =
256 let d i f f S t a r t : RouteSegments −> RouteSegments −>

Succes sResu l t =
257 fun r1_segments r2_segments −>
258 let d i f f_ s t a r t = Seq . head r1_segments <> Seq . head

r2_segments
259 i f d i f f_ s t a r t then Ok ()
260 else Error "The given route s s t a r t at the same p lace "
261

262 let di f fEnd : RouteSegments −> RouteSegments −>
Succes sResu l t =

263 fun r1_segments r2_segments −>
264 let di f f_end = Seq . l a s t r1_segments <> Seq . l a s t

r2_segments
265 i f di f f_end then Ok ()
266 else Error "The given route s have the same de s t i n a t i on "
267

268 let validStartAndEnd : RouteSegments −> RouteSegments −>
Succes sResu l t =

269 fun r1_segments r2_segments −>
270 let route1_start = Seq . head r1_segments
271 let route2_start = Seq . head r2_segments
272 let route1_end = Seq . l a s t r1_segments
273 let route2_end = Seq . l a s t r2_segments
274 let di f f_start_end =
275 not (route1_start = route2_end && route2_start =

route1_end)
276 i f di f f_start_end then Ok ()
277 else Error "The given route s s t a r t and end in exact

oppos i t e l o c a t i o n s "
278

279 d i f f S t a r t route1_segments route2_segments
280 &&& di f fEnd route1_segments route2_segments
281 &&& validStartAndEnd route1_segments route2_segments
282

283 let ve r i f yRoute s (layout : RailwayNetworkLayout) (route s :
Routes) : Succes sResu l t =

284 let i nd iv idua l_route s_va l id : Succes sResu l t seq =
285 route s
286 |> Seq .map (fun route −>

152 Tool Source Code

287 routeHasLinearStartAndEnd route
288 &&& route I sVa l id InLayout layout route)
289

290 let routes_are_val id_together : Succes sResu l t seq =
291 uniqueProducts route s
292 |> Seq .map (fun (r1 , r2) −> noObviousConf l i c t r1 r2)
293

294 [i nd iv idua l_route s_va l id
295 ; routes_are_val id_together]
296 |> Seq . concat
297 |> Seq . reduce (&&&)
298

299 /// Va l idat i on func t i on s f o r v e r i f y i n g that the route segments
300 /// obey the c on s t r a i n t s de f ined by the l eng th s o f the t r a i n s
301 module LengthConstra ints =
302 type I n t e r s e c t i o n =
303 { t r a i n1 : Train
304 t r a i n2 : Train
305 tra in1_track_length : i n t
306 tra in2_track_length : i n t
307 track_id : L inear Id }
308

309 /// Checks that a route segment i s s ho r t e r or equal to the
t r a i n that ho lds the route

310 let pr i va t e routeSegmentIsShorterOrEqual (t r a i n : Train) :
RouteSegment −> Succes sResu l t =

311 function

312 | LinearRouteSegment (segment_id , l ength)
313 when length > t r a i n . l ength −>
314 let err_msg =
315 s p r i n t f "%A in the route o f t r a i n %A must be

equal to or sma l l e r than %i "
316 err_msg segment_id t r a i n . id t r a i n . l ength
317 |> Error
318 | _ −> Ok ()
319

320 /// Ver i f y that l eng th s o f i n t e r s e c t i n g t rack segments
321 /// are obeying the f o l l ow i n g ru l e :
322 ///
323 /// i f t2 . l ength <= t1 . track_length
324 /// then t2 . track_length == t2 . l ength
325 /// e l s e t2 . track_length == t1 . track_length
326 ///
327 /// where t1 . l ength >= t2 . l ength
328 let pr i va t e shortestConstra inedByLongest (i n t e r s e c t i o n :

I n t e r s e c t i o n) : Succes sResu l t =
329 // d i v i d i ng the t r a i n s o f the i n t e r s e c t i o n in to l ong e s t

and sho r t e s t t r a i n s
330 // toge the r with the l ength o f the i n t e r s e c t i n g t rack

r ep r e s en t a t i on in t h e i r route .
331 // t r a i n1 i s the l ong e s t t r a i n and t r a i n2 i s the s h o r t e s t

t r a i n
332 let [t1 , t1_track_length
333 ; t2 , t2_track_length] =

E.3 Source code 153

334 [i n t e r s e c t i o n . t ra in1 ,
i n t e r s e c t i o n . tra in1_track_length

335 ; i n t e r s e c t i o n . t ra in2 ,
i n t e r s e c t i o n . tra in2_track_length]

336 |> L i s t . sortByDescending (f s t >> Train . l ength)
337

338 let track_id = i n t e r s e c t i o n . track_id
339

340 // When the s ho r t e s t t r a i n i s s ho r t e r than the l ength o f
341 // the t rack r ep r e s en t a t i on in the l ong e s t t ra in ,
342 // then the s h o r t e s t t r a i n s t rack r ep r e s en t a t i on must be
343 // exac t l y the l ength o f the s h o r t e s t t r a i n .
344 //
345 // Eg . i f the s h o r t e s t t r a i n l ength i s 2 and the l ong e s t

t r a i n l ength i s 4
346 // and the l ong e s t t r a i n t rack r ep r e s en t a t i on i s 3 ,
347 // then the s h o r t e s t t r a i n t rack r ep r e s en t a t i on must be

equal to 2
348 i f t2 . l ength <= t1_track_length then

349 i f t2_track_length = t2 . l ength then Ok ()
350 else

351 let err_msg = s p r i n t f """
352 the i n t e r s e c t i n g t rack %A, between t r a i n %A

and t r a i n %A
353 must have a l ength o f %i in the route o f t r a i n

%A
354 """
355 Error (err_msg track_id t1 . id t2 . id t2 . l ength t2 . id)
356 else // sho r t e s t_t ra in . l ength > longest_tra in_track_length
357 // f o r example the l ength o f s h o r t e s t t r a i n i s 2
358 // and the l ength o f the l ong e s t t r a i n t rack

r ep r e s en t a t i on i s 1 ,
359 // then the l ength o f the s h o r t e s t t r a i n s t rack

r ep r e s en t a t i on
360 // must a l s o be 1
361 i f t2_track_length = t1_track_length then Ok ()
362 else

363 let err_msg = s p r i n t f """
364 i n t e r s e c t i n g t rack %A between t r a i n %A and

t r a i n %A
365 must have a l ength o f %i in the route o f t r a i n

%A
366 """
367 Error (err_msg track_id t1 . id t2 . id t1 . l ength t2 . id)
368

369 // Co l l e c t a l l i n t e r s e c t i o n s between two t r a i n route s
370 let pr i va t e g e t I n t e r s e c t i o n s (t1 : Train , t2 : Train) :

I n t e r s e c t i o n seq =
371 let getLinearSegment : RouteSegment −> (Linear Id ∗ i n t)

opt ion =
372 function

373 | LinearRouteSegment (id , l ength) −> Some(id , l ength)
374 | _ −> None
375

376 let getLinearSegments : Route −> (Linear Id ∗ i n t) seq =

154 Tool Source Code

377 fun (Route (segments ,_)) −>
378 segments |> Seq . choose getLinearSegment
379

380 let t1_l inear_lengths : Map<LinearId , int> =
381 getLinearSegments t1 . route |> Map. ofSeq
382

383 getLinearSegments t2 . route
384 |> Seq . choose (
385 fun (track_id , t2_track_len) −>
386 Map. tryFind track_id t1_l inear_lengths
387 |> Option .map (fun t1_track_len −>
388 { t r a i n1 = t1
389 t r a i n2 = t2
390 tra in1_track_length = t1_track_len
391 tra in2_track_length = t2_track_len
392 track_id = track_id }))
393

394 let checkLengthContraints (t r a i n s : Trains) : Succe s sResu l t =
395 let a l l_ind iv idua l_routes_are_va l id : Succes sResu l t seq =
396 t r a i n s
397 |> Seq . c o l l e c t (fun t r a i n −>
398 let (Route (route_segments ,_)) =

t r a i n . route
399 route_segments
400 |> Seq .map

(routeSegmentIsShorterOrEqual
t r a i n))

401 let a l l_route_inte r s ec t i ons_are_va l id : Succes sResu l t seq =
402 uniqueProducts t r a i n s
403 |> Seq . c o l l e c t g e t I n t e r s e c t i o n s
404 |> Seq .map shortestConstra inedByLongest
405

406 [a l l_ind iv idua l_routes_are_va l id
407 ; a l l_route_inte r s ec t i ons_are_va l id]
408 |> Seq . concat
409 |> Seq . reduce (&&&)
410

411 [<AutoOpen>]
412 module ModelGeneration =
413 /// I n t e r f a c e d e s c r i b i n g the p r op e r t i e s to be generated f o r

the model
414 type ModelCheck ingPropertyDef in i t ions =
415 abs t r a c t NoCo l l i s i on : s t r i n g
416 abs t r a c t Al lTra insArr ived : s t r i n g
417 abs t r a c t NoDerailment : s t r i n g
418 abs t r a c t TrainsDetectedOnPoints : s t r i n g
419 abs t r a c t AllMessagesHandled : s t r i n g
420 abs t r a c t NoMalfunctionsWhenTrainHasNotArrived : s t r i n g
421

422 /// Va l ida te s that a l l t r a i n s have a route and that a l l the
route s are va l i d in the layout

423 let pr i va t e va l idateTra inRoutes (layout :
RailwayNetworkLayout) (ob j e c t s : ModelObjects)

424 :
Result<ValidatedModelObjects ,

E.3 Source code 155

s t r i ng> =
425 /// ge t s a route i f the t r a i n have one
426 let getRoute : Train −> Result<Route , s t r i ng> = fun t r a i n

−>
427 match t r a i n . route with

428 // there e x i s t a route with at l e a s t one element
429 | Route (head : : t a i l , d i r e c t i o n) as route −> Ok (route)
430 | _ −> Error (s p r i n t f "no route f o r t r a i n %A" t r a i n . id)
431

432 let routes_va l id : Succes sResu l t =
433 ob j e c t s . t r a i nL i s t
434 |> Result<_,_>. t r av e r s e getRoute
435 >>= (RouteVal idat ion . ve r i f yRoute s layout)
436

437 match routes_va l id with

438 | Ok () −> Ok(Val idated ob j e c t s)
439 | Error msg −> Error msg
440

441 let checkLengthContraints (va l id_ob j e c t s :
Val idatedModelObjects)

442 : Result<ValidatedModelObjects ,
s t r i ng> =

443 let (Val idated ob j e c t s) = va l id_ob j ec t s
444 let l ength_constra ints_ok =
445 ob j e c t s . t r a i nL i s t
446 |> LengthConstra ints . checkLengthContraints
447 match l ength_constra ints_ok with

448 | Ok () −> Ok(Val idated ob j e c t s)
449 | Error msg −> Error msg
450

451 // Updates a l l the l i n e a r s , which are f i r s t on a route , to
r e f l e c t pre sence o f a t r a i n

452 let updateTrainLocat ions (Val idated ob j e c t s) :
Result<ValidatedModelObjects , s t r i ng> =

453 let updateTrainLocat ion (t r a i n : Train) (ob j e c t s :
ModelObjects) = resu l tF low {

454 let ! l i n ea r_ id =
455 match t r a i n . route with

456 | Route (LinearRouteSegment (l inear_id ,_) : :_,_) −>
Ok l inea r_ id

457 | _ −> Error (s p r i n t f """
458 po s s i b l y malformed route f o r t r a i n %A
459 perhaps v a l i d a t i o n i s miss ing ?
460 """ t r a i n)
461 let ! l i n e a r =
462 match Map. tryFind l i nea r_ id ob j e c t s . l i n e a r s with

463 | Some l i n e a r −> Ok l i n e a r
464 | None −> Error (s p r i n t f " l i n e a r %A doesnt e x i s t "

l i n ea r_ id)
465 let updated_linear = { l i n e a r with t r a i n = Some t r a i n }
466 let updated_l inears = ob j e c t s . l i n e a r s |> Map. add

l i nea r_ id updated_linear
467 r e turn { ob j e c t s with l i n e a r s = updated_l inears } }
468 ob j e c t s . t r a i nL i s t
469 |> Result<_,_>. f o l d updateTrainLocat ion (Ok ob j e c t s)

156 Tool Source Code

470 |> Result<_,_>.map Val idated
471

472 let generateRawModel : ModelGeneratorFunction = fun (Val idated
ob j e c t s) −>

473 s p r i n t f "%A" ob j e c t s
474

475 /// Va l ida te s the routes ,
476 /// updates the t r a i n l o c a t i o n s in the network based on t h e i r

f i r s t route segment ,
477 /// and gene ra t e s the f i n a l model i n s t a n t i a t i o n us ing the

generateModel func t i on
478 let validateAndGenerateModel (modelGenFun :

ModelGeneratorFunction)
479 : RailwayNetworkLayout −> ModelObjects −> Result<s t r i ng ,

s t r i ng> =
480 fun l ayout ob j e c t s −>
481 va l idateTra inRoutes layout ob j e c t s
482 >>= checkLengthContraints
483 >>= updateTrainLocat ions
484 >>= (modelGenFun >> Ok)

E.3.3 UMCTrainClass.fs

1 module UMCTrain
2

3 let c l a s s_d e f i n i t i o n = """
4 Class Train i s
5

6 S i gna l s :
7 ok , no ;
8

9 Vars :
10 requested_point_pos i t ions : bool [] ;
11 t ra in_length : i n t = 2 ; −− how many track segments does the

t r a i n occupy
12 route_segments : obj [] ;
13 route_index : i n t := 0 ; −− cur rent l o c a t i o n on the route
14 occup i e s : obj [] ; −− the tc and pt ob j e c t s which the t r a i n

cu r r en t l y occup i e s
15 front_advancement_count : i n t ; −− a va r i ab l e f o r keeping t rack

o f the t r a i n s f r on t advancement over a t rack
16 t rack_lengths : i n t [] ; −− same number o f e lements as

route_segments
17

18 State Top = READY, WAIT_OK, MOVEMENT, ARRIVED
19

20 Trans i t i on s :
21 −− send out i n i t i a l r e s e r v a t i o n reque s t to the f i r s t node on

route
22 READY −> WAIT_OK {
23 − /
24 route_segments [0] . req (s e l f , 0 , route_segments ,

requested_point_pos i t ions) ;
25 }

E.3 Source code 157

26

27 −− when the t r a i n r e s e r v a t i o n i s r e j e c t e d we j u s t keep
cy c l i n g between WAIT_OK and READY

28 WAIT_OK −> READY { no }
29

30 −− t r a i n r e c e i v e s ackknowledgement that the route has been
r e s e rved s u c c e s f u l l y

31 −− the front_advancement_count va r i ab l e i s i n i t i a l i z e d to
r e f l e c t the t r a i n s f r on t l o c a t i o n on the t rack

32 WAIT_OK −> MOVEMENT { ok / front_advancement_count :=
tra in_length − 1 ; }

33

34 MOVEMENT −> MOVEMENT {
35 −
36 [not (route_index = route_segments . l ength − 1 and
37 t rack_lengths [route_index] − 1 =

front_advancement_count)] / −− at end o f t rack
38 at_end_of_track : bool := track_lengths [route_index] − 1 =

front_advancement_count ; −− determine i f we have
reached the end o f the cur rent t rack

39 i f at_end_of_track = true then { −− the t r a i n has
reached the end o f i t s cur r ent t rack

40 front_advancement_count := 0 ;
41 i f route_index < route_segments . l ength − 1 then

{ −− the route_index i s not the l a s t
42 −− t r a i n en t e r s next t rack
43 route_index := route_index + 1 ;
44 route_segments [route_index] . sensorOn (s e l f) ; −−

the next t rack de t e c t s the t r a i n
45 } ;
46 } e l s e {
47 front_advancement_count := front_advancement_count + 1 ;
48 } ;
49 −− update the occup i e s array
50 r ea r : obj := occup i e s . head ;
51 next_rear : obj := occup i e s . t a i l . head ;
52 occup i e s := occup i e s . t a i l + [route_segments [route_index]] ;
53 i f r e a r != next_rear then { −− determine i f the r ea r

o f the t r a i n has l e f t a t rack
54 r ea r . s en so rOf f (s e l f) ; −− the past t rack de t e c t s that the

t r a i n does not occupy i t anymore
55 } ;
56 }
57

58 MOVEMENT −> ARRIVED {
59 −
60 [route_index = route_segments . l ength − 1 and −− at

l a s t t rack segment o f route
61 t rack_lengths [route_index] − 1 =

front_advancement_count] −− at end o f t rack
62 }
63

64 end Train
65 """

158 Tool Source Code

E.3.4 UMCLinearClass.fs

1 module UMCLinear
2

3 let c l a s s_d e f i n i t i o n = """
4 Class Linear i s
5

6 S i gna l s :
7 req (sender : obj , route_index : int , route_elements : obj [] ,
8 requested_point_pos i t ions : bool []) ;
9 ack (sender : obj) ;

10 nack (sender : obj) ;
11 commit (sender : obj) ;
12 agree (sender : obj) ;
13 d i s a g r e e (sender : obj) ;
14

15 Operat ions :
16 sensorOn (sender : obj) ;
17 s en so rOf f (sender : obj) ;
18

19 Vars :
20 next : obj ;
21 prev : obj ;
22 t r a i n : obj := nu l l ;
23

24 State Top = NON_RESERVED, WAIT_ACK, WAIT_COMMIT, WAIT_AGREE,
RESERVED, TRAIN_IN_TRANSITION

25

26 Trans i t i on s
27

28 −− f i r s t node r e c e i v e r eque s t
29 NON_RESERVED −> WAIT_ACK {
30 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
31 [route_index = 0 and sender = t r a i n and

route_elements . l ength > 0] /
32 prev := nu l l ;
33 next := route_elements [1] ;
34 next . req (s e l f , 1 , route_elements ,

requested_point_pos i t ions) ;
35 }
36

37 −− i n t e rmed ia t e node r e c e i v e r eque s t
38 NON_RESERVED −> WAIT_ACK {
39 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
40 [t r a i n = nu l l and (route_index > 0 and

route_index+1 < route_elements . l ength)] /
41 prev := route_elements [route_index − 1] ;
42 next := route_elements [route_index + 1] ;
43 next . req (s e l f , route_index + 1 , route_elements ,

requested_point_pos i t ions) ;
44 }
45

46 −− i n i t i a l r e s e r v a t i o n reque s t f o r l a s t node

E.3 Source code 159

47 −− s t a r t s ack phase
48 NON_RESERVED −> WAIT_COMMIT {
49 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
50 [t r a i n = nu l l and route_elements . l ength =

route_index+1] /
51 prev := route_elements [route_index − 1] ;
52 next := nu l l ;
53 prev . ack (s e l f) ;
54 }
55

56 −− i n t e rmed ia t e node r e c e i v e ack
57 WAIT_ACK −> WAIT_COMMIT {
58 ack (sender)
59 [prev /= nu l l] /
60 prev . ack (s e l f) ;
61 }
62

63 −− f i r s t node r e c e i v e ack
64 −− and s t a r t s commit phase
65 WAIT_ACK −> WAIT_AGREE {
66 ack (sender)
67 [prev = nu l l] /
68 next . commit (s e l f) ;
69 }
70

71 −− i n t e rmed ia t e node r e c e i v e s commit
72 WAIT_COMMIT −> WAIT_AGREE {
73 commit (sender)
74 [next /= nu l l] /
75 next . commit (s e l f) ;
76 }
77

78 −− l a s t node r e c e i v e commit
79 −− and s t a r t s agree phase
80 WAIT_COMMIT −> RESERVED {
81 commit (sender)
82 [next = nu l l] /
83 prev . agree (s e l f) ;
84 }
85

86 −− i n t e rmed ia t e node r e c e i v e agree
87 WAIT_AGREE −> RESERVED {
88 agree (sender)
89 [prev /= nu l l] /
90 prev . agree (s e l f) ;
91 }
92

93 −− f i r s t node r e c e i v e agree
94 −− and sends ok to the t r a i n
95 WAIT_AGREE −> TRAIN_IN_TRANSITION {
96 agree (sender)
97 [prev = nu l l and t r a i n /= nu l l] /
98 t r a i n . ok ;
99 }

160 Tool Source Code

100

101 −− t r a i n moves onto cur rent node
102 RESERVED −> TRAIN_IN_TRANSITION {
103 sensorOn (sender) /
104 t r a i n := sender ;
105 }
106

107 −− s e qu en t i a l r e l e a s e
108 −− r e s e t t r a i n
109 TRAIN_IN_TRANSITION −> NON_RESERVED {
110 s en so rOf f (sender) /
111 t r a i n := nu l l ;
112 }
113

114 −− nack r e c e i v ed
115 −− forwards and goes in to non−r e s e rved
116 WAIT_ACK −> NON_RESERVED {
117 nack (sender) /
118 i f prev = nu l l then { −− i s f i r s t node on

i t i n e r a r y
119 t r a i n . no
120 } e l s e { −− i s not f i r s t node
121 prev . nack (s e l f)
122 } ;
123 }
124

125 −− d i s a g r e e r e c e i v ed
126 −− forwards and goes in to non−r e s e rved
127 WAIT_COMMIT −> NON_RESERVED {
128 d i s a g r e e (sender) /
129 i f next /= nu l l then { −− not l a s t node on

i t i n e r a r y
130 next . d i s a g r e e (s e l f)
131 } ;
132 }
133

134 −− d i s a g r e e r e c e i v ed
135 −− forwards and goes in to non−r e s e rved
136 WAIT_AGREE −> NON_RESERVED {
137 d i s a g r e e (sender) /
138 i f prev /= nu l l then { −− not f i r s t node on

i t i n e r a r y
139 prev . d i s a g r e e (s e l f)
140 } e l s e { −− i s f i r s t node
141 t r a i n . no
142 } ;
143 }
144

145 −− d i s a g r e e r e c e i v ed
146 −− forwards (i f the re i s someone to forward to) and goes

in to non−r e s e rved
147 RESERVED −> NON_RESERVED {
148 d i s a g r e e (sender) /
149 i f next /= nu l l then { −− not l a s t node on

i t i n e r a r y

E.3 Source code 161

150 next . d i s a g r e e (s e l f)
151 } ;
152 }
153

154 −− r e s e r v a t i o n reque s t r e c e i v ed
155 −− however a t r a i n i s a l r eady on the track , so a nack i s

returned to sender
156 NON_RESERVED −> NON_RESERVED {
157 req (sender , route_index , route_elements ,

requested_point_pos i t ions)
158 [t r a i n /= nu l l and sender /= t r a i n] /
159 sender . nack (s e l f) ;
160 }
161

162 −− r e s e r v a t i o n reque s t r e c e i v ed
163 −− however , the node i s a l r eady in wait−ack , so i t r e tu rn s

a nack to sender
164 WAIT_ACK −> WAIT_ACK {
165 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
166 sender . nack (s e l f) ;
167 }
168

169 −− r e s e r v a t i o n reque s t r e c e i v ed
170 −− however , the node i s a l r eady in wait−commit , so i t

r e tu rn s a nack to sender
171 WAIT_COMMIT −> WAIT_COMMIT {
172 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
173 sender . nack (s e l f) ;
174 }
175

176 −− r e s e r v a t i o n reque s t r e c e i v ed
177 −− however , the node i s a l r eady in wait−agree , so i t

r e tu rn s a nack to sender
178 WAIT_AGREE −> WAIT_AGREE {
179 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
180 sender . nack (s e l f) ;
181 }
182

183 −− r e s e r v a t i o n reque s t r e c e i v ed
184 −− however , the node i s a l r eady reserved , so i t r e tu rn s a

nack to sender
185 RESERVED −> RESERVED {
186 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
187 sender . nack (s e l f) ;
188 }
189

190 −− r e s e r v a t i o n reque s t r e c e i v ed
191 −− however , a t r a i n i s in t r a n s i t i o n on the node , so i t

r e tu rn s a nack to sender
192 TRAIN_IN_TRANSITION −> TRAIN_IN_TRANSITION {

162 Tool Source Code

193 req (sender , route_index , route_elements ,
requested_point_pos i t ions) /

194 sender . nack (s e l f) ;
195 }
196

197 end Linear
198 """

E.3.5 UMCPointClass.fs

1 module UMCPoint
2

3 let c l a s s_d e f i n i t i o n = """
4 −− po in t s are always in t e rmed ia te nodes
5 −− so we don ' t need to check i f they are f i r s t or l a s t in the

guards
6 Class Point i s
7

8 S i gna l s :
9 req (sender : obj , route_index : int , route_elements : obj [] ,

r equested_point_pos i t ions : bool []) ;
10 ack (sender : obj) ;
11 nack (sender : obj) ;
12 commit (sender : obj) ;
13 agree (sender : obj) ;
14 d i s a g r e e (sender : obj) ;
15

16 Operat ions :
17 sensorOn (sender : obj) ;
18 s en so rOf f (sender : obj) ;
19

20 Vars :
21 next : obj ;
22 prev : obj ;
23 r eques ted_pos i t i on : bool ;
24 cur r ent_pos i t i on : bool := True ;
25 t r a i n : obj := nu l l ;
26

27 State Top = NON_RESERVED, WAIT_ACK, WAIT_COMMIT, WAIT_AGREE,
28 POSITIONING, RESERVED,

TRAIN_IN_TRANSITION, MALFUNCTION
29

30 Trans i t i on s :
31

32 −− i n i t i a l r e s e r v a t i o n reque s t
33 NON_RESERVED −> WAIT_ACK {
34 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
35 prev := route_elements [route_index − 1] ;
36 next := route_elements [route_index + 1] ;
37 r eques ted_pos i t i on :=

requested_point_pos i t ions [route_index] ;
38 next . req (s e l f , route_index + 1 , route_elements ,

requested_point_pos i t ions) ;

E.3 Source code 163

39 }
40

41 −− r e c e i v i n g and forward ing ack
42 WAIT_ACK −> WAIT_COMMIT {
43 ack (sender) /
44 prev . ack (s e l f) ;
45 }
46

47 −− r e c e i v i n g and forward ing commit
48 WAIT_COMMIT −> WAIT_AGREE {
49 commit (sender) /
50 next . commit (s e l f) ;
51 }
52

53 −− i f the po int i s po s i t i on ed as r equ i r ed f o r the g iven
route r e s e r v a t i o n

54 −− r e c e i v i n g and forward ing agree
55 WAIT_AGREE −> RESERVED {
56 agree (sender)
57 [cu r r ent_pos i t i on = reques ted_pos i t i on] /
58 prev . agree (s e l f) ;
59 }
60

61 −− i f the po int i s not po s i t i on ed as r equ i r ed f o r the
g iven route

62 −− goes in to p o s i t i o n i n g s t a t e
63 WAIT_AGREE −> POSITIONING {
64 agree (sender)
65 [cu r r ent_pos i t i on /= reques ted_pos i t i on] /
66 −
67 }
68

69 −− s u c c e s s f u l l y per forming po s i t i o n i n g
70 POSITIONING −> RESERVED {
71 − /
72 cur r ent_pos i t i on := not cur r ent_pos i t i on ;
73 prev . agree (s e l f) ;
74 }
75

76 −− s imu la t ing sudden mal funct ion o f p o s i t i o n i n g system
77 −− and sending d i s a g r e e s to ne ighbor nodes
78 POSITIONING −> MALFUNCTION {
79 − /
80 prev . d i s a g r e e (s e l f) ;
81 next . d i s a g r e e (s e l f) ;
82 }
83

84 −− t r a i n moves onto cur rent node
85 RESERVED −> TRAIN_IN_TRANSITION {
86 sensorOn (sender) /
87 t r a i n := sender ;
88 }
89

90 −− s e qu en t i a l r e l e a s e
91 −− r e s e t a l l t r a i n

164 Tool Source Code

92 TRAIN_IN_TRANSITION −> NON_RESERVED {
93 s en so rOf f (sender) /
94 −− [sender = t r a i n] /
95 t r a i n := nu l l ;
96 }
97

98 −− nack r e c e i v ed and forwarded
99 WAIT_ACK −> NON_RESERVED {

100 nack (sender) /
101 prev . nack (s e l f) ;
102 }
103

104 −− d i s a g r e e r e c e i v ed and forwarded
105 WAIT_COMMIT −> NON_RESERVED {
106 d i s a g r e e (sender) /
107 next . d i s a g r e e (s e l f) ;
108 }
109

110 −− d i s a g r e e r e c e i v ed and forwarded
111 WAIT_AGREE −> NON_RESERVED {
112 d i s a g r e e (sender) /
113 prev . d i s a g r e e (s e l f) ;
114 }
115

116 −− d i s a g r e e r e c e i v ed and forwarded
117 POSITIONING −> NON_RESERVED {
118 d i s a g r e e (sender) /
119 next . d i s a g r e e (s e l f) ;
120 }
121

122 −− d i s a g r e e r e c e i v ed and forwarded
123 RESERVED −> NON_RESERVED {
124 d i s a g r e e (sender) /
125 next . d i s a g r e e (s e l f) ;
126 }
127

128 −− r e s e r v a t i o n reque s t r e c e i v ed
129 −− however , the node i s a l r eady in wait−ack , so i t r e tu rn s

a nack to sender
130 WAIT_ACK −> WAIT_ACK {
131 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
132 sender . nack (s e l f) ;
133 }
134

135 −− r e s e r v a t i o n reque s t r e c e i v ed
136 −− however , the node i s ma l funct ion ing
137 MALFUNCTION −> MALFUNCTION {
138 req (sender , route_index , route_elements ,

requested_point_pos i t ions) /
139 sender . nack (s e l f) ;
140 }
141

142 −− r e s e r v a t i o n reque s t r e c e i v ed

E.3 Source code 165

143 −− however , the node i s a l r eady in wait−commit s t a t e and
re tu rn s nack to the sender

144 WAIT_COMMIT −> WAIT_COMMIT {
145 req (sender , route_index , route_elements ,

r eques ted_pos i t i on) /
146 sender . nack (s e l f) ;
147 }
148

149 −− r e s e r v a t i o n reque s t r e c e i v ed
150 −− however , the node i s a l r eady in wait−agree s t a t e and

re tu rn s nack to the sender
151 WAIT_AGREE −> WAIT_AGREE {
152 req (sender , route_index , route_elements ,

r eques ted_pos i t i on) /
153 sender . nack (s e l f) ;
154 }
155

156 −− r e s e r v a t i o n reque s t r e c e i v ed
157 −− however , the node i s a l r eady in po s i t i o n i n g s t a t e and

re tu rn s nack to the sender
158 POSITIONING −> POSITIONING {
159 req (sender , route_index , route_elements ,

r eques ted_pos i t i on) /
160 sender . nack (s e l f) ;
161 }
162

163 −− r e s e r v a t i o n reque s t r e c e i v ed
164 −− however , the node i s a l r eady re s e rved and re tu rn s nack

to the sender
165 RESERVED −> RESERVED {
166 req (sender , route_index , route_elements ,

r eques ted_pos i t i on) /
167 sender . nack (s e l f) ;
168 }
169

170 −− r e s e r v a t i o n reque s t r e c e i v ed
171 −− however , the node i s occupied by a t r a i n and re tu rn s

nack to the sender
172 TRAIN_IN_TRANSITION −> TRAIN_IN_TRANSITION {
173 req (sender , route_index , route_elements ,

r eques ted_pos i t i on) /
174 sender . nack (s e l f) ;
175 }
176

177 end Point
178 """

E.3.6 UMC.fs

1 namespace UMC
2

3 open In te r l ock ingMode l
4 open UMCTrain
5 open UMCPoint

166 Tool Source Code

6 open UMCLinear
7 open System
8 open Ut i l s
9

10 [<AutoOpen>]
11 module UMCDefinitions =
12 /// the UMC c l a s s e s d e f i n i n g the behavior o f the model
13 let t r a i n_c l a s s = UMCTrain . c l a s s_d e f i n i t i o n
14 let po int_c la s s = UMCPoint . c l a s s_d e f i n i t i o n
15 let l i n e a r_c l a s s = UMCLinear . c l a s s_d e f i n i t i o n
16

17 /// Model s p e c i f i c s t r i n g r ep r e s e n t a t i o n s
18 /// used as ob j e c t i d e n t i f i e r s in the UMC model
19 type TrainId with

20 s t a t i c member modelRepresentat ion tra in_id =
21 TrainId . va lue tra in_id |> s p r i n t f " train_%s"
22 type Linear Id with

23 s t a t i c member modelRepresentat ion l i n ea r_ id =
24 Linear Id . va lue l i n ea r_ id |> s p r i n t f " l inear_%s"
25 type PointId with

26 s t a t i c member modelRepresentat ion point_id =
27 PointId . va lue point_id |> s p r i n t f "point_%s"
28 type Po intPos i t i on with

29 s t a t i c member modelRepresentat ion : Po in tPos i t i on −>
s t r i n g = function

30 | Plus −> "True"
31 | Minus −> "False "
32 type RouteSegment with

33 s t a t i c member modelRepresentat ion : RouteSegment −> s t r i n g
= function

34 | LinearRouteSegment (l in_id ,_) −>
Linear Id . modelRepresentat ion l in_id

35 | PointRouteSegment (point_id ,_) −>
PointId . modelRepresentat ion point_id

36

37 /// Functions f o r gene ra t i on o f UMC abs t r a c t i on s
38 [<AutoOpen>]
39 module Abs t r a c t i onDe f i n i t i on s =
40 type AbstractionType = Action | State
41 type Abstract ion <'a> =
42 { name : ' a −> s t r i n g
43 abstract ion_type : AbstractionType
44 pr ed i c a t e : ' a −> s t r i n g }
45

46 let getAbstractionName : ' a −> Abstract ion <'a> −> s t r i n g = fun

args ab s t r a c t i on −>
47 ab s t r a c t i on . name args
48

49 let ab s t r a c t i o nDe f i n i t i o n (ab s t r a c t i on : Abstract ion <'a>)
(args : ' a) : s t r i n g =

50 let pr ed i c a t e = abs t r a c t i on . p r ed i c a t e args
51 let name = abs t r a c t i on . name args
52 match ab s t r a c t i on . abstract ion_type with

53 | Action −> sp r i n t f "Action : %s −> %s" pr ed i c a t e name
54 | State −> sp r i n t f " State : %s −> %s" pr ed i c a t e name

E.3 Source code 167

55

56 let withPointModelRep : Point −> (s t r i n g −> s t r i n g) −> s t r i n g =
57 fun { id=id } s t r ingGenera to r −>
58 PointId . modelRepresentat ion id
59 |> s t r ingGenera to r
60

61 let withTrainModelRep : Train −> (s t r i n g −> s t r i n g) −> s t r i n g =
62 fun { id=id } s t r ingGenera to r −>
63 TrainId . modelRepresentat ion id
64 |> s t r ingGenera to r
65

66 let po int In : Po in tPos i t i on −> Abstract ion<Point> = fun

po s i t i o n −>
67 let name = fun point −>
68 match po s i t i o n with

69 | Plus −> withPointModelRep po int (s p r i n t f
"%s_in_plus")

70 | Minus −> withPointModelRep po int (s p r i n t f
"%s_in_minus")

71 let pr ed i c a t e = fun point −>
72 match po s i t i o n with

73 | Plus −> withPointModelRep po int (s p r i n t f
"%s . cur r ent_pos i t i on = True")

74 | Minus −> withPointModelRep po int (s p r i n t f
"%s . cur r ent_pos i t i on = False ")

75 { name = name
76 ; abstract ion_type = State
77 ; p r ed i c a t e = pred i c a t e }
78

79 let po int InPlus : Abstract ion<Point> = point In Plus
80 let pointInMinus : Abstract ion<Point> = po int In Minus
81

82 let noTrainDetectedOnPoint : Abstract ion<Point> =
83 let name = fun point −>
84 withPointModelRep po int (s p r i n t f "no_train_on_%s")
85 let pr ed i c a t e = fun point −>
86 withPointModelRep po int (s p r i n t f "%s . t r a i n = nu l l ")
87 { name = name
88 ; abstract ion_type = State
89 ; p r ed i c a t e = pred i c a t e }
90

91 let a l l_pa i r s_o f_tra ins_at_di f f_pos i t i ons :
Abstract ion<Trains> =

92 let name = fun _ −> " tra in s_at_d i f f_pos i t i on s "
93 let pr ed i c a t e = fun t r a i n s −>
94 let t r a i nPa i rA tD i f fPo s i t i o n s : (Train ∗ Train) −>

s t r i n g =
95 fun (t ra in1 , t r a i n2) −>
96 let t ra in1_id = TrainId . modelRepresentat ion

t r a i n1 . id
97 let t ra in2_id = TrainId . modelRepresentat ion

t r a i n2 . id
98

99 let t r a i nPa r t sA tD i f fPo s i t i on s : (i n t ∗ i n t) −>
s t r i n g = fun (id1 , id2) −>

168 Tool Source Code

100 s p r i n t f "%s . occup i e s [%d] /= %s . occup i e s [%d] "
101 t ra in1_id
102 id1
103 t ra in2_id
104 id2
105

106 c ro s sProductOfL i s t s [0 . . t r a i n1 . length −1]
[0 . . t r a i n2 . length −1]

107 |> Seq .map t r a i nPa r t sA tD i f fPo s i t i on s
108 |> St r ing . concat " and \n"
109

110 uniqueProducts t r a i n s
111 |> Seq .map t r a i nPa i rA tD i f fPo s i t i o n s
112 |> St r ing . concat " and \n"
113 { name = name
114 ; abstract ion_type = State
115 ; p r ed i c a t e = pred i c a t e }
116

117 let po s i t i o n i n g : Abstract ion<Point> =
118 let name = fun point −>
119 (s p r i n t f " pos i t i on ing_%s")
120 |> withPointModelRep po int
121 let pr ed i c a t e = fun point −>
122 (s p r i n t f " inS ta t e (%s .POSITIONING)")
123 |> withPointModelRep po int
124 { name = name
125 ; abstract ion_type = State
126 ; p r ed i c a t e = pred i c a t e }
127

128 let t r a inAr r i v ed : Abstract ion<Train> =
129 let name = fun t r a i n −>
130 withTrainModelRep t r a i n (s p r i n t f "%s_arr ived ")
131 let pr ed i c a t e = fun t r a i n −>
132 withTrainModelRep t r a i n (s p r i n t f " inS ta t e (%s .ARRIVED)")
133 { name = name
134 ; abstract ion_type = State
135 ; p r ed i c a t e = pred i c a t e }
136

137 let trainNotOnPoint : Abstract ion<Train ∗ Point> =
138 let name : Train ∗ Point −> s t r i n g = fun (t ra in , po int) −>
139 let train_model_rep = TrainId . modelRepresentat ion

t r a i n . id
140 let point_model_rep = PointId . modelRepresentat ion

po int . id
141 s p r i n t f "%s_not_on_%s" train_model_rep point_model_rep
142 let pr ed i c a t e : Train ∗ Point −> s t r i n g = fun (t ra in ,

po int) −>
143 let point_model_rep = PointId . modelRepresentat ion

po int . id
144 let train_model_rep = TrainId . modelRepresentat ion

t r a i n . id
145 let trainPartNotOnPoint : i n t −> s t r i n g = fun index −>
146 s p r i n t f "%s . occup i e s [%d] /= %s"
147 train_model_rep
148 index

E.3 Source code 169

149 point_model_rep
150 [0 . . t r a i n . l ength − 1]
151 |> Seq .map trainPartNotOnPoint
152 |> St r ing . concat " and\n"
153 { name = name
154 ; abstract ion_type = State
155 ; p r ed i c a t e = pred i c a t e }
156

157 let discarded_msg : Abstract ion<unit> =
158 { name = fun _ −> "discarded_message "
159 ; abstract ion_type = Action
160 ; p r ed i c a t e = fun _ −> " l o s t e v en t " }
161

162 let pointMal funct ion : Abstract ion<Point> =
163 let pointModelRep = fun p −> PointId . modelRepresentat ion

p . id
164 { name = fun p −> sp r i n t f "%s_malfunction " (pointModelRep

p)
165 ; abstract ion_type = State
166 ; p r ed i c a t e = fun p −> sp r i n t f " inS ta t e (%s .MALFUNCTION)"

(pointModelRep p) }
167

168 let a l l_abs t r a c t i on_dec l a r a t i on s (va l ida ted_ob jec t s :
Val idatedModelObjects) : s t r i n g =

169 let (Val idated ob j e c t s) = va l ida ted_ob j ec t s
170 let t r a i n s : Trains = ob j e c t s . t r a i nL i s t
171 let po in t s : Points = ob j e c t s . p o i n tL i s t
172

173 let no_trains_detected_on_points =
174 po in t s |> L i s t .map (ab s t r a c t i o nDe f i n i t i o n

noTrainDetectedOnPoint)
175 let po in t s_pos i t i on ing =
176 po in t s |> L i s t .map (ab s t r a c t i o nDe f i n i t i o n po s i t i o n i n g)
177 let points_in_plus =
178 po in t s |> L i s t .map (ab s t r a c t i o nDe f i n i t i o n po int InPlus)
179 let points_in_minus =
180 po in t s |> L i s t .map (ab s t r a c t i o nDe f i n i t i o n pointInMinus)
181 let t r a in s_ar r i v ed =
182 t r a i n s |> L i s t .map (ab s t r a c t i o nDe f i n i t i o n t ra inAr r i v ed)
183 let t r a in s_at_d i f f_pos i t i on s =
184 (a l l_pa i r s_of_tra ins_at_di f f_pos i t i ons , t r a i n s)
185 | | > ab s t r a c t i o nDe f i n i t i o n
186 let trains_not_on_points =
187 c ro s sProductOfL i s t s t r a i n s po in t s
188 |> L i s t . o fSeq
189 |> L i s t .map (ab s t r a c t i o nDe f i n i t i o n trainNotOnPoint)
190 let discarded_message =
191 ab s t r a c t i o nDe f i n i t i o n discarded_msg ()
192 let points_mal funct ion =
193 po in t s |> L i s t .map (ab s t r a c t i o nDe f i n i t i o n

po intMal funct ion)
194

195 [t r a in s_ar r i v ed
196 ; no_trains_detected_on_points
197 ; po in t s_pos i t i on ing

170 Tool Source Code

198 ; points_in_plus
199 ; points_in_minus
200 ; po ints_mal funct ion
201 ; [t r a in s_at_d i f f_pos i t i on s]
202 ; trains_not_on_points
203 ; [discarded_message]]
204 |> L i s t . concat
205 |> St r ing . concat "\n"
206

207 //// Extension func t i on s f o r gene ra t ing ob j e c t i n s t a n t i a t i o n s in
UMC

208 [<AutoOpen>]
209 module Mode lObjec t Ins tant ia t i ons =
210 type Linear with

211 s t a t i c member mode lObjec t Ins tant ia t i on : Linear −> s t r i n g
= fun l i n e a r −>

212 let t ra in_id =
213 match l i n e a r . t r a i n with

214 | Some t r a i n −> TrainId . modelRepresentat ion
t r a i n . id

215 | None −> " nu l l "
216 let l i n ea r_ id = Linear Id . modelRepresentat ion l i n e a r . id
217 s p r i n t f "%s : Linear (t r a i n => %s) ; " l i n ea r_ id tra in_id
218

219 type Point with

220 s t a t i c member mode lObjec t Ins tant ia t i on : Point −> s t r i n g =
fun point −>

221 let model_point_id = PointId . modelRepresentat ion
po int . id

222 s p r i n t f "%s : Point ; " model_point_id
223

224 type Train with

225 s t a t i c member mode lObjec t Ins tant ia t i on : Train ∗
ModelObjects −> s t r i n g =

226 fun (t ra in , ob j e c t s) −>
227 let t ra in_id : s t r i n g = TrainId . modelRepresentat ion

t r a i n . id
228

229 let po in tPos i t i on : RouteSegment −> s t r i n g = function

230 | PointRouteSegment (_, pos) −>
PointPos i t i on . modelRepresentat ion pos

231 | _ −> " nu l l "
232

233 let route_segments : RouteSegments = Route . segments
t r a i n . route

234

235 let route_element_ids : s t r i n g =
236 route_segments
237 |> Seq .map RouteSegment . modelRepresentat ion
238 |> St r ing . concat " , "
239

240 let t rack_lengths : s t r i n g =
241 route_segments
242 |> Seq .map (RouteSegment . l ength >> s t r i n g)
243 |> St r ing . concat " , "

E.3 Source code 171

244

245 let requested_point_pos i t ions : s t r i n g =
246 route_segments
247 |> Seq .map po in tPo s i t i on
248 |> St r ing . concat " , "
249

250 let occup i e s : s t r i n g opt ion =
251 Seq . tryHead route_segments
252 |> function

253 | Some(LinearRouteSegment (l inear_id ,_)) −> Some
l inea r_ id

254 | _ −> None
255 |> Option .map (Linear Id . modelRepresentat ion
256 >> Seq . r e p l i c a t e t r a i n . l ength
257 >> Str ing . concat " , ")
258

259 match occup i e s with

260 | Some occup i e s −>
261 [s p r i n t f "%s : Train (" tra in_id
262 ; s p r i n t f " route_segments => [%s] , "

route_element_ids
263 ; s p r i n t f " track_lengths => [%s] , " track_lengths
264 ; s p r i n t f " t ra in_length => %i , " t r a i n . l ength
265 ; s p r i n t f " occup i e s => [%s] , " occup i e s
266 ; s p r i n t f " requested_point_pos i t ions => [%s]) ; "

requested_point_pos i t ions]
267 |> St r ing . concat "\n"
268 | None −> sp r i n t f """
269 %s : Train (
270 route_segments => [] ,
271 t rack_lengths => [] ,
272 t ra in_length => %i ,
273 occup i e s => [] ,
274 requested_point_pos i t ions => []) ;
275 """
276 t ra in_id t r a i n . l ength
277

278 let mode lObjec t Ins tant ia t i on (Val idated ob j e c t s) : s t r i n g =
279 let t r a i n s : s t r i n g seq =
280 Map. toSeq ob j e c t s . t r a i n s
281 |> Seq .map (fun (_, t r a i n) −>

Train . mode lObjec t Ins tant ia t i on (t ra in , ob j e c t s))
282 let l i n e a r s : s t r i n g seq =
283 Map. toSeq ob j e c t s . l i n e a r s |> Seq .map (snd >>

Linear . mode lObjec t Ins tant ia t i on)
284 let po in t s : s t r i n g seq =
285 Map. toSeq ob j e c t s . po in t s |> Seq .map (snd >>

Point . mode lObjec t Ins tant ia t i on)
286 [t r a i n s ; l i n e a r s ; po in t s]
287 |> Seq . concat
288 |> St r ing . concat "\n\n"
289

290 [<AutoOpen>]
291 module Prope r t i e s =
292 /// Class conta in ing generated p r op e r t i e s

172 Tool Source Code

293 /// (implements the ModelCheck ingPropertyDef in i t ions i n t e r f a c e)
294 type ModelCheckingPropert ies (va l ida ted_ob jec t s :

Val idatedModelObjects) =
295 let (Val idated ob j e c t s) = va l ida ted_ob j ec t s
296 let t r a i n s = ob j e c t s . t r a i nL i s t
297 let po in t s = ob j e c t s . p o i n tL i s t
298

299 i n t e r f a c e ModelCheck ingPropertyDef in i t ions with

300 member t h i s . NoMalfunctionsWhenTrainHasNotArrived :
s t r i n g =

301 let p_malfunctions : s t r i n g =
302 po in t s
303 |> Seq .map (fun p −> getAbstractionName p

pointMal funct ion)
304 |> St r ing . concat " or "
305 let t_a r r i v a l s : s t r i n g =
306 t r a i n s
307 |> Seq .map getAbstractionName
308 |> Seq .map ((| >) t ra inAr r i v ed)
309 |> St r ing . concat " and "
310 s p r i n t f "not E[not (%s) U (f i n a l and not (%s))] ; "
311 p_malfunctions t_a r r i v a l s
312

313 member t h i s . NoCo l l i s i on : s t r i n g =
314 a l l_pa i r s_o f_tra ins_at_di f f_pos i t i ons
315 |> getAbstractionName t r a i n s
316 |> s p r i n t f "AG (%s) ; "
317

318 member t h i s . A l lTra insArr ived : s t r i n g =
319 t r a i n s
320 |> Seq .map getAbstractionName
321 |> Seq .map ((| >) t ra inAr r i v ed)
322 |> St r ing . concat " and "
323 |> s p r i n t f "EF AG (%s) ; "
324

325 member t h i s . NoDerailment : s t r i n g =
326 let pos i t i on ing Impl i e sNoTra in = fun

abstractionName −>
327 let po int_i s_pos i t i on ing = abstractionName

po s i t i o n i n g
328 let no_train_detected =
329 abstractionName noTrainDetectedOnPoint
330 [po in t_i s_pos i t i on ing ; " imp l i e s " ;

no_train_detected]
331 |> St r ing . concat ""
332 po in t s
333 |> Seq .map (getAbstractionName >>

pos i t i on ing Impl i e sNoTra in)
334 |> St r ing . concat " and\n"
335 |> s p r i n t f "AG (%s) ; "
336

337 member t h i s . TrainsDetectedOnPoints : s t r i n g =
338 let t ra in sAtPo int Impl i e sTra insDetec ted = fun

(t ra in1 , t ra in2 , po int) −>
339 let train1_not_on_point =

E.3 Source code 173

340 trainNotOnPoint |> getAbstractionName
(t ra in1 , po int)

341 let train2_not_on_point =
342 trainNotOnPoint |> getAbstractionName

(t ra in2 , po int)
343 let no_train_on_point =
344 noTrainDetectedOnPoint |>

getAbstractionName point
345 [" (not (" ; train1_not_on_point ; " and " ;

train2_not_on_point ; ") "
346 ; " imp l i e s not " ; no_train_on_point ; ") "]
347 |> St r ing . concat ""
348 po in t s
349 |> Seq . c o l l e c t (fun point −>
350 uniqueProducts t r a i n s
351 |> Seq .map (fun (t1 , t2) −>

t1 , t2 , po int))
352 |> Seq .map tra insAtPo int Impl i e sTra insDetec ted
353 |> St r ing . concat " and\n"
354 |> s p r i n t f "AG (%s) ; "
355

356 member t h i s . AllMessagesHandled : s t r i n g =
357 getAbstractionName () discarded_msg
358 |> s p r i n t f "AG not (EX {%s} true) ; "
359

360 /// Co l l e c t s a l l the model p r op e r t i e s i n to one s t r i n g
361 let c o l l e c tMode lP rope r t i e s (p r op e r t i e s :

ModelCheck ingPropertyDef in i t ions) =
362 let t r a in s_at_d i f f_pos i t i on s =
363 p r op e r t i e s . NoCo l l i s i on
364 |> s p r i n t f """
365 −− s a f e t y property :
366 −− no i n c i d en t
367 −− no t r a i n s occupy the same l o c a t i o n node at the

same time
368 %s
369 """
370 let no_derailment =
371 p r op e r t i e s . NoDerailment
372 |> s p r i n t f """
373 −− s a f e t y property :
374 −− no t r a i n s are l o ca t ed at any ' point ' whi l e i t

i s changing i t s p o s i t i o n
375 %s
376 """
377 let a l l_t ra in s_ar r i v ed =
378 p r op e r t i e s . A l lTra insArr ived
379 |> s p r i n t f """
380 −− prog r e s s property that s p e c i f i e s that
381 −− a l l t r a i n s has a r r i v ed at t h e i r d e s t i n a t i o n s
382 %s
383 """
384 let no_malfunction_when_train_has_not_arrived =
385 p r op e r t i e s . NoMalfunctionsWhenTrainHasNotArrived
386 |> s p r i n t f """

174 Tool Source Code

387 −− property that s p e c i f i e s that
388 −− the re does not e x i s t a f i n a l s t a t e where at

l e a s t one t r a i n has not a r r i v ed
389 −− and in a l l s t a t e s l e ad ing to t h i s f i n a l s ta te ,

no po in t s have mal funct ioned
390 %s
391 """
392 let trains_detected_on_points =
393 p r op e r t i e s . TrainsDetectedOnPoints
394 |> s p r i n t f """
395 −− property to v e r i f y that a l l t r a i n s are

c o r r e c t l y detec ted at po in t s
396 %s
397 """
398 let all_messages_handled =
399 p r op e r t i e s . AllMessagesHandled
400 |> s p r i n t f """
401 −− no s i g n a l i s ever l o s t in the system
402 %s
403 """
404

405 [t r a in s_at_d i f f_pos i t i on s
406 ; no_derailment
407 ; trains_detected_on_points
408 ; a l l_t ra in s_ar r i v ed
409 ; no_malfunction_when_train_has_not_arrived
410 ; al l_messages_handled]
411 |> St r ing . concat "\n"
412

413 /// Functions f o r composing a UMC model
414 module UMCModelConstruction =
415 let pr i va t e ob j e c t s_sec t i on ob j e c t s =
416 mode lObjec t Ins tant ia t i on ob j e c t s
417 |> s p r i n t f "Objects \n %s"
418

419 let pr i va t e ab s t r a c t i on s_se c t i on ob j e c t s =
420 ob j e c t s
421 |> Abs t r a c t i onDe f i n i t i on s . a l l_ab s t r a c t i on_dec l a r a t i on s
422 |> s p r i n t f " Abst rac t i ons {\n%s\n}"
423

424 let pr i va t e p rope r t i e s_s e c t i on ob j e c t s =
425 ModelCheckingPropert ies (ob j e c t s)
426 |> co l l e c tMode lP rope r t i e s
427

428 let composeModel : ModelGeneratorFunction = fun ob j e c t s −>
429 [t r a i n_c l a s s
430 ; l i n e a r_c l a s s
431 ; po in t_c la s s
432 ; ob j e c t s_sec t i on ob j e c t s
433 ; ab s t r a c t i on s_se c t i on ob j e c t s
434 ; p r ope r t i e s_s e c t i on ob j e c t s]
435 |> St r ing . concat "\n"

E.3 Source code 175

E.3.7 XMLExtraction.fs

1 namespace XMLExtraction
2

3 open FSharp . Data
4 open Ut i l s
5 open In te r l ock ingMode l
6

7 /// Required types and ex t en s i on s o f e x i s t i n g types
8 [<AutoOpen>]
9 module TypeDef in i t i ons =

10 [< L i t e r a l >]
11 let sample_xml_file = "sample . xml"
12 // Loading the type prov ide r with a sample f i l e
13 type RailwayXML = XmlProvider<sample_xml_file>
14

15 (∗ Modules and func t i on s f o r more convenient a c c e s s o f
16 va lue s ex t rac t ed by the type prov ide r ∗)
17

18 module XMLRoute =
19 let Id (route : RailwayXML . Route) : s t r i n g = route . Id
20

21 module TrackSect ion =
22 let Id (t rack_sect ion : RailwayXML . TrackSect ion) : s t r i n g

= track_sect ion . Id
23 let Type (t rack_sect ion : RailwayXML . TrackSect ion) :

s t r i n g = track_sect ion .Type
24

25 module Neighbor =
26 let Id (ne ighbor : RailwayXML . Neighbor) : s t r i n g =

neighbor . Ref
27 let Side (ne ighbor : RailwayXML . Neighbor) : s t r i n g =

neighbor . S ide
28

29 module MarkerBoard =
30 let Id (markerboard : RailwayXML . Markerboard) : s t r i n g =

markerboard . Id
31 let Track (markerboard : RailwayXML . Markerboard) : s t r i n g

= markerboard . Track
32

33 module Condit ion =
34 let Type (cond i t i on : RailwayXML . Condit ion) : s t r i n g =

cond i t i on .Type
35 let Ref (cond i t i on : RailwayXML . Condit ion) : s t r i n g =

cond i t i on . Ref
36

37 type Po intPos i t i on with

38 s t a t i c member f romStr ing : s t r i n g −> PointPos i t i on =
function

39 | " p lus " −> Plus
40 | "minus" −> Minus
41

42 type RouteDirect ion with

43 s t a t i c member f romStr ing : s t r i n g −> RouteDirect ion =
function

176 Tool Source Code

44 | "up" −> Up
45 | "down" −> Down
46

47 type LayoutSegment with

48 s t a t i c member f romStr ing (id : s t r i n g) : s t r i n g ∗ s t r i n g
−> LayoutSegment =

49 function

50 | " l i n e a r " , _ −> LinearLayoutSegment id
51 | " po int " , "stem" −> PointStemLayoutSegment id
52 | " po int " , " p lus " −> PointForkLayoutSegment (id , Plus)
53 | " po int " , "minus" −> PointForkLayoutSegment (id ,

Minus)
54

55 [<AutoOpen>]
56 module Bas icObjectExtract ion =
57 type ModelObjectsExtract ionParameters =
58 { xml_file_path : s t r i n g
59 t ra in_ids : Tra inIds
60 t ra in_length : i n t
61 route s : Routes }
62 /// Extracts a l l t r a in s , po in t s and l i n e a r s from xml f i l e
63 let extractBasicModelObjectsFromXML :

ModelObjectsExtract ionParameters −> ModelObjects =
64 fun parameters −>
65 let xml = RailwayXML . Load parameters . xml_file_path
66 let l i n e a r s : (L inear Id ∗ Linear) seq =
67 xml . I n t e r l o c k i n g . Network . TrackSect ions
68 |> Seq . choose
69 (fun t rack_sect ion −>
70 match t rack_sect ion .Type with

71 | " l i n e a r " −>
72 Some(Linear Id t rack_sect ion . Id ,
73 { id = Linear Id t rack_sect ion . Id
74 t r a i n = None })
75 | _ −> None)
76 let po in t s : (PointId ∗ Point) seq =
77 xml . I n t e r l o c k i n g . Network . TrackSect ions
78 |> Seq . choose
79 (fun t rack_sect ion −>
80 match t rack_sect ion .Type with

81 | " po int " −>
82 Some(PointId t rack_sect ion . Id ,
83 { id = PointId t rack_sect ion . Id
84 po s i t i o n = Plus })
85 | _ −> None)
86 let t r a i n s =
87 L i s t . z ip parameters . t ra in_ids parameters . r oute s
88 |> L i s t .map (fun (id , route) −>
89 id , { id = id ; route = route ; l ength =

parameters . t ra in_length })
90 let bas i c_ob jec t s : ModelObjects =
91 { t r a i n s = t r a i n s |> Map. o f L i s t
92 po in t s = po in t s |> Map. ofSeq
93 l i n e a r s = l i n e a r s |> Map. ofSeq }
94 bas i c_ob jec t s

E.3 Source code 177

95

96 [<AutoOpen>]
97 module LayoutExtract ion =
98 /// Ret r i eve s a l l connect ion pa i r s from a given xml f i l e .
99 /// Assumes that the layout de f ined in the xml f i l e i s

wel l−formed
100 let createLayoutFromXML (path : s t r i n g) :

Result<RailwayNetworkLayout , s t r i ng> =
101 let xml = RailwayXML . Load path
102 let e lements = xml . I n t e r l o c k i n g . Network . TrackSect ions
103 /// g e t t i n g the adjacent ne ighbor type
104 /// i f i t s a l i n e a r then i t s s t r a i gh t f o rwa rd
105 /// i f i t s a po int then we have to f i g u r e out i f i t s the

stem or one o f the f o r k s
106 let getNeighborType : s t r i n g −> s t r i n g −>

Result<LayoutSegment , s t r i ng> =
107 fun from_id to_id −> resu l tF low {
108 let ! e lement =
109 e lements
110 |> Seq . tryFind (TrackSect ion . Id >> (=) to_id)
111 |> function

112 | None −> Error (s p r i n t f "no t r a c k s e c t i o n with
id %s " to_id)

113 | Some element −> Ok element
114 let ! from_neighbor =
115 element . Neighbors
116 |> Seq . tryFind (Neighbor . Id >> (=) from_id)
117 |> function

118 | Some neighbor −> Ok neighbor
119 | None −> sp r i n t f " could not f i nd %s in

ne ighbors o f %s " to_id from_id
120 |> Error
121 r e turn LayoutSegment . f romStr ing to_id (element .Type ,

from_neighbor . S ide) }
122

123 /// Al l connect ion pa i r s going from l i n e a r to other
124 let l i n e a r s : Result<LayoutSegment ∗ LayoutSegment ,

s t r i ng> seq =
125 let isLinearWithUpNeighbor : RailwayXML . TrackSect ion

−> bool =
126 fun element −>
127 let e lement_is_l inear = element .Type = " l i n e a r "
128 let element_has_up_neighbor =
129 element . Neighbors |> Seq . e x i s t s (Neighbor . S ide

>> (=)"up")
130 (e l ement_is_l inear && element_has_up_neighbor)
131

132 let getFromIdAndToId : RailwayXML . TrackSect ion −>
s t r i n g ∗ s t r i n g =

133 fun element −>
134 let from_id = element . Id
135 let neighbor = element . Neighbors |> Seq . f i nd

(Neighbor . S ide >> (=)"up")
136 let to_id = neighbor . Ref
137 from_id , to_id

178 Tool Source Code

138

139 let getLayoutElementPair
140 : s t r i n g ∗ s t r i n g −> Result<LayoutSegment ∗

LayoutSegment , s t r i ng> =
141 fun (from_id , to_id) −>
142 let from_element = LinearLayoutSegment from_id
143 let to_element = getNeighborType from_id to_id
144 Result<_,_>.map (fun to_el −> from_element , to_el)

to_element
145

146 e lements
147 |> Seq . f i l t e r isLinearWithUpNeighbor
148 |> Seq .map (getFromIdAndToId >> getLayoutElementPair)
149

150 let getLayoutElementPair
151 : s t r i n g −> RailwayXML . Neighbor −>

Result<LayoutSegment ∗ LayoutSegment , s t r i ng> =
152 fun from_id neighbor −>
153 let neighbor_id = neighbor . Ref
154 let from_element =
155 LayoutSegment . f romStr ing from_id (" po int " ,

ne ighbor . S ide)
156 getNeighborType from_id neighbor_id
157 |> Result<_,_>.map (fun to_element −> from_element ,

to_element)
158

159 /// Al l connect ion pa i r s going from point to other
160 let po in t s : Result<LayoutSegment ∗ LayoutSegment , s t r i ng>

seq = seq {
161 for element in e lements |> Seq . f i l t e r

(TrackSect ion .Type >> (=)" po int ") do

162 let from_id = element . Id
163 for neighbor in element . Neighbors do

164 y i e l d getLayoutElementPair from_id neighbor }
165 [l i n e a r s ; po in t s]
166 |> Seq . concat
167 |> L i s t . o fSeq
168 |> Result<_,_>. sequence
169 |> Result<_,_>.map Map. o f L i s t
170

171 [<AutoOpen>]
172 module RouteExtract ion =
173 let extractRouteFragmentFromXML (path : s t r i n g) (l i n ea r_ length

: i n t) (route_id : s t r i n g)
174 : Result<Route , s t r i ng> =

resu l tF low {
175 let xml = RailwayXML . Load path
176

177 let route = xml . I n t e r l o c k i n g . Routetable . Routes
178 |> Seq . tryFind (XMLRoute . Id >> (=) route_id)
179

180 let ! (route : RailwayXML . Route) =
181 xml . I n t e r l o c k i n g . Routetable . Routes
182 |> Seq . tryFind (XMLRoute . Id >> (=) route_id)
183 |> function

E.3 Source code 179

184 | Some route −> Ok route
185 | None −> Error (s p r i n t f "no route with id %s"

route_id)
186

187 let markerboard_src_id : s t r i n g = route . Source
188

189 let ! (l inear_src_id : s t r i n g) =
190 xml . I n t e r l o c k i n g . Network . Markerboards
191 |> Seq . tryFind (MarkerBoard . Id >>

(=)markerboard_src_id)
192 |> function

193 | Some markerboard −> Ok markerboard . Track
194 | None −> Error (s p r i n t f "no markerboard f o r id

%s" markerboard_src_id)
195

196 let po in t s : (s t r i n g ∗ Po intPos i t i on) seq =
197 route . Condit ions
198 |> Seq . f i l t e r (Condit ion .Type >> (=)" po int ")
199 |> Seq .map (fun cond i t i on −>
200 let pos = Option . get cond i t i on . Val
201 let id = cond i t i on . Ref
202 let point_pos = Po intPos i t i on . f romStr ing

pos
203 (id , point_pos))
204

205 // i f the id e x i s t s as a po int id then the id i s a po int
206 let tryGetPoint : s t r i n g −> (s t r i n g ∗ Po intPos i t i on)

opt ion =
207 fun id −> po in t s |> Seq . tryFind (f s t >> (=) id)
208

209 let vacanc i e s : RouteSegments =
210 let routeElement : RailwayXML . Condit ion −>

RouteSegment =
211 fun cond i t i on −>
212 let id = cond i t i on . Ref
213 match tryGetPoint id with

214 | Some (id , pos) −> PointRouteSegment (PointId id ,
pos)

215 | None −> LinearRouteSegment (L inear Id id ,
l i n ea r_ length)

216 route . Condit ions
217 |> Seq . f i l t e r (Condit ion .Type >> (=)" trackvacancy ")
218 |> Seq .map routeElement
219 |> L i s t . o fSeq
220

221 let ! (d i r e c t i o n : RouteDirect ion) =
222 xml . I n t e r l o c k i n g . Network . Markerboards
223 |> Seq . tryFind (MarkerBoard . Id >>

(=)markerboard_src_id)
224 |> function

225 | None −> Error (s p r i n t f "no markerboard with id
%s " markerboard_src_id)

226 | Some markerboard −>
227 markerboard . Mounted
228 |> RouteDirect ion . f romStr ing

180 Tool Source Code

229 |> Ok
230

231 let f i r s t_e l ement = LinearRouteSegment (L inear Id
l inear_src_id , l i n ea r_ length)

232 let route_elements = f i r s t_e l ement : : vacanc i e s
233

234 r e turn Route (route_elements , d i r e c t i o n) }
235

236 let extractRouteFragmentsFromXML (path : s t r i n g) (t ra in_len :
i n t) (route_ids : s t r i n g l i s t)

237 : Result<Route , s t r i ng> =
238 let extractRouteFragment : s t r i n g −> Result<Route , s t r i ng>

= fun route_id −>
239 extractRouteFragmentFromXML path tra in_len route_id
240 route_ids
241 |> Seq .map extractRouteFragment
242 |> Result<_,_>. reduce s t i t chRoutePa i r
243

244 [<AutoOpen>]
245 module ModelGenerationFromXML =
246 type ModelGenerationParameters =
247 { modelGeneratorFunction : ModelGeneratorFunction
248 xml_file_path : s t r i n g
249 route s : s t r i n g l i s t l i s t }
250 let generateModelFromXML : ModelGenerationParameters −>

Result<s t r i ng , s t r i ng> =
251 fun parameters −> resu l tF low {
252 let de fau l t_tra in_length = 2
253 let extractRouteFragments : s t r i n g l i s t −>

Result<Route , s t r i ng> =
254 extractRouteFragmentsFromXML parameters . xml_file_path

de fau l t_tra in_length
255 let ! (r oute s : Route l i s t) =
256 parameters . r oute s
257 |> Result<_,_>. t r av e r s e extractRouteFragments
258

259 let ! (l ayout : RailwayNetworkLayout) = createLayoutFromXML
parameters . xml_file_path

260 let val idateAndGenerate = validateAndGenerateModel
parameters . modelGeneratorFunction

261

262 let t ra in_ids = [0 . . Seq . l ength route s − 1]
263 |> L i s t .map (s p r i n t f "%i " >> TrainId)
264

265 let ! model =
266 { xml_file_path = parameters . xml_file_path
267 t ra in_ids = tra in_ids
268 t ra in_length = defau l t_tra in_length
269 route s = route s }
270 |> extractBasicModelObjectsFromXML
271 |> val idateAndGenerate layout
272

273 r e turn model }

E.3 Source code 181

E.3.8 ScriptTools.fs

1 namespace Sc r ip t i ngToo l s
2

3 open In te r l ock ingMode l
4 open XMLExtraction . LayoutExtract ion
5 open UMC
6 open Ut i l s
7 open System . IO
8

9 [<AutoOpen>]
10 module SimpleTypes =
11 type SimpleTrackSegment = LLinear of name : s t r i n g
12 | LPointFork of name : s t r i n g ∗

Po intPos i t i on
13 | LPointStem of name : s t r i n g
14 let (<+>) (e l 1 : SimpleTrackSegment) (e l 2 :

SimpleTrackSegment) = el1 , e l 2
15 type SimpleLayout = (SimpleTrackSegment ∗ SimpleTrackSegment)

l i s t
16

17 type SimpleRouteElement =
18 | RLinear of name : s t r i n g ∗ l ength : i n t
19 | RPoint of name : s t r i n g ∗ po s i t i o n : Po in tPos i t i on
20 type SimpleRoute = SimpleRouteElement l i s t
21

22 type SimpleTrain =
23 { id : s t r i n g
24 ; l ength : i n t
25 ; route : SimpleRoute
26 ; r ou te_d i r e c t i on : RouteDirect ion }
27 type SimpleTrains = SimpleTrain l i s t
28

29 type LayoutType = CustomLayout of SimpleLayout
30 | XMLLayout of path : s t r i n g
31

32 type SimpleModelArgs =
33 { t r a i n s : SimpleTrain l i s t
34 ; l ayout : LayoutType
35 ; show_stats : bool
36 ; ou tput_f i l e : s t r i n g opt ion }
37

38 type Stat s =
39 { num_of_trains : i n t
40 ; t ra in_lengths : i n t l i s t
41 ; route_lengths : i n t l i s t
42 ; total_route_sub_segments : i n t
43 ; t o t a l_ l i n e a r s : i n t
44 ; t o ta l_po int s : i n t
45 ; shared_points : i n t
46 ; sha red_l inear s : i n t }
47

48 type SimpleRouteElement with

49 s t a t i c member Length (element : SimpleRouteElement) =
50 match element with

182 Tool Source Code

51 | RLinear (_, l en) −> len
52 | _ −> 1
53

54 /// Functions f o r conver t ing s c r i p t model r ep r e s en t a t i on to
55 /// to a va l i da t ed i n t e r n a l r ep r e s en t a t i on
56 [<AutoOpen>]
57 module Scr ip tToo l s =
58 let pr i va t e toLayoutSegment : SimpleTrackSegment −>

LayoutSegment =
59 function

60 | LPointFork (n , Plus) −> PointForkLayoutSegment (n , Plus)
61 | LPointFork (n , Minus) −> PointForkLayoutSegment (n , Minus)
62 | LPointStem n −> PointStemLayoutSegment n
63 | LLinear n −> LinearLayoutSegment n
64

65 type SimpleRouteElement with

66 s t a t i c member toRouteSegment : SimpleRouteElement −>
RouteSegment =

67 function

68 | RLinear (n , l en) −> LinearRouteSegment (L inear Id n ,
l en)

69 | RPoint (n , Plus) −> PointRouteSegment (PointId n ,
Plus)

70 | RPoint (n , Minus) −> PointRouteSegment (PointId n ,
Minus)

71

72 let pr i va t e getRailwayLayoutFromCustom (custom_layout :
SimpleLayout) : RailwayNetworkLayout =

73 custom_layout
74 |> L i s t .map (fun (e l1 , e l 2) −> toLayoutSegment e l1 ,

toLayoutSegment e l 2)
75 |> Map. o f L i s t
76

77 let pr i va t e getRoute (t r a i n : SimpleTrain) : Route =
78 let route_elements =
79 t r a i n . route
80 |> L i s t .map SimpleRouteElement . toRouteSegment
81 Route (route_elements , t r a i n . route_d i r e c t i on)
82

83 let pr i va t e getTra ins (t r a i n s : SimpleTrain l i s t) : Trains =
84 let toTrain : SimpleTrain −> Train = fun t −>
85 { id = TrainId t . id ; l ength = t . l ength ; route =

getRoute t }
86 t r a i n s |> L i s t .map toTrain
87

88 /// Extract l i n e a r s from layout
89 let pr i va t e ge tL inea r s (layout : RailwayNetworkLayout) :

L inear s =
90 Map. t oL i s t layout
91 |> L i s t . unzip
92 | | > L i s t . append
93 |> L i s t . choose
94 (function
95 | LinearLayoutSegment n −> Some({ id = Linear Id n ;

t r a i n = None})

E.3 Source code 183

96 | _ −> None)
97 |> Set . o f L i s t
98 |> Set . t oL i s t
99

100 /// Extract po in t s from layout
101 let pr i va t e ge tPo int s (layout : RailwayNetworkLayout) : Points

=
102 Map. t oL i s t layout
103 |> L i s t . unzip
104 | | > L i s t . append
105 |> L i s t . choose
106 (function
107 | PointForkLayoutSegment (n , _)
108 | PointStemLayoutSegment n −> Some({ id = PointId n ;

p o s i t i o n = Plus })
109 | _ −> None)
110 |> Set . o f L i s t
111 |> Set . t oL i s t
112

113 let pr i va t e getObject s (t r a i n s : SimpleTrains) (layout :
RailwayNetworkLayout)

114 : ModelObjects =
115 let t ra in_ids = t r a i n s |> L i s t .map (fun t −> TrainId t . id)
116 let trains_map : Map<TrainId , Train> =
117 L i s t . z ip t ra in_ids (getTra ins t r a i n s)
118 |> Map. o f L i s t
119

120 let l i n e a r s = ge tL inea r s layout
121 let l i n e a r_ id s = l i n e a r s |> L i s t .map Linear . id
122 let l inears_map : Map<LinearId , Linear> =
123 L i s t . z ip l i n e a r_ id s l i n e a r s
124 |> Map. o f L i s t
125

126 let po in t s = getPo int s layout
127 let point_ids = po in t s |> L i s t .map Point . id
128 let points_map : Map<PointId , Point> =
129 L i s t . z ip point_ids po in t s
130 |> Map. o f L i s t
131 { t r a i n s = trains_map
132 l i n e a r s = linears_map
133 po in t s = points_map }
134

135 /// Pretty p r i n t the raw layout from an XML f i l e
136 let printRawLayout (path : s t r i n g) =
137 let layoutSegmentToSimple segment =
138 match segment with

139 | LinearLayoutSegment id −> LLinear id
140 | PointForkLayoutSegment (id , pos) −> LPointFork (id ,

pos)
141 | PointStemLayoutSegment id −> LPointStem id
142 |> s p r i n t f "%A"
143

144 let l ayout = resu l tF low {
145 let ! l ayout = createLayoutFromXML path
146 let output_layout =

184 Tool Source Code

147 l ayout
148 |> Map. t oL i s t
149 |> L i s t .map (fun (x , y) −>
150 let x_simple = layoutSegmentToSimple x
151 let y_simple = layoutSegmentToSimple y
152 s p r i n t f "%s <+> %s"

(x_simple . PadRight 24) y_simple)
153 r e turn output_layout |> St r ing . concat "\n" }
154 match l ayout with

155 | Ok layout_st r ing −> pr i n t f n "%s" layout_st r ing
156 | Error msg −> pr i n t f n "ERROR: %s" msg
157

158 let pr i va t e gene ra t eS ta t s (t r a i n s : SimpleTrains) (layout :
RailwayNetworkLayout) : S ta t s =

159 let num_of_trains = t r a i n s |> L i s t . l ength
160 let t ra in_lengths = t r a i n s |> L i s t .map (fun { l ength=len }

−> len)
161 let route_lengths = t r a i n s |> L i s t .map (fun { route=r } −>

Li s t . l ength r)
162 let total_route_sub_segments =
163 t r a i n s
164 |> Seq .map
165 (fun { route=r } −>
166 Seq .map (SimpleRouteElement . Length) r |> Seq . sum)
167 |> Seq . sum
168 let t o t a l_ l i n e a r s = ge tL inea r s layout |> L i s t . l ength
169 let to ta l_po int s = getPo int s layout |> L i s t . l ength
170

171 let getPointNames = function RPoint (n ,_) −> Some n | _ −>
None

172 |> Seq . choose
173 let shared_points =
174 uniqueProducts t r a i n s
175 |> Seq .map (fun ({ route=r1 } , { route=r2 }) −>
176 let r1_points = r1 |> getPointNames |>

Set . o fSeq
177 let r2_points = r2 |> getPointNames |>

Set . o fSeq
178 Set . i n t e r s e c t r1_points r2_points)
179 |> Seq .map Set . count
180 |> Seq . sum
181 let getLinearNames = function RLinear (n ,_) −> Some n | _

−> None
182 |> Seq . choose
183 let shared_l inear s =
184 uniqueProducts t r a i n s
185 |> Seq .map (fun ({ route=r1 } , { route=r2 }) −>
186 let r 1_ l in ea r s = r1 |> getLinearNames |>

Set . o fSeq
187 let r 2_ l in ea r s = r2 |> getLinearNames |>

Set . o fSeq
188 Set . i n t e r s e c t r 1_ l in ea r s r 2_ l in ea r s)
189 |> Seq .map Set . count
190 |> Seq . sum
191 { num_of_trains = num_of_trains

E.3 Source code 185

192 ; t ra in_lengths = tra in_lengths
193 ; route_lengths = route_lengths
194 ; total_route_sub_segments = total_route_sub_segments
195 ; t o t a l_ l i n e a r s = t o t a l_ l i n e a r s
196 ; t o ta l_po int s = tota l_po int s
197 ; shared_points = shared_points
198 ; sha red_l inear s = shared_l inear s }
199

200

201 let generateUMCModel (model_args : SimpleModelArgs) : un i t =
202 let val idateAndGenerate =
203 UMCModelConstruction . composeModel
204 |> validateAndGenerateModel
205 let output = resu l tF low {
206 let ! l ayout =
207 match model_args . layout with

208 | CustomLayout custom_layout −>
209 Ok(getRailwayLayoutFromCustom custom_layout)
210 | XMLLayout path −> createLayoutFromXML path
211 let t r a i n s = model_args . t r a i n s
212 let ob j e c t s = getObject s t r a i n s layout
213 let ! model = val idateAndGenerate layout ob j e c t s
214 let s t a t s = gene ra t eS ta t s t r a i n s layout
215 let output =
216 i f model_args . show_stats then

217 s p r i n t f "STATS:\ n%A\n\nMODEL:\ n%s" s t a t s model
218 else s p r i n t f "MODEL:\ n%s" model
219 r e turn output }
220 match output , model_args . output_f i l e with

221 | Ok output , None −> pr i n t f n "%s" output
222 | Ok output , Some f i l e_path −>
223 F i l e . WriteAllText (f i l e_path , output)
224 p r i n t f n "model wr i t t en to f i l e %s " f i l e_path
225 | Error msg , _ −> pr i n t f n "ERROR:\ n%s" msg

E.3.9 MiniModelGenerator.fs

1 module MiniModelGenerator
2

3 open System . Text . RegularExpress ions
4 open In te r l ock ingMode l
5 open UMC
6 open XMLExtraction
7 open Ut i l s
8 open System
9 open System . IO

10

11 type ModelOutput = UMC
12 | Raw // r ep r e s en t i ng the raw F# ob j e c t s
13

14 type ModelOutput with

15 s t a t i c member f romStr ing (s : s t r i n g) : Result<ModelOutput ,
s t r i ng> =

16 match s . ToLower () with

186 Tool Source Code

17 | "umc" −> Ok UMC
18 | "raw" −> Ok Raw
19 | _ −> Error "wrong model type "
20

21 let pa r s e I t i n arg =
22 match Regex (" [^\ [\]]+ ") .Match arg with

23 | m when m. Success && m. Value <> "" −>
24 let parsed =
25 m. Value . S p l i t ' , '
26 |> Array . f i l t e r ((<>)"")
27 |> L i s t . ofArray
28 i f Seq . l ength parsed > 0
29 then Ok parsed
30 else Error " e r r o r in i t i n e r a r y argument no route s provided "
31 | _ −> Error " e r r o r in i t i n e r a r y argument"
32

33 let par s e In t arg =
34 match Int32 . TryParse arg with

35 | true , x −> Ok x
36 | _ −> Error (s p r i n t f "not an i n t e g e r : %A" arg)
37

38 let getPath curr_dir path_arg =
39 i f F i l e . Ex i s t s path_arg
40 then Ok path_arg
41 else

42 let fu l l_path = s p r i n t f "%s/%s" curr_dir path_arg
43 i f F i l e . Ex i s t s fu l l_path
44 then Ok fu l l_path
45 else Error (s p r i n t f "no f i l e with path %s" path_arg)
46

47 [<EntryPoint >]
48 let main argv =
49 let curr_dir = Direc tory . GetCurrentDirectory ()
50 i f Array . l ength argv < 4 then

51 [" Fol lowing arguments must be provided (in same order) : "
52 " 1 . f i l e −path o f xml f i l e "
53 " 2 . model type (umc | raw) "
54 " 3 . i t i n e r a r y f o r t r a i n 1 in the form [r_1 , r_2 , . . .] "
55 " 4 . i t i n e r a r y f o r t r a i n 2 in the form [r_3 , r_4 , . . .] "
56 " 5 "]
57 |> St r ing . concat "\n"
58 |> p r i n t f n "%s"
59 else

60 let model = resu l tF low {
61 let ! path = getPath curr_dir argv . [0]
62 let ! model_output_type = ModelOutput . f romStr ing argv . [1]
63 let ! r ou t e s =
64 [2 . . Array . l ength argv − 1]
65 |> Result<_,_>. t r av e r s e
66 (fun arg_id −> resu l tF low {
67 let ! route = pa r s e I t i n argv . [arg_id]
68 r e turn route })
69 let parameters =
70 { modelGeneratorFunction = generateRawModel
71 xml_file_path = path

E.3 Source code 187

72 route s = route s }
73 let ! model =
74 match model_output_type with

75 | Raw −> generateModelFromXML parameters
76 | UMC −>
77 { parameters with modelGeneratorFunction =

UMCModelConstruction . composeModel }
78 |> generateModelFromXML
79 r e turn model }
80 match model with

81 | Ok model −> pr i n t f n "%s" model
82 | Error e r r −> pr i n t f n "ERROR: \n%s" e r r
83 0 // re turn an i n t e g e r e x i t code

E.3.10 Prelude.fsx

1 (∗
2 Loading the r equ i r ed f i l e s and as s emb l i e s f o r the s c r i p t s
3 ∗)
4

5 // r equ i r ed assembly f o r par s ing xml f i l e s
6

7 #r " . . / . . / packages /FSharp . Data/ l i b /net40 /FSharp . Data . d l l "
8

9 (∗ l oad ing r equ i r ed f i l e s ∗)
10 #load " Ut i l s . f s "
11 #load " Inte r lock ingMode l . f s "
12 #load "UMCTrainClass . f s "
13 #load "UMCLinearClass . f s "
14 #load "UMCPointClass . f s "
15 #load "UMC. f s "
16 #load "XMLExtraction . f s "
17 #load " Sc r ip tToo l s . f s "
18

19 open Sc r ip t i ngToo l s

E.3.11 Script.fsx

A sample script for de�ning a model using the DSL scripting tools library.

1 (∗
2 Example s c r i p t f o r gene ra t ing a UMC model with a custom layout
3 ∗)
4

5 #load "Prelude . f s x "
6

7 (∗ import ing r equ i r ed modules ∗)
8 open In te r l ock ingMode l
9 open Sc r ip t i ngToo l s

10

11 (∗ Def ine the t r a i n s and route s to be used in the model ∗)

188 Tool Source Code

12 let t r a i n s : SimpleTrains =
13 [{ id = "1"
14 l ength = 3
15 route = [RLinear (name = "1" , l ength = 3)
16 ; RPoint (name = "1" , p o s i t i o n = Plus)
17 ; RLinear (name = "2" , l ength = 2)
18 ; RPoint (name = "2" , p o s i t i o n = Plus)
19 ; RLinear (name = "4" , l ength = 3)]
20 route_d i r e c t i on = Up }
21 { id = "2"
22 l ength = 3
23 route = [RLinear (name = "4" , l ength = 3)
24 ; RPoint (name = "2" , p o s i t i o n = Minus)
25 ; RLinear (name = "3" , l ength = 3)]
26 route_d i r e c t i on = Down }]
27

28 (∗ Def ine the network layout in a ' l e f t −to−r i ght ' fa sh ion ,
29 us ing '+>' to i nd i c a t e connect ion between elements ∗)
30 let network_layout : SimpleLayout =
31 [LLinear "1" <+> LPointStem "1"
32 ; LPointFork ("1" , Plus) <+> LLinear "2"
33 ; LPointFork ("1" , Minus) <+> LLinear "3"
34 ; LLinear "2" <+> LPointFork ("2" , Plus)
35 ; LLinear "3" <+> LPointFork ("2" ,Minus)
36 ; LPointStem "2" <+> LLinear "4"]
37

38 (∗ Generate model based on the d e f i n i t i o n s above ∗)
39 generateUMCModel { t r a i n s = t r a i n s
40 ; l ayout = CustomLayout (network_layout)
41 ; show_stats = true
42 ; ou tput_f i l e = Some "mymodel . txt " }

E.4 Tests

This section de�nes a few unit tests and property based tests that all evaluates
to true for the current source code.

E.4.1 Tests.Utils.fs

Testing selected functions from the Utils module.

1 namespace Tests . U t i l s
2 open Ut i l s
3

4 module c ro s sProductOfL i s t s =
5 open Xunit
6 open FsUnit . Xunit

E.4 Tests 189

7 open FsCheck . Xunit
8

9 [<Fact >]
10 let ` ` s imple te s t1 ` ` () =
11 let r e s u l t = cros sProductOfL i s t s [1 ; 2] ["a" ; "b"] |>

Set . o fSeq
12 let expected = Set . o f L i s t [1 , "a" ; 1 , "b" ; 2 , "a" ; 2 , "b"]
13 r e s u l t |> should equal expected
14

15 [<Property >]
16 let ` ` l ength of c r o s s product l i s t i s n∗∗2 , where n i s the

l ength of one of the input l i s t s ` `
17 (xs : i n t l i s t) =
18 let r e s u l t =
19 c ro s sProductOfL i s t s xs xs
20 |> L i s t . o fSeq
21 |> L i s t . l ength
22 let expected = f l o a t (L i s t . l ength xs) ∗∗2 .0 |> in t
23 r e s u l t = expected
24

25

26 module uniqueProducts =
27 open FsCheck
28 open FsCheck . Xunit
29

30 let sets_bigger_than_two : Arbitrary<NonEmptySet<int>> =
31 Arb . Defau l t . NonEmptySet<int >()
32 |> Arb . f i l t e r (fun x −> Set . count x . Get >= 2)
33 |> Arb . f i l t e r (fun x −> Set . count x . Get <= 12)
34

35 let n_choose_k n k =
36 let rec f a c t o r i a l n =
37 match n with

38 | n when n = 0 −> 1
39 | n when n = 1 −> 1
40 | n −> f a c t o r i a l (n − 1) ∗ n
41 (f a c t o r i a l n) / ((f a c t o r i a l k) ∗(f a c t o r i a l (n − k)))
42

43 [<Property >]
44 let ` ` product e lements are unique in each product ` ` () =
45 Prop . f o rA l l sets_bigger_than_two (fun xs −>
46 L i s t . o fSeq xs . Get
47 |> uniqueProducts
48 |> Seq .map (fun (e1 , e2) −> e1 <> e2)
49 |> Seq . reduce (&&))
50

51 //[<Property (Verbose = true)>]
52 [<Property >]
53 let ` ` n choose k products produced ` ` () =
54 Prop . f o rA l l sets_bigger_than_two (fun xs −>
55 let input = xs . Get
56 let n = Set . count input
57 let k = 2
58 let expected = n_choose_k n k
59 let r e s u l t =

190 Tool Source Code

60 L i s t . o fSeq input
61 |> uniqueProducts
62 |> Seq . l ength
63 expected = r e s u l t)
64

65

66 module Result =
67 open Xunit
68 open FsUnit . Xunit
69

70 [<Fact >]
71 let ` ` s imple su c c e s s t e s t of f low ` ` () =
72 let r e s u l t : Result<int , s t r i ng> = resu l tF low {
73 let ! x = Ok 42
74 let ! y = Ok 3
75 r e turn x + y }
76 let expected : Result<int , s t r i ng> = Ok 45
77 r e s u l t |> should equal expected
78

79 [<Fact >]
80 let ` ` s imple f a i l t e s t of f low ` ` () =
81 let r e s u l t = resu l tF low {
82 let ! x = Ok 42
83 let ! y = Error "wrong"
84 r e turn x + y }
85 let expected : Result<int , s t r i ng> = Error "wrong"
86 r e s u l t |> should equal expected
87

88 [<Fact >]
89 let ` ` s imple su c c e s s t e s t of sequence ` ` () =
90 let input = [Ok 1 ; Ok 2 ; Ok 3]
91 let expected = Ok [1 ; 2 ; 3]
92 let r e s u l t = Result<_,_>. sequence input
93 r e s u l t |> should equal expected
94

95 [<Fact >]
96 let ` ` s imple f a i l t e s t of sequence ` ` () =
97 let input = [Ok 1 ; Error "wrong" ; Ok 3]
98 let expected : Result<in t l i s t , s t r i ng> = Error "wrong"
99 let r e s u l t = Result<_,_>. sequence input

100 r e s u l t |> should equal expected
101

102 [<Fact >]
103 let ` ` s imple su c c e s s t e s t of t rave r s e ` ` () =
104 let input = [1 . . 5]
105 let expected : Result<in t l i s t , s t r i ng> = Ok [1 . . 5]
106 let r e s u l t =
107 input
108 |> Result<_,_>. t r av e r s e
109 (function
110 | n when n = 0 −> Error "wrong"
111 | n −> Ok n)
112 r e s u l t |> should equal expected
113

114 [<Fact >]

E.4 Tests 191

115 let ` ` s imple f a i l t e s t of t rave r s e ` ` () =
116 let input = [0 . . 5]
117 let expected : Result<in t l i s t , s t r i ng> = Error "wrong"
118 let r e s u l t =
119 input
120 |> Result<_,_>. t r av e r s e
121 (function
122 | n when n = 0 −> Error "wrong"
123 | n −> Ok n)
124 r e s u l t |> should equal expected
125

126 module maybe =
127 open Xunit
128 open FsUnit . Xunit
129

130 [<Fact >]
131 let ` ` s imple su c c e s s t e s t of maybe flow ` ` () =
132 let r e s u l t : i n t opt ion = maybe {
133 let ! x = Some 42
134 let ! y = Some 3
135 r e turn x + y }
136 let expected : i n t opt ion = Some 45
137 r e s u l t |> should equal expected
138

139 [<Fact >]
140 let ` ` s imple f a i l t e s t of maybe flow ` ` () =
141 let r e s u l t : i n t opt ion = maybe {
142 let ! x = Some 42
143 let ! y = None
144 r e turn x + y }
145 let expected : i n t opt ion = None
146 r e s u l t |> should equal expected

E.4.2 Tests.InterlockingModel.fs

Testing selected functions from the InterlockingModel module.

1 namespace Tests . In te r l ock ingMode l
2 open Ut i l s
3 open In te r l ock ingMode l
4

5 module RouteConstruction =
6 open FsCheck
7 open FsCheck . Xunit
8

9 /// Generate i n t e g e r s b i gge r than zero
10 let int_bigger_than_zero =
11 Arb . generate<NonNegativeInt>
12 |> Gen . where (fun i −> i . Get > 0)
13

14 /// Generator o f random route s

192 Tool Source Code

15 let routeGen : Gen<Route> =
16 let route s =
17 let d i r e c t i o n = Arb . generate<RouteDirect ion>
18 let l inear_segment id (l : NonNegativeInt) =
19 LinearRouteSegment (Linear Id id , l . Get)
20 let point_segment id p =
21 PointRouteSegment (PointId id , p)
22 let segment id =
23 [Gen .map (l inear_segment id) int_bigger_than_zero
24 ; Gen .map (point_segment id)

Arb . generate<PointPos i t ion>]
25 |> Gen . oneof
26 let segments =
27 [for id in [1 . . s] |> Seq .map s t r i n g −> segment id]
28 |> Gen . sequence
29 Gen .map2 (fun s d −> Route (s , d)) segments d i r e c t i o n
30 Gen . s i z e d route
31 let validRouteArb : Arbitrary<Route> =
32 Arb . fromGen routeGen
33 |> Arb . f i l t e r
34 (fun (Route (segments ,_)) −>
35 let f i r s t_ i s_ l i n e a r =
36 match Seq . head segments with

37 | LinearRouteSegment _ −> true
38 | _ −> f a l s e
39 let l a s t_ i s_ l i n e a r =
40 match Seq . l a s t segments with

41 | LinearRouteSegment _ −> true
42 | _ −> f a l s e
43 f i r s t_ i s_ l i n e a r
44 && la s t_ i s_ l i n e a r)
45

46 [<Property >]
47 let ` ` route s p l i t in ha l f and s t i t c h ed with s t i t chRoutePa i r

y i e l d s same route ` ` () =
48 Prop . f o rA l l validRouteArb
49 (fun route −>
50 let (Route (al l_segments , d i r)) = route
51 let ha l f = (L i s t . l ength al l_segments) / 2
52 let segments1 = L i s t . take h a l f a l l_segments
53 let segments2 = L i s t . sk ip (ha l f −1) al l_segments
54 let route1 = Route (segments1 , d i r)
55 let route2 = Route (segments2 , d i r)
56 let r e s u l t = st i t chRoutePa i r route1 route2
57 match r e s u l t with

58 | Ok re su l t_route −> resu l t_route = route
59 | Error msg −> r a i s e (System . ArgumentException (msg)))
60

61 // gen route from layout and ve r i f yRoute s
62 // gen length cons t ra ined route s and checkLengthConstra ints

Appendix F

Experiment Scripts

This chapter contains the scripts used to generate the models used as experi-
ments in the Experiments chapter.

F.1 SimpleTwoTrains.fsx

Generates 10 models with an increasing number of stations, where the �rst
model have one station and the last have ten stations.

1 #load "Prelude . f s x "
2

3 open In te r l ock ingMode l
4 open Sc r ip t i ngToo l s
5

6 let bas ic_layout (names : s t r i n g l i s t) =
7 let [l 1 ; p2 ; l 3 ; l 4 ; p5 ; l 6] = names
8 [LLinear l 1 <+> LPointStem p2
9 ; LPointFork (p2 , Plus) <+> LLinear l 3

10 ; LPointFork (p2 , Minus) <+> LLinear l 4
11 ; LLinear l 3 <+> LPointFork (p5 , Plus)
12 ; LLinear l 4 <+> LPointFork (p5 , Minus)
13 ; LPointStem p5 <+> LLinear l 6]
14

15 let generateLayout (N : i n t) : SimpleLayout =

194 Experiment Scripts

16 let l ayout s = seq {
17 for n in [0 . . N−1] do

18 let s t a r t = n ∗ 5 + 1
19 let end ' = s t a r t + 5
20 let l ayout = [s t a r t . . end ']
21 |> L i s t .map s t r i n g
22 |> bas ic_layout
23 y i e l d layout }
24 L i s t . o fSeq layout s
25 |> L i s t . concat
26

27 let generateRoute layout_map (segment : SimpleTrackSegment) (pos :
Po in tPos i t i on) =

28 let rec loop segment = seq {
29 y i e l d segment
30 let next_segment = layout_map |> Map. tryFind segment
31 match next_segment with

32 | Some segment ' −>
33 match segment ' with

34 | LPointStem n −> y i e l d ! loop (LPointFork (n , pos))
35 | LPointFork (n ,_) −> y i e l d ! loop (LPointStem n)
36 | _ −> y i e l d ! loop segment '
37 | None −> () }
38 loop segment
39

40 let generateTra ins (t1_length : i n t) (t2_length : i n t) (layout :
SimpleLayout) : SimpleTrains =

41 let layout_map = Map. o f L i s t layout
42 let route1 =
43 generateRoute layout_map (LLinear "1") Plus
44 |> L i s t . o fSeq
45 |> L i s t .map (function
46 | LLinear n −> RLinear (n , t1_length)
47 | LPointStem n | LPointFork (n ,_) −> RPoint (n ,

Plus))
48 let route2 =
49 generateRoute layout_map (LLinear "4") Minus
50 |> L i s t . o fSeq
51 |> L i s t .map (function
52 | LLinear n −> RLinear (n , t2_length)
53 | LPointStem n | LPointFork (n ,_) −> RPoint (n ,

Minus))
54 |> L i s t . rev
55 [{ id = "1" ; l ength = t1_length ; route = route1 ;

route_d i r e c t i on = Up}
56 ; { id = "2" ; l ength = t2_length ; route = route2 ;

route_d i r e c t i on = Down}]
57

58 for i in [1 . . 1 0] do

59 let l ayout = generateLayout i
60 let t r a i n s = generateTra ins 2 2 layout
61 let output_f i l e = s p r i n t f

" . . / . . / UMCModels/SimpleTwoTrains/model%i . umc" i
62 generateUMCModel { t r a i n s = t r a i n s
63 ; l ayout = CustomLayout layout

F.2 BranchManyTrains.fsx 195

64 ; show_stats = true
65 ; ou tput_f i l e = Some output_f i l e }

F.2 BranchManyTrains.fsx

Generates four models with an increasing number of trains, where the �rst model
have two trains and the last have four trains.
(The script can easily be adjusted to generate more models with more trains.
However, as already mentioned in the Experiments chapter, a model even with
just four trains can take many hours to model check)

1 #load "Prelude . f s x "
2

3 open In te r l ock ingMode l
4 open Sc r ip t i ngToo l s
5

6 let branchLayout xs =
7 let rec loop xs = seq {
8 match xs with

9 | [x ; y] −>
10 let prev = x + y
11 let prev_id = s t r i n g prev
12 y i e l d LPointFork (prev_id , Plus) , LLinear (s t r i n g x)
13 y i e l d LPointFork (prev_id , Minus) , LLinear (s t r i n g y)
14 | xs when L i s t . l ength xs > 2 −>
15 let current_id = xs |> Seq . sum |> s t r i n g
16 let ha l f = (L i s t . l ength xs) / 2
17 let xs_ l e f t = xs |> L i s t . take h a l f
18 let xs_right = xs |> L i s t . sk ip h a l f
19 let stem_left_id = xs_l e f t |> Seq . sum |> s t r i n g
20 let stem_right_id = xs_right |> Seq . sum |> s t r i n g
21

22 y i e l d LPointFork (current_id , Plus) , LPointStem
stem_left_id

23 y i e l d ! loop xs_ l e f t
24 y i e l d LPointFork (current_id , Minus) , LPointStem

stem_right_id
25 y i e l d ! loop xs_right
26 | _ −> () }
27 let t a i l = xs |> loop |> L i s t . o fSeq
28 let stem_id = xs |> Seq . sum |> s t r i n g
29 let head = LLinear "0" , LPointStem stem_id
30 head : : t a i l
31

32 let getRouteTrace layout_map s t a r t end ' =
33 let rec loop prev route =
34 match layout_map |> Map. tryFind prev with

35 | Some(LLinear n) when (LLinear n) = (LLinear end ') −>
36 RLinear (n , 2) : : route
37 | Some(LLinear n) −>

196 Experiment Scripts

38 (RLinear (n , 2) : : route)
39 |> loop (LLinear n)
40 | Some(LPointStem n) −>
41 let r e s u l t_ l e f t =
42 // (LPointFork (n , Plus) : : route) |> loop
43 (RPoint (n , Plus) : : route)
44 |> loop (LPointFork (n , Plus))
45 let r e su l t_r i gh t =
46 // (LPointFork (n , Minus) : : route) |> loop
47 (RPoint (n , Minus) : : route)
48 |> loop (LPointFork (n , Minus))
49 match r e s u l t_ l e f t , r e s u l t_r i gh t with

50 | x : : xs , [] −> x : : xs
51 | [] , y : : ys −> y : : ys
52 | _ −> []
53 | Some(LPointFork (n , pos)) −>
54 // (LPointStem n : : route) |> loop
55 (RPoint (n , pos) : : route)
56 |> loop (LPointStem n)
57 | None −> []
58 loop (LLinear s t a r t) [RLinear (s ta r t , 2)]
59

60 let dualBranch (l e v e l s : i n t) (num_trains : i n t) =
61 let s i z e = in t (2 . 0∗∗ (f l o a t l e v e l s))
62 let [xs ; ys] = [1 . . 2 ∗ s i z e] |> L i s t . chunkBySize s i z e
63 let r i g h t = branchLayout ys
64 let l e f t = branchLayout xs |> L i s t .map (fun (x , y) −> y , x)
65 let l ayout = [l e f t ; r i g h t] |> L i s t . concat
66 let layout_map = Map. o f L i s t layout
67 let getRouteInLayout = getRouteTrace layout_map
68 let t r a i n s =
69 L i s t . z ip xs ys
70 |> L i s t .map
71 (fun (l1 , l 2) −>
72 let l i n 1 = s t r i n g l 1
73 let l i n 2 = s t r i n g l 2
74 let route = getRouteInLayout l i n 1 l i n 2
75 { id=l i n 1 ; l ength=2; route=route ;

r oute_d i r e c t i on=Down})
76 |> L i s t . take num_trains
77 |> L i s t . o fSeq
78 layout , t r a i n s
79

80 for i in [2 . . 4] do

81 let layout , t r a i n s = dualBranch 2 i
82 let output_f i l e = s p r i n t f

" . . / . . / UMCModels/ManyTrains2/model%i . umc" i
83 generateUMCModel { t r a i n s = t r a i n s
84 ; l ayout = CustomLayout layout
85 ; show_stats = true
86 ; ou tput_f i l e = Some output_f i l e }

Appendix G

XML sample

This chapter contains an example of a concrete XML �le which is used by the
developed system.
The �le is referred to as sample.xml because it is used by the F# type provider
to bootstrap the knowledge about the types stemming from XML �les with
similar layouts.

The XML �le was originally created by Linh H. Vu, and has been obtained from
the RobustRailS research project[Col, Hax] repository.

Figure G.1: The network represented in the XML �le

1 <?xml ver s ion ="1.0" encoding="UTF−8"?>
2 <xmi :XMI xmi : version=" 2 . 4 . 1 "

xmlns : xmi="http ://www. omg . org / spec /XMI/2 . 4 . 1 ">
3 <xmi : Documentation expor te r="DK−IXL" expor te rVer s i on=" 0 .1 "/>

198 XML sample

4 <in t e r l o c k i n g id="mini " version=" 0 .1 ">
5 <network id="mininetwork">
6 <trackSec t i on id="b10" length="100" type=" l i n e a r ">
7 <neighbor r e f=" t10 " s i d e="up"/>
8 </ t rackSec t i on>
9 <trackSec t i on id=" t10 " l ength="87" type=" l i n e a r ">

10 <neighbor r e f="b10" s i d e="down"/>
11 <neighbor r e f=" t11 " s i d e="up"/>
12 </ t rackSec t i on>
13 <trackSec t i on id=" t11 " l ength="26" pointMachine=" spskt11 "

type="point ">
14 <neighbor r e f=" t10 " s i d e="stem"/>
15 <neighbor r e f=" t12 " s i d e=" plus "/>
16 <neighbor r e f=" t20 " s i d e="minus"/>
17 </ t rackSec t i on>
18 <trackSec t i on id=" t12 " l ength="3783" type=" l i n e a r ">
19 <neighbor r e f=" t11 " s i d e="down"/>
20 <neighbor r e f=" t13 " s i d e="up"/>
21 </ t rackSec t i on>
22 <trackSec t i on id=" t13 " l ength="81" pointMachine=" spskt13 "

type="point ">
23 <neighbor r e f=" t12 " s i d e=" plus "/>
24 <neighbor r e f=" t20 " s i d e="minus"/>
25 <neighbor r e f=" t14 " s i d e="stem"/>
26 </ t rackSec t i on>
27 <trackSec t i on id=" t14 " l ength="128" type=" l i n e a r ">
28 <neighbor r e f=" t13 " s i d e="down"/>
29 <neighbor r e f="b14" s i d e="up"/>
30 </ t rackSec t i on>
31 <trackSec t i on id="b14" length="128" type=" l i n e a r ">
32 <neighbor r e f=" t14 " s i d e="down"/>
33 </ t rackSec t i on>
34 <trackSec t i on id=" t20 " l ength="76" type=" l i n e a r ">
35 <neighbor r e f=" t11 " s i d e="down"/>
36 <neighbor r e f=" t13 " s i d e="up"/>
37 </ t rackSec t i on>
38 <markerboard d i s t ance="50" id="mb10" mounted="up"

track="b10"/>
39 <markerboard d i s t ance="50" id="mb11" mounted="down"

track=" t10 "/>
40 <markerboard d i s t ance="50" id="mb12" mounted="down"

track=" t12 "/>
41 <markerboard d i s t ance="50" id="mb13" mounted="up"

track=" t12 "/>
42 <markerboard d i s t ance="50" id="mb14" mounted="up"

track=" t14 "/>
43 <markerboard d i s t ance="50" id="mb15" mounted="down"

track="b14"/>
44 <markerboard d i s t ance="50" id="mb20" mounted="down"

track=" t20 "/>
45 <markerboard d i s t ance="50" id="mb21" mounted="up"

track=" t20 "/>
46 </network>
47 <rou t e t ab l e id="min i r ou t e tab l e " network="mininetwork">
48 <route id="r_1a" source="mb10" de s t i n a t i on="mb13" d i r="up">

199

49 <cond i t i on type='point ' va l='plus ' r e f ='t11 ' />
50 <cond i t i on type='point ' va l='minus ' r e f ='t13 ' />
51 <cond i t i on type=' s i gna l ' r e f ='mb11 ' />
52 <cond i t i on type=' s i gna l ' r e f ='mb12 ' />
53 <cond i t i on type=' s i gna l ' r e f ='mb20 ' />
54 <cond i t i on type=' trackvacancy ' r e f ='t10 ' />
55 <cond i t i on type=' trackvacancy ' r e f ='t11 ' />
56 <cond i t i on type=' trackvacancy ' r e f ='t12 ' />
57 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
58 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
59 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
60 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
61 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
62 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
63 <cond i t i on type='mutualblocking ' r e f ='r_3_'/>
64 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
65 <cond i t i on type='mutualblocking ' r e f ='r_4_'/>
66 </ route>
67 <route id="r_1b" source="mb10" de s t i n a t i on="mb13" d i r="up">
68 <cond i t i on type='point ' va l='plus ' r e f ='t11 ' />
69 <cond i t i on type=' s i gna l ' r e f ='mb11 ' />
70 <cond i t i on type=' s i gna l ' r e f ='mb12 ' />
71 <cond i t i on type=' s i gna l ' r e f ='mb15 ' />
72 <cond i t i on type=' s i gna l ' r e f ='mb20 ' />
73 <cond i t i on type=' s i gna l ' r e f ='mb21 ' />
74 <cond i t i on type=' trackvacancy ' r e f ='t10 ' />
75 <cond i t i on type=' trackvacancy ' r e f ='t11 ' />
76 <cond i t i on type=' trackvacancy ' r e f ='t12 ' />
77 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
78 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
79 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
80 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
81 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
82 <cond i t i on type='mutualblocking ' r e f ='r_8_'/>
83 <cond i t i on type='mutualblocking ' r e f ='r_3_'/>
84 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
85 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
86 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
87 </ route>
88 <route id="r_2a" source="mb10" de s t i n a t i on="mb21" d i r="up">
89 <cond i t i on type='point ' va l='minus ' r e f ='t11 ' />
90 <cond i t i on type='point ' va l='plus ' r e f ='t13 ' />
91 <cond i t i on type=' s i gna l ' r e f ='mb11 ' />
92 <cond i t i on type=' s i gna l ' r e f ='mb12 ' />
93 <cond i t i on type=' s i gna l ' r e f ='mb20 ' />
94 <cond i t i on type=' trackvacancy ' r e f ='t10 ' />
95 <cond i t i on type=' trackvacancy ' r e f ='t11 ' />
96 <cond i t i on type=' trackvacancy ' r e f ='t20 ' />
97 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
98 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
99 <cond i t i on type='mutualblocking ' r e f ='r_3_'/>

100 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
101 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
102 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
103 <cond i t i on type='mutualblocking ' r e f ='r_8_'/>

200 XML sample

104 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
105 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
106 </ route>
107 <route id="r_2b" source="mb10" de s t i n a t i on="mb21" d i r="up">
108 <cond i t i on type='point ' va l='minus ' r e f ='t11 ' />
109 <cond i t i on type=' s i gna l ' r e f ='mb11 ' />
110 <cond i t i on type=' s i gna l ' r e f ='mb12 ' />
111 <cond i t i on type=' s i gna l ' r e f ='mb13 ' />
112 <cond i t i on type=' s i gna l ' r e f ='mb15 ' />
113 <cond i t i on type=' s i gna l ' r e f ='mb20 ' />
114 <cond i t i on type=' trackvacancy ' r e f ='t10 ' />
115 <cond i t i on type=' trackvacancy ' r e f ='t11 ' />
116 <cond i t i on type=' trackvacancy ' r e f ='t20 ' />
117 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
118 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
119 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
120 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
121 <cond i t i on type='mutualblocking ' r e f ='r_3_'/>
122 <cond i t i on type='mutualblocking ' r e f ='r_4_'/>
123 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
124 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
125 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
126 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
127 </ route>
128 <route id="r_3_" source="mb12" de s t i n a t i on="mb11" d i r="down">
129 <cond i t i on type='point ' va l='plus ' r e f ='t11 ' />
130 <cond i t i on type=' s i gna l ' r e f ='mb10 ' />
131 <cond i t i on type=' s i gna l ' r e f ='mb20 ' />
132 <cond i t i on type=' trackvacancy ' r e f ='t11 ' />
133 <cond i t i on type=' trackvacancy ' r e f ='t10 ' />
134 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
135 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
136 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
137 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
138 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
139 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
140 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
141 </ route>
142 <route id="r_4_" source="mb13" de s t i n a t i on="mb14" d i r="up">
143 <cond i t i on type='point ' va l='plus ' r e f ='t13 ' />
144 <cond i t i on type=' s i gna l ' r e f ='mb15 ' />
145 <cond i t i on type=' s i gna l ' r e f ='mb21 ' />
146 <cond i t i on type=' trackvacancy ' r e f ='t13 ' />
147 <cond i t i on type=' trackvacancy ' r e f ='t14 ' />
148 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
149 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
150 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
151 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
152 <cond i t i on type='mutualblocking ' r e f ='r_8_'/>
153 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
154 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
155 </ route>
156 <route id="r_5a" source="mb15" de s t i n a t i on="mb12" d i r="down">
157 <cond i t i on type='point ' va l='minus ' r e f ='t11 ' />
158 <cond i t i on type='point ' va l='plus ' r e f ='t13 ' />

201

159 <cond i t i on type=' s i gna l ' r e f ='mb13 ' />
160 <cond i t i on type=' s i gna l ' r e f ='mb14 ' />
161 <cond i t i on type=' s i gna l ' r e f ='mb21 ' />
162 <cond i t i on type=' trackvacancy ' r e f ='t14 ' />
163 <cond i t i on type=' trackvacancy ' r e f ='t13 ' />
164 <cond i t i on type=' trackvacancy ' r e f ='t12 ' />
165 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
166 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
167 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
168 <cond i t i on type='mutualblocking ' r e f ='r_8_'/>
169 <cond i t i on type='mutualblocking ' r e f ='r_3_'/>
170 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
171 <cond i t i on type='mutualblocking ' r e f ='r_4_'/>
172 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
173 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
174 </ route>
175 <route id="r_5b" source="mb15" de s t i n a t i on="mb12" d i r="down">
176 <cond i t i on type='point ' va l='plus ' r e f ='t13 ' />
177 <cond i t i on type=' s i gna l ' r e f ='mb10 ' />
178 <cond i t i on type=' s i gna l ' r e f ='mb13 ' />
179 <cond i t i on type=' s i gna l ' r e f ='mb14 ' />
180 <cond i t i on type=' s i gna l ' r e f ='mb20 ' />
181 <cond i t i on type=' s i gna l ' r e f ='mb21 ' />
182 <cond i t i on type=' trackvacancy ' r e f ='t14 ' />
183 <cond i t i on type=' trackvacancy ' r e f ='t13 ' />
184 <cond i t i on type=' trackvacancy ' r e f ='t12 ' />
185 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
186 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
187 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
188 <cond i t i on type='mutualblocking ' r e f ='r_8_'/>
189 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
190 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
191 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
192 <cond i t i on type='mutualblocking ' r e f ='r_4_'/>
193 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
194 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
195 </ route>
196 <route id="r_6a" source="mb15" de s t i n a t i on="mb20" d i r="down">
197 <cond i t i on type='point ' va l='plus ' r e f ='t11 ' />
198 <cond i t i on type='point ' va l='minus ' r e f ='t13 ' />
199 <cond i t i on type=' s i gna l ' r e f ='mb13 ' />
200 <cond i t i on type=' s i gna l ' r e f ='mb14 ' />
201 <cond i t i on type=' s i gna l ' r e f ='mb21 ' />
202 <cond i t i on type=' trackvacancy ' r e f ='t14 ' />
203 <cond i t i on type=' trackvacancy ' r e f ='t13 ' />
204 <cond i t i on type=' trackvacancy ' r e f ='t20 ' />
205 <cond i t i on type='mutualblocking ' r e f ='r_8_'/>
206 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
207 <cond i t i on type='mutualblocking ' r e f ='r_7_'/>
208 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
209 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
210 <cond i t i on type='mutualblocking ' r e f ='r_4_'/>
211 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
212 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
213 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />

202 XML sample

214 </ route>
215 <route id="r_6b" source="mb15" de s t i n a t i on="mb20" d i r="down">
216 <cond i t i on type='point ' va l='minus ' r e f ='t13 ' />
217 <cond i t i on type=' s i gna l ' r e f ='mb10 ' />
218 <cond i t i on type=' s i gna l ' r e f ='mb12 ' />
219 <cond i t i on type=' s i gna l ' r e f ='mb13 ' />
220 <cond i t i on type=' s i gna l ' r e f ='mb14 ' />
221 <cond i t i on type=' s i gna l ' r e f ='mb21 ' />
222 <cond i t i on type=' trackvacancy ' r e f ='t14 ' />
223 <cond i t i on type=' trackvacancy ' r e f ='t13 ' />
224 <cond i t i on type=' trackvacancy ' r e f ='t20 ' />
225 <cond i t i on type='mutualblocking ' r e f ='r_8_'/>
226 <cond i t i on type='mutualblocking ' r e f ='r_3_'/>
227 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
228 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
229 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
230 <cond i t i on type='mutualblocking ' r e f ='r_4_'/>
231 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
232 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
233 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
234 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
235 </ route>
236 <route id="r_7_" source="mb20" de s t i n a t i on="mb11" d i r="down">
237 <cond i t i on type='point ' va l='minus ' r e f ='t11 ' />
238 <cond i t i on type=' s i gna l ' r e f ='mb10 ' />
239 <cond i t i on type=' s i gna l ' r e f ='mb12 ' />
240 <cond i t i on type=' trackvacancy ' r e f ='t11 ' />
241 <cond i t i on type=' trackvacancy ' r e f ='t10 ' />
242 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
243 <cond i t i on type='mutualblocking ' r e f ='r_1a ' />
244 <cond i t i on type='mutualblocking ' r e f ='r_2b ' />
245 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
246 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
247 <cond i t i on type='mutualblocking ' r e f ='r_3_'/>
248 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
249 </ route>
250 <route id="r_8_" source="mb21" de s t i n a t i on="mb14" d i r="up">
251 <cond i t i on type='point ' va l='minus ' r e f ='t13 ' />
252 <cond i t i on type=' s i gna l ' r e f ='mb13 ' />
253 <cond i t i on type=' s i gna l ' r e f ='mb15 ' />
254 <cond i t i on type=' trackvacancy ' r e f ='t13 ' />
255 <cond i t i on type=' trackvacancy ' r e f ='t14 ' />
256 <cond i t i on type='mutualblocking ' r e f ='r_6a ' />
257 <cond i t i on type='mutualblocking ' r e f ='r_6b ' />
258 <cond i t i on type='mutualblocking ' r e f ='r_1b ' />
259 <cond i t i on type='mutualblocking ' r e f ='r_5b ' />
260 <cond i t i on type='mutualblocking ' r e f ='r_4_'/>
261 <cond i t i on type='mutualblocking ' r e f ='r_5a ' />
262 <cond i t i on type='mutualblocking ' r e f ='r_2a ' />
263 </ route>
264 </ rou t e t ab l e>
265 </ i n t e r l o c k i n g>
266 </xmi :XMI>

Bibliography

[BRA13] EDWIN BRADY. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of Func-
tional Programming, 23:552�593, 9 2013.

[CEN11] CENELEC � European Committee for Electrotechnical Standardiza-
tion. EN 50128:2011 � Railway applications � Communications, sig-
nalling and processing systems � Software for railway control and pro-
tection systems, 2011.

[CH11] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. Acm Sigplan Notices, 46(4):53�64,
2011.

[Col] Multiple Collaborators. About RobustRailS. http://www.

robustrails.man.dtu.dk/About-the-project. [Online; accessed
November-2016].

[Fan12] Alessandro Fantechi. Distributing the Challenge of Model Checking
Interlocking Control Tables. In Leveraging Applications of Formal
Methods, Veri�cation and Validation. Applications and Case Studies,
pages 276�289, 2012.

[Fol15] Andreas Foldager. A graphical domain-speci�c language for railway
interlocking systems, et gra�sk domænespeci�kt sprog for jernbane-
sikringsanlæg, 2015.

[Hax] Anne E. Haxthausen. RobustRailS research project. http://

www.imm.dtu.dk/~aeha/RobustRailS/index/. [Online; accessed
November-2016].

http://www.robustrails.man.dtu.dk/About-the-project
http://www.robustrails.man.dtu.dk/About-the-project
http://www.imm.dtu.dk/~aeha/RobustRailS/index/
http://www.imm.dtu.dk/~aeha/RobustRailS/index/

204 BIBLIOGRAPHY

[Hax14] Anne E. Haxthausen. An Institution for Imperative RSL Speci�ca-
tions. In Shusaku Iida, José Meseguer, and Kazuhiro Ogata, editors,
Speci�cation, Algebra, and Software. Essays Dedicated to Kokichi Fu-
tatsugi, number 8373 in Lecture Notes in Computer Science, pages
441�464. Springer, 2014.

[HP00] Anne E. Haxthausen and Jan Peleska. Formal Development and Ver-
i�cation of a Distributed Railway Control System. IEEE Transaction
on Software Engineering, 26(8):687�701, 2000.

[maa] Open Source multiple authors. Fscheck. https://fscheck.github.

io/FsCheck/. [Online; accessed 17-October-2016].

[mab] Open Source multiple authors. Fsharp.data. http://fsharp.github.
io/FSharp.Data. [Online; accessed 17-October-2016].

[mac] Open Source multiple authors. Nuget. https://www.nuget.org/.
[Online; accessed 17-October-2016].

[mad] Open Source multiple authors. Xunit - testing framework. https:

//github.com/xunit/xunit. [Online; accessed 17-October-2016].

[Maza] Franco Mazzanti. UMC 3.3 User Guide. http://fmt.isti.cnr.it/

umc/V4.2/umc.html. [Online; accessed 10-October-2016].

[Mazb] Franco Mazzanti. Umc web tool. http://fmt.isti.cnr.it/umc/V4.
2/umc.html.

[Maz09] Franco Mazzanti. Designing uml models with umc. Technical report,
Technical report, Technical Report 2009-TR-43, Istituto di Scienza e
Tecnologie dell'Informazione �A. Faedo�, CNR, 2009.

[mInB16] Danish magazine "Ingeniøren" and German newspaper
"Bild". "forkert nødopkald fra togleder var skyld i fa-
tal tysk togulykke", 2016. http://ing.dk/artikel/

forkert-noedopkald-fra-togleder-var-skyld-i-fatal-tysk-togulykke-183119

and http://www.bild.de/news/inland/

zugunglueck-bad-aibling/der-tragische-zweite-fehler-des-fahrdienstleiters-45095250.

bild.html, accessed: March 2016.

[Pao10] Marco Paolieri. Modellazione di un sistema di interlocking distribuito
tramite lo strumento umc. 2010.

[PGS16] Tomas Petricek, Gustavo Guerra, and Don Syme. Types from data:
Making structured data �rst-class citizens in f#. 2016.

https://fscheck.github.io/FsCheck/
https://fscheck.github.io/FsCheck/
http://fsharp.github.io/FSharp.Data
http://fsharp.github.io/FSharp.Data
https://www.nuget.org/
https://github.com/xunit/xunit
https://github.com/xunit/xunit
http://fmt.isti.cnr.it/umc/V4.2/umc.html
http://fmt.isti.cnr.it/umc/V4.2/umc.html
http://fmt.isti.cnr.it/umc/V4.2/umc.html
http://fmt.isti.cnr.it/umc/V4.2/umc.html
http://ing.dk/artikel/forkert-noedopkald-fra-togleder-var-skyld-i-fatal-tysk-togulykke-183119
http://ing.dk/artikel/forkert-noedopkald-fra-togleder-var-skyld-i-fatal-tysk-togulykke-183119
http://www.bild.de/news/inland/zugunglueck-bad-aibling/der-tragische-zweite-fehler-des-fahrdienstleiters-45095250.bild.html
http://www.bild.de/news/inland/zugunglueck-bad-aibling/der-tragische-zweite-fehler-des-fahrdienstleiters-45095250.bild.html
http://www.bild.de/news/inland/zugunglueck-bad-aibling/der-tragische-zweite-fehler-des-fahrdienstleiters-45095250.bild.html

BIBLIOGRAPHY 205

[PS14] Tomas Petricek and Don Syme. The f# computation expression
zoo. Lecture Notes in Computer Science (including Subseries Lecture
Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics),
8324:33�48, 2014.

[TV09] Gregor. Theeg and Sergej. Vlasenko. Railway signalling and interlock-
ing : international compendium. Eurailpress, 2009.

[VHP16] Linh Hong Vu, Anne E. Haxthausen, and Jan Peleska. Formal mod-
elling and veri�cation of interlocking systems featuring sequential re-
lease. Science of Computer Programming, pages �, 2016.

[Wika] Wikipedia. Mars climate orbiter. https://en.wikipedia.org/wiki/
Mars_Climate_Orbiter.

[wikb] wikipedia. Monads. https://en.wikipedia.org/wiki/Monad_

(functional_programming)#Continuation_monad.

[Wikc] Wikipedia. Therac-25. https://en.wikipedia.org/wiki/

Therac-25.

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Monad_(functional_programming)#Continuation_monad
https://en.wikipedia.org/wiki/Monad_(functional_programming)#Continuation_monad
https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Therac-25

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Content of the thesis work

	2 Railway Domain
	2.1 Terminology and Components of Railway Systems
	2.1.1 Recent Developments

	2.2 Safety Measures and Interlocking Systems
	2.3 Route Reservation Methods

	3 Formal Specification and Verification of Software Systems
	3.1 Common Methods for Ensuring Corectness in Software Systems
	3.1.1 Type Checking
	3.1.2 Testing
	3.1.3 Peer Reviews and Pair Programming
	3.1.4 Model Checking

	3.2 Model Checking
	3.2.1 Deriving and Specifying Formal Models for Model Checking
	3.2.2 Temporal Logic and Verification of Properties

	4 The UMC modeling language
	4.1 About UMC
	4.2 Structure and Semantics
	4.2.1 Class definitions
	4.2.2 Object declarations
	4.2.3 Abstraction rules

	4.3 UCTL properties

	5 An Engineering Concept of a Geographically Distributed Interlocking System
	5.1 The overall idea
	5.2 The Communication Scheme - Two-phase Commit Protocol
	5.3 Route Reservation
	5.4 Releasing the Reserved Track Segments - Sequential Release
	5.5 A Practical Implementation of the System
	5.6 Discussion

	6 Modeling the Geographically Distributed Interlocking System in UMC
	6.1 Defining the Model in UMC
	6.1.1 The Train Class
	6.1.2 The Linear Class
	6.1.3 The Point Class

	6.2 Model Properties
	6.2.1 No Collision
	6.2.2 No Derailments
	6.2.3 Progress property - arrival of all trains at their destinations
	6.2.4 No message loss

	6.3 Scenarios
	6.3.1 A Successful Route Reservation
	6.3.2 A train traversing its successfully reserved route
	6.3.3 Point positioning during reservation
	6.3.4 Point malfunction during reservation
	6.3.5 Attempt to reserve a route intersecting with an already reserved route

	6.4 Discussion
	6.4.1 Train lengths and movement on track segments
	6.4.2 Point Lengths
	6.4.3 Point Machine
	6.4.4 Repairment of malfunctioning points

	7 Model generating tool
	7.1 Functionality of the Tool
	7.1.1 Track Layout and Route Extraction from XML files
	7.1.2 Route Validation
	7.1.3 Enforcement of length constraints
	7.1.4 Creation of Object Instantiations and Modeling Language Specific Constructs

	7.2 Implementation
	7.2.1 Modules

	7.3 Extending the Model Generator to support other modeling languages

	8 Experiments
	8.1 Performing the experiments
	8.2 Experiments performed
	8.2.1 Two trains and varying route lengths
	8.2.2 Varying number of trains
	8.2.3 Experiments with particular layouts from XML files

	8.3 Discussion

	9 Future work
	9.1 Generic model enhancements
	9.1.1 Repairment of faults
	9.1.2 Point Machines
	9.1.3 Modeling more types of faults

	9.2 Usability and performance improvements for the tool
	9.2.1 Enhance the user experience with a route selection GUI
	9.2.2 Extend tool to support more modeling languages
	9.2.3 Model checking of huge railway networks

	10 Conclusion
	A User Guide for the Model Generating Tool
	A.1 Model generation through the model generator tool
	A.2 Model generation using the scripting tools
	A.3 Model checking the generated models with the UMC web tool

	B UMC BNF
	C Generic UMC Model
	D UMC model delta
	E Tool Source Code
	E.1 Compiler version and third party packages
	E.2 Auxiliary dependency files
	E.2.1 Project files and compile order
	E.2.2 Sample XML file used to bootstrap the typeprovider library

	E.3 Source code
	E.3.1 Utils.fs
	E.3.2 InterlockingModel.fs
	E.3.3 UMCTrainClass.fs
	E.3.4 UMCLinearClass.fs
	E.3.5 UMCPointClass.fs
	E.3.6 UMC.fs
	E.3.7 XMLExtraction.fs
	E.3.8 ScriptTools.fs
	E.3.9 MiniModelGenerator.fs
	E.3.10 Prelude.fsx
	E.3.11 Script.fsx

	E.4 Tests
	E.4.1 Tests.Utils.fs
	E.4.2 Tests.InterlockingModel.fs

	F Experiment Scripts
	F.1 SimpleTwoTrains.fsx
	F.2 BranchManyTrains.fsx

	G XML sample
	Bibliography

