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Summary (English)

The goal of this thesis is to develop a distributed control system for railways,
implement and visualize it using Lego Mindstorms hardware and Lego trains.
The system should uphold the safety requirements of preventing trains from
colliding and derailing.

Railway control systems are traditionally centralised, but using a distributed
approach could be more cost-e�ective. Through the model railway, issues when
implementing such a system can be safely exposed and at low cost, and test
whether it works and is viable.

An analysis is made of the available Lego hardware components and what kinds
of model railways can be made with them, before a speci�c design is chosen. An
algorithm is proposed that can control the trains and ensure safety. It is then
re�ned and formally veri�ed through formal modelling in UMC. The algorithm
is then implemented on the Mindstorms hardware in Java, along with a Lego
API that allows it to control the Lego railway. The �nal system is shown to have
some erroneous behaviour, but this is most likely stemming from errors in the
API or imprecision in the Lego hardware. The control system itself is working.
It is concluded that the distributed control system is viable and that visualizing
an implementation using a model railway has merit, although the hardware is
hard to work with.
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Summary (Danish)

Målet for dette speciale er at udvikle et distribueret jernbane kontrol system,
implementeret og visuliaseret ved brug af Lego Mindstorms hardware og Lego
toge. Systemet bør leve op til sikkerhedskrav der forhindrer togene i at kollidere
og blive afsporet.

Sådanne kontrol systemer er tradionelt centraliserede, men et distribueret jern-
bane kan potentielt være mere billigere. Gennem modeljernbanen kan problemer
med at implementere sådan et system i praktisk udforskes sikkert og billigt og
det kan testes om det virker og om det er værd at arbejde videre med.

En analyse blev lavet af hvilke tilgængelige Lego hardware komponenter der er
tilgængelige og hvilke slags model modeller der kan bygges af dem før et en-
deligt design bliver valgt. En algoritme fremlægges der skal kunne kontrollere
togene og sikre sikkerhed. Den blev for�net og dens sikkerhed påvist gennem
modellering. Algoritmen blev så implementeret på Mindstorms hardware i Java
sammen med en Lego API som kommunikere og styrer Lego jernbanen. Det
endelige system har visse fejl, men disse skyldes sandsynligvis fejl i APIet og
upræcision i Lego hardwaren. Control systemet i sig selv virker. Det bliver kon-
kluderet at et distrubueret kontrol system �nt kan virke og implementeringen af
en modeljernbane har en vis merit, omend hardwaren er svær at arbejde med.
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Preface

This thesis was prepared at DTU Compute in ful�lment of the requirements for
acquiring an M.Sc. in Engineering. It is rated at 30 points. Anne Haxthausen
and Alessandro Fantechi were supervisors.

The thesis deals with designing a model railway, modelling and implementations.
Readers should have some basic knowledge of programming and modelling to
fully understand the contents.

The report is intended to be read from one end to the other, following a roughly
chronological �ow.

Lyngby, 01-August-2016

Mads Egedal Kirchho�
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Chapter 1

Introduction

The computer systems used to manage train railways have traditionally been
centralised. The whole system is monitored and controlled from a single com-
puting hub. This means all activity and communication has to routed back to
this point. This requires a very robust communication infrastructure, possibly
over the very great distances a railway can stretch. These kinds of systems can
be expensive to set-up, however, especially for small local networks. A possi-
bly more cost-e�cient alternative would be a distributed system. Here, each
part of the network would have their own logical units that in co-operation
with the trains computers could manage the system independently. Such a sys-
tem is untested however, and the distributed approach has disadvantages. The
lack of a global state may create con�icting information and lead to disaster, if
not designed right. Such a system must be proven to be safe before it can be
implemented in the real world.

Thus, it is the goal of the project to implement a simpli�ed model of a distributed
railway system. This is done via Lego Mindstorms, a much cheaper option than
building a railway and banging trains together. Creating an actual, physical
system, means we can visualize the functionality of the program and actually
see it work in practice. Further, we will evaluate whether this approach in itself
is valid, whether the model railway has any value as a tool for visualizing and
proving correctness for control systems.



2 Introduction

This paper is heavily inspired by the paper "Formal development and veri�cation
of a distributed railway control system" [1], and can be seen as an extension to
it.

It consists of roughly three parts:

• Design of a Lego Railway, setting up the hardware and developing an Lego

API that will control the railway and trains, acting as a bridge between
the generic control system and the physical model.

• Proposing a control algorithm, modelling and formally verifying its cor-
rectness.

• Implementing the algorithm on the Lego railway, combining it with the
API and testing the whole system.



Chapter 2

Railway Domain

We consider a quite simple railway. Each station has only two tracks with a
switching track at either end that allow directing the train to the track they
need to go to. Station are connected to other stations via single tracks. Each
switching track has a Switch Box, or SB, in charge of it. A computational unit
that has state for the railway in its immediate vicinity. It decides when the
track is switched and when trains may enter and leave the station.

Trains are controlled through by a Train Control Computer, which stores infor-
mation about the trains route and negotiates with the SB for access to speci�c
pieces of track.



4 Railway Domain



Chapter 3

Lego Domain

3.1 Mindstorms

Lego has for many years developed and sold the productline "Mindstorms"
which are a set of programmable "bricks" that can be used to construct robots
and other such. The product line consists of a central "Intelligent Brick" which
is essentially a simple computer, that comes with a simple, visual programming
language and the ability to interface with other Mindstorms components. These
include rotary servo motors and various sensors, notably including ultrasonic,
infrared, light- and color sensors. When connected to the intelligent brick, these
feed measured data back to it. The programming can then make decisions based
on the data, such as turning a connected motor a speci�c amount of degrees.
Mindstorms exists in three generations, the RCX, NXT and EV3. Each provides
a new intelligent brick, with more RAM, processing power and features such as
bluetooth. Alongside upgraded or new sensors and motors.

The best central resource to get more info on the speci�c components seems to
be the o�cial lego store's website. At the time of writing, it contains all o�cial
EV3 components, and only one NXT. Each page has some speci�cations writ-
ten about the component, but information about the components capabilities
in details is hard to come by. Such sensors granularity and precision of mea-
surement, for instance. Info and observations about the components considered

http://shop.lego.com/en-US/MINDSTORMS-ByTheme


6 Lego Domain

in this project follows:

3.1.1 Components

3.1.1.1 Building components

In true Lego tradition, Mindstorms, despite being notable for being programmable,
is still very physically orient, with many options for assembly. All of the com-
ponents are without exception made to �t with various Lego Technic parts, so
they can be assembled properly, the parts set together in rigid constructions.
Traditional, actual Lego "bricks" are less useful, but can still be �tted together
with Technic and Mindstorms.

(a) Cross axels (b) Connector Pegs (c) Technic Beams

Figure 3.1: Essential lego building components

For context, the connector pegs, technic beams and cross axels are worth sin-
gling out. See �gure 3.2. These are mostly associated with the Lego technic
line, but are part of many other Lego sets and are integral to Mindstorms in
particular. All Mindstorms EV3 components have "sockets" or holes for the
connector pegs, with some having additional for the axels. The former can ro-
tate in this socket, so the latter is more useful when stability is needed. Gears
are another potentially useful component.

3.1.1.2 EV3 Large Servo Motor

The primary motor of the EV3 motor. These motors are ultimately the intel-
ligent brick's outgoing interface with the real world. It performs rotary motion
and can measure tacho feedback and a built-in rotation sensor (the latter pre-
sumably through the former) and "Tacho feedback to one degree of accuracy.
160-170 RPM. Running torque of 20 N/cm (approximately 30 oz/in). Stall
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Figure 3.2: Essential lego building components

torque of 40 N/cm (approximately 60 oz/in). Auto-ID is built into the EV3
software".

The �nal design of the railway system, described in the next chapter, leaves
no strict requirement for the strength of the motor. Lego switching tracks
have som resistance, but this motor is easily able to switch, and rip apart the
assembled construction if it's torque is not managed. The values mentioned are
all maximums, and both speed and strength are con�gurable to this end.

Notably, the motor is only to sense it's rotation in relation to when it started
to it started to measure. From the start of the program, basically. Whatever
rotation the motor is at at start will be "0". The absolute rotation can not be
measured, without assuming it always starts in the same position.

It's physical design is made with a good amount of �exibility, with four holes
for pegs on either side of the rotating head, with a socket for an axel going all
the way through. Many of these are situated on the body itself, meaning it can
be attached with other parts in a variety of con�gurations.

There exists no o�cial Lego motors that perform linear movements. If such is
required, this one can with some construction be set up that performs one using
a piston-like movement.

Interestingly, since the motor can both perform and measure rotations, two can
be linked, attached to each their intelligent brick and their movements used
as a means to communicate between the two. This can be used as a way to
communicate between a NXT and EV3 intelligent brick, although it would take
considerable e�ort implementing a communication protocol for this.
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3.1.1.3 EV3 Medium Servo Motor

This motor has all the same features, tacho meter, rotating, etc. Di�erence it
being smaller, weaker, but faster. These factors barely matter in this project. It
design does to a higher degree. It only rotates a single socket for an axel. This
socket faces forward, going into the motor itself, with a very shallow depth. The
axel can very easily fall out, at least for the unit I got. It needs to be held fast
in it's construction, or face up to avoid this. It's overall di�erent design might
make it more convenient for use in some speci�c situations, though.

3.1.1.4 EV3 Touch Sensor

(Should I mention the "bundle" that we ended up buying, vs buying the edu-
cations sets, individual components and so on? Analyse cost-e�ciency?)

3.1.1.5 NXT Intelligent Brick

The intelligent brick is the centerpiece of the Mindstorms line. It is often re-
ferred to simply as the "NXT". It is basically a simple computer, made to be
programmable and interface with the various sensors and motors. It has 3 motor
ports and 4 sensor ports. Proprietary ethernet-like cables are used to connect
the NXT to the sensors and motors, using the same cables for each. This being
the one-generation old, the hardware is hardly impressive, but is good enough
for this projects purposes: It can connect to a computer via a USB cable or
Bluetooth, the latter of which can also be used to communicate to other intel-
ligent bricks. It does cannot communicate via Wi-Fi. One notable, not readily
documented limitation here is that NXT can only have one inbound bluetooth
connection and three outbound. If you need more than two NXT communi-
cating, they will therefore have to be set up in a daisy chain. This might be
necessary due to the limitations on the amount of ports.

3.1.1.6 Remote

Trains can be controlled via a remote. It has two dials for controlling multiple
train and a stop button for each. The dials are quite sensitive and if both are
turned at the same time, the signal does not always properly come through.
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3.1.2 Programming

Mindstorms has a proprietary programming language of sorts. A software suite
can be downloaded from their website, which includes an IDE, capable of being
programmed in, compiling and easily transferring and running the program
on the intelligent brick. Accessibility is highly prioritised in it's design. The
language itself is based on "programming blocks". Visual, draggable blocks of
logic, such as if-statements, variable declarations, reading sensors and moving
motors. The are assembled together in sequence to form a program, like lines
in a conventional programming language. More info at the link. It is a nice
little language for learning, a decent approximation of the real thing, but is
completely lacking in libraries and functionality beyond the basics. It lacks
most of the bene�ts of objects and functions. Any large project would quickly
grow very large, in screen real estate alone, and hard to manage,

A good handful of alternatives exists, developed by the community. There
exists APIs for communicating with the Mindstorms components that allow one
to program in in various object oriented programs. I ultimately decided to use
the Lejos framework using Java as I am quite familiar with both.

3.2 Power Functions & Train components

These run using motors powered by batteries and are controlled using infrared
receivers and remotes. This technology is branded under the Lego "Power Func-
tions" line. This line is surprisingly not at all related to Mindstorms: While both
have servomotors and have components that can receive and send infrared, they
use di�erent protocols. Mindstorms component have no in-built way to commu-
nicate with Power Functions, and vice versa. Some third party Lego components
capable of this does seem to exist, but are old, mostly out of stock and there
could be issues with their support and programming. Like Mindstorms, Power
Functions have lots of sockets for connector pegs and such.

http://www.lego.com/en-us/mindstorms/learn-to-program
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Chapter 4

Lego Railway Design

4.1 Goals

For this project, the �rst priority for the Lego system was to create something
that was complex enough that it could properly test the control algorithm, while
staying within a reasonable budget. Crucially, at least two running trains was
needed to allow even the possibility of collision. At least one station was required
to allow trains to pass one another and test derailing, and more would make
the tests more comprehensive. The budgetary limitations actually provided an
interesting challenge; It is easy to dream up an e�cient and secure system when
one has no limitations on the components one can require for it. In the real
world, one might have to make sacri�ces in the design for budgetary reasons
and so did I.

Secondly, it should be as realistic as possible, a reasonable simulation. Taking
inspiration from real systems and components of train networks.

Thirdly, the system should be able to run automatically. This would ease testing,
as the system could be run for long periods of time without much supervision,
to see if any faulty behaviour occur.

Fourthly, it should be somewhat aesthetically pleasing, convincingly a train
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system at a glance. Anyone should be able to verify that the system is working
correctly simply by seeing it in action.

4.2 Design Options

These goals in mind, a couple options for the design of the system came up.
The inspiration was an assignment in the course "Real-Time Systems". Here,
an airport baggage sorter was simulated by motors running belts. Coloured
bricks representing baggage trunks were manually loaded onto a running belt,
driven by the Mindstorms servo motor. The belt ran the brick past a sensor,
identifying the trunk destination based on it's colour. An additional, perpen-
dicular belt would then change direction if needed, before the new trunk were
loaded onto it (reference to assignment*). I considered a similar approach here,
where the coloured bricks would represent trains and would be moved onto dif-
ferent stations. A system like this would be easy to control by the intelligent
brick; It can control the "trains" very directly through it's motors, so there's
a low chance of unpredictable movements and such. However, such a system
would be hard to expand, without requiring a lot of components: Each track
would need one belt and servo, as well as one for switching between stations at
each end, and one set for each track at each station. A system with two stations
would need seven servos to set up (illustration*). More if it is to be looping,
which would be hard to set up geometrically. Sensors might need to be either
have to be set up at each station track entrance, and Further, it would have
many unrealistic traits, such as trains always moving at the same speed and
direction on the same track, and having very sudden acceleration and decelera-
tion. Lastly, the coloured bricks would not look much like trains and not be a
very convincing simulation.

Something more closely simulating trains were necessary, so it was decided to
actually use train tracks, and build something resembling trains. One possible
design here would be having the intelligent brick as the core of the train and
using the servos to drive it, as shown here: https://www.youtube.com/watch?
v=H6HYj3afSfg This would closely simulate how the real system would work, a
separate computing unit for every train, as well as for every switch, leading into
the stations and enabling the trains to have extra functionality, such as using
ultrasound sensors to prevent collisions. This would be prohibitively expensive
though, each intelligent brick being quite expensive. Further, these trains would
have to be long, heavy (thus slow moving), and have very little braking distance.
It was also unclear whether this kind of train would be able to turn at switching
points, as the standard Lego train axels might not be rotatable by the motors.

https://www.youtube.com/watch?v=H6HYj3afSfg
https://www.youtube.com/watch?v=H6HYj3afSfg
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In the end, I settled on using the actual Lego trains. There was some challenge in
getting the Power Functions parts in the trains to interface with the Mindstorm
components. The intelligent brick cannot not send a signal directly to the train's
IR-receiver or it's remote to start or stop it. Instead, a design was chosen were
the Mindstorms motors would turn the dials of the train remote.

4.3 Final Design

The �nal system thus consist of:

A circular train track, with four switching tracks. Each pair of switching switch
face each other with some track in between, forming a station. Two trains, each
consisting of an IR-receiver, a battery and a train motor, plus normal Lego bricks
for structure. An IR-remote, that can control two trains, via two dials. Eight
sensors, located some distance before each switching track. Six Mindstorms
servo motors, two turning the dials of the train remote, the rest each operating
a switch. Four light sensors, before each switch. Two NXT Intelligent Bricks.
Mindstorms wires and lots of various, normal and technic Lego bricks, axels,
pegs, etc, for connecting and holding components in place.

This is the base system and can be expanded with more stations and such, but
this provides a decent complexity.

A switch box is simulated by this combination of the sensor, a motor turning
the switch and a thread on the intelligent brick. The train control computer is
similarly hosted as a thread, and controls the train through the motor and the
remote.

The sensors basically functions as a way to keep track of the position of the
train. There seems to be no way using Lego components to accurately keep
track of the train at all times, but it is possible to see when it is approaching
a critical section. Speci�cally a switch in this case. At this point, we can then
communicate the position to both the train itself and the switch box. What
train to contact can be determined by it's color, as it's light value. This can
also function as a way to simulate limited range of whatever means the SB and
TCC use to communicate. Wi-Fi, for instance. Ideally, we would have a sensor
on either side of each switch, on every track. So that could be accurately tracked
when the train had left every part of the track. However, this would greatly
in�ate the number of sensors and intelligent bricks needed and make setting the
whole system up harder. I choose to work within this limitation, seeing if the
system could still be made reasonably safe with a budget.
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Chapter 5

Analysis

With the hard limitations of the physical set-up, the actual trains, railway tracks
and programming units settled, I could start to design the distributed control
system.

5.0.1 Requirements

Generally, we want to ensure that the system is safe. Therefore, we require
that there are no collisions, de�ned as two trains never physically being, or
being allowed, on the same track segment. We require no derailing, de�ned as
a switching track being switched while a train is still passing it.

In addition to these safety requirements, we also want the system to run inter-
rupted and not stall out. Therefore, a requirement for no reservation deadlocks.
That is, two trains attempting to access the track the other is occupying and
thus halting inde�nitely. This will be solved simply by giving the trains sched-
ules that cannot deadlock, by each station track only ever being visited by a
speci�c one of the trains.
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5.0.2 Inspiration

The algorithm of the control system is based on the one in the report "Formal
Development and Veri�cation of a Distributed Railway Control System"[1]. This
algorithm is based around reservations and locks. Each switch box have state
components for:

• Which tracks the switching track connects.

• What train has permission to pass it.

• Whether it's sensors are detecting a train.

• Whether each of it's associated/neighbouring tracks are reserved and by
which train.

• The direction the associated tracks can be traversed in.

• A transaction �ag, that when enabled, disallows the switch box from re-
ceiving other commands while it is performing commands on multiple,
other switch boxes.

Each train control computer have state components for:

• Its route, as list of track segments.

• The switch boxes along this route.

• The travelling direction of the train itself.

• The position of the train.

• What reservations the train currently has.

• What switch box it has permission to pass, if any.

In order to enter a track segment, the train has to have a reservation for it. The
TCC must ask the relevant switch boxes for a reservation and be granted or
denied access.
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5.0.3 Constraints

The most notable di�erence in the railway system underlying the report and
this one is the way we detect the trains. Whereas the paper assumes there
are sensors capable of detecting when a train exactly have is near and leaves a
switching track, I only have the capability to do the latter. The algorithm thus
have to be modi�ed to take this into consideration.

Further, di�erences in modelling and implementations can make it necessary or
practical to change certain details in the algorithm or state components. More
on that in their respective chapters.

5.1 Algorithm Concept

A train approaching a switching point from outside a switching point starts
exchanging data with the switch controller once it is in range of the sensor. The
sensor identi�es the train and determines where it is coming from. The switch
controller sends a request to the train, indicating it is approaching a station.
The train tells the switch which segments it wants to enter, according to its
route. The switch controller checks its reservations: If either the segment or the
switch is already reserved, the train is told to stop and wait for this to change.

When or if both of these reservations are free, the switch box needs to synchro-
nize it's state with the other switch box connected to the track. This represents
one of the major complications of having a distributed system: We have no
global state of reservations, so we have to ensure that switch boxes internal
states are compatible and up to date. There can be a con�ict, by both switch
boxes simultaneously trying to reserve some track. Here, one will get priority
according to an arbitrary measure, such as which reservation request came �rst.
Both switch boxes will reserve the track according to the one with priority and
the other try again once this process is �nished. The reserving switch box will
also reserve, or lock, the switching track itself, and switch track the track if nec-
essary. The train is then notify it has the reservation and start if it was stopped.
Switching is fast enough that it is unnecessary to stop the train to wait for it.
As a safety feature, the train should still stop automatically if it does not receive
a reservation acknowledgement from the switch box in due time.

Once the sensor loses sight of the train, the switch controller waits a short
period for the train to fully traverse the switching track, the period length
determined experimentally and based on the trains speed. Then it notify the
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train it has passed the track, removes reservation for the segment the train
came from, messaging the neighbouring switch box to do the same. Notably, no
con�icts are possible here, as Relying on the train to travel a certain distance
in a certain time seems unsafe, but is necessary due to our limitations in the
amount of sensors.

The train updates its internal position once it has passed the track, then stops at
the station. Optionally, the trains schedule could include a minimum stopping
time at each station. When this time has passed, it will message the other
switching controller, asking to reserve the next segment in its schedule. The
process then continues as before, except the switch box not being currently able
to detect the train. Notably, the switch will not have to be switched in this
case, as the switching track is �exible enough to allow the train to pass in either
position.



Chapter 6

Modelling

6.1 Goals

The overall goal of the model was to use to formally verify the correctness of
the control algorithm. To ensure that the safety requirements are held. In
order to do this the model should accurately correspond to the real-life system
and accurately re�ect the same limitations. For instance, the model algorithm
cannot know the precise location of the train. It can only work with whatever
input it gets from the sensors. In contrast, we can track such information for
veri�cation purposes, but no functional part of the system can make use of it.

The model should also closely correspond to a possible implementation. It
should strongly suggest how the implementation should be made, so that the
correctness of the model applies to it. Ideally, it could work as a blueprint
or pseudo code. This can be hard to structure ahead of time as modelling
languages ultimately tend to di�er in their functionality compared to a given
programming language. For example, the reservations in the switchboxes could
be represented with a HashMap in Java. A key like a string or integer could
be used to access each. This was not possible in the modelling language, so
the speci�c reservation would have to be found through a loop or an array with
a index. This ultimately goes both ways, as working on the implementation
also gave insight into how the model could be updated to be more correct and
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e�cient.

Lastly, the model should be as simple as possible and have as few con�gurations
as possible.

6.2 Tools

There exist a number of tools for modelling. One option would be UPPAAL.
UPPAAL is made for real-time systems and have capabilities for modelling the
passage of time. The railway UPPAAL has both the advantage and disadvan-
tage of having a very visual, WYSIWYG-like interface. State machines are
constructed by dragging and dropping around nodes and transitions and then
adding guards, variables and other such. This e�ectively makes development
more intuitive and less systematic.

UMC was chosen for the challenge of learning a new modelling language. It can
be found here http://fmtlab.isti.cnr.it/umc/V4.2/umc.html.

6.3 Design

Here are listed some of the more notable design choices taken during the devel-
opment. The rest of the work was mostly a matter of expressing the algorithm
in UMC syntax.

6.3.0.1 Abstraction

One quite important decision was deciding on scope and abstraction level of the
model. Whether the model should cover the algorithm, lego API, utilitiies and
all the minutae of each. Or be very high-level and only model the communi-
cation, for instance. I ultimately decided that the focus of the model should
above all be on the algorithm, proving it's correctness. It should be modelled
in detail, in order to be directly translatable to the implementation.

The lego API part, the part of the code that interact directly with the sensors
and motors were deemed to be less important to model in detail. Partly because
it is hard, if not impossible to do so in an accurate manner in UMC, given that
they rely on real world input. What input the sensors read at any time has to

http://fmtlab.isti.cnr.it/umc/V4.2/umc.html
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given, so it cannot be proven by the model that they read or get the right data.
This is ultimately one of the strengths of implementing the algorithm on a real
world system: Seeing what kind of unexpected problems with input and output
arises. With the real world component and Lejos API unable to be modelled,
the remaining API would also be trivially simple; We can model what values
we expect a sensor to read, but nothing about how these values were read and
modi�ed. Further, the Lego API is very platform dependent, the least generally
applicable. We are most interested in proving the algorithm works, as it can be
applied to other hardware than the Lego. As such, the Lego API is modelled
very simply and naively and are e�ectively merged into the TCC and SB to
reduce communication between class and simplify the model.

6.3.0.2 Reservation synchronization

Perhaps the largest di�culty of designing a distributed system compared to a
centralized one, is the lack of a global state. We do not have one computational
unit who knows everything about what is going on and is the �nal authority on
data and decisions. One could perhaps have units constantly exchanging data,
updating each other with every variable change and keeping their states perfectly
aligned. However, this would crowd the network, and the model and would not
be leveraging the strengths and unique properties of a distributed system. It is
a strength that every unit does not have to know everything and can be simpler.
Further, we cannot guarantee the trains would be able to communicate at all
times with the other components, given the distances they would travelling in
the real world.

The most notable challenge with a lack of global state is synchronizing reserva-
tions in the switchbox. Every track is associated with two switchboxes, which
each have their own internal state of reservations. If two trains simultaneously
manages to reserve a track with each switchbox they would be allowed to enter
and would collide. We therefore have to make sure switchboxes synchronize their
reservations and agree on them whenever a reservation is being made. They do
not need to know the global state, all reservations in the entire system, only for
the tracks they are associated with.

I knew going in this would be a challenge and deliberately set up the starting
scenario to test this, both trains starting out wanting to enter the same track,
reserving via di�erent switchboxes. Solving this greatly impacted the model and
major parts of the switchbox' code and states exists in order to deal with this.
*



22 Modelling

6.4 Final Model

The �nal model can be found in Appendix C.

6.4.0.1 Classes

The model consists of two classes, "SwitchBox" and "Train". SwitchBox models
the computational unit itself and it's logic, including it's interactions with it's
sensor and the physical switch itself. These latter are modelled only in the very
abstract; I simply assume the SwitchBox can accurately detect when a train is in
front of the sensor and acts upon this. A single signal represents the SwitchBox
moving the switch and it is assumed to happen instantaneously.

The Train class represents both the physical train, primarily as it can be de-
tected by the sensor, and the TrainControlComputer and it's programming.
These two parts have each their own statemachine. Logically, these might be
more appropriate as di�erent classes, but this would require more signaling and
references. The train would need a reference to each sensor/switchbox and vice
versa, which would likely to a larger state space.

6.4.0.2 Events

Switchbox:

Class SwitchBox is

Signals

tryReserve(track: int, fromStation : bool, train: Train,

currentPosition : int),

startReserver(reserverNo : int),

syncReservation(trackToReserve : int, train : Train, otherSwitchBox

: SwitchBox, priority : int),

syncSuccesful,

syncFail,

trainBySensor(detectedTrain: Train),

detectedTrain(train : Train),

trainNoLongerDetected,

clearReservation(track : int),

(...)

The tryReserve signal is sent from a Train, indicating that it wants to make
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a reservation on a given piece of track. The parameters are respectively: the
number of the track it wants to reserve, whether the train is in a station cur-
rently, a reference to the train itself so it can be signalled back and what track
the train is currently on.

Notably, signals are always sent from the same kind class (e.g. tryReserve is
always sent from a Train to a SwitchBox) and a lot are only sent from a single
point in the program. Very few operations were used. In the cases where the
sender has to receive an answer, such as a con�rmation, this is usually done as
two signals instead, so the sender could not have to answer in the immediate
transition. Further, operations had a tendency to enlarge the state space. The
synchronous behaviour was often not desirable, locking up the SwitchBox's state
machine made it unable to receive new inputs and faulty behaviour. Lastly, at
the implementation end, communication between remote components as two
NXTs, and probably SBs and TCCs in a real-life system, is ultimately done by
writing strings, ints and the like on streams. There is no in-built functionality
in lejos to send such messages expecting a return message and implementing one
would be messy. More on this in the implementation chapter. As such, signals
also made the model easier to translate.
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Chapter 7

Implementation

This chapter describes the development goals, process and resulting java code
for the �nal lego railway.

7.1 Assumptions

7.2 Terminology

De�nitions for basic terminology from java and object-oriented- and general
programming that I use in this chapter.

• Class: A fundamental concept of object-oriented programming. A class
is a logically distinct part of the program, often it's own �le. It con-
sists of data (variables) and procedures for acting on data(methods). One
can create multiple instances of a class, di�erent objects that have the
same functionality. Objects are analogous to real-world objects, such as
a "class Car" which have procedures such as "start()", "brake()" or data
like "color" and "currentSpeed".
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• Variable: A generic container of data, such as numbers, characters or text.

• Field: A variable that is available globally at least within the instance
of the class, or for every instance if made static. Can be made available
outside the class by declaring it public, as opposed to private.

• Refactor: Change codes structure, naming, appearance and other such,
without altering it's functionality or external behaviour. This is most
often done to improve the quality of the code in areas such as readability
and maintainability.

• IDE: Integrated development environment. A software application de-
signed to make programming and developing software easier and more
e�cient, with for instance: advanced text editing, automatic and refac-
toring tools.

• Method: A collection of lines of code, that form a speci�c procedure, be-
haviour or functionality. Can be given data in the form of parameters,
variables, as input and return some output. Data in a program is essen-
tially transformed via methods. Equivalent to the function in imperative
programming, but part of an object.

• Exception: Java creates and "throws" exceptions when something unex-
pected happens that cannot properly be handled, such as calling a method
on object that does not exist.

• Call stack: The collection of methods currently that have not been com-
pleted in the program.

• Stack Trace: The contents of the call stack often shown in modern IDEs
such as eclipse when an exception is thrown. This allows the programmer
to more easily track down where the exception occurred and �x any bugs
causing it.

• Package: A feature of Java. A collection of related �les, used to organize
the program or limit accessibility across classes. Analogous to folders in
windows.

7.3 Goals

I had the following goals for the implementation of the railway control system
on the Lego NXT, in roughly this order of falling priority:
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1. Develop a correct program, that is lively and safe, able to have the trains
constantly running automatically without derailings or collisions.

2. Base the implementation on model and have the �nal implementation
closely resemble it. The results of the veri�cation done on the model should
be provably applicable for the program as well. The correlation between
the code and the design should be fairly easy prove and understand as
well.

3. The code should make as few assumptions about the structure and lay-out
of the railway as possible. Ideally, the code should be able to be ported to
a completely di�erent railway systems, with a di�erent amount of trains
and stations, by only changing the initializations. Not having tested the
system as such, other such systems

4. The code should be �exible and extensible, allowing for the adding or
changing of features easily. This way, the most fundamental, minimal
solution can be implemented �rst and less critical features can be added
as time allows. This also makes the code more useful for anyone else
seeking to use and extend it.

5. The code should be well-structured, readable and in general follow best
practices, of object oriented programming in particular. This is a goal for
the above stated reasons, as well as simply being an exercise in writing
good code in general. More on this in the next section.

7.4 Code Quality

It requires little in terms of skill or talent to write code for a simple program
that does what it is nominally supposed to do. Writing "good" code meanwhile,
code that is elegant, readable and not a nightmare to maintain, is an art. Some
parameters of good code is readability, succinctness, maintainability, high per-
formance, and correctness. The latter two a�ects the end user the most, and
may therefore be the most important; If the program does not what it is sup-
posed to do, is buggy or slow as molasses, it is not of much use. With modern
hardware, however, many applications will run fast enough regardless of opti-
mizations, so performance is not always a priority. The rest can be critical to
the long-term success or viability of a piece of software. Bad code require more
resources, in time, money or developers to maintain and update.

In the short term, though, low-quality code can be faster to develop. Simply
taking less time to write because of less thought put into it and fewer revisions.
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While this project has a quite limited scope and is unlikely to have much main-
tenance done to it after being nominally completed, good code standards can
still help during development. As stated by Andy Hunt, author of the book
"Practical Programmer":
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"All programming is maintenance programming, because you are rarely

writing original code. If you look at the actual time you spend pro-

gramming, you write a bit here and then you go back and make a

change. Or you go back and �x a bug. Or you rip it out altogether

and replace it with something else. But you are very quickly main-

taining code even if it's a brand new project with a fresh source �le.

You spend most of your time in maintenance mode. So you may as

well just bite the bullet and say, 'I'm maintaining from day one.'

The disciplines that apply to maintenance should apply globally." [3]

For example, even as the sole developer, returning months later to update an
ambiguously written piece of code can lead to confusion and bugs. This actually
happened several times during the project.

As will be discussed further in section 7.5, debugging in this project is quite dif-
�cult and time consuming. Therefore, using programming patterns that reduce
the likelihood of bugs being introduced during development was a high priority.

There exists many programming patterns, best practices and principles and
that acts as guidelines to how to write good code. Ultimately, there is no single,
de�nite authority that sets these and the standards for what quality code is.
Best practices can often be mutually contradictory or come with signi�cant
costs. Internet arguments abound around what is and is not a good way to
solve a particular problem. Below are what best practices, principles and such I
have tried to follow for this project, based on my own experiences and reading
too many stackover�ow debates.

7.4.1 Don't Repeat Yourself (DRY)

"Don't Repeat Yourself" is a fairly well-known principle, formulated in, but not
originating from, the book "Practical Programmer" [2]. It states essentially
that the programmer should as much as possible avoid duplicating lines of code,
pieces of logic, behaviour and other such. Instead, all parts of the code that
needs a speci�c behaviour, should refer to the same, single, authoritative source
of that behaviour. For instance, a block of code repeated throughout the project
was turned into a method and the method called instead. This way, only that
one method has to be updated when the behaviour needs to change and common
errors where not all duplicates are properly updated are avoided. Further, it
may simply cut down on the amount of time spent typing and clicking when
updating the lgoic. Some possible costs to DRYing code can be:
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• Increased nesting of the code that makes it harder to navigate (methods
calling methods calling methods).

• Later updates necessitating "unDRYing" the code, inlining methods and
such, as the behaviour has become too disparate.

• The encapsulated logic may be very arbitrary and hard to describe, in
comments and naming. This makes the code less readable.

As such, one should still be careful in applying this principle. It is not universally
applicable. It is less relevant especially in the "outer layers" of the program,
classes with no other have dependencies to, such as testing and initializers. For
instance, it is a matter of judgement to determine how many lines of repeated
code warrants a new method. For my part, I believe that even a single line of
code, that is likely to often change and repeated once, can be worth turning into
a method.

7.4.2 Self-documenting code where possible, comments for
general descriptions, intent and the rest

Ideally, code should not not need to be commented to be understood by any
decent programmer. The code itself should clearly indicate this intent. This is
advantageous because comments bloat the code and must be constantly revised
along to the code. Code ultimately cannot lie about what it does, comments can
and will when outdated.
Code can be made more self-documenting by using appropriate naming for
methods, classes and variables that clearly describe what they do. "int todays-
Date" rather than "int aa". Also following the languages conventions for names
using camelCasing. Also, dividing the program into logical chunks through
classes and methods, so that the relation between each is apparent and intuitive.
In practice, I do not believe this is wholly enough. There is a limit to how much
a name of a reasonable length can explain and how much one can divide the
code. As a rule of thumb, code can and should itself describe "what" it does,
while comments are good for describing the "why". Why this speci�c algorithm
or approach was taken as opposed to the alternatives, why the speci�c values
was used. Especially convoluted pieces of logic, odd necessary but hacks and
such are also worth explaining in comments. General descriptions of classes,
methods and �elds also helps understanding them at a glance without having
to dig into the code itself.
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7.4.3 Practical Encapsulation

Encapsulation is one of the fundamental tenants of object-oriented programming[?].
Essentially, classes should be fairly independent and secretive, only providing
access to the �elds and methods that truly need them. A standard approach
to this is to make all variables private and provide get and set methods for
them, that provide read and write access respectively. I disagree with this ap-
proach however, at least for a project of this nature and size. The get and
set methods create a huge amount of code bloat that make navigating the
actual, functional code harder. Even in larger projects I have seen very few
instances where they gave any advantage over public �elds. I would argue refac-
toring is often preferable to modifying the output or input via getters or setters.
Instead, I generally declare �elds and methods private if they only used and
relevant inside the class, public or protected otherwise.

7.4.4 Formatting

Much like any piece of text, reading code is easier if it is formatted well. Very
dense code can be tiring and hard to read. Improving formatting was mostly
done by using the auto-formatter of Eclipse constantly and using plenty of white-
space to give spacing and divide code into the chunks that are the most directly
related. As a rule of thumb, at most ten lines of code should be clumped
together without linebreaks or other spacing. Very long methods and classes
may also be broken up into multiple for the sake of formatting. Lastly, a single
code line should also be kept within a reasonable width. The auto-formatter
will automatically break lines above 100 characters per default, but it is oft
preferable

7.4.5 You aren't gonna need it (YAGNI)

While it is good to develop the program to be expendable, it is easy to be carried
away by this approach. If one tries to anticipate all the programs future need,
there's no end to the redundant code one needs to implement. Further, these im-
plementation might well be outdated and need in heavy revising when the time
comes to actually use them. The YAGNI principle of Extreme Programming [?]
is thus to avoid the common trap of creating functionality in anticipation of
needing it.
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7.5 Development method

This section describes the software tools I used during the development process
and my general approach and �ow of working.

7.5.1 Software Tools

The code was written solely in the 32-bit version of Eclipse Mars 2. A couple
of plug-ins were used: ObjectAid UML Explorer were used to generate UML dia-
grams for the �nal system.
C/C++ development tools were installed since they add the functionality to cre-
ate Launch Groups, which makes uploading programs to both NXT bricks easier.

The Lejos NXT plug-in for eclipse plug-in adds a whole host of features that
makes developing for the NXT through eclipse easier. Most importantly, it
adds library support, so Lejos methods are recognized and auto-completed.
Secondly, it can be con�gured to print out the ids of the methods in the program,
which is very useful for exception handling and debugging.
Thirdly, it simpli�es the process of uploading the program to the NXT, which
can be done with a single click. It only works for the 32-bit Eclipse. More infor-
mation about how to use the plug-in can be found at this link:

(http://www.lejos.org/nxt/nxj/tutorial/Preliminaries/UsingEclipse.htm)

Google Drive's desktop app was used as a simple kind of version control. It
works as a back-up, syncs the code across computers and has simple, but decent
tools for rolling back to previous versions of the code or comparing di�erences.
I deemed proper version control systems such as Git or SVN unnecessary due
to the limited scope of the project. There were no problems along the way that
necessitated them.

7.5.2 Work �ow

In this section I describe a little of the process in terms of the time was primarily
spent on and how I worked.

http://www.lejos.org/nxt/nxj/tutorial/Preliminaries/UsingEclipse.htm
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7.5.3 Implementation Phases

The implementation happened approximately in four phases, each requiring a
signi�cant amount of work and involving di�erent challenges.

• Setting up the project, researching and testing the Lejos API and devel-
oping a �rst version of the Lego API. This was done before modelling.

• Creating a system for how the two NXT to communicate and in turn how
the the SBs and TCC signal each other. Done after modelling.

• Implementing the algorithm, the logic of the SBs and TCCs. Essentially
translating the UMC model to Java and revising it and refactoring it
according to the principles stated in section 7.4. Notably included �nding
a way to emulate the statefullness of UMC and handle signal queues.
Debug and test and using a simulated system, faking output from the
physical Lego components.

• Updating and tuning the Lego API to work together with the other parts
and improve stability and reliability, including rebuilding parts of the phys-
ical railway system. Debug and test on the actual system. A large part of
this phase was spent simply experimenting with di�erent threshold values
for sensors, degrees motors should turn and such.

Notably, I did not draw any UML diagrams or other such design documentation
beforehand. Partly because the model already provided a very solid foundation
and I did not have enough experience with the Lejos API or programs with
communicating threads . I did have some vague ideas for the possible structure
for the program in mind before starting, but these changed and evolved during
the implementation process.

7.5.3.1 Debugging on the NXT

Debugging during this project was a special challenge. Most modern IDEs
such as eclipse have advanced debugging capabilities that allow you to step
through the program, line by line, while seeing the changing internal state
of the program. This makes it easier �nding errors in this state and their
originating point easier to �nd. This feature does not exist for when run-
ning the program on the NXT, unfortunately. The main debugging tools here
is displaying text on the screen of the actual NXT and stack traces auto-
matically shown when an exception is thrown. It prints a simpli�ed stack
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trace, with the ids of the current methods on the call stack. Further, the
screen of the NXT only has room for sixteen characters per line and eight
lines, so it is limited how many of these prints can be on screen at once.
For these reasons, functionality was implemented to standardize the way both of
these are printed and allowing for easy enabling and disabling of printing of spe-
ci�c debug messages.
As such debugging involved uploading the program to the NXT, observing erro-
neous behaviour, altering the program to print the values of a few variables that
could be causing the errors, uploading the program again and then repeating this
process until the error was found. Towards the end of the project, uploading the
program took some ten seconds or longer.
I brie�y considered developing a mocked PC Lejos library. This library would
have all the methods I use from the Lejos library and simulate the trains moving
virtually. However, this would be quite the endeavour to develop, this library
likely needing plenty of bug-�xing in itself. It also would not help with tuning
errors in the Lego API itself.

7.6 The Code

In this section I will go through the code and describe classes and methods of
the program in general and how the code works, as well as detail some points
of interest.

7.6.1 Structure

Here I describe the overall structure of the program, how the classes and �les
are organized and interact with each other in the broad strokes.

7.6.1.1 Packages

The project consists of seven packages. See �gure 7.1 for an overview of their
contents. A general description of the packages follows:

• The controlSystem package contains the heart of the railway control sys-
tem, the algorithm for running the trains and securing the safety proper-
ties. It contains the logic for the switch boxes and train control computer
within the classes with the same names. These are based on the classes
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in the model. This part of the code should ideally be reusable outside of
the lego domain, adaptable to actual trains and switch boxes.

• initialization contains classes that start the full lego railway system using
the Main method in Java, initializing all the objects. These classes are
where the data around how the railway system is set-up is primarily kept.
What sensor is connected to which port, how many switches and SBs there
are, train routes and starting position, etc..

• legoAPI contains all the functional part of the code that controls and
reads data from the mindstorm components, interpreted into the railway
domain. It essentially works as a intermediary between the control system
and the Mindstorms components. In a realistic system, these �les would
be swapped for equivalent �les that control real sensors, train motors, etc.

• nxtUtil contains various mostly stand-alone programs that are useful for
setting up the NXT themselves. They are not actually used in the actual
run of the control system, but they change or test properties on the NXT
that may be required for the system to work.

• signals contain all the signals that are used for communicating between
TCCs and SBs. They can be sent between the two NXTs as well

• tests are all of the test �les used during development of the system. Test
of Mindstorms components, of individual pieces of the Lego API and a
simulated version of the whole system. None of them are used in, or
tests, the �nal, physical system. Some of the test might be useful for
setting up the system and calibrating, however. The number of �les here
should indicate something about the di�culty and importance of testing
this system.

• util contains utility classes, generally made up of static methods that are
useful for many disparate parts of the program.

7.6.1.2 Class Diagrams

Class diagrams for various sub-sections of the programs follows. Figure 7.2
depicts the relations between the control systems �les and initializations. As
the one that initializes these objects, "AutomaticStart" has dependencies to
most other functional classes, while being devoid of any logic for outside use.
"Reserver" is a nested class of Switchbox and it, SwitchBox and TrainControl-
Computer extend ControlUnit. It standardizes how their signal queues and ids
for communications work, and provides some utility functions related to these
as well.
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Figure 7.1: Project packages and �les as shown in Eclipse

The lego API.
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Figure 7.2: UML class diagram of the classes from controlSystem and initial-
ization
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Figure 7.3: UML class diagram of

Figure 7.4: UML class diagram of the Lego API classes
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Figure 7.5: UML class diagram of
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Figure 7.6: UML class diagram of



Chapter 8

Testing

This chapter will focus on my approach to testing the program, ensuring its
correctness.

8.1 Method

When dealing with a safety-critical system such as the railway control system
it would make sense to make use of an automatic testing framework, such as
Eclipse's JUnit unit testing tools. This is not possible when developing for the
NXT, however. At best, one could develop their own framework for the platform
with capabilities for asserts]and the like, but it could never be fully automated,
as the program still has to be manually uploaded, the NXT turned on and the
trains in the right positions.

Therefore, I opted for the simple approach of manual testing. Creating classes
for creating better error messages and testing speci�c parts of the project, de-
scribed in chapter 7. Due to the limits of the debugging tools as also discussed
int that chapter, the testing is mostly black-box testing : Testing the outwards
functionality of the system, rather than the correctness of its internal logic.
Only when debugging a very speci�c problem is it practical to expose enough of
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the programs internal state that �aws in the logic can be revealed. The checks
that throw exceptions littered throughout the code does provide some testing
of the internal state, in a somewhat similar manner to asserts used in multiple
automatic testing frameworks.

Testing was done continually throughout the project, gradually debugging and
verifying the correctness of each part of the system. Testing followed parallel
phases as the implementation described in section 7.5.3:

• During the developement of the �rst API, the Lejos library and Mind-
storms components were continually tested. Observing what values was
given when and such. In particular, the class SensorTest was used for this.

• The communication and signal set-up had to be tested extensively to de-
termine messages where being sent and received properly. The CommTest
was especially used here.

• The code for the SBs and TCCs are very dependent on each other and
therefore hard to test separately. As such, most testing of these happened
after almost all of the code for both had been written. A bit of testing
were done on their early stubs however, to prove that the signal queue and
state system could work. The SystemTest class was used primarily here,
initializing the system according to the actual railway layout and faking
signals sent from sensors. This could be considered a form of integration
testing.

• The last phase of the implementation, improving the Lego API and get-
ting the physical system to run, required the most testing. Very minute
changes were being made to the code, while tons of test were run to track
down the last bugs. The DetectorTest, SwitchTest and MotorTest was
used �rst to each units correctness. Then AutomaticStart class was used
to test the entire system, oft modi�ed to test di�erent set-ups: One spe-
ci�c train running, both doing their routes routes or repeating. This can
be considered a type of system testing. I consider the best and "�nal"
test to be whether any errors occur when both trains repeat their routes
inde�nitely, or at least more than �ve times. After deciding the code
was �nalized, I ran this test approximately �fteen times to determine the
correctness of the �nal system.
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8.2 Results

Of these last tests, about a quarter would fail quickly, the trains completing
their route once or twice before stopping unexpectedly, not stopping at all,
etc. Another quarter would run well for longer, around �ve rounds, before
accumulating too much imprecision or suddenly failing. The remaining half ran
completely successfully, running for as long as I allowed the trains to. This
may not sound like an impressive statistic, but all failed runs seems to be the
result of physical factors, problems with the sensors and motors, not the control
algorithm. Under ideal circumstances, set up properly and with vigilance, the
system can run quite consistently.

8.2.1 Known bugs & issues

The �ve remaining causes of problems in the system seem to be:

8.2.1.1 High ambient light levels

The system seems barely to barely work when there is too much light in the light.
Direct sunlight through the windows is enough for the sensors not to be able to
consistently distinguish a train from the general light level. This can perhaps be
solved by further tuning, but in my experience, the in-station sensors are pretty
much never going to accurate results in brightness. A possible solution could be
to install an in-station sensor on each side of the track, as closer distance really
helps.

8.2.1.2 Changes in light level

Despite using the �ood light, the light sensors are quite sensitive to changes
in the general light level. It is possible to see light values climb in real time
during sun-rise or sunset, eventually throwing o� the calibration of the sensors.
Clouds moving in front of the sun can even be enough to disrupt the system
in some cases. The solution would be for the sensors to recalibrate themselves
periodically while the system is running. However, it is hard for the sensor to
know when the ambient light has changed and when a train is parked in front
of it at a weird angle. If the sensors were allowed to share data with each other
or access the state of the control system, they might be able to know where the
trains are and when it is safe to calibrate.
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8.2.1.3 Changes in environment

Simply put, accidentally stepping in front of a sensor, or moving objects in its
vicinity, might lead to it the sensors giving o� wrong results. If one is careful,
this one is not hard to prevent. Some shielding screens or such could be added
to the railway, that provide a constant background for the sensors.

8.2.1.4 Simultaneous movement on the controller

As noted in section 3.1.1.6, the train remote does not do well when both dials
are moved at the exact time. While the delay in starting times helped this
problem tremendously, it can still happen at random. Getting another remote
would �x this.

8.2.1.5 Remote motors not properly resetting

This error accrues over multiple runs of the program. The motors for the remote
does not seem to always return to the position they started in, despite actually
being programmed to overcompensate to get there. Due to how the motors
and controller are clamped together, there is quite a bit of friction to reach the
starting position, so this is likely due to the motor stalling out and being able
to back to this position. As such the motor motor move a couple of degrees
per run, until it starts away from the stop button and fails to properly control
the train. The motor can easily be pushed back the correct starting position
manually, however.

8.2.2 Documentation

I have recorded several videos to document both successful runs, the ways in
which the program fails and the general evolution of the program in the last
stages of implementation. The videos are therefore presented in chronological
order.

First, a run where only one train is con�gured to start. At this point, the code
and the algorithm itself was buggy, making both repeating routes and having
two trains running at once immediately fail and working very inconsistently
even with just one train. Note the lack of control car, allowing the sensors to
sit closer to the rails without getting knocked o�. This was also before the
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trains were rebuilt to have only white bricks showing towards the railway side:
https://youtu.be/o5Cq9Ms_WvY

Next video, has both trains running, one repeating and the other not. https:
//youtu.be/4GEq6qd60uE

In this video, both trains repeat their route inde�nitely. Around the 1 minute
mark, the issue discussed in 8.2.1.5 happens, causing one train to drive so slowly
it loses momentum and stop entirely. This was before the start delay was im-
plemented. https://youtu.be/FLMdGjr89pc

The system was also testing during late evenings and night, since no sun made
the sensors more reliable. In this video, the issue discussed in 8.2.1.4 happens
to both trains, and I manually reset the remote for one of the trains. https:

//youtu.be/ELuOeHqoP0s

Lastly, the best run recorded. No errors occur. Later during the video, I deliber-
ately stall one of the trains to see if anything happens if the "rhythm" is broken
and that the other train patiently waits. At the end, I instruct the trains to stop
repeating their runs with a button press. https://youtu.be/lJGFt5K9rss

https://youtu.be/o5Cq9Ms_WvY
https://youtu.be/4GEq6qd60uE
https://youtu.be/4GEq6qd60uE
https://youtu.be/FLMdGjr89pc
https://youtu.be/ELuOeHqoP0s
https://youtu.be/ELuOeHqoP0s
https://youtu.be/lJGFt5K9rss
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Chapter 9

Conclusion

I consider this project a minor success. While the �nal system does not work
consistently, it does work and show that the distributed approach can work.
There were some challenges in making the program distributed, but they in no
way insurmountable.

I do believe creating the implementation for a model railway was valuable in
creating understanding for how . Unfortunately, working with the low-quality
Lego parts (as compared to the professional ones one would imagine they use in
the actual railway industry) meant almost more time was spent wrestling with
them than working on the distributed algorithm.
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Appendix A

Project plan

The original project description were as follows:

Refer to �gure A.1 to see the initial project plan. Note that the dates are
starting points, not deadlines. So, FROM the 11. of February, the plan was to
to "Developement of API for controlling/reading from Lego Parts".

The initial plan was very much that and quite pending. At the time, the lego
railway system was designed only in broad strokes and it was not decided what
modelling language to use. I knew at the time that the plan would be a rough
estimate, as I did not have a clear grasp on how long the modelling or implemen-
tation would take. We quickly started revising the model as it also became clear
it was not a logical order to tackle the project in. Once I had researched and
tested the Lejos API enough to be con�dent in it's capabilities and constraints,
it more relevant to do the modelling before the implementation. So the model
could be a basis and inspiration for the program and the two more easily linked.
Less than half-way the project the plan was revised to the one seen in A.2

This plan ultimately proved to be mostly a guideline as well. Some extra or over-
riding assignments came in some weeks, so I could get feedback on the work.
With both plans I was also being deliberately being ambitious or underestimat-
ing how much time each task would take. As it is extremely easy to underesti-
mate in the programming business, this means the time allotted ended up way
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Figure A.1: Initial project plan

o� from what was realistic. Modelling was done in about the planned time, but
the control system implementation fell behind by about a month, as realizations
during implementations required updates to the model and Lego API. I realized
at the end that it would have been more helpful to have created the plan as a
cycle, iterating through the API, model, implementation of the control system,
at least twice. Further, the initially built API and the actual physical design
of the system was in no way reliable enough to work with the algorithm. It
took a lot of Lego assembling and dissembling and experimenting with values in
the program for it to work decent, way after the bulk of the code was written.
Debugging also took longer than expected, due to having to do it on the NXT.
A lesson learned here is that physical components, such as sensors and motors,
are inherently less reliable than a purely virtual environment, and they take
longer to develop for.

Ultimately, the plan was quite useful for the project, even if was not closely
followed. It acted as a guideline and a means to think about how best to tackle
the project, in what order to and an incentive to get things done. I also think it
was for the best that it was not kept to religiously, the week-to-week plan based
on weekly meetings with my supervisors instead. It was quite predictable that
the plan would not survive reality as I would contend that the only software
project that is estimated a 100% correctly is one that is no challenge to the
developer.



51

Figure A.2: Initial project plan
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Appendix B

Model Code

/* Track shape and naming is as such:

1

_______

___/_______\___

/ NW 2 NE \

| |

0 | | 3

| SW 4 SE |

\_______________/

\_______/

5

Points/SwitchBoxes are designated by cardinal direction (North West =

NW). Stations are referred to as outer (1,5) and inner (2,4).

So, a train could start at track 2, and if it wanted to go a full, inner

clockwise loop,

it's trackDestinations would be: 3, 4, 0, 2.

*/

Class SwitchBox is

Signals

tryReserve(track: int, fromStation : bool, train:

TrainControlComputer, currentPosition : int),

startReserver(reserverNo : int),
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syncReservation(trackToReserve : int, train : TrainControlComputer,

otherSwitchBox : SwitchBox, priority : int),

syncSuccesful,

syncFail,

trainBySensor(detectedTrain: TrainControlComputer),

detectedTrain(train : TrainControlComputer),

trainNoLongerDetected,

clearReservation(track : int),

//Operations

Vars

trackSb : SwitchBox; //The one across the single track

stationSb : SwitchBox;

singleTrack: int;

stationTrackInner: int;

stationTrackOuter: int;

tracksReserved: TrainControlComputer[] //Accessed by track name.

Would be a map in Java

switchReserved: TrainControlComputer := Null;

//Reserver variables, local scope of those "threads"

pendingReservation: int[] = [-1,-1];

pendingTrain : TrainControlComputer[] = [Null, Null];

comingFromStation : bool[] = [true, true]; //Slight differences in

the logic depending on whether the train is coming into or out

from a station.

trainPosition : int[] = [-1,-1];

syncing:bool := False; //Failure if this is ever false

reservingPriority : int; //Arbitrarily given, just used as a

"tie-breaker" for simultaneous, conflicting track updates.

Higher = higher priority. Could be a time-stamp in Java.

switchPosition : int[]

State Top = SwitchBox

State SwitchBox = Receiver / Reserver1 / Reserver2 //A receiver for

handling polling of the sensor and in-coming signals/messages from

other components. And two Reserver thread for actually doing logic,

send messages and such.

//State Receiver = Idle //Necessary to have Receiver be a composite

state, since it changes what happens when transitioning into

Reserver

State Reserver1 = Stopped //Starting state

State Reserver2 = Stopped //Starting state

Behavior
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Receiver.Idle -> Receiver.Idle

{ tryReserve(track, fromStation, train, currentPosition) /

reserverNo : int;

if( pendingTrain[0] == Null) then { reserverNo = 0; }

else { reserverNo = 1;

if(pendingTrain[1] != Null) {OUT.BOTH_RESERVERS_BUSY();};

};

pendingReservation[reserverNo] := track;

pendingTrain[reserverNo] := train;

comingFromStation[reserverNo] = fromStation;

trainPosition[reserverNo] = currentPosition;

if(!comingFromStation[reserverNo]) then {

pendingTrain[reserverNo].waitForReservation(); };

self.startReserver(reserverNo);

if(track != singleTrack && track != stationTrackInner && track

!= stationTrackOuter) then

{ OUT.TRAIN_CONTACTING_WRONG_SB(); };

}

Receiver.Idle -> Receiver.Idle

{ syncReservation(trackToReserve, train, otherSwitchBox, priority) /

if(tracksReserved[trackToReserve] == Null && (!syncing ||

priority < reservingPriority) then {

tracksReserved[trackToReserve] = train;

otherSwitchBox.syncSuccesful();

} else {

otherSwitchBox.syncFail();

};

}

Receiver.Idle -> Receiver.Idle

{ clearReservation(track) /

tracksReserved[track] = null;

}

Receiver.Idle -> Receiver.Idle

{ detectedTrain(train)[switchReserved != train] /

train.hailIncomingTrain(self);

}

Reserver1.Stopped -> Reserver1.Checking

{ startReserver(reserverNo)[reserverNo == 0] /

}
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Reserver1.Checking -> Reserver1.Syncing

{ -[tracksReserved[pendingReservation[0]] == Null &&

switchReserved == Null && !syncing] /

syncing := true;

if(comingFromStation[0]) then

{ trackSb.syncReservation(pendingReservation[0],

pendingTrain[0], self, reservingPriority); }

else

{ stationSb.syncReservation(pendingReservation[0],

pendingTrain[0], self, reservingPriority); }

}

Reserver1.Syncing -> Reserver1.WaitingForSensor

{ syncSuccesful[comingFromStation[0]] /

if(tracksReserved[pendingReservation[0]] != Null) then {

OUT.ALREADY_RESERVED( pendingReservation[0],

tracksReserved[pendingReservation[0]] ); };

if(switchReserved != Null) then { OUT.SWITCH_RESERVED(

switchReserved ); };

tracksReserved[pendingReservation[0]] = pendingTrain[0];

switchReserved = pendingTrain[0];

pendingTrain[0].reservationFree();

pendingReservation[0] = -1;

syncing = false;

pendingTrain[0].timePasses()

}

Reserver1.Syncing -> Reserver1.TrainDetected

{ syncSuccesful[!comingFromStation[0]] /

if(tracksReserved[pendingReservation[0]] != Null) then {

OUT.ALREADY_RESERVED( pendingReservation[0],

tracksReserved[pendingReservation[0]] ); };

if(switchReserved != Null) then { OUT.SWITCH_RESERVED(

switchReserved ); };

tracksReserved[pendingReservation[0]] := pendingTrain[0];

switchReserved = pendingTrain[0];

switchPosition[0] = singleTrack;

switchPosition[1] = pendingReservation[0];

OUT.turnPhysicalSwitch(switchPosition);

pendingTrain[0].reservationFree();

pendingReservation[0] = -1;
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syncing = false;

pendingTrain[0].timePasses()

}

Reserver1.Syncing -> Reserver1.Checking

{ syncFail /

if(!comingFromStation[0]) then

{ pendingTrain[0].waitForReservation(); };

syncing = false;

}

Reserver1.WaitingForSensor -> Reserver1.TrainDetected

{ detectedTrain(train)[] /

pendingTrain[0].timePasses();

if(switchReserved != train) then { OUT.WRONG_TRAIN_ON_SWITCH() };

}

Reserver1.TrainDetected -> Reserver1.Stopped

{ trainNoLongerDetected /

pendingTrain[0].updatePosition(stationSb);

switchReserved = null;

pendingTrain[0] = null;

tracksReserved[trainPosition[0]] = null;

if(comingFromStation[0]) then {

stationSb.clearReservation(trainPosition[0]); }

else { trackSb.clearReservation(trainPosition[0]); }

}

//Precise copy of Reserver1, no new logic, just different places to

store the "local" variables.

//Alternate solution: pass the "reserverNo" along in all signals and use

it for the arrays. OR pass along all the needed variables.

Reserver2.Stopped -> Reserver2.Checking

{ startReserver(reserverNo)[reserverNo == 1] /

}

Reserver2.Checking -> Reserver2.Syncing

{ -[tracksReserved[pendingReservation[1]] == Null &&

switchReserved == Null && !syncing] /

syncing := true;

if(comingFromStation[1]) then

{ trackSb.syncReservation(pendingReservation[1],

pendingTrain[1], self, reservingPriority); }

else
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{ stationSb.syncReservation(pendingReservation[1],

pendingTrain[1], self, reservingPriority); }

}

Reserver2.Syncing -> Reserver2.WaitingForSensor

{ syncSuccesful[comingFromStation[1]] /

if(tracksReserved[pendingReservation[1]] != Null) then {

OUT.ALREADY_RESERVED( pendingReservation[0],

tracksReserved[pendingReservation[0]],1,0 ); };

if(switchReserved != Null) then { OUT.SWITCH_RESERVED(

switchReserved ); };

tracksReserved[pendingReservation[1]] = pendingTrain[1];

switchReserved = pendingTrain[1];

pendingTrain[1].reservationFree();

pendingReservation[1] = -1;

syncing = false;

pendingTrain[1].timePasses()

}

Reserver2.Syncing -> Reserver2.TrainDetected

{ syncSuccesful[!comingFromStation[1]] /

if(tracksReserved[pendingReservation[1]] != Null) then {

OUT.ALREADY_RESERVED( pendingReservation[1],

tracksReserved[pendingReservation[1]],pendingTrain[1],self

); };

if(switchReserved != Null) then { OUT.SWITCH_RESERVED(

switchReserved ); };

tracksReserved[pendingReservation[1]] := pendingTrain[1];

switchReserved = pendingTrain[1];

switchPosition[0] = singleTrack;

switchPosition[1] = pendingReservation[1];

OUT.turnPhysicalSwitch(switchPosition);

pendingTrain[1].reservationFree();

pendingReservation[1] = -1;

syncing = false;

pendingTrain[1].timePasses()

}

Reserver2.Syncing -> Reserver2.Checking

{ syncFail /

if(!comingFromStation[1]) then

{ pendingTrain[1].waitForReservation(); };
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syncing = false;

}

Reserver2.WaitingForSensor -> Reserver2.TrainDetected

{ detectedTrain(train)[] /

pendingTrain[1].timePasses();

if(switchReserved != train) then { OUT.WRONG_TRAIN_ON_SWITCH() };

}

Reserver2.TrainDetected -> Reserver2.Stopped

{ trainNoLongerDetected /

pendingTrain[1].updatePosition(stationSb);

switchReserved = null;

pendingTrain[1] = null;

tracksReserved[trainPosition[1]] = null;

if(comingFromStation[1]) then {

stationSb.clearReservation(trainPosition[1]); }

else { trackSb.clearReservation(trainPosition[1]); }

}

end SwitchBox;

Class TrainControlComputer is

Signals

waitForReservation,

reservationFree,

timePasses,

stopForever,

hailIncomingTrain(nearbySb : SwitchBox)

Operations

updatePosition(otherSb : SwitchBox),

stopIndefinitely()

Vars

//Physical & logical variables

position: int;

running: bool := false;

route: int[]; //The tracks to go to in order

routeIterator: int = 0;

repeat: bool := false;

routeSwitchBoxes : SwitchBox; //Switchboxes in (supposed) order

encountered. Only used by the physical system, the program

doesn't actually have these references
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nextSwitchBox: SwitchBox;

//otherSwitchBox: SwitchBox; TODO being able to reverse direction

State Top = Train

State Train = Physical / Logic

State Logic = AtStation

State Physical = NotDetected, Detected //Whether the phsyical train is

in front of a sensor

Behavior

Logic.AtStation -> Logic.PendingReservation

{ -[] /

nextSwitchBox.tryReserve(route[routeIterator], true, self,

position);

}

Logic.PendingReservation -> Logic.LeavingStation

{ reservationFree /

running = true;

}

Physical.NotDetected-> Physical.Detected

{ timePasses [running] /

routeSwitchBoxes[routeIterator].detectedTrain(self);

}

Physical.Detected-> Physical.NotDetected

{ timePasses [running] /

routeSwitchBoxes[routeIterator].trainNoLongerDetected();

}

Logic.LeavingStation -> Logic.TraversingSingleTrack

{ updatePosition(otherSb) /

position = route[routeIterator];

routeIterator++;

if(routeIterator == route.length) then {

if(repeat) then { routeIterator = 0; }

else { self.stopIndefinitely(); };

};

self.timePasses();

return

}

Logic.TraversingSingleTrack -> Logic.BySensor

{ hailIncomingTrain(nearbySb) /

nextSwitchBox = nearbySb;
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nextSwitchBox.tryReserve(route[routeIterator], false, self,

position);

}

Logic.BySensor -> Logic.BySensor

{ waitForReservation /

running = false;

}

Logic.BySensor -> Logic.EnteringStation

{ reservationFree /

running = true;

}

Logic.EnteringStation -> Logic.AtStation

{ updatePosition(otherSb) /

//self.reservationFree(); //JDF

//OUT.TRAIN_CONTACTING_WRONG_SB();

nextSwitchBox = otherSb;

running = false;

position = route[routeIterator];

routeIterator++;

return;

if(routeIterator == route.length) then {

if(repeat) then { routeIterator = 0; }

else { self.stopIndefinitely(); };

};

}

Logic.AtStation -> Logic.Ended

{ stopIndefinitely /

running = false;

}

end TrainControlComputer;

// object instatiations

sbNW: SwitchBox(singleTrack = 0, stationTrackInner = 2,

stationTrackOuter = 1, tracksReserved =

[Null,train1,Null,Null,train2,Null], trackSb = sbSW, stationSb =

sbNE, reservingPriority = 1)

sbNE: SwitchBox(singleTrack = 3, stationTrackInner = 2,

stationTrackOuter = 1, tracksReserved =

[Null,train1,Null,Null,train2,Null], trackSb = sbSE, stationSb =
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sbNW, reservingPriority = 2)

sbSE: SwitchBox(singleTrack = 3, stationTrackInner = 4,

stationTrackOuter = 5, tracksReserved =

[Null,train1,Null,Null,train2,Null], trackSb = sbNE, stationSb =

sbSW, reservingPriority = 3)

sbSW: SwitchBox(singleTrack = 0, stationTrackInner = 4,

stationTrackOuter = 5, tracksReserved =

[Null,train1,Null,Null,train2,Null], trackSb = sbNW, stationSb =

sbSE, reservingPriority = 4)

//train1: TrainControlComputer (position=1, route=[3,5], repeat=false,

nextSwitchBox=sbNE, routeSwitchBoxes=[sbNE,sbSE,sbSW,sbNW])

//ClockWise

//train2: TrainControlComputer (position=4, route=[3,2], repeat=false,

nextSwitchBox=sbSE, routeSwitchBoxes=[sbSE,sbNE,sbNW,sbSW])

//CounterClockWise Out commented for easier graphing

train1: TrainControlComputer (position=1, route=[3,5,0,1], repeat=false,

nextSwitchBox=sbNE, routeSwitchBoxes=[sbNE,sbSE,sbSW,sbNW])

//ClockWise

train2: TrainControlComputer (position=4, route=[3,2,0,4], repeat=false,

nextSwitchBox=sbSE, routeSwitchBoxes=[sbSE,sbNE,sbNW,sbSW])

//CounterClockWise Out commented for easier graphing

//train1: TrainControlComputer (position=1, route=[3,5,0,1,3,5],

repeat=false, nextSwitchBox=sbNE,

routeSwitchBoxes=[sbNE,sbSE,sbSW,sbNW,sbNE,sbSE,sbSW,sbNW])

//ClockWise

//train2: TrainControlComputer (position=4, route=[3,2,0,4,3,2],

repeat=false, nextSwitchBox=sbSE,

routeSwitchBoxes=[sbSE,sbNE,sbNW,sbSW,sbSE,sbNE,sbNW,sbSW])

//CounterClockWise Out commented for easier graphing

//train1: TrainControlComputer (position=1,

route=[3,5,0,1,3,5,0,1,3,5,0,1], repeat=false, nextSwitchBox=sbNE,

routeSwitchBoxes=[sbNE,sbSE,sbSW,sbNW,sbNE,sbSE,sbSW,sbNW,sbNE,sbSE,sbSW,sbNW])

//ClockWise

//train2: TrainControlComputer (position=4,

route=[3,2,0,4,3,5,0,1,3,5,0,1], repeat=false, nextSwitchBox=sbSE,

routeSwitchBoxes=[sbSE,sbNE,sbNW,sbSW,sbSE,sbNE,sbNW,sbSW,sbSE,sbNE,sbNW,sbSW])

//CounterClockWise Out commented for easier graphing

Abstractions {

State: train1.position = $1 and train2.position = $2 ->

positions($1,$2)

//State: train1.position = $1 -> position($1)

//State: train1.position = $1 -> train1pos($1)//
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//State: train2.position = $1 -> train2pos($1)

//State: train1.running = $1 and train2.running = $2 -> running($1,$2)

//State: train1.routeIterator = $1 -> RouteIterator($1)

//State: train1.nextSwitchBox = $1 -> nextSwitchBox($1)

//State sbSE.tracksReserved = $1 -> trackReservations($1)

/*

State: inState(sbNE.Reserver1.Syncing) -> sbNE_Syncing

State: inState(sbNE.Reserver2.Syncing) -> sbNE2_Syncing

State: inState(sbNE.Reserver1.Stopped) -> sbNE_Stopped

State: inState(sbNE.Reserver1.Checking) -> sbNE_Checking

State: inState(sbNE.Reserver1.Syncing) -> sbNE_Syncing

State: inState(sbNE.Reserver1.WaitingForSensor) -> sbNE_WaitingForSensor

State: inState(sbNE.Reserver1.TrainDetected) -> sbNE_TrainDetected

State: inState(sbNE.Reserver2.Stopped) -> sbNE2_Stopped

State: inState(sbNE.Reserver2.Checking) -> sbNE2_Checking

State: inState(sbNE.Reserver2.Syncing) -> sbNE2_Syncing

State: inState(sbNE.Reserver2.WaitingForSensor) -> sbNE2_WaitingForSensor

State: inState(sbNE.Reserver2.TrainDetected) -> sbNE2_TrainDetected

State: inState(sbSE.Reserver1.Stopped) -> sbSE_Stopped

State: inState(sbSE.Reserver1.Checking) -> sbSE_Checking

State: inState(sbSE.Reserver1.Syncing) -> sbSE_Syncing

State: inState(sbSE.Reserver1.WaitingForSensor) -> sbSE_WaitingForSensor

State: inState(sbSE.Reserver1.TrainDetected) -> sbSE_TrainDetected

State: inState(sbSW.Reserver1.Stopped) -> sbSW_Stopped

State: inState(sbSW.Reserver1.Checking) -> sbSW_Checking

State: inState(sbSW.Reserver1.Syncing) -> sbSW_Syncing

State: inState(sbSW.Reserver1.WaitingForSensor) -> sbSW_WaitingForSensor

State: inState(sbSW.Reserver1.TrainDetected) -> sbSW_TrainDetected

State: inState(train2.Logic.AtStation) -> train2_AtStation

State: inState(train2.Logic.PendingReservation) ->

train2_PendingReservation

State: inState(train2.Logic.LeavingStation) -> train2_LeavingStation

State: inState(train2.Logic.TraversingSingleTrack) ->

train2_TraversingSingleTrack

State: inState(train2.Logic.BySensor) -> train2_BySensor

State: inState(train2.Logic.EnteringStation) -> train2_EnteringStation

State: inState(train2.Logic.Ended) -> train1_Ended

//State: inState(train1.Physical.Detected) -> train1_Detected
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State: inState(train1.Logic.AtStation) -> train1_AtStation

State: inState(train1.Logic.PendingReservation) ->

train1_PendingReservation

State: inState(train1.Logic.LeavingStation) -> train1_LeavingStation

State: inState(train1.Logic.TraversingSingleTrack) ->

train1_TraversingSingleTrack

State: inState(train1.Logic.BySensor) -> train1_BySensor

State: inState(train1.Logic.EnteringStation) -> train1_EnteringStation

State: inState(train1.Logic.Ended) -> train1_Ended

//Action: $obj:stopIndefinitely($*) -> stopIndefinitely($obj($*)

Action: $obj:trainNoLongerDetected($*) -> trainNoLongerDetected($obj($*)

Action: $obj:updatePosition($*) -> updatePosition($obj($*)

//Action $obj:assign(running,$value) -> $obj(running,$value)

Action: $obj:startReserver($*) -> startReserver($obj($*)

*/

//Action: $obj:accept($1) -> Accepted($obj,$1) -- observe dispatching

of triggers

//Action: $obj:$obj2.$event($*) -> $event($obj=>$obj2($*) --

observe events with all their params

Action: TRAIN_CONTACTING_WRONG_SB($*) ->

ERROR(TRAIN_CONTACTING_WRONG_SB,$*)

Action: BOTH_RESERVERS_BUSY($*) -> ERROR(BOTH_RESERVERS_BUSY,$*)

Action: WRONG_TRAIN_ON_SWITCH($*) -> ERROR(WRONG_TRAIN_ON_SWITCH,$*)

Action: ALREADY_RESERVED($*) -> ERROR(ALREADY_RESERVED,$*)

Action: SWITCH_RESERVED($*) -> ERROR(SWITCH_RESERVED,$*)

Action: $obj:lostevent($1) -> DISCARDED($obj,$1) -- observe discarding

of triggers

Action: $obj:$obj2.Runtime_Error -> RUNTIME_ERROR($obj=>$obj2)

}

//MODEL CHECKING

//AG AF positions(1,4) AND not EF {ERROR} true AND not EF {DISCARDED}

true AND AG [$1] AF {$2} true AND <true> AG not positions(0,0) AND

<true> AG not positions(1,1) AND <true> AG not positions(2,2) AND

<true> AG not positions(3,3) AND <true> AG not positions(4,4) AND

<true> AG not positions(5,5)

// EF {sig4($1)} EF {sig4(%1)} true -- action sig4 repeated twice with

same arg

// not EF {discarded} true -- no signal is ever discarded
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// AG [$1] AF {$1} true -- every signal sent is always

accepted

// <true> AG not initial(Obj1) -- after the initial state, no other

reachable state are labelled "initial(Obj)"

// EF v1(2,2)
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Appendix C

Implementation Code

C.1 ControlUnit

package controlSystem;

import java.util.LinkedList;

import legoAPI.Communicator.UnitId;

import signals.Signal;

import util.DebugMessage;

public abstract class ControlUnit extends Thread {

public UnitId id;

protected LinkedList<Signal> signals = new LinkedList<Signal>();

public synchronized void addSignal(Signal signal) {

signals.add(signal);

notifyAll();

}

public synchronized boolean hasDuplicateSignal(Signal signal) {

if (!signals.isEmpty() && signals.get(0).equals(signal)) {
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return true;

}

return false;

}

protected void waitForSignal() {

try {

while (this.signals.isEmpty())

wait();

} catch (InterruptedException e) {

DebugMessage.showCatchMessage(e, "InterruptedException");

}

}

protected synchronized Signal waitForSignalWithName(String

signalName, String signalName2) {

while (true) {

waitForSignal();

// Due to shadowing, this is the reservers queue, not the

switchbox',

// but "this" just in case

Signal signal = this.signals.remove(0);

// System.out.println("sig " + signal.getName());

if (signal.getName().equals(signalName) ||

signal.getName().equals(signalName2))

return signal;

}

}

protected synchronized Signal waitForSignalWithName(String

signalName) {

return waitForSignalWithName(signalName, null);

}

}

C.2 SwitchBox

package controlSystem;

import java.util.ArrayList;

import java.util.Hashtable;
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import initialization.TrackLayout;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

import legoAPI.Switch;

import signals.ClearReservation;

import signals.HailIncomingTrain;

import signals.ReservationFree;

import signals.Signal;

import signals.SyncFail;

import signals.SyncReservation;

import signals.SyncSuccesful;

import signals.TrainDetected;

import signals.TrainNoLongerDetected;

import signals.TryReserve;

import signals.UpdatePosition;

import signals.WaitForReservation;

import util.DebugMessage;

public class SwitchBox extends ControlUnit {

private final UnitId trackSb; // The one across the single track

private final UnitId stationSb;

// Hashtable can have null

private volatile ArrayList<Integer> tracks;

private volatile Hashtable<Integer, UnitId> tracksReserved;

private volatile UnitId switchReserved = null;

// Arbitrarily given, just used as a "tie-breaker" for simultaneous,

// conflicting track updates.

// Higher = higher priority. Could be a time-stamp?

private volatile Long syncingSince;

private int[] switchPosition; // The tracks that the switch connects

private Switch switcher;

private volatile Reserver[] reservers = { null, null };

public SwitchBox() {

trackSb = null;

stationSb = null;

}

public SwitchBox(UnitId id, ArrayList<Integer> tracks,

Hashtable<Integer, UnitId> startReservations,

int[] switchPosition, UnitId stationSb, UnitId trackSb, Switch

switcher) {
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this.id = id;

this.tracks = tracks;

this.tracksReserved = startReservations;

this.switchPosition = switchPosition;

this.switcher = switcher;

this.trackSb = trackSb;

this.stationSb = stationSb;

for (int i = 0; i < reservers.length; i++) {

reservers[i] = new Reserver();

reservers[i].id = this.id;

reservers[i].start();

}

this.start();

}

public void run() {

try {

while (true) {

receiverIdle();

}

} catch (Exception e) {

DebugMessage.showCatchMessage(e, id.toString());

}

}

// Idle

private synchronized void receiverIdle() throws Exception {

while (signals.isEmpty())

wait();

Signal signal = signals.remove(0);

switch (signal.getName()) {

case TryReserve.NAME:

// TODO: Call methods by what they do, and sig by what happened

(the

// event)? Write in comments what the methods represent?

TryReserve trySig = (TryReserve) signal;

tryReserveIdle(trySig.track, trySig.train,

trySig.currentPosition);

break;

case SyncReservation.NAME:

SyncReservation syncSig = (SyncReservation) signal;

SyncReservationIdle(syncSig.trackToReserve, syncSig.train,

syncSig.otherSwitchBox, syncSig.otherSyncingSince);

break;
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case ClearReservation.NAME:

ClearReservation clearSig = (ClearReservation) signal;

tracksReserved.put(clearSig.track, null);

break;

case TrainDetected.NAME:

TrainDetected detectedSig = (TrainDetected) signal;

trainDetectedIdle(detectedSig);

break;

default:

for (Reserver reserver : reservers)

reserver.addSignal(signal);

break;

}

for (Reserver reserver : reservers)

reserver.wakeUp();

}

private synchronized void tryReserveIdle(int track, UnitId train, int

currentPosition) throws Exception {

if (!tracks.contains(track))

throw new Exception("Wrong SB " + id + " contacted! Track:" +

track + " size" + tracks.size());

for (int i = 0; i < reservers.length; i++) {

if (reservers[i].reservingTrain == null) {

reservers[i].tryReserve(track, train, currentPosition);

break;

} else if (i == reservers.length - 1)

throw new Exception("All reservers busy!");

}

}

private void SyncReservationIdle(int trackToReserve, UnitId train,

UnitId otherSwitchBox, long otherSyncingSince) {

DebugMessage.print(

"syncRes " + trackToReserve + " t" + train + " sb" +

otherSwitchBox + " s" + otherSyncingSince + "", this);

if (tracksReserved.get(trackToReserve) == null && (syncingSince ==

null || syncingSince > otherSyncingSince)) {

tracksReserved.put(trackToReserve, train);

Communicator.instance.sendSignal(otherSwitchBox, new

SyncSuccesful());

} else {

Communicator.instance.sendSignal(otherSwitchBox, new

SyncFail());
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}

}

private void trainDetectedIdle(TrainDetected signal) {

DebugMessage.print("trainDete " + switchReserved + " " +

tracksReserved.get(switchPosition[0]), this);

if (!signal.sensorInStation && switchReserved == null) // &&

//

tracksReserved.get(switchPosition[0])

//

!=

null)

Communicator.instance.sendSignal(tracksReserved.get(switchPosition[0]),

new HailIncomingTrain(id));

else

for (Reserver reserver : reservers)

reserver.addSignal(signal);

}

protected class Reserver extends ControlUnit {

// Creation and releasing of threads is quite costly, so we don't

// release the instance for garbage collection

protected UnitId reservingTrain = null;

private int pendingReservation = -1;

private boolean comingFromStation;

private int trainPosition = -1;

public synchronized void tryReserve(int track, UnitId train, int

currentPosition) {

reservingTrain = train; // pendingTrain

pendingReservation = track;

trainPosition = currentPosition;

if (TrackLayout.isStationTrack(currentPosition)) {

comingFromStation = true;

// only if reservation not avaliable?

} else

comingFromStation = false;

// StartReserver signal

notifyAll();

}

public void run() {

try {
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while (true)

stopped();

} catch (Exception e) {

DebugMessage.showCatchMessage(e, "Reserver",

"HomemadeException");

}

}

private synchronized void stopped() throws Exception {

while (reservingTrain == null)

wait();

DebugMessage.print("startReserver", SwitchBox.this);

checking();

}

private synchronized void checking() throws Exception {

while (tracksReserved.get(pendingReservation) != null ||

switchReserved != null || syncingSince != null)

wait();

syncingSince = System.currentTimeMillis();

SyncReservation signal = new

SyncReservation(pendingReservation, reservingTrain, id,

syncingSince);

if (comingFromStation)

Communicator.instance.sendSignal(trackSb, signal);

else

Communicator.instance.sendSignal(stationSb, signal);

syncing();

}

private void syncing() throws Exception {

Signal signal = waitForSignalWithName(SyncSuccesful.NAME,

SyncFail.NAME);

if (signal.getName().equals(SyncSuccesful.NAME)) {

if (tracksReserved.get(pendingReservation) != null)

throw new Exception("Already reserved " +

pendingReservation);

if (switchReserved != null)

throw new Exception("Switch reserved " +

pendingReservation);

tracksReserved.put(pendingReservation, reservingTrain);
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switchReserved = reservingTrain;

if (!comingFromStation) {

switchPosition[0] = trainPosition;

switchPosition[1] = pendingReservation;

switcher.switchTrack(switchPosition[1]);

}

// else {

// switchPosition[0] = pendingReservation;

// switchPosition[1] = trainPosition;

// switcher.switchTrack(switchPosition[1]);

// }

this.signals.clear(); //Bit of a dirty hack, but it works

Communicator.instance.sendSignal(reservingTrain, new

ReservationFree());

pendingReservation = -1;

syncingSince = null;

trainbySensor();

} else if (signal.getName().equals(SyncFail.NAME)) {

// Communicator.instance.sendSignal(stationSb, signal);

//Redundant

DebugMessage.print("syncFail back", this);

if (!comingFromStation)

Communicator.instance.sendSignal(reservingTrain, new

WaitForReservation());

syncingSince = null;

// Rapidly repeating recheckings can lead to stackoverflow

// Thread.sleep(5000);

wait();

checking();

}

}

private synchronized void trainbySensor() throws Exception {

while (true) {

TrainNoLongerDetected signal = (TrainNoLongerDetected)

waitForSignalWithName(TrainNoLongerDetected.NAME);

if (signal.sensorInStation != comingFromStation)

break;

}

DebugMessage.print("trainLeft " + comingFromStation, this);
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if (!comingFromStation)

Thread.sleep(300);

tracksReserved.put(trainPosition, null);

switchReserved = null;

Communicator.instance.sendSignal(reservingTrain, new

UpdatePosition());

reservingTrain = null;

if (comingFromStation)

Communicator.instance.sendSignal(stationSb, new

ClearReservation(trainPosition));

else

Communicator.instance.sendSignal(trackSb, new

ClearReservation(trainPosition));

for (Reserver reserver : reservers)

reserver.wakeUp();

}

private synchronized void wakeUp() {

// Recommended over notify by the internet

notifyAll();

}

}

}

C.3 TrainControlComputer

package controlSystem;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

import legoAPI.TrainMotor;

import signals.HailIncomingTrain;

import signals.ReservationFree;

import signals.Signal;

import signals.TryReserve;

import signals.UpdatePosition;

import signals.WaitForReservation;

import util.DebugMessage;

public class TrainControlComputer extends ControlUnit {

private static final int STATION_STOP_TIME = 2500;
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private int position;

public TrainMotor trainMotor;

private int[] route; // The tracks to go to in order

public UnitId[] routeSwitchBoxes; // The SwitchBoxes to contact in

order

public int routeIterator = 0;

public Boolean repeatRoute = true;

public TrainControlComputer(UnitId id, int startingPosition,

TrainMotor trainMotor, int[] route,

UnitId[] routeSwitchBoxes, boolean repeatRoute) {

this.id = id;

position = startingPosition;

this.trainMotor = trainMotor;

this.route = route;

this.routeSwitchBoxes = routeSwitchBoxes;

this.repeatRoute = repeatRoute;

}

public void run() {

try {

while (!routeCompleted())

atStation();

// implicitly enters StopIndefinitely state if loop terminated,

as the

// thread closes

} catch (Exception e) {

trainMotor.stop();

DebugMessage.showCatchMessage(e, id.toString());

}

}

private synchronized void atStation() throws Exception {

Communicator.instance.sendSignal(routeSwitchBoxes[routeIterator],

new TryReserve(route[routeIterator], id, position));

DebugMessage.print("PendingRes" + position, this);

pendingReservation();

}

private synchronized void pendingReservation() throws Exception {

waitForSignalOfType(ReservationFree.class);

trainMotor.start();
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DebugMessage.print("leaving", this);

leavingStation();

}

private synchronized void leavingStation() throws Exception {

waitForSignalOfType(UpdatePosition.class);

position = route[routeIterator];

routeIterator++;

if (repeatRoute)

routeIterator %= route.length;

DebugMessage.print("traversing " + position + " [" + routeIterator

+ "]=" + route[routeIterator], this);

if (routeCompleted())

return;

else

traversingSingleTrack();

}

private synchronized void traversingSingleTrack() throws Exception {

HailIncomingTrain signal =

waitForSignalOfType(HailIncomingTrain.class);

DebugMessage.print("hailed" + routeSwitchBoxes[routeIterator],

this);

trainMotor.stop();

if (signal.nearbySb != routeSwitchBoxes[routeIterator])

throw new Exception("Hailed by wrong SB! Should be " +

routeSwitchBoxes[routeIterator] + " is " + signal.nearbySb);

Communicator.instance.sendSignal(routeSwitchBoxes[routeIterator],

new TryReserve(route[routeIterator], id, position));

bySensor();

}

private synchronized void bySensor() throws Exception {

while (true) {

Signal signal = waitForSignalWithName(WaitForReservation.NAME,

ReservationFree.NAME);

DebugMessage.print("bySensor " + signal.getName(), this);

if (signal.getName().equals(WaitForReservation.NAME))

trainMotor.stop();

else {
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trainMotor.start();

DebugMessage.print("entering ", this);

enteringStation();

break;

}

}

}

private synchronized void enteringStation() throws

InterruptedException {

waitForSignalOfType(UpdatePosition.class);

position = route[routeIterator];

routeIterator++;

DebugMessage.print("entered " + routeIterator + " " +

(routeIterator % route.length), this);

if (repeatRoute)

routeIterator %= route.length;

trainMotor.stop();

Thread.sleep(STATION_STOP_TIME);

// Unwinds the stack, eventually returning to the central loop and

calling

// atStation again

return;

}

private boolean routeCompleted() {

return routeIterator == route.length;

}

@SuppressWarnings("unchecked")

private <T extends Signal> T waitForSignalOfType(Class<T> clazz) {

waitForSignal();

Signal answer = signals.remove(0);

return (T) answer;

}

}

C.4 AutomaticStart

package initialization;
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import java.io.IOException;

import java.util.ArrayList;

import java.util.Hashtable;

import controlSystem.ControlUnit;

import controlSystem.SwitchBox;

import controlSystem.TrainControlComputer;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

import legoAPI.Detector;

import legoAPI.Switch;

import legoAPI.TrainMotor;

import lejos.nxt.Button;

import lejos.nxt.Motor;

import lejos.nxt.SensorPort;

import lejos.nxt.comm.Bluetooth;

import util.DebugMessage;

public class AutomaticStart {

// @formatter:off

/* Track shape and naming is as such:

1

_______

___/_______\___

/ NW 2 NE \

| |

0| | 3

| SW 4 SE |

\_______________/

\_______/

5

Points/SwitchBoxes are designated by cardinal direction (North West =

NW). Stations are referred to as outer (1,5) and inner (2,4).

Train 1 starts at 1 and train 2 at 4. Switches connect to the inner

tracks (2, 4)

*/

// @formatter:on

public static void main(String[] args) throws IOException,

InterruptedException {

// Debug.disabled = true;

// Debug.printSwitchBox = true;

// Debug.printAPI = true;

// DebugMessage.printTrainControlComputer = true;

System.out.println("Started");
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if (Communicator.WestNxtName.equals(Bluetooth.getFriendlyName())) {

// Initializing SBNW

Hashtable<Integer, UnitId> tracksReservedSBNW = new

Hashtable<Integer, UnitId>();

tracksReservedSBNW.put(1, UnitId.TccW);

ArrayList<Integer> tracksNW = new ArrayList<Integer>();

tracksNW.add(0);

tracksNW.add(1);

tracksNW.add(2);

Switch switchNW = new Switch(Motor.A, 2);

SwitchBox switchBoxNW = new SwitchBox(UnitId.SbNW, tracksNW,

tracksReservedSBNW, new int[] { 0, 2 }, UnitId.SbNE,

UnitId.SbSW, switchNW);

Detector detectorNwStation = new Detector(SensorPort.S1,

switchBoxNW, true);

Detector detectorNwEntrance = new Detector(SensorPort.S2,

switchBoxNW, false);

// Initializing SBSW

Hashtable<Integer, UnitId> tracksReservedSBSW = new

Hashtable<Integer, UnitId>();

tracksReservedSBSW.put(0, null);

tracksReservedSBSW.put(4, UnitId.TccE);

tracksReservedSBSW.put(5, null);

ArrayList<Integer> tracksSW = new ArrayList<Integer>();

tracksSW.add(0);

tracksSW.add(4);

tracksSW.add(5);

Switch switchSW = new Switch(Motor.C, 4);

SwitchBox switchBoxSW = new SwitchBox(UnitId.SbSW, tracksSW,

tracksReservedSBSW, new int[] { 0, 4 }, UnitId.SbSE,

UnitId.SbNW, switchSW);

Detector detectorSWentrance = new Detector(SensorPort.S3,

switchBoxSW, false);

Detector detectorSWstation = new Detector(SensorPort.S4,

switchBoxSW, true);

// Initializing train1
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int[] route = { 3, 5, 0, 1 };

UnitId[] routeSwitchBoxes = { UnitId.SbNE, UnitId.SbSE,

UnitId.SbSW, UnitId.SbNW };

TrainMotor trainMotor = new TrainMotor(Motor.B, true);

TrainControlComputer train1 = new

TrainControlComputer(UnitId.TccW, 1, trainMotor, route,

routeSwitchBoxes,

true);

ControlUnit[] units = { train1, switchBoxNW, switchBoxSW };

Communicator communicator = new Communicator(units);

train1.start();

control(switchNW, switchSW, trainMotor, train1);

} else {

// Initializing SBNE

Hashtable<Integer, UnitId> tracksReservedSBNE = new

Hashtable<Integer, UnitId>();

tracksReservedSBNE.put(1, UnitId.TccW);

ArrayList<Integer> tracksNE = new ArrayList<Integer>();

tracksNE.add(1);

tracksNE.add(2);

tracksNE.add(3);

Switch switchNE = new Switch(Motor.C, 2);

SwitchBox switchBoxNE = new SwitchBox(UnitId.SbNE, tracksNE,

tracksReservedSBNE, new int[] { 3, 2 }, UnitId.SbNW,

UnitId.SbSE, switchNE);

Detector detectorNeEntrance = new Detector(SensorPort.S3,

switchBoxNE, false);

Detector detectorNeStation = new Detector(SensorPort.S4,

switchBoxNE, true);

// Initializing SBSE

Hashtable<Integer, UnitId> tracksReservedSBSE = new

Hashtable<Integer, UnitId>();

tracksReservedSBSE.put(4, UnitId.TccE);

ArrayList<Integer> tracksSE = new ArrayList<Integer>();

tracksSE.add(3);

tracksSE.add(4);



82 Implementation Code

tracksSE.add(5);

Switch switchSE = new Switch(Motor.A, 4);

SwitchBox switchBoxSE = new SwitchBox(UnitId.SbSE, tracksSE,

tracksReservedSBSE, new int[] { 3, 4 }, UnitId.SbSW,

UnitId.SbNE, switchSE);

Detector detectorSeEntrance = new Detector(SensorPort.S2,

switchBoxSE, false);

Detector detectorSeStation = new Detector(SensorPort.S1,

switchBoxSE, true);

// Initializing train2

int[] route = { 3, 2, 0, 4 };

UnitId[] routeSwitchBoxes2 = { UnitId.SbSE, UnitId.SbNE,

UnitId.SbNW, UnitId.SbSW };

TrainMotor trainMotor = new TrainMotor(Motor.B, false);

TrainControlComputer train2 = new

TrainControlComputer(UnitId.TccE, 4, trainMotor, route,

routeSwitchBoxes2,

true);

ControlUnit[] units = { train2, switchBoxSE, switchBoxNE };

Communicator communicator = new Communicator(units);

train2.start();

control(switchNE, switchSE, trainMotor, train2);

}

}

private static void control(Switch switch1, Switch switch2,

TrainMotor motor1, TrainControlComputer tcc) {

System.out.println("EscapeBtn exits");

while (true) {

switch (Button.waitForAnyPress()) {

case Button.ID_ESCAPE:

tcc.interrupt();

motor1.stop();

switch1.switchOff();

switch2.switchOff();

System.exit(0);

break;

case Button.ID_ENTER:

tcc.repeatRoute = false;

if (!tcc.isAlive()) {
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System.out.println("Started train again");

tcc.start();

}

break;

case Button.ID_RIGHT:

tcc.repeatRoute = true;

System.out.println("Train repeating");

if (!tcc.isAlive()) {

tcc.start();

}

case Button.ID_LEFT:

tcc.repeatRoute = false;

System.out.println("Train not repeating");

}

}

}

}

C.5 TrackLayout

package initialization;

public class TrackLayout {

// @formatter:off

/* Track shape and naming is as such:

1

_______

___/_______\___

/ NW 2 NE \

| |

0| | 3

| SW 4 SE |

\_______________/

\_______/

5

Points/SwitchBoxes are designated by cardinal direction (North West =

NW). Stations are referred to as outer (1,5) and inner (2,4).

Train 1 starts at 1 and train 2 at 4.

*/

// @formatter:on

public static boolean isStationTrack(int track) {
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if (track == 0 || track == 3) {

return false;

}

return true;

}

}

C.6 Communicator

package legoAPI;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import java.util.Hashtable;

import controlSystem.ControlUnit;

import lejos.nxt.comm.BTConnection;

import lejos.nxt.comm.Bluetooth;

import signals.ClearReservation;

import signals.HailIncomingTrain;

import signals.ReservationFree;

import signals.Signal;

import signals.SyncFail;

import signals.SyncReservation;

import signals.SyncSuccesful;

import signals.TryReserve;

import signals.UpdatePosition;

import signals.WaitForReservation;

import util.DebugMessage;

public class Communicator extends Thread {

public enum UnitId {

TccW, TccE, SbNW, SbNE, SbSE, SbSW,

}

public static Communicator instance;

private Hashtable<UnitId, ControlUnit> localControlUnits = new

Hashtable<UnitId, ControlUnit>();

private static DataInputStream reader;
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private static DataOutputStream writer;

// West is synonymous with left, has a pin on left side of the brick,

and

// controls the left dial of the train remote

private boolean isWestNxt;

public static final String WestNxtName = "WestRailway";

public static final String EastNxtName = "EastRailway";

public Communicator(ControlUnit[] controlUnits) throws IOException,

InterruptedException {

for (ControlUnit controlUnit : controlUnits)

localControlUnits.put(controlUnit.id, controlUnit);

isWestNxt = checkOrSetNxtIdentity();

DebugMessage.print("Conn NXTs", this, true);

makeConnection();

instance = this;

this.start();

}

private boolean checkOrSetNxtIdentity() throws IOException {

// TODO: Set this up to be given in the constructor

if (WestNxtName.equals(Bluetooth.getFriendlyName()))

return true;

else

return false;

}

private void makeConnection() throws IOException,

InterruptedException {

Bluetooth.setVisibility((byte) 1); // Set visibility on

BTConnection connection = null;

boolean mutualConnectionConfirmed = false;

if (isWestNxt) {

while (connection == null || !mutualConnectionConfirmed) {

DebugMessage.print("Wait for conn", this, true);

connection = Bluetooth.waitForConnection();

if (connection == null)

continue;

DebugMessage.print("Got conn", this, true);
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writer = connection.openDataOutputStream();

reader = connection.openDataInputStream();

writer.writeBoolean(true);

writer.flush();

Thread.sleep(500);

if (reader.available() != 0)

mutualConnectionConfirmed = reader.readBoolean();

}

} else {

while (connection == null || !mutualConnectionConfirmed) {

DebugMessage.print("Try conn ", this, true);

connection =

Bluetooth.connect(Bluetooth.getKnownDevice(WestNxtName));

if (connection == null) {

Thread.sleep(1000);

continue;

}

reader = connection.openDataInputStream();

writer = connection.openDataOutputStream();

Thread.sleep(250);

if (reader.available() != 0) {

mutualConnectionConfirmed = reader.readBoolean();

writer.writeBoolean(true);

writer.flush();

// }

} else {

reader.close();

writer.close();

connection.close();

}

}

}

}

public synchronized void sendSignal(UnitId recipient, Signal signal) {

try {

if (localControlUnits.get(recipient) != null) {

localControlUnits.get(recipient).addSignal(signal);

DebugMessage.print("L sent " + signal.getName() + " to " +

recipient, this);

} else {

writer.writeUTF(recipient.toString());

writer.writeUTF(signal.getName());

signal.writeSignal(writer);

writer.flush();
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DebugMessage.print("Sent " + signal.getName() + " to " +

recipient, this);

}

} catch (IOException e) {

DebugMessage.showCatchMessage(e, "Communicator sending " +

signal.getName());

}

}

public void run() {

try {

DebugMessage.print("Signal Listening", this, true);

while (true) {

listenForSignal();

}

} catch (Exception e) {

DebugMessage.showCatchMessage(e, "Communicator");

}

}

private void listenForSignal() throws Exception {

String receiverStr = reader.readUTF();

UnitId recipient = parseId(receiverStr);

String signalName = reader.readUTF();

Signal signal;

switch (signalName) {

case ClearReservation.NAME:

signal = ClearReservation.readSignal(reader);

break;

case HailIncomingTrain.NAME:

signal = HailIncomingTrain.readSignal(reader);

break;

case ReservationFree.NAME:

signal = ReservationFree.readSignal(reader);

break;

case SyncFail.NAME:

signal = SyncFail.readSignal(reader);

break;

case SyncReservation.NAME:

signal = SyncReservation.readSignal(reader);

break;

case SyncSuccesful.NAME:

signal = SyncSuccesful.readSignal(reader);

break;

case TryReserve.NAME:
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signal = TryReserve.readSignal(reader);

break;

case UpdatePosition.NAME:

signal = UpdatePosition.readSignal(reader);

break;

case WaitForReservation.NAME:

signal = UpdatePosition.readSignal(reader);

break;

default:

throw new IOException("Unrecognized " + signalName + " signal

received!");

}

DebugMessage.print("Got " + signal.getName() + " to " + recipient,

this);

ControlUnit controlUnit = localControlUnits.get(recipient);

if (controlUnit == null)

throw new Exception("Non-local " + recipient + "! Has " +

localControlUnits.get(0));

controlUnit.addSignal(signal);

}

public static UnitId parseId(String name) throws Exception {

for (UnitId unitId : UnitId.values()) {

if (unitId.toString().equals(name)) {

return unitId;

}

}

throw new Exception("Id not found");

}

}

C.7 Detector

package legoAPI;

import java.io.IOException;

import controlSystem.SwitchBox;

import lejos.nxt.LightSensor;

import lejos.nxt.SensorPort;
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import signals.TrainDetected;

import signals.TrainNoLongerDetected;

import util.DebugMessage;

public class Detector extends Thread {

private final int SLEEP_BETWEEN_POLLING = 25;

private final int MIN_TRAIN_PASS_TIME = 300;

// 10-ish if just the rear or tip is showing, up to 200.

private final int CLOSE_TRAIN_VALUE = 50;

private final int FAR_TRAIN_VALUE = 15;

// Unless ambient light is changing (such as sunrise, sunset), the

base

// value barely changes, only by 0-2 points, and up to 5 rarely.

private final int BASE_VARIANCE_MARGIN = 8;

private int trainValueDiff;

// ~600 at cloudy noon

// ~750 at dark cloudy noon

// ~840 past dusk

// ~400 sun through curtains

private int baseValue;

private SwitchBox parentSwitchbox;

private boolean inStation;

private SensorPort sensorPort;

public Detector(SensorPort sensorPort, SwitchBox parentSwitchbox,

boolean inStation) throws InterruptedException {

this.sensorPort = sensorPort;

new LightSensor(sensorPort, true);

this.parentSwitchbox = parentSwitchbox;

this.inStation = inStation;

Thread.sleep(400); // Necessary to let floodlight take effect

baseValue = sensorPort.readRawValue();

trainValueDiff = inStation ? FAR_TRAIN_VALUE : CLOSE_TRAIN_VALUE;

this.start();

}



90 Implementation Code

public void run() {

try {

TrainDetected signalDetected = new TrainDetected(inStation);

TrainNoLongerDetected signalNotDetected = new

TrainNoLongerDetected(inStation);

String debugString = (inStation ? "In" : "Out") +

parentSwitchbox.id.toString().substring(2);

DebugMessage.print(debugString + " base " + baseValue, this,

true);

while (true) {

while (!trainDetected())

Thread.sleep(SLEEP_BETWEEN_POLLING);

DebugMessage.print(debugString + " detec " +

normalizedValue(), this);

parentSwitchbox.addSignal(signalDetected);

Thread.sleep(MIN_TRAIN_PASS_TIME);

// Wait for train to pass before restarting

while (true) {

Thread.sleep(SLEEP_BETWEEN_POLLING);

if (trainNotDetected()) {

//double check, there can be dark spots on the train

Thread.sleep(SLEEP_BETWEEN_POLLING * 2);

if (trainNotDetected())

break;

}

}

parentSwitchbox.addSignal(signalNotDetected);

DebugMessage.print(debugString + " lost " +

normalizedValue(), this);

Thread.sleep(MIN_TRAIN_PASS_TIME);

}

} catch (

InterruptedException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();
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}

}

// No abs, train white

private boolean trainDetected() {

return normalizedValue() >= trainValueDiff;

}

// Negative

private boolean trainNotDetected() {

return normalizedValue() < BASE_VARIANCE_MARGIN;

}

private int normalizedValue() {

return baseValue - sensorPort.readRawValue();

}

}

C.8 Switch

package legoAPI;

import lejos.nxt.NXTRegulatedMotor;

import util.DebugMessage;

public class Switch {

//The "position" being the number/id of the track switched too

public int switchPosition;

private int initialSwitchPosition;

private final int degrees = 90;

private final int speed = 300;

private NXTRegulatedMotor motor;

public void switchTrack(int newSwitchPosition) throws

InterruptedException {

DebugMessage.print("Switch to" + newSwitchPosition, this);

if(switchPosition!=newSwitchPosition){

if (initialSwitchPosition == newSwitchPosition)

motor.rotateTo(0);

else
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motor.rotateTo(-degrees);

}

}

public void switchOff() {

motor.rotateTo(0);

}

public Switch(NXTRegulatedMotor motorPort, int initialPosition) {

motor = motorPort;

this.initialSwitchPosition = initialPosition;

motor.setSpeed(speed);

this.switchPosition = initialPosition;

}

}

C.9 TrainMotor

package legoAPI;

import lejos.nxt.NXTRegulatedMotor;

import util.DebugMessage;

public class TrainMotor {

public boolean running;

public int defaultSpeedDegrees = 45;

private NXTRegulatedMotor motor;

private boolean leftTrain;

private int directionModifier = -1;

public void stop() {

DebugMessage.print("Stop motor", this);

motor.rotateTo(directionModifier * -4);

running = false;

motor.flt(); // Allows manual reconfiguring/turning of the motor

}

public void start() {

DebugMessage.print("Start motor", this);
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if (running)

DebugMessage.showCatchMessage(new Exception((leftTrain ? "Left"

: "Right") + " motor already started!"), "");

try {

// Remote cannot handle when one train has to be started/stopped

at the same time

if(leftTrain)

Thread.sleep(500);

else

Thread.sleep(1500);

} catch (InterruptedException e) {

}

int limitAngle = directionModifier * defaultSpeedDegrees;

motor.rotateTo(limitAngle);

running = true;

motor.flt(); // Allows manual reconfiguring of the motor

}

public TrainMotor(NXTRegulatedMotor motorPort, boolean leftTrain) {

this.motor = motorPort;

this.leftTrain = leftTrain;

motor.setAcceleration(1500);// 2000

motor.setSpeed(150);// 200

// The right train is for whatever reasons (likely the battery

being

// different) faster than the other

// if (!leftTrain)

// defaultSpeedDegrees -= 10;

// directionModifier = (leftTrain ? 1 : 1);

}

}

C.10 RemoteCalibrator

package nxtUtil;

import legoAPI.TrainMotor;

import lejos.nxt.Button;

import lejos.nxt.Motor;

public class RemoteCalibrator {
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public static void main(String[] args) throws InterruptedException {

TrainMotor trainMotor = new TrainMotor(Motor.B, true);

System.out.println("Wait for calibration.");

while (true) {

for (int i = 0; i < 3; i++) {

trainMotor.start();

Thread.sleep(100);

trainMotor.stop();

}

System.out.println("If train stopped, calibr success, press

back. Else, stop train and left/right btn");

Motor.B.flt(); //Allows user to turn the dial themselves

int btnPressed = Button.waitForAnyPress();

if (btnPressed == Button.ID_ESCAPE)

System.exit(0);

else if (btnPressed == Button.ID_LEFT){

Motor.B.resetTachoCount();

}

else if (btnPressed == Button.ID_RIGHT){

Motor.B.rotate(-2);

Motor.B.resetTachoCount();

}

//Else, if it's enter, try again, as the user might have turned

the dial

}

}

}

C.11 SetNameEast

package nxtUtil;

import legoAPI.Communicator;

import lejos.nxt.comm.Bluetooth;

public class SetNameEast {

public static void main(String[] args) {

Bluetooth.setFriendlyName(Communicator.EastNxtName);

}

}
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C.12 SetNameWest

package nxtUtil;

import legoAPI.Communicator;

import lejos.nxt.comm.Bluetooth;

public class SetNameWest {

public static void main(String[] args) {

Bluetooth.setFriendlyName(Communicator.WestNxtName);

}

}

C.13 ClearReservation

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

public class ClearReservation extends SwitchBoxSignal {

public final static String NAME = "ClearReservation";

public int track;

public ClearReservation(int track) throws IOException {

this.track = track;

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new ClearReservation(reader.readInt());

}

public void writeSignal(DataOutputStream writer) throws IOException {

writer.writeInt(track);

}

public String getName() {

return NAME;

}
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}

C.14 HailIncomingTrain

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

public class HailIncomingTrain extends TrainControlComputerSignal {

public final static String NAME = "HailIncomingTrain";

public UnitId nearbySb;

public HailIncomingTrain(UnitId nearbySb) {

this.nearbySb = nearbySb;

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new

HailIncomingTrain(Communicator.parseId(reader.readUTF()));

}

public void writeSignal(DataOutputStream writer) throws IOException {

writer.writeUTF(nearbySb.toString());

}

public String getName() {

return NAME;

}

}
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C.15 ReservationFree

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

public class ReservationFree extends TrainControlComputerSignal {

public final static String NAME = "ReservationFree";

public ReservationFree() {

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new ReservationFree();

}

public void writeSignal(DataOutputStream writer) throws IOException {

}

public String getName() {

return NAME;

}

}

C.16 Signal

package signals;

import java.io.DataOutputStream;

import java.io.IOException;

import legoAPI.Communicator.UnitId;

public interface Signal {

// Should always have a field like this:

// public static final String NAME = [Name of the signal, AKA

classname in
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// lowercase]; (cannot inherit/enforce static final strings in

subclasses)

public void writeSignal(DataOutputStream writer) throws IOException;

public boolean unitMatchSignal(UnitId recepient) throws IOException;

// Used for accessing the static name from an instance

public String getName();

// Should also have a readSignal with an DataInputStream, that reads

and instantiates a signal from the read values

// (cannot enforce static methods in subclasses)

}

C.17 SwitchBoxSignal

package signals;

import java.io.IOException;

import legoAPI.Communicator.UnitId;

public abstract class SwitchBoxSignal implements Signal {

public boolean unitMatchSignal(UnitId recepient) throws IOException {

if (recepient == UnitId.TccW || recepient == UnitId.TccE)

throw new IOException("Switchbox signal sent to train!");

return true;

}

}

C.18 SyncFail

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;
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public class SyncFail extends SwitchBoxSignal {

public final static String NAME = "SyncFail";

public SyncFail() {

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new SyncFail();

}

public void writeSignal(DataOutputStream writer) throws IOException {

}

public String getName() {

return NAME;

}

}

C.19 SyncReservation

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

public class SyncReservation extends SwitchBoxSignal {

public final static String NAME = "SyncReservation";

public int trackToReserve;

public UnitId train;

public UnitId otherSwitchBox;

public long otherSyncingSince;

public SyncReservation(int trackToReserve, UnitId train, UnitId

otherSwitchBox, long syncingSince) {

this.trackToReserve = trackToReserve;
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this.train = train;

this.otherSwitchBox = otherSwitchBox;

this.otherSyncingSince = syncingSince;

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new SyncReservation(reader.readInt(),

Communicator.parseId(reader.readUTF()),

Communicator.parseId(reader.readUTF()), reader.readLong());

}

public void writeSignal(DataOutputStream writer) throws IOException {

writer.writeInt(trackToReserve);

writer.writeUTF(train.toString());

writer.writeUTF(otherSwitchBox.toString());

writer.writeLong(otherSyncingSince);

}

public String getName() {

return NAME;

}

}

C.20 SyncSuccesful

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

public class SyncSuccesful extends SwitchBoxSignal {

public final static String NAME = "SyncSuccesful";

public SyncSuccesful() {

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new SyncSuccesful();

}
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public void writeSignal(DataOutputStream writer) throws IOException {

}

public String getName() {

return NAME;

}

}

C.21 TrainControlComputerSignal

package signals;

import java.io.IOException;

import legoAPI.Communicator.UnitId;

public abstract class TrainControlComputerSignal implements Signal {

public boolean unitMatchSignal(UnitId recepient) throws IOException {

if (recepient != UnitId.TccW && recepient != UnitId.TccE)

throw new IOException("Switchbox signal sent to train!");

return true;

}

}

C.22 TrainDetected

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

public class TrainDetected extends SwitchBoxSignal {

public final static String NAME = "TrainDetected";

public boolean sensorInStation;



102 Implementation Code

public TrainDetected(boolean sensorInStation) throws IOException {

this.sensorInStation = sensorInStation;

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new TrainDetected(reader.readBoolean());

}

public void writeSignal(DataOutputStream writer) throws IOException {

writer.writeBoolean(sensorInStation);

}

public String getName() {

return NAME;

}

}

C.23 TrainNoLongerDetected

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

public class TrainNoLongerDetected extends SwitchBoxSignal {

public final static String NAME = "TrainNoLongerDetected";

public boolean sensorInStation;

public TrainNoLongerDetected(boolean sensorInStation) throws

IOException {

this.sensorInStation = sensorInStation;

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new TrainNoLongerDetected(reader.readBoolean());

}
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public void writeSignal(DataOutputStream writer) throws IOException {

writer.writeBoolean(sensorInStation);

}

public String getName() {

return NAME;

}

}

C.24 TryReserve

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

public class TryReserve extends SwitchBoxSignal {

public final static String NAME = "TryReserve";

public int track;

public UnitId train;

public int currentPosition;

public TryReserve(int track, UnitId train, int currentPosition)

throws IOException {

this.track = track;

this.train = train;

this.currentPosition = currentPosition;

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new TryReserve(reader.readInt(),

Communicator.parseId(reader.readUTF()), reader.readInt());

}

public void writeSignal(DataOutputStream writer) throws IOException {

writer.writeInt(track);
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writer.writeUTF(train.toString());

writer.writeInt(currentPosition);

}

public String getName() {

return NAME;

}

}

C.25 UpdatePosition

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

public class UpdatePosition extends TrainControlComputerSignal {

public final static String NAME = "UpdatePosition";

public UpdatePosition() throws IOException {

}

public static Signal readSignal(DataInputStream reader) throws

Exception {

return new UpdatePosition();

}

public void writeSignal(DataOutputStream writer) throws IOException {

}

public String getName() {

return NAME;

}

}
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C.26 WaitForReservation

package signals;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

public class WaitForReservation extends TrainControlComputerSignal {

public final static String NAME = "WaitForReservation";

public WaitForReservation() {

}

static Signal readSignal(DataInputStream reader) throws Exception {

return new WaitForReservation();

}

public void writeSignal(DataOutputStream writer) throws IOException {

}

public String getName() {

return NAME;

}

}

C.27 CommTest

package tests;

import java.io.IOException;

import java.util.Hashtable;

import controlSystem.ControlUnit;

import controlSystem.SwitchBox;

import legoAPI.Communicator;

import legoAPI.Communicator.UnitId;

import lejos.nxt.comm.Bluetooth;

import signals.TryReserve;

import util.DebugMessage;
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public class CommTest {

public static void main(String[] args) throws IOException,

InterruptedException {

DebugMessage.printStartUp = false;

Hashtable<Integer, UnitId> tracksReservedSBNW = new

Hashtable<Integer, UnitId>();

tracksReservedSBNW.put(1, UnitId.TccW);

// SwitchBox switchBox = new SwitchBox(UnitId.SbNW, UnitId.SbSW,

UnitId.SbNE, null);

// ControlUnit[] localControlUnits = { switchBox };

// if (Communicator.WestNxtName.equals(Bluetooth.getFriendlyName())) {

// } else {

// }

// Communicator communicator = new Communicator(localControlUnits);

// communicator.instance.sendSignal(UnitId.SbNW, new TryReserve(2,

UnitId.Tcc2, 0));

}

}

C.28 DetectorTest

package tests;

import controlSystem.SwitchBox;

import legoAPI.Communicator.UnitId;

import legoAPI.Communicator;

import legoAPI.Detector;

import lejos.nxt.Button;

import lejos.nxt.LCD;

import lejos.nxt.SensorPort;

import lejos.nxt.comm.Bluetooth;

import util.DebugMessage;

public class DetectorTest {

public static void main(String[] args) throws InterruptedException {

DebugMessage.printAPI = true;

DebugMessage.printStartUp = true;
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boolean isWest =

Communicator.WestNxtName.equals(Bluetooth.getFriendlyName());

SwitchBox switchBoxNW = new SwitchBox();

switchBoxNW.id = isWest ? UnitId.SbNW : UnitId.SbSE;

new Detector(SensorPort.S1, switchBoxNW, true);

new Detector(SensorPort.S2, switchBoxNW, false);

SwitchBox switchBoxSW = new SwitchBox();

switchBoxSW.id = isWest ? UnitId.SbSW : UnitId.SbNE;

new Detector(SensorPort.S3, switchBoxSW, false);

new Detector(SensorPort.S4, switchBoxSW, true);

while (true) {

Button.waitForAnyPress();

LCD.clear();

}

}

}

C.29 DetectSensor

package tests;

import lejos.nxt.Button;

import lejos.nxt.LightSensor;

import lejos.nxt.SensorPort;

import lejos.nxt.UltrasonicSensor;

public class DetectSensor {

public static void main(String[] args) {

System.out.println(SensorPort.S2.getMode());

System.out.println(SensorPort.S3.getType());

System.out.println(SensorPort.S4.getSensorPin(4));

UltrasonicSensor ultrasonicSensor = new

UltrasonicSensor(SensorPort.S1);

UltrasonicSensor ultrasonicSensor2 = new

UltrasonicSensor(SensorPort.S2);

LightSensor light1 = new LightSensor(SensorPort.S1, true);

LightSensor light2 = new LightSensor(SensorPort.S2, true);
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//For ultrasonicSensor S1 and light S2

System.out.println(ultrasonicSensor.getDistance()); // Just

returns 255

System.out.println(ultrasonicSensor2.getDistance()); // Just

returns 255

System.out.println(light1.getLightValue()); // Returns 0

System.out.println(light2.getLightValue()); // Just returns 255

Button.waitForAnyPress();

}

}

C.30 Ev3onNxt

package tests;

import lejos.nxt.LightSensor;

import lejos.nxt.Motor;

import lejos.nxt.NXTRegulatedMotor;

import lejos.nxt.SensorPort;

public class Ev3onNxt {

public static void main(String[] args) throws InterruptedException {

System.out.println("Ev3 test:");

NXTRegulatedMotor motorA = Motor.A;

NXTRegulatedMotor motorB = Motor.B;

motorA.forward();

motorB.forward();

//Not

LightSensor colorSensor = new LightSensor(SensorPort.S1,true);

while (true) {

System.out.println(colorSensor.getLightValue());

System.out.println(colorSensor.readValue());

}

}

}



C.31 FullAPITest 109

C.31 FullAPITest

package tests;

public class FullAPITest {

public static void main(String[] args) throws InterruptedException {

System.out.println("API test: Press to start!");

while (true) {

// int buttonPressed = Button.waitForAnyPress();

// if (Button.ID_ESCAPE == buttonPressed)

// break;

// System.out.println("Trains are a go!");

// TrainMotor train1 = new TrainMotor(Motor.B, 2);

// train1.start();

//

// Detector trainDetector = new Detector(SensorPort.S1);

// boolean noTrainSpotted = true;

// while (noTrainSpotted) {

// noTrainSpotted = !trainDetector.trainSpotted();

// }

// Switch switch1 = new Switch(Motor.A);

//

// switch1.switchTrack();

//

// Thread.sleep(3000);

//

// train1.stopTrain();

}

}

}

C.32 HelloWorld

package tests;

import lejos.nxt.Button;

public class HelloWorld {

public static void main (String[] args) {

System.out.println("Hello World");

Button.waitForAnyPress();

}

}
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C.33 MotorTest

package tests;

import legoAPI.TrainMotor;

import lejos.nxt.Button;

import lejos.nxt.Motor;

public class MotorTest {

public static void main(String[] args) {

TrainMotor trainMotor = new TrainMotor(Motor.B, true);

TrainMotor trainMotor2 = new TrainMotor(Motor.A, false);

boolean started1 = false;

boolean started2 = false;

System.out.println("Press enter to start/stop main train1, any

other for train2");

while (true) {

System.out.println(Motor.B.getTachoCount());

if (Button.waitForAnyPress() == Button.ID_ENTER) {

if (started1) {

trainMotor.stop();

started1 = false;

} else {

trainMotor.start();

started1 = true;

}

} else {

if (started2) {

trainMotor2.stop();

started2 = false;

} else {

trainMotor2.start();

started2 = true;

}

}

}

}

}

C.34 SensorTest
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package tests;

import lejos.nxt.LCD;

import lejos.nxt.LightSensor;

import lejos.nxt.SensorPort;

public class SensorTest {

public static void main(String[] args) throws InterruptedException {

LightSensor lightSensor1 = new LightSensor(SensorPort.S1, true);

new LightSensor(SensorPort.S2, true);

new LightSensor(SensorPort.S3, true);

new LightSensor(SensorPort.S4, true);

Thread.sleep(400);

lightSensor1.calibrateLow();

int baseValue1 = SensorPort.S1.readRawValue();

int baseValue2 = SensorPort.S2.readRawValue();

int baseValue3 = SensorPort.S3.readRawValue();

int baseValue4 = SensorPort.S4.readRawValue();

while (true) {

LCD.drawString("Port1:", 0, 0);

LCD.drawInt(SensorPort.S1.readRawValue(), 4, 0, 1);

LCD.drawInt(baseValue1 - SensorPort.S1.readRawValue(), 4, 0, 2);

// LCD.drawInt(lightSensor1.readValue(),4, 0, 3);

LCD.drawString("Port2:", 0, 5);

LCD.drawInt(SensorPort.S2.readRawValue(), 4, 0, 6);

LCD.drawInt(baseValue2 - SensorPort.S2.readRawValue(), 4, 0, 7);

LCD.drawString("Port3:", 10, 0);

LCD.drawInt(SensorPort.S3.readRawValue(), 4, 10, 1);

LCD.drawInt(baseValue3 - SensorPort.S3.readRawValue(), 4, 10,

2);

LCD.drawString("Port4:", 10, 5);

LCD.drawInt(SensorPort.S4.readRawValue(), 4, 10, 6);

LCD.drawInt(baseValue4 - SensorPort.S4.readRawValue(), 4, 10,

7);

}

}

}
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C.35 SimpleTrainRun

package tests;

import legoAPI.TrainMotor;

import lejos.nxt.Button;

import lejos.nxt.Motor;

public class SimpleTrainRun {

public static void main(String[] args) throws InterruptedException {

System.out.println("Press any button to start, escape to leave.");

while (true) {

int buttonPressed = Button.waitForAnyPress();

if(Button.ID_ESCAPE == buttonPressed)

break;

System.out.println("Trains are a go!");

TrainMotor train1 = new TrainMotor(Motor.B, true);

train1.start();

Thread.sleep(2000);

train1.stop();

}

}

}

C.36 SwitchTest

package tests;

import legoAPI.Switch;

import lejos.nxt.Button;

import lejos.nxt.Motor;

public class SwitchTest {

public static void main(String[] args) throws InterruptedException {

Switch switch1 = new Switch(Motor.A, 0);

int position = 1;

System.out.println("Press to switch");

while(true){

Button.waitForAnyPress();

switch1.switchTrack(position);

if(position == 0)
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position = 1;

else

position = 0;

}

}

}

C.37 SystemTest

package tests;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Hashtable;

import java.util.LinkedList;

import controlSystem.ControlUnit;

import controlSystem.SwitchBox;

import controlSystem.TrainControlComputer;

import legoAPI.Communicator;

import legoAPI.Detector;

import legoAPI.Switch;

import legoAPI.Communicator.UnitId;

import legoAPI.TrainMotor;

import lejos.nxt.Button;

import lejos.nxt.Motor;

import lejos.nxt.SensorPort;

import lejos.nxt.comm.Bluetooth;

import signals.TrainDetected;

import signals.TrainNoLongerDetected;

import util.DebugMessage;

public class SystemTest {

private static TrainControlComputer train;

// @formatter:off

/* Track shape and naming is as such:

1

_______

___/_______\___

/ NW 2 NE \

| |

0| | 3
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| SW 4 SE |

\_______________/

\_______/

5

Points/SwitchBoxes are designated by cardinal direction (North West =

NW). Stations are referred to as outer (1,5) and inner (2,4).

Train 1 starts at 1 and train 2 at 4. Switches connect to the inner

tracks (2, 4)

*/

// @formatter:on

public static void main(String[] args) throws IOException,

InterruptedException {

// Debug.disabled = true;

// Debug.printCommunicator = true;

// Debug.printSwitchBox = true;

DebugMessage.printTrainControlComputer = true;

DebugMessage.attachControlUnitId = true;

// Debug.allEnabled = true;

Hashtable<UnitId, ControlUnit> localControlUnits = new

Hashtable<UnitId, ControlUnit>();

if (Communicator.WestNxtName.equals(Bluetooth.getFriendlyName())) {

// Initializing SBNW

Hashtable<Integer, UnitId> tracksReservedSBNW = new

Hashtable<Integer, UnitId>();

tracksReservedSBNW.put(1, UnitId.TccW);

ArrayList<Integer> tracksNW = new ArrayList<Integer>();

tracksNW.add(0);

tracksNW.add(1);

tracksNW.add(2);

Switch switchNW = new Switch(Motor.A, 2);

SwitchBox switchBoxNW = new SwitchBox(UnitId.SbNW, tracksNW,

tracksReservedSBNW, new int[] { 0, 2 }, UnitId.SbNE,

UnitId.SbSE, switchNW);

// Detector detectorNwEntrance = new Detector(SensorPort.S2,

switchBoxNW,

// false);

// Detector detectorNwStation = new Detector(SensorPort.S1,

switchBoxNW,

// true);
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// Initializing SBSW

Hashtable<Integer, UnitId> tracksReservedSBSW = new

Hashtable<Integer, UnitId>();

tracksReservedSBSW.put(0, null);

tracksReservedSBSW.put(4, UnitId.TccE);

tracksReservedSBSW.put(5, null);

ArrayList<Integer> tracksNE = new ArrayList<Integer>();

tracksNE.add(0);

tracksNE.add(4);

tracksNE.add(5);

Switch switchSW = new Switch(Motor.C, 4);

SwitchBox switchBoxSW = new SwitchBox(UnitId.SbSW, tracksNE,

tracksReservedSBSW, new int[] { 0, 4 }, UnitId.SbSE,

UnitId.SbNW, switchSW);

// Detector detectorSWentrance = new Detector(SensorPort.S3,

switchBoxSW,

// false);

// Detector detectorSWstation = new Detector(SensorPort.S4,

switchBoxSW,

// true);

// Initializing train1

int[] route = { 3, 5, 0, 1 };

UnitId[] routeSwitchBoxes = { UnitId.SbNE, UnitId.SbSE,

UnitId.SbSW, UnitId.SbNW };

TrainMotor trainMotor = new TrainMotor(Motor.B, true);

train = new TrainControlComputer(UnitId.TccW, 1, trainMotor,

route, routeSwitchBoxes, false);

ControlUnit[] units = { train, switchBoxNW, switchBoxSW };

Communicator communicator = new Communicator(units);

train.start();

} else {

// Initializing SBNE

Hashtable<Integer, UnitId> tracksReservedSBNE = new

Hashtable<Integer, UnitId>();

tracksReservedSBNE.put(1, UnitId.TccW);

ArrayList<Integer> tracksNE = new ArrayList<Integer>();



116 Implementation Code

tracksNE.add(1);

tracksNE.add(2);

tracksNE.add(3);

Switch switchNE = new Switch(Motor.A, 2);

SwitchBox switchBoxNE = new SwitchBox(UnitId.SbNE, tracksNE,

tracksReservedSBNE, new int[] { 3, 2 }, UnitId.SbNW,

UnitId.SbSE, switchNE);

// Detector detectorNeEntrance = new Detector(SensorPort.S3,

switchBoxNE,

// false);

// Detector detectorNeStation = new Detector(SensorPort.S4,

switchBoxNE,

// true);

// Initializing SBSE

Hashtable<Integer, UnitId> tracksReservedSBSE = new

Hashtable<Integer, UnitId>();

tracksReservedSBSE.put(4, UnitId.TccE);

ArrayList<Integer> tracksSE = new ArrayList<Integer>();

tracksSE.add(3);

tracksSE.add(4);

tracksSE.add(5);

Switch switchSE = new Switch(Motor.A, 2);

SwitchBox switchBoxSE = new SwitchBox(UnitId.SbSE, tracksSE,

tracksReservedSBSE, new int[] { 3, 4 }, UnitId.SbSW,

UnitId.SbNE, switchSE);

// Detector detectorSeEntrance = new Detector(SensorPort.S2,

switchBoxSE,

// false);

// Detector detectorSeStation = new Detector(SensorPort.S1,

switchBoxSE,

// true);

// Initializing train2

int[] route = { 3, 2, 0, 4 };

UnitId[] routeSwitchBoxes2 = { UnitId.SbSE, UnitId.SbNE,

UnitId.SbNW, UnitId.SbSW };

TrainMotor trainMotor = new TrainMotor(Motor.C, false);
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train = new TrainControlComputer(UnitId.TccE, 4, trainMotor,

route, routeSwitchBoxes2, false);

ControlUnit[] units = { train, switchBoxSE, switchBoxNE };

Communicator communicator = new Communicator(units);

train.start();

}

do {

Button.waitForAnyPress();

} while (!train.trainMotor.running);

UnitId nextSb = train.routeSwitchBoxes[train.routeIterator];

Communicator.instance.sendSignal(nextSb, new TrainDetected(true));

Communicator.instance.sendSignal(nextSb, new TrainDetected(false));

Communicator.instance.sendSignal(nextSb, new

TrainNoLongerDetected(true));

Communicator.instance.sendSignal(nextSb, new

TrainNoLongerDetected(false));

do {

Button.waitForAnyPress();

} while (!train.trainMotor.running);

nextSb = train.routeSwitchBoxes[train.routeIterator];

Communicator.instance.sendSignal(nextSb, (new

TrainDetected(false)));

do {

Button.waitForAnyPress();

} while (train.trainMotor.running);

Communicator.instance.sendSignal(nextSb, new TrainDetected(true));

Communicator.instance.sendSignal(nextSb, new

TrainNoLongerDetected(false));

Communicator.instance.sendSignal(nextSb, new

TrainNoLongerDetected(true));

do {

Button.waitForAnyPress();

} while (!train.trainMotor.running);

nextSb = train.routeSwitchBoxes[train.routeIterator];

Communicator.instance.sendSignal(nextSb, new TrainDetected(true));

Communicator.instance.sendSignal(nextSb, new TrainDetected(false));

Communicator.instance.sendSignal(nextSb, new

TrainNoLongerDetected(true));
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Communicator.instance.sendSignal(nextSb, new

TrainNoLongerDetected(false));

}

}

C.38 TestMultipleConnection

package tests;

import java.io.DataInputStream;

import java.io.IOException;

import lejos.nxt.LCD;

import lejos.nxt.comm.Bluetooth;

import lejos.nxt.comm.NXTConnection;

public class TestMultipleConnection {

//Nope

public static void main(String[] args) throws IOException {

NXTConnection connection = Bluetooth.waitForConnection();

System.out.println("wait 2");

NXTConnection connection2 = Bluetooth.waitForConnection();

System.out.println("wait 3");

NXTConnection connection3 = Bluetooth.waitForConnection();

System.out.println("wait 4");

NXTConnection connection4 = Bluetooth.waitForConnection();

System.out.println("wait 5");

NXTConnection connection5 = Bluetooth.waitForConnection();

System.out.println("wait 6");

NXTConnection connection6 = Bluetooth.waitForConnection();

System.out.println("dis1");

DataInputStream dis = connection.openDataInputStream();

System.out.println("dis2");

DataInputStream dis2 = connection2.openDataInputStream();
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System.out.println("dis3");

DataInputStream dis3 = connection3.openDataInputStream();

System.out.println("dis4");

DataInputStream dis4 = connection4.openDataInputStream();

System.out.println("di s5");

DataInputStream dis5 = connection5.openDataInputStream();

System.out.println("dis6");

DataInputStream dis6 = connection6.openDataInputStream();

LCD.drawInt(6, 1, 1);

boolean readBoolean = dis6.readBoolean();

LCD.drawString(readBoolean + " " + 1, 1, 1);

boolean readBoolean2 = dis.readBoolean();

LCD.drawString(readBoolean2 + " " + 3, 1, 1);

int readInt = dis3.readInt();

LCD.drawString(readInt + " " + 3, 1, 1);

byte readByte = dis6.readByte();

LCD.drawString(readByte + " " + 2, 1, 1);

int readInt2 = dis2.readInt();

LCD.drawString(readInt2 + " " + 6, 1, 1);

int readInt3 = dis6.readInt();

LCD.drawString(readInt3 + " end", 1, 1);

}

}

C.39 TrainSpeed

package tests;

import legoAPI.TrainMotor;

import lejos.nxt.Button;

import lejos.nxt.Motor;

public class TrainSpeed {

public static void main(String[] args) throws InterruptedException {

System.out.println("Press any button to start, escape to leave.");

while (true) {
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int buttonPressed = Button.waitForAnyPress();

if (Button.ID_ESCAPE == buttonPressed)

break;

else if (buttonPressed == Button.ID_RIGHT) {

Motor.B.rotate(50);

} else if (buttonPressed == Button.ID_LEFT) {

Motor.B.rotate(-50);

} else if (buttonPressed == Button.ID_ENTER) {

Motor.B.rotateTo(0);

}

}

}

}

C.40 UltraSonic

package tests;

import java.awt.peer.ButtonPeer;

import legoAPI.Detector;

import lejos.nxt.Button;

import lejos.nxt.LCD;

import lejos.nxt.SensorPort;

import lejos.nxt.UltrasonicSensor;

public class UltraSonic {

//Too unreliable, value often shifting

public static void main(String[] args) throws InterruptedException {

UltrasonicSensor ultra = new UltrasonicSensor(SensorPort.S4);

ultra.setMode(UltrasonicSensor.MODE_CONTINUOUS);

Thread.sleep(250);

int baseValue = ultra.getDistance();

while (true) {

LCD.drawInt(ultra.getDistance(), 4, 0, 0);

LCD.drawInt((int) (ultra.getRange()), 4, 0, 2);

LCD.drawInt((int) (ultra.getDistance() -baseValue), 4, 0, 4);

// Doesn't work

// LCD.drawInt(SensorPort.S4.readRawValue(), 4, 0, 3);
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// LCD.drawInt(SensorPort.S4.readValue(), 4, 0, 4);

//

// LCD.drawInt(baseValue - SensorPort.S4.readRawValue(), 4, 0, 6);

}

}

}

C.41 DebugMessage

package util;

import javax.microedition.lcdui.Display;

import controlSystem.ControlUnit;

import controlSystem.SwitchBox;

import controlSystem.TrainControlComputer;

import legoAPI.Communicator;

import lejos.nxt.Button;

import lejos.nxt.LCD;

public class DebugMessage {

public static boolean disabled;

public static boolean allEnabled;

public static boolean printStartUp;

public static boolean printCommunicator;

public static boolean printSwitchBox;

public static boolean printTrainControlComputer;

public static boolean attachControlUnitId;

public static boolean attachObjectAbbreviation;

public static boolean printAPI;

public static void print(String message, Object printingClass,

boolean override, boolean isStartUp) {

if (disabled)

return;

if (isStartUp && !printStartUp && !allEnabled)

return;
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String prefix = "";

if (printingClass instanceof Communicator) {

// isStatus overrrides / has higher priority than the rest

if (!printCommunicator && !override && !allEnabled)

return;

prefix = "C";

} else if (printingClass instanceof SwitchBox) {

if (!printSwitchBox && !override && !allEnabled)

return;

prefix = "SB";

} else if (printingClass instanceof TrainControlComputer) {

if (!printTrainControlComputer && !override && !allEnabled)

return;

prefix = "TCC";

} else {

if (!printAPI && !override && !allEnabled)

return;

prefix = "API";

}

if (attachControlUnitId && (printingClass instanceof ControlUnit))

{

String id = ((ControlUnit) printingClass).id.toString();

if (printingClass instanceof SwitchBox)

id = id.substring(id.length() - 2);

else

id = id.substring(id.length() - 4);

message = id + " " + message;

} else if (attachObjectAbbreviation)

message = prefix + " " + message;

if (message.length() == (Display.SCREEN_CHAR_WIDTH))

System.out.print(message);

else

System.out.println(message);

}

public static void print(String message, Object printingFrom, boolean

isStartUp) {

print(message, printingFrom, false, isStartUp);

}

public static void print(String message, Object printingFrom) {

print(message, printingFrom, false, false);

}
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public static void showCatchMessage(Exception e, String className,

String exceptionType) {

disabled = true;

if (exceptionType != null)

System.out.println(className + " threw " + exceptionType + "!");

else

System.out.println(className + " threw exception!");

if (e.getMessage() != null)

System.out.println(e.getMessage());

System.out.println("Press for trace");

Button.waitForAnyPress();

LCD.clear();

e.printStackTrace();

Button.waitForAnyPress();

}

public static void showCatchMessage(Exception e, String className) {

showCatchMessage(e, className, null);

}

}
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