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Summary (English)

Modern equipment for X-ray tomography produces large amounts of data, and
it is necessary to develop efficient high-performance algorithms and software for
treating such problems. In this master thesis such algorithms that can take
advantage of GPU accelerators are developed and implemented.

Specifically, central processing unit (CPU) and graphical processing unit (GPU)
kernels are developed in C++, implementing the projection method introduced
by Joseph, for use with large-scale tomographic reconstruction problems in an
existing framework.

The implementation is compared to other projection methods both with regard
to reconstruction quality and computation performance. This is specifically ori-
ented towards block-sequential and block-parallel versions of the row-oriented
Kaczmarz algorithm (also known as ART), that can use the CPU and/or GPU
to compute the forward- and back-projections without explicitly forming and
storing the so-called system matrix. Block-sequential and block-parallel versions
of the reconstruction algorithm will be compared to highlight the specific ad-
vantages and disadvantages to the different approaches, and an implementation
of the block-sequential method, proven to be superior for multicore computing,
is tested and analysed for the best performance with domain decomposition.

The work focuses on implementation aspects, including issues of efficiency and
portability. Background regarding the theoretical foundation of the algorithms
is also studied. The software is tested on large-scale experimental data from
DTU and has performance studies and comparison of the chosen projection
methods conducted.

KEYWORDS: Block methods, block-sequential, block-parallel, ART methods,
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SIRT methods, High-Performance Computing, tomography, tomographic image
reconstruction, computed tomography, CT, projection methods, Joseph method,
Line length method, backprojection method



Summary (Danish)

Moderne udstyr til X-ray tomografi producerer store mængder data, og det er
nødvendigt at udvikle effektive high-performance algoritmer og software for at
behandle sådanne problemer. I denne kandidat afhandling vil sådanne algorit-
mer, der kan udnytte GPU acceleratorer, blive udviklet og implementeret.

Specifikt bliver CPU og GPU kernels udvilket i C++, som implementerer pro-
jektionsmetoden introduceret af Joseph, til brug med stor-skala tomografisk
rekonstruktionsproblemer i et eksisterende framework.

Implementationen er sammenlignet med øvrige projektionsmetoder både i rela-
tion til kvaliteten af rekonstruktion og beregningsmæssig ydeevne. Dette er spe-
cifikt beregnet mod blok-sekventielle og blok-parallelle versioner af den række-
orienterede Kaczmarz algoritme (også kendt som ART), som kan bruge CPUen
og/eller GPUen til at beregne forward- og back-projections uden eksplicit at
konstruere og lagre den såkaldte system matrix.

Blok-sekventielle og blok-parallelle versioner af rekonstruktions algoritmen vil
blive sammenlignet for at belyse de specifikke fordele og ulemper ved de forskelli-
ge fremgangsmåder, og en implementation af den blok-sekventielle metode, vist
at være bedre ved multicore computing, er testet og analyseret for at få den
bedste ydeevne med domæne opsplitning.

Arbejdet med projektet fokuserer på implementation aspekter, inkluderende om-
råder om effektivitet og integration. Baggrund omkring det teoretiske grundlag
for algoritmerne bliver ligeledes studeret. Softwaren bliver testet på stor-skala
eksperimentel data fra DTU og ydelses-studier og sammenligninger for de valgte
projektionsmetoder bliver udført.
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NØGLEORD: Blok metoder, blok-sekventiel, blok-parallel, ART metoder, SIRT
metoder, Høj-Performance Computing, tomografi, tomografisk billede gendan-
nelse, computed tomografi, CT, Joseph metode, line length metode
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supervision of Associate Professor Bernd Dammann, Hans Henrik Brandenborg
Sørensen and Professor Per Christian Hansen.

Structuring

The structure of this thesis will be to regularly introduce the relevant theory
as a support of obtained results, examples, implementation and discussion such
that these two parts mutually support each other.

The goal of this is to have a continuous flow throughout the report with the
focus and result of the project in mind the entire way through.

After introducing the underlying concepts and motivation in chapter 1, we will
cover the conversion from the physical world described by tomography to the
compute part of computed tomography in chapter 2. This will focus on mod-
elling the physics involved as accurately as possible and how this can be imple-
mented with different choice of projection methods.

How our modelled problem is solved is covered in chapter 3, where we look at
large 3D problems where large amounts of data is an issue. We will especially
compare how the quality of the reconstruction of our CT problem compares for
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the implementation.

How the covered methods are implemented is covered in chapter 4 along with
areas to be aware of when implementing the methods and where to optimize the
code for performance.

High-Performance Computing aspects for large-scale problems will be looked
into in chapter 5 along with a performance study of our implementation for
large-scale problems on state-of-the-art hardware before concluding the thesis.
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Chapter 1

Introduction

In this thesis the concept, and the use and relevance of tomography and com-
puted tomography (CT) will first be introduced. This includes the fundamentals
of CT such as the physical set-up. Following this is a run-down of some integral
methods used in CT, which is the Radon transform, Filtered backprojection
(FBP) and algebraic methods, where the latter is the main focus point of this
thesis. This will be tied to the aspect of High-Performance Computing (HPC)
and why this is highly relevant for computed tomography, and the motivation
of this project. Especially the performance of the examined projection model,
called the Joseph method, compared to other widely-used methods, is of im-
portance in this study. We wish to show that it is viable for High-Performance
Computing on large-scale problems, with a variety of advantages over other
methods.

The Joseph projection method has been implemented for both CPU and GPU
computation with tomographic reconstruction software, to accomodate for a
wider range of hardware and usability.

1.1 Tomography

The concept of tomography refers to imaging by sectioning or slicing. The
word "tomography" is derived from Ancient Greek tomos, meaning "slice" or
"section" and graphō, meaning "to write".
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Modern tomography is usually referring to tomographic reconstruction. It has
many variations of gathering projection data by projecting beams through an
object at multiple angles and applying the data to a tomographic reconstruction
software algorithm. Said algorithm will then output the desired reconstructed
image of the object interior in accordance with the methods involved with the
software algorithm.

Tomography has a lot of important applications, a major one being in medical
imaging where computed tomography is used as a tool to diagnose or screen-
ing of discease and to supplement X-rays and medical ultrasonography. In this
effect it can be used to plan an incision or treatment method prior to actually
operating with the ability to observe the interior of an object strictly from the
exterior without any intrusion, except for in the form of radiation.

(a) X-ray CT (b) MRI (c) SPECT (d) PET

Figure 1.1: In figure (a) is a X-ray driven computed tomography (CT) scan-
ner, while figure (b) shows a magnetic resonance imaging (MRI)
scanner [18]. Figure (c) displays a Single-photon emission com-
puted tomography (SPECT) scanner, whereas a Positron emission
tomography (PET) scanner can be seen in (d) [22]. All of these
four scanners used for medical imaging look fairly identical. This
is not much of a surprise as the underlying mathematical problem
is the same seen in all four types of medical imaging scanners, with
the main difference being the physical phenomena used for signal
acquisition, be it X-rays, gamma rays, magneticism or something
else.

Figure 1.1 shows four types of medical imaging scanners based on computed
tomography. A so-called CT or CAT scanner can be seen in figure 1.1a. This
type of medical imaging scanner is based on X-ray radiation for constructing
measured projection data, while the MRI scanner shown in figure 1.1b uses
magnetic resonance to construct projections of the target volume. The SPECT
(Single-photon emission computed tomography) scanner in figure 1.1c and PET
(positron emission tomography) scanner in figure 1.1d both rely on detecting
radiation from gamma-emitting radioisotope, injected into the patient prior to
the scan [22].
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The first Computer Tomograph was invented by Sir Godfred Newbold Hounsfield
in 1969, and his original prototype, that was ready in 1971, worked by acquiring
160 parallel readings from 180 angles with a separation of 1 degree between
each angle. A single scan could take up to 5 minutes and processing the data
from the first scan and constructing a reconstructed image took 2.5 hours of
work from the EMI computer center (at EMI Central Research Laboratories in
Hayes, UK) by Algebraic Reconstruction Technique (ART) [11].

The scanners used for Computed Tomography went through a technical evolu-
tion after the first CT scanner that was mainly used for brain CT. After the EMI
head scanner began being used actively in medicine in 1971, the competition
to the Computed Tomography scanner started introducing faster scanners to
the market. To improve the signal acquisition time of over 5 minutes, the next
generation of scanners began measuring multiple readings during a scan instead
of just a single one as before. This was accomplished by changing the geometry
of the beam from a single ray to a so-called fan-beam, utilizing a detector array
instead of a single point for detection. This beam set-up can be seen to the right
in figure 1.5 on page 8.

This second generation of CT scanners had the fan-beam geometry set-up for
signal acquisition as the distinguishing feature, but were still using the step and
shoot approach when scanning an object. This is where the ray source and
detector plane are both rotated in between each measurement angle, in contrast
to measuring under a continuous rotation. The introduction of the fan-beam
did achieve an improvement in performance even if the first scanners with this
technology only used three detector elements per fan. But this number was
quickly increased.

The first whole-body CT scanner was introduced by Hounsfield in 1975 and
brought to the market in 1976. This device made it possible to reduce the
signal acquisition time from 5 minutes per scan as for the first generation of
CT scanners, to an astonishing 18 seconds per scan by using a 20 elements
detector. The reduction time of a single scan to below 20 seconds was considered
a breakthrough for the technology, as it allowed a scan through the thorax with
next to no movement with the patient holding his or her breath during the scan.

The next evolutionary step for the Computed Tomography scanner happened in
the period between 1974-1977. Here, several companies were developing the next
generation of scanners that would only require rotary motion using broader fan-
beam than seen previously. This was accomplished by integrating the radiation
source and detector system into what later became known as a "gantry", where
the source and detector mechanism rotates around the stationary patient and
thus allows for a whole-body Computed Tomography examination. The modern
design of this gantry can be seen for four different kind of Computed Tomogra-
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phy in figure 1.1 on page 2, where the patient is located on the stationary bench
and the measurement device is then rotated around the patient.

1.1.1 Computed tomography

In medicine, the terms computed tomography (CT) or computerized axial to-
mography (CAT) are mostly referring to the X-ray CT or CAT scans as it the
most common form of CT. This is a bit of a misconception though, as com-
puted tomography covers a wide range of techniques using different physical
phenomena for the signal acquisition to construct the tomographic image, such
as magnetic resonance imaging (MRI) that uses radio-frequency waves, electri-
cal resistivity tomography (ERT) with the use of electrical resistance, Single-
photon emission computed tomography (SPECT) where gamma rays are used,
or Positron emission tomography (PET) with gamma rays [23]. The under-
lying mathematical problem is the same for all of these techniques with the
main difference being the equipment and type of radiation used for the signal
acquisition.

Figure 1.2: General physical set-up of a tomographic image reconstuction
problem with a cone-beam [4].

Figure 1.2 shows a general physical set-up of a Computed Tomgraphy scan with
a cone-beam, as section 1.1 has described as third generation CT scanners. The
radiation source projects a beam through the object and onto a detector plane
while circling the scanned object around the rotational axis. The main difference
of the physical set-up between a fan-beam and a cone-beam is how the cone-
beam will cover a greater area of the object at any one projection angle and
that a detector plane is used compared to a line of detectors.
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Classical Computed Tomography has a wide range of applications. Many of
these medical applications are based on perfusion measurements, which can be
perfusion inside tumors or livers or to measure cerebral blood flow and volume
in brain perfusions. For these methods to reach the required medical standard,
application specific contrast agent often has to be used in combination with CT
scanners to accurately measure the desired perfusion.

CT is also an important technology as a planning tool, and many kinds of
surgeries and radiotherapies are planned from the patient information attained
non-invasively out of a classical CT system.

While the classical CT system and its medical applications are exemplary in
their use to conveying the history and the basics of the technology, time has
seen the innovation that is Computed Tomography make its way into many
different specialized diagnostic machines such as Breast CT systems, Dental
CT or Micro CT and even into quality assurance and testing of materials and
products in industry. This is commonly referred to as Non-Destructive Testing
(NDT) [11].

1.1.2 Computational complexity

When applying tomographic reconstruction, the tomography problems will in
most cases become very big and computationally demanding. This is because we
want the reconstructed solution to be of as high precision and resolution as pos-
sible, which in turn causes the number of angles that rays are projected through
the object to increase. This is done with the goal of increasing the precision
of the solution but will also increase the number of projection planes. Another
reason for the problems becoming very large is how the solution domain is sec-
tioned into smaller and smaller parts during the discretization of the domain.
This is done, for one, to increase the resolution and physical correctness of the
reconstructed image and also to accommodate the available hardware as much
as possible to get the most performance out of the implementation as possible.
But this will be discussed in more detail in subsection 1.5.4 and chapter 2.

The increasing complexity in CT can be divided into two underlying causes,
both of which advocates the significance of High-Performance Computing in
Computed Tomography. On one hand the complexity in CT is associated with
the complexity of the used reconstruction algorithm and on the other the com-
plexity is also determined by the amount of data used for the image recon-
struction. An increase in the number of rays and projection angles will have a
significant impact on the complexity of the CT problem that is to be solved.
When considering time critical imaging, as is seen in the use of CT in medicine,
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the amount of data per time is especially important.

Figure 1.3: Increase in measured signals per second for CT systems through
the decades since the introduction of the technology [11].

Since its introduction, when Sir Godfred Newbold Hounsfield and Allan McLeod
Cormack was awarded the Nobel Price in Medicine in 1979 for their invention
of Computed Tomography, the technical complexity of Computed Tomography
has been on the rise. Especially the number of measured signals per time during
a tomographic scan has been on an exponential rise. In figure 1.3 can be seen
the development in measured signals per second for CT systems from the 1970s
until recent times. The exponential increase in problem sizes in Computed
Tomography put a large demand on the implementation of the applied image
reconstruction algorithms.

The original EMI head scanner introduced by Hounsfield used a just 802 pixel
images, while most modern scanners use at least 5122 up to and beyond 10242

image matrices [11].

Boyd et al. [3] stated a recommendation for CT fan-beam scanners using an
image resolution of n × n per image slice to have 2n as the number of angular
samples, and the number of samples in a projection as 1.4n. The resolution
improves with an increase in n, but so does the total number of attenuation
measurements and with O(n2) at that. A higher resolution is always desirable
from an image reconstruction perspective, but there has to be struck a balance
between higher resolution and number of feasible measurements. In practise
this balance often leads to a smaller number of projection angles, making some
reconstruction methods perform significantly worse.
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1.2 The Radon transform

The basics of computed tomography is the problem of reconstructing the internal
structure of an object from multiple projections of that object without actually
entering the object, also called non-invasive three-dimensional (3D) imaging [2].
By rotating a beam around the object at different angles, sending out rays
from a known source location to a known detector plane, 2D projections are
acquired from the known amount of energy that has been absorbed through
the object from the radiation by measurements from the detector plane. It
can be expressed that the absorbed amount of energy and the projections are
acquired through a transformation, called the Radon transform, that maps a
line (a ray) into a real number on the projected plane [8]. Such a transform can
be described for any ray travelling through the domain with the scanned object.
The Radon transform represents the projection data obtained as the output of
a tomographic scan

Figure 1.4: The Radon transform maps a line going through the volume (a
sequence of voxels intersected by the ray in the discrete case) onto
a number on the projection plane (a pixel value).

If the Radon transform maps a line L contained in the domain Ω into a real
number, L → R, which is to say a mapping of the picture X to its sinogram,
and if the density at a point x ∈ Ω is denoted by d(x), a physical model for
the continuous case can be described with the Lambert-Beer’s law for any line
L ∈ Ω as:
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R(L) =

∫
x∈L

d(x)ds. (1.1)

By sending rays through an object from multiple angles and creating a 2D
projection of the object for each of these angles, one can then compute a 3D
reconstruction of the scanned object by reconstructing the original density of the
object from the inverse Radon transform or form a tomographic reconstruction
algorithm.

Figure 1.5: Different beam setup. To the left is seen a circular parallel beam
and to the right a fan-beam setup.

The shape of the beam can cause the rays to travel in different configurations,
such as a parallel beam, where the rays travel in parallel spread over the same
area from the source to the detector, or in a fan beam, where the rays originate
from the same point and spread out through one plane in the solution volume
to hit the detector plane at multiple points. These two different type of beams
can be seen in figure 1.5.

An advantage of the fan-beam when compared to a parallel beam is in how
the rays are more densely packed when entering the volume close to the ray
source. When the rays are spread out with a larger distance between each
ray, it introduces a larger risk of the rays not intersecting a voxel and thus
providing no knowledge of this voxel. This can result in a lack of information
being transmitted about interior parts of the scanned object or more severely,
potentially produce "black spots" in the reconstructed image, especially if the
number of projection angles in the measured data is not sufficiently large. The
rays being transmitted from a single point and spread out in a fan will result in
the entire outer layer of the volume to be especially well-lit when scanning at a
360◦ rotation, while the innermost interior will be equally lit as for the parallel
beam.
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Another type of widely-used beam is the cone-beam. This beam is shaped like
a cone, spreading out from the ray source and will cover the solution volume
in three dimensions compared to the two dimensions of both the parallel- and
fan-beam. This also means that the cone-beam will be projected onto a detector
plane compared to a line of detectors as for the other two beam set-ups.

The fan-beam, and especially cone-beam, perform very well when working with a
limited number of projections as they tend to cover more of the volume compared
to the parallel beam.

1.3 Filtered backprojection

To solve this reconstruction problem algorithmically, it is necessary to discretize
the image volume consisting of our physical model into a discretized model
consisting of a system of linear equations

Ax = b, (1.2)

where A is an m × n system matrix, or discrete forward operator, x is a given
image and b represents the measured projection data. How to construct the
discrete model will be covered in chapter 2.

One such tomographic reconstruction algorithm is the Filtered backprojection
(FBP).

Filtered backprojection (FBP) is a method to correct the blurring of the image
encountered in a simple backprojection by filtering it.

First, A backprojection is done by setting all voxel values lying along a ray
pointing to a detector plane to the same value. That way each projection is
projected back along the original route of the projected rays and the final back-
projected image is aquired as the sum of all backprojected views. An illustration
of this can be seen in figure 1.6 on the following page. The forward and back
projections will be covered further in chapter 3.

With a FBP, the projections are passed through a filter before the backpro-
jection to counteract the blurring of the final backprojected image. A high-
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(a) Forward projection (b) Backprojection

Figure 1.6: Forward projection and backprojection illustrations.

frequency filter reduces noise and makes the image appear "smoother", while a
low-frequency filter enhances edges in the image and makes it appear "sharper".

Using the FBP for image reconstruction requires a large number of projections.
If there are not enough, the quality of the reconstructed image suffers. Added to
this, the reconstruction technique works only on a limited number of geometries.
If the FBP is applied on a problem where the filter doesn’t work well, the
reconstruction will not be good.

FBP is a fast method with good reconstruction results, but only in the case
where plenty of data is available, eg. where the measured data b is equal to
or larger than the object x in equation 1.2 on the previous page. But in the
case where x is larger than b and we are dealing with an undetermined, ill-
posed, sparse system, which often arise in tomographic image reconstruction,
this method is not desirable. In that case we look to the algebraic iterative
methods.

1.4 Algebraic methods

Algebraic methods such as ART can give better reconstructions for undeter-
mined problems with more limited data and are more flexible methods compared
to the FBP. Furthermore, when working with medical Computed Tomography
an iterative method is essential to be able to work with smaller doses of radioac-
tive contrast agent.
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Figure 1.7: Filtered backprojection

It is possible to incorporate prior knowledge of the problem and Total Variation
regularization into algebraic methods with little effort. This is not the case with
the filtered back-projection.

There are a multitude of methods available, but we have chosen to look more
closely at the Algebraic Reconstruction Technique which we have found most
suitable for our needs with the biggest error reduction per iteration [19].

1.4.1 SIRT

Simultaneous Iterative Reconstruction Techniques (SIRT) seen in algorithm 1 is
an algebraic reconstruction technique used in computed tomography. The main
part where the method differs from the Algebraic Reconstruction Technique
(ART) discussed in subsection 1.4.2 is that it involves the simultaneous use of
every row in the system matrix A for each iteration and thus involve a matrix-
vector product.

We write the SIRT algorithm in a general form as:

Algorithm 1 SIRT

xk = PC

(
xk−1 + λTATM

(
b−Axk−1

))
where T and M are positive definite matrices, λ is a relaxation parameter and
it is required that 0 ≤ λ ≤ 2‖T− 1

2AM
1
2 ‖22 for asymptotic convergence [19].

How T and M are chosen will determine the specific SIRT method in use, for
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example defining T = I and M = I will correspond to the Landweber method
[12], while setting T = I and M = diag

(
1
‖ai‖22

)
gives the Cimmino method and

corresponds to normalizing the rows of A [6].

PC defines the constraints used with the algorithm and can for example be a non-
negativity or box constraint. In this thesis, PC will be defined as a projection
of all negative values to zero.

0 50 100 150 200 250 300 350 400

Iterations

4

5

6

7

8

9

10

11

R
e
la

ti
v
e
 e

rr
o
r

SIRT convergence

SIRT

(a) SIRT Cimmino semi-convergence.

1 2 3 4 5 6 7 8 9 10

Iterations

5.8

6

6.2

6.4

6.6

6.8

R
e
la

ti
v
e
 e

rr
o
r

ART convergence

ART

(b) ART Kaczmarz semi-convergence.

Figure 1.8: Semi-convergence of the SIRT Cimmino and ART Kaczmarz algo-
rithms on a simple 50× 50 tomography example problem with 36
projection angles from a 180 degrees parallel beam. The SIRT al-
gorithm reaches semi-convergence after around 70 iterations while
the ART algorithm does after only 4 iterations.

This group of algorithms is easily made to run in parallel which is great for a
HPC implementation, but the downside is that the convergence rate might be
rather slow causing the iteration count to climb up as can be seen in figure 1.8a.
Because of this, the inherent suitability of the algorithm to be run in parallel
might not account for the cost of having to run an increased number of iterations
for the same reconstruction result.

1.4.2 ART

The Algebraic Reconstruction Technique shown in Algorithm 2 below is an
essentially sequential method in that it only uses a single row ai of the system
matrix A at a time in a predefined order in each update of the volume x. Note
that we here use ART as a modification of the classical Kaczmarz method with
a projection PC and a sweep over the rows of A at the kth iteration.
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Algorithm 2 ART

xk,0 = xk−1

for i in 1→ m do

xk,i = PC

(
xk,i−1 + λ

bi − aTi xk,i−1

‖ai‖22
ai

)
end for
xk = xk,m

where ai is the ith row in the matrix A, λ is a relaxation parameter, and it is
required that 0 ≤ λ ≤ 2 for asymptotic convergence. As mentioned, this method
has a very fast convergence rate, as seen in figure 1.8b on the preceding page
above, but is required to run in serial.

We know that ART has a fast rate of convergence and as such is low in iterations,
but we would like a method that works better with and can take advantage of
multi-core architecture. Sørensen and Hansen [19] show that a blocking ap-
proach with a partitioning of A where the rows in each block are selected to
be structurally orthogonal coupled with the ART-sweep allows for an efficient
parallel implementation while still retaining the iterate from ART with a fast
convergence.

In this thesis we focus on a Block-ART algorithm which is a fast converging
"hybrid" of the SIRT and ART algorithms. This method is introduced in sec-
tion 3.1.

1.5 Modern hardware architecture

When solving an ill-posed sparse linear system in large-scale problems such as
in tomographic image reconstruction it is necessary to do so with the help of
high-performance computing. The choice of method can have a large impact on
the performance of the implementation, and having a method that works well in
parallel, is fast, and has a low cost in iterations is very beneficial when solving
these types of problems in large scale.

1.5.1 CPU architecture

A computer’s central processing unit (CPU), found in all modern computers, is
the electric circuitry within the computer that handles all of the instructions of
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a computer program by carrying out basic logical, control, input/output (I/O)
and arithmetic operations as specified by the instructions from the program.

During the late 1960’s and early 1970’s the microprocessor was introduced,
which is a computer processor incorporating the functions of the CPU on a
single, or at most a few, integrated circuits. The integration of the functionality
of a CPU onto a single chip made it possible to reduce the cost of processing
power tremendously and thus, by being able to produce in large numbers by
automated processes, reduce the per unit costs.

As the technology for integrated circuits advanced, it became possible to man-
ufacture single chips with more and more complex processors on. As the size
of data objects became larger, it allowed more transistors on a single chip and
thus allowing word sizes to increase from 8-bit to 8-bit words and all the way
up to today’s 64-bits.

After having the technology to put a large number of transistors on a single chip,
it then became possible to integrate memory on the same die as the processor
in the form of a CPU cache. The CPU cache has the distinct advantage of
allowing the CPU a much faster access to data than the off-chip main memory,
and this can increase the processing speed of the system if handled well by the
application. As the processor clock frequency in general has increased much
more rapidly than the speed of external memory, the cache memory is necessary
for the processor not to be delayed further by slower external memory.

This makes it necessary for computer programs to take advantage of the struc-
ture of the hardware to execute at a faster speed. This is especially the case
when large data processing is introduced and to make high performance com-
puting possible.

1.5.2 Multicore architecture

Multicore processor refers to a single chip, or circuit die, with two or more inde-
pendent processing units, also refered to as cores, integrated. The advantage of a
multi-core processor over a single-core processor is in the ability to execute mul-
tiple program tasks simultaneously. While there is no increase in single-thread
performance compared to a single-core processor, the multiprocessing potential
of multi-core CPUs allow for a large overall increase in speed for programs that
are designed to take advantage of parallel computing.
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Figure 1.9: Single Instruction, Multiple Data (SIMD) processing unit archi-
tecture illustration.

The prevalent architecture for modern multi-core processors, as well as for many
manycore processors, are the SIMD processors, which stand for single instruc-
tion, multiple data. This describes, as illustrated in figure 1.9, processing units
with multiple processing elements that perform the same instruction, or oper-
ation, on multiple data elements in parallel - that is, a processing unit with
a single instruction stream but multiple data streams. This type of operations
are especially advantageous with vectorized programs such as real-time graphics
and ray-tracing.

The first foreshadowing of what would later evolve into the multicore architec-
ture of today, was when Rockwell International in the mid 1980s manufactured
versions of the Mos Technology 6502 8-bit microprocessor with two 6502 cores
on a single chip, sharing the chip’s pins on alternate clock-phases.

But it took close to two decades before the first multicore processors as we
know them was developed by Intel and AMD among others in the early 2000’s.
The multicore architecture has quickly become the norm for all modern central
processing units (CPUs). Modern multicore processors can have from two up
to 22 processing units, or cores, on a single chip.

The general architecture of a multicore SIMD processor is shown in figure 1.10
on the next page. Typically, each processing unit, also called arithmetic logic
unit (ALU), will have its own local L1 cache memory while all ALUs will be
connected to a shared on-chip memory, called the L2 cache, larger than the
L1 cache and that all ALUs have access to. Depending on the architecture in
question the multicore CPU might also be equipped with a shared L3 cache.
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Figure 1.10: Generalized SIMD unit architecture of a central processing unit
(CPU). Shown is a single CPU core with modern multiprocessors
having between 4 to 22 of such cores.

1.5.3 Manycore architecture

Compared to multicore processors, manycore processors are designed with a
higher degree of explicit parallel processing and a higher throughput in mind.
This comes at the expense of latency and a lower single thread performance
compared to the standard multicore processor.

Manycore processors, or hardware accelerators, are build from a large number
of independent processor cores with a lower individual performance than the
typical CPU core, which explains the lower single thread performance. Because
of this, manycore processors are not very ideal for running serial code but are
instead highly efficient at running parallel code.

A typical use for manycore processors, in the form of the GPU, has been in ap-
plications for graphical processing because of the tendency for these applications
to demand the same operation done many times over for different objects, such
as the handling of textures and image pixels in graphical applications. This is
also a feature for many HPC implementations, such as in tomographic image
reconstruction.

Multicore processors typically has a limited scaling of the executed code as
the amounts of data increase due to the issue of cache coherency, which is the
inconsistency of shared data across local caches. This is less of an issue for
manycore processors, and together with the high parallel performance makes
these devices highly useful in High-Performance Computing.

Devices such as graphics processing units (GPUs) and coprocessors like the Intel
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Figure 1.11: SIMD units of a generalized graphics processing unit (GPU) ar-
chitecture. One layer equals one SIMD unit on a stream mul-
tiprocessor (SMX) with typically 6 SIMD units per SMX and
between 2 to 16 stream multi-processors on a GPU. That gives
192 ALUs, or CUDA cores, per SMX and up to 3,072 per GPU.

Xeon Phi are both considered manycore processors. Most modern manycore
processors use the SIMD processing paradigm with a general architectural layout
illustrated in figure 1.11. For the general layout of a NVIDIA Kepler GPU
shown here, one "layer" refers to a processing core with each core consisting of
a large number of ALUs, or CUDA cores in NVIDIA language. A stream multi-
processor (SMX) consists of 6 cores each with 32 ALUs/CUDA cores, resulting
in 192 ALUs/CUDA cores per SMX and between 2 to 16 stream multi-processors
per GPU, giving 384 to 3,072 ALUs/CUDA cores.

The stream multi-processor may also be referred to by SMP or simply SM. The
denotation SMX originates from NVIDIA for their Kepler hardware line before
which they used SM for their stream multi-processors.

1.5.4 Domain Decomposition

A way to take advantage of the underlying hardware to attain faster computa-
tion speeds is to split up parts of the executed program to have each part be
computed on individual processing units on the modern multi- and manycore
processors. In the case of the tomography problem it is then desirable to split
up the solution domain into smaller subdomains with each subdomain being
assigned to a processor. This is the meaning of domain decompostion, to split
up the domain into smaller parts which can then be computed individually and
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gathered after parallel computations are done. In this thesis we will denote
these subdomains as processor-domains.

On figure 1.12 is an illustration of how the solution volume is split into 8
processor-domains (one along the x-direction, two along y and four along z)
with the projection plane on the right side in the figure.

After having a subdomain assigned to a processor it is then beneficial to further
split up the subdomain into smaller parts to fit the on-board memory of the
microprocessor. By having a block of the subdomain be loaded to the cache
at a time it is possible to finish computations for each block before moving on
to the next and not waste time and resources by continually loading data that
won’t yet be used and flushing the cache more often than needed to load in a
new part to memory. We call these subdomains cachedomains.

0
0

1
2

2

3
4

4

5
6

6

6
7

7

Figure 1.12: Illustrating a domain decomposition with domains (1, 2, 4) along
the (x, y, z) directions. The image domain is shown split into 8
domains with a projection plane of equal size along x- and y-axis
as the image domain shown on the right. Each of these domains 0
through 7 can be run in parallel on independant devices accordint
to the desired distribution.

This validates the decomposition of the domain into parts for each device and
processor to handle and to further block the subdomains into cacheblocks that
fit with the on-board memory of the device to take full advantage of the com-
putational power of the hardware.

While this is describing the reasoning behind domain decomposition on a CPU,
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the same underlying principles apply when doing parallel computations with a
domain decomposition on a graphics processing unit (GPU).

1.6 Test problem(s)

When conducting computations and introducing results throughout the report,
certain data and test problems is needed to facilitate the computations. This
section will serve to introduce the used problems and their setup in advance.

The problem used for the numerical experimentations will consist of a real data
sample of a walnut’s interior scan. Argument could be made to use a test
problem with a known solution for conducting the numerical experiments, but
for the purpose of this project a real data sample is of little difference to a test
case and further grounds the project in reality and provide a good indication to
the usability and application of the implemented methods outside of a strictly
academic purpose.

A test example could have been added beside the walnut data, but due to time
constraints a working version with an implemented Shepp Logan test phantom
was not finished in time.

Unless specified otherwise, all problems of a volume size of for example Nx ×
Ny ×Nz = N3 will have projections of equal size Px × Py = P 2 = N2.

1.6.1 Walnut

The Walnut problem consists of real measurement data from a tomographic
scan with X-rays of a walnut. The measurement data has a size of 1600× 10242

and contain 1600 cone beam projections in a uniform distribution around the
object domain.

The specific resolution and number of projection angles in use as well as the
number of solution interations will be specified whenever new results using the
measurement data is introduced.
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Figure 1.13: The walnut data reconstructed solution at 1024×1024 resolution
with 1600 projection angles, 0.25 relaxation parameter and three
solution iterations.

1.6.2 Test phantom

As real measurement data is not ideal in all circumstances when testing an im-
plementation, a test case, or in the case of the tomographic image reconstruction
problem a test phantom, with knowledge of the true solution is needed to de-
termine the margin of error of the implementation. For this the Shepp Logan
phantom as shown in figure 1.14 on the facing page is widely used with tomo-
graphic reconstruction techniques. Due to time constraints it was not possible
to finish a working implementation of this phantom and as such it will not be
used in this report.

This phantom can be generated at a chosen resolution with any number of
projections at both parallel- or cone beam configuration. The parameters chosen
to generate the problem will be specified at each new introduction of results
using the test phantom.

That said, in consideration to the beam configuration of the walnut measure-
ment data as mentioned in subsection 1.6.1, a cone beam configuration will be
prevalent in the use of the test phantom.
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Figure 1.14: Shepp Logan test phantom at 512× 512 resolution.

1.7 Test hardware

All numerical performance tests are made on the GPU nodes of University of
Southern Denmark’s (SDU) DeiC Abacus Cluster. The cluster holds in total 72
GPU nodes distributed on 4 switches with 18 nodes on each. Each node consists
of two NVIDIA K40 GPU cards.

The node configuration can be seen in table 1.1. Each GPU node has the base
node configuration and GPU configuration installed.

Table 1.1: DeiC Abacus Cluster Configuration

Base node configuration GPU configuration
IBM/Lenovo NeXtScale nx360 m5 2 NVIDIA K40 GPU cards
Two Intel E5-2680v3 CPUs each with per node, each with 2880
12 CPU cores and a theoretical performance CUDA cores and 12 GB RAM.
of 480 GFlop/s in single-precision. Theoretical performance
64 GB RAM for each K40 is 1.43 TFlop/s
200 GB local SSD local storage in double-precision and 4.29 TFlops/s
One high speed InfiniBand uplink connection in single-precision.
for communication with the other nodes

Figure 1.15 on the following page show the bandwidth of non-blocking MPI
send and receive operations as a function of number of nodes for 1KB and 1MB
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message sizes, and as a function of the message size for 2 and max number of
nodes.

The full curves are for all-to-all communication and dashed curves are for
neighbor-to-neighbor communication in a 1D ring topology. The curves are
the average values over 1000 independent trials; the minimum and maximum
values envelop the shaded regions.

It should be noted that the obtained performance depends heavily on the current
load on the cluster apart from the particular settings, wiring, and make of the
infiniband cards [17].
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Figure 1.15: MPI benchmark of the SDU DeiC Abacus Cluster [5].



Chapter 2

Discretization

When we wish to solve a tomographic reconstruction problem, the mathematical
formulation of the physics, using variables defined on the real axis, is not di-
rectly applicable for numerical computations. We are required to discretize the
variables such that they model, or approximate, the physical model as closely
as possible.

Looking at a discrete domain Ω, we refer to the elements in the projection array
b as pixels and the elements in the volume x as voxels, arranged in a sequential
manner. This way, the element, or voxel, at location i, j, k ∈ Ω in a volume of
size Nx ×Ny ×Nz is given by

x(i+ j ·Nx + k ·Nx ·Ny) = X(i, j, k)

and the pixels in projections of size Px × Py, corresponding to number of pro-
jection angles, are similarly stored in an array b.

Instead of using the Radon transform, we introduce a discretized model in the
form of a linearised approximation A, called the projection matrix. Here, A =
(aij) is am×n matrix where the value of each element aij holds the contribution
of the image pixel j (1 ≤ j ≤ n) to the detector value i (1 ≤ i ≤ m).

If our model consists of k projections, A can be expressed as A = (A1 · · ·Ak)
where each matrix Ai(i = 1 · · · k) corresponds to the projection operator for
the ith projection angle. The physical tomographic reconstruction problem can
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Figure 2.1: The solution volume X with the dimensions Nx, Ny, Nz and a
projection plane with dimensions Px, Py. The ith projection plane
Pi is of a different coordinate system than the solution volume.
As such, the x- and y-directions of the three-dimensional solution
volume are not the same as for the two-dimensional projection
plane.

thus be approximated by the discrete linear system, same as in equation 1.2 on
page 9:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm, (2.1)

where n represents the size of the image domain Nx ×Ny ×Nz, m the number
of projections times the projection domain of size ·Px × Py and the vector b
represents the measured projection data. For a parallel beam configuration A
from equation 2.1 can be considered as the discretized version of the Radon
transform as also mentioned previously [2].

Real applications have errors introduced in the measurements by the nature of
physical instruments, which we must also add a small error to the projections
in our model to be a more accurate approximation, so we get the system
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Ax′ = b+ ε, (2.2)

where x′ is the solution to the reconstruction problem.

Problems in CT are ill-posed by nature which means that our system will be
highly influenced by noise and we as such will need a regularized solution to get
a usable tomographic reconstruction. As mentioned, there are multiple recon-
struction techniques available for this which will be covered more in chapter 3.

2.1 Projection Models

When constructing the discretized model for the physical tomography problem,
a wide range of projection models are available for building the projection ma-
trix A. The choice of projection model can have a large impact on not only
performance but on the accuracy of the reconstructed solution as well. The goal
here is to select a projection model that models the specific physical system in
mind well and has a desirable run-time performance for the application.

Each projection model has its advantages and disadvantages. While one might
model a particular setup very well, it could be much worse when used in a
different setup. Some methods have a very fast computation speed which is
very important when used in applications that require results in real-time, but
these models typically make a compromise with the physical accuracy of the
model. Important to note is that most methods can be optimized to compute
a lot faster by taking full advantage of the available hardware, for instance
by domain decomposition and incorporating priori knowledge of the problem,
and by this reduce the disadvantage of a model with high physical accuracy
considerably.

Below follows an introduction to some of the most well-known and widely used
projection methods, among which is the Joseph method that this thesis puts a
special focus on.

2.1.1 0− 1 model

The 0− 1 projection model is increadibly simple in what it does. As the name
suggests, the model works by simply distributing a weight of either 1 if the
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tracked ray has intersected the current voxel, or 0 if it has not. This is illustrated
in figure 2.2.

Figure 2.2: Illustration of the 0− 1 model for constructing the projection ma-
trix. An element ai,j is weighted with either 1 if a ray intersects
the voxel, or a 0 otherwise [2].

This is a very crude way to model the physical system as no notice is put to
how much of an impact the ray has on the current and neighboring voxel. A
ray might only intersect the very corner of a voxel and it will still be distributed
with full weight while neighboring voxels that the ray just misses will get no
weight whatsoever.

The advantage of this however, is that the model is very fast as the only com-
putation that is needed, is to determine whether a ray hits a voxel or not.

2.1.2 Line length

This projection model, or approximation scheme, which we will refer to as the
line length method, is quite simple in that an element ai,j in A is weighted as
the line length of a ray intersecting that voxel, that is the length of the line that
a given ray traverses a voxel from entrance to exit of the voxel. This method is
illustrated in figure 2.3 on the facing page.

The disadvantage of this method is that it requires quite a bit of branching
in order to determine which voxels are hit by a ray and the entrance and exit
points of that voxel. Another disadvantage is that the method does not in any
way consider how close to the center of the voxel the line intersects or how
close to the edges, but only how far the line traverses the voxel. This can be
considered a fault in our model approximation as the ray might intersect a voxel
in a negligible distance from a neighbor voxel and due to floating point errors
this can easily lead to one voxel being weighted 0 and the other 1. This can
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Figure 2.3: Illustration of the Line length method for approximating the pro-
jection matrix. The element ai,j at voxel (i, j) is weighted by the
length that the ray traverses the voxel from entrance to exit.[2]

especially be a problem for rays travelling along a domain axis. As we will see in
section 2.2, this causes the method to be prone to artefacts in the reconstructed
images.

2.1.3 Strip area

The Strip area projection method weights a given voxel by the area that is
spanned between two parallel rays going through the voxel. If only one of the
rays actually intersects the voxel then the weight will be the area of the voxel
that is between the intersecting ray and the second ray. A way to calculate
the area between the rays used for the weighting of the voxel is by the triangle
substraction technique which divides the area covered by the strip into smaller
triangles whos areas are more easily calculated and then calculates the area of
the strip by the sum of the triangle areal composing the strip. This method is
covered by Nguyen and Lee [14].

The Strip area method is a good approximation to the physical model as the
strip being projected onto a pixel on the projection plane will provide a fair
weighting of all voxels within the strip. If the entirety of a voxel is covered by
the strip it will provide full weight for the projection pixel while a low weight
will be provided if only a corner of a voxel is covered. The disadvantage of the
method is how it is dependent on a parallel beam setup for the rays within a
beam to be in parallel.
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Figure 2.4: Illustration of the Strip area method for approximating the pro-
jection matrix. An element ai,j is weighted from the area inside
of the voxel which lie between two parallel rays going through the
voxel [2].

A voxel being intersected by two parallel rays and the spanned area used as
weight is shown in figure 2.4.

2.1.4 Joseph’s method

Another method that we will examine in this thesis was introduced by Joseph
[10] and will be refered to as the Joseph method.

The Joseph method will contribute the measurement data from a ray going
through an element xi,j with the contribution wi,j as the interpolation coeffi-
cients obtained when tracing a ray row by row (or column by column depending
on the projection angle) and applying linear interpolation between the centers
of the two adjacent voxels.

This way, a neighboring voxel will be weighted by the distance from the voxel
center to the ray subtracted from 1, as long as a ray intersection is between this
voxel and the intersected voxel’s center. This is illustrated in figure 2.5 on the
facing page.

The Joseph method is a so-called ray-driven projection method, meaning that
for a given projection angle all voxels intersected by a given ray will be weighted
before moving on to the next ray until all rays of the projection beam have been
covered. A different approach to this is with voxel-driven methods. Here the
contribution of a single voxel to the projection plane will be calculated one at a
time for all voxels covered by the projection beam. An example of a voxel-driven
method is the so-called backprojection method that is covered in subsection 2.1.5.
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Figure 2.5: Illustration of the Joseph method for approximating the projec-
tion matrix. An element xi,j is contributed from the interpolation
coefficients from tracing a ray row by row or column by column
according to projection angle of that ray, and then applying lin-
ear interpolation between the centers of the two adjacent voxels.
That means that as a ray traverses a voxel, that voxel as well as
the closest neighboring voxel to the ray is contributed by (1 - ray
distance to voxel center)[2].

The standard way to implement the Joseph method in 3D is to use bi-linear
interpolation in the plane perpendicular to the dominant direction (this is faster
than full trilinear interpolation and does not affect the accuracy significantly).
This is illustrated for a dominant direction x in figure 2.6 on the next page.

The weights from bilinear interpolation are typically obtained in general form
as

wi,j = (1− dx) (1− dy)xi,j + dx(1− dy)xi+1,j +

(1− dx) dyxi,j+1 + dxdyxi+1,j+1,

where the distances dx and dy are the composants of the distance from ray to the
center of the intersected voxel in the x and y directions and are determined by
the dominant direction of the ray and xi,j is the (i, j)th element of the solution
matrix X for the current iteration. As for the example in figure 2.6 on the
following page, the weights would then be calculated from dy and dz. We note
that the compiler interprets this in terms of FMA (Fused-Multiply-Add) as
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u = xi,j + dx(xi+1,j − xi,j)
v = xi,j+1 + dx(xi+1,j+1 − xi,j+1)

wi,j = u+ dy(v − u).

Here wi,j is the calculated weight for the (i, j)th element of X.

Figure 2.6: Illustration of the Joseph method and the voxels to be weighted
with bilinear interpolation for a ray in 3D.

By using the weighting scheme from the Joseph method, the intersecting rays
will "bleed" onto the neighboring pixels which will result in a less sharp and
more rounded reconstruction. But it will also increase the accuracy of the
approximation and decrease the chances of dark spots when encountering voxels
with no intersecting rays.

2.1.5 Backprojection method

The backprojection method for construction the projection matrix has a lot
of similarities with the Joseph method, with the main difference being that
while the Joseph method applies bilinear interpolation for weighting a voxel
and its neighbors in the solution volume, the backprojection method’s weights
are applied from the projection plane instead.
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Figure 2.7: Voxel-driven Backprojection method for construction the projec-
tion matrix, here with a cone-beam setup. A voxel is projected
from the solution volume onto a projection plane from the line
going from the ray source through the voxel center and onto the
projection plane. After the weights for one voxel has been cal-
culated, the weights for the next voxel covered by the beam will
be calculated according to the voxels projection on the projection
plane and so on.

This is done by first having a given voxel projected from a line going from the ray
source through the center of the voxel and onto the projection plane. The voxel
will have a 2D projection on the projection plane covering parts of a number of
pixels. How much of a pixel is covered by the voxel will determine the weight
that is contributed from that pixel to the weighting of the voxel [16].

Like was done for the Joseph method in subsection 2.1.4, the weighting is cal-
culated by determining the center position of the projected voxel and then by
bilinear interpolation calculating the distance from this center to the center of
all covered projection pixels, as seen in figure 2.7.

The weighting of the projection pixels can even be implemented in the same
way as the weighting of neighboring voxels in the Joseph method, which will be
covered more in chapter 4.

For the forward projection, the method will directly add the contribution of a
voxel to the affected projection pixels after the weighting has been calculated
from the voxel projection on the projection plane. As for the backprojection, as
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the name of the projection method implies, the sum of the weights calculated
from the position of the projected voxel on the projection plane will be back-
projected into the solution volume and added as weighting of the corresponding
voxel.

Another major difference compared to the Joseph method is that the backpro-
jection method is a voxel-driven method. The meaning of this is that for a given
projection angle, each voxel covered by the beam is in turn projected onto the
projection plane. After the weights for the current voxel has been determined,
the next voxel of the current row of the solution volume that is also covered
by the beam will be projected onto the projection plane and have its weight
calculated. This way, instead of processing one ray at a time until all rays for
the current angle have been covered, each voxel that is within the beam from
the current projection angle will be handled by the projection method one by
one.

This way of orienting the projection method is usually computationally much
slower when computing the forward projection compared to ray-driven methods,
but the computation of the backprojection is in turn much faster.

2.2 Comparing the Projection Methods

As already mentioned, different projection methods will have different advan-
tages and disadvantages over one another when used in certain circumstances.
Choice of projection method can lead to greatly differing results and whether
these variations are good or bad depend entirely on the implementation and the
specific problem at hand. The following section will use numerical examples to
illustrate, analyse and discuss how the choise of projection method can impact
the reconstructed solution and the performance of your implementation.

2.2.1 Reconstructions

When comparing the line length method with the Joseph method, the difference
between the two are very noticeable for low iteration counts and even more so
for a low number of projection angles.

Figure 2.8 on the facing page shows the reconstructed images for the center slice
of a scanned walnut, which is the measured data we will use as test problem
throughout the report.
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In the first two images of figure 2.8 we see the reconstruction of a 20483 problem
with 1 iteration and a single projection angle.

The Joseph method is represented in figure 2.8a and the line length method in
figure 2.8b.

(a) Joseph kernel solution with 1 projec-
tion angle at center slice.

(b) Line kernel solution with 1 projection
angle at center slice.

(c) Joseph kernel solution with 400 projec-
tion angles at center slice.

(d) Line kernel solution with 400 projec-
tion angles at center slice.

Figure 2.8: Solutions with Joseph and Line kernels at resolution 20483 and
1 iteration, from respectively 1 and 400 projection angles at the
center slice along the vertical axis. At low projection angles it is
very obvious to notice circular line artefacts in the Line kernel re-
construction whereas these are much less noticeable for the Joseph
kernel. As the number of projection angles increase these artefacts
become less apparent, and are mostly gone with 400 angles for the
center slice along the vertical axis.
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It is easy to notice the circular line artefacts present in the line length recon-
struction, where none are present for the Joseph method. When looking at the
reconstruction with 400 projection angles in figure 2.8d on the preceding page
these line artefacts are no longer noticeable for the line length method.

It should be noted that the 400 angle reconstruction for the Joseph method
in figure 2.8c on the previous page is sligtly more blurred around the edges
compared to figure 2.8d on the preceding page, which is also to be expected.
However, when one increases the iteration count the blurriness is removed for
both methods.

Not only does the iteration count and number of projection angles have a large
impact on the reconstructed images, so does the angle, or level, we view the
reconstruction at. In figure 2.8 on the previous page we viewed reconstructions
along the center slice, which is at the same level of the ray source and center
of the detector plane. When either moving down or up along the vertical axis
away from the center slice, we encounter that the distance between rays of the
same cone beam increases the further from the source the rays travel.

Because of this we see that some voxels farther from the source will have no rays
intersecting them and that some voxels close to the source will have many rays
intersecting them. With the line length method the voxels with no intersecting
rays will not be weighted and as such be black and invisible in our reconstruction
and voxels with many rays intersecting will be over exposed and weighted more
heavily than other voxels. Of course this will have less of an impact as the
number of projection angles increase, but can be an issue for problems with less
data available.

This behaviour is shown in figure 2.9 on page 36 where we look at the reconstruc-
tion of the 50th slice away from the center along the vertical axis. Figure 2.9b
on page 36 very clearly shows the behaviour of the line length method when
the data is sparse, where with only one projection angle, whereas this is much
less expressed for the Joseph method in figure 2.9a on page 36. As discussed
in subsection 2.1.4 we observe this behaviour in a much lesser degree for the
Joseph method because a voxel with no rays intersecting it will still be weighted
by the neighboring voxels which have rays intersecting them. And when moving
closer to the ray source, the voxels with many rays intersecting them will still
bleed out to the neighboring voxels and thus have less of an impact.

Even when the measurement data is increased we still observe the same be-
haviour for the line length method to some degree. In figure 2.9d on page 36 the
reconstruction of the line length method with 400 projections at slice 50 still has
obvious line artefacts, whereas none are present for the Joseph reconstruction
in figure 2.9c on the following page.
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(a) Joseph kernel solution with 1 projec-
tion angle at slice 50 from center.

(b) Line kernel solution with 1 projection
angle at slice 50 from center.

(c) Joseph kernel solution with 400 projec-
tion angles at slice 50 from center.

(d) Line kernel solution with 400 projec-
tion angles at slice 50 from center.

Figure 2.9: Solutions with Joseph and Line kernels at resolution
2048x2048x2048 and 1 iteration, from respectively 1 and
400 projection angles at slice 50 along the vertical axis with 0 as
the center slice. When the reconstruction is moved away from the
center slice along the vertical axis, the line artefacts become much
more pronouned compared to what was observed in figure 2.8 on
page 33. This is especially true for the Line kernel reconstruction
where there has now been introduced obvious circular lines for
the 400 angles reconstruction as can be seen in figure 2.9d.
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2.2.2 Performance of the forward- and backprojections

The disadvantage of the Joseph method when compared to the line length
method is the longer computation time. Where the forward projection for the
Joseph method need to update four elements (the intersected voxel and three
neighboring voxels along the two non-dominant directions, to the sides and di-
agonally to the intersected voxel), the line length method only need to update
one.

In figure 2.10a and 2.10b the computation timings for the forward- and back-
projections respectively for 1 through 32 nodes are plotted.

The time spend on the computations drops as expected as the work is divided
on more and more nodes, but we see that the Joseph kernel spends about 1.5
times the amount of time on the forward projections compared to the line length
method, while for the backprojections its about twice the time.
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(a) Computation time spent during for-
ward projections for Joseph and Line
kernel calls.
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(b) Computation time spent during
backprojections for Joseph and Line
kernel calls.

Figure 2.10: Computation time for problem sizes 10243 and 20483 which is
spent computing forward projections (a) and backprojections
(b). The time shown is the greatest time clocked for that oper-
ation among all used nodes.

Figure 2.11 on the next page shows how much of the total computation time
is spent doing forward and backprojections for the two methods for different
problem sizes and node numbers.

From figure 2.11b on the following page we can see that between 75% to al-
most 95% of time is spent doing the backprojections when only working on a
couple of nodes, while the time spent on both forward- and backprojections
steadily decreases as the node number increases. This is also to be expected as
communication time easily becomes a bottleneck as more nodes are added.
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Figure 2.11: Computation time for problem sizes 10243 and 20483 which is
spent computing forward projections (a) and backprojections
(b) out of the total computation time.

A cause for the backprojections taking up so much computation time compared
to the forward projections is due to both the Joseph and line length methods
being ray-driven projection methods. While this is advantageous while doing
the forward projections, it becomes a significant timesink when computing the
backprojections as the method will need to write to the voxels along each specific
ray in the solution volume.

This leads to having to jump around in the solution volume and continuously
load in different parts to memory. A voxel-driven projection method can lead to
big performance improvements in this aspect by being able to take full advantage
of how a row of voxels will be loaded to the cache and then finish updating all
loaded voxels before moving new voxels to memory. This is obviously more
advantageous when doing the backprojection than only updating one or two of
the loaded voxels before loading in the next part to the cache.

This is evident when looking at figure 2.12 on the next page showing the time
for computing the forward projections with the Joseph method in figure 2.12a
and backprojections with the Backprojection method from subsection 2.1.5 in
figure 2.12b where the backprojections now are computed faster than the forward
projections using the voxel-driven method for the backprojections.

The peaks seen for 12 and 24 nodes in figure 2.12b for the backprojections,
which are not seen for the forward projections in figure 2.12a, are likely caused
by communications.
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(a) Computation time spent during for-
ward projections using the Joseph
method for the forward projections.
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(b) Computation time spent dur-
ing backprojections using the
Backprojection method from subsec-
tion 2.1.5.

Figure 2.12: Computation time for problem sizes 5123, 10243, 20483 and 40963

which is spent computing forward projections (a) with the Joseph
projection method and backprojections (b) with the Backprojec-
tion projection method. The time shown is the greatest time
clocked for that operation among all used nodes.

Figure 2.13 on the following page shows the percentage of the total computation
time that is taken up by respectively doing forward projections and backpro-
jections. In figure 2.13a the time spent on computing the forward projections
out of the total computation time is above 50% for all the shown problem sizes
using less than 4 nodes with the time spent being higher the larger the problem
size.

As seen in figure 2.13b, the time spent on backprojections is close to 40% for
all the problem sizes using two nodes or less. Compared to using the ray-based
Joseph method for both forward and backprojections it gives a big performance
improvement to instead use the voxel-driven Backprojection method to do the
backprojections. Simultaneously, how the Backprojection method approximates
the physical model is a lot like how the Joseph method does leading to the
methods complimenting each other well as a forward-/backprojection pair.

From both figure 2.12 and figure 2.13 on the following page can be seen how the
computation times for the forward projections and backprojections decrease as
more nodes are included in the execution. This is both because the amount of
work is distributed on more computation nodes and because communications
between nodes and devices play a larger role as more nodes are added.

This can be seen by how the percentage of time spent doing both forward- and
backprojections out of the total computation time decreases with the inclusing
of more computation nodes in figure 2.13 on the next page.
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(b) Computation time spent during
backprojections using the Backpro-
jection method from subsection 2.1.5
for the backprojections out of the to-
tal computation time.

Figure 2.13: Computation time for problem sizes 5123, 10243, 20483 and 40963

which is spent computing forward projections (a) with the Joseph
projection method and backprojections (b) with the Backprojec-
tion projection method out of the total computation time.

We will look at the impact and cause of barrier timings which is where commu-
nications are included in subsection 5.2.2.
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Chapter 3

Block-methods

In image reconstruction there are a lot of different approaches and methods
available, and the choice and implementation of these will have a big impact
on performance. Our focus is primarily on large-scale 3D problems involving,
at times, huge amounts of data, both in terms of measured detector images
and the final reconstruction volume. In this chapter, we will discuss so-called
Block-methods, which are well suited for large-scale problems.

What we refer to by block-methods, are methods which split the input data into
blocks and use the blocks to sequentially update the solution for each subsequent
block. This is not to be confused with methods which just partition the input
data to fit on the computation device but without updating the solution as these
blocks are applied.

After discretization and construction of our projection model from the linear
system in equation 2.1 on page 24 many reconstruction algorithms will revolve
around the following two operation:

• The forward projection of x consisting of the matrix-vector multiplication
fp = Ax.

• The back projection of fp consisting of the matrix-vector multiplication
bp = AT b, where AT denotes the transpose of A.

By the forward projection operation the projections fp for the image x is simu-
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lated, while the back projection will distribute each projection along the given
projection line or angle and sum up the contributions from all of these projec-
tions in the given voxel that they travel through.

In some implementations the forward projections fp are computed for the do-
main followed by a correction fpcorr

= (b − fp)λ ◦ fw, where fw is an array of
weights from the forward projection corresponding to the elements of fp, λ is a
relaxation parameter and ◦ is element-wise multiplication. For example for the
Cimmino method, as mentioned in subsection 1.4.1, algorithm 1 on page 11, the
weights fw correspond to diag(AAT )−1.

We determined in section 1.4 that we would like a reconstruction method that
is suitable for parallel computation on multicore and especially manycore archi-
tecture as well as has a fast convergence rate. We then looked briefly at the
two methods SIRT and ART, where the problem we face is that while SIRT is
suitable for a parallel implementation, it has a slow convergence rate, and the
other way around for ART.

3.1 Block-Iteration method

We now wish to combine the two methods SIRT and ART, introduced in sec-
tion 1.4, so that we get the convergence of ART and the parallelism of SIRT in a
block method that is suitable for HPC application. To combine them in a block
method, we split A and right-hand side b of our linear system from equation 2.1
on page 24 into p blocks so we get:

A =


A1

A2

...
Ap

 ,


b1
b2
...
bp

 , A` ∈ Rm`×n, ` = 1, . . . , p. (3.1)

Here m` is the number of rows of the `th block, A`. The methods can then be
combined by making sequential updates from each of the blocks of A, similar to
how ART treats rows in A, using SIRT updates. This is called a block-sequential
method and was initially described by Elfving [7].

We then have a generic algorithm of the form
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Algorithm 3 Generic block-sequential

xk,0 = xk−1

for i in 1→ m do
xk,i = PC

(
xk,i−1 + λTATM

(
bi −Axk,i−1

))
end for
xk = xk,m,

where matrices T (computed from A) and M` ∈ Rm`×n, ` = 1, . . . , p, as men-
tioned in subsection 1.4.1, define which SIRT method is used for the blocks.

Alternately, we can simultaneously process all the blocks of A like how SIRT
treats the rows of A, using ART updates on each block instead, and we would
have a block-parallel method. Such a method has been described by Gordon
and Gordon [9].

The study done by Sørensen and Hansen [19] shows that by choosing a block-
sequential structure we can utilize that our "building blocks" are SIRT iterations
to have a method that is suited for multi-core, while the error reduction per
iteration is still close to that of ART.

By using a block-parallel approach we get ART iterations on each block which
are performed independently and in parallel, and then conbined linearly in the
end to produce the result of an iteration.

3.1.1 BLOCK-IT

In this thesis we use a particular case of the generic block-sequential method in
3, where T and M are defined as

T = I and M = diag

(
1

‖ai‖22

)
,

which is the same as for the Cimmino method as mentioned in subsection 1.4.1.
Furthemore, the number of blocks can be freely chosen.

This choice of block method has the advantage that it does not require the
computation of how many rays will intersect a given voxel in the backprojection.
This is typically needed for other choices of T , see e.g. SART in subsection 3.1.2.
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3.1.2 SART

The Simultaneous Algebraic Reconstruction Technique (SART) is another spe-
cial case of BLOCK-SEQUENTIAL in algorithm 3 on the previous page where
T and M are defined by the 1-norm of the elements of A. In the original article
by Andersen and Kak [1] one block is equal one projection, but generally the
number of projections per block is completely optional.

Algorithm 4 SART

xk,0 = xk−1

for i in 1→ m do
xk,i = PC

(
xk,i−1 + λTATM

(
bi −Axk,i−1

))
end for
xk = xk,m,

where T and M are defined by the 1-norm T = diag (‖columnj‖1) and M =
diag (‖rowi‖1).

Simultaneous Algebraic Reconstruction Technique, or SART, is the name given
the method by the linear algebra community. In the tomography world and for
ASTRA the same method as algorithm 4, with the same T and M but for only
a single block, is referred to as SIRT, which can be a cause for much confusion.



3.2 Advantages of block-sequential methods 45

3.2 Advantages of block-sequential methods

As previously mentioned, the goal of combining the ART and SIRT methods
into a block algebraic iterative reconstruction method based on a partitioning
of the linear system is to retain the better multicore properties of the SIRT
method while combined with the faster semiconvergence of the ART method
into a single method.

Block methods such as these are separated into two distinct classes. The first
class consists of the methods that access the blocks sequentially in each iteration
and use the updated solution from the previously computed blocks at each new
block. The second class of methods refers to those that compute a separate
result for each block in parallel and at the end combine the results before going
to the next iteration.

The first class of methods will be referred to as block-sequential methods and
the second class as block-parallel methods. Computational results by Sørensen
and Hansen [19] have shown that the block-sequential methods give preferrable
results when executed on multicore architecture compared to the block-parallel
methods.

By using the updated solution when computing each new block, the block-
sequential methods obtains a much faster reduction of the error per iteration
compared to the block-parallel methods where each block is computed indepen-
dently.

While many will only use a single projection per block which, as mentioned,
is also introduced in the original article by Andersen and Kak [1], experience
tells that it can be advantageous to use between one to four or more projec-
tions per block depending on the total number of projections. As one can tell,
the projections when using four projections per block will be located in a close
vicinity and without much deviation in the projected angle if many hundreds of
equidistant projections are available.

As mentioned, all of the following convergence tests have been made on the
tomographic walnut data, meaning that they are conducted on experimental
data and as such can not show the true convergence of the methods. They can
however conclude on how the methods fare and compare in a more real-to-life
scenario.

The relative error of the image reconstructions are defined from the Frobenius
norm of the solution at each iteration step compared to the zero-solution. Be-
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cause of the semi-convergence of the methods, these norms will theoretically
move closer to the true solution of the problem and stabilize before moving
toward the naivé solution. Because we are dealing with experimental data how-
ever, we can not verify semi-convergence from these graphs. Nevertheless, we
can assume to be close to the true solution once the Frobenius norm of our re-
constructions stabilize and get closer to a horizontal curve. In the convergence
plots below, the solution norms have been plotted against the smallest among
the error norms of the solutions.

When using block algebraic iterative reconstruction methods to solve problems
in tomography, the ill-posed nature of the problems makes regularization tech-
niques a very impacting factor in the quality of the reconstructed solutions. The
choice of the relaxation parameter for the methods is a study in and of itself,
and while it is not a focus of this work it is nonetheless important to be aware
of the impact this choice will have on the obtained results.

The following section will illustrate how the relaxation parameter can impact
the reconstructed solution and how this choice will need to be adaptive when
problem parameters change, for example between underdetermined and overde-
termined systems.

3.2.1 Underdetermined system

Figure 3.1 on the next page show the convergence of the Joseph and line length
implementations as well as the image reconstructions at 3, 6, 9 and 12 iterations
of the Walnut data from section 1.6. These results are from a problem of size
2563 with 200 projection angles.

The convergence shown in figure 3.1a and 3.1b is not the true convergence of the
solution as that is unattainable for a real-case problem with noise introduced
to the data. Instead it is the relative error based on the Frobenius norm of the
solution obtained after 100 iterations, which also explains why it converges at 0
on the figures.

While this is not the true convergence of the methods, as it would also be ex-
pected to observe semi-convergence of the iterative method, it can as previously
mentioned be used to see where the most work is done during the 100 iterations,
or where the most results are obtained with highest efficiency throughout the
iterations.
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Figure 3.1: Convergence of the Joseph (a) and line length (b) kernel for a
problem of size 2563 with 200 projections. The relative error is
defined as the Frobenius norm of the solution compared to the
zero-solution. These norms have been plotted against the highest
Frobenius norm obtained through the 100 iterations, which is when
the convergence has stabilized and moves no closer to the true
solution. As these results are conducted on a real world data case,
it is not possible to calculate the convergence against the true
solution and from this show the semi-convergence of the method.
Joseph, (c) and line length (d) methods image reconstructions of
the center slice along the vertical axis for a 2563 problem with 200
projection angles. From first to fourth row is: λ = 0.01, λ = 0.1,
λ = 0.25, λ = 0.5, while from first column through fourth is: 3rd,
6th, 9th and 12th iterate.
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It can be seen that the convergence happens very fast for both Joseph and Line
methods. That the two methods behave very similarly is to be expected as the
same reconstruction technique is used. The most noteworthy is the difference
in behaviour by using different relaxation parameter and how this is very de-
pendant on the system size and how determined it is - in this case how many
projection angles are included.

From the first to fourth row of figure 3.1c and 3.1d on the preceding page
with the relaxation parameter λ = 0.01, 0.1, 0.25 and 0.5 from first to fourth
column. We can see from figure 3.1a and 3.1b that a larger relaxation parameter
is suitable for a system at close to full rank and that our solution is close to
convergence after only a couple of iterations. Here a λ between 0.25 and 0.5
seems to be ideal for both methods.

Figure 3.1c and 3.1d also show that the solution is not desirable for a low λ
and that the methods converge and does not improve noticably after a couple
of iterations for a well-chosen relaxation parameter.

3.2.2 Overdetermined system

It can be seen from figure 3.1 on the previous page how an underdetermined
system will benefit from a larger relaxation parameter, and while there is not
much difference between going from 0.5 to 0.1, when the value drops to 0.01 it
will have a large negative impact on the solution.

Figure 3.2 on the facing page shows the reduction in relative error and the
reconstruction results for a larger and more overdetermined system of size 10243

with 1600 projection angles.

From figure 3.2a on the next page we see that a lower relaxation parameter
works better for an overdetermined system, where we here have an ideal λ at
0.1. The reconstructions are obviously not good for λ = 0.01, but for the other
λ values it is harder to see noticeable differences. And compared to the big
gap for an underdetermined system in figure 3.1 on the preceding page when
going from 0.01 to 0.1, this gap has been largely reduced for the overdetermined
system as can be seen in figure 3.2 on the next page
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Figure 3.2: Convergence of the Joseph kernel for a problem of size 10243 with
1600 projections. As for figure 3.1 on page 47 the relative error in
figure (a) is defined as the Frobenius norm of the solution com-
pared to the zero-solution. These norms have been plotted against
the highest Frobenius norm obtained through the 100 iterations,
which is when the convergence has stabilized and moves no closer
to the true solution. As these results are conducted on a real world
data case, it is not possible to calculate the convergence against
the true solution and from this show the semi-convergence of the
method.
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3.3 Block reconstruction software

For this thesis we have developed a block reconstruction software based on
Algebraic Iterative Reconstruction (AIR) for 3D tomography. The development
consisted of modifications to an existing software that implemented the special
case SART algorithm. The software works for both CPU and GPU computation
and is intended for 3D tomographic reconstruction using High-Performance-
Computing facilities.

3.3.1 General structure

Figure 3.3 on the next page shows the general structure of the implemented
block-sequential software framework followed by a more detailed look at the
block loop. The following main steps are executed when using the software.

• First we decompose the domain, which is to split the solution domain
X into subdomains X1, X2, . . . Xk, denoted processor-domains, where a
processor-domain will typically represent a computation node or a device
that will be tasked with handling computations for that specific domain.
Data are then loaded onto the device as indicated by the domain decom-
position.

• Then communications are initialized, such as allocating memory on host
and devices for x, f and b.

• The main algebraic reconstruction loop over iterations are then started in
parallel for each processor-domain.

• The total number of projection angles are split into blocks of a partition
of projection angles. E.g with 400 projection angles these can be split
into 200 blocks with two projection angles per block or 100 blocks with 4
angles per block. Each device now loop through all of these blocks until
having covered all projection angles for each solution iteration.

• For the current block of projection angles, the projection angles that actu-
ally intersects the current processor-domain are determined and the kernel
for the chosen projection method is executed for each angle with the task
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of calculating the forward projections.

Decompose do-
main and load
data onto device

Allocate memory
on host and devices

for x, f and b

Iterations

Blocks

Angles

Correction

Angles

Calculate for-
ward projection

Angles

Calculate back-
projection

Compose current
solution slices

Gather and com-
pose final solution
slices on rank 0

current block done

current iteration done

Figure 3.3: Block reconstruction flowchart; blue boxes show required steps of
the algebraic iterative reconstruction and red boxes communica-
tion and overhead steps. Round boxes and dashed lines represent
loops

• After the forward projections for all angles intersecting the processor-
domain have been computed, correction is calculated for the current for-
ward projections of the processor-domain.
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• When all forward projections have been corrected, the projection kernel
is again executed for all rays intersection the processor-domain with the
task of calculating the backprojections.

• After all backprojections have been calculated for the current processor-
domain, the loop continues to the next block of projection angles until all
blocks are done.

• Once this is accomplished, the current solution slices are composed and
the next iteration will start.

• Once the last iteration finishes, the final solution slices for the entire solu-
tion volume will be gathered from all devices and composed on the main
device (MPI rank 0).

While figure 3.3 on the previous page illustrates the overall structure of the
reconstruction, the inside of the block loop is expanded in figure 3.4 on the next
page.

3.3.2 The block loop

The main steps of the detailed block loop of the block reconstruction software
are given by:

• For each block, consisting of a number of projection angles, a forward pro-
jection, correction, and backprojection will be calculated.

• After decomposing the domain into processor-domains, each processor-
domain will consist of a number of equally sized cachedomains, covering
the entirety of the processor-domain for the given device.

• The forward projection for the current block will loop through these cache-
domains and calculate the forward projection for all projected rays hit-
ting this cachedomain with a call to the projection kernel, for instance the
Joseph kernel.
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• After the computations, the forward projections are communicated be-
tween all nodes and the calculation of the forward projections for the next
cachedomain will start.

Block loop

CorrectionForward projection Backprojection

Domain loop

Calculate forward
projection fp = aix
with projection kernel

Communicate fp
between all nodes

Domain loop

Loop over angles of in-
ner block-iter method.

Calculate

fph
= λ

bi − aTxk,i−1

‖ai‖22

Domain loop

Copy updated
fp to device

Backprojection by
updating xk,i =

xk,i−1 + λ
bi − aTxk,i−1

‖ai‖22
ai

with projection kernel

Wait for all devices
before finishing
current angle

current block done

Figure 3.4: Block reconstruction flowchart for block loop; blue boxes show re-
quired steps of the algebraic iterative reconstruction and red boxes
communication and overhead steps. Round boxes and dashed lines
represent loops

• Once the forward projections are done, the correction fpcorr
will be made

for all angles of the current block and cachedomains in the processor-
domain for the device before moving on to the backprojection.
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• As the correction step finishes, the backprojection will be executed by
again looping over all projection angles of the current block. For each
cachedomain in the processor-domain for the device, the updated forward
projection is copied to device and the backprojection is calculated by up-
dating the image X with a call to the projection kernel.

• Once the backprojection is done for all cachedomains, we wait for all de-
vices to finish before exiting the current block and continuing to the next
with calculating the forward projections.



Chapter 4

Implementing the Joseph
method

When developing High-Performance Computing applications one has to con-
stantly bear in mind the hardware that is going to execute the application to
achieve the highest level of performance possible. For modern applications, this
hardware is multicore and manycore architectures.

During development, the areas to focus on is the parts that should be executed in
parallel and how to avoid data races. When and where is data needed in memory
and how to access it as quickly as possible when it is needed for computation. If
the implementation is meant to be executed on multiple devices a further level
of complexity is added to the structure of the implementation.

The Joseph projection kernel has been developed with these aspects in mind and
with the option of being executed with domain decomposition across multiple
devices and computation nodes to be relevant in High-Performance Computing.

4.1 Building the kernel

The method is implemented to act as a kernel that can be called for any size
subdomain (e.g. cacheblocks) on device or processing unit and is therefore
meant to be as performance oriented as possible. When the kernel is called, the
leading direction (fastest direction ray travels) is passed to the kernel as well as
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the beam configuration (parallel or cone) and if the current operation is forward
or back projection.

The Joseph kernel implementation consists of an outer loop going through all
rays that might hit the current domain and an inner main loop body that goes
through the domain along the voxels hit by a ray. As covered in subsection 2.1.4,
the Joseph method is a ray-driven projection method and as such follows the
voxels hit by a single ray at a time compared to tracking all the rays going
through a single voxel at a time.

Figure 4.1: Illustration of the implemented Joseph steps. Position is moved
to first intersection of the zero-boundary, and if the ray intersects
the zero-voxel between the voxel center and the domain boundary
then Joseph steps start here.

Before entering the outer loop we add 1/2 voxel on each side of the domain in
the non-leading directions and subtracts 1/2 voxel from the current position to
account for the zero-boundary. This position correction due to the zero-padding
layer that is added to the domain insures that the accessed indices does not go
out of bounds during the kernel call.

As the outer ray loop is entered, the position of the ray at its origin as well as
the ray direction is calculated. Next we compute the ray’s nearest and farthest
intersection with the domain and check whether the distance that the ray tra-
verses the domain is above a set threshold to make sure the ray intersects the
domain.
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Before entering the main loop body, the position is now moved to the first in-
tersection of the domain and we determine how many voxels are in the leading
direction from the "bottom" of the domain until exiting it. We need this be-
cause we instead of calculating which voxels the ray hits, we instead step from
the "bottom" of the domain and up in the leading direction and only make
computations if the ray has entered the domain. If it is determined that the
ray has yet to enter the domain or the zero-padding boundary, we take a step
in the leading direction until the ray intersects the domain before doing any
computations. This is illustrated in figure 4.1 on the facing page.

(a) The Joseph method when the ray hits
a voxel "below" the center of the voxel

(b) The Joseph method when the ray hits
a voxel "above" the center of the voxel

Figure 4.2: Illustration of how the Joseph method’s weighting of voxels is im-
plemented in 3D where the ray is travelling in a dominant direction
x and intersects a plane spanned from the other two directions y
and z. For the Joseph method, the distances from an intersecting
ray to the center of the voxel and neighboring voxels are needed.
As for the implementation of this, the ray intersection point is
shifted half a voxel left and up (half a step back along row and
column). This makes it easier to calculate the distance to the cen-
ter of the voxels as this distance is now just the distance to the
upper left corner of the voxels from the new ray intersection point.
As for what voxels are to be weighted, this is determined by what
voxel the new ray intersection point is located in as shown in (a)
and (b).

After making sure the ray is in the domain, the weights are calculated for the
current and neighboring voxels where applicable and summed up in the forward
projection. This weighting scheme from the Joseph method is illustrated in
figure 4.2. As a ray intersects a voxel, the distance from the ray to the center
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of the intersected voxel, let’s call this dcurrent, as well as the neighboring voxel,
dneighbor , is calculated. The weight, w, is now determined by

wcurrent = (1− dcurrent)
wneighbor = (1− dneighbor),

and added to the corresponding voxels. As dcurrent + dneighbor = 1 it is only
necessary to determine dcurrent, as wneighbor can then be found by wneighbor =
dcurrent.

As can be seen in figure 4.2a on the preceding page a hit voxel will have 3 neigh-
bors in the 3-dimensional case. For ease of implementation, the ray intersection
point is shifted 0.5 units back along the indominant directions. It is then easy
to see that the distance from the original intersection point to the center of
each implicated voxel will be the same distance as from the shifted intersection
point to the upper right corner of each implicated voxel - which conveniently
also corresponds to the indices of the voxels.

Shifting the ray intersection point by 0.5 units will still affect the same voxels
as originally even if the shiftet point is located in a neighboring voxel from the
original as can be seen from figure 4.2b on the previous page.

For the forward projection the summed weights will be summed up for the
current ray as follows:

fp+ =(1− dy) · (1− dz) ·X(x, y, z),

fp+ = dy · (1− dz) ·X(x, y + 1, z),

fp+ =(1− dy) · dz ·X(x, y, z + 1),

fp+ = dy · dz ·X(x, y + 1, z + 1),

where fp is the summed weights for the current projection angle, dy and dz are
the distances from the ray to voxel center in y and z directions (as can be seen
from figure 4.2a on the preceding page), and X(x, y, z) is the value of voxel
(x, y, z) of the solution volume. For example in figure 4.2a on the previous page
(1− dy) · (1− dz) will be the distance from the ray to the center of the top right
voxel that is actually hit by the ray and so on.

If the kernel is called for the back projection, we instead multiply the weights
to the forward projection and add to the corresponding voxel in the solution:
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X(x, y, z) = (1− dy) · (1− dz) · fp(pixel),

X(x, y + 1, z) = dy · (1− dz) · fp(pixel),

X(x, y, z + 1) = (1− dy) · dz · fp(pixel),

X(x, y + 1, z + 1) = dy · dz · fp(pixel),

where pixel is the specific detector pixel hit by the current ray for the current
projection angle and fp(pixel) is the summed weights added to the forward pro-
jection for that detector pixel and ray.

After these steps has been taken we step to the next layer in the leading direction
and continues until the current ray exits the domain. This process is illustrated
in 2D in figure 4.1 on page 56.

The GPU implementation of the kernel can be seen in appendix A on page 77.

4.2 Joseph method using domain decomposition

When implementing the Joseph method it is important to decide on how to
handle the boundary region of the domain as the method will want to write
to neighboring elements. This is especially important when implementing the
method to work with domain decomposition as multiple boundary regions will
appear inside of the solution domain as the domain is decomposed into smaller
subdomains and distributed to separate computation units.

As previously mentioned, a problem that can be difficult to solve when imple-
menting the Joseph method is how to handle when a computation unit respon-
sible for a certain subdomain wants to write to an element of a neighboring
subdomain. To deal with this problem one could choose to look inside of the
domain and basically use the outer layer of each subdomain as a boundary layer
for the method, a so-called "inverted" boundary. This would however be a poor
solution and especially so in the case of domain decomposition as it would result
in a loss of data for each single subdomain within the solution domain.

Instead one can add an extra outer boundary layer to each subdomain consisting
of 0-elements as we don’t actually want to write anything to these elements - a
so-called zero-padding.
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4.2.1 Explicit zero-padding

When a ray in the Joseph method reaches a voxel on the boundary of the domain,
we are faced with a problem of how to evaluate the weighting of the neighboring
voxel on the outside of the domain. Likewise, if a ray intersects a voxel just
outside of the domain, we will need a method to evaluate if the neighboring
voxel on the boundary of the domain should be weighted or not. To help us
with this, we will add an extra layer of one voxel deep to the boundary of the
domain in every direction and call this the zero-padding.

This extra layer will consist of zero voxels because the weighting from the zero-
padding is not to be included in our projections. For voxels that exist on the
boundary of domains neighboring the current domain, this weighting is already
done in the corresponding neighbor domains. And as for voxels that are outside
of the entire solution volume there are no need for them to be weighted.
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Figure 4.3: Memory footprint in GB for different problem sizes with and
without zero-padding. The zero-padding layer is added to the
cacheblocks which for these results are of size 8 × 8 × 128 before
added zero-padding.

Adding an extra layer of one voxel deep to the domain doesn’t sound like it will
increase the memory size of our problem by much. However, when we take the
lowest level domain decompostion over cacheblocks into account, this potentially
introduces a big memory barrier for large problems when every cacheblock in
the entire domain will receive an extra layer, making the problem unnecessarily
larger.
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When running on the GPU where the on-board memory is still limited (<12GB)
this quickly becomes an issue in terms of the size of the problem we can solve
on a single node. As can be seen from figure 4.3 on the facing page showing the
memory footprint as a function of problem resolution with and without zero-
padding for cacheblocks of size 8×8×128, the needed system memory increases
exponentially as the problem size increases. This is even more evident when
zero-padding is added as the number of cacheblocks increases with the problem
resolution.
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Figure 4.4: Performance in time per voxel for differing memory footprint. The
performance per voxel is consistent as the problem size and mem-
ory footprint increases. The slight increase in performance at the
2nd and 3rd points are due to the problem size along the z-axis
being reduced by half, from 512 to 256 for and 1024 to 512. This
causes the number of cache-rows to be reduced by half as well and
causes a slight performance increase.

However even if there is an increase in memory footprint with the addition of
the explicit zero-padding, this does not have an impact on the performance per
voxel, as can be seen in figure 4.4. With increasing problem sizes and memory
footprint, the performance per voxel is consistent. This means that using explicit
zero-padding will have a comparable performance to using virtual zero-padding,
which will be introduced in subsection 4.2.2. As such, the main detriment in
using explicit zero-padding is in the large increase in memory footprint, limiting
the size on problems that can be run on the available hardware.
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4.2.2 Virtual zero-padding

Ideally, we would like for this layer to be implemented in such a way that there
will be no reading or writing to this extra boundary layer so that we avoid
having to allocate and transfer extra memory for the solution.

This can be accomplished by using a virtual zero-padding instead of the explicit
zero-padding previously described.

Code 4.1: Virtual zero-padding for the Joseph kernel
1 const bool i n s i d e 1 = iy > 0 && i z > 0 ;

const bool i n s i d e 2 = iy < ny && i z > 0 ;
3 const bool i n s i d e 3 = iy > 0 && i z < nz ;

const bool i n s i d e 4 = iy < ny && i z < nz ;
5 const f l o a t voxe lva l 1 = in s i d e 1 ? X[ voxe l1 ] : 0 . 0 f ;

const f l o a t voxe lva l 2 = in s i d e 2 ? X[ voxe l2 ] : 0 . 0 f ;
7 const f l o a t voxe lva l 3 = in s i d e 3 ? X[ voxe l3 ] : 0 . 0 f ;

const f l o a t voxe lva l 4 = in s i d e 4 ? X[ voxe l4 ] : 0 . 0 f ;

This so-called virtual zero-padding can be accomplished by adding a simple
check during the inner while-loop of our implementation, for both forward and
backward projections, that checks if a voxel is in fact inside of the true domain
before reading or writing to the value of the voxel and simply reads a zero if it
is not.

This simple check is shown in code 4.1, where the boolean variables inside1 to
inside4 determine if the current voxel index is inside or outside of the domain
and voxelval1 to voxelval4 update the value of the voxel intersected by the ray
and relevant neighboring voxels in the solution volume.

While the virtual zero-padding requires extra conditional checks inside of the
main loop body, this doesn’t actually impact performance in any noticable way
and instead saves a potentially huge addition to the memory in use.

4.2.3 Domain decomposition on multiple devices

Due to the nature of the Joseph method and how voxels neighboring the inter-
secting ray are affected when calculating the weights, implementing the method
to work with domain decomposition on multiple devices requires a certain fi-
nesse.

As a ray going through the inside the boundary of a neighboring domain can
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potentially influence the weighting of voxels in the current domain, the im-
plementation will have to keep track of rays not only intersecting the current
domain but also passing through the near vicinity of the boundary of the current
domain.

Figure 4.5: Weighting of the Joseph method on the boundary between bor-
dering domains. Domain A will need to be aware of rays operating
at the boundary of the domain as those rays till potentially add
weight to the outer layer of Domain A, while when operating in
Domain B, the implemented weighting scheme will want to add
weights to the outer boundary of the domain which is in fact in-
side of Domain A.

When a ray intersects a voxel on the boundary between two domains it will
influence the weighting of voxels in both domains. If a ray intersects a boundary
voxel in the current domain, the implementation will want to write a weight to
a voxel that is outside the current domain. Therefore we must check and specify
that said voxel is outside of the current domain to avoid this.

If the ray instead intersects the voxel on the circumference of the current domain,
that is a voxel in a neighboring domain, it will still add a weight to voxels in the
current domain. Therefore, even if a ray doesn’t explicitly intersects the current
domain it is still necessary to track and include the ray, as long as it intersects
a neighboring voxel at a point 0.5 units or closer to the current domain. An
illustration of this dependency is shown in figure 4.5.
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If the intersection point is outside 0.5 units from the boundary, the ray will
be determined as being outside of the one voxel circumference of the current
domain when the new ray intersection point has been calculated by shifting 0.5
units to the "left" and "up" as shown in figure 4.2 on page 57.

Because of these two circumstances, an extra complexity is added when im-
plementing the Joseph method together with domain decomposition. When
working in a specific domain we neither want to read from nor write to elements
in any other domains as that would require loading memory from another de-
vice and also possibly introduce a data race where the value of the read element
changes after being read.

The implementation of the zero-padding circumvenes this issue, as the weighting
for elements in the neighboring domain will now lie in the zero-padding and be
negated.
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Large-scale performance
results

The focus of this chapter is to document and analyse the results of the large-
scale numerical experiments conducted throughout the project, with the aim
of reviewing the performance of the implemented methods when executed on
state-of-the-art multicore and manycore architecture.

The aim is to find the optimal High-Performance Computing parameters to get
the most out of the available hardware resources and achieve the best possible
scaling of the implementation.

5.1 Blocking and domain decomposition

To get the best performance for our implementation we will look into two main
areas of tweaking for the problem being run on the implementation.

First is to be aware of the limitations of the hardware the implementation is
executed on, such as the size of the device memory cache as introduced in
section 1.5. As mentioned in subsection 1.5.4, blocking of the problem that is
being executed is used to take the most advantage of the limited high-speed
memory that is available on the device by limiting the amount of data that is
being transfered at a time to areas of the memory that is actually needed for
the current computations.
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Figure 5.1 shows how the performance of the computations are impacted by
different choices of cachedomain sizes when blocking the problem.

The choice of 8 voxels is made because due to the implementation being in
single-precision, 8 voxels can fit into a cache line, as a cache line can hold 32
bytes and a floating point number in single-precision consists of 4 bytes.

As can be seen from figure 5.1, it is advantageous to have the cachedomains be
of size 8× 8 along the x- and y-directions as the program is read and executed
by row by the processing unit and the rows of the cachedomain then fit into the
cache lines.
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Figure 5.1: Performance with different cachedomain sizes for the Joseph ker-
nel with explicit zero-padding. The timings are for the Walnut
problem of size 10243 with 40 projections and 1 iteration run on
a single node with two GPUs. The domain has been decomposed
with two domains split along the vertical z-axis and distributed
with one subdomain per device. The blocks are oriented in x-,
y- and z-directions such that a cachedomain of for example size
8×16×32 would have 8 voxels along the x-direction, 16 along the
y-direction and 32 along the z-direction.

From the numerical experiments of which the results are shown in figure 5.1,
it was determined that the most ideal size for the cachedomains was 8 × 8 ×
128. If the size along the z-direction is too small, too many cachedomains will
continually have to be loaded to the cache without taking full advantage of the
size of the cache. Likewise, if the size of the cachedomain along the z-direction
is too large, the cachedomain will no longer fit into the cache as neatly, which
will in turn reduce the performance.
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As can be seen from figure 5.1 on the facing page the choice of cachedomain
size can have a large impact on the performance, and just increasing the size of
the blocks slightly to 16 × 16 × 128 can have a reduction in computation time
of close to 30%.

Another consideration that can increase or potentially harm the performance of
the implementation is how the solution domain is decomposed prior to compu-
tation.
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Figure 5.2: Performance of the Joseph kernel illustrating the impact of how
the domain is decomposed along rows or columns on the compu-
tation times. Like for the results in figure 5.1 on the facing page,
the timings are for the Walnut problem of size 10243 with 40 pro-
jections and 1 iterations with cachedomains of size 8 × 8 × 128
run on a single node with two GPUs. The domains have been
distributed with two domains per GPU, and the domain decom-
position 1 × 1 × 4 means that the domain has been decomposed
with 1 along the x-axis, 1 along the y-axis and 4 along the z-axis
for a total of 4 processor domains.

Decomposing the domain horizontally rather than vertically when possible, that
is to say along the x− and y− directions before the z− direction, is the most
advantageous for the performance of the implementation. This can also be seen
from figure 5.2 where the Walnut problem has been executed with a resolution
of 10243 with 40 projections and cachedomains of size 8 × 8 × 128 with three
different domain decomposition distributions with four subdomains for each
distribution. By splitting the domain along the z-axis as 1 × 1 × 4 the best
performance is achieved while the worst is by splitting the domain along the
x-axis as 4× 1× 1.
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From this, it can be deemed that the domain should first be split along the z-axis
after which, when the number of domains become larger, the next split should
be along the y-axis, and only when the number of domains become increasingly
large should the solution domain be split along the x-axis.

The reason for not continually splitting the domain along the z-axis as the num-
ber of subdomains increase is both because the subdomains has to be of greater
size than the cachedomains, and because a too large split of the domain along
a single axis will decrease the likelihood of the density of the data distributed
among all the subdomains being homogeneous. This will cause an uneven load
on the devices in use and a waste of computational resources. If for example a
device has been allocated a subdomain lying on the very edge of the solution
domain, and this subdomain has a very low density of data when compared to
the interior of the domain, this device will finish computations on the subdo-
main faster than the computations will be done for the remaining subdomains.
This will cause the finished device to wait for the remaining subdomains to
be finished and waste the computational resources which could be used more
efficiently otherwise.

5.2 GPU cluster performance

The following performance tests have all been conducted on the DeiC Abacus
GPU Cluster covered in section 1.7, where each computation node consists of
two GPUs.

All of the test problems on all node configurations have been conducted with
cachedomains of size 8× 8× 128 with two iterations.

As the GPU cluster is based on a queuing system with multiple users, the
performance can deviate from what would otherwise be obtainable when the
number of computation nodes increases as it can be difficult to ensure that all
nodes are available from the same or few closely connected switches.

5.2.1 Scaling of the implementation

In High-Performance Computing the scaling of an implementation is defined
by how well the performance of the implementation increases when using more
hardware resources for executing the same problem.
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How well an implementation scales can be measured by the speedup calculated
from Amdahl’s law, stating that the theoretical speedup of the implementation
is given by

S(s) =
T

T (s)
=

1

1− p+ p
s

, (5.1)

where T is the initial execution time of the whole task before any improvement
to the resources of the system and the efficiency p is the percentage of the
execution time of the task that has benefit of the increase in resources to the
system. s is the factor that the execution time T (s) is sped up after benefitting
from the improvement in system resources and S(s) is the actual speedup of
the execution time T (s) compared to the execution time T for the unimproved
resources.

If an implementation scales well it will have a big impact on the execution time
of the implementation if the number of hardware resources available increase or
decrease.

The scalability of an implementation can be further divided into strong scaling
and weak scaling. Strong scaling is when the execution time of the implementa-
tion varies with the number of computation units for a fixed total problem size.
A weak scaling implementation will have an execution time that varies with the
number of computation units for a fixed problem size per computation unit.

Both strong and weak scaling is relevant for implementations for problems in
computed tomography as the problems are usually on a large scale. As such,
for an implementation to have a weak scaling is still relevant as adding more
computation units not only is desired to reduce the overall execution time but
also to increase the resolution of the reconstruction.

The total computation times for the walnut data for problem sizes from 5123

to 40963 with the Joseph method used for forward projections and the Back-
projection method for backprojections are shown in figure 5.3 on the following
page in a double-logarithmic plot. The dotted lines are regression graphs of
Amdahl’s law and represent the theoretical performance of the implementation
for the different problem sizes.

The actual performance and the theoretical performance is the same until the
measured performance starts deviating at 16 nodes for the smaller problem sizes
and a bit later when nearing 32 nodes for the larger problem sizes.



70 Large-scale performance results

1 2 4 8 16 32 64

Nodes

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

m
s
)

Multi-node total comp time with Joseph

for fp and BP for bp

512
3

1024
3

2048
3

4096
3

Figure 5.3: Total computation time with the Joseph method for forward pro-
jections and Backprojection method for backprojections for the
walnut data of different problem sizes. The dotted lines are regres-
sion graphs of Amdahl’s law for each problem size with efficiency
p numbers for the problem sizes 5123 = 0.845, 10243 = 0.921,
20483 = 0.959 and 40963 = 0.992, describing the percentage of
parallellization of the code for the different problem sizes.

The computation nodes are distributed on switches with 18 nodes per switch.
Due to this, once the number of computation nodes exceeds the amount of
nodes available on a single switch, the performance will receive a hit as the
nodes become distributed on two different switches. For nodes to communicate
in between switches is much more time consuming than communication across
the same switch.

Figure 5.4 on the next page shows the speedup of the implementation for prob-
lem sizes 5123, 10243 and 20483. The dotted lines are again regression graphs
of Amdahl’s law, this time representing the theoretical speedup of the imple-
mentation. As can be seen, the implementation follows Amdahl’s law almost
perfectly until reaching 16 nodes where the smaller problem sizes of 5123 and
10243 again deviates and the speedup start dropping.

The speedup of the 20483 problem still follow the theoretical speedup very
closely through 32 nodes, as was also seen in figure 5.3 of the total computation
time, and is expected to start dropping when going above 32 nodes.
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Figure 5.4: Speedup of the total computation time with the Joseph method
for forward projections and Backprojection method for backpro-
jections. The dotted lines are regression graphs of Amdahl’s law
for each problem size with the same efficiency numbers as stated
in figure 5.3 on the facing page.

From one to four nodes the 10243 and 20483 problems have a linear speedup
and the 20483 problem even has a speedup close to 8 with 8 computation nodes.
From these results it can be seen that the implementation scales very well,
especially when looking at the performance below 16 nodes.

The reason for the speedup at 8 nodes being higher than the theoretical speedup
is because of how the Amdahl regression graphs are calculated from the 16 nodes
points. The reason for choosing this point for the calculation is to account for the
larger time consumed by communications when more nodes are added. Due to
the way the compute center is set up with 18 nodes per switch, the computation
time at 32 nodes is much longer than the theoretical computation time because
of the increase from communications across swithces. This is why calculating the
regression graphs from the 16 nodes points gives a more accurate approximation
than it would with the 32 nodes points, and also why the theoretical speedup is
lower than the computed speedup for 8 nodes.
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5.2.2 Barriers and communication

When working with implementations for large-scale problems on large manycore
systems, and especially on GPU clusters, barriers and communication between
devices will have an increasingly large impact on the total runtime of the im-
plementation as the number of devices or computation nodes increase.

Communication represents the time spent doing communication between ranks
during runtime, such as sending or receiving data, while barriers function to
halt and synchronize ranks. Barriers are necessary to avoid deadlocks that is
when multiple ranks or processes try to access the same resource at the same
time and the waiting process is still holding another resource that the process
it is waiting for needs before it can finish. The result is that neither process can
progress and a deadlock is in place.

In our implementation the functions MPI_Isend and MPI_Irecv is used to
send the updated forward projection of one block from one rank to all other
ranks who will receive the updated forward projection to be used in their own
computations.

Barriers are necessary here to keep all ranks in synch such that computations
on the next block is not started before the current is finished.

Figure 5.5 on the next page show the sum of all timings of the necessary MPI
barriers during computations across all nodes for differing problem sizes. A large
value will as such mean a large waiting time across all nodes during computations
resulting in a waste of resources.

As expected, the total MPI barrier timings increase as more nodes are added
as the communication and synchronization between computation nodes will in-
crease. The MPI barrier timings especially increase dramatically when the prob-
lem size is increased, and for the 20483 problem we almost see an exponential
increase in MPI barrier timings with the increase in number of nodes.

This trend was also seen back in subsection 2.2.2 where the percentage of time
out of the total computation time spent doing forward- and backprojections
drastically decreased with the increase in number of computation nodes. For
problem sizes 5123 and 10243 the timings got close to 20% for forward projec-
tions and as low as 15% for backprojections with 16 computation nodes. This
means that a majority of the remaining time out of the total computation time
will have been spent during communication and waiting at an MPI barrier.

From this it can be seen that finding ways to reduce communication and time
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Figure 5.5: Total MPI barrier timings for given number of nodes and problem
sizes with 400 projection angles. The values shown are the sum of
all MPI barrier timings during computation across all nodes. A
higher value will mean that a greater amount of time will have been
spent on communications and waiting at barriers as an average
across all nodes.

waiting at barriers or to hide these behind computations can potentially have a
very big impact on the performance of implementations for High-Performance
Computing.
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Chapter 6

Conclusion and Future Work

The goal of the thesis was to develop CPU and GPU kernels in C++ imple-
menting the projection method introduced by Joseph for use with large-scale
tomographic reconstruction problems in an existing High-Performance Comput-
ing framework and compared to other projection methods. Furthermore back-
ground regarding the theoretical foundation of the involved algorithms should
be presented and analysed.

This has been accomplished and the implementation tested on large-scale ex-
perimental data on state-of-the-art multi-node hardware.

The performance and convergence of the method has been compared to the
already implemented line length projection method and has been found to have
a slightly better scaling and a marginaly longer run-time compared to the line
length method.

The Joseph projection method was found to work very well for use with the
forward projections but quite slow as a backprojection due to the ray-driven
nature of the method. Instead it proved more effective to combine the method
with the voxel-driven Backprojection method to have the Joseph method handle
the forward projections and Backprojection method the backprojections. This
led to a big reduction in time needed for the backprojections and a comparable
reconstruction quality due to the similarity of the projection methods.

The main problem with the implementation of the Joseph method was with
the larger memory footprint when using explicit zero-padding, but this was
circumvened with the addition of a virtual zero-padding to the implementation.
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The implemented method is well-suited for High-Performance Computing in
tomographic image reconstruction and performs especially well when combined
with the Backprojection projection method for a faster computation of the back-
projections.

The convergence and the image reconstruction results of the method were tested,
and it was found that the Joseph implementation delivered significantly better
reconstruction results for the used data compared to the line length method.
This was especially so when facing an underdetermined problem with a lack of
available data (projection angles).

The block algebraic iterative reconstruction methods based on block-sequential
and block-parallel versions of the row-oriented Kaczmarz algorithm (ART) was
investigated and analysed in the literature, and the implementation of the block-
sequential method, proven to be superior for multicore computing, was tested
and analysed for the best performance with domain decomposition.

6.1 Future Work

Finally we will discuss how the work in this thesis can be extended, and how
the performance of the methods might be improved.

A more thorough research and analysis could be done in the field of block meth-
ods, where a column-oriented version of the block-sequential method could be
implemented and compared. Another area that could be tested is the use of
both CPUs and GPUs simultaneously for the computations and what the opti-
mal distribution of the work-load would be.

In the very large-scale reconstructions we have seen that communication between
nodes will become the major bottleneck on current HPC systems. It would
therefore be of much interest to develop techniques to hide this communication
better, e.g. by using several projections per block and sending and receiving
data for one projection while computing another.

Further, a research into the optimal domain decomposition configuration for
increased performance would be of interest. This could be done by performing
a single round of forward projection and backprojection to use as a basis for au-
tomating an updated domain decomposition based on the distribution of signal
data in the domain to tax the computation units responsible for each domain
equally to increase resource efficiency.
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Code

A.1 Joseph GPU Kernel, main loop body

Code A.1: Joseph GPU Kernel main loop body
whi le ( voxe l s −−)

2 {

4 // Truncate to i n t e g e r and make sure that we are
i n s i d e domain .

i n t i y = y ;
6 i n t i z = z ;

8

i f ( i x >= 0 && ix <= nx &&
10 i y >= 0 && iy <= ny &&

i z >= 0 && i z <= nz ) {
12

14 // Read cur rent voxe l va lue be f o r e update .
const i n t voxe l1 = ix ∗ ldx + iy ∗ ldy + i z

∗ l d z ;
16 const i n t voxe l2 = ix ∗ ldx + ( iy+1) ∗ ldy + i z

∗ l d z ;
const i n t voxe l3 = ix ∗ ldx + iy ∗ ldy + ( i z

+1) ∗ l d z ;
18 const i n t voxe l4 = ix ∗ ldx + ( iy+1) ∗ ldy + ( i z

+1) ∗ l d z ;
const f l o a t voxe lva l 1 = X[ voxe l1 ] ;

20 const f l o a t voxe lva l 2 = X[ voxe l2 ] ;
const f l o a t voxe lva l 3 = X[ voxe l3 ] ;

22 const f l o a t voxe lva l 4 = X[ voxe l4 ] ;
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24 // Ca lcu la te d i s t ance from ex i t po int to cent e r
o f voxe l in y , z d i r e c t i o n s

f l o a t dsy = fabs (y − i y ) ;
26 f l o a t dsz = fabs ( z − i z ) ;

28 // Summing up weights f o r f our surrounding
voxe l s a f t e r moving po int 1/2 and rounding to beg inn ing o f
cur r ent voxe l

// the s h o r t e s t d i s t anc e to cent e r o f voxe l i s
g iven the l a r g e s t weight

30 i f ( ope ra t i on == ’ f ’ ) {

32 fpsum += (1 − dsy ) ∗ (1 − dsz ) ∗ voxe lva l 1 ;

34 fpsum += ( dsy ) ∗ (1 − dsz ) ∗ voxe lva l 2 ;

36 fpsum += (1 − dsy ) ∗ ( dsz ) ∗ voxe lva l 3 ;

38 fpsum += ( dsy ) ∗ ( dsz ) ∗ voxe lva l 4 ;

40 }

42 i f ( i y > 0 && i z > 0) {
fwsum += ( ssy ∗ s sy + s s z ∗ s s z + 1 .0 f ) ;

44 }

46 // For back p r o j e c t i o n s
i f ( ope ra t i on == ’b ’ ) {

48 f l o a t xv1 = (1 − dsy ) ∗ (1 − dsz ) ∗ fp [ p i x e l
] ;

f l o a t xv2 = ( dsy ) ∗ (1 − dsz ) ∗ fp [ p i x e l
] ;

50 f l o a t xv3 = (1 − dsy ) ∗ ( dsz ) ∗ fp [ p i x e l
] ;

f l o a t xv4 = ( dsy ) ∗ ( dsz ) ∗ fp [ p i x e l
] ;

52 i f ( i y == 0) { xv1 = 0 ; xv3 = 0 ; } ;
i f ( i y == ny) { xv2 = 0 ; xv4 = 0 ; } ;

54 i f ( i z == 0) { xv1 = 0 ; xv2 = 0 ; } ;
i f ( i z == nz ) { xv3 = 0 ; xv4 = 0 ; } ;

56

58 xv1 = voxe lva l 1 + xv1 > 0 .0 f ? xv1 : −
voxe lva l 1 ;

xv2 = voxe lva l 2 + xv2 > 0 .0 f ? xv2 : −
voxe lva l 2 ;

60 xv3 = voxe lva l 3 + xv3 > 0 .0 f ? xv3 : −
voxe lva l 3 ;

xv4 = voxe lva l 4 + xv4 > 0 .0 f ? xv4 : −
voxe lva l 4 ;

62 atomicAdd(&X[ voxe l1 ] , xv1 ) ;
atomicAdd(&X[ voxe l2 ] , xv2 ) ;

64 atomicAdd(&X[ voxe l3 ] , xv3 ) ;
atomicAdd(&X[ voxe l4 ] , xv4 ) ;
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66 }
}

68

// Step one voxe l in dominant d i r e c t i o n
70 x += ssx ;

y += ssy ;
72 z += s s z ;

i x += stepx ;
74

} // end whi l e loop over h i t voxe l s
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A.2 Full Joseph GPU Kernel

Code A.2: Full Joseph GPU Kernel
1 #inc lude "kernel_josephs_gpu . h"

#inc lude <s td i o . h>
3 #inc lude <s t d l i b . h>

#inc lude <math . h>
5 #inc lude <cuda_runtime . h>

#inc lude <he lpe r_funct ions . h> // in c l ud e s cuda . h and
cuda_runtime_api . h

7 #inc lude <helper_cuda . h> // he lpe r f unc t i on s f o r CUDA e r r o r
check

#inc lude "parameters . h"
9 #inc lude "boundingbox . h"

#inc lude "gpu/helper_gpu . h"
11

13 #de f i n e _LOOP_VER1
//#de f i n e _LOOP_VER2

15

17 #de f i n e DEBUG 0 // opera t i on==’ f ’ && p i x e l==4∗2+3 // p i x e l==39 | |
p i x e l==40

#de f i n e DEBUGCALL 0
19

//
////////////////////////////////////////////////////////////////////////////

21 //KERNEL_JOSEPHS Raytracing us ing Joseph ’ s a lgor i thm on a l e v e l 3
domain

//
23 // GPU ve r s i on o f kernel_josephs_body

//
25 // kerne l_josephs<operat ion , beam>( . . . )

//
27 // Traces rays o f a p r o j e c t i o n through the cur rent s o l u t i o n

domain doing
// a l i n e i n t e g r a t i o n and a given opera t i on on every voxe l that

i s h i t .
29 //

// The operat i on can be :
31 // ’ f ’ forward : Forward p r o j e c t i o n computing ax = Ax .

// ’b ’ backward : Backward p r o j e c t i o n computing x := x+A^T∗ (b
−ax ) . / aa .

33 //
// Input :

35 // N3 Number o f voxe l s a long each dimension o f th i rd sub
−domain .

// P Number o f p i x e l s a long each dimension o f a
p r o j e c t i o n .

37 // x0 , y0 , z0 Top− l e f t corner o f the cur rent domain cube .
// xk Nx∗Ny∗Nz times 1 array that ho lds the cur rent

s o l u t i o n at l e v e l 1 .



A.2 Full Joseph GPU Kernel 81

39 // ax Px∗Py times 1 array that ho lds the cur rent
p r o j e t i o n at l e v e l 1 .

// rx , ry , rz Unit vec to r s p e c i f y i n g the d i r e c t i o n o f the rays .
41 // ox , oy , oz Vector s p e c i f y i n g the o r i g i n o f the rays .

// ux−vz Rotation matrix ( f i r s t two columns ) .
43 // dsource Distance from o r i g i n to source .

// ddetect Distance from o r i g i n to de t e c t o r .
45 // dp ix e l Distance between two adjacent de t e c t o r p i x e l s .

// droplen Float s p e c i f y i n g the drop lenght f o r which a l l ray
/cube

47 // i n t e r s e c t i o n s sho r t e r in l ength are "dropped " .
// ldx , ldy , Indexing o f x−, y−, and z−dimensions , where ldx

always
49 // ldz r ep r e s en t s the l e ad ing dimension . ldx=1, ldy=nx ,

ldz=nx∗ny .
//

51 // Output :
// xk Pos s ib ly updated s o l u t i o n array f o r cur rent l e v e l

3 domain .
53 // ax Pos s ib ly updated p r o j e c t i o n array f o r cur rent

l e v e l 3 domain .
//

55 //
////////////////////////////////////////////////////////////////////////////

57 template <char operat ion , char beam , char dir>
__global__ void kernel_josephs_gpu_body ( f l o a t x0 , f l o a t y0 , f l o a t

z0 ,
59 f l o a t ∗ __restrict__ X,

f l o a t ∗ __restrict__ fp ,
61 const i n t nx , i n t ny , i n t

nz ,
const f l o a t Px , const f l o a t

Py ,
63 const i n t mini1 , const i n t

minj1 ,
const i n t dj1 , const i n t

elms ,
65 const f l o a t dsource ,

const f l o a t ddetect ,
67 const f l o a t dp ixe l ,

const f l o a t to l ,
69 const f l o a t lambda ,

f l o a t rx , f l o a t ry , f l o a t
rz ,

71 const f l o a t ox , const f l o a t
oy , const f l o a t oz ,

const f l o a t ux , const f l o a t
uy , const f l o a t uz ,

73 const f l o a t vx , const f l o a t
vy , const f l o a t vz ,

i n t ldx , i n t ldy , i n t ldz ,
75 const i n t s i z e )

{
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77 // Get thread and block parameters .
const i n t t i d = threadIdx . x ;

79 i n t blk ;
i f ( d i r == ’x ’ ) {

81 blk = blockIdx . x+blockIdx . y∗gridDim . x+blockIdx . z∗gridDim . x∗
gridDim . y ;
} e l s e i f ( d i r == ’y ’ ) {

83 blk = blockIdx . y+blockIdx . x∗gridDim . y+blockIdx . z∗gridDim . x∗
gridDim . y ;
} e l s e i f ( d i r == ’ z ’ ) {

85 blk = blockIdx . z+blockIdx . x∗gridDim . z+blockIdx . y∗gridDim . z∗
gridDim . x ;
}

87

// Move ( x0 , y0 , z0 ) to top− l e f t voxe l o f t h i s cache b lock ing
domain .

89 x0 += blockIdx . x∗nx ; y0 += blockIdx . y∗ny ; z0 += blockIdx . z∗nz ;

91 // Move X po in t e r a c co rd ing ly .
X += ( long ) blk ∗ s i z e ;

93

// Main d i r e c t i o n used f o r cone beam .
95 f l o a t rx0 = rx , ry0 = ry , rz0 = rz ;

97 i n t entcnt_tota l = 0 , s t epcnt_tota l = 0 , misscnt = 0 ;

99 // Move back in to zero−padding l ay e r .
X −= ldy+ldz ;

101

// Convert i n t to f l o a t and extend volume by 1/2 voxe l on y+z
s i d e s .

103 f l o a t Nx = nx ;
f l o a t Ny = ny+1;

105 f l o a t Nz = nz+1;
y0 −= 0.5 f ; z0 −= 0.5 f ;

107

// Find ray index bounds .
109 #inc lude "boundingbox . inc "

111 #i f d e f _LOOP_VER1
const i n t d i = maxi−mini , dj = maxj−minj ;

113 f o r ( i n t ray = t i d ; d i > 0 && dj > 0 && ray < di ∗dj ; ray+=
blockDim . x ) {

{
115 // P ixe l coo rd ina te in (x , y )−plane

i n t p i = ray/ dj ;
117 i n t pj = ray − pi ∗dj ;

p i += mini ;
119 pj += minj ;

#e l s e
121 f o r ( i n t p i = mini+threadIdx . y ; p i < maxi ; p i += blockDim . y ) {

f o r ( i n t pj = minj+threadIdx . x ; pj < maxj ; pj += blockDim . x
) {

123 #end i f
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125 // Current p i x e l number i s determined from ( pj , p i ) ( j
in x−d i r and i in y−d i r )

const i n t p i x e l = ( pi−mini1 ) ∗dj1+(pj−minj1 ) ;
127

f l o a t x , y , z , absrx ;
129 i f (beam == ’p ’ ) {

131 // Pa r a l l e l beam .

133 // Ray o r i g i n in l e v e l 3 domain coo rd ina t e s (move
de t e c t o r p i x e l p o s i t i o n s to source ) .

x = ux∗pj+vx∗ pi+ox−(dsource+ddetect ) ∗ rx−x0 ;
135 y = uy∗pj+vy∗ pi+oy−(dsource+ddetect ) ∗ ry−y0 ;

z = uz∗pj+vz∗ pi+oz−(dsource+ddetect ) ∗ rz−z0 ;
137

absrx = rx >= 0 ? rx : −rx ;
139 }

e l s e i f (beam == ’ c ’ ) {
141

// Cone beam
143

// Ray d i r e c t i o n ( from source po s i t i o n to de t e c t o r
p i x e l p o s i t i o n ) .

145 rx = ux∗pj+vx∗ pi+ox+dsource ∗ rx0 ;
ry = uy∗pj+vy∗ pi+oy+dsource ∗ ry0 ;

147 rz = uz∗pj+vz∗ pi+oz+dsource ∗ rz0 ;

149 // Ray o r i g i n in l e v e l 3 domain coo rd ina t e s .
x = −dsource ∗ rx0−x0 ;

151 y = −dsource ∗ ry0−y0 ;
z = −dsource ∗ rz0−z0 ;

153

155 // Making sure that rx i s p o s i t i v e as the l e ad ing
dimension

absrx = rx >= 0 ? rx : −rx ;
157

}
159

161 // Compute nea r e s t and f a r t h e s t i n t e r s e c t i o n o f ray and
domain

// and whether ray h i t s the domain
163

//Find i nv e r s e s l o p e s ( d i r e c t i o n ray t r a v e l s in x , y and
z )

165 f l o a t i s x = rx > 0 ? absrx / rx : −absrx / rx ; i s x = rx ==
0 ? 0 : i s x ;

f l o a t i s y = ry > 0 ? absrx / ry : −absrx / ry ; i s y = ry ==
0 ? 0 : i s y ;

167 f l o a t i s z = rz > 0 ? absrx / rz : −absrx / rz ; i s z = rz ==
0 ? 0 : i s z ;

const f l o a t s sx = rx/ absrx ;
169 const f l o a t s sy = ry/ absrx ;

const f l o a t s s z = rz / absrx ;
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171

// Nearest i n t e r s e c t i o n :
173 const f l o a t tx1 = rx >= 0 ? −x : −(−x+Nx) ;

const f l o a t ty1 = ry >= 0 ? −y : −(−y+Ny) ;
175 const f l o a t tz1 = rz >= 0 ? −z : −(−z+Nz) ;

f l o a t tmin = MAX( ty1∗ i sy , tz1 ∗ i s z ) ;
177 tmin = MAX( tmin , tx1∗ i s x ) ;

179 // Farthest i n t e r s e c t i o n :
const f l o a t tx2 = rx >= 0 ? (−x+Nx) : x ;

181 const f l o a t ty2 = ry >= 0 ? (−y+Ny) : y ;
const f l o a t tz2 = rz >= 0 ? (−z+Nz) : z ;

183 f l o a t tmax = MIN( ty2∗ i sy , tz2 ∗ i s z ) ;
tmax = MIN(tmax , tx2∗ i s x ) ;

185

// Check whether ray h i t s domain
187 const f l o a t tEnd = tmax − tmin − t o l ; // Length o f

domain that ray t r a v e r s e s in dominant d i r e c t i o n
i f ( tEnd < 0 .0 f ) { // I f tEnd < 0 , ray i s ou t s id e o f

domain and loop body i s sk ipped
189 misscnt++;

cont inue ;
191 }

193 // I n i t i a l i z e sum .
f l o a t fpsum = 0.0 f ;

195 f l o a t fwsum = 0.0 f ;

197 // Note : Moving to f i r s t i n t e r s e c t i o n o f domain , not o f
zy plane .

x += tmin ∗ s sx ;
199 y += tmin ∗ s sy ;

z += tmin ∗ s s z ;
201

// Determine number o f voxe l s t ep s in the dominant
d i r e c t i o n from "bottom"

203 i n t voxe l s = tEnd+1;

205 // Truncate x to i n t e g e r and make sure that we are
i n s i d e domain .

i n t i x = x ;
207 i f ( i x == nx) ix = ix −1;

const i n t stepx = rx >= 0 ? 1 : −1;
209

// DEBUG counter s i n i t i a l i z a t i o n
211 i n t s t epcnt = 0 , sk ipcnt = 0 , entcnt = 0 ;

213 // Loop un t i l ray e x i t s domain ( ray must be with in 0 .5 f
o f t rue domain )

whi l e ( voxe l s −−)
215 {

217 // Truncate to i n t e g e r and make sure that we are
i n s i d e domain .

i n t i y = y ;
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219 i n t i z = z ;
// i f ( i y == ny) iy = iy −1;

221 // i f ( i z == nz ) i z = iz −1;

223 i f ( i x >= 0 && ix <= nx &&
iy >= 0 && iy <= ny &&

225 i z >= 0 && i z <= nz ) {

227

// Read cur rent voxe l va lue be f o r e update .
229 const i n t voxe l1 = ix ∗ ldx + iy ∗ ldy + i z

∗ l d z ;
const i n t voxe l2 = ix ∗ ldx + ( iy+1) ∗ ldy + i z

∗ l d z ;
231 const i n t voxe l3 = ix ∗ ldx + iy ∗ ldy + ( i z

+1) ∗ l d z ;
const i n t voxe l4 = ix ∗ ldx + ( iy+1) ∗ ldy + ( i z

+1) ∗ l d z ;
233 const f l o a t voxe lva l 1 = X[ voxe l1 ] ;

const f l o a t voxe lva l 2 = X[ voxe l2 ] ;
235 const f l o a t voxe lva l 3 = X[ voxe l3 ] ;

const f l o a t voxe lva l 4 = X[ voxe l4 ] ;
237

// Ca lcu la te d i s t ance from ex i t po int to cent e r
o f voxe l in y , z d i r e c t i o n s

239 f l o a t dsy = fabs (y − i y ) ;
f l o a t dsz = fabs ( z − i z ) ;

241

// Summing up weights f o r f our surrounding
voxe l s a f t e r moving po int 1/2 and rounding to beg inn ing o f
cur r ent voxe l

243 // the s h o r t e s t d i s t anc e to cent e r o f voxe l i s
g iven the l a r g e s t weight

i f ( ope ra t i on == ’ f ’ ) {
245

fpsum += (1 − dsy ) ∗ (1 − dsz ) ∗ voxe lva l 1 ;
247

fpsum += ( dsy ) ∗ (1 − dsz ) ∗ voxe lva l 2 ;
249

fpsum += (1 − dsy ) ∗ ( dsz ) ∗ voxe lva l 3 ;
251

fpsum += ( dsy ) ∗ ( dsz ) ∗ voxe lva l 4 ;
253

255 i f ( i y > 0 && i z > 0) {
fwsum += ( ssy ∗ s sy + s s z ∗ s s z + 1 .0 f )

;
257 }

259 }

261 // For back p r o j e c t i o n s
i f ( ope ra t i on == ’b ’ ) {

263 f l o a t xv1 = (1 − dsy ) ∗ (1 − dsz ) ∗ fp [ p i x e l
] ;
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f l o a t xv2 = ( dsy ) ∗ (1 − dsz ) ∗ fp [ p i x e l
] ;

265 f l o a t xv3 = (1 − dsy ) ∗ ( dsz ) ∗ fp [ p i x e l
] ;

f l o a t xv4 = ( dsy ) ∗ ( dsz ) ∗ fp [ p i x e l
] ;

267 i f ( i y == 0) { xv1 = 0 ; xv3 = 0 ; } ;
i f ( i y == ny) { xv2 = 0 ; xv4 = 0 ; } ;

269 i f ( i z == 0) { xv1 = 0 ; xv2 = 0 ; } ;
i f ( i z == nz ) { xv3 = 0 ; xv4 = 0 ; } ;

271

// ### modi f i ed >> S l i g h t l y f a s t e r v e r s i on .
273 xv1 = voxe lva l 1 + xv1 > 0 .0 f ? xv1 : −

voxe lva l 1 ;
xv2 = voxe lva l 2 + xv2 > 0 .0 f ? xv2 : −

voxe lva l 2 ;
275 xv3 = voxe lva l 3 + xv3 > 0 .0 f ? xv3 : −

voxe lva l 3 ;
xv4 = voxe lva l 4 + xv4 > 0 .0 f ? xv4 : −

voxe lva l 4 ;
277 atomicAdd(&X[ voxe l1 ] , xv1 ) ;

atomicAdd(&X[ voxe l2 ] , xv2 ) ;
279 atomicAdd(&X[ voxe l3 ] , xv3 ) ;

atomicAdd(&X[ voxe l4 ] , xv4 ) ;
281

}
283 }

285 // Step one voxe l in dominant d i r e c t i o n
x += ssx ;

287 y += ssy ;
z += s s z ;

289 i x += stepx ;

291 } // end whi l e loop over h i t voxe l s

293 i f ( ope ra t i on == ’ f ’ ) {
atomicAdd(&fp [ p i x e l ] , fpsum ) ;

295 atomicAdd(&fp [ p i x e l+elms ] , fwsum) ;
}

297

} // end ray f o r loop / pj loop
299 }// end pi loop

} // end kernel_josephs_gpu
301

303 // Template func t i on wrappers .
// − For some reason , us ing template f unc t i on s dec r ea se performance

s i g n i f i c a n t l y (maybe branch p r ed i c a t i on bad ?) .
305 // − There fore we use C func t i on s wrappers in order to reuse body

code but s t i l l have good performance .
// − We a l s e use the wrappers to s e t parameters to the cur rent

dominant d i r e c t i o n .
307
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309 #i f d e f _LOOP_VER1
#de f i n e BLOCK dim3 (128)

311 #e l s e
#de f i n e BLOCK dim3 (24 , 4)

313 #end i f

315

#de f i n e KERNEL_WRAPPER(name , op , beam , opchar , beamchar , d i rchar , x
, y , z ) \

317 void kernel_##name##_##op##_##beam##_##x( const param_dom ∗
dom, \

const param_bbox ∗
bbox , \

319 const param_ang ∗
ang , \

const parameters ∗
param) \

321 {
\

const i n t x0 = dom−>xyz [ 0 ] ;
\

323 const i n t y0 = dom−>xyz [ 1 ] ;
\

const i n t z0 = dom−>xyz [ 2 ] ;
\

325 const i n t Nx = dom−>N[ 0 ] ;
\

const i n t Ny = dom−>N[ 1 ] ;
\

327 const i n t Nz = dom−>N[ 2 ] ;
\

const i n t dx = MIN(Nx, dom−>cacheblock [ 0 ] ) ;
\

329 const i n t dy = MIN(Ny, dom−>cacheblock [ 1 ] ) ;
\

const i n t dz = MIN(Nz , dom−>cacheblock [ 2 ] ) ;
\

331 const i n t nx = dx+2∗param−>zeropadding ;
\

const i n t ny = dy+2∗param−>zeropadding ;
\

333 const i n t nz = dz+2∗param−>zeropadding ;
\

const i n t ldx = 1 ;
\

335 const i n t ldy = nx ;
\

const i n t ldz = nx∗ny ;
\

337 f l o a t ∗ __restrict__ X = dom−>X_d;
\

X += param−>zeropadding ∗ ( ldx+ldy+ldz ) ;
\

339 const dim3 gr id = dim3 ( (N##x/d##x) , (N##y/d##y) , (N##z/d
##z ) ) ; \
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kernel_##name##_body<opchar , beamchar , d i rchar>
\

341 <<<grid , BLOCK, 0 , 0>>>
\

(x##0, y##0, z##0,
\

343 X, dom−>fp_d ,
\

d##x , d##y , d##z ,
\

345 param−>P[ 0 ] ,
\

param−>P[ 1 ] ,
\

347 bbox−>mini , bbox−>minj , bbox−>dj , bbox−>elms ,
\

param−>dsource ,
\

349 param−>ddetect ,
\

param−>dpixe l ,
\

351 param−>droplen ,
\

param−>lambda ,
\

353 ang−>r##x , ang−>r##y , ang−>r##z ,
\

ang−>o##x , ang−>o##y , ang−>o##z ,
\

355 ang−>u##x , ang−>u##y , ang−>u##z ,
\

ang−>v##x , ang−>v##y , ang−>v##z ,
\

357 ld##x , ld##y , ld##z ,
\

nx∗ny∗nz ) ;
\

359 i f (DEBUGCALL) p r i n t f ( "\nGPU KERNEL CALL: x0=%i y0=%i
z0=%i Nx=%i Ny=%i Nz=%i nx=%i ny=%i nz=%i ldx=%i ldy=%i ldz=%i \
n" , x##0, y##0, z##0, N##x , N##y , N##z , n##x , n##y , n##z , ld##x
, ld##y , ld##z ) ; \

i f (DEBUGCALL) p r i n t f ( "GPU KERNEL CALL: X_d=%p fp_d=%p
mini=%i maxi=%i minj=%i maxj=%i \n" , dom−>X_d, dom−>fp_d , bbox−>
mini , bbox−>maxi , bbox−>minj , bbox−>maxj ) ; \

361 }

363

#de f i n e KERNEL_WRAPPERS(name) \
365 KERNEL_WRAPPER(name , f , par , ’ f ’ , ’ p ’ , ’ x ’ , x , y , z ) ; \

KERNEL_WRAPPER(name , f , par , ’ f ’ , ’ p ’ , ’ y ’ , y , x , z ) ; \
367 KERNEL_WRAPPER(name , f , par , ’ f ’ , ’ p ’ , ’ z ’ , z , x , y ) ; \

KERNEL_WRAPPER(name , b , par , ’b ’ , ’ p ’ , ’ x ’ , x , y , z ) ; \
369 KERNEL_WRAPPER(name , b , par , ’b ’ , ’ p ’ , ’ y ’ , y , x , z ) ; \

KERNEL_WRAPPER(name , b , par , ’b ’ , ’ p ’ , ’ z ’ , z , x , y ) ; \
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371 KERNEL_WRAPPER(name , f , cone , ’ f ’ , ’ c ’ , ’ x ’ , x , y , z ) ; \
KERNEL_WRAPPER(name , f , cone , ’ f ’ , ’ c ’ , ’ y ’ , y , x , z ) ; \

373 KERNEL_WRAPPER(name , f , cone , ’ f ’ , ’ c ’ , ’ z ’ , z , x , y ) ; \
KERNEL_WRAPPER(name , b , cone , ’b ’ , ’ c ’ , ’ x ’ , x , y , z ) ; \

375 KERNEL_WRAPPER(name , b , cone , ’b ’ , ’ c ’ , ’ y ’ , y , x , z ) ; \
KERNEL_WRAPPER(name , b , cone , ’b ’ , ’ c ’ , ’ z ’ , z , x , y ) ;

377

// Determine dominant d i r e c t i o n and c a l l appropr ia t e ke rne l .
379 #de f i n e CALL_KERNEL_DOMINANT_DIRECTION(name , opera t i on )

\
const i n t beam = param−>beam ;

\
381 const f l o a t absx = ABS( ang−>rx ) ;

\
const f l o a t absy = ABS( ang−>ry ) ;

\
383 const f l o a t absz = ABS( ang−>rz ) ;

\
i f ( absx >= absy && absx >= absz ) {

\
385 i f (beam == ’p ’ ) {

\
kernel_##name##_##operat i on##_par_x(dom, bbox , ang , param) ; \

387 } e l s e i f (beam == ’ c ’ ) {
\

kernel_##name##_##operat i on##_cone_x(dom, bbox , ang , param) ; \
389 }

\
} e l s e i f ( absy >= absx && absy >= absz ) {

\
391 i f (beam == ’p ’ ) {

\
kernel_##name##_##operat i on##_par_y(dom, bbox , ang , param) ; \

393 } e l s e i f (beam == ’ c ’ ) {
\

kernel_##name##_##operat i on##_cone_y(dom, bbox , ang , param) ; \
395 }

\
} e l s e {

\
397 i f (beam == ’p ’ ) {

\
kernel_##name##_##operat i on##_par_z(dom, bbox , ang , param) ; \

399 } e l s e i f (beam == ’ c ’ ) {
\

kernel_##name##_##operat i on##_cone_z(dom, bbox , ang , param) ; \
401 }

\
}

403

KERNEL_WRAPPERS( josephs_gpu ) ;
405

void gpu : : kerne l_josephs_f ( const param_dom ∗dom,
407 const param_bbox ∗bbox ,

const param_ang ∗ang ,



90 Code

409 const parameters ∗param)
{

411 cudaSetDevice (dom−>dev i ce ) ;
CALL_KERNEL_DOMINANT_DIRECTION( josephs_gpu , f ) ;

413 i f ( cudaGetLastError ( ) != cudaSuccess ) { p r i n t f ( "
kernel_josephs_gpu : Kernel launch e r r o r in %s : l i n e %d . \ n" ,
__FILE__, __LINE__) ; e x i t (0 ) ; }

}
415

void gpu : : kernel_josephs_b ( const param_dom ∗dom,
417 const param_bbox ∗bbox ,

const param_ang ∗ang ,
419 const parameters ∗param)

{
421 cudaSetDevice (dom−>dev i ce ) ;

CALL_KERNEL_DOMINANT_DIRECTION( josephs_gpu , b) ;
423 i f ( cudaGetLastError ( ) != cudaSuccess ) { p r i n t f ( "

kernel_josephs_gpu : Kernel launch e r r o r in %s : l i n e %d . \ n" ,
__FILE__, __LINE__) ; e x i t (0 ) ; }

}
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