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Abstract

Big data has allowed to study the communication and mobility patterns of humans with ever
greater resolution. However, it is not yet clear how information from online social networks relates
to offline face-to-face interactions. Knowledge of this directionality will help us to harness the in-
creasing wealth of online information to improve predictions of for example offline disease spread.
This study aimed to distill relevant information from online social networks to predict meaning-
ful face-to-face contact behaviours. To this end data from the Copenhagen Network Study on
the Facebook and face-to-face interactions of 850 students was used. First, a network of offline
interactions was predicted using binary link prediction on features distilled from the Facebook in-
teraction data. The network predictions of this model were then validated, using simulations of
disease spread and comparison against the Erdös-Renyi random graph and configuration model
network. It was found that stringent variables of offline contact, such as meeting during off-hours
or meeting more than 5 times per week, could be predicted with 69% accuracy, which was 19%
better than the Majority Vote Classifier. The target variable of meeting at least once a week could
be predicted with 78% accuracy. The predicted network showed disease simulations that closely
resembled those on the actual network, and performed significantly better than simulations on the
Erdös-Renyi random graph. To the knowledge of the author, this is the first study to validate the
quality of the network structure resulting from link prediction using disease simulations. It was
shown that online network information can be used to predict offline contact networks which are
useful for the investigation of the spread of disease. This study paves the way for future verifica-
tion of disease models and development of intervention strategies using primarily online network
information.



Acronyms

A legend to clarify the acronyms that are used often in this Thesis.

• ACC: Accuracy.

• CNN: The number of shared Facebook friends (Feature).

• CNN int: The number of shared interaction friends (Feature).

• Disc int/comment/message to/liked story/message tag/tagged story: The total number of
exchanged interactions, ‘comment’, ‘message to’, ‘liked story’, ‘message tag’, and ‘tagged story’,
while accounting for the activity of the users involved (Feature).

• First: The date of the first observed interaction between a pair (Feature).

• FN: False Negative.

• FP: False Positive.

• Min/Max/Mean Wait: The minimal, maximal, and mean waiting time between two Facebook
interactions (Feature).

• RFC: Random Forest Classifier.

• Resp rate: The order of response (Feature).

• Prev: The total number of exchanged interactions in the previous month (Feature).

• SIR Model: Susceptible-Infected-Recovered Model.

• TN: True Negative.

• Tot int: The total number of interactions (Feature).

• TP: True Positive.

• TPR: True Positive Rate, also called Recall.
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1 Introduction and Literature Review

The spread of ideas, opinions, innovation, as well as behaviour, information, and disease is medi-
ated by the multi-scale patterns of human interaction [1, 2]. Knowledge of human mobility networks
at both global and urban scales has greatly improved predictions of the dynamics of disease and
identification of the geographic origin of emergent diseases [3, 4]. However, this spread is further
shaped by the social and communication networks humans are embedded in [5], which are much
harder to quantify.

Measuring or modelling the exact contact network - given multiple spatial and temporal resolutions
- remains a challenge [6]. Face-to-face interaction can only be measured using specialised hard-
ware (e.g. sociometric badges using RFID transmissions) [7, 8] or smartphones with specialised
software1 [10]. The recent explosion of online social and information platforms has allowed for the
direct observation of social interaction patterns. However, it is not clear how similar patterns of online
interaction and face-to-face interaction are, nor how the two worlds relate and feedback into each
other. Mobility information has been used to infer social ties [10, 11, 12, 13, 14]; however, there
exist only few studies that investigate individuals’ co-presence based on knowledge of their online
interactions [12]. This direction of inference is particularly important if we are to harness the power of
the digital world, where traces are naturally and clearly recorded, to address phenomena driven by
offline interaction. More specifically, we are interested to distill the relevant information from online
social networks to predict the face-to-face contacts that transmit disease.

Recent ubiquity of mobile computing and social sensors, combined with the exponential increase
in computational power over the past fifty years, has greatly increased the capacity to collect and
analyse data about all aspects of the lives and interactions of human beings [15]. Until quite re-
cently, sociological data came primarily from questionnaires, census data, and anthropological field
studies [10, 16]. Nowadays additional data sources such as travel card data, call detail records,
emails, smartphone applications, and online social networks, are being used to track the movement,
communication, daily rhythms, behaviour, and opinions of people [15, 17, 18, 19]. The availability
of such data is predicted to increase further with developments on the Internet of Things, smart city
initiatives, and increased digital access and participation [6, 20]. Under the name of computational
social science [15], scientists are using this big data wealth to repose and revisit old questions in
social science, as well as to take up entirely new ones. These data sources reduce the cost and
organisational complexity needed to study very large cohorts of people, taking us closer to measur-
ing micro-level behaviour and interactions on a societal scale. Furthermore, these measurements
can be made at very high temporal resolutions and reduce the reliance on self-reported information,
which is demanding to collect and can be prone to biases [11, 16].

Many of these sources provide overlapping but distinct information concerning the dynamics of the
underlying networks of social relationships [11]. Each source or network reveals complimentary
information about the underlying relationships between their users, and a more complete picture of
human behaviour can be captured when we know how these different sources act together [16]. The
value of interactions within the social network differs with the effort needed to initiate contact, and the
culture of the network [21, 22]. In the language of physics, the relevance of network interactions is
most naturally captured by different measures - e.g. duration, entropy, location - in different networks.
If we are to compare or combine information from online and offline networks, we must understand
how to map one network to the other.

This master thesis investigates (i) how the social network of Facebook maps onto the network of face-
to-face social interactions, and (ii) how predictions based on online network information can be used
to model the spread of disease through face-to-face networks. The analysis is based on data from the
Copenhagen Networks Study, in which all interactions of approximately 850 students were recorded
over the period of September 2013 to January 2016 [16]. To investigate these questions, supervised

1Recently, some work was undertaken to use Wifi signals to infer physical interactions and social ties [9].
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link prediction based on binary classification [12, 23] is used to ‘predict’ offline interaction patterns,
using features extracted from online interactions. The face-to-face network predicted through this
procedure is then used to study the spread of disease in the offline population.

1.1 Social Interaction and Ties

When studying the dynamics of social networks, it is not the mere presence of a tie that matters,
but rather how strong this tie is: not all relationships are created equal [22, 24, 25]. Weak ties are
important in connecting distant nodes, and thus for disseminating information to far regions of the
social network [26], whereas strong ties are important in collaborative problem solving [27]. Since tie
strength affects both the speed and threshold at which connected individuals take up information, it
is fundamental when modelling the dynamics of diffusion processes on networks [1].

There are many studies which attempt to predict the real-world strength of ties based on features
from Facebook interaction between the pair of individuals. Gilbert and Karahalios defined 74 different
interaction variables based upon sociology literature concerning tie strength, which they used to
classify ties as strong or weak with 85 % accuracy using a linear regression model [24]. Jones
et al. found that a logistic regression model using only the sum of all interactions between a pair
already determines a user’s closest friends with 82 % accuracy [28]. Both of these studies compared
against a ground truth of self-reported friendship ties, which were collected using specially developed
Facebook applications.

When dealing with anonymous large scale communication data - such as Call Detail Records 2

(CDR’s) or online social networks - the subjective perception of a relationship is not directly observ-
able [24]. The existence of an interaction in the observed communication network can be taken as
evidence for the presence of a social tie. However, the strength of this tie then has to be inferred from
e.g. the total amount, frequency, duration, or timing of interactions [10]. Variables that sociological
studies have found to correlate with friendship can be used to assign an interpretation or characterise
the relative importance of a tie [24]. A very important notion, which is often used, is that the similarity
of individuals plays a strong role in the creation of social ties [12]. More similar individuals - in terms
of demographic characteristics such as race, age, religion, education, occupation and gender, as
well as in terms of their attitudes and interests, or simple geographic propinquity - are more likely
to bond, and their ties dissolve less fast than between non-similar individuals. This effect is called
homophily [30].

Furthermore, social networks are strongly influenced by spatial proximity [30, 31]. Using CDR data,
Eagle et al. found that spatial and temporal context - specifically off-campus proximity in the evening
and on weekends (which they coined as the ’extra-role factor’) - is an important indicator of friend-
ship [11]. However, Baratchi et al. argued that the ‘on/off campus’ variable is specific to social ties
in one affiliation and does not translate to people with different spatial domains [14]. To identify dif-
ferent classes of social ties between people (n=5), they constructed two distinct variables: one to
capture the amount of time two individuals spend in the same place, and one to capture the amount
of places they spend time in together. The idea that the number of social contexts two nodes share
- McPherson et al. called it the ‘multiplexity’ of a contact [30] - carries fundamental information
about the importance or strength of a connection is also found in larger studies. Cho et al. found
that users who visit similar places are more likely to be friends in online location-based social net-
works [13]. Furthermore, Wang et al. found that similarity between mobile phone users’ movements
(in terms of mobile homophily measures) correlates with their position in the social network (as mea-
sured by topological network connectivity measures3) and the intensity of their interaction (number
of calls) [12].

2Call Detail Records are a telecom providers’ records of phone calls and text messages, as well as information about
the closest cell phone tower. This can be used as a proxy for geographical location and social interaction [17, 29].

3Specifically they used the Common Neighbors, Adamic-Adar, Jaccard Coefficient, and Katz measure.
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These studies use social networks and mobility information to infer friendships. However, there exist
few studies that attempt the inverse: to gain more insights about individuals whereabouts - e.g.
predicting their location or colocation - based on knowledge of their online interactions and social
ties. Although it has been shown that human trajectories show a high degree of temporal and spatial
regularity [17] and are highly predictable on a society-wide scale, they are still erratic at the scale
of the individual [29]. Predictability at an individual level increases when including information on
the movement of friends or social circles [13, 32]. However, the most relevant predictor for offline
interactions has not been identified so far. Therefore, the logical next step is to investigate exactly
which information is most useful to predict offline interactions, which is the question that this thesis
addresses.

1.2 Complex Networks

Thusfar, this literature review primarily considered studies which investigate ties between two people
at a time, i.e. dyadic relationships4. However, if these pair-wise relationships are all taken into
account at the same time, a network structure of social relationships emerges. Networks - also called
graphs - are an often used way to describe many systems: ranging from the Internet, organisational
networks, food webs, and distribution networks to social networks [33, 34].

In each of these cases, one defines a network as an ordered pair G = (V,E), which consists of a set
of items V , called vertices or nodes, and the set E of connections between them, called edges [35].
The degree kv of a node v is defined as the number of edges that are incident to this node. Since this
thesis concerns itself only with simple graphs, i.e. undirected graphs without multiple edges or loops,
the node-degree kv is equal to the number of other nodes v is connected to [36]. In social networks,
the nodes represent people embedded in a social context, and edges represent e.g. interaction,
collaboration, or influence between those people [37].

Interestingly enough, real-world networks all exhibit properties that deviate strongly from the sim-
plest random model one would expect. Such a network would be the Erdös-Renyi random graph:
in this undirected graph with n nodes, each of the 1

2n(n − 1) possible edges are placed at random
between the nodes with some probability p, and the node-degrees are distributed according to a
binomial distribution [33]. However, human-made networks, such as information, transport, and city
infrastructure networks show non-trivial topological features that lead us to call them complex net-
works [36, 38, 39]. Many of these topological features have been studied in recent time. Examples
include strong heterogeneity in the degree distribution (e.g. scale-free networks, where the degree
distribution follows a power law [40]), small-world properties (i.e. high clustering and a small diame-
ter [41]) and interesting fine-grained structure such as communities [42] and motifs [43].

Typically, the social networks we study are static graphs that have been constructed through ag-
gregation of all interactions in a communication system over a time window ∆t [44]. However, the
social networks that people are embedded in are not static, rather they grow and change as new
interactions in the underlying social structure arise or desist [37]. The networks of who interacts with
whom, i.e. contact networks, are even more dynamic and on shorter timescales: who people inter-
act with changes many times during the day. Only recently it has become possible to observe the
contact networks in real-time - using e.g. GPS to track movement of people with very high temporal
resolution [45].

As scientists increasingly investigate the time dynamics of complex networks in general, it is found
that these new methods are relevant for the study of social networks in particular [46, 47]. Including
the possibility that links may appear or disappear in a network (i.e. allowing for temporal changes of
the network structure) removes transitivity: if A is connected with B at time tAB and B is connected
with C at time tBC , information can only pass from A to C if tAB < tBC [47]. Furthermore, there
exists evidence that the timescale of aggregation has a strong effect on the observed dynamics

4In sociological literature, pairs of interacting individuals are called dyads.
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of the social networks themselves [32, 44, 48]. By aggregating to a coarse time-binning, many fast-
moving processes - such as the dynamics of social gatherings - are averaged away, and fundamental
information about the system is lost [32, 49]. Stopczynski et al. have also shown that knowledge of
the dynamics at an hourly timescale is instrumental for studying spreading processes in society [45].
They found that the modelling of spreading processes is strongly impacted by a reduction in the
temporal fidelity close proximity interaction networks are measured at. Temporal subsampling, both
due to restriction to snapshots in time, or due to limited coverage of all social interactions, results
in less frequent and smaller outbreaks and drastically increases the time it takes for the spreading
process to reach 50 % of the network [45].

1.3 Disease Spread on Networks

Modelling the dynamics of disease is one of the most successful applications of the study of complex
networks. It has allowed researchers to study the effect of different intervention and disease preven-
tion techniques, in particular their effect on the number of individuals affected by an epidemic and the
speed of transmission. Furthermore, it has aided in locating ‘patient zero’ based on later snapshots
of the network, and allows to investigate the epidemic threshold of a system [50].

There exists strong evidence for the importance of the network structure for the dynamics of spread-
ing processes [50, 51, 52]. Early epidemiological models assumed a well-mixed population, where
each individual has a non-zero probability of contact with everyone else [53]. Within this population,
individuals are compartmentalised into groups, reflecting the different stages of disease develop-
ment [50]: e.g. Susceptible, Infected, and Recovered individuals (S, I, R respectively). Infected
persons transmit the disease to susceptible individuals with the infection rate β, and recover with
the recovery rate γ [54]. For such a well-mixed SIR-model, the spread of the disease is governed
by three ordinary differential equations (for the population numbers of S, I, and R). The dynamics of
the disease are critically determine by the basic reproduction number R0 and will always support an
epidemic if β

γ = R0 > 1 [50, 53]. In reality however, individuals have only a finite group of contacts
that they can spread a disease to (the ‘mixing network’). This restriction to the contact network slows
down the spread of infection [50], and shifts the epidemic threshold.

Spreading phenomena have been studied on a wide range of idealised networks, which has led
to many insights in the difference between standard random mixing and disease spread through
networks [50]. After assumptions about the micro-level mechanisms5 of the infections are made,
knowledge of the network structure allows one to simulate epidemic dynamics at the population
scale [50]. The quality of the spreading simulation will be notably influenced by the quality of the
network approximation.

1.4 Link Prediction

In this thesis, we formulate the problem of mapping one network to another as the task of predicting
a link on the face-to-face contact network given the existence of interaction in the online network.
Link prediction is the task of estimating the likelihood of the existence of a currently unobserved link
between two nodes, based on the observed links and the attributes of the nodes [59]. This can be a
static problem, where one e.g. attempts to estimate the links missing from an incompletely observed

5These micro-level mechanisms for the transmission of disease can be simple probabilistic models of transmission,
given a contact between an infectious and susceptible individual. However, they can also involve threshold rules [55]
or other non-linear relationships between the number of times an individual is exposed and the probability they become
‘infected’. These complex contagion mechanisms may further vary depending on the item that is spreading (e.g. different
information content or behaviour), and the host medium that the item spreads through [56]. Furthermore, critical behaviour
can occur when two different disease are allowed to interact (co-infection). Recent analysis of a co-infection model [57]
has revealed sudden avalanches when there is cooperative behaviour between pathogens [58], which may be theoretically
similar to the abrupt dynamics of innovation.
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biological network. Or it can be used for a prediction in time, where one predicts which links are most
likely to form in the next instance of the network [37].

Link prediction techniques are widely used in machine learning and have found application especially
in recommender systems [60], but also e.g. for the detection of anomalous email traffic or terrorist
cells [61]. Furthermore, link prediction can be used to study which rules underlie the formation of
new ties between entities, i.e. which processes drive network formation [37, 59, 60, 62].

To solve the link prediction problem, the majority of the literature relies on similarity measures to
perform a binary classification over the set of all potential links [37, 59, 63]. The node-pairs can be
classified in a supervised or unsupervised manner [59]. In their seminal paper on the link prediction
problem for social networks, Liben-Nowell and Kleinberg proposed the unsupervised method [37]. In
this case, the set of all potential links is ranked according to similarity between the nodes constituting
the pair, computed using one of the available network properties. Then the k top-ranked potential
links - where k is the expected number of new links - are classified as new links [12, 37]. However,
more recently, supervised methods are gaining traction [12]. In this case, one learns a classifier
(e.g. a decision tree) on a training set of new and missing links, and then classifies each further pair
from the test set as a new or missing link according to the learned classifier [63]. Wang et al. found
that the precision of the supervised classifier is about double of their unsupervised counterpart [12].
Lichtenwalter et al. also argue for the use of supervised learning, since unsupervised methods are
domain specific, and it is hard to predict the performance on a different network instance [64]. Fur-
ther advantages of supervised methods are that their variance can be reduced by placing them in
an ensemble framework (see section 2.1.1), and they can deal with class imbalance (which unsu-
pervised methods can not) [23, 64]. The main disadvantage is that these methods require labelled
training data, which is often not given [23].

The similarity measures, which rank the links according to existence likelihood, can be based on
both the similarity of the nodes or their proximity in the network. In case of node similarity, nodes
are considered similar if they have many common features. However, in real-world networks these
attributes are often hidden, so structural similarity is used: nodes are considered similar according
to some network similarity index [59]. Liben-Nowell and Kleinberg and Zhou et al. systematically
compared a number of similarity indices (local and global, node-dependent or path-dependent) on
real networks and found that the Common Neighbours (CN) index performs very well [37, 65]. Here
the CN similarity measure is defined as: sxy = (A2)xy ={the number of different paths with length
2 connecting x and y}. The best choice of similarity index also depends on which aspects of the
network structure are deemed most important for the tie formation [59]. Furthermore, when the nodes
have very different types of attributes, there exist two ways to combine the similarity information.
Either one constructs different similarity measures per feature, which are then combined using a
form of linear regression. Or one constructs different networks - based upon a subset of features, or
featuring edge weights that reflect the property under investigation - and uses a ‘normal’ similarity
measure to determine similarity between links [66].

1.5 Evaluating the Quality of Link Prediction

Evaluating the quality of the link predictions is challenging, in particular because false prediction of
the network structure can have extreme consequences for the dynamic processes on these networks.
The proficiency of the machine learner at predicting the new links is typically assessed using receiver
operating statistic (ROC) curves, and its area under the curve (AUC) [12, 59, 62]. However, when
predicting links on social networks, there exists an imbalance between the amount of links that
could potentially form with respect to those that do, and as a result the precision of the prediction
is often quite low [37, 63]. When predicting new contacts based upon CDR data, Wang et al. used
progressive sampling of missing links and a restriction of the link prediction to links with common
neighbours to select a subset of potential links and make the prediction more manageable [12].
Their precision was only 30% when considering 51 million missing links, however this increased to
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73.5% when restricting the prediction to nodes that shared common neighbours and had very high
Adamic-Adar and spatial correlation scores [12]. Rather than changing the training method, Liben-
Nowell and Kleinberg changed the baseline for representing their predictor quality when predicting
ties in a co-authorship network [37]. They compare against random prediction, i.e. a classifier which
randomly predicts k links from the set of all possible new links (where the mean accuracy is naturally
the number of possible correct predictions divided by the total number of possible predictions), and
found that almost every predictor (using some topological similarity measure) performed better than
random [37].

A further downside of expressing the quality of the link prediction in terms of false positive and false
negative predictions only is that this does not reflect the position of the falsely predicted node or
edge within the network. As demonstrated in Fig. 1, the position of a mis-classified tie greatly
influences the network properties (such as connectedness) of the resulting predicted network. Unlike
conventional applications of classification - e.g. finding terrorists or spam [59] - we are interested in
the structure of the resulting network rather than the prediction of a single tie. Thus, new methods
are needed to quantify prediction performance, i.e. the severity of the classification errors for the
network prediction and possible systematic misclassifications based on network properties.

We take a novel approach and verify the quality of our machine learner by studying the suitability
of its output - the predicted contact network - as input for our specific goal, namely the modelling of
spreading dynamics on networks. This investigation paves the way for future verification of disease
models and development of intervention strategies using primarily online network information.

Figure 1: The structure-dependent impact of a false positive classification in a network. On
the left, the two nodes share a falsely predicted tie (coloured red), which links two remote regions of
the network. However, on the right the falsely predicted tie lies in a densely connected part of the
network. Both predicted networks will exhibit entirely different spreading behaviour. The illustration
was made using Gephi [67].

1.6 Scope of this Thesis

To summarise, this thesis investigates the relation between online interactions and offline meetings
and studies how well we can use online networks, where data is easily available, to predict the
outcome of offline spreading processes. In particular, we investigate the possibility to detect char-
acteristic Facebook interaction behaviour that qualitatively separates user-pairs with different offline
interaction behaviours. We aim to determine which characteristics of Facebook interaction are infor-
mative about the tie, and which aspects of the interaction do not matter for further link predictions.
Secondly, we study the usability of such predictions for the investigation of disease spreading.

The structure is as follows: after the relevant methods have been introduced in chapter 2, chapter
3 introduces the dataset, and some descriptive analysis performed on this data. Moving from this,
chapter 4 presents the work to relate features of the Facebook interaction data to offline behaviours.
This chapter starts with a brief introduction, followed by section 4.1 which introduces the features
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that were extracted from the Facebook data, and section 4.2 which presents the results of classifying
offline behaviour based on these online interactions. These results are discussed in section 4.3.
In chapter 5 we then use the resulting network of predictions as input for dynamic simulations of
disease spread. The simulations on the predicted and actual offline network are compared against
each other and two null models in section 5.2. This section also discussed the use of the predicted
network for modelling the spread of disease in the offline population, as well as the most important
network characteristics that drive the disease simulations. Lastly, the overall implications of the work
are discussed in chapter 6, which also concludes this thesis with an outlook for further work.
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2 Methods

This chapter covers the different methods used in this thesis. First, section 2.1 introduces Classifi-
cation, and in particular section 2.1.1 focusses on the Random Forest Classifier. Next, section 2.2
discusses the process of training a classifier in section 2.2.1, and different metrics to quantify classi-
fier performance in section 2.2.2. Building on this, 2.2.3 discusses the influence class imbalance has
on these results, and section 2.2.4 looks at model comparison. The sections on methods are con-
cluded with section 2.3 which introduces the SIR disease model and its simulation with the Gillespie
algorithm.

2.1 Classification

Classification is a form of supervised machine learning, which requires training data that has been
assigned a discrete class label [68]. The data consists of observations, in this case user-pairs, with a
number of features, also called variables or attributes, that span a multi-dimensional ‘feature space’.
Each observation is assumed to belong to one of a number of discrete classes. In particular the
investigations here are restricted to binary classification, i.e. there are only two possible class-labels:
0 or 1 [23]. Later, the class assignment will also be called the ‘target variable’, since it is the target
the classifier is trained to predict. Given the training data, the classifier learns a function - which
depends on the data features - to assign the correct class labels to observations it has not seen
before. The learned classifier function is then applied to data from a labelled test set, and the quality
of the classifier is determined by comparing these predictions against the known labels. This step is
essential, because the key objective of the learning function is a good generalisation to previously
unknown records. The resulting classifier function can be used both as a tool to distinguish between
objects of different classes, or to predict class membership.

2.1.1 Random Forest Classifier

Figure 2: A decision tree. At each node a feature is chosen to split the data into successively
purer subsets. This process is continued until the leaves contain observations of only one class. The
illustrated tree classifies whether a pair are friends or not, based upon the number of interactions
and the number of shared friends respectively.

Many classifier methods exist, and the optimal choice is often problem specific - depending a.o. on
the number of observations, features, and noise in the data [68]. A simple yet effective classifier
method is Decision Trees. This method works somewhat like the game ‘Twenty Questions’: through
a series of questions about features of the data, it splits the dataset up into progressively purer
subsets until it can uniquely assign a label to every set (see Figure 2) [23]. Selecting the optimal
series of questions is non-trivial. Often Hunt’s algorithm is used, which makes a series of local
optimum decisions: at every split it chooses the feature which maximises the gain function, until the
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remaining subset has only one class label. This gain function ∆ is given by [23]:

∆ = I(parent)−
k∑
j=1

N(vj)

N
I(vj) (2.1)

where I( · ) is the impurity measure of a given node. N is the total number of observations at the
parent node, k is the number of attribute values, and N(vj) is the number of observations associated
with the child node vj . The impurity measure, also called split criterion, that we use here is the Gini
criterion6:

I(t) = Gini(t) = 1−
c−1∑
i=0

[p(i|t)]2 (2.2)

where p(i|t) denotes the fraction of data points belonging to class i at node t [23]. In this basic
form, feature selection based on impurity reduction is biased towards variables with more categories.
Decision tree algorithms such as Classification And Regression Trees (CART) mitigate this effect by
restricting the test condition to binary splits only [23]. The scikit-learn package that was used for
machine learning algorithms in this thesis, uses an optimised CART [69]. The main advantage of
Decision Trees is that it is a very fast algorithm, both in training and classifying new test records,
which can be made more accurate by placing it into an ensemble framework.
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Figure 3: The ensemble error as a function of the base classifiers error, for 25 completely
correlated (dashed line) or uncorrelated base classifiers (solid line). Combining perfectly uncorre-
lated classifiers greatly improves the ensemble’s classification error, as long as the error of the base
classifiers is below 0.5. Figure adapted from [23].

Ensemble methods build multiple base classifiers using the training data, and then aggregate the
predictions of these base classifiers to the final classification [70]. This aggregation is done through
simple majority voting. The prediction will be incorrect if more than half of the base classifiers make
a wrong prediction. If the base classifiers are independent, and all have the same error rate εbase we
can write the error rate of the ensemble as:

εensemble =
N∑

i=dN/2e

(
N

i

)
εibase(1− εbase)N−i (2.3)

Figure 3 shows the ensemble error as a function of the base classifiers error, for 25 completely
correlated or uncorrelated base classifiers. For correlated classifiers the ensemble result will not
deteriorate with respect to that of the base classifier, however combining perfectly uncorrelated clas-
sifiers greatly improves the results as long as the error of the base classifiers is below 0.5 [23].
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Nonetheless, it is often hard to obtain perfectly uncorrelated base classifiers. By definition robust
methods will converge to a similar prediction with the same input data. Therefore, the ensemble of
base classifiers is generated using one or several kinds of randomisation: by changing the training
set, the features that are considered, or the algorithm itself. The training set is varied by resampling
the original training data according to some sampling distribution: when sampled with replacement
from an invariant sampling distribution this is called bootstrap aggregating (bagging), whereas al-
gorithms that adapt the sampling distribution to observations that are hard to classify are called
boosting7 [70].

The classification error is typically a combination of three effects: Bias + Variance + Noise [23]. This
is called the bias-variance decomposition. In case of bagging, the ensemble classifiers typically have
smaller variance than the constituent classifiers, i.e. they reduce overfitting on noisy data. In case of
boosting, the ensemble typically has a good effect on the bias of the classifier. It can sometimes be
more accurate than bagging, but also tends to overfit.

Random Forest is a class of ensemble methods, based on Decision Trees as base classifier [72].
The method was developed by Leo Breiman and Adele Cutler in 1996. It uses bootstrap aggregating
and the random subspace method to grow less correlated Decision Trees. Per split of the tree,
the random subspace method - also called attribute bagging - restricts the choice of an optimal
feature for splitting to a subspace of the original feature space. This randomisation helps to reduce
the correlation among the decision trees so that the generalisation error of the ensemble can be
improved. Compared to individual Decision Trees, Random Forests have a much lower variance (i.e.
they are less prone to overfitting). Using the Random Forest Classifier, we can also analyse which
features carry the most weight in learning the correct classification function. Feature importance
can be computed as the (normalised) reduction of the split criterion brought by that feature [69], or
- similarly - by assigning higher importance to those features that were used in earlier splits of the
trees making up the Random Forest.

2.2 Measuring Classifier Performance

2.2.1 Cross-Validation

No statistical model or machine learning method is useful without a way to measure it’s performance,
i.e. to quantify the estimation or prediction error, and to compare the results against other models.
Therefore, it is important to get an estimate of the classification error when using the classifier on
previously unseen data, which is also called the generalisation error.

This can be done by, before training the model, splitting the available data into two independent
parts, to allow for both training and testing. To improve the estimation of the generalisation error, a
particularly well-established technique is to use k-fold cross-validation8 [59, 23]: here the available
data is split into k independent test sets. For each cross-validation fold, one of the test sets is used,
and the other k − 1 sets are used as training set. The generalisation error is calculated for each of
the test sets, and then averaged [23].

Furthermore, cross-validation can be used for model selection. If the machine learning method
contains parameters that have to be tuned for an optimal performance, the training set should be split
into training and validation sets. First an inner cross-validation is performed, whereby the method is
trained simultaneously for several different parameters in each fold and test errors are calculated on
the validation sets. Hereupon the best model is selected based on the validation error, and the outer
cross-validation is used to find the generalisation error for this model (see Figure 4).

7The most well known and widely used example of a boosting algorithm is called AdaBoost and was developed by
Freund and Schapire in 1995 [71].

8The importance of cross-validation in data mining and machine learning is so big that the statistics and machine
learning section of the popular site stack overflow has been renamed ‘cross-validated’ recently.
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Figure 4: Test, training, and validation set. To illustrate the way the available data is split first into
a test and training set, and the training set is then further split into training and validation sets. Image
from the course ‘02450 Introduction to machine learning and data mining’ at DTU, Fall 2015.

2.2.2 Performance Metrics

For a binary classifier, we have two types of errors: misclassifying the 0- and 1-class respectively.
Since 0 is also associated with a negative, and 1 with a positive outcome, these are called False
Positives (FP) and False Negatives (FN) respectively, and can be related to Type I and Type II errors
from statistical hypothesis testing. An overview of these error types can be found in Table 1.

Predicted
Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 1: The possible outcomes of binary classification.

The quality of the binary classifier, or most other machine learning and statistical methods, can be
evaluated using different metrics, depending on which class is of interest and whether type I or type
II errors are deemed more important. Each of these metrics focuses on a slightly different aspect of
the classification. They also allow one to compare the performance of models that were trained with
a different number of features, different parameters, or different classifier methods, and thus decide
which model is most useful for the task at hand.

The accuracy (ACC) of a classifier denotes the fraction of total decisions N that were accurately
predicted:

ACC =
TP + TN

N
(2.4)

Precision, also called positive predictive value (PPV), is the fraction of observations labeled positive
that the machine learning method classified correctly:

PPV =
TP

TP + FP
(2.5)

However, this metric does not account for the sensitivity of the classifier to the positive class. That
is why it is often combined with the Recall metric, also called the Sensitivity or True Positive Rate
(TPR), which records the fraction of Positives that the method correctly classified as positives:

TPR =
TP

TP + FN
(2.6)

Equivalently we can define the False Positive Rate (FPR), as the fraction of Negatives that the method
incorrectly classified as positives:

FPR =
FP

TN + FP
(2.7)
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The relevance of the metric depends on the dataset: in a highly imbalanced dataset a classifier
may achieve a very high accuracy by labelling all observations according to the majority class in the
training sample. However, all minority class points then result in either False Negatives (if the 0-class
has the majority) or False Positives (if the 1-class has the majority), which can be detected by looking
at e.g. the FPR. Further, the Precision and Recall do not depend on the absolute number of samples
in the negative class. Thus, it can be relevant to look at the Precision-Recall curve especially when
we have a large number of true negatives. The precision and recall are summarised together into
the F1-score, which is actually a weighted average of the two.

F1 =
2 ·TP

2 ·TP + FP + FN
(2.8)

A useful measure that is not affected by class imbalance is the Matthew’s correlation coefficient:
it takes into account all four classes of predictions, and calculates a correlation coefficient value
between the predicted and actual class labels (+1 denotes a perfect prediction, 0 an average random
prediction and -1 an inverse prediction).

MCC =
TP ·TN − FP ·FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.9)

The final choice of metric will also depend on the application: In the scope of this thesis, where
we use Facebook interactions to predict who meets offline, several different cost decisions could be
made. If we wish to implement an effective vaccination scheme False Negatives carry the largest
cost. As such, we wish to detect all people that meet offline, in exchange for detecting a few false
positives. Then Recall is the metric of choice. However, when using the classifier to predict friend-
ships in order to recommend specific events or venues, it may be more costly to have a high number
of False Positives (assuming the act of recommending costs something). Then it is more important
that we label pairs as ‘meeting’ exclusively when they do, and thus we would be more interested in
the Precision of the classifier.

So far, we have assumed that the classifier makes a clear binary decision of the class label. However,
typically a classifier will not assign a class, but rather the probability of belonging to the positive class.
It then depends on the value of the threshold θ above which probability an observation is assigned
this class. With the value of θ the number of true and false negatives and positives will change, and
the performance metrics will vary accordingly. Which threshold to choose is thus another design
parameter that can be varied to put more emphasis on correctly predicting the positive or negative
class respectively.

A method often used to depict the tradeoffs between benefits (true positives) and costs (false pos-
itives) is the Receiver Operating Characteristic (ROC) curve [73]. The ROC plots the number of
positives included in the sample as percentage of the total number of positives (TPR), against the
number of negatives in the sample as proportion of the total number of negatives (FPR) [68]. This
curve is insensitive to class imbalance.

When comparing classifiers, the ROC is often reduced to a single scalar value that summarises the
expected performance over all thresholds. This value is typically the area under the ROC curve,
abbreviated to AUC ROC. It has a few nice properties, foremost that it can be equated with the
probability that the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance [73]. A random classifier will follow a straight line TPR(θ) = FPR(θ) as
ROC curve, and thus the AUC ROC will be 0.5 for such a classifier.

The ROC curve and ROC AUC are often used, especially since they allow for evaluation of model
performance even in highly imbalanced datasets, since they are not affected by the absolute number
of positive or negative samples. Nonetheless, some criticism has been voiced in recent years. For
example Fawcett warns against comparing ROC curves between different classifiers, as the curves
reflect a relative ranking based on the internal workings of the classifier rather than true probabilities
which could be compared at a common threshold [73].
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2.2.3 Class Imbalance

Restrictive criteria for the positive class, such as meeting on the weekends, or belonging to a spe-
cific sociodemographic group, greatly reduce the relative size of this class with respect to the zero
target. Thus, when considering more specific target variables, sample imbalance quickly becomes
an increasingly pressing issue.

In a classification context, learning from imbalanced data means that the training set contains an
imbalance in the number of samples from each class. The strength of the imbalance has a direct
effect on the error rate of the minority class classification, even for minor imbalances [74]. The class
imbalance affects the result of training a classifier in several ways.

First of all, there are problems both with relative and absolute rarity of the minority class. A clas-
sifier trained on highly imbalanced data often does not have enough information on minority class
examples to draw the decision boundary correctly. This is only a problem if we have good reason to
assume that in the true population the prevalence of the minority class is much higher. A widely-used
method to deal with this imbalance is to oversample the minority class, or under-sample the majority
to achieve a more balanced training set. However, the latter removes a lot of relevant information
from the training set, and the former may cause the classifier to overfit for the minority class data
points. Either way, the classifier is trained for an artificial distribution, based upon the assumption
that all classes are equally common. This may introduce strong bias into the model, which is not
reflected by new observations.

Secondly, some performance metrics are insufficient descriptors for imbalanced datasets. The pre-
diction accuracy is regarded a very bad metric in a class imbalanced case, since a classifier that will
always predict the majority class will have a very high accuracy. Thus, other metrics are needed to
describe the quality of the classifier in an imbalanced case: typically the (AUC) ROC is used.

2.2.4 Model Comparison

To make statements about the goodness of a classifier, and to guide progressive model building, it is
important to compare the performance of different classifiers. We need statistical tests to tell whether
the difference in performance metrics is significant. In particular we can compare models by testing if
their error rates were drawn from the same distribution. If they are, we can not claim that one model
is better than the other.

Firstly, when comparing the performance of two models that are based on the same input data and
target assignment, we can use the paired t-test. In each cross-validation fold, the performance of
both models on the test data is saved as the value xi or yi respectively. Together the results on all
k folds represent a sample of the underlying distribution of the test error of this model on the data.
As such the series of performance information over all folds, {x}k and {y}k, can be compared with a
paired t-test to see if one differs significantly from the other [68].

One particular use of this technique is used to tell whether a model is significantly better than random.
In this case the classifier in question, such as the Random Forest Classifier, is compared against the
Majority Vote Classifier (also called zero rate classifier), which will classify all observations according
to the majority class in the training data. This is a particularly useful baseline when class imbalance
skews the performance statistics, e.g. when a high true positive rate is mostly driven by the large
number of samples of the positive class rather than the classifier’s predictive power.

Secondly, when comparing models that have been trained on different data, we must use the un-
paired t-test. An example of this case will be introduced later when we compare the results of
training a classifier on all Facebook data against the classifiers for single months.
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2.2.5 Confidence Bands for the Accuracy

It is possible to estimate a confidence interval for the accuracy of a classifier, or equivalently for its
generalisation error, depending on the number of instances in the test set.

Suppose that p is the true accuracy of the classifier. For each sample in the test set we have a chance
p of success, and p − 1 of misclassification. Thus the observation of X = TP + TN successes in
a test set of size N is a Binomial random variable with mean Np and variance Np(1 − p). Then
the observed accuracy f = X/N will also be a Binomial random variable, with mean p and variance
p(1−p)
N . We can use this to estimate confidence bands for the true accuracy [23, 68]:

p =

N ·
(
f + z2

2N ± z ·
√

f
N −

f2

N + z2

4N2

)
N + z2

(2.10)

where z is the confidence limit, i.e. the chance that X lies more than z = 1.65 standard deviations
above the mean corresponds to 90% confidence bands.

However, since we use cross-validation to get a better estimate of our generalisation error, we should
combine these confidence estimates for the k folds. We can use the property of the binomial distri-
bution, that if X ∼ B(n, p) and Y ∼ B(n, p) are two independent binomial variables with the same
probability p, their sum Z = X + Y will also be binomially distributed, with Z ∼ B(n + m, p) [75].
In this case, if we look at all successes over all k = 10 test sets, i.e. Z =

∑10
i=1Xi, we can define

an accuracy for the combined predictions ftot = Z
Ntot

. In this formulation equation 2.10 can be used
again to calculate the confidence bands for the total accuracy.

2.3 Modelling the Spread of Disease

2.3.1 SIR Model

Disease models are typically based on a compartmentalisation of a population of individuals into
different groups, reflecting the stages of disease development [50]. Here we investigate the SIR
model, which contains three compartments: Susceptible, Infected, and Recovered individuals, with
population numbers denoted with S(t), I(t), R(t) respectively. The total population is fixed to N =
S(t) + I(t) +R(t). Infected individuals can transmit the disease with the infection rate β, and recover
with the recovery rate γ [54]. These are transmission rates per node. Under the assumption that an
individual is equally likely to transmit the disease to all others it is connected to, the transmission rate
per link becomes βl = β/k, where k is the degree of the node.

When the number of contacts in a well-mixed population is assumed independent of the popu-
lation size (i.e. in the frequency dependent case), the force of infection λ - the per capita rate
of infection - is λ = β · I(t)/N . The rate at which susceptible individuals get infected is then
dS/dt = (β · I(t) ·S(t))/N . Thus, the disease evolves according to the following differential equa-
tions:

dS

dt
= −βSI

N
(2.11)

dI

dt
=
βSI

N
− γI (2.12)

dR

dt
= γI (2.13)

These rates change when looking at networks. In a completely random network, we can make a
mean-field approximation, which yields equations very similar to those of a well-mixed population
(equations 2.11, 2.12, 2.13): only the transmission rate has to be replaced by a transmission per link
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instead of per node. Let 〈k〉 be the average degree of a network node. Under the assumption that
the degree distribution is not too skewed the average degree is a good approximation of the actual
degree of a node, and we can replace β by βl = 〈k〉 ·β in the equations above.
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Figure 5: The infection curve for the mean-field approximation. Here γ = 0.035 and β = 0.05.

The SIR model will always support an epidemic if βγ = R0 > 1. The constant R0 is called the basic
reproduction number, and depends on the type of disease and the host population. In the case of a
well-mixed system an epidemic always results in an infection of all connected individuals. However,
on networks it becomes interesting to study how quickly the epidemic spreads to a significant fraction
of the largest connected component9, and which fraction of the connected individuals the infection
reaches before being trapped by a boundary of recovered individuals. This model excludes demo-
graphic processes such as birth and death, which are negligible given the timescales of our study. If
one were to allow waning dynamics and re-infection, e.g. in an SIRS model, it becomes interesting
to determine the endemic level of infection [54].

2.3.2 Gillespie Algorithm

An efficient and stochastically exact method for simulating the SIR model is using the Gillespie al-
gorithm [54]. This method was originally developed as the stochastic simulation algorithm (SSA) to
simulate the chemical master equation (CME) [76] 10. A master equation describes the time evolution
of a system with discrete states, which switches between these states probabilistically. In particular
the equation governs the time evolution of the probabilities of being in a given state. The probability
of switching between states, e.g. the rate of a chemical reaction, changes depending on the state
vector of the system.

In SSA, instead of developing the entire probability density over time, a numerical realisation of
the system trajectory is constructed. By averaging over many runs of the algorithm, the probability
density can then be approximated.

The total reaction rate here is:

a0(x) =

M∑
j=1

aj(x) (2.14)

9A connected component is a subsection of the graph in which any two nodes A and B are connected by a path, i.e.
one can reach B from A by moving from node to node using only the edges that connect them, and which is connected to
no other nodes in the graph [35].

10The Gillespie algorithm is also equated with Kinetic or Dynamic Monte Carlo.
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where:

a1 = βl · |{SI-pairs}| (2.15)
a2 = γ · |{Infected individuals}| (2.16)

The algorithm consists of the following steps [76]:

0. Initialise the system at time t0 and state x0.
This consists of initialising the network to run the simulation on (either by generating an ide-
alised network, or loading the data of the predicted or actual network), and randomly selecting
an initial set of infected individuals (to a total of I(0) individuals) 11. The number of recov-
ered individuals is assumed R(0) = 0, so S(0) = N − I(0). The set {SI-pairs} is initialised
corresponding to the selection of infected individuals.

1. Given the system in state x at time t, evaluate all reaction rates aj(x).
The infection and recovery rate depend on the number of SI-pairs and the number of infected
individuals as stated in eq. 2.15 and 2.16.

2. Generate the values for the next time-step τ and reaction type j.
The time and reaction instances of the next reaction are generated using:

τ =
1

a0(x)
ln

(
1

r1

)
(2.17)

j = min
i

where
i∑

j=1

aj(x) > r2a0(x) (2.18)

where r1/2 are random numbers drawn from the uniform distribution on the unit interval. Alter-
natively, τ can also be drawn from an exponential distribution with rate a0(x) directly.

3. Update the state vector and time according to that reaction (from 2).
In case of infection (i.e. j = 1), a random susceptible neighbour of an infected person is also
infected. They are removed from the set of susceptible individuals and SI-pairs, and added to
the set of infected individuals. Their susceptible neighbours are added to the SI-pairs.
In case of recovery (i.e. j = 2), a random infected individual recovers. They are removed from
the set of infected individuals and added to the set of recovered. Their susceptible neighbours
which no longer have a connection to an infected individual are removed from the set of SI-
pairs.

4. Record (x, t). Return to 1, or end the simulation.

This simulation of the SIR model is then repeated a number of times (nruns). Since the resulting
time vectors t will feature different time-steps, they are binned to unit intervals. For each interval, x
assumes the last state we recorded before this point in time.

11In the current implementation, the initial condition (which person in the network is infected) is varied in every simulation.
However, for other research questions, such as finding the most influential person in a network, this would be precisely the
parameter of interest.
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3 Descriptive Analysis of the Dataset

This thesis is based upon data from the Copenhagen Network Study, a cohort study which collected
longitudinal data of approximately 850 individuals over the period of September 2013 to January
2016 [16]. The goal of the study is to investigate human interaction and social networks across mul-
tiple communication channels. The individuals in questions are a densely connected population of
undergraduate students at the Technical University of Denmark (DTU). These students were given
Android smartphones 12, which were used as sensors to collect information about their face-to-face
interactions, telecommunication, and location. This data is further supplemented with information
from Facebook, questionnaires - with questions concerning e.g. personality and health -, demo-
graphics and other background information [16].

The study was deployed in two rounds: a pilot which started in September 2012 with 200 phones,
and the main study with 1000 phones, which commenced in 2013. The two deployments differed in
the manner they attracted participants, as well as the time at which the phones were handed out.
Here, we will concern ourselves only with data from September 2013 onwards. For this deployment
the focus was to engage students as early as possible: 300 phones were handed out to freshmen
before the start of the Fall semester and 200 in the first few weeks; after which undergraduates
from older years were also invited to participate [16]. This culminates in a maximum number of
users around February 2014 (867 unique Facebook accounts, and 661 participants with at least one
Bluetooth observation). However, there was no point at which the 1000 phones corresponded to the
same number of users, since many phones were lost or got broken [9].

The data is collected, bundled and managed using an open Personal Data System [16]. All interac-
tions between participants (phones) and the data platform relies on the use of anonymised ‘tokens’,
and in the final dataset participants are distinguished using pseudonym identifiers. The study was
approved by the danish data protection agency, and complies with EU and local rules. Participants
were given access to same API as used by the researchers, so that they could see which data was
collected about them, and had the opportunity to change their privacy settings. Surpassing this,
the study data has been used as a means to investigate privacy implications of multimodal data
collection [77].

3.1 Types of Data Collected

3.1.1 Bluetooth Data

Bluetooth is a wireless technology used for short-range communication - 5 to 10 meters - between
mobile devices, which can be used as proxy for face-to-face interactions when the devices of other
participants are detected [16]. The use of Bluetooth as proxy for face-to-face interactions was pio-
neered by Eagle and Pentland in their Reality Mining experiment [10]. It has the advantage of highly
time-resolved and fine-grained data collection, without reliance on user actions.

In the Copenhagen Network Study, the individual Bluetooth scans are saved in the form (i, j, t, σ)
when device i has observed device j at time t with signal strength σ. Every five minutes - mea-
sured from the last time the phone was powered on, the participant’s phones collected information
on all devices found in the vicinity (all signals within a 10 m range) [16]. To account for the desyn-
chronised scanning, Sekara and Lehmann bin the Bluetooth scans into fixed-length time windows
[78]. Furthermore, since Bluetooth scans produce very few false positives, they assume the resulting
adjacency matrix W∆t to be symmetric. Nonetheless, this method is not perfect and a better proxy
for face-to-face interactions is obtained when thresholding the signal strength at a received signal

12LG Nexus 4 for the 2013 deployment.
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strength indicator (RSSI) value greater than −80dB to obtain only interactions at < 1 meter distance
[78] 13.
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Figure 6: Bluetooth Data Quality. Overlaid histograms of the data quality per user, i.e. number
of observations per month divided by the maximum number of observations, for all 9 considered
months. The histogram is sufficiently two-lobed to suggest a thresholding at 60% (dashed line).

Although the software installed on the participant’s phones was meant to counteract Android’s auto-
matic deactivation of the Bluetooth scanning, there are still a number of users with very few Bluetooth
observations. In their papers on the spreading of disease on proximity networks, using the Bluetooth
proximity data of the Copenhagen Network Study, Stopczynski et al. [80], and later Mones et al. [79],
only consider users who exhibit a Bluetooth scan in at least 60% percent of the time bins in a given
month.

Per month with ndays days, there are bmax = ndays · 24 · 12 possible 5-minute timebins. This is the
maximum number of bins that each user should have observations for. An observation is recorded
as long as the participant’s phone was on and the Bluetooth is working, i.e. there are many ob-
servations with no other devices nearby and RSSI = 0. The data quality is then defined as the
number of observations buser a user has relative to bmax. Since the Bluetooth signals are deemed
symmetric, we could further include bins where a user is observed by others in the vicinity. However,
this will introduce a bias where users with low data-quality who are in a study-line with many other
study participants are not excluded, whereas users with less contact with other study participants
are.

In this thesis, users with less than 60% data quality (see section 4.2.1) were excluded, and thereafter
only Bluetooth interactions between study participants at more than -80 dB are taken into consid-
eration. Although Stopczynski et al., and Mones et al. find that this thresholding results in roughly
80% of the users in the month of February 2014 [80, 79], the percentage I find is much lower for
this and the other months 14. The discrepancy is most likely a result of the different thresholding of
interactions, however my values are in exact correspondence with a more recent work by Stopczyn-
ski et al. where they select 476 participant in February 2014 [45]. Furthermore, the percentage of
retained pairs scales roughly quadratically: if N is the number of users and N → 0.8 ·N then the

13Mones et al. even use a threshold of −75dB [79].
14Percentage of users kept. Sep: 41%, Oct: 57%, Nov: 58%, Dec: 74%, Jan: 72%, Feb: 67%, Mar: 70%, Apr: 66%,

May: 68%
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maximum number of pairs goes roughly N(N − 1)→ 0.64 ·N(N − 1). Here the retention is lowest in
September, where only 17.6 % of the pairs are kept, and reaches a maximum of 47.5 % in Decem-
ber, on average it is roughly 35 % 15. This means that the number of observations that feature less
common Facebook interactions, such as tagging each other in a message, falls very low in some
months (most notably in January).

Since the users and all their interaction pairs are removed based only on the Bluetooth quality, which
is independent of the Facebook interaction, this does not introduce bias into our sample. However,
it does increase the reliability of our comparison between Facebook and Face-to-face interactions,
since it decreases the amount of noise in the latter. In particular, it improves the classification results,
since it removes user-pairs with potentially ambiguous or noisy classification. Otherwise user-pairs
may be assigned the 0-class, i.e. non-interacting, because of lacking data rather than lacking inter-
action. In our dataset this greatly reduces the class imbalance.
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Figure 7: The number of users per month with sufficient Bluetooth data quality, as compared
to the total number of users. The retention of users is lowest in September, and highest in Decem-
ber. After November the number of users with sufficient data quality (above 60%) remains roughly
constant between 450 and 500 users.

3.1.2 Facebook Data

Study participants could opt-in to give the researchers access to their Facebook profiles, which a
large majority of users did [16]. The study’s Facebook data was collected using the Facebook
Graph API, version 1.0 16. During the study, user profiles were queried every 24 hours. This in-
cluded socio-demographic information (hometown, location, interests, and work), the friends list, and
platform-related actions (feed, likes, statuses) mostly saved in the form of pairwise interactions. This
data was made available for this thesis in two different forms: the first included monthly friendship
graphs, and the other included all Facebook interactions between two users. These Facebook in-
teractions are saved as directed tuples (i, j, µ, t, θ1, θ2) which correspond to statements of the form

15Percentage of pairs kept. Sep: 18%, Oct: 24%, Nov: 31%, Dec: 48%, Jan: 34%, Feb: 35%, Mar: 36%, Apr: 32%,
May: 45%

16This API has been changed many times since, and version 1.0 is now deprecated [81].
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Figure 8: Number of Facebook pairs. The number of within-study pairs that are Facebook Friends,
and those that interact in a given month. We clearly see that the number of friend-pairs plateaus
around 7500, whereas the interaction has a development similar to the Bluetooth interaction, which
suggests a seasonal variation in the amount of interaction between the study participants. Further-
more, the number of interactions pairs falls almost by half between February and April 2014, which
is due to insufficient renewal of participant’s Facebook access tokens.

‘at time t user i interacted with user j in a message of type (θ1, θ2) with message ID µ’. Type θ1

consists of five categories: ‘comment’, ‘liked story’, ‘message tag’, ‘message to’, and ‘tagged story’.
Whereas type θ2 consists of sixteen categories: ‘added photos’, ‘added video’, ‘app created story’,
‘approved friend’, ‘checkin’, ‘link’, ‘mobile status update’, ‘offer’, ‘photo’, ‘question’, ‘shared story’,
‘status’, ‘swf’, ‘tagged in photo’, ‘video’, ‘wall post’.

The interaction data was extracted from the platform in two different dumps: one containing only
the months Sep. 2013 - Feb. 2014, and a second one containing Mar.-May 2014. In its raw form,
the second batch of data contains a high amount of duplicate rows. According to Radu Gatej, data
manager of the Copenhagen Network Study, this could be due to a difference in the way the first
and second dataset were queried: the second probably included all available data at every 24 hour
sample (i.e. also data from the past every time). Therefore, I simply removed the duplicate rows
before conducting the analysis in this thesis. Furthermore, the queried data contains user-pairs that
do share an interaction on Facebook, yet are not Facebook friends. This is likely due to interactions
via friends of friends. Since it is not a priori preferable to exclude this type of online interactions,
these user-pairs are included in the analysis. Lastly, as shown in Figure 8, the number of interacting
user-pairs start to decline slowly from March 2014 onwards. This is also mentioned by Sapiezynski
et al. [9], and is due to insufficient renewal of participant’s Facebook access tokens.

Since we characterise Facebook pairs based upon data about their interactions, it is relevant to know
how many pairs are included in this analysis. In Figure 10 the number of pairs that use each type of
interaction in a given month are displayed. There is a large variation in the amount of times certain
types of interaction are engaged in, with ‘Message Tag’ being used on average by only 100 pairs.
An initial investigation further shows that the presence of any kind of Facebook interaction strongly
increases the chance a pair will meet face-to-face when compared to a mere Facebook friendship tie
(see Fig. 11). This correspond to earlier findings by Viswanath et al. and Sapiezynski et al. [9, 22].
The relative importance of the different interactions will be analysed further in section 4.2.
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Figure 9: The different types of Facebook interaction in the dataset.
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Figure 10: Pairs per type of Facebook interaction. The number of (within-study) pairs that engage
in a certain type of Facebook interaction in a given month, per type of interaction (user pairs can ap-
pear twice). There is a large variation in the amount of times certain types of interaction are engaged
in, with eg. ‘likes’ being exchanged by many more pairs than tagging in messages. Furthermore,
we observe that some types of interaction are more variable than others. The relative prominence of
‘Tagged Story’ in September and October is because the formation of a new friendship on Facebook
is registered under this type.
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Figure 11: The fraction of (within-study) pairs that meet offline at least once in a given month,
given their engagement in Facebook interaction of a given type (user pairs can appear twice). This
can be regarded as a conditional probability: given a certain type of interaction on Facebook, what
is the chance a user-pair will meet offline? Here we see that sending a message is a much stronger
condition than merely being related on Facebook.
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3.1.3 Location Data

(a) Region Hovedstaden (Copenhagen) (b) Denmark.

Figure 12: The locations (red) and stop-locations (blue) of 100 users during February 2014.
In Figure (a) one can clearly see the Copenhagen city centre, the location of the DTU campus,
and the coasts of Zealand and Amager. With some goodwill, the transportation network making up
the greater city area can also be discerned. Furthermore, when plotting all locations in a coordinate-
frame corresponding to the boundaries of Denmark (Figure (b)), we can clearly see the stop locations
in areas corresponding to the major cities, and location points along the traffic arteries (take special
note of the island of Fyn, and its role as connection between Zealand and Jutland).

In the Copenhagen Network Study, user location was sampled opportunistically: whenever a smart-
phone application made a GPS request, this was recorded for study purposes [16]. Because of this
opportunistic sampling, the time between observations is not constant. However, a good data quality
is achieved when binning the GPS traces in 15 minute intervals, whereby the spatial accuracy is
about 60 meters [82]17. The location data is saved in the form (i, lat, lon, t) if a participant i was
recorded at latitude lat and longitude lon at time t.

Previous work has shown that this data can be used to infer stop locations [82]. Cuttone et al. tested
three different methods for the extraction of stop locations from the Copenhagen Network Study data:
distance grouping, speed thresholding, and Gaussian Mixture Model clustering. However, they do
not clearly state a preference or result regarding the comparison of these three. Distance grouping
links later visits to earlier visits within a predefined radius, here set to 60 m. Speed thresholding bins
locations and then determines the speed needed to go from one bin to the next. Whereas a Gaussian
Mixture Model, with a predefined number of expected locations K, tries to find the combination of
K normal distributions which maximises the likelihood of the observations (this is also used by Cho
et al. to show that the locations ‘home’ and ‘work’ inform most of our daily behaviour [13]). Upon
correspondence with the study authors, I learned that the final stop-locations were found by distance
grouping using Density-based spatial clustering of applications with noise (DBSCAN) [23], and were
labelled per individual user.

Clearly the spatiotemporal patterns of face-to-face encounters carry important information about
17There is redundant information in the WIFI, and CDR data traces that were observed for all study participants: both

could be used to further pinpoint the location of the users [9]. However, for this thesis only the GPS traces were used.
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the type of relationship between two individuals. Thus, initially I intended to investigate how the
different online activity patterns relate to timing and location of offline encounters. In particular, I
was interested to see if the multiplexity of the pair, i.e. the number of different contexts they share,
is reflected in distinct online traces. To investigate the colocation of students, I intended to use the
stop-location data. However, to compare the stop-locations of distinct users, these needed to be
matched into a universal location vocabulary. The combination of stop-locations of different users
proved unexpectedly challenging. Thus, I set this dimension of the analysis aside for future work and
focussed on the contact between two individuals (as reflected in the Bluetooth data) rather than their
colocation.

(a) User locations at DTU. (b) The DTU campus on Openstreetmap.

Figure 13: The locations (red) and stop-locations (blue) of 100 users at DTU during February
2014. There is a clear accumulation of stop locations in areas corresponding to dormitories (Osten-
feld Kollegiet and Kampsax Kollegiet), Building 101 which houses the canteen, and several lecture
buildings across campus.

3.2 Possible Data Biases

The population under consideration consists of undergraduate students at a middle sized western
European university. As such, all results presented in this thesis are found for a predominantly young,
white, well-educated, and mostly non-working population. These subjects are likely to have different
daily rhythms, contact patterns, and online behaviour than the rest of the population. Although this
does not limit the validity of the results in this study, it should be kept in mind when extrapolating the
results to the Danish population at large.

Because it is not possible to relate Bluetooth media access control (MAC) addresses to specific
Facebook ID’s, unless we have a priori knowledge on the fact that they belong to the same user, we
can relate the different networks only for study participants. As such, we have significantly more data
on the interactions of study participants that have a high number of friends within the study. For all
others we know roughly how socially active they are, but can only use this as control/baseline, not
as object of study. This could be called a boundary specification problem: we have comparably little
information on how the small community of study participants is embedded in the larger system of
social life at DTU and beyond [16].

Furthermore, it is not possible to account completely for the influence that Facebook’s site-specific
algorithms have on the results. There is evidence that eg. the ‘Birthday-reminder’ function drives a
large portion of interactions between weak Facebook ties [22], and the site may also expose some
pairs to each other’s newsfeed content more than others [1]. However, these platform-based mech-
anisms that drive user interactions, will mostly introduce noise on the data, and is unlikely to affect
the result on a more systematic level.
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4 Online to Offline Mapping

This chapter investigates which characteristics of Facebook interaction are most useful to predict
offline interactions. There exist only few studies that investigate individuals’ co-presence based on
knowledge of their online interactions, and the most relevant predictor for offline interactions has not
been identified so far. Thus, we start by extracting meaningful features from the online interaction
data, where we focussed on measures of the total intensity and of the time-structure of interaction
between a pair of Facebook users. Next, section 4.2 presents the results of experiments to classify
offline behaviour based on the features that describe the online interaction. We have used binary
classification to predict not one but several offline behaviours. Specifically, three different target
variables were tested:

• ‘BT(θ)’ stands for Bluetooth, and designates the network of people that meet at least θ times
in a given month. Without further specification ‘BT’ refers to ‘BT(1)’. This variable is one of
the most basic units of the face-to-face interaction network, and also the most important for the
prediction of disease spread.

• ‘OH’ stands for off-hour and refers to those pairs that meet during non-class times, i.e. on
weekends or weekdays between 17-8 o’clock. Eagle et al. have shown that contact during
off-hours correlates with friendship [11], and thus the ability to classify this variable correctly
would offer a strong indication that we can distinguish meaningful offline friendships.

• ‘EVE’ stands for evenings, and refers to meetings between 18-24 o’clock. Even more stringent
than the off-hour variable, this variable was included in the analysis to investigate how precisely
we can distinguish between friendship-related offline behaviours, i.e. how far we can push the
limit of classification based on online interaction.

We find that it is possible to predict the occurrence of an offline encounter between an interacting pair
on Facebook with an accuracy of 78 %. The total amount of interaction on Facebook was deemed
the most important feature, as long as we control for user’s differing activity levels on Facebook.
The accuracy of predictions of offline meetings is likely limited by chance encounters, however we
can predict more stringent target variables with an accuracy of roughly 70 % also. Furthermore,
our analysis reveals some fundamental differences between online and offline interactions, most
interestingly, we find that the timing of interactions is much more meaningful offline than online.

4.1 Aspects of Online Interaction

In its raw form, the Facebook interaction data is essentially time-series data, which records when
and how a pair interacts. The first aim of this thesis is to investigate which aspects of the high-
dimensional interaction data are most important to capture the essence of a Facebook friendship.
This is also a key first step for the classification of offline behaviour. The task of extracting features
is not well posed, and in principle an infinite number of features could be derived for every user-pair.
Choosing the features is a process of hypothesis-driven testing, guided by hints from the literature
and knowledge of the subject area. Hereby the classifier gives valuable insight regarding which
features are important to predict the target variable.

4.1.1 Interaction: Activity Level and Directionality

Previous research has shown that the amount of interaction between a pair of Facebook users is a
strong - if not the strongest - indication of friendship between them [28]. There are different types of
Facebook interaction (see section 3.1.2), and the correlations between them hint at the existence of
typical sequences or combinations of interaction. In table 2 we see that the exchange of comments
and likes is moderately correlated, which suggests that users who comment on each other’s posts
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also ‘like’ more posts. These results correspond well to those reported by Jones et al. [28], although
the strength of the correlations is somewhat lower. The difference in magnitude of the correlation
coefficients is likely due to our shorter observation window (one month), since preliminary results for
a combination of all nine months of data indicate values that lie closer to those reported by Jones et
al.

Comments Message to Liked Story Message Tag Tagged Story
Comments 1.0 0.31 0.44 0.24 0.39
Message to 1.0 0.26 0.29 0.19
Liked Story 1.0 0.14 0.15
Message Tag 1.0 0.12
Tagged Story 1.0

Table 2: Correlations of different user-pair interactions in February 2014.

Counter to our intuition, we initially observed very little importance and effect of the ‘total num-
ber of interactions’ variable in the prediction of offline contact. The types of interaction (as subdi-
vided according to θ1 from section 3.1.2: ‘comments’, ‘message to’, ‘liked story’, ‘message tag’, and
‘tagged story’) were not deemed important separately either.

Thus, we investigated whether the effect may be obscured by the varying activity levels of Facebook
users, i.e. the importance different Facebook users attribute to an interaction, and/or the shear
volume of interactions they generate. To study this, all 6 measures of interaction strength were
rescaled according to the activity-levels of the pair involved in the interaction. Let INTϑ(i, j) be the
number of interactions of type ϑ between pair (i, j) and let aϑ,x denote the total activity of user x with
respect to type ϑ, then:

Disc INTϑ(i, j) =
1

2

(
INTϑ(i, j)

aϑ,i
+
INTϑ(i, j)

aϑ,j

)
(4.1)

is the ‘discounted’ strength of interactions of type ϑ between pair (i, j). This corrected interaction
will be low if both users are highly active in general but share only few interactions, and high if the
interactions between i and j form a large portion of their total Facebook activity18. Since these
activity-corrected variables are rescaled based upon the interaction-specific activity level per user,
most of the correlation of the original interaction variables is lost (see Table 3).

Comments Message to Liked Story Message Tag Tagged Story
Comments 1.0 0.09 0.23 0.04 0.2
Message to 1.0 0.02 0.09 0.0
Liked Story 1.0 -0.04 0.01
Message Tag 1.0 -0.01
Tagged Story 1.0

Table 3: Correlations of different activity corrected user-pair interactions in February 2014.

Upon rescaling, the interaction variables instantly became some of the most important features for
classification (see section 4), which is in line with the results from Jones et al. [28]. However, our
results go even further and suggest a difference in the relative importance of Facebook interactions
depending on the total activity level a user exhibits on the social networking platform.

This raises two interesting questions for further study: Firstly, do more active FB users have different
interaction patterns, or a different way of using the medium? To study this effect further it would
be good to include the total activity levels of user i and j as separate features in the classification.
Furthermore, a second type of activity-measure could take into account the number of distinct users

18Here the Facebook activity level also includes the interactions with users outside the study, and all values are calculated
on a monthly basis.
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that a given user i interacts with (rather than the total number of interactions they engage in). The
second area of further investigation would be to quantify whether a tie or interaction is in some
sense abnormal for a certain user. For example, future research could investigate interactions that
occur outside of ‘normal interaction times’, or take into account a possible imbalance in the relation
between i and j. This imbalance could be characterised by comparing the number of interactions
user i initiates int(i → j) with those that are initiated by j, i.e. int(j → i). Some steps have been
taken to implement both the directionality of interaction and the second type of activity-measure, but
neither have been included in the analysis as of yet. This is a promising area for future work.

4.1.2 Temporal Entropy

A common method to characterise the predictability of interactions is to investigate the entropy of the
time of day an interaction takes place, or of the time between interactions [32]. In a recent study,
Sapiezynski et al. showed that the entropy of when two people meet (as measured using Bluetooth
data) is one of the most important features of offline data in predicting contact on Facebook [9].

Thus, we investigate the relation between the temporal entropy of on- and offline contacts, for two
notions of the time-distribution of contact: (i) the entropy of the waiting time distribution of the pair-
interactions19, which captures information about the regularity of the time between interactions, and
(ii) the entropy of the distribution of interactions into 168 hour-bins of the week, which describes
the regularity of the time of meeting. For both types of entropies, we expect that pairs who have a
regular meeting each week (such as a shared class, taking lunch together every day, or meeting for
beer on Fridays) will have a low entropy, whereas pairs who interact more randomly will have higher
entropies.

Let the set of distinct times - either waiting times between interactions of pair (i, j) or the 168 hour-
bins - be denoted by W = {Λ1, . . . ,Λn}. Then the entropy is:

S(W ) = −
n∑
k=1

P (Λk) ln (P (Λk)) (4.2)

where P (Λk) is the probability that W takes the value Λk. These probabilities were approximated
by dividing the number of observations of event Λk by the total number of observations for the pair
(i, j). Since the entropy scales as a function of the number of observations Nobs, we normalise by
the maximal possible entropy which corresponds to the case where P (Λk) = 1/Nobs for all k.

These entropies were calculated both for the Facebook and face-to-face interactions between each
pair in the month of February 2014, whereby only those pairs that shared at least 3 interactions in
this month were included in the analysis20. Figure 14 shows the distribution of entropy values for all
included pairs. For longer observation windows, e.g. 9 months, the form of these distributions stays
the same.

Figure 14 shows that face-to-face meetings have lower entropies and are thus more regular than
interaction times on Facebook. This is the case both for waiting times and the hour of the week.
Interestingly enough, the correlation between the waiting time and the hour of the week entropy of the
Bluetooth traces reaches (−0.19± 2.0 · 10−6). Presumably, this is because it is much more probable
offline that a pair will interact again in the next time-bin than it is online. Furthermore, the correlation
between on- and offline interaction entropy is rather small or non-existent: only (−0.11± 0.11) for the
hour of the week entropy, and (0.05 ± 0.09) for the entropy of the waiting times. These results point
to a central difference between online and offline interactions: The time of interaction does not carry
as much weight on Facebook as it does offline.

19To reduce the space of possible waiting times somewhat, these were grouped into 4-hour bins.
20The restriction to at least 3 interactions is prompted by the fact that at least two values are need to compute a non-

trivial entropy, and waiting times are calculated as the time difference between two interactions, which shortens the total
number of values by one.
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(a) Bluetooth Waiting Times.
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(b) Facebook Waiting Times.
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(c) Bluetooth Hour of the Week.
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(d) Facebook Hour of the Week.

Figure 14: The temporal entropy of Bluetooth and Facebook interactions between user-pairs
(threshold at 3 interactions). On the top row, the temporal entropy of waiting times offline (a) and
online (b) is shown. The second row shows the hour of the week entropy, for the Bluetooth (c) and
Facebook (d) interactions. The y-axis of the Facebook distributions extends much further (due to
the large number of pairs with very high entropy), but has been cut to 50 for comparison with the
Bluetooth histogram. In total, the Bluetooth histograms includes 630 pairs, whereas the Facebook
histograms feature only 280 because the threshold of 3 interactions proved more stringent here.
However, for longer observation windows (9 months) and a larger number of pairs the form of these
distributions stays the same.

4.1.3 Features for Classification

For each pair (i, j) that shared at least one Facebook interaction in a given month, the following
features were extracted from their Facebook interactions and included in training the classifier:

• Tot int: The total number of interactions.

• Disc int/comment/message to/liked story/message tag/tagged story: The total number of
exchanged interactions, ‘comment’, ‘message to’, ‘liked story’, ‘message tag’, and ‘tagged story’,
while accounting for the activity of the users involved (as defined in section 4.1.1).

• CNN: The number of common nearest neighbours, i.e. the number of shared Facebook friends.

• CNN int: The number of shared interaction friends, i.e. persons k that both i and j have
interacted with on Facebook in the given month.

• Min/Max/Mean Wait: Waiting times: the minimal, maximal, and mean time that passed be-
tween two Facebook interactions (in hours).

• Resp rate: The order of response, which measures whether user j is typically the first, second,
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third etc. person to comment on a post by user i (and vice versa). To compute this variable,
first all unique message ID’s of interactions between i and j are extracted, and it is recorded in
which order other users commented on these same messages. The order of response variable
is then found by averaging over the rank of the first comment per unique Message ID.

• Prev: Previous: the total number of exchanged interactions in the previous month, discounted
for activity. ‘Prev’ has no value for the month of September 2013, thereafter it is equivalent to
‘Disc int’[t− 1] where t is the given month.

• First: the date of the first observed interaction between a pair, in the number of days relative to
01.09.2013 (the start of the semester). This is a proxy for the ‘age’ of a Facebook relationship.
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Tot no
int

(0) (i) (ii) (iii) (iv) (v) CNN CNN
Int

Max
wait

Min
wait

Mean
wait

Resp
rate

Prev First

Tot no int 1. 0.32 0.4 0.23 0.31 0.2 0.15 0.22 0.24 0.37 -0.06 0.08 -0.1 0.11 -0.18
Disc int (0.) 1. 0.28 0.29 0.22 0.18 0.17 -0.09 -0.09 0.11 -0.01 0.03 -0.09 0. -0.09
Disc comment (i) 1. 0.09 0.23 0.04 0.2 -0.03 -0.06 0.2 -0.04 0.05 -0.17 0.23 -0.16
Disc message to (ii) 1. 0.02 0.09 0. -0.11 -0.08 0.09 0.03 0.04 0.03 0.16 -0.2
Disc liked story (iii) 1. -0.04 0.01 -0.06 -0.13 0.21 0.03 0.1 -0.18 0.26 -0.19
Disc message tag (iv) 1. -0.01 -0.11 -0.1 0. -0.07 -0.07 -0.08 0. 0.1
Disc tagged story (v) 1. -0.18 -0.18 0.08 0. 0.03 -0.24 0.11 0.13
CNN 1. 0.62 0.15 0.02 0.09 0.19 -0.06 -0.16
CNN Int 1. 0.2 0.04 0.12 0.43 -0.07 -0.08
Max wait 1. 0.5 0.84 -0.07 0.08 -0.17
Min wait 1. 0.86 -0.01 0.01 -0.06
Mean wait 1. -0.04 0.04 -0.11
Resp rate 1. -0.08 -0.05
Prev 1. -0.2
First 1.

Table 4: Correlations of all features for February 2014. Not surprisingly, the interaction variables are all weakly correlated with another. There is also a weak
correlation between the total number of interactions and the number of friends or shared interaction friends (CNN Int). Furthermore, there is a moderate positive
correlation between CNN Int and the Response rate.



4.2 Classification

4.2.1 Implementation

All features mentioned in section 4.1.3 were included in training the classifier. First, the user-pairs
and corresponding features were extracted from monthly slices of the Facebook interaction data.
Then the classifier was trained either on each of these dataframes of monthly pairs individually, or all
monthly sets were combined (concatenated). The resulting number of pairs is listed in Table 5. We
see that concatenation greatly increases the number of observations that can be used for training
and testing, however it treats user-pairs - even between the same two users - as being independent
from month to month. Furthermore, it tacitly assumes there are no strong yearly- or semester-cycles
which change the predictive power of certain variables during certain months.

Since the absolute values of the features differs greatly, it is important to standardise them before
performing any further machine learning tasks. As is common in the literature, this was done using
the Z-score, which compares a sample of the random variable X, with sample mean µ and standard
deviation σ, to a standard normally distributed variable [23]:

Z =
X − µ
σ

(4.3)

The model was trained and tested using a 10 fold cross-validation. In each fold the Accuracy, ROC
AUC, Precision, Recall, F1 score, and Matthew’s correlation coefficient were calculated (as described
in section 2.2.2). To compute the overall ROC curve, the predictions (scores) on each test set were
recorded and combined [68]. For the other metrics a generalisation error was calculated by averaging
the scores over all folds.

All code was written in Python, using Ipython notebooks that run on a secure Jupyter server at DTU
[83]. For the implementation of the different classification algorithms, I used the scikit-learn library
for Python [84].

Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Concat
Pairs 433 633 792 1014 781 960 803 589 685 6690

Table 5: The number of pairs the classifier was trained on for each month. ‘Concat’ refers to
the concatenation of all 9 monthly dataframes.

4.2.2 Classification Results

In Figure 15 the value of different classification metrics is shown as a function of the month the
classifier was trained on21. These plots depict the predictive strength of the classifier for each monthly
dataframe. First of all, we see that the accuracy for predicting ‘BT(1)’ is 78%, with very high precision
and recall. Secondly, the predictive power (i.e. the value of the performance metrics) is mostly
constant over time, except for a dip around December/January. From section 3 we know that in these
months users had less offline contact, and as such the prevalence of the positive class decreases
sharply. The classifier can not fully compensate for this, and thus the performance decreases.

The performance results of both classifiers can be read more clearly in Table 6, both for the month
of February 2014 and the concatenated months. The month of February 2014 was chosen because
it features the best combination of the number of pairs (see Table 5) and stability of the offline so-
cial interactions. Table 6 shows that the difference between the performance of a classifier trained

21The Recall is 1.0 for the Majority Vote Classifier when the positive class is in the majority, and 0 when not. Also, the
ROC AUC will always be 0.5 for a Majority Vote (Random) Classifier.
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Figure 15: The classification performance for a classifier trained to predict the target BT(1).
In most months the accuracy of the Random Forest Classifier is quite high, although not significant
with respect to the Majority Vote Classifier.

on one month of data or the concatenation is minor, except for the reduced error bands on the ac-
curacy (as introduced in section 2.2.5). Concatenation thus greatly reduces the uncertainty on the
generalisation error.

Since the prevalence of the positive class is quite high for the target ‘BT(1)’, the Majority Vote Classi-
fier performs almost equally well as the Random Forest Classifier. To investigate the relation between
predictive power and the target variable, we study the sensitivity of the classifier performance to the
target variable BT(θ) as a function of the threshold θ. Figure 16 shows that the performance of the
Random Forest classifier stays relatively constant as a function of the target threshold, whereas the
Majority Vote accuracy follows the class imbalance in the sample. The biggest difference between
the Random Forest and the Majority Vote Classifiers is achieved for a threshold of thirty meetings
per month, i.e. where the positive class transfers from majority to minority (as seen by the fact that
the Majority Vote Classifier’s Recall switches from +1 to 0). As such, as we increase the threshold of
the number of encounters per month, the quality of the classifier becomes more apparent.

These results indicate, that our classifier does not merely ‘get lucky’ because of the high probability
a pair will encounter each other at least once. Rather, we extract meaningful offline relationships
that meet offline for quite a substantial amount of time (30 observations per month). For applications
in prediction or recommender systems, the performance of the classifier should likely be improved
further. However, we have shown some very promising hints both of the results and feasibility of
such an undertaking.
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February 2014 Concatenated Months
Random For-
est Classifier

Majority Vote
Classifier

Random For-
est Classifier

Majority Vote
Classifier

BT(1)

Accuracy 0.74 ± 0.025 0.74 0.78 ± 0.009 0.74
ROC AUC 0.71 0.5 0.74 0.5
Precision 0.77 0.74 0.79 0.74
Recall 0.93 1.0 0.95 1.0
F1-score 0.85 0.86
Matthew 0.26 0.33

BT(27)

Accuracy 0.69 ± 0.005 0.53
ROC AUC 0.77 0.5
Precision 0.70 0.53
Recall 0.75 1.0
F1-score 0.72
Matthew 0.39

Table 6: Performance metrics for the classification of BT(1) and BT(27). The difference between
the performance of a classifier trained on one month of data (960 pairs) or the concatenation (6690
pairs) is minor, except for the error bands on the accuracy.
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Figure 16: Performance metrics of the Random Forest and the Majority Vote Classifiers as
a function of the target threshold θ. The difference in classifier performance is maximised at a
threshold of roughly 30 meetings per month, which is where the amount of samples in both classes
is balanced.

4.2.3 Feature Importance

In this section, we study the importance of the different features in training the classifier. Figure 17
shows the feature importances for the classifier that predicts offline contact BT(1). Some features are
clearly more important in determining offline behaviour than others. Especially the variables related
to the number of interactions are deemed important, which is in line with the results obtained by Jones
et al. [28]. However, these are only significant once we account for the activity level per user. This can
be seen clearly by the low importance of the Tot no int variable, which was included as comparison.
Furthermore, the variables that hold information about the waiting times are almost negligible. The
fact that i.e. the date the pair first interacted (‘First’), is such a strong predictor of offline interaction
further points to some characteristic temporal development of a Facebook friendship.

Note that for highly correlated features, most notably CNN and CNN int, one must take care not to
make strong statements about the relative importance. This is because the classifier will pick any of
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Figure 17: The feature importances for nine classifications of BT(1). Feature importance and
standard error were extracted from the Random Forest Classifier. The width of the slivers indicates
the feature importance, whereby all feature importances always sum to one. The relative importance
of the features varies somewhat between months, however the discounted interaction measures are
much more important than the waiting times throughout (further explanation of the variables is given
in section 4.1.3).

the correlated features as predictor more or less at random, but once one is used the importance of
the others is strongly reduced, even though the features may have a similar relation with the predicted
outcome (see Table 4 for all feature correlations). Given the moderate correlation between almost all
features, the method to determine relative feature importance will have to be refined. In particular,
future work will investigate whether e.g. ten moderately correlated features could ‘cancel each other
out’, and thus seem less important than one completely uncorrelated feature.

To determine whether all features contribute to the accuracy of the classifier, one should compare the
classifier performance for different sets of input features. Testing all possible feature sets is hardly
feasible, which is why recursive feature elimination (RFE) selects features by recursively considering
smaller and smaller sets of features [23]. With cross-validation RFE can also determine the optimal
number of features [69]. We performed RFE with cross-validation on the concatenated Facebook
data, and found that all features important were deemed important.

To study how well one can generalise the results of training the classifier on one month of Facebook
data, we compare the feature importance over nine classifications. These classifications are mostly
independent, and present a way to investigate how robust our findings are to monthly changes in the
data. Figure 18 shows that there is some difference between features regarding their variability from
month to month. All in all the importances are relatively stable, which is an argument in favour of
using the concatenated dataframe.
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Figure 18: The average feature importances for nine classifications of BT(1). Further expla-
nation of the variables is given in section 4.1.3. We clearly see that ‘Disc int’, i.e. the total level of
interaction - once accounted for the activity per user -, is most important. It is followed by ‘First’, i.e.
the date the pair first interacted, and ‘CNN’ which denotes the shared number of friends. The waiting
times and total number of interactions (not accounting for activity levels) are deemed least important.

4.2.4 Off-Hour and Evening Meetings

To better understand which aspects of the offline social tie can be learned based on Facebook
interaction only, we investigate two further target variables: whether a pair meets during ‘off-hours’
(OH) or in the evening time (EVE).

The performance metrics of the classification of these target variables are listed in Table 7, both for
the month of February 2014 and the concatenated months. We find that the target OH can be pre-
dicted with an accuracy of 69%, and EVE with 65% accuracy. The accuracy and other performance
metrics are lower for the classification of off-hour and evening meetings than for ‘BT(1)’. Yet the
difference between the Random Forest and Majority Vote Classifiers is higher in these cases, similar
to the case for BT(27)22. This suggests that the more stringent target variables allow for training of
the classifier function, and that the Majority Vote Classifier performs worse on the more balanced
datasets.

Besides the off-hour and evening target variables, some further target variables were investigated,
most notably the archetypes that DTU master student Linards Kalnins extracted from the Bluetooth
data. Each choice of target variable is complicated by the careful balance one has to strike between
specificity of the target behaviour, and the resulting class imbalance in the sample. This activity
was put on hold due to time restrictions, however it is an interesting direction for future research to
compare target variables more systematically.

22The ratios of positive to negative class of the OH and EVE target variable are roughly 5:3, and 7:10 respectively.
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Figure 19: The classification performance for a classifier trained to predict the (a) OH and (b)
EVE target variables. The accuracy of the Random Forest Classifier is significantly better than the
Majority Vote Classifier in most months, but much lower than for the ‘BT(1)’ variable overall. This
means the target is harder to predict, yet the classifier more strongly profits from knowledge about
the pair-features. Furthermore, although the 1-class is clearly in the minority in the case of EVE
(Precision and Recall of 0 for the Majority Vote Classifier), the Random Forest achieves a Precision
of roughly 65%.
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February 2014 Concatenated Months
Random For-
est Classifier

Majority Vote
Classifier

Random For-
est Classifier

Majority Vote
Classifier

OH: Off-Hour

Accuracy 0.68 ± 0.024 0.61 0.69 ± 0.007 0.62
ROC AUC 0.72 0.5 0.73 0.5
Precision 0.71 0.61 0.72 0.62
Recall 0.81 1.0 0.84 1.0
F1-score 0.74 0.77
Matthew 0.29 0.32

EVE: Evening

Accuracy 0.67 ± 0.03 0.59 0.65 ± 0.01 0.58
ROC AUC 0.71 0.5 0.70 0.5
Precision 0.63 0.0 0.62 0.0
Recall 0.44 0.0 0.47 0.0
F1-score 0.51 0.54
Matthew 0.27 0.27

Table 7: Performance metrics for the classification of OH and EVE. For both target variables, the
difference between the performance of a classifier trained on one month of data (960 pairs) or the
concatenation (6690 pairs) is minor, except for the error bands on the accuracy. For the EVE target
the performance metrics of the Random Forest Classifier are significantly better than for the Majority
Vote Classifier.
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Figure 20: The average feature importances for nine classifications of the (a) OH and (b)
EVE target variables. Further explanation of the variables is given in section 4.1.3. We clearly
see that ‘Disc int’, i.e. the total level of interaction - once accounted for the activity per user -, is
most important. It is followed by ‘First’, i.e. the month in which the pair first interacted, and ‘CNN’
which denotes the shared number of friends. The waiting times and total number of interactions (not
accounting for activity levels) are least important.
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4.3 Discussion

In this chapter, we set out to better understand the relationship between online and offline interac-
tions, and to use Facebook interaction data to predict different offline behaviours. We found that it is
possible to predict the occurrence of an offline encounter between an interacting pair on Facebook
with an accuracy of 78 %. More stringent target variables, such as a meeting during off-hours or
in the evening time, could be predicted with 69 % and 65% accuracy respectively. This accuracy is
lower than the study of Jones et al., which used Facebook to classify self-reported friendships [28].
However, their investigation was restricted to a dataset which included the closest friend and one
random Facebook tie of slightly more than 700 users (i.e. a balanced dataset of 1500 pairs). In our
case the accuracy is presumably limited by the fact that the presence of a single encounter in a given
month is an event highly affected by chance. A classifier which assigns all pairs a 100% probability
of meeting, performs almost as well as a classifier that was trained on features from the Facebook
interaction. Given the comparably small size of the DTU campus, freshman social circles, and the
inner city of Copenhagen, it is not surprising that many study participants meet at least once per
month. This points at an important limitation of the use of Facebook to predict offline contact: the
study of Facebook interactions can predict friendships and corresponding regular or planned offline
meetings, but carries very little information about chance encounters.

Furthermore, we found that the same features were deemed important for the prediction of normal,
off-hour, and evening contact. The number of interactions was most important to predict offline
contact, as long as we account for the activity level of a given user. Secondly, it was important when
a pair first started interacting on Facebook. This may be related to previous results by Viswanath et
al., which show that the relative strength of a Facebook tie is related to its age [22]. Not surprisingly,
how many friends a pair has in common on the medium also carried a lot of weight. However, the
frequency of interaction (as measured by inter-event times) had an almost negligible effect on the
prediction of offline meetings. This is supported by a separate investigation in which we showed
that the temporal entropy of interactions is much more informative offline than for online interactions.
Combined, these results indicate that although the timing of interactions is important offline, online
the mere presence of interaction is the more relevant object of study.

These results give some clear first hints regarding the relative importance of features and the feasi-
bility of the prediction of offline contact. However, the predictive strength of the classifier can likely be
improved by including further features to describe the Facebook interaction. For example, this study
has not taken any socio-demographic information of the participants into account, which could be
extracted from their Facebook profiles. Additionally, we have shown that a promising avenue for fur-
ther study would be to investigate how different types of Facebook use affect the predictive strength
of variables.

How to relate the classification of ties to the structure of the resulting network is a non-trivial question.
The above results tell us very little about the applicability of this method for network-based investi-
gations. Therefore, chapter 5 will introduce our novel way of assessing the quality of the network
prediction.

Given the importance of tie strength, it would be a logical step to use a weighted network for the
investigation of offline disease spread. The predicted network could easily be made a weighted net-
work by letting the link weights depend on the classification probability, or using e.g. the presence
of a link in the ‘EVE’ or ‘OH’ networks to attribute a higher weight. However, in the long run pre-
dicting binary links itself will not be sufficient, rather we will want to predict interaction intensity. This
thesis has focussed on binary link prediction because we started with the desire to identify differ-
ent kinds of interaction, that cluster Facebook ties according to their offline analogue. Furthermore,
binary prediction it is the most simple case, which lays the basis for future work that includes tie
strength.
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5 Spreading on Social Networks

The standard performance metrics for machine learning methods reflect the goodness of a trained
classifier only at the level of pairs, i.e. the correct prediction of single links. These metrics give an
indication of the usability of the classifier for applications that target a particular class. However,
they do not consider the network structure that emerges through the combination of many of such
pair-level predictions. To do this, one must consider the influence the complex network structure
has on the dynamics of processes that unfold on the network. Of course, the complex interaction
structure leads to different consequences given different processes on the network. In this section,
we propose to measure the quality of classification by modelling the initial breakout of a disease in
the student population, simulated with a SIR model.

We have used the Gillespie algorithm to simulate the evolution of a SIR model on five different
networks: (i) the actual offline contact network (BT (1) for February 2014), as well as (ii) the network
predicted by the Random Forest Classifier (for the same target variable), (iii) the network of pairs
that interact on Facebook, (iv) the Erdös-Renyi random graph with the same number of nodes and
average degree as the actual network (also called ‘the random network’ in the following), and (v) the
configuration model with the exact degree distribution of the actual network. Both (iv) and (v) are
synthetic networks that serve as different benchmarks or ‘null models’. Furthermore, we compare
against the Facebook interaction network, to investigate more carefully the benefit of using our trained
classifier rather than the simple sum of all interacting pairs on Facebook 23.

It is important to note that the actual and predicted networks refer to the target variable of meeting
at least once during February 2014. The actual network corresponds to the true class labels; the
predicted network is put together from the prediction on the independent test sets of each of the 10
cross-validation folds, with a classification threshold set at 0.5. All pairs that are predicted to belong
to the 1-class are included in the network, whereas the 0-class is deemed not to interact.

We find that a simulation on the predicted network can accurately predict the total number of infected
for nearly all values of R0, in particular the critical threshold is similar for both networks. Furthermore,
comparisons with the random and configuration model network indicate that the disease spread is
fundamentally driven by the degree distribution for large R0, whereas for slower transmission other
aspects of the topology play the most important role.

5.1 Comparison of the Network Structure

An essential first step to compare the 5 networks defined above, is by looking at standard, aggregate
network properties. Figure 21 shows the degree histogram of the predicted and actual network, and
Table 8 lists a few structural properties of these networks. The structural properties of the actual
and predicted network are quite well-aligned for all three target variables. The classifier slightly
over-predicts the number of edges in the largest connected component of the network for BT(1)
and OH, but under-predicts EVE24. However, the average clustering coefficient, the diameter of the
largest connected component (LCC) and the average shortest path in the LCC all closely match
between the actual and predicted networks. Furthermore, a Kolmogorov-Smirnov-test on the actual
and predicted degree distribution forBT (1) has a KS-statistic of 0.13, and p-value of 0.90, i.e. we can
not reject the hypothesis that the samples of node-degrees were drawn from the same distribution.
Together these results offer an important first indication that our predicted network closely resembles
the actual structure of offline interaction.

23The network of all people who interact on Facebook corresponds to the network that would be predicted by the Majority
Vote Classifier trained for BT(1).

24The amount of overlap (45%) of edges in the LCC of the EVE network is even lower than the precision of the classifier
for the total network, which suggests some parts of the LCC may have become disconnected in our prediction.
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By contrast, there are some important structural differences between the actual and synthetic net-
works. Table 9 shows that - by construction - the Erdös-Renyi random graph and the configuration
model networks are much less clustered than the actual BT(1), predicted BT(1), and Facebook inter-
action networks (featuring average clustering coefficients of 0.01 and 0.04 rather than 0.2). Further-
more, the diameter - the maximum shortest path between any two nodes - in the largest connected
component of these real-world networks is much bigger than for the random and configuration model
(11 rather than 7 or 8 respectively). It is not surprising that the real-world networks feature more local
structure than the synthetic graphs (see section 1.2). However, these local differences will critically
affect the early stages of the disease spread. Nodes with a small degree will have a slower transmis-
sion rate per node than higher degree nodes, and clusters may trap the disease in a remote region
of the network - surrounding infected individuals with recovered ones before they have a chance to
spread the disease to others.

These results indicate that the predicted network more closely resembles the actual network than
the other models. However, yet again we run into problems of comparability. What does it mean that
the two networks have the same average degree, or that the degree distributions are not significantly
different? Only a dynamic simulation can determine what combination of structural differences has a
marked effect on the quality of prediction of an epidemiological application.
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Figure 21: The degree histograms of the predicted and actual networks. The network of users
meeting at least once in February 2014 was predicted using the Random Forest Classifier from
section 4.2.1.
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Actual ‘BT’ Predicted
‘BT’

Actual ‘OH’ Predicted
‘OH’

Actual
‘EVE’

Predicted
‘EVE’

Average
clustering
coefficient

0.19 0.18 0.20 0.22 0.19 0.20

Largest
connected
component
(LCC)

292 (90%) 315 (94%) 252 (87%) 275 (91%) 172 (76%) 156 (72%)

Diameter
of LCC

11 11 12 14 9 9

Average
shortest
path in
LCC

4.2 4.0 4.4 4.3 3.9 4.1

# Edges in
LCC

691 835 563 634 358 277

Overlap 621 (89% of actual) 423 (67% of actual) 162 (45% of actual)
# Nodes in
LCC

292 315 252 275 172 156

Overlap 281 (96% of actual) 221 (88% of actual) 113 (66% of actual)

Table 8: Structural network properties of the predicted and actual networks. ‘BT’ stands for
Bluetooth, and designates the network of people that meet at least once in a given month. ‘OH’ is
off-hour, and ‘EVE’ is evenings. All results are for the month February 2014.

Actual Predicted FB interaction Random Configuration
Largest con-
nected com-
ponent (LCC)

292 315 345 288 286

Average clus-
tering coeffi-
cient of LCC

0.21 0.20 0.18 0.01 0.04

Diameter of
LCC

11 11 13 7 8

Average
shortest path
in LCC

4.2 4.0 4.0 3.7 3.6

Mean degree
in LCC

4.7 5.3 5.5 4.7 4.7

Table 9: Structural network properties of the actual, predicted, Facebook interaction, random,
and configuration model networks. The random and configuration model networks are much less
clustered (by design). Furthermore, the Facebook interaction network has 10-20% more nodes than
any of the other networks. Lastly, the diameter - the maximum shortest path between any two nodes
- in the largest connected component of the real-world networks is much bigger than for the random
and configuration model. All results are for the month February 2014.
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5.2 Simulating Disease Spread

5.2.1 Implementation

To simulate the evolution of a SIR model, we implemented the Gillespie algorithm as described in
section 2.3.2. To verify that this implementation was correct, we compare the results of an ensemble
of Gillespie simulations on a fully connected graph against a numerical simulation of the mean-field
ODE’s (equations 2.11, 2.12, 2.13). The fully connected graph was used for comparison because
this should behave equivalent to a well-mixed system. Both the Gillespie and the numerical ODE
simulation are initialised with the same parameters: N = 1000, I(0) = 10, R0 = 6.0. The result is
shown in Figure 22: the theoretical results lie within the confidence bands of the Gillespie simulation
for all times. This shows that our Gillespie algorithm correctly simulates the dynamics of disease
spread.
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Figure 22: The dynamics of infection on a fully connected graph. Here N = 1000, I(0) = 10,
R0 = 6.0. The result of the numerical integration of the the mean-field ODE’s (equations 2.11, 2.12,
2.13) is shown as a thick solid line. The result of 200 runs of the Gillespie simulation is shown as the
thin solid line, with dashed 95% confidence bands. The theoretical results lie within the confidence
bands of the Gillespie simulation for all times.

5.2.2 Simulation Results and Discussion

After comparing the static network structure, we now proceed to the comparison of dynamic sim-
ulations of epidemics on the 5 networks defined above. First of all, we can visually compare the
infection curves, i.e. the time-development of the disease on the network. In Figure 23 it is clear that
the infection curves are similar for all networks, but there are important visible differences25. Com-
pared to the simulations on the actual network (Figure 23a), the simulations on the predicted network
(Figure 23b) reach a slightly higher maximum (5%) slightly earlier (< 10 time-steps). However, the
total number of recovered individuals lies very close to the actual value. Furthermore, both networks

25Note that the values used to simulate these infection curves are different than those used in the comparison of ensem-
ble averages. Therefore the timescales here are much shorter than in the later Figures.
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(a) Actual Network.
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(b) Predicted Network.
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(c) Random Network.
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(d) Configuration Network.

Figure 23: Examples of the infection curve for the (a) actual, (b) predicted, (c) random, and (d)
configuration model networks. The simulations were initialised with I(0) = 3. The transmission per
S-I link is βl = 0.074, which corresponds to an R0 = 10.0 on the actual network. The infection curve
is somewhat steeper for the configuration network than for the actual, and the fraction of infection at
maximum is higher.

show a few cases where the disease spread took off very slowly - as characterised by the delayed
infection curve. Here the disease was likely initially trapped in an area of the network with only low
degree nodes, thus keeping the transmission rates equally low. The simulations on the predicted
network perform better than those on the Erdös-Renyi random graph (Figure 23c), which show a
much higher maximum of the infection curve than simulations on the actual and predicted networks.
Furthermore, at the end of the epidemic (i.e. where the infection curve reaches 0), the population of
the random network is almost fully recovered. This means that nearly every individual has contracted
the disease in course of the epidemic, an effect which is not observed for the actual, predicted, or
configuration model networks.

In the following, we are interested in the mean behaviour of an ensemble of simulations on the
network26. We randomise over the choice of the initial infected node, to simulate the case where we
do not know which individual will be patient zero. Taking into account only the mean could clearly
overlook other characteristics of simulations on the network, such as the variability between runs
of the ensemble. More regular structures - such as the random model, where the dynamics of the
simulation depend less on the initial condition, are likely to have a smaller variance of the distribution
of infection curves. However, characterising the behaviour of the mean of the distribution is clearly
the first step before investigating higher order moments.

To compare the disease spread we want to determine (i) which fraction of the network becomes
infected (Itot), (ii) how fast the disease is eradicated (Te), and (iii) whether an epidemic will be critical

26In the following we consider an ensemble of size 300.
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or not given a value for the transmission per link βl. To do this, we compute the quantities Itot and Te
for each run and find their ensemble averages 〈Itot〉 and 〈Te〉. Figures 24 and 25 display the values
of 〈Itot〉 and 〈Te〉 for each of the five networks. The results shown correspond to a range of different
βl values, while the recovery rate was kept constant at γ = 0.001.
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Figure 24: The total fraction of infected individuals, shown as a function of the transmission
rate per link. The disease statistic was averaged over 300 disease simulations. The βl values listed
are 10−3, and correspond to R0 = [0.0, 10.0] on the real network (the inset covers R0 = [0.0, 2.0]).
The errors are standard errors of the mean.
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Figure 25: The time until eradication of the disease, shown as a function of the transmission
rate per link. The disease statistic was averaged over 300 disease simulations. The βl values listed
are 10−3, and correspond to R0 = [0.0, 10.0] on the real network (the inset covers R0 = [0.0, 2.0]).
The errors are standard errors of the mean.

From Figure 24 we see that a simulation on the predicted network can accurately predict 〈Itot〉 for
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nearly all values of the transmission rate βl. The predicted network generally predicts slightly larger
infections, which are eradicated some tens of time-steps later. For most values of βl there is a
significant difference between the actual and all other networks. However, for the predicted and
configuration model networks these differences are small. This becomes more clear when looking at
the relative difference between the actual and all other predictions. Let x be an ensemble average,
e.g. 〈Itot〉, on one of the comparison networks. Then the relative difference between x and the same
statistic for the actual network xact is:

xrel =
x− xact
xact

(5.1)

where - using Gaussian error propagation [85] - the error is given by:

σxrel =

√
σ2
x + σ2

xact

(
x

x2
act

)2

(5.2)

The relative difference is shown in Figure 26. For βl > 0.8 (R0 > 4 on the actual network) the
relative difference between 〈Itot〉 on the predicted and actual network is less than 10 % and stays
mostly constant. Around the epidemic threshold of R0 = 1 on the actual network, the difference is
up to 40% of the total fraction of infected on the actual network. The simulations on the predicted
network consistently predict a higher proportion of infected individuals, i.e. the simulations become
supercritical for lower values of the transmission per link. An explanation for this observation could
be that the R0 = 1 on the predicted network is reached for smaller values of βl because the average
degree 〈k〉 is higher (see Table 9).
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Figure 26: The relative difference in the total fraction of infected individuals, shown as a
function of the transmission rate per link. The difference between the actual and other networks
are shown for the total fraction of infected individuals. The statistic was averaged over 300 disease
simulations. The βl values listed are 10−3, and correspond to R0 = [0.0, 10.0] on the real network
(the inset covers R0 = [0.0, 2.0]). The errors are standard errors of the mean. The vertical dashed
lines correspond to R0 on the different networks (from left to right: Facebook, predicted, actual
respectively).

To interpret the strength of the above results, we compare against simulations on other networks.
First of all, to verify the benefit of training a classifier rather than using the raw Facebook interactions,
we compare against the network distilled from these interactions. In Figure 24 we see that the
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estimate of 〈Itot〉 on the Facebook interaction network does not significantly differ from the results on
the predicted network. However, Figure 25 shows that the time of eradication is overestimated by a
wide margin for all values of R0. This presumably stems from the fact that the Facebook network is
much bigger than the face-to-face network (see Table 9). Lastly, Figure 26 shows that the simulations
based on the Facebook interaction network more strongly deviate around the critical transition.

Secondly, we compared against the Erdös-Renyi random graph with the same number of nodes and
the same average degree as the actual network. This random network shows significantly different
values of 〈Itot〉 and 〈Te〉 than the actual network, for nearly all values of βl. In particular, for βl > 0.4
simulations on the random network overestimate the effects of the disease, whereas for smaller val-
ues of βl both the number of infected individuals and the time until eradication are underestimated.
Thus, the random network exhibits a large subcritical region where the actual disease would be criti-
cal (R0 > 1). A failure to predict disease outbreak for these transmission values can have disastrous
consequences. Combined, these observations show that the random network fails to capture the
aspects of the network structure that govern the spreading dynamics on the actual network. Since
the random network mirrors the mean degree of the actual network, these results suggest that higher
order information about the topological features of the network is needed to recreate the spreading
process in a useful way.

To understand how much of the disease spread is degree driven, the last network we compare to is
the configuration model, with the same degree distribution as the actual network. On this network
the simulations reach results which do not significantly differ from those on the predicted network for
most values of βl. However, the critical transition around R0 more closely matches that of the actual
network, since both have the same average degree and degree distribution (by construction). These
results indicate that the disease spread is fundamentally driven by the degree distribution for most
values of R0, which fits well with our expectation of the processes driving spreading dynamics on
networks. Previous research has shown that the degree distribution is a crucial factor to describe
the dynamics of spread [7, 52]: as such, it is not surprising that the configuration model closely
matches the simulations for the actual network. However, knowledge of the exact degree distribution
of a network is hard to acquire. It is more likely that a national health organisation will be able to
guess the number of persons in a population and their average degree of interaction accurately, than
the full degree distribution. This would lead to the choice of a random model, which could fail to
predict disease outbreak, with possibly lethal consequences. Compared to the random model, both
our prediction and the simple Facebook interaction network do much better.

The next step in this investigation will be to understand how much the higher order network proper-
ties affect more subtle characteristics of disease spread, such as the variability between runs and
the dependence on the initial condition. Preliminary investigations suggest that the results of the
disease simulation on the predicted network more closely resemble those on the actual network for
a higher number of initially infected individuals. This effect is particularly important around the epi-
demic threshold, since local variations in the predicted network structure are more likely to make the
difference between the disease dying out or spreading to a sizeable fraction of the network. A further
valuable investigation will be to perturb the degree distribution of the configuration model slightly, to
see how robust the above results are to noise in the degree distribution.

Additionally, an interesting direction for further work is to compare and combine the results for clas-
sification on 9 different months (September 2013 to May 2014). This will allow us to make more
general statements about the use of this method for estimating the quality of classification, by com-
paring the results for several different predicted and actual networks. In this case, we will also study
the correlation between the relative quality of prediction as measured by the ROC AUC, and how well
the disease spread on the actual network can be approximated on the predicted network.
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6 Conclusion and General Discussion

The aim of this thesis was to understand the relationship between online and offline networks, and
to use data of online interactions to predict the outcome of spreading processes on the face-to-face
network.

In this study, we found that it is possible to predict the occurrence of an offline encounter between
an interacting pair on Facebook with an accuracy of 78%. More stringent target variables, such as
meeting at least 27 times per month or during off-hours, could be predicted with 69 % accuracy
(and a precision of 70% and 72%, respectively). This represents a 19% accuracy increase with
respect to the Majority Vote Classifier, which strongly suggest that online interactions contain valuable
information about offline ties and the corresponding face-to-face contact structure. Our performance
is considerably lower than the 82 % accuracy with which Jones et al. were able to determine a
Facebook user’s closest friends. This discrepancy is likely due to the use of offline behaviour as
target variable, which is considerably more subjected to the noise introduced by chance encounters,
than the designation of a close tie. In a study which predicted new contacts based upon CDR data,
Wang et al. had a precision of 73.5% when restricting the prediction to nodes that shared common
neighbours [12]. Our results already lie within this range, although they can likely be improved by
including further aspects of the Facebook interaction data or additional sources of data such as
CDR.

Accuracy is one of the most commonly used parameters to describe the performance of a classi-
fier, but it does not take the predicted network structure into regard. Since we are interested in the
approximation of the structure of the offline network rather than the prediction of a single tie, new
methods were needed to quantify prediction performance. So far, no appropriate performance test
for network prediction has been described in the literature. We chose to adopt the dynamic sim-
ulation of disease spread, which is widely regarded as one of the most successful applications of
the study of dynamics on complex networks [52], as functional validation of our predicted network.
Using disease simulations of a SIR model, we found that a simulation on the network predicted by
our trained Random Forest Classifier closely approximates the total number of infected on the actual
network, for nearly all investigated disease virulences. This predicted network shows dynamic evo-
lution of the disease outbreak that lies closer to that on the actual network and configuration model
network, than the network derived from Facebook interactions does, especially around the critical
epidemic threshold. Comparison with an Erdös-Renyi random graph shows that the predicted net-
work performs significantly better. Furthermore, simulations on a configuration model network with
the same degree distribution as the actual network indicate that the disease spread is fundamentally
driven by the degree distribution for large βl. For smaller values of the transmission rate, higher
order structure plays an important role, allowing for highly sensitive sensing of the quality of network
prediction.

The proximity of the results of disease simulations on our predicted network to those on the actual
network, implies that knowledge of Facebook interaction between individuals allows one to accu-
rately simulate the outbreak of a disease on this population. It is important to study how the results
obtained from a student population extend to the Danish population at large (see section 3.2 for a
discussion of the data bias in this study). For larger populations, the need to obtain access to the
full Facebook interaction data of each individual raises privacy concerns and limits the feasibility of
our approach. Additionally, the use of online social network data will be fundamentally limited by the
prevalence of Facebook use in the population. If we assume a fraction ηFB of the population uses
Facebook, we can maximally sample a fraction η2

FB of the possible communication links in the pop-
ulation. According to a report published by DR Media Research in 2014, almost 3.1 million Danes
used Facebook each month (55% of the population) [86], which suggests a full-scale study would
sample 30 % of all possible communication links. In younger populations, this percentage is likely to
be even higher. As such, this limitation should not keep us from further investigating the applicability
of online social network data.
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6.1 Future Directions

The current work can be extended in a number of ways. Concerning the classification of offline
behaviours, it is an obvious choice to further investigate the effect different types of Facebook use
have on the prediction of offline contact (as mentioned in section 4.1.1). Additionally, it would be
interesting to study the role of individual features and Facebook profile information vs. the interaction
between a pair. This might have significant impact on the classification of types of Facebook relations,
and assigning offline meanings to them. Secondly, by including additional sources of information
such as CDR data, the applicability of our predictions of offline contact can be extended to include
a larger proportion of the population. Our current focus on the prediction of offline contact between
pairs who interact on Facebook, may namely paint a biased picture of what happens offline, since
there may be many pairs who did not interact online, but did meet each other face-to-face. Lastly, with
respect to the evaluation of the quality of network prediction, it will be essential to take further account
of the variability of simulations on less regular networks, and to investigate the critical behaviour for
small per link transmission rates. Furthermore, the robustness of the classification should be tested
by predicting on several independent datasets (months).

Since a fully time-aware investigation would have exceeded the scope of this thesis, this study has not
taken into account the dynamic nature of the social network. However, the high temporal resolution
of both on- and offline interactions is one of the most exciting aspects of the Copenhagen Network
Study dataset. Taking causality, or temporality - i.e when a pair will meet next - into account while
investigating the prediction of offline meetings, could give vital insights about the co-evolution of
Facebook and face-to-face interactions, and may be crucial for the correct prediction of dynamics
on the social network (as discussed in section 1.2). A first starting point would be to compare
our simulations of offline disease spreading against a simulation that takes into account the full
temporal structure of the offline contact network (which is the closest approximation we can make to
reality).

Lastly, the investigations in this thesis originated in the study of friendships and other pair-based
interactions. However, there is great potential in taking a more network-based research approach
to study changes in the social network at a grander scale. For example, Peel and Clauset have
shown that it is possible to detect e.g. the occurrence of a social event in a freshman population,
based on qualitative change in the social network structure [87]. Other alternatives would be to
investigate the possibility to detect ‘waves’ or phases of friendship formation, increased off-hour
Bluetooth interaction, or exploratory spatial behaviour [32].
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