
AnB-API: Extending AnB with
APIs and persistent storage

Jóhann Björn Björnsson

Kongens Lyngby 2016



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk



Summary

In this thesis we introduce a security protocol modelling language, AnB-API,
which is designed as an extension to another security protocol modelling lan-
guage AnB. With AnB-API we extend the capabilities of AnB to support mod-
elling of protocols that make use of an API based communications model and
persistent storage. We formally describe the semantics of AnB-API and how
it is compiled into AIF, a lower level language, and how that is translated into
Horn Clauses that can be verified to give proof of security. We also give exam-
ples of protocol specifications written in AnB-API and explain how they utilise
the new features of AnB-API.
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acquiring a Master’s Degree in Computer Science and Engineering.

The thesis deals with the design and implementation of a security protocol
modelling language.

The thesis consists of the formal description of AnB-API, a security protocol
modelling language and it’s compiler along with a description of AnB and AIF
to which the language is related.
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Chapter 1

Introduction

As our modern world moves online, security protocols are becoming an ever
bigger part of our daily lives. They provide a foundation for secure online ap-
plications such as online banking, e-commerce and various privacy applications.
Designing security protocols can be a complex task and modelling and analysis
of such protocols is important. Various tools exist for protocol analysis and in
this thesis one such tool is introduced called AnB-API. It is a high-level mod-
elling language for modelling security protocols with certain properties. The
language is meant as an extension to the Alice and Bob notation (AnB) [8], a
security protocol modelling language with a simple and elegant Alice and Bob-
style syntax. The AnB-API compiler compiles code written in AnB-API into
Abstract Intermediate Format [7], an expressive lower-level security protocol
modelling language.





Chapter 2

Background

Our new language AnB-API borrows features and syntax from both AnB and
AIF. To get a good understanding of the requirements and behaviour of AnB-
API we’ll look at both languages and compare them to AnB-API.

2.1 Abstract Intermediate Format

As stated earlier, AnB-API is translated into Abstract Intermediate Format
(AIF) [7]. AIF (related to AVISPA’s Intermediate Format [1]) is a language that
supports verifying a wide variety of protocols and was chosen as the language
to compile AnB-API into for its features, mainly persistent storage and its
flexible communications model. AnB-API also borrows syntax from AIF and
since AnB-API is compiled into AIF, some AIF features are also offered more
or less unchanged in AnB-API (namely Facts and Sets). Since AnB-API offers
a more high-level syntax than AIF, some of AIF’s expressiveness is sacrificed
in AnB-API. AIF supports the definition of functions that allow the user to
define custom protocol functionality where AnB-API supports a predefined set
of commonly used operations. Moreover, AIF requires users to define an attacker
model that the intruder will operate within. In AnB-API, an attacker model is
built in and is not editable by programmers. All specifications written in the
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language are thus translated to AIF with the same attacker model.

2.1.1 Synax and semantics

AIF supports persistent storage in the form of sets. Sets are defined over vari-
ables which in turn are defined over constants. To state that the key PK is in
agent a’s keyring we could write PK in keyring(a). In this case keyring is
a set that has been defined over a variable in which a is a constant. Sets can
be defined over multiple variables which is useful when more complex database
structures need to be expressed. If we wanted to define a server database that
stores keys for users we could write PK in db(s,a,valid) to state that PK is
registered as a valid key in the server’s (s) database for the user a. This set’s
definition could be db(s,U,Status) where the variables might be defined as
U:{a,b} and Status:{valid,revoked}. Here we see that variable names start
with an uppercase letter and constant names start with a lowercase letter. A def-
inition like this actually generates four sets db(s,a,valid), db(s,a,revoked),
db(s,b,valid), db(s,b,revoked). In AIF, protocols are defined as rules in
a state transition system. Rules have a left-hand side and a right-hand side,
separated by an arrow. The right-hand side of the rule describes a state that
will be reached if the rule is executed and the left-hand side of the rule describes
a state that the system needs to be in for the rule to be executable. These states
are defined with expressions. If the expressions on the left-hand side all evaluate
to true, that rule can be executed and the expressions on the right-hand side
describe the state of the system after the rule has been executed. Values can
also be freshly generated, in which case value names are put on the arrow itself.
In order to demonstrate AIF rules we’ll look at a simple example of a key server
protocol. For now we’ll skip Type, Set, Function and Fact declarations and get
back to them later when we talk about AnB-API.

=[PK]=>iknows(PK).PK in keyring(a).PK in db(s,a,valid);

In the above rule, the fresh value PK is created and inserted into both a’s keyring
and the server’s database for a as a valid key. We also add PK to the intruder
knowledge with iknows(PK), where we assume that iknows has been defined
to represent intruder knowledge in an attacker model similar to the Dolev-Yao
attacker model [4]. This rule can be executed multiple times in any state since
no conditions are put forth on the left-hand side of the arrow. In the next rule
a new key NPK is created and put into a’s keyring (intuitively a creates the key
and puts it into their keyring). a sends sign(inv(PK),pair(a,NPK)) to the
server letting them know that a now has a new key and by sending it to the
server, the message gets added to the intruder knowledge. Expressions that
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dictate membership in sets need to be on both sides of the rule in order for
the membership to persist. This means that since PK in keyring(a) is on the
left-hand side but not on the right-hand side, PK gets removed from keyring(a).

iknows(PK).PK in keyring(a)
=[NPK]=>
NPK in keyring(a).iknows(sign(inv(PK),pair(a,NPK)));

As we see on the left-hand side of the rule, PK must be in keyring(a) and
in the intruder knowledge, effectively making the first rule a prerequisite for
this one. Here, sign, inv and pair refer to a signed message (signed with
inv(PK)), a private key corresponding to the given public key (PK) and message
concatenation, respectively. In the next rule the server receives the new key
from a, checks if it already exists and if not, revokes the old key and inserts the
new key into their database as a valid key.

iknows(sign(inv(PK),pair(a,NPK))).PK in db(s,a,valid).
forall Sts. NPK notin db(s,a,Sts)
=>
PK in db(s,a,revoked).NPK in db(s,a,valid);

By repeating iknows(sign(inv(PK),pair(a,NPK))) from the rule before on
the left-hand side of this rule we again make the previous rule a prerequisite for
executing this rule. In this rule we check if NPK exists in the server’s database,
both as a valid key and a revoked one. This is done with a forall statement.
In forall statements we specify variables to loop over and a set. In this case
we loop over Sts which contains valid and revoked. This means that we’re
checking if NPK exists in db(s,a,valid) and db(s,a,revoked) and if it doesn’t,
the forall expression evaluates to true. These rules describe our protocol but
we need another one to describe a state in which an attack happens.

iknows(inv(PK)).PK in db(s,a,valid)
=>attack;

In this rule we simply state that if an intruder learns a private key and if that
private key is in the server’s database for our user a as a valid key, an attack
takes place.

AIF is compiled into Horn clauses (both SPASS [9] and ProVerif [2] syntax)
using the fpaslan [7] tool. By default fpaslan outputs Horn clauses in SPASS
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syntax which can be directly fed to the SPASS tool for verification. SPASS
takes as input axioms and a conjecture. The Horn clauses from AIF are the
input axioms and the conjecture is attack. The principal output from SPASS
is either "Proof found" or "Completion found". When SPASS outputs "Proof
found" it is indicating that it has found a proof that the Horn clauses (our
protocol description) indeed lead to an attack. If SPASS however finds proof
that the protocol does not lead to an attack it outputs "Completion found".
The problem of determining wether or not the protocol leads to an attack is
undecidable [7] so SPASS may run forever without producing a result.

2.2 Alice and Bob

As stated earlier, AnB-API is also takes a lot from Alice and Bob (AnB) [8].
AnB is one of the input languages to the Open Source Fixedpoint Model Checker
(OFMC) [6]. It can model various protocols with multiple communicating agents
and supports exponentiation, various security goals, pre-existing knowledge and
a flexible channel notation supporting confidential, authentic and secure chan-
nels. AnB-API builds on this language and uses much of the same syntax. AnB
uses the Dolev-Yao intruder model so all communications are intercepted by
the intruder and get added to the intruder knowledge. The intruder can also
synthesise any message from their knowledge and send at any time to any agent.
The intruder can use all cryptographic operations and knows the identity of all
agents in the protocol. In order to demonstrate AnB we quickly look through
the single sign-on protocol in figure 2.1. We declare the types used in the proto-
col in the Types section, agents with the Agent keyword, fresh values with the
Number keyword and functions with the Function keyword. Types that start
with a capital letter represent variables (meaning that they’ll be instantiated
with an arbitrary number of values during protocol execution) and types start-
ing with lower-case letters represent constants. The Knowledge section specifies
knowledge that agents have before the protocol run starts. The aim with the
protocol is for the user to be able to consume SP’s service without having to
register with them beforehand (note that SP is a variable and represents mul-
tiple service providers). Instead the user and the service provider both trust
the identity provider idp which facilitates the needed trust between U and SP.
The Actions section describes communications in the protocol. The user sends
URI to SP (intuitively a request for some service from SP) and gets an ID back
which identifies the user to the service provider (note that U is a variable and
represents multiple different users so SP needs to keep track of users). The
user sends ID to idp encrypted with a shared key between the user and idp,
which effectively authenticates the user to idp. idp now sends back (among
other things) a signed message with the user’s identity and SP’s identity which
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1 Protocol: SingleSignOn
2
3 Types:
4 Agent U,idp ,SP;
5 Number URI ,Payload ,ID;
6 Function sk
7
8 Knowledge:
9 U: U,idp ,SP,sk(U,idp);

10 idp: U,idp ,SP,sk(U,idp),pk(idp),inv(pk(idp)),pk(SP);
11 SP: idp ,SP ,pk(SP),inv(pk(SP)),pk(idp)
12
13 Actions:
14 U -> SP: URI
15 SP -> U: ID
16 U -> idp: {| ID |}sk(U,idp)
17 idp -> U: {| pk(SP),pk(idp) ,{U,SP}inv(pk(idp)) |}sk(U,

idp)
18 U -> SP: { Ktemp ,ID ,{U,SP}inv(pk(idp)) }pk(SP)
19 SP -> U: {| Payload |}Ktemp
20
21 Goals:
22 SP authenticates U on ID
23 U authenticates SP on Payload
24 Payload secret between SP,U

Figure 2.1: A single sign-on protocol in AnB

represents trust between U and SP. U now sends that to SP along with the ID
from before and a freshly generated key to use for secure communications going
forward (this is all encrypted with SP’s public key). SP — now trusting U —
sends the payload (the service U requested originally) to the user encrypted with
the fresh key from U.

Like in AIF we need to define security goals. In the Goals section we specify
that SP uses ID to authenticate the user, that the user authenticates the service
provider when sending the payload and that the payload is confidential between
U and SP.





Chapter 3

AnB-API

3.1 Introduction to AnB-API

AnB is well suited for modelling protocols where multiple agents communicate
but lacks support for modelling communications with devices that make use
of Application Programming Interfaces (APIs). Various security hardware like
Hardware Security Modules (HSMs), smart cards and security tokens expose an
API that is used to communicate with the device. These APIs can have multiple
operations that can be executed in an arbitrary order and that is where AnB
falls short. These devices also often store sensitive data (such as key material)
which is also impossible to model in the current implementation of AnB. The
goal with AnB-API is to add these two core functionalities to AnB. AnB-API is
a modelling language for security protocols that make use of APIs and persistent
storage and although AnB-API is meant as an extension to AnB, in order to
accommodate some of the features in AnB-API and simplify development, some
AnB features were dropped, namely exponentiation and advanced channels. The
language expresses different API calls in the protocol as subprotocols which can
be called in any order. Data stores are supported in AnB-API in the same way
as in AIF where Sets are defined over variables which in turn are defined over
constants. This means that databases can be modelled where agents can insert,
look up and remove stored data. In the following sections we will look at AnB-
API’s attacker model, sections of an AnB-API specification and look at how it
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is translated into AIF.

3.2 Attacker model

We utilise rules from the Dolev-Yao attacker model [4] where an adversary will
overhear all transmitted messages (transmitted messages are added to the in-
truder knowledge) and can synthesise and send messages from their knowledge.
Underlying cryptography is assumed to be sound and all cryptographic oper-
ations are known by all agents, including the adversary. Below is a formal
description of the intruder model used in AnB-API. Here iknows(·) represents
things in the intruder knowledge.

• The intruder knows all agents that take part in the protocol

∀u ∈ Agents : iknows(u)

Where Agents contains all agents in the protocol

• The intruder knows the public keys of all agents that take part in the
protocol

∀u ∈ Agents : iknows(pk(u))

Where Agents contains all agents in the protocol

• The intruder knows the private keys of all dishonest agents that take part
in the protocol. Note that this rule means that having multiple dishonest
users might not be very useful unless they are all meant to cooperate to
some degree.

∀d ∈ Dishonest : iknows(inv(pk(d)))

Where Dishonest contains all dishonest agents in the protocol

• The intruder can hash messages

iknows(M)

iknows(h,M)

where h ∈ HashConstants

• The intruder can build composed messages and decompose messages

iknows(M1) iknows(M2)

iknows(pair(M1,M2))

iknows(pair(M1,M2))

iknows(M1) iknows(M2)
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• Given the right key, the intruder can symmetrically encrypt and decrypt
messages

iknows(M) iknows(K)

iknows({|M |}K)

iknows({|M |}K) iknows(K)

iknows(M)

• Given the right key, the intruder can asymmetrically encrypt and decrypt
messages

iknows(M) iknows(K)

iknows({M}K)

iknows({M}K) iknows(inv(K))

iknows(M)

• Given the right key, the intruder can sign and open signed messages

iknows(M) iknows(inv(K))

iknows({M}inv(K))

iknows({M}inv(K))

iknows(M)

3.3 Sections of the language

A protocol specification written in AnB-API has six sections containing the
protocol name, types, sets and facts used in the subprotocols section, the sub-
protocols section itself, along with an attacks section declaring our security
goals. In the following sections we go into each one in detail and as an example
present a key server protocol similar to the one we looked at before (The entire
AnB-API key server specification can be found in appendix A).

3.3.1 Protocol name

The first section simply contains the protocol name. This is translated into
the similar "Problem" section in AIF. This section starts with the keyword
"Protocol" following the desired name of the protocol like so:

Protocol: Keyserver

In order to keep the code minimal and readable, AnB-API does not use semi-
colons at the end of lines.
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3.3.2 Types

The second section defines types to be used in the specification. In the Types
section we define the constants and variables used in the specification of subpro-
tocols later on. Types follow the same format as Types in AIF where variables
range over constants. Variable names start with an upper-case letter and con-
stants with a lower-case letter, e.g.:

Types:
Agents : {a,b,s,i}
Dishonest : {i}
H : {a,b}
S : {s}
U : {a,b,i}
Sts : {valid,revoked}
PK,NPK : value

Variables are declared as either a set of constants, a fresh value with the value
keyword, or arbitrary untyped values with the untyped keyword. Three sets
are a part of the language and are used to formulate the attacker model dur-
ing compilation. These are Agents, Dishonest and HashConstants. Agents
should contain all agents that participate in the protocol, honest and dishonest.
Dishonest should contain dishonest agents that participate in the protocol and
HashConstants should contain all hash constants that are used in the protocol.
Note that all dishonest agents know each other’s private keys as mentioned in
section 3.2. Declaring the HashConstants variable is optional and only needs
to be done if the protocol uses hashes (we don’t use hashes in our key server
example so the variable is not defined in the above code). Hash constants were
introduced to allow users to use multiple hashing functions and should always
be used with hashes like so: h(h1,M) where M is a message and h1 is a hash
constant.

In the code above we define our honest agents a and b, our server s and the
intruder i. We declare a variable for our honest users H, server S and all users
(clients of the server) U. We also declare a set Sts which represents the statuses
of the keys that the server holds. PK and NPK will be used to refer to keys during
the protocol run. If multiple variables range over the same set of constants or
types they can be comma separated in the declaration (like PK and NPK).
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3.3.3 Sets

Sets (data stores) are declared in the third section. Each set declaration has a
name and a list of variables over which the set is defined (note that declaring a
set over constants is not supported).

Sets:
ring(U), db(S,U,Sts)

Here we define two sets ring(U) and db(S,U,Sts). The set ring represents each
agent’s keyring which holds that agent’s keys. The db represents the server’s
database that holds keys for all users of all statuses. As in AIF, defining sets over
variables like this actually represents a set for each constant that the variable
is defined over. The declaration for the set db above actually represents 4 sets
because a set is created for every combination of the constants that it’s variables
range over. S ranges over 1 constant s, U ranges over 2 constants a and i, and
Sts ranges over 2 constants valid and revoked. This gives 1 ∗ 2 ∗ 2 = 4 sets.
If no sets are defined, the sets section should still be in the protocol but the set
list should be empty like so (the comment is optional but recommended for the
sake of clarity):

Sets:
#empty

3.3.4 Facts

A fact in AnB-API represents some event occurring. A fact can involve messages,
indicating that those messages have something to do with that event occurring.
The Facts section is similar to the Facts section in AIF:

Facts:
cnfCh/2, request/2

A fact declaration has a name and an integer number denoting the arity of the
fact. The arity represents how many messages are used to establish the fact.
Our key server example does not make use of facts so the facts in the code above
are only to demonstrate what the Facts section looks like. If no facts are defined,
the facts section should still be in the protocol but the fact list should be empty
like so (the comment is optional but recommended for the sake of clarity):
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Facts:
#empty

3.3.5 Subprotocols

In AnB-API, API calls are represented as subprotocols where each subprotocol
is a list of actions. These actions can be the sending of messages to other
agents or actions performed locally by an agent of the protocol. Subprotocols
make up the bulk of a specification and are separated by ––-. Let’s look at the
subprotocols in our key server example:

Subprotocols:
#Honest user creates a new public key
H: create(PK)
H: insert(PK,ring(H))
H->S: sync
S: insert(PK,db(S,H,valid))
S->H: PK
---

The specification has three subprotocols. The first one describes an operation
in which an honest user creates a new key, inserts it into their own keyring
and then sends it to the server, which inserts it into their database. The sync
command represents that PK arrives at the server without the user sending it
there. This represents an out-of-band initialisation where the user might have
physically visited the key server and given them the key in person. The server
inserts the key into their database for H as a valid key and then sends it back to
the user over the network. This final transmission serves the purpose of inserting
the key into the intruder knowledge.

#Dishonest user creates a new public key
i: create(PK)
i: insert(PK,ring(i))
i->S: sync
S: insert(PK,db(S,i,valid))
S->i: PK, inv(PK) #The intruder’s new private key is

#shared with other dishonest users
---
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The second section is similar to the first one except it deals with a dishonest
user creating a public key. The process is the same except for the last line where
the intruder’s new private key is shared with other dishonest users (we assume
that they’re working together to attack the server).

#A user sends a new key to be registered with the server and
#the old one is revoked
U: select PK from ring(U) #We select PK because we need to use it
U: create(NPK) #for signing when we send the new key
U: insert(NPK,ring(U))
U->S: {U,NPK}inv(PK)
S: if NPK notin db(S,_,_) #The server checks if the new key
S: insert(NPK,db(S,U,valid)) #is in its database of all users
S: select PK from db(S,U,valid)#and all states before inserting
S: delete(PK,db(S,U,valid)) #it as a valid key and revoking
S: insert(PK,db(S,U,revoked)) #the old one

In the third subprotocol a user renews their key. The user creates a new key
NPK and inserts it into their own keyring. The user then sends their identity
along with the new key to the server — signed by the user’s currently valid key.
The if statement (explained in detail in section 3.4.1) checks that NPK is not
registered for any user with any state in the database. If it’s not, the server
inserts it as a valid key for U. The server then deletes PK (the old key) from
their valid set and inserts it into their revoked set.

3.3.6 Attacks

In this section we define security goals for the specification. We introduce the
notion of a referee to do this. The referee is a reserved keyword in the language
that represents the intruder in the Attacks section. To define attacks we specify
conditionals that all need to evaluate to true in order for an attack to happen.
Multiple attacks can be defined and are then separated by "–––".

Attacks:
->referee: inv(PK) #The referee receives a private key
referee: if PK in db(S,H,valid)

Here we state that if the referee (the intruder) is able to receive a private key
whose public key is registered in the server’s database as the valid key of an
honest user, we have an attack.
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3.4 Actions and Messages

As we can see in the key server example, AnB-API supports multiple different
actions and borrows the message syntax from AnB. In the following sections we
take a closer look at each AnB-API action along with the syntax for messages.

3.4.1 Actions

To allow agents to perform local operations the syntax A: action is used. We
saw most of these actions in the key server example but action can be any of
the following:

• A: create(x) Here agent A locally creates value x which needs to have
been defined in the Types section. At this point x only exists locally with
A and has not been saved to persistent storage. Example:

A: create(NPK)

• A: insert(x,s) This is how persistent storage is used. Here, agent A
saves variable x into set s where s is a set expression. Set expressions
have a similar form as set declarations where the set name is followed
by parentheses enclosing a comma-separated list of variables or constants.
In the following example agent A inserts NPK into ring(A) which could
indicate that the agent is inserting a newly created public key into their
own keyring:

A: insert(PK,ring(A))

• A: select x from s fetches a value previously saved in set s. This is
required to perform actions on values that have been saved to persistent
storage. s is again a set expression. In the following example NPK is fetched
from ring(A), making it available to use in other commands such as the
delete command.

A: select NPK from ring(A)

• A: delete(x,s) This command deletes value x from set s. s is again
a set expression. x needs to have been declared earlier in the current
scope (either with the create command or the select command). In this
example, agent A deletes NPK from their keyring, where NPK has earlier
been declared with a select command.
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A: select NPK from ring(A)
A: delete(NPK,ring(A))

• A: if x notin is This conditional statement determines wether or not
to continue executing actions in the subprotocol. If the condition evaluates
to true, command execution will continue as usual and the next lines
of the protocol will be executed. If the conditional evaluates to false,
execution of the subprotocol will stop and the next subprotocol will be
executed. x is a variable and is is an in-set expression. In-set expressions
are similar to set expressions but are used in conditional statements. They
have a bit of extra syntactic sugar to make writing these statements more
robust. Similar to set expressions, they have the set name followed by
parentheses enclosing a comma-separated list, but this list can contain
both variable/constant names and the underscore. The statement below
means that we proceed if NPK is not found in any of the sets associated
with S and a. If we look at the definition of db from above we see that the
third parameter in the definition of db is Sts. Thus, the statement checks
wether NPK is found in db(S,a,valid) and db(S,a,revoked), and if it’s
not in either of them, then the conditional evaluates to true and execution
continues.

if NPK notin db(S,a,_)

• A: if x in is This is the negated form of the conditional statement
above, meaning that if the condition is met subprotocol execution contin-
ues and otherwise stops.

• A: f Here, f denotes a fact expression. Fact expressions indicate that
some event has taken place. Fact expressions have the name of the fact
followed by parentheses enclosing a comma separated list of messages. The
number of messages must be the same as the arity of the fact defined in
the fact declaration. An example of this is below where we assume cnfCh
has been defined in the Facts section with arity of 2.

cnfCh(A,{NA}PK)

• A: if f This is a conditional that can be used to check if a certain
fact has been stated (check if some defined event has happened during
protocol run). This, along with the fact statement, can be used to model
out-of-band channels, e.g.:

referee: if cnfCh(A,(NA,NB))
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• _->referee: M The rest of the actions pertain to the Attacks section.
This actions means that the referee (attacker) receives M. If the referee is
able to receive M at any point during the protocol run, this evaluates to
true and we continue executing the attack.

• referee: if x in s This is similar to the "if in" check in the subpro-
tocol section and means that execution of the attack continues if x is in
set s.

• referee: if x notin s This is the opposite of the "if in" action where
attack execution continues if x is not found in s.

• referee: if f This is similar to the subprotocol action where the ref-
eree checks if a certain fact has been stated. Attack execution continues
if the fact has been stated.

3.4.2 Messages

When agents send messages to each other they use the syntax A->B: M in which
A sends message M to B. The syntax of a message is the same as in AnB [8] where
a message can be:

• A variable, e.g. A->B: NA

• A key, e.g. A->B: NPK

• Comma separated list of messages, e.g. A->B: M1,M2

• Asymmetrically encrypted message, e.g. A->B: {M}K where K is a key

• Symmetrically encrypted message, e.g. A->B: {|M|}K where K is a key

• Messages enclosed in parentheses, e.g. A->B: (M)

• A hashed message, e.g. A->B: h(h1,M) where h1 is a constant in the
HashConstants variable.

As we see later, messages that are sent between agents in the protocol are
automatically added to the intruder knowledge. The keys in the above examples
can be a freshly generated value (e.g. A->B: {M}PK), a public key (e.g. A->B:
{M}pk(A)), a private key (e.g. A->B: {M}inv(PK)) or a shared key, in which
case the key is shared between two agents (e.g. A->B: {M}sk(A,B)). pk, inv
and sk are reserved keywords in the language and are used to refer to these
keys.
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3.5 Compilation to AIF

The AnB-API compiler is written in Haskell and in order to work with input
code on an abstract level we use a set of Haskell data types and type synonyms
to represent the code. These entities are then checked for errors and mapped to
AIF commands. This mapping may be as simple as printing the input verbatim
to the output file. In other cases we might need for a single AnB-API command
to check different parts of the input in order to produce meaningful AIF code.
In order to understand the compilation process from AnB-API to AIF, we take
a brief look at the data types and type synonyms that we use in the following
section.

3.5.1 Abstract Syntax Tree

The parser is responsible for abstracting the incoming AnB-API code to the
aforementioned set of entities that we can work with in Haskell. This set of
entities is known as the Abstract Syntax Tree (AST). The data types used in
the AST are defined in the file Ast.hs. Below is a description of the AST’s
components.

3.5.1.1 Basic type synonyms

To make it easier to work with data types in the AST, we use a few type
synonyms to represent the most basic data structures. Haskell type synonyms
allow us to define names to use for data types. An identifier (Ident) is simply
a Haskell String and is used for all symbols (constants, variables, set names,
etc.). Many aspects of the compiler require dealing with lists of identifiers so
we define the IdentList as a Haskell list that holds identifiers and finally, to
hold the entire AST we define a type synonym Protocol as a six-tuple that
corresponds to the six sections of an AnB-API specification.

type Ident = String
type IdentList = [Ident]
type Protocol =
(Ident,TypeDecls,SetDecls,FactDecls,Subprotocols,AttackDecls)
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3.5.1.2 Protocol sections

As we see in the definition of Protocol we use other type synonyms to refer to
the various sections of the protocol. The protocol name is simply an identifier
so that’s not explained further here. TypeDecls, SetDecls and FactDecls are
simply lists of TypeDecl, SetDecl and FactDecl respectively. These sections host
all declarations in the code and each of these can hold 0 or more declarations of
each kind. A Type declaration simply consists of an identifier (the name of the
type) and a Type. Type can be a set (e.g. Agents : {a,b,i}) a value (e.g.
NPK : value) or untyped (e.g. M1 : untyped) as explained in section 3.3.2.
A Set declaration consists of an identifier (again, the name of the set) and a list
of identifiers corresponding to the variables over which the set is defined (e.g.
db(S,U,Sts)). Fact declarations consist of an identifier and an integer denoting
the arity of the fact (e.g. confCh/1).

type TypeDecls = [TypeDecl]
type TypeDecl = (Ident, Type)
data Type = Set IdentList

| Value
| Untyped

type SetDecls = [SetDecl]
type SetDecl = (Ident, IdentList)

type FactDecls = [FactDecl]
type FactDecl = (Ident, Int)

type Subprotocols = [Subprotocol]
type Subprotocol = [Action]

type AttackDecls = [Attack]
type Attack = [Action]

3.5.1.3 Subprotocols and Attacks

Subprotocols and Attack declarations are the bulk of the protocol specification
and are a little more complex. Both are divided into multiple segments (sub-
protocols and attacks) that contain actions. The action data type represents all
the actions that can be modelled in the protocol (detailed in section 3.4.1)

data Action = Insert Ident SetExp



3.5 Compilation to AIF 21

| Delete Ident SetExp
| Select Ident SetExp
| Create Ident
| Ifnotin Ident InSetExp
| Ifin Ident InSetExp
| Fact FactExp
| Iffact FactExp
| Transmission Channel Msg
| Sync Channel
| ToRefAction Msg
| RefSelect Ident SetExp
| RefIfnotin Ident InSetExp
| RefIfin Ident InSetExp
| RefIffact FactExp

They carry names corresponding to the keywords they use in code (e.g. Ifnotin
for if x notin s where x is an Ident and s is an InSetExp). ToRefAction,
RefSelect, RefIfnotin, RefIfin and RefIffact are actions that can only be used in
the Attacks section. The rest of the actions can only be used in the Subprotocols
section. Using actions in wrong sections results in a parsing error. As we can
see in the definition of Action, various expressions are used.

type SetExp = (Ident,IdentList)
type InSetExp = (Ident,InSetIdentList)
data InSetIdent = Ident Ident

| Underscore Ident
type InSetIdentList = [InSetIdent]
type FactExp = (Ident,Msg)

These are mostly straight forward, SetExp, InSetExp and FactExp all have an
identifier representing the set or fact name. A SetExp has a list of identifiers
denoting variables, InSetExp as well except they can also be the underscore, and
FactExp has a message (note the message can be a concatenation of multiple
messages).

3.5.1.4 Messages

In order to represent messages and keys we use the following data structures:

data Msg = Atom Ident



22 AnB-API

| Cat Msg Msg
| Key Key
| Crypt Msg Key
| Scrypt Msg Key
| Hash Ident Msg

data Key = GenericKey Ident
| PublicKey Ident
| PrivateKey Ident
| SharedKey IdentList

The message is a recursive data structure that can be a concatenation of multiple
messages (Cat Msg Msg), a key (Key Key), asymmetrically encrypted (Crypt
Msg Key), symmetrically encrypted (Scrypt Msg Key) and a hashed message
(Hash Ident Msg where Ident is the hash constant). The Key also has their
own data type and can be a GenericKey (freshly generated key), PublicKey,
PrivateKey and a SharedKey as explained in section 3.4.2.

3.5.2 Translation

The syntax for the Types, Sets and Facts sections of AnB-API is — aside from
semicolons at the end of lines — the same as for these sections in AIF. Therefore
they are printed like they are on the input with the addition of a few types and
facts, and semicolons at the end of lines. As for the additional types, in order
to accommodate the intruder model we add two types to the Types section,
IntruderRuleM1 and IntruderRuleM2 of type untyped, which represent M1

and M2 from section 3.2 respectively. We don’t need to add the key K from
section 3.2 to the intruder model declaration since it would simply be a variable
of type untyped like IntruderRuleM1 and IntruderRuleM2 are. We therefore
simply use IntruderRuleM2 in it’s stead as it is not used anyway in rules that
use a key. The facts we add are attack/0 and iknows/1 since both are needed
in AIF and are used in a different way in AnB-API.

AIF has a section that AnB-API does not have and that is the Functions section.
This section is used in AIF to define functionality like encryption and hashing.
In AnB-API creating functions is not supported in order to keep the language
as easy to use as possible. Instead, AnB-API supports a set of common features
and the Functions section in the output AIF specification is populated with
these features. These are sign (for message signing), scrypt (for symmetric
encryption), crypt (for asymmetric encryption), pair (for concatenation), pk
(to denote an agent’s public key), inv (to denote a public key’s private key),
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sk (to denote a shared key between two agents), and h (to use hashes). All
specifications written in AnB-API thus have the following Functions declaration:

Functions:
public sign/2, scrypt/2, crypt/2, pair/2, pk/1, sk/2, h/2;
private inv/1;

The Subprotocols and Attacks sections of the AST are a little more compli-
cated and are compiled with two recursive functions compileSubprotocol and
compileAttack. These functions take as input the list of actions in each subpro-
tocol or attack along with any other information they need in the translation
process (type declarations, set declarations, etc.) and output a string — the
corresponding AIF code.

Each subprotocol is compiled into at least one whole AIF rule and each AIF
rule is compiled from at most one subprotocol. This means that we can com-
pile each subprotocol separately and the compilation of a subprotocol does
not influence the compilation of another subprotocol. The compiler thus calls
compileSubprotocol on each subprotocol in the input AnB-API code which
has the following type: compileSubprotocol :: Subprotocol -> Left ->
Center -> Right -> Agent -> TypeDecls -> SetDecls -> FactDecls -> String
where:

Subprotocol is a list of all actions in the subprotocol. As we saw earlier,
Subprotocol is a type synonym for a list of actions: [Action].

Left is a list of actions that will be compiled into AIF code on the left-hand-
side of the arrow in an AIF rule

Center is a list of actions that will be compiled into AIF code on the arrow of
an AIF rule

Right is a list of actions that will be compiled into AIF code on the right-
hand-side of the arrow in an AIF rule

Agent corresponds to the agent in the AnB-API code whose turn it is during
that rule

TypeDecls are the type declarations from the Types section

SetDecls are the set declarations from the Sets section

FactDecls are the fact declarations from the Facts section

String is the return type (The generated AIF code).
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The function is called recursively with each call removing the first action from
the list Subprotocol and adding it to one or more of the sets Left, Center and
Right. When an action calls for a different agent to act, i.e. Transmission
and Sync actions, the function is called with the Agent parameter updated
with the receiving agent. The compiler produces an error if an action is at-
tempted by an agent who is not allowed to act. When a message is sent or when
the subprotocol has no more actions, the rule is printed. This functionality of
compileSubprotocol is formalised in the translation rules below where x repre-
sents a variable, s represents a set expression, is represents an in-set expression,
f represents a fact expression, T represents type declarations, S represents set
declarations, A represents the agent performing the action, and L, C and R
represent Left, Center and Right respectively.

insert
(T,S,F )JA:insert(x,s)ρK

α
(L,C,R) = (T,S,F )JρK

α
(L,C,R′)

where R′ = R ∪ {Insert x s} and α = A

create
(T,S,F )JA:create(x)ρK

α
(L,C,R) = (T,S,F )JρK

α
(L,C′,R)

where C ′ = C ∪ {Create x} and α = A.

select
(T,S,F )JA:select x from sρKα(L,C,R) = (T,S,F )JρK

α
(L′,C,R′)

where L′ = L ∪ {Select x s}, R′ = R ∪ {Select x s} and α = A.

delete
(T,S,F )JA:delete(x,s)ρK

α
(L,C,R) = (T,S,F )JρK

α
(L,C,R′)

where R′ = R \ {Select x s}. Select x s must be in L and α = A.

if not in

(T,S,F )JA:if x notin s(t1, ..., ti)ρKα(L,C,R) = (T,S,F )JρK
α
(L′,C,R)

where L′ = L ∪ {Ifnotin x is} and α = A.

fact
(T,S,F )JA:fρK

α
(L,C,R) = (T,S,F )JρK

α
(L,C,R′)

where R′ = R∪{Fact f}. f must have been declared in F and f must have
the same arity as it’s definition in F and α = A.

if fact
(T,S,F )JA:if fρKα(L,C,R) = (T,S,F )JρK

α
(L′,C,R)

where L′ = L∪{Fact f}. f must have been declared in F and f must have
the same arity as it’s definition in F and α = A.
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if in

(T,S,F )JA:if x in isρKα(L,C,R) = (T,S,F )JρK
α
(L′,C,R′)

where L′ = L ∪ {Select x s}, R′ = R ∪ {Select x s}, α = A and s =
isetose(is, S) where istose is a function that for an in-set expression looks
up the corresponding set expression in S. Note that this produces the
same AIF code as the select statement. It’s in the language to make it
more intuitive (more information about this is in 3.4.1).

sync

(T,S,F )JA->B:syncρK
α
(L,C,R) = (T,S,F )JρK

α′

(L,C,R)

where α = A and α′ = B. Note that this action only switches agent’s turns
and does not produce AIF code. It’s in the language to make the code
more meaningful by representing atomic actions within a subprotocol (as
we saw in the key server example).

transmission

(T,S,F )J_->B:MρKα(L,C,R) = (T,S,F )JρK
α′

(L′,C,R)

where L′ = L ∪ {Transmission "_" B}, α = A and α′ = B.

transmission

(T,S,F )JA->B:MρKα(L,C,R) =

{enums(L,R, T )L=[C]=>R ∪ iknows(M)} ∪ (T,S,F )J_->B:M;ρK
α′

(ε,ε,ε)

where ρ 6= ε, α = A and α′ = B and enums is a function that generates
lambda expressions in front of rules if needed. Every time an AIF expres-
sion is used that has variables in it we need to tell AIF to enumerate over
the variables. AIF uses lambda expressions in front of the left-hand side
of the rule to do this. enum takes the sets of actions that can contribute
to the lambda expression (L and R) and the type declarations (T ), finds
variable sets within them and generates a lambda expression.

sendlast

(T,S,F )JA->B:MKα(L,C,R) = {enums(L,R, T )L=[C]=>R ∪ iknows(M)}

where ρ = ε, α = A and enums generates lambda expressions for the rule.

empty

(T,S,F )JεK
α
(L,C,R) = {enums(L,R, T )L=[C]=>R}

Where enums generates lambda expressions for the rule.
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The compileAttack function is very similar to compileSubprotocol and works
the same way. The function is called for every attack in the Attacks section
where every attack produces one AIF rule and every AIF rule in the output cor-
responds to one AnB-API Attack. The function has the type compileAttack ::
Attack -> Left -> TypeDecls -> SetDecls -> FactDecls -> String where
Attack is the list of actions. AIF rules that describe attacks don’t allow fresh
variables to be created and only have conditions on the left-hand side of the
rule, with the right-hand side containing only the fact attack, so Center and
Right are omitted. We also don’t maintain Agent like before since the referee
is the only agent that we model in the Attack section. Below is a description of
how compileAttack works.

referee receive
(T,S,F )J->referee:M;ρK(L) = (T,S,F )JρK(L′)

Where L′ = L ∪ {ToRefAction msg}

referee if in

(T,S,F )Jreferee:if x in is;ρK(L) = (T,S,F )JρK(L′)

Where L′ = L ∪ {Select x s}. As with Ifin before the in-set expression
is is converted to a set expression s.

referee if notin

(T,S,F )Jreferee:if x notin is;ρK(L) = (T,S,F )JρK(L′)

Where L′ = L ∪ {RefIfNotin x is}

referee if fact
(T,S,F )Jreferee:if f;ρK(L) = (T,S,F )JρK(L′)

Where L′ = L ∪ {RefIfFact f}

referee empty
(T,S,F )JεK(L) = {enums(L,R, T )L=>attack;}

Where enums generates lambda expressions for the rule (same as in the
rules for compileSubprotocol).

As described above, when the list of actions is empty or when a message is sent,
an AIF rule is printed. To print an AIF rule, we translate each action in L
and R to an AIF expression and concatenate them with a "." in between each
(AIF syntax for AND). The actions from L make up the left-hand side of a rule
and the actions from R make up the right-hand side of the rule. Translating
AnB-API actions to AIF expressions is straight-forward for most actions and
below is a description of how each action is translated:
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• Insert x s translates to x in s, e.g. PK in ring(a).

• Delete x s translates to x in s where the rule’s right-hand side does not
contain x in s (see translation rules above), e.g. PK in ring(a).

• Select x s translates to x in s, e.g. PK in ring(a).

• Create x translates to x, e.g. =[PK]=>.

• Ifnotin x is translates to forall [t′i|ti =′ _′].x notin is(t1, ..., tn) and

t′i =

{
ti if ti 6=′ _′

sparam(s, i) if ti =′ _′

where sparam(s, i) returns the name of the i-th parameter of set s, e.g.
forall U,Sts. NPK notin db(S,U,Sts).

• Ifin x is is never printed since it yields two Select actions which are printed
instead.

• Fact f translates to f, e.g. cnfCh(A,(NA,NB)).

• Iffact f translates to f, e.g. if cnfCh(A,(NA,NB)).

• Transmission ("_",receiver) msg translates to iknows(msg).

• Transmission (sender,"_") msg translates to iknows(msg).

• Transmission (sender,receiver) msg translates to iknows(msg).

• Sync channel yields nothing when printed.

• ToRefAction msg translates to iknows(msg)

• RefSelect x s is the same as select from above. It translates to x in
s, e.g. PK in ring(a).

• RefIfnotin x is translates to forall [t′i|ti =′ _′].x notin is(t1, ..., tn)
and

t′i =

{
ti if ti 6=′ _′

sparam(s, i) if ti =′ _′

where sparam(s, i) returns the name of the i-th parameter of set s. This is
the same as Ifnotin above, e.g. forall U,Sts. NPK notin db(S,U,Sts).

• RefIfin x is translates to if x in is, e.g. if PK in ring(a)

• RefIffact f translates to if f and is the same as Iffact above, e.g. if
cnfCh(A,(NA,NB))





Chapter 4

Working with AnB-API

4.1 Modelling device behaviour

As we saw in the keyserver example (appendix A) we can use AnB-API to model
multiple agents communicating but one of the main features of the language is
the ability to model protocols that have a single user communicating with a
pre-programmed device such as a HSM. PKCS#11 is a standard by RSA Labo-
ratories that defines an API for security devices that store cryptographic tokens.
The API is called Cryptoki[5] and specifies various operations on those tokens
like encryption, decryption, random number generation, signing and more. Var-
ious security vulnerabilities have been identified in the standard[3] and in order
to demonstrate AnB-API code working against an API we will take a look at a
security hole in PKCS#11 called a key separation attack. The attack exploits
the fact that keys in a token can be assigned multiple roles. It describes a
sequence of valid Cryptoki operations that cause a sensitive key which is not
supposed to leave the token unencrypted to be revealed off-token to an attacker.
In PKCS#11 keys have attributes that determine their role and which opera-
tions they can be used for. These rules include extract (key can be wrapped
and extracted off the token), wrap (key can be used to wrap keys (wrapping
keys means encrypting them for extraction)), decrypt (key can be used for de-
cryption) and sensitive (key may not be revealed unencrypted off-token).
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Protocol: key_separation

Types:
Agents : {token, i}
Dishonest: {i}
HashConstants: {h1}
Token : {token} #We use the token constant in the protocol and
K1,K2 : value #the Token variable in the set declarations
M : untyped

Sets:
extract(Token), wrap(Token), decrypt(Token), sensitive(Token)

Here we define the token, two keys and an arbitrary message. In order to
represent key attributes we define sets for each attribute and we state that if a
key is a member of a set then they possess the corresponding attribute.

In our example we include two operations, createExtract and createWrap,
where keys can be generated on token and the user gets back a handle to the
generated key. These represent API calls that the intruder can execute in any
order:

Subprotocols:
#createExtract
token: create(K1)
token: insert(K1, sensitive(token))
token: insert(K1, extract(token))
token->_: h(h1,K1)
---
#createWrap
token: create(K2)
token: insert(K2, wrap(token))
token: insert(K2, decrypt(token))
token->_: h(h1,K2)
---

createExtract creates a key that has the attributes extract and sensitive and
createWrap creates a key that has the attributes wrap and decrypt. Despite
the counter-intuitive nature of these actions, both operations reflect a legitimate
sequence of Cryptoki actions. In order to represent handles we use AnB-API’s
hash functionality since its behaviour is essentially the same as a handle’s in
this case.
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Note that in order to represent the token’s functionality and communications
with it’s user we use the Underscore Notation. This is useful when modelling
communications with devices. By using _->token: M and token->_: M we
model a message M being sent to the token (from whatever user communicating
with it) and from the token (back to whatever user communicating with it)
respectively. Here we are simply expressing how the token behaves when talked
to.

In order to perform the attack we implement two on-token operations that
represent functionality specified in Cryptoki. These are wrap and decrypt:

#wrap
_->token: h(h1,K1),h(h1,K2)
token: if K1 in extract(token)
token: if K2 in wrap(token)
token->_: {|K1|}K2
---
#decrypt
_->token: h(h1,K2),{|M|}K2
token: if K2 in decrypt(token)
token->_: M

The wrap operation takes a handle to a key K2 that can be used for wrapping,
and a handle to a key K1 that can be extracted and returns K1 wrapped with
K2. The decrypt operation takes a handle to a key K2 that can be used for
decryption and an encrypted message and returns the message decrypted with
K2. Finally we declare that if the referee can somehow receive an unencrypted
key that has the attribute sensitive an attack takes place.

Attacks:
->referee: K1
referee: if K1 in sensitive(token)

In order to perform the attack the intruder creates a keyK1 that is both sensitive
and extractable. The intruder then creates another key K2 that can be used
to decrypt and can wrap other keys. The intruder now simply calls the wrap
operation and extracts our sensitive (and wrappable) keyK1 encrypted withK2.
The intruder now has {|K1|}K2 and can simply feed that along with K2 into the
decrypt operation which decrypts the message and returns to the intruder our
sensitive key K1. The full AnB-API specification for the key separation attack
can be found in appendix B.
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The key separation specification described here is a good example of a protocol
that can not be modelled in AnB. Instead of describing sequential communi-
cations between multiple users, we simply model how a token responds when
different operations are called and those operations can be called in any order.
Moreover, the token maintains a database of keys with different attributes that
can change and persist throughout the entire run of the protocol.

4.2 Compiler

The AnB-API compiler is written in Haskell. The lexical analyser generator Alex
was used to generate a lexical analyser for the language and the parser generator
Happy was used to generate a parser. Both tools along with the Glasgow Haskell
Compiler (GHC) are included in the Haskell platform which is freely available
at https://www.haskell.org/. The AnB-API compiler’s source code and an
executable for Mac OS X can be found at https://github.com/jbb10/AnB-API
along with the two examples in appendix A and B. The source code resides in
the /src folder along with a Makefile for easy compilation and the examples
are in the /examples folder. To compile the compiler simply issue the make
command from the /src folder. For the compilation to succeed, ghc, alex, and
happy need to be in the user’s PATH variable. The compiler was written and
compiled using version 7.8.3 of GHC.

The compiler yields the anbapi program which is the compiler. To use it simply
type ./anbapi keyserver.anbapi to compile a file keyserver.anbapi. The
output is a file containing AIF code with the same file name ending in .aif
(e.g. keyserver.aif). The .aif file can be compiled into Horn clauses with
the fpaslan tool and the output from that can then be input into the SPASS
tool for verification. A script for Mac OS X is included in the /tools folder
called checkAIFprotocol to make this process more convenient. It takes a .aif
file as input (e.g. ./checkAIFprotocol keyserver.aif) and prints the output
from the SPASS verification tool. The script assumes that the fpaslan-mac
and SPASS tools are in the user’s PATH variable.

https://www.haskell.org/
https://github.com/jbb10/AnB-API


Chapter 5

Conclusion

We set out to extend AnB with API support and persistent storage. To achieve
this we added the notion of operations performed locally by agents along with
new syntax and semantics to support it. The AnB syntax was used as a basis for
the new syntax and the message syntax in AnB is retained in its original form.
In order to interact with preprogrammed devices we introduced the Underscore
notation which allows device behaviour to be modelled directly. Utilising AIF’s
set features we also added support for simple data stores to be modelled allowing
databases and long-term storage to be expressed in protocol specifications. We
provide a formal description of how the semantics in AnB-API are translated
into AIF. In [7] we’re also provided with with a formal definition of AIF and
how it is translated into Horn Clauses giving us a solid and clear description of
what AnB-API specifications do and what they produce.

5.1 Future work

In order to keep focus on the language and it’s functionality some common com-
piler features were omitted. The compiler catches syntactic errors and many
semantic errors as well but producing line numbers along with the errors was
not implemented. Variable names used in the attacker model are also reserved
keywords (intruderRuleM1 and intruderRuleM2) in the implementation and
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as part of future work could simply be generated at runtime. Support for expo-
nentiation is useful for modelling e.g. Diffie-Hellman key exchange and support
for that was dropped in order to simplify development. This is something that
should be introduced to further extend the language’s usability.
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Appendix A
Key server specification in

AnB-API

The following page contains an example of a protocol written in AnB-API. It
describes a simple key server protocol in which a server stores public keys for
users. A user may submit a key to the key server which will store it for the
user. If the user submits a new key (signed by a currently valid key), the server
will check if the new key is in it’s database of already existing valid or revoked
keys (for any user) and if not, it will store the new key and mark the old one
as revoked. Finally we define an attack state in which the intruder intercepts
a private key which is stored in the server’s database for an honest user and
a valid key. See the comments in the code and section 3.3 for more detailed
information. When this code is compiled with the AnB-API compiler and the
fpaslan tool, and verified with the SPASS tool the following result is reached
(SPASS output is trimmed for clarity). We see that SPASS produces "SPASS
beiseite: Completion found." meaning that the protocol is secure.

...
SPASS V 3.5
SPASS beiseite: Completion found.
Problem: keyserver.aif.spass
...
--------------------------SPASS-STOP------------------------------
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1 Protocol: Keyserver
2

3 Types:
4 Agents : {a,b,s,i} #Mandatory; contains all agents in the protocol
5 Dishonest : {i} #Mandatory; contains dishonest agents in the protocol
6 H : {a,b} #These are our honest users
7 S : {s} #This is our server
8 U : {a,b,i} #These are our users
9 Sts : {valid,revoked} #These are statuses for our keys

10 PK,NPK : value #Keys used during protocol run
11

12 Sets:
13 ring(U), db(S,U,Sts) #Our sets; user keyring and server database
14

15 Facts: #This protocol does not make use of facts. We
16 #empty #leave an optional comment there for clarity.
17

18 Subprotocols:
19 #Honest user creates a new public key
20 H: create(PK)
21 H: insert(PK,ring(H))
22 H->S: sync
23 S: insert(PK,db(S,H,valid))
24 S->H: PK
25 ---
26 #Dishonest user creates a new public key
27 i: create(PK)
28 i: insert(PK,ring(i))
29 i->S: sync
30 S: insert(PK,db(S,i,valid))
31 S->i: PK, inv(PK) #intruder shares their new private key with dishonest users
32 ---
33 #A user sends a new key to be registered with the server and
34 #the old one is revoked
35 U: select PK from ring(U) #We select PK because we need to use it
36 U: create(NPK) #for signing when we send the new key
37 U: insert(NPK,ring(U))
38 U->S: {U,NPK}inv(PK)
39 S: if NPK notin db(S,_,_) #The server checks if the new key is in its
40 S: insert(NPK,db(S,U,valid)) #database of all users and all states before
41 S: select PK from db(S,U,valid)#inserting it as a valid key and revoking
42 S: delete(PK,db(S,U,valid)) #the old one
43 S: insert(PK,db(S,U,revoked))
44

45 Attacks:
46 ->referee: inv(PK) #The referee receives a private key
47 referee: if PK in db(S,H,valid)



Appendix B

Key separation in AnB-API

The following page contains an example of a protocol written in AnB-API. It is
meant to give an example of communications with a HSM (hardware security
module) and demonstrates a key separation attack. In the specification we have
a token which the user can interact with using API calls. The token is used
to store keys, decrypt and encrypt messages. The intruder is able to extract a
sensitive key from the token using a combination of the wrap and the decrypt
operations on keys that have multiple roles (more information in section 4.1).
When this code is compiled with the AnB-API compiler and the fpaslan tool,
and verified with the SPASS tool the following result is reached (SPASS output is
trimmed for clarity). We see that SPASS produces "SPASS beiseite: Proof
found." meaning that an attack is present in the protocol.

...
SPASS V 3.5
SPASS beiseite: Proof found.
Problem: keyseparation.aif.spass
...
--------------------------SPASS-STOP------------------------------
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1 Protocol: key_separation
2

3 Types:
4 Agents : {token, i}
5 Dishonest: {i}
6 HashConstants: {h1}
7 Token : {token} #We use the token constant in the protocol and
8 K1,K2 : value #the Token variable in the set declarations
9 M : untyped

10

11 Sets:
12 extract(Token), wrap(Token), decrypt(Token), sensitive(Token)
13

14 Facts:
15 #empty
16

17 Subprotocols:
18 #createExtract
19 token: create(K1)
20 token: insert(K1, sensitive(token))
21 token: insert(K1, extract(token))
22 token->_: h(h1,K1)
23 ---
24 #createWrap
25 token: create(K2)
26 token: insert(K2, wrap(token))
27 token: insert(K2, decrypt(token))
28 token->_: h(h1,K2)
29 ---
30 #wrap
31 _->token: h(h1,K1),h(h1,K2)
32 token: if K1 in extract(token)
33 token: if K2 in wrap(token)
34 token->_: {|K1|}K2
35 ---
36 #decrypt
37 _->token: h(h1,K2),{|M|}K2
38 token: if K2 in decrypt(token)
39 token->_: M
40

41 Attacks:
42 ->referee: K1
43 referee: if K1 in sensitive(token)
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