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Abstract

This thesis deals with the application of nonlinear state estimation techniques
for the localization of an Autonomous Guided Vehicle, operating in an orchard
environment. Because GPS availability is not guaranteed, the localization relies
solely on odometry and measurements taken by a laser scanner.

Suitable models are derived to generate the vehicle’s motion, the sensor mea-
surements and the environment; they are then used for the construction of a
simulation platform. Subsequently, three contemporary nonlinear filters are
studied as possible solutions, the Unscented Kalman Filter, the Particle Filter
and the Unscented Particle Filter.

These filters are implemented in the simulation platform and their ability to
localize the vehicle is assessed, with respect to estimation accuracy and com-
putational effort, in two scenarios; one in which the environment is modeled
correctly and another where there exist discrepancies between the environment
and the model.
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Chapter 1

Introduction

1.1 Background

In 2012, the Danish Agriculture & Food Council released their facts and figures
booklet where they reported 26560 square kilometers of arable land, more than
61.4% of the country’s total area. It is not surprising therefore, that the agri-
culture and food sector represents 20% of the total Danish commodity exports,
accounting for more than 16 billion Euro. Despite this, agricultural tasks are in
general physically demanding, time-consuming and repetitive.

A significant subset of these tasks are harvesting, cattle feeding and tree spraying
activities which require the workers to be mobile and travel large distances. The
workers must also be able to navigate their environment safely, without crushing
into trees or driving off the field. They must therefore exhibit some measure
of autonomy as they go about their predetermined tasks. This calls for the
application of automation technology.

A machine which fulfils the above requirements qualifies as an Autonomous
Guided Vehicle (AGV) or mobile robot. It is essentially any vehicle which is
equipped with proprioceptive and exteroceptive sensors and is able to accurately
identify its position in an arbitrary reference frame (localize), using these sen-
sors. This feature is an irreplaceable prerequisite for autonomy, for if the vehicle
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cannot localize itself, it cannot make any decisions as to where and how to move
or what to do.

Interestingly enough, no perfect solution exists for the localization problem de-
spite the attention it has received from the robotics community. This is because
even though a vast selection of sensors are available, they are all corrupted with
statistical noise and prone to failure. A powerful method which can exploit a
time series of these noisy measurements to produce an estimate of the vehicle’s
position, is the Kalman filter [18]. This process is commonly referred to as state
estimation or filtering.

There is a caveat however which precludes the Kalman filter from being the
general solution to the localization problem; its results are valid only for linear
systems and uncertainties that are normally distributed. Since an AGV is a
physical system, any reasonable model hoping to capture its full operation will
necessarily be nonlinear. Even if this were not the case, the environment it
operates in is rife with nonlinearities. This necessiates the use of nonlinear state
estimation methods.

1.2 Problem Description

The task of this project is to investigate the state of the art nonlinear filtering
methods available and apply them for the solution of the localization problem
of an Autonomous Guided Vehicle in an orchard environment given by Figure
1.1.

The system considered, is a HAKO tractor (Figure 1.2), which is equipped
with encoders on the drive shaft and front wheels to measure the position and
orientation through odometry. The tractor also comes equipped with a gyro
to measure its heading and a Real Time Kinematic (RTK) GPS, to measure
its absolute position. However, the RTK GPS is sensitive to shadowing from
surrounding trees and bushes in the orchard which degrades the localization
[23]. For this reason, the tractor is outfitted with a SICK LMS-200 laser scanner
which can be used to measure the tree rows in the orchard. Figure 1.3 shows
two examples of how these rows look like.

The problem of localization in such an environment has been previously con-
sidered in [10]. However, the focus was in the application of filters that relied
on linearization, such as the established Extended Kalman (EKF), the newer
Unscented Kalman Filter (UKF) as well as the Second-order Divided-Difference
filter (DD2).
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Figure 1.1: The orchard environment in which the AGV will be operating [2].

Figure 1.2: The HAKO tractor [10, 22].
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Figure 1.3: Images of the tree rows in the orchard. The vegetation is in general
quite dense with large gaps occurring only when trees have been
removed [22].

Therefore, this thesis contributes to this problem through the application of
not only the UKF, but also of a class of algorithms known as Particle Filters
(PF) [6, 26] which rely on Monte Carlo methods to approximate any arbitrary
distributions regardless of nonlinearities.

The overall objectives of the project are as follows.

• To construct a simulation environment which replicates the scenario pre-
sented in [10, 22] in MATLAB.

• To study and successfully implement the Unscented Kalman and the Par-
ticle Filter for this problem.

• To investigate nonlinear filtering and identify a method with the potential
of outperforming the two previous ones.

• To assess the performance of any implemented filters through a simulation
study.

1.3 Outline of the Thesis

Chapter 2 deals with the development of the kinematic model of the HAKO
tractor and discusses the odometry related errors. The path-planning and con-
trol of the tractor follow subsequently, before dealing with the modeling of the
laser scanner.
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Chapter 3 defines the state estimation problem and presents the Bayesian es-
timator which is the optimal but infeasible solution. Thereafter, the Extended
Kalman, Unscented Kalman and Particle Filters are presented. Finally, the Un-
scented Particle Filter, a combination of the later two methods, is elaborated.

Chapter 4 considers the application of these filters to the localization problem
and their performance assessment. Two cases of the problem are considered;
one where the environment information is correct and one where there are dis-
crepancies.

Chapter 5 offers a summary of the work and a concluding discussion on the
results as well as suggestions for future problems and approaches.
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Chapter 2

System Modeling

This chapter deals with the mathematical modeling necessary to simulate the
HAKO in the orchard as well as implement the aforementioned filtering tech-
niques. The HAKO is a continuous dynamical system whose dynamics are most
accurately represented by stochastic differential equations. However, since the
objective is to implement a state estimation algorithm which will be carried
out by a digital computer, it is reasonable to consider a discrete model. The
mathematical models used in state estimation applications are generally of the
form:

xk = fk−1(xk−1, uk−1, wk−1) x ∈ Rn, k ∈ N (2.1)
yk = hk(xk, ek) y ∈ Rm (2.2)

Here, xk is the state vector and contains the variables that one might be inter-
ested in estimating. The evolution of the state through the sample time k is
governed by the nonlinear time-varying stochastic difference equation fk (also
called process function). There may also exist a deterministic variable vector
uk which typically represents control inputs or known disturbances as well as
an independently, identically distributed (i.i.d.) stochastic vector wk whose role
is to encapsulate unmodelled dynamics or represent uncertainty in general.
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Equation (2.2), referred to frequently as the measurement function, represents
the relationship between the states and the available measurements yk. The
(i.i.d.) stochastic vector ek serves to model the uncertainty due to stochastic
disturbances which affect the measurement, such as sensor noise.

2.1 Robot Kinematics

For the localization of an AGV, the states must relate to the vehicle’s absolute
position. The orchard environment considered is relatively flat and spans an
area no larger than a square kilometer, leading to the curvature of the Earth
being negligible. Therefore, it can be reasonably treated as two dimensional
plane so that the three states of interest are the position of the HAKO on the
x axis (xk) and on the y axis (yk), which are relative to some arbitrary global
reference frame, as well as the orientation of the vehicle θk shown in Figure 2.1.

xk =

xkyk
θk

 (2.3)

Figure 2.1: A global reference frame and a mobile robot local reference
frame[27].
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The state vector is given in (2.3). The orientation is defined as the angle be-
tween the global and the local x axes. By convention, the local x axis is pointing
towards the direction the robot is facing so that it is colinear with its forward ve-
locity vector. With this representation, it is possible to relate the local reference
frame to the global one using the rotation matrix (2.4):

R(θk) =

cos(θk) −sin(θk) 0
sin(θk) cos(θk) 0

0 0 1

 (2.4)

which follows directly if one considers the projection of the global coordinates
to the local ones. Moreover, if the origins of the two frames have a distance d
then one can instead use the more general homogeneous transformation matrix
[29]:

[
xWk
1

]
=

[
R(θk) d3×1

01×3 1

] [
xRk
1

]
. (2.5)

And its inverse:

[
xRk
1

]
=

[
R−1(θk) −R−1(θk)d3×1

01×3 1

] [
xWk
1

]
(2.6)

so as to readily transform the state vector between the two reference frames.
Note that in (2.6) the fact that R−1 = RT can be exploited to simplify the
computation of the inverse transformation.

With the definition of the global and local coordinate systems and the robot
state vector, the next step is to consider the steering and driving method of the
vehicle. The HAKO tractor has two fixed standard wheels on its rear axle. They
are connected through a gearbox to the engine and thus are used for driving.
The front axle of the vehicle follows the Ackermann steering principle depicted
in Figure 2.2.

The characteristic property of this steering method is that the two front wheels
rotate by different angles when the vehicle follows a curved path, so that the
virtual lines extending from each wheel intersect at a certain point P which is
defined as the robot’s instantaneous center of rotation (ICR) [27]. As shown in
the figure, it is possible to reduce the model further to that of a tricycle while
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Figure 2.2: Geometry of the Ackermann steering principle.[3]

preserving the same maneuverability. With this tricycle model, the control input
vector becomes:

uk =

[
vk

θSA,k

]
(2.7)

with vk being the distance traveled in one sample, a quantity which can be
inferred directly from the encoder at the gearbox by measuring revolutions per
minute. The steering angle θSA can be related to the angle of either steered
wheel using (2.8):

θSA = arccot

(
d

2l
+ cot(θi)

)
= arccot

(
cot(θo)−

d

2l

)
(2.8)

with θi and θo being the angles of the inner and outer wheels with respect to
the ICR, d being the distance between the rear wheels and l being the distance
between the front and rear axles.

The kinematic model for the HAKO can then be given by (2.9). The new state
vector at sample k is equal to the previous state plus the contribution from the
control input. The forward velocity affects the position in both the x and the y
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axis, based on the orientation of the vehicle.

xk = xk−1 +


vk−1cos

(
θk−1 + ∆θk−1

2

)
vk−1sin

(
θk−1 + ∆θk−1

2

)
∆θk−1

 (2.9)

The evolution of the orientation is denoted by ∆θ and follows from considering
the geometry in Figure 2.3. Here it is shown that the tricycle takes a turn and
forms an arc L in one sample time. The equation for the arc of a circle with
radius q is known to be:

Figure 2.3: Trycicle moving on an arc L [22].

L = q∆θ (2.10)

It also follows from the definition of the tangent for an orthogonal triangle that:

tan(θSA) =
l

q
(2.11)

By substitution of (2.10) into (2.11) and carrying out simple algebra, one arrives
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at the result:

∆θ =
Ltan(θSA)

l
(2.12)

Finally, if L is sufficiently small, it is approximated by the distance traveled at
each sample k; the forward velocity vk, leading to:

∆θk =
vktan(θSA,k)

l
(2.13)

This completes the formulation of the kinematic model. This model is suitable
primarily when the vehicle operates at low speeds due to the fact that velocities
and applied forces (i.e. the dynamics) are not considered. Disturbances that
could be attributed to terrain anomalies such as bumps or inclines and the
viscous friction at the contacts between the wheels and the ground are also
not explicitly modeled. Lastly, note that the chosen kinematic model makes
the Markov assumption; only the previous state and the inputs are needed to
determine the current state vector. This is an assumption that does not hold in
practice as there may be an undetected obstacle or change in the vehicle which
leads to a different behavior.

A justification for these omissions is that the model approximates the behavior
of the vehicle to a reasonable degree while being simple and easy to implement
in state estimation algorithms. Disturbances and unmodeled effects can then
be included in a probabilistic manner by augmenting (2.9) with a stochastic
component; the random variable wk as mentioned in (2.1).

It is intuitively sound to include this vector additively to the input vector so
that:

ûk =

[
vk

θSA,k

]
+ wk (2.14)

This new ûk represents the measurement of the forward velocity and steering an-
gle from the relevant encoders, corrupted by sensor noise and the aforementioned
possible disturbances. The vector wk is assumed to be normally distributed with
zero mean and covariance R1 (wk ∼ N(0, R1)). There are multiple sources of
uncertainty, hence the central limit theorem makes the normal distribution a
good candidate as long as it contains the support of the true distribution of
the control signals (i.e. the R1 matrix is sufficiently large). In fact, as will be



2.2 Path Planning and Control 13

further discussed in later chapters, the R1 matrix can be loosely regarded as a
tuning parameter which reflects the engineer’s confidence in the model in the
context of state estimation.

For the purposes of this model, R1 will be the diagonal, time varying matrix:

R1,k =

[
σ2
v,k 0

0 σ2
θ,SA,k

]
(2.15)

which assumes that there is no correlation between the deviation of the forward
velocity and the steering angle. If such a correlation is known from experimental
data or modeling, it can be included in the off-diagonal terms. The term σv,k
is the standard deviation of the forward velocity and is given by [20]:

σ2
v,k = k2

v|vk| (2.16)

where kv is a constant representing the standard deviation occuring from one
meter of travel. Equation (2.16) states that the more the vehicle travels each
sample, the larger the variance grows, which is intuitive. In a similar manner,
σθ,SA,k follows from (2.13):

σ2
θ,SA,k =

(
tan(kA + kSA|θSA,k|)

l

)2

|vk| (2.17)

with kA being corresponding to the standard deviation of the angle from one
meter of travel and kSA is a constant affecting the contribution of turning to
the error.

2.2 Path Planning and Control

Having acquired the model of the tractor, it is now desired to have it navigate
in the orchard. To do so, one needs to specify the control inputs so that the
tractor follows a specified path or trajectory. A trajectory q is a mapping from
time to the x-y plane which satisfies any arbitrary requirement q(t) = f(xt, yt)
(i.e. one can impose that the tractor is located at a certain point at a certain
time). A naive method of specifying a trajectory would be as a combination
of predetermined line and circular arc segments. However, a more general and
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user-friendly method involves specifying a set of via points which the robot
should pass through. The task then simplifies to computing a set of high order
polynomial functions of time which smoothly connect these points.

Typically these polynomials are chosen so that they are quintic (fifth-order)[4].
This is due to the fact that lower order polynomials do not allow the specification
of constraints on acceleration which may be required as part of the mission or
to prevent discontinuities in the acceleration. This may be important because
an impulsive jerk (defined as the derivatives of the acceleration) can excite the
vibration modes of the vehicle [29].

The equation for the quintic polynomial that describes the position of the vehicle
on one axis is given in (2.18).

q(t) = c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5 (2.18)

with ci being the defining constants of the polynomial. Then the velocity and
acceleration follow from differentiation:

q̇(t) = c1 + 2c2t+ 3c3t
2 + 4c4t

3 + 5c5t
4 (2.19)

q̈(t) = 2c2 + 6c3t+ 12c4t
2 + 20c5t

3 (2.20)

If one were to differentiate (2.20) once more, one would acquire the jerk. The
resulting equation will be of a second order (provided c5 6= 0) and thus parabolic
with no discontinuities. Equations (2.18-2.20) collectively describe the position,
velocity and acceleration at one point. Therefore there will be six equations
for the two points which are to be connected, and together they form a linear
system (2.21) which is exactly determined.



1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f




c0
c1
c2
c3
c4
c5

 =


q(t0)
q̇(t0)
q̈(t0)
q(tf )
q̇(tf )
q̈(tf )

 (2.21)

Here, t0 and tf denote the times when the polynomial must satisfy the initial
and end points respectively. Then it is a matter of solving for the constants
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ci which is a straightforward and computationally efficient process in software
packages such as MATLAB. One linear system has to be solved for each degree of
freedom on which a trajectory is required. This approach can then be extended
to handle multiple via points in a sequence by ensuring that the end conditions
(q(tf ), q̇(tf ) and q̈(tf )) of a move are the initial conditions (q(t0), q̇(t0) and
q̈(t0)) of the subsequent one. This leads to one trajectory which satisfies all the
via points as was defined in the beginning of the section.

Having generated the path, the task is then to have the vehicle follow it. To this
end, a simple reference tracking feedback controller will be designed based on
the derived kinematic model (2.9). The objective of this controller is to bound
the distance between the vehicle and a goal (carrot point) which travels on the
path at a constant speed (Figure 2.4). Such a controller is commonly referred
to as Pure Pursuit [4]

Figure 2.4: Vehicle in pursuit of the carrot point [21].

The controller is given below from the equations (2.22-2.24):

ev(k) =
√

(xcp(k)− xk)2 + (ycp(k)− yk)2 − d (2.22)

vk = Kpev(k) +Ki

k∑
n=t0

ev(n)Ts (2.23)

θSA = KθSA
(arctan(

ycp(k)− yk
xcp(k)− xk

)− θk) (2.24)

Firstly, the error is computed as the Euclidean distance between the carrot point
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and the vehicle’s position, minus a chosen distance d which the vehicle should
maintain as it pursuits the goal. Secondly, a discrete PI (Proportional-Integral)
control action is assigned to the forward velocity using this error withKp andKi

being tuning parameters for the controller (note that Ts is the sampling time).
The integral term is required if one is interested in eliminating steady state error.
Otherwise, setting both d andKi to zero leads to a simpler controller (less tuning
parameters) and still satisfies the objective of following the carrot point at a fixed
distance. Finally, in (2.24) the steering angle is determined proportionally to
the deviation between the vehicle’s orientation and the orientation required for
it to face towards the carrot point.
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Figure 2.5: Generated path and motion of the vehicle. The robot starts at the
small circle [6,50] and drives towards the cross [22,50].

With these tools, the robot can now be simulated as it drives in a replica of the
orchard environment. The resulting motion is shown in Figure 2.5. The solid
black lines represent the trees/bushes in the orchard which will be discussed in
the next section. The path is generated using the MATLAB function mstraj
from the Robotics Toolbox[4], using six via points constrained so that the ve-
locity is constant at 2 m/s. Then the controller parameters are tuned to the
values d = 0, Kp = 0.2, Ki = 0 and KθSA

= 0.8, leading to the over-damped
motion shown in the figure. The reasoning behind this path assignment and
controller tuning was to use the least number of via points while generating a
realistic driving motion for a four wheeled vehicle. It is important to note that,
the true states are being used for the feedback so as to decouple the controller
performance from the state estimation algorithm.
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Figure 2.6: Time series plots of the control inputs and their estimates from
the encoders.

The control inputs are given in Figure 2.6. It can be seen that the vehicle indeed
drives at a constant speed of 2 m/s excluding the two turning sections where
the speed is reduced to allow the vehicle to perform the necessary maneuver.
These inputs are reasonable in the absence of knowledge of the limitations on
the HAKO’s maximum velocity and steering angle rates.

Along with the true control inputs, time series plots of their measurements from
the encoders are also presented. These correspond to the input vector in (2.14
and it is these data which will be used in the state estimation algorithms. The
standard deviation parameters for the process noise are chosen to be kv = 0.1,
kA = 0.05 and kSA = 0.1. One can make a direct estimate of the vehicle’s posi-
tion history using these control inputs, a process referred to as dead-reckoning.
This estimate is plotted against the actual motion in Figure 2.7.

As can be seen in the figure, the estimation degrades rapidly due to the error
accumulation. This result is inevitable; no matter how small the process noise
is at each sample, as time tends to infinity the estimate will drift from the true
position. In this case, the process noise was tuned to be larger than in [22] and
[10], so as to meaningfully stress the state-estimation algorithms considered.
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Figure 2.7: Robot motion vs estimate based on the odometry.

2.3 Laser Scanner and Orchard

In the previous section, it was shown that dead-reckoning leads to large errors
over time. However, each individual measurement is not so noisy as to give no
meaningful information regarding the vehicle’s pose. This can be argued from
the fact that, in Figure 2.7, the first few state estimates were very close to the
true ones. Thus, if these estimates could be corrected using information from a
different source, the estimation quality would improve. For the HAKO tractor,
such a source would be the distance measurements of the tree row positions
given by the laser scanner.

In order for the vehicle to make use of this information, it needs to have a
representation of its environment so as to be able to relate the measurements to
its position relative to the global reference frame. This representation is referred
to as a map [31] and there exist two approaches to creating one. The first is
to partition the space into sufficiently small blocks so that they form a grid.
Each block is associated with an occupancy scalar variable which is equal to
one if the space is occupied and zero otherwise. This is called a grid map. The
second approach, is to identify a set of features or landmarks (typically points
or geometric primitives such as lines and circles) and record their position with
respect to a reference frame. Such a map is denoted as a feature map.

Grid maps are ideal for general purpose applications because no explicit knowl-
edge of the features in the environment is needed. Moreover, they fit well in
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a stochastic framework by allowing the occupancy variables to take values be-
tween zero and one, corresponding to the degree of belief in the space being
occupied. However, they are only useful if the grid resolution is sufficiently
small and this may impose constraints in available memory and computational
power. Feature maps on the other hand are best utilized when the environ-
ment can be adequately modeled by a finite number of geometric primitives or
uniquely identifiable landmarks. It is far easier for a human user to produce
such a map and far less computational resources are needed to manipulate and
store the feature entries.

Taking into account the above, the feature map approach was chosen since the
orchard environment consists of dense tree rows in parallel, which can be mapped
as straight lines. The particular map considered in the simulations is best seen
in Figure 2.5. Each black line represents a tree row and there are six in total
along with a seventh perpendicular row. The tree rows have a length of 80 m
and are spaced by 4 m each. The map then, is a table which includes the start
and end points of each line.

Figure 2.8: Laser Scanner functionality in MATLAB [10].

Having defined the map used for this environment, the formulation of a suit-
able model for the laser scanner is then considered. Figure 2.8 illustrates the
scanner’s functionality. It is a device mounted on the front of the vehicle which
emits a cone of laser light pulses and receives them when they are reflected from
the nearest surface. The time of flight of each ray is measured to determine
the distance of that object from the scanner. If no object is detected then the
maximal effective distance of the laser scanner is returned.
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With this information, a single ray can be represented in polar coordinates as:

yik =

[
ri
φi

]
(2.25)

and every ray can be stacked to form the measurement vector:

yk =
[
r1 φ1 r2 φ2 . . . rn φn

]T (2.26)

where ri and φi correspond to the returned distance and the angle (measured
from the local x axis) of the ith ray. The number of rays can be determined
from knowledge of the field of view (size of the cone) and of the resolution of
the scanner. For the SICK LMS-200, these are 180 degrees and 0.5 degrees
respectively, leading to 361 rays and thus 722 elements for the vector yk.

Figure 2.9: Real laser scan measurements from an orchard mission. The green
lines represent the map and the black dots represent measured
points by the scanner [2].

For visualization purposes, the measurements can be converted from polar to
cartesian coordinates and then rotated, by use of (2.5), to the global reference
frame. Figure 2.9 shows such a representation of real measurement data, taken
during operation in the orchard by [2]. As can be seen, the data points do not lie
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exactly on where the map lines have been assigned but are concentrated around
them. This is due to the tree foilage which form non-smooth, non-symmetric
surfaces from which the laser rays are reflected.

Fortunately, such a phenomenon can be modeled in a stochastic framework.
Each ray can be augmented with a two dimensional, normally distributed stochas-
tic vector eik ∼ N(0, Ri2). The same line of reasoning as that used for determining
the distribution of the process noise vector wk is applied.

yik =

[
ri
φi

]
+ eik (2.27)

The covariance matrix R2 is usually chosen to be diagonal if one has no knowl-
edge of the correlation between the ray angle and the returned distance. This
matrix is similar to R1 in the sense that it is effectively a tuning parameter that
reflects the engineer’s confidence in the measurement. Typically it is identified
from real life data. An alternative formulation comes from first converting the
rays to the global, cartesian coordinates before adding the vector. In this case
R2 acquires a physical meaning; its diagonal elements are directly related to the
area spanned by the tree foilage.
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Figure 2.10: Simulation of the HAKO tractor and associated laser scanner
measurements.

A simulation of the vehicle driving in the orchard is repeated, this time includ-
ing the laser scanner function. This function takes as arguments the vehicle’s
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current position and the map. Since the map is a collection of start and end
points, these are transformed into the robot’s local reference frame using (2.6).
Thereafter, the line parameters corresponding to each pair of start and end
points are computed leading to the equation for the ith line:

Aix+Biy + Ci = 0 (2.28)

which can be rewritten in terms of the start and end points as:

(yend − ystart)x− (xend − xstart)y + xendystart − yendxstart√
(yend − ystart)2 + (xend − xstart)2

= 0. (2.29)

with the denominator of serving as a normalization of the parameters by the
distance of the two defining points. Such a normalization is very useful because
(2.29) can then be used directly to compute distances between the robot and
each line. Since the field of view and resolution of the laser scanner are known,
the angles φi of each ray can be determined by starting from one end of the
field of view and incrementing by the resolution. The points that belong to a
particular ray will be constrained as:

xray = cos(φi) (2.30)
yray = sin(φi). (2.31)

Substituting these in (2.29), yields the distance from the intersection of the ray
and the line. This process is carried out for every line on the map and the
minimum of these distances and the laser scanner effective range is returned for
that ray, leading to the vector yk.

Figure 2.10 shows snippets of the robot’s position during the mission (blue circle)
along with the measurements taken in those positions (red dots). A close up
view to one of these instances is also provided in Figure 2.11 along with a visual
of the rays (red lines). The R2 matrix was assigned arbitrarily to be:

R2 =

[
1 0
0 0.01

]
. (2.32)



2.3 Laser Scanner and Orchard 23

It can be seen that at least in terms of variance and mean, the simulated mea-
surements are distributed similarly to the real data. More accurate modeling
would require access to and evaluation of the statistical properties of the real
measurements. Regardless, a Gaussian approximation of the distribution has
been shown in [22] and [10] to yield good results in the context of state estima-
tion.
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Figure 2.11: Close view of the laser measurements and rays.
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Chapter 3

Nonlinear Filtering Methods

This chapter describes the nonlinear state-estimation problem (otherwise re-
ferred to as filtering) and presents some of the more prevalent methods for its
solution. The Kalman filter has played a central role in state estimation since its
conception in 1958, thus its direct nonlinear extension, the Extended Kalman
Filter (EKF), is discussed first in Section 3.1. Section 3.2 presents the Un-
scented Kalman Filter (UKF), a newer and arguably more accurate extension
of the Kalman filter relying on statistical linearization. Thereafter, Section 3.3
discusses the Particle Filter (PF) a method resulting from the application of
Monte Carlo approximation to filtering. The unification of the later two ideas
into one method known as Unscented Particle Filter (UPF) is the subject of
Section 3.4.

Filtering is the problem of producing a state estimate x̂k of a dynamical system,
which is frequently modeled using (2.1) and (2.2), given the observation history
set Yk = {y1, y2, . . . yk} containing all measurements from the system’s initial-
ization until the current time k. If one adopts a Bayesian framework [19],[32]
then such an estimate can be derived from the posterior density p(xk|Yk), and,
the application of Bayes’ theorem gives the relationship

p(xk|Yk) =
p(Yk|xk)p(xk)

p(Yk)
(3.1)
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which then can be manipulated using straightforward probability rules and the
Markov property into the form of the recursive Bayesian estimator.

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk)
∝ p(yk|xk)p(xk|Yk−1) (3.2)

Equation (3.2) shows that the desired posterior is proportional to the prior den-
sity p(xk|Yk−1) multiplied by the observation likelihood density p(yk|xk). The
term p(yk|Yk) is a normalizing constant and can be found with the application
of the theorem of total probability to be

p(yk|Yk) =

∫
p(yk|xk)p(xk|Yk−1)dxk (3.3)

The prior density can also be found with the application of the same theorem
as

p(xk|Yk−1) =

∫
p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (3.4)

with p(xk−1|Yk−1) being the posterior at time k−1. Since the estimator is meant
to be applied recursively, this density is presumed to have been computed in the
previous iteration and is therefore known. The term p(xk|xk−1) is denoted as
the state transition prior and follows from (3.5) with the application of (2.1)
and the process noise density p(wk):

p(xk|xk−1) =

∫
δ(xk − fk(xk−1, uk−1, wk−1))p(wk−1)dwk−1 (3.5)

Similarly, the observation likelihood density is given by use of (2.2) and the
measurement noise density p(ek):

p(yk|xk) =

∫
δ(yk − hk(xk, ek))p(ek)dek (3.6)

where δ is the Dirac-delta function. Thus all the components of the Bayesian es-
timator are either known or can be computed using the system equations. With
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the posterior available, any optimal estimate can be computed, the conditional
mean (3.7) being the most notable among them and what will be used herein.

x̂k = E[xk|Yk] =

∫
xkp(xk|Yk)dxk (3.7)

The Bayesian estimator is the optimal solution to the filtering problem. How-
ever, the integrals in (3.3 - 3.6) can become intractable for nonlinear or non-
Gaussian systems. Hence the need for the following approximate methods.

3.1 Extended Kalman Filter

In the case of a system with linear dynamics and normally distributed stochastic
variables, the Bayesian estimator reduces to the Kalman filter [18]. This filter
however, does not require specifically that the system equations be linear, rather
the requirements imposed are the following [32]:

1. It is possible to derive consistent minimum variance state estimates using
only the first and second moments of distributions of interest.

2. The estimator 3.2 can be accurately approximated by a linear function.

3. Accurate predictions of the states and the associated measurements can
be made (for example by use of (2.1) and (2.2)).

As long as these assumptions hold, the Kalman filter is still the optimal linear
estimator. The idea of the EKF then, is to linearize the system, using the Taylor
series expansion about the latest state estimate x+

k−1 (3.8), where the + super-
script denotes that the estimate was made taking into account the measurement
at time k − 1.

fk−1(xk−1, uk−1, wk−1) = fk−1(x̂+
k−1, uk−1, ŵk−1) + Fk−1(xk−1 − x̂+

k−1)

+Gk−1(wk−1 − ŵk−1) +O[(xk−1 − x̂+
k−1)2] (3.8)

If the second and higher order derivative terms O[(xk−1 − x̂+
k−1)2] of this ex-

pansion are neglected, then the procedure leads to the two constant partial
derivative matrices for the process equation:
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Fk = ∇xfk(x̂+
k , uk, ŵk)

Gk = ∇wfk(x̂+
k , uk, ŵk) (3.9)

with ∇x =
(
∂
∂x1

, . . . , ∂
∂xn

)
being the vector differential operator. Fk can be

thought of as the matrix representing the dynamics of the state deviation from
the estimate, and Gk as being the input matrix relating the process noise to the
state. Due to the first assumption, the prior p(xk|Yk−1) is then fully character-
ized by:

x̂−k = fk−1(x̂+
k−1, uk−1, ŵk−1) (3.10)

P−k = FkPkF
T
k +GkR1G

T
k (3.11)

Here the expactation of the nonlinear model has been used to propagate the
mean from time k − 1 to k directly. The superscript − denoting that this esti-
mate does not include information from the latest measurement. The covariance
matrix of the state vector Pk is also maintained and propagated using the matri-
ces in (3.9) according to the discrete Lyapunov equation. This step is referred to
as the time update of the Kalman filter and is demonstrated visually in Figure
3.1.

Figure 3.1: Visual demonstration of linearization of a non-linear function and
the subsequent propagation of the mean and covariance of the
prior density [25].
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The next step, commonly referred to as the measurement update, is to include
the latest measurement using the observation likelihood p(yk|xk). The measure-
ment function (2.2) is therefore linearized as well around x−k

hk(xk, ek) = hk(x̂−k , êk) +Hk(xk − x̂−k ) +Dk(ek − êk) +O[(xk − x̂−k )2] (3.12)

Neglecting the higher order terms again, leads to an approximation with the
two Jacobians:

Hk = ∇xhk(x−k , êk)
∣∣
xk=x̂−

k

Dk = ∇ehk(x̂−k , ek)
∣∣
ek=êk

. (3.13)

Hk is the linearized measurement matrix and Dk is the direct input matrix
relating the measurement noise ek to the observation. With these matrices, the
covariance Py of the measurement vector can be calculated again by use of the
discrete Lyapunov equation. Afterwards, one can compute the Kalman gain,
defined as the matrix Kk which minimizes the trace of the covariance P+

k of the
posterior density p(xk|Yk) [28].

Py = HkP
−
k H

T
k +DkR2D

T
k (3.14)

Kk = P−k H
T
k (Py)−1 (3.15)

Then the posterior mean x+
k is updated first by evaluating the conditional mean

of the measurement function and adding it to the prior after scaling it by the
Kalman gain. The posterior covariance matrix is also found by subtracting
the measurement covariance scaled by the Kalman gain from the prior. The
magnitude of the Kalman gain, which is inversely proportional to the magni-
tude of the measurement covariance matrix, determines the contribution of the
measurement to the posterior estimate.

x̂+
k = x̂−k +Kk(yk − hk(x̂−k , ê)) (3.16)

P+
k = P−k −KkPyK

T
k (3.17)
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This completes the state estimation for time k. The described procedure is then
applied recursively with the time update step being carried out when the index
k increments and the measurement update step whenever a new measurement
is acquired.

While the EKF is arguably the standard in nonlinear state estimation [17] it
comes with some drawbacks. The linearization presented makes the implicit
assumption that the second and higher order derivatives of the expansion are
negligible. Moreover, the linearization is only as valid as the estimate, since
that is the point where the Taylor expansion is being made. If the estimate
deviates significantly from the truth, then this will lead to significant estimation
errors, the accumulation of which may cause the estimate to diverge after a few
iterations. This is regardless of the accuracy with which the state uncertainty is
represented by the matrix Pk; the linearization makes no use of such information.

Modifications of the EKF exist that include higher order terms in the lineariza-
tion (High order EKF) or which repeat the linearization at xk+ and repeat the
filtering process so as to reduce error (Iterative EKF). Any performance im-
provements by these versions however are associated with a significant increase
in computational cost. Even if these issues were circumvented, the EKF requires
the computaton, and thus the existence, of derivative terms for both the process
and measurement functions. As a result, it cannot be applied near regions of
the state-space where these functions are discontinuous or if the functions are
given in a non-explicit form (e.g. look-up tables).

3.2 Unscented Kalman Filter

Motivated by the above limitations, one logical step is to avoid linearization
entirely. It was required in the EKF, not because the functions are unknown,
but because it is difficult to apply a general nonlinear transformation on a prob-
ability density function, hence the need to approximate the transformation. An
alternative approach then, is to approximate the density function itself which,
as shown in [13], [16], is accomplished by the Unscented Transform (UT), the
cornerstone of the UKF.

The UT is a deterministic sampling technique; it involves the selection of a
minimal set of points (sigma points) in the state-space, whose ensemble mean
and covariance match those of the prior density. Each point is then propagated
through the exact nonlinear functions (Figure 3.2) and the first two moments of
the resulting set of transformed points can be computed to yield good estimates
of the mean and variance of the posterior.
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Figure 3.2: Representation of sigma points of a prior density being propagated
through a non-linear function and forming the posterior [25].

There are several ways of selecting these sigma points; The original unscented
transform [28] exhibits a proportional relationship between the distance of the
sigma points and the dimension of the state vector. The scaled unscented trans-
form [14] allows one to counteract this effect and also to better approximate
higher moments. Finally, the spherical simplex unscented transform [15] reduces
the number of sigma points at the expense of potential numerical instability [17].
Since they share many commonalities only the scaled unscented transform will
be presented in the context of the UKF for the general model given by (2.1 -
2.2).

First, an augmented state vector x̂ak is formulated, containing the means of the
state as well as all non-additive process and measurement noise terms. Their
covariances are also collected in the covariance matrix P ak .

x̂ak =
[
x̂k ŵk êk

]T (3.18)

P ak =

Pk 0 0
0 R1 0
0 0 R2

 (3.19)

It is important to note that this augmentation differs from the case when the
Kalman filter is used to estimate disturbances or parameters, in the sense that
the noise means and covariances will not be estimated; they will simply be used
for the correct approximation of the prior. Letting n be the dimension of the
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augmented vector, exactly 2n + 1 sigma points are selected according to the
following scheme:

x̄0
k−1 = x̂a+

k−1 (3.20)

x̄ik−1 = x̂a+
k−1 +

(√
(n+ λ)P a+

k−1

)T
i

i = 1, . . . , n (3.21)

x̄n+i
k−1 = x̂a+

k−1 −
(√

(n+ λ)P a+
k−1

)T
i

i = 1, . . . , n (3.22)

The matrix square root in (3.21 - 3.22) can be computed using, for instance, the

Cholesky decomposition and
(√

(n+ λ)P a+
k−1

)
i

is the ith row of that matrix.

The first sigma point is the mean itself and the other 2n points are selected as
a symmetric pair around it. In addition to these sigma points, the following
weights are defined:

Wm
0 =

λ

n+ λ
(3.23)

W c
0 =

λ

n+ λ
+ (1− α2 + β2) (3.24)

Wm
i = W c

i =
1

2(n+ λ)
(3.25)

Wm
i being the weights associated with the computation of the mean and W c

i

the weights pertaining to the evaluation of the covariance. The weights can be
positive or negative regardless of the unscented transform applied, but in order
for the estimate to be unbiased, each set of weights must obey the condition
[17]:

2n∑
i=0

Wi = 1 (3.26)

In equations (3.21 - 3.25), λ = α2(n + κ) − n is a scaling parameter [34]. The
scalar values α ∈ (0, 1] and κ ≤ 0 influence how spread out the sigma points will
be from the mean and are typically chosen to be small (10−3 and 0 respectively).
The variable β is used to incorporate prior knowledge of the distribution of
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xk. Specifically, it increases the weighing of the zeroth sigma point which was
shown in [14] to yield partial information of the fourth-order term of the Taylor
series expansion of the covariance. Its optimal value is β = 2 for Gaussian
distributions.

The sigma points are then collected into one n×(2n+1) size matrix Xa
k−1 which

can be interpreted as the set of sigma points. HereXx
i,k−1 denotes the component

of the ith sigma point associated with the state vector and similarly Xw
i,k−1 and

Xe
i,k−1 with the components associated with the process and measurement noise

respectively.

Xa
k−1 =

[
x̄0
k−1 x̄1

k−1 . . . x̄2n
k−1

]
(3.27)

=

X̄x
0,k−1

X̄w
0,k−1

X̄e
0,k−1

 X̄x
1,k−1

X̄w
1,k−1

X̄e
1,k−1

 . . .

X̄x
2n,k−1

X̄w
2n,k−1

X̄e
2n,k−1

 (3.28)

These points are now propagated to the next time step k using (2.1). Since the
statistics of the noise components are static, only Xx

k−1 needs to be updated.
Note that, for each sigma point, its process noise component is used in the
function instead of the estimate ŵk.

Xx
i,k = fk−1(Xx

i,k−1, uk, X
w
i,k−1) (3.29)

Having propagated the points, their first and second order moments are com-
puted using the previously defined weights and the definitions of the mean and
the variance.

x̂−k =

2n∑
i=0

Wm
i X

x
i,k (3.30)

P−k =

2n∑
i=0

W c
i (Xx

i,k − x̂−k )(Xx
i,k − x̂−k )T (3.31)

Thereby, the estimates x̂−k and P−k are acquired in a manner reminiscent of the
EKF. In fact, the procedure so far can be considered as the time update step of
the UKF. The measurement step follows thereafter, with the sigma points being
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propagated now through the measurement function to acquire the observation
set Yk (note that this set is unrelated to the previously defined observation
history set). Then the observation estimate is computed as the weighted mean
of the points in the set.

Yi,k = hk(Xx
i,k, X

e
i,k) (3.32)

ŷk =

2n∑
i=1

Wm
i Yi,k (3.33)

The covariance of the observation and its cross-covariance with the state are
subsequently computed using their respective definitions and the covariance
weights.

]Py =

2n∑
i=0

Wm
i (Yi,k − ŷk)(Yi,k − ŷk)T (3.34)

Pxy =

2n∑
i=0

W c
i (Xx

i,k − x̂−k )(Yi,k − ŷk)T (3.35)

With these covariance matrices, the Kalman gain is computed and the measure-
ment step is completed by evaluating the mean and covariance of the posterior
density. This step is nearly identical for both the EKF and the UKF. At this
point the, augmented state vector x̂ak and covariance P ak are also updated for
use in the next iteration.

Kk = PxyP
−1
y (3.36)

x̂+
k = x̂−k +Kk(yk − ŷk) (3.37)

P+
k = P−k −KkPyK

T
k (3.38)

This concludes the presentation of the UKF. It has been argued in [30] and [34]
that for Gaussian inputs, the filter approximates the mean and the covariance up
to the third momement terms regardless of the nonlinearities. For non-Gaussian
inputs, accuracy up to the second order is guaranteed. Because the UKF does
not explicitly truncate the third and higher order terms, the errors in those terms
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can also be reduced [13]. The third and fourth moments of the distributions
are also approximated to an accuracy determined by the parameters α and β.
The UKF has a computational complexity of the same order as the EKF [34].
The fact that it is more accurate and can accommodate discontinuities make
it preferable for all applications where one might consider the use of the EKF.
However, because it still relies in a linearization method, this filter may also
diverge if initialized too far from the true state.

Besides the UKF, alternative derivative free Kalman filters exist such as the Cen-
tral Difference Kalman Filter (CDKF)[12] and the closely related Divided Dif-
ference Filter (DD1) [24], which use Sterling’s polynomial interpolation method
for the linearization. These have been reported [32] to have comparable perfor-
mance to the UKF, hence only the later is considered in this report as it is more
widespread in the literature [28],[31].

3.3 Particle Filter

While the UKF is an improvement over the EKF, it still bound by the Kalman
filtering framework, namely that it requires the estimated density to be well
approximated by a Gaussian. As a result there will be significant estimation
errors for distinctly non-Gaussian and especially multimodal densities, because
the mean may lie outside the areas of high probability (Figure 3.3).

Figure 3.3: A bimodal probability density function. Due to the symmetry, the
mean lies at 0 which has the lowest probability [28].
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In order to accommodate such densities, an alternative approach based on Se-
quential Monte Carlo (SMC) methods was developed at first by the control
community in the late 70s [9] and subsequently refined for practical applications
in the early 90s [8]. SMC methods make no linearity or Gaussianity assump-
tions but instead stochastically approximate probability densities as clouds of
point masses. This eliminates the need for the assumptions imposed by the
Kalman filter and theoretically leads to superior estimation performance, pro-
vided a sufficient number of point masses (and therefore, computational power)
is available.

The main idea of these methods, which are commonly referred to as Particle
Filters, is to generate a large number of samples (particles) from some proposed
probability density function and, using the available process and measurement
models, propagate them through time and evaluate their likelihood. Thereafter,
a resampling step is employed where the highest weighted samples multiply at
the expense of the least weighted ones. These procedure is repeated until the
density formed by the samples converges to the posterior density.

The development of the Particle Filter here follows mainly the work of [6] and
[26]. The basis of SMC methods is Monte Carlo integration, which addresses
the numerical evaluation of the following multidimensional integral:

E[g(x)] =

∫
g(x)π(x)dx (3.39)

Examples of such integrals are those previously mentioned in the Bayesian esti-
mator (3.3 - 3.6). The integrand of (3.39) is a factorization so that π(x) is a prob-
ability density function satisfying the conditions π(x) ≥ 0 and

∫
π(x)dx = 1.

For the filtering application considered here, this density is the joint posterior
density p(Xk|Yk) with the set Xk = {x1, x2, . . . xk} denoting the state history up
to time k. If one now draws N � 1 samples {Xi

k, i = 1, 2, . . . , N} distributed
according to the joint posterior, then the Monte Carlo estimate of the above
integral becomes:

Ē[g(Xk)] =
1

N

N∑
i

g(Xi
k) (3.40)

Because the samples are drawn independently, the resulting estimate will be
unbiased and due to the law of large numbers, it will almost surely converge
to the integral as the number of samples tend to infinity. Thus the potentially
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intractable integral is being mapped to a discrete sum which can be computed.
Furthermore, if the variance of g(Xk) is bounded

σ2 =

∫ (
g(Xk)− E[g(Xk)]

)2
p(Xi

k|Yk)dXk <∞ (3.41)

Then by the central limit theorem, the estimation error will converge in distri-
bution to a normal distribution with the same variance:

lim
N→∞

√
N
(
Ē[g(Xk)]− E[g(Xk)]

)
∼ N(0, σ2) (3.42)

More importantly, the convergence rate will be of the order O(1/N2) and will be
independent of the dimension of the integral to be estimated. If it were possible
to sample from the joint posterior, then the above approach could be applied and
the estimation would be complete. Unfortunately this is not the case because
the posterior is typically known up to a proportionality constant, however this
difficulty can be surmounted using the importance sampling method.

In importance sampling, the samples are generated instead from a known density
q(Xk|Yk) referred to as proposal density. This density needs to be similar to the
posterior in the sense that it has the same support:

p(Xk|Yk) > 0⇒ q(Xk|Yk) > 0 ∀Xk ∈ Rn (3.43)

If this condition is valid, then the integral (3.39) can be rewritten in terms of
the proposal density

E[g(Xk)] =

∫
g(Xk)p(Xk|Yk)dXk =

∫
g(Xk)

p(Xk|Yk)

q(Xk|Yk)
q(Xk|Yk)dXk (3.44)

And, having generated N independent samples distributed according to q(Xk|Yk),
the Monte Carlo estimate can is given by

Ē[g(Xk)] =

N∑
i

g(Xi
k)wik (3.45)
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or more explicitly by

p̂(Xk|Yk) =

N∑
i=1

wikδ(Xk −Xi
k) (3.46)

with wik ∈ [0, 1] being the importance weights, normalized so as to eliminate the
need for the normalizing factor of p(Xk|Yk):

wik =
w̄ik∑N
j=1 w̄

j
k

(3.47)

w̄ik =
p(Xi

k|Yk)

q(Xi
k|Yk)

(3.48)

While Monte Carlo integration can be accomplished this importance sampling
method, it is unsuitable for recursive estimation. Because of the way the impor-
tance weights are defined (3.48), they need to be recomputed across the entire
state sequence every time the observation history vector Yk is updated. This
causes to the computational complexity of these weights to grow over time. The
solution to this problem is to reformulate importance sampling so that the pre-
viously simulated states Xk are left unmodified. That is, only the marginal
posterior density p(xk|Yk) is of interest at each time step.

A recursive formulation of p(Xk|Yk) can be derived in terms of p(Xk−1|Yk−1

which is assumed to be known from the previous time step and the marginals
p(yk|xk) and p(xk|xk−1). This is accomplished by the application of Bayes’ Rule
as well as the Markov property:

p(Xk|Yk) =
p(yk|Xk, Yk−1)p(Xk|Yk−1)

p(yk|Yk−1)

=
p(yk|Xk, Yk−1)p(xk|Xk−1, Yk−1)p(Xk−1|Yk−1)

p(yk|Yk−1)

=
p(yk|xk)p(xk|xk−1)

p(yk|Yk−1)
p(Xk−1|Yk−1) (3.49)

∝ p(yk|xk)p(xk|xk−1)p(Xk−1|Yk−1) (3.50)

The proposal density can also be factorized by imposing a Markov assumption.
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One can therefore sample from this proposal density by augmenting the each of
the previous samples available from q(Xk|Yk) with the new state.

q(Xk|Yk) = q(xk|Xk−1, Yk)q(Xk−1|Yk−1) (3.51)

Substituting this expression and 3.50 into (3.48) leads to the desired recursive
expression for the importance weights:

wik ∝
p(yk|xik)p(xik|xik−1)p(Xi

k−1|Yk−1)

q(xik|Xi
k−1, Yk)q(Xi

k−1|Yk−1)

= wik−1

p(yk|xik)p(xik|xik−1)

q(xik|xik−1, yk)
(3.52)

The weights wik−1 are available prior to the iteration, while the likelihood
p(yk|xik) and transition probability p(xik|xik−1) can be computed at each time
step using the available process and measurement models. Then the estimate
of the desired marginal posterior density can be given as

p̂(xk|Yk) =

N∑
i=1

wikδ(xk − xik) (3.53)

This method is referred to as Sequential Importance Sampling (SIS). The sam-
ples are initialized to be distributed according to q(x0), each having a weight
equal to 1/N . At each time step, new samples are drawn from q(xk|xk−1, yk)
and then their weights are evaluated using (3.52). The weights are normalized
and from the resulting approximated posterior, any statistic of interest can be
computed to serve as a state estimate, namely the conditional mean.

There is, however, a problem with the SIS method; it has been shown [7] that
the variance of the importance weights wik grows stochastically over time. Af-
ter a few recursions, one particle will have "survived" and have a normalized
importance weight tending to 1 while the rest will tend to 0. This degeneracy
phenomenon leads to a poor approximation of the posterior and computation
power is wasted in updating the negligible samples, making them impractical
for applications. A way to mitigate this problem, is to introduce an additional
selection (resampling) step in the algorithm.
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The purpose of this resampling step is twofold; to eliminate the samples whose
importance weight is zero and multiply the number of "surviving" samples pro-
portionally to their importance weight in a manner reminiscent of genetic algo-
rithms. This is accomplished by generating N i.i.d. samples from the discrete
approximation of the posterior given by (3.53) and weighing them equally such
that wik = 1/N .

Figure 3.4: Illustration of the general resampling process [33].

This sampling process is further depicted in Figure 3.4. Firstly, a random vari-
able U is drawn from the uniform distribution on the [0,1] interval. Secondly,
the weights are summed cumulatively until the accumulated sum exceeds the
random variable. When this occurs, the particle corresponding to the last added
weight wjk is selected as a sample for the next filter iteration. The process is
repeated N times for N samples in total. Observe that in this way, samples
with a larger weight are more likely to be selected, since a larger weight has a
higher probability of expanding the accumulated sum past the index i.

There are several resampling schemes that one might employ, the most common
being multinomial, residual, stratified and systematic resampling [11]. Among
these, systematic resampling appears to yield the highest estimation quality and
has been argued in [26] and [31] to minimize the variance sigma2 of the filter.

In this sampling method, N ordered numbers U i are generated such that they
obey:

U i =
(i− 1) + U

N
(3.54)
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Figure 3.5: Graphical representation of systematic resampling [31].

With U being again a random variable sampled from the uniform distribution
U(0,1). Then the weights are again summed cumulatively and whenever this
sum exceeds one of these ordered numbers for the first time, the particle associ-
ated with the last added weight is chosen as the next sample. The method can
be visualized as a roulette whose circumference is occupied by the importance
weights proportionally to their magnitude with equally spaced arrows pointing
towards them (Figure 3.5). Each arrow corresponds to one number U i. Draw-
ing from U(0,1) is the equivalent of spinning the roulette once and having the
particles which share the same index as the weights pointed to by the arrows,
"survive".

In order to determine when the resampling step should be employed, a suit-
able measure of the degeneracy phenomenon is needed. Such a measure is the
effective sample size Neff defined as [26]:

Neff =
1∑N

i=1(wik)2
(3.55)

So that 0 ≤ Neff ≤ N . In the case of the samples being uniformly weighted
Neff = N and in the case of extreme degeneracy where only one weight is non-
zero, Neff = 1. Then it is up to the engineer to assign a threshold below which
resampling will be carried out.

The augmentation of the SIS method with a resampling step leads to what is
called the Sequential Importance Resampling (SIR) method, otherwise known
as the bootstrap filter. The functionality of the filter is depicted in Figure 3.6.
Here the filter is initialized withN = 10 uniformly weighted particles drawn from
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Figure 3.6: Visual demonstration of the particle filter [6].

some initial proposal density q(x0). The importance weight of each particle is
then updated using (3.52), the weights being proportional to the likelihoods of
each particle, given the latest available measurement yk. The particles along
with their weights approximate the target density p(xk|Yk). If the resampling
step is applied, then the highly weighted samples multiply at the expense of the
less weighted ones and the resulting set of particles becomes uniformly weighted
once again while still approximating the target density. These samples are then
propagated to the next time step again through importance sampling, varying
the particles and thus the above procedure is repeated.

The only issue left to address is perhaps the most critical one; the selection of
the proposal density q(xk|xik−1, yk). It was shown [5] that the optimal proposal
density is the one which minimizes the variance of the importance weights,
conditional on xik−1 and yk. The same author then showed in [7] that this
density is:

q(xk|xik−1, yk)opt = p(xk|xik−1, yk)

=
p(yk|xk, xik−1)p(xk|xik−1)

p(yk|xik−1)
(3.56)

After applying Bayes’ rule, it can be substituted into the importance weight
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equation (3.52) to yield:

wik ∝ wik−1p(yk|xik−1) (3.57)

This result indicates that the importance weights can be computed before the
samples are updated to time k. However, in order to use the optimal proposal
density, one needs to be able to sample from p(xk|xik−1, yk) and subsequently
evaluate p(yk|xik−1) up to a normalizing constant which is not always possible
in the general. This leads to the use of suboptimal proposal densities, the most
popular among them arguably being the transition prior p(xk|xik−1)

q(xk|xik−1, yk) = p(xk|xik−1) (3.58)

Two arguments motivate this choice of density. Firstly, the transition prior
typically has a larger support than the target density and is more likely to
include it. Secondly, it simplifies the computation of the importance weights.
If (3.58) is substituted into (3.52), it will cancel out the nominator of the later,
leading to:

wik ∝ wik−1p(yk|xik) (3.59)

Thus only the evaluation of the observation likelihood density is needed to up-
date the weights.

3.4 Unscented Particle Filter

The particle filter imposes few, easily satisfied assumptions, namely that the
process and measurement functions are available, that it is possible to sample
from the process noise and prior densities and that it is possible to evaluate the
likelihood density at the samples. Otherwise it is able to handle any nonlineari-
ties and arbitrary distributions. However, the use of the transition prior instead
of the optimal proposal density for importance sampling, can have a significant
negative impact on the filter’s performance.

Specifically, the prior density may not overlap significantly with the observation
likelihood density (e.g. the likelihood density lies at one of the tails of the prior)
or the likelihood density may be too narrow. In both cases, it is very likely
that the particles will not be located in the area of high observation likelihood
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(Figure 3.7). This is because of the discrete nature of the approximation, which
is only perfect for infinite particles. In practice however, they are finite and if
there are computational considerations, they should be as few as possible.

Figure 3.7: Situation where the prior and the observation likelihood densities
do not overlap. The importance sampling using the optimal pro-
posal density is the only step where the samples can be moved
closer to the likelihood density [33].

Given this situation, the particles will not be weighted appropriately based on
the observation likelihood. If the resampling step is not applied, the result will
be the aforementioned degeneracy phenomenon. If it is applied, then a different
kind of degeneracy occurs; the resampling causes the particles to multiply ran-
domly and after several iterations (again due to their discrete nature), there will
be more and more particles occupying the exact same position and subsequent
resampling will amplify this phenomenon until all particles are stacked on the
same point. This phenomenon is referred to as sample depletion.

If the optimal proposal density were used, then it would be conditioned on
the measurement yk and thus it would move the particles to the area of high
observation-likelihood, thus avoiding sample depletion. But as it cannot be
used, the task is to find a usable proposal density which incorporates the lat-
est measurement. The main idea then is to approximate the optimal proposal
density by a tractable Gaussian density, generated by the Kalman filter so that
[32]:

q(xk|xik−1, yk)opt ≈ pN (xk|xik−1, yk) = N(x̂+
i,k, P

+
i,k) (3.60)

This approach was originally proposed by [7] where the EKF was used to gen-
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erate the approximation. Subsequently, the same idea was used in conjunction
with a UKF, resulting in the Unscented Particle Filter [33]. It is essentially a
particle filter with a bank of N UKFs. Each sample, having been generated
by the initial proposal q(x0), is propagated through the equations (3.29 - 3.38)
using the latest measurement yk. This means that each particle maintains its
own augmented mean and covariance estimates as discussed in the UKF sec-
tion. Once each particle is updated, it is redrawn from the updated Gaussian
distribution (3.60). Then the importance weighting is carried out just as in the
SIR filter, but the weights are updated according to:

wik = wik−1

p(yk|xik)p(xik|xik−1)

pN (xik|xik−1, yk)
(3.61)

with the transition prior p(xik|xik−1) also approximated using the prior mean
and covariance of the UKF, if it cannot be evaluated directly:

p(xik|xik−1) = N(x−i,k, P
−
i,k) (3.62)

The resampling step remains largely unaffected, with the caveat that both the
particles and their respective means and covariances from their associated UKFs
are multiplied or discarded. This completes one iteration of the algorithm.
While the UPF has been shown to be more accurate than the standard particle
filter [33], the fact that N Unscented Kalman filters need to be run in parallel
means that it will impose larger computational and memory requirements. It is
argued however [26] that this computational load is significantly offset by the
reduction of the total samples required to achieve a certain performance.
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Chapter 4

Implementation and Results

This chapter deals with the application of the presented non-linear state-estimation
techniques for the localization of the HAKO tractor in its simulation environ-
ment. In the first section, the three filters are implemented for the case where
the map represents the relevant orchard features correctly. A discussion is given
on each filter’s performance as well as any specific variations employed in its
application. In the second section, these state-estimation techniques are tested
when the orchard’s tree rows have holes which are not represented by the map.
It is shown that this negatively impacts their performance and some techniques
for dealing with this problem are given for each filter. Finally, a comparison of
the resulting variant filters is given.

4.1 Application with Normal Map

4.1.1 Unscented Kalman Filter

The UKF was implemented first because the Kalman filter has a good track-
record in applications thus, from an engineering perspective, it is imperative to
try one of its extensions before proceeding to a different solution. Furthermore,
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as it has also been applied by [10, 22], it could serve as a validation step in the
early development stages of the system and the laser-scanner function.

The filter is implemented as a standalone function whose inputs are the previous
augmented state mean and covariance estimates as well as the input vector
estimate ûk and the laser scanner measurement yk. The intrinsic parameters of
the vehicle and laser-scanner as well as the covariance matrices R1,k and R2 of
the process and measurement noise respectively, can be made available as global
variables or passed to the function directly. The function is executed as soon as
a new measurement is available.

The implemented filter follows closely the algorithm described in Section 3.2
with one key difference; the augmented state vector does not include the mea-
surement noise estimates:

x̂ak =
[
x̂k ŷk θ̂k ŵk

]
(4.1)

This is possible because the measurement noise is additive, which allows the
modification of the measurement step so that the matrix Py is computed as in
the standard Kalman filter. This change is motivated by the large number of
elements (722) of the measurement vector. If the augmentation took place, it
would lead to a 727 by 727 size P ak matrix which not only would increase the
computation effort needed, but also lead to numerical instabilities.

The filter was initialized with the true state as its mean and a covariance matrix
given as follows:

x̂a0 =
[
6 50 −π/2 01×2

]T (4.2)

P a0 =


0.1 0 0 01×2

0 0.1 0 01×2

0 0 0.1 01×2

02×1 02×1 02×1 R1,k

 (4.3)

It is imperative that the filter is initialized close to the true position both to
ensure a reasonable linearization, but more importantly because the environ-
ment (Figure 2.5) is not sufficiently distinct since the tree rows are identical.
Therefore the relative distance information from the laser scanner will not be
sufficient to identify the specific row in which the vehicle is driving. This will
result in the UKF moving the estimate to the most likely point of the row clos-
est to the initial state estimate. In practice, this restriction is not significant
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because either the vehicle begins operation from a known position (its recharg-
ing station) or it has a good initial estimate provided by the RTK-GPS and its
gyroscope.

The covariance matrix given by (4.3) defines the initial uncertainty of the po-
sition and orientation. If this information is not available (as in this case) it
can be chosen arbitrarily, bearing in mind that it determines the spread of the
sigma points in the first iteration of the UKF. Thus it should not be chosen too
large, else some of the sigma points may be moved to a point of high likelihood
in an adjacent row and cause the estimate to diverge.

In the time update step, the ith sigma point was propagated through (2.9) with
the process noise component Xw

i,k−1 included nonlinearly as:

Xx
i,k = Xx

i,k−1 +


(vk−1 +Xw1

i,k−1)cos

(
θi,k−1 +

∆θi,k−1

2

)
(vk−1 +Xw1

i,k−1)sin

(
θi,k−1 +

∆θi,k−1

2

)
∆θi,k−1

 (4.4)

∆θi,k =
(vk +Xw1

i,k ) + tan(θSA,k +Xw2

i,k )

l
(4.5)

Here, w1 and w2 denote the first and second elements of the process noise vector
respectively.

In the modified measurement step, the sigma points were passed through the
laser-scanner function described in Section 2.3 and the covariance Py was com-
puted by exploiting the additivity of the noise:

Yi,k = hk(Xx
i,k, êk) (4.6)

Py =

2n∑
i=0

Wm
i (Yi,k − ŷk)(Yi,k − ŷk)T +R2 (4.7)

The Kalman gain and posterior estimates x̂+
k and P+

k follow as elaborated in the
previous chapter. The phase plot of one full simulation using this filter is given
in Figure 4.1. It is observed that the filter is successful in tracking the robot’s
position as it drives, with the estimate almost overlapping the true trajectory
except at the upper right corner where there is a slight deviation. This can also
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Figure 4.1: Phase plot of UKF estimate of the robot’s position.

be observed if each state is plotted individually along with the corresponding
estimate as done in Figure 4.2.

Since the estimates are so close to the true states, their root squared errors
exk =

√
(x̂k − xk)2 are given as well in Figure 4.3 in order to observe where

any deviations occur and their relative magnitude. Here it is seen that, for the
states xk and θk, the estimation error is consistently small except near the two
time samples 30 and 80-85. Cross-referencing with the state plots in Figure 4.2
reveals that these are the points where the vehicle turns from one tree row to
the next.

These errors can be attributed to two causes. First, the system nonlinearities
are being excited by the turning (specifically, θk changes value, causing xk and
yk to evolve nonlinearly) which leads to the linearization errors of the UKF
becoming more dominant. Second, there is limited information coming in from
the laser-scanner during the first turn as only a single tree row perpendicular to
the others is being observed (Figure 2.10) and no row can be observed during
the second turn. Thus the UKF relies heavily on predictions based on odometry
during turning.

It is customary in Kalman filtering to report the state variances estimated by
the filter, as they provide a measure of the uncertainty during operation. These
are shown in Figure 4.4. It can be observed again that they, like the estimation
error, are kept small everywhere except for when the turns take place, with the
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Figure 4.2: Individual plots of UKF estimates versus the true states.
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Figure 4.3: UKF Root Square errors for each state.
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Figure 4.4: Evolution of UKF variance estimates over time.

second turn causing the most significant uncertainty increase.

Lastly, an assessment of the estimation performance and computation time of
the filter is needed for comparison with subsequent solutions. For this purpose,
the Root Mean Square Error (RMSE) across 100 realizations was chosen because
it was frequently employed in the referenced material (e.g. [7, 10, 26, 33]). It is
defined by:

EX =
1

100

1

T

100∑
i=1

N∑
k=1

√
(x̂ik − xik)2 (4.8)

The RMSE values for each state estimate of the UKF as well as their sum, are
tabulated on the first row of Table 4.1 along with the average total running time
of each simulation.
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4.1.2 Particle Filter

The next step was to implement the SIR filter, both to compare it to the UKF
solution but also to set up the foundations of the subsequent UPF implementa-
tion. The particle filter is also implemented as a single function to be called each
time a measurement is taken. Its inputs are again the input estimate and the
measurement as well as a structure which contains the particles, their associated
weights and the state estimate.

The initialization of the filter involves the generation of N = 100 samples. This
number of particles was chosen after a simulation trial where, starting with
a small number of samples, it was incremented until there was no apparent
performance increase. The samples are drawn from a Gaussian distribution
centered around the true state with the following covariance matrix:

Σ0 =

1 0 0
0 1 0
0 0 0.5

 (4.9)

As a result, using the 3σ rule, the particles are distributed within at least 3m of
the initial position, spanning the entire width of the row. The maximum devia-
tion of the orientation is 17.19 degrees allowing for a large uncertainty from the
gyro measurement. While a uniform distribution would better represent com-
plete uncertainty, the availability of an initial guess (based on prior knowledge
or the RTK-GPS and gyro measurements) makes it more sensible to assume a
Gaussian distribution around it.

These initial samples need to be drawn from the proposal density, in this case
the transition prior p(xk|xik−1). This is accomplished simply by propagating
them through the kinematics (2.9):

xik = xik−1 +


(vk−1 + wi1,k−1)cos

(
θik−1 +

∆θik−1

2

)
(vk−1 + wi1,k−1)sin

(
θik−1 +

∆θik−1

2

)
∆θik−1

 (4.10)

∆θik =
(vk + wi1,k) + tan(θSA,k + wi2,k)

l
(4.11)

Where wi1,k and w
i
2,k are elements of the process noise vector wik, which is drawn
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from the process noise probability density, in this case the Gaussian N(0, R1,k).

The importance weights, denoted here as qik, of each sample are then evaluated
according to (3.59). The observation likelihood p(yk|xik) can be evaluated as the
multivariate Gaussian distribution of the measurement noise:

p(yk|xik) = p[yk − h(xik, êk)] (4.12)

=
1√

2πn|R2|
exp

(
−[yk − h(xik, êk)]TR−1

2 [yk − h(xik, êk)]

2

)
(4.13)

Notice that R2 needs to be inverted. In general, the inversion of a matrix of
this dimension can be problematic, both in terms of numerical stability and
computational effort. Therefore it is possible to exploit the assumption of inde-
pendence imposed on the laser rays, namely that:

p(yk|xik) =
∏
j

p(yjk|x
i
k) (4.14)

With yj containing the distance and angle returned from the jth laser ray.
Thus the problem of evaluating a 722-dimensional, multivariate Gaussian dis-
tribution is reduced to evaluating a bivariate one 361 times, then multiplying
them together. Once the importance weights are assigned, the conditional mean
is computed to serve as the state estimate:

x̂k =

N∑
i=1

qikx
i
k (4.15)

Thereafter, in principle, the Neff is computed to determine if resampling should
take place. However, it was found through simulation trials that resampling
every time yields the best estimation quality for this application. The phase
plot of the SIR filter estimate is given in Figure 4.5. The particle clouds formed
at every 5 time samples are also shown on the same figure, since they convey
information about the confidence the filter has in the estimate.

It can be observed that the initial particle cloud of the SIR filter quickly con-
verges around the estimate and expands very briefly during turning. The state
estimate overlaps the true trajectory even more so than the UKF, implying
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Figure 4.5: Phase plot of SIR filter estimate of the robot’s position.

a performance increase. This is also suggested by the individual state plots
in Figure 4.5, where it is almost impossible to distinguish the state from the
estimate.

The root square errors of each state can again be used to assess the performance
and are given in Figure 4.7. Here it is seen that in the states xk and θk, similarly
to the UKF, there is an increase in the estimation error when the vehicle turns.
However, the overall magnitude of the error is significantly reduced and its
spikes, due to lack of information, are less than half those of the ones found
in the UKF. Notably, there is a high initial estimation error for the yk, likely
caused by the lack of information regarding the vehicle’s position on the y axis
as it drives down the row. This observation is supported from the fact that, as
the vehicle approaches the turning point (where the horizontal tree row can be
observed), the estimation error shrinks and thereafter grows again slightly when
that row cannot be observed anymore.

Finally, the RMSE values for every state are calculated across 100 realizations
and tabulated in the second row of Table 4.1 along with the average simulation
time. It was found that, on average, the SIR filter has a superior performance
over the UKF but takes about 10 times as long to execute. However, the com-
putation time is not prohibitive and it is expected that implementation in more
efficient languages such as C or C++ will help reduce the computational differ-
ence between the two filters, since the SIR filter executes significantly more for
loops, which are very inefficient in MATLAB.
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Figure 4.6: Individual plots of SIR filter estimates versus the true states.
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Figure 4.7: SIR filter Root Square errors for each state.
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Notice that an alternative approach would have been to draw the initial samples
from a uniform or Gaussian distribution, spanning the entire map, in the case
where no good initial guess is available. However, such an approach would
require a very large number of particles and even then, a distinct map would be
needed for only the particles in the correct row to survive. Otherwise, a good
estimate could only be obtained by using the highest weighted particle, since
the mean would not necessarily lie in an area of high probability. Due to these
reasons, as well as the high likelihood of a good initial guess, this approach is
not pursued in this project.

4.1.3 Unscented Particle Filter

Having successfully implemented the SIR filter, it was augmented with the UKF
based proposal distribution so as to determine if a higher performance/computation
time ratio could be achieved over the conventional particle filter. The new fil-
ter was implemented as a function similar in structure to that of the SIR one.
Its inputs are the usual control estimate uk and measurement yk and then an
augmented particle structure, containing each particle in augmented state form,
the associated augmented covariances and the importance weights.

The filter is initialized identically to the SIR, with the only difference being
that only N = 10 particles were used. Instead of propagating these samples
through the kinematics, the filter makes a call to the UKF function for each
particle. The initial covariances used in these UKF calls are the same as those
in (4.3). Then each particle is redrawn from its respective Gaussian proposal
density N(x+

i,k, P
+
i,k) to complete the time update step.

The importance weights need to be evaluated according to (3.61). The den-
sity p(yk|xik) is computed identically to how it was in the SIR filter to avoid
numerical issues. Since the process noise is injected in a nonlinear way, the
density p(xik|xik−1) was approximated by the distribution N(x−i,k, P

−
i,k), since its

parameters can also be extracted from the previous UKF calls.

p(xik|xik−1) =
1√

2πn|P−i,k|
exp

(−[xik − x
−
i,k]T (P−i,k)−1[xik − x

−
i,k]

2

)
(4.16)

The proposal density term in the denominator of (3.61) is given similarly as:
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Figure 4.8: Phase plot of UPF estimate of the robot’s position.

pN (xik|xik−1, yk) =
1√

2πn|P+
i,k|

exp

(−[xik − x
+
i,k]T (P+

i,k)−1[xik − x
+
i,k]

2

)
(4.17)

Otherwise, the evaluation of the state estimate as well as the resampling step, is
identical to the SIR filter. It was also found best to resample at every iteration.
The phase plot of the UPF estimate and associated particles is given in Figure
4.8. Similarly to the two previously considered filters, the estimate overlaps
the true state. The individual state estimate plots are given in Figure 4.9 and
confirm the high estimation quality shown by the phase plot.

More information can be gained by inspecting the root square errors. Overall,
the UPF displays the same estimation quality as the SIR filter, with the most
notable difference being a significant improvement in the estimation of the yk
state; after the first turn, the estimation error does not grow as large as the
error in the SIR and UKF filters.

The RMSE values are again computed for 100 realizations and tabulated on the
third row of Table 4.1. It can be seen that indeed the estimates of the xk and
θk are near those of the SIR while the estimation quality of yk is improved by
approximately 24%. The total time required to run this filter is averaged at
45.33s a time very close to that of the SIR filter.
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Figure 4.9: Individual UPF estimates versus the true states.

Root Mean Square Errors
Filter EX EY EΘ Etotal Time (s)
UKF 0.0180 0.0802 0.0056 0.1038 5.0882
PF 0.0123 0.0502 0.0035 0.0660 46.8917
UPF 0.0130 0.0381 0.00058 0.0505 45.3309

Table 4.1: RMSE values for all filters applied with normal map.
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Figure 4.10: UPF Root Square errors for each state.
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Figure 4.11: Phase plot of UKF estimate using an imperfect map.

4.2 Application with Imperfect Map

In the previous section, it was shown that all three filters succeed in tracking
the vehicle’s position with minor deviations in estimation quality. A baseline
assumption in this assessment was that, even though there was significant mea-
surement uncertainty, the map correctly represents the means of the tree rows
in the environment. In practice, it may well be the case that sections of the tree
rows are missing either because a diseased tree has been cut off or some trees
are being replanted. In such a case, a scenario where the tractor’s map has not
been updated, either out of neglect or due to the inconvenience of document-
ing the changes, becomes very realistic. It is therefore imperative to assess the
estimation quality of these filters in the presence of such a mismatch.

The UKF algorithm was applied first in a scenario were a number of 4m holes
were placed on the vertical tree rows. As can be seen in Figure 4.11, the holes
introduce systematic errors in the state estimation. In fact, if the holes were any
larger, the estimate would diverge completely. Since the UKF cannot distinguish
between correct and incorrect map information, it will move the state estimate
such that the majority of the ray scan estimates are in consensus with the
measured ones.

A degradation of estimation quality is also experienced with the SIR filter as
shown in Figure 4.12. The error occurs at the importance weighting step where,
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Figure 4.12: Phase plot of SIR filter estimate using an imperfect map.

from the available samples, those nearest to the opposite wall of the hole are
weighted highly since these have the greatest consensus with the measurement
according to the imperfect map. If the holes or the process noise were larger,
then the samples would be allowed to drift even further away and inevitably the
estimate would diverge. These observations show that additional steps need to
be taken towards outlier rejection.

4.2.1 Unscented Kalman Filter with Outlier Rejection and
Feature Extraction

A reasonable approach to using the UKF with an incorrect map, is to reject
those measurements that occur from incorrectly mapped regions. Then, while
the filter will not be able to use them towards improving its estimate, it will not
integrate them incorrectly either. Such an outlier rejection method, that is pop-
ular in the robotics community [27], is validation gating using the Mahalanobis
distance.

The Mahalanobis distance is a distance measure between two arbitrary points
in a vector space and can be interpreted as the multi-dimensional equivalent of
measuring how many standard deviations apart these two points are. The two
points of interest are the measurement mean ŷi of the ith laser ray, and the true
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measurement yi. Then the distance is defined as:

M = (yi − ŷi)TP iy(yi − ŷi) (4.18)

with P iy corresponding to the 2 by 2 covariance matrix block corresponding to
the ith laser ray and can be extracted from the measurement covariance matrix
Py evaluated in 4.7. If the measurement is an outlier, then this distance will be
significantly larger than for the other measurements, thus a threshold (gate) γ
can be assigned so as to reject all measurements above it.

The threshold γ is a tuning parameter and defines how many standard deviations
away a measurement can be before it is rejected. It can be chosen manually, or
taken from the inverse χ2 cumulative distribution with degrees of freedom equal
to the dimension of the measurement and at the level α which determines the
percentage of accepted measurements [1]. A common choice is α = 0.95 and
since k = 2, the resulting threshold is found to be γ = 6. The measurement
which surpasses this threshold can be rejected by setting the corresponding
elements of the Kalman gain to 0 before executing the measurement update
step.

In addition to outlier rejection, the idea of extracting line features from the
measurements was explored, since the tree rows are already modeled as straight
lines. The motivation was twofold; reduce the influence of laser rays that do not
match the available map and reduce the dimension of the measurement vector
so as to improve the accuracy/computation ratio of the UKF.

The chosen method follows closely the one described in [2, 10]. First, each laser
ray measurement yi is converted from polar to cartesian coordinates and then
transformed from the robot’s local reference frame to the global one, using the
latest state estimate x̂k in conjunction with the homogeneous transform (2.5).
Since the line parameters A,B and C (2.28) are available for every tree row on
the map, the Euclidean distance of each point to each line can be evaluated. The
point is then assigned an index, corresponding to the closest tree row, provided
this distance is below a manually assigned threshold. If this is not the case, the
point is rejected.

Thereafter, the points assigned to each index i are used to identify a straight
line by means of a least squares fit such that the error ei (4.19) is minimized:

Âix+ B̂iy + Ĉi = ei (4.19)
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Having extracted the line parameters from the measurements, the aim is to
reduce them to polar coordinates for a more compact representation. This is
accomplished by computing the distance from the vehicle to each identified line
as well as the angle of the line relative to its orientation:

f ik =

[
dik
ψik

]
=

 Âix̂k+B̂iŷk+Ĉi√
Â2

i +B̂2
i

arctan
(
− Âi

B̂i

)
− θ̂k

 (4.20)

leading to the features fi, which represent each identified line. These serve as
the measurements for filtering. They can be stacked together to form the feature
vector:

fk =
[
f1
k f2

k . . . fmk
]T (4.21)

The dimensionm is practically restricted to 0 ≤ m ≤ 3 since the vehicle can only
observe at most three tree rows simultaneously. Thus, this feature extraction
method will result in a significantly smaller measurement vector but will also
introduce further error because it is constructed using the state estimate x−k .
Furthermore, it became apparent through simulation trials that, scaling down
the R2 matrix during the measurement update step by a factor of 102, produced
better state estimates.

The UKF was then implemented with the above mentioned outlier rejection
method. The first implementation used the original measurement vector while
the second made use of feature extraction. The phase plots of both filters
are superimposed in Figure 4.13. It is observed that the systematic errors are
eliminated due to the validation gating technique. The standard UKF overlaps
that of the true state, while the estimate produced by the UKF with line features,
deviates noticeably during the second turn.

The individual state estimates for the two filters are given in Figure 4.14. Here
it is shown that most of the error during the turn comes from the estimation of
the xk state, while the other states are estimated at a similar accuracy for both
filters. This is further supported from the root square error plots in Figure 4.15.
It becomes clear that there is a significantly larger error spike during the 75-85
time window for the feature-based UKF. For the other states, the estimation
quality is comparable, with the original UKF performing slightly better.

Finally, the estimated variances of each state are reported in Figure 4.16. Sev-
eral spikes occur at the variance of xk for both filters which can be attributed
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Figure 4.13: Phase plot of the estimates generated by the standard and
feature-based UKF.

to equation (3.38). Because the outlier rejection is carried out by setting the
relevant elements of the Kalman gain to 0, the covariance estimate P+

k is re-
duced to a lesser extent during the steps where some measurements have been
rejected. Otherwise, the large covariance increase, occurring at the second turn,
are due to the same reasons as those in the normal map case.

The RMSE values for the standard and feature-based UKF are tabulated in the
first and second rows of Table 4.2 respectively. For the standard UKF, it is
observed that the RMSEs of each state are higher than its normal map coun-
terpart, which can be attributed to the less information available due to the
rejection. The feature-based UKF has twice the total RMSE error but is exe-
cuted at less than half the time, leading to a superior performance/computation
ratio.

4.2.2 Particle Filter with modified Likelihood

For the SIR filter, the validation gating method was implemented as follows.
First, as soon as the samples were generated from the proposal density, the
empirical measurement mean ŷk and covariance matrix Py are computed us-
ing the observation hypotheses of every particle. Then, during the importance
weighting step, the Mahalanobis distance between each ray measurement and
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Figure 4.14: Individual state estimates of standard UKF and feature-based
UKF.



4.2 Application with Imperfect Map 69

0 20 40 60 80 100 120
0

0.5

1

1.5
X Estimation Error

Samples

R
oo

t S
qu

ar
e 

E
rr

or
 (

m
)

 

 UKF
UKF

lines

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Y Estimation Error

Samples

R
oo

t S
qu

ar
e 

E
rr

or
 (

m
)

 

 UKF
UKF

lines

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2
Θ Estimation Error

Samples

R
oo

t S
qu

ar
e 

E
rr

or
 (

m
)

 

 UKF
UKF

lines

Figure 4.15: Root Square errors of each state estimate generated by the stan-
dard and the feature-based UKF.
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Figure 4.16: Evolution of state variances maintained by the standard and
feature-based UKF.

its mean is evaluated. If it is below the threshold, the likelihood p(yjk|xik) can
be computed as done previously. Otherwise, one has the option of rejecting the
particle itself by setting this likelihood to 0 (which due to (4.14) will result in
p(yk|xik) = 0). Alternatively, the measurement alone can be rejected by setting
p(yjk|xik) to 1.

With either of these choices however, the SIR filter did not perform well. When
the particles themselves were rejected, the filter suffered from degeneracy, since
the majority of particles had negligible weights. When the gated measurements
were rejected instead, then the particles were only weighted based on those
measurements that lied closer to the mean, which distorted their likelihood and
allowed incorrect particles to multiply.

Clearly a different approach is necessary. What is actually desired is to reduce
the influence each measurement ray has on the overall likelihood p(yk|xik) so that
a few mismatched measurements will not significantly affect the distribution.
This is satisfied intuitively by setting the observation likelihood to to equal the
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Figure 4.17: Phase plot of the estimate of the robot’s position, generated by
the modified SIR filter.

average of the ray likelihoods:

p(yk|xik) =
1

M

M∑
j=1

p(yjk|x
i
k) (4.22)

with this likelihood model, the particles are penalized evenly for incorrect ray
hypotheses, regardless of whether the error is due to the map or the particle’s
position itself. Since the map error does not affect the majority of the rays, it
is expected that correctly positioned particles will be weighted more heavily. A
simulation is thus carried out with this filter and the phase plot of its estimate
is shown in Figure 4.17.

It can be seen that the particle clouds converge in distribution but this distribu-
tion has a larger covariance, since the new likelihood model allows more regions
of the state-space to have a high probability. The estimate however, appears
to match the true state. The individual state plots given by Figure 4.18, show
that while there is a good overlap between the states and the estimates, the
estimation quality is lower than that achieved by the UKF.

The root square errors are presented in Figure 4.19. The adjustment of the
likelihood model has led to a more fluctuating estimation error due to the larger
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Figure 4.18: Individual estimates generated by the modified SIR filter, versus
the true states.
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Figure 4.19: Root Square errors for each state estimate of the modified SIR
filter.

particle covariance which allows more variation of the particles at each time
sample and therefore more variations in the mean.

Lastly, the RMSE errors across 100 realizations are computed for every state
and tabulated on the third row of Table 4.2. The RMSE error for every state is
the largest so far while the total computation time is about the same as before.
Therefore, while the SIR filter can be made to function with an imperfect map,
its estimation quality is severely affected by it.
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Figure 4.20: Phase plot of the estimate of the robot’s position, generated by
the standard UPF with outlier rejection.

4.2.3 Unscented Particle Filter with Outlier Rejection and
Feature Extraction

The previous subsections showed that both the standard and feature-based UKF
outperform the modified SIR filter. The UPF is the last filter to be considered
and it was investigated whether it was sufficient to handle the outlier rejection
with just the UKF-based proposal densities. The first version of the UKF per-
forms estimation using the normal measurement vector and functions exactly
as described in Section 4.1.3. The second makes use of features used during the
UKF calls and the original measurements yk to update the importance weights
of each particle.

The phase plots for the two filters are given in Figures 4.20 and 4.21. It is evident
that the systematic errors are again eliminated and the estimate matches closely
the true state for both approaches.

The individual state plots for both filters are superimposed in Figure 4.22. It
is better observed here that the feature-based UPF shows noticeable error at
estimating xk and θk at the turning points, similar to the difference between
the standard and feature-based UKF.

The root square errors of the state estimates in Figure 4.23 also indicate that
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Figure 4.21: Phase plot of the estimate of the robot’s position, generated by
the feature-based UPF.

Root Mean Square Errors
Filter EX EY EΘ Etotal Time (s)
UKF 0.0275 0.1079 0.0071 0.1425 5.5006

UKFlines 0.1555 0.1377 0.0209 0.3142 1.8100
PF 0.2561 0.2140 0.0194 0.4895 46.4231
UPF 0.0194 0.0435 0.0037 0.0666 45.4114

UPFlines 0.0225 0.0535 0.0036 0.0796 10.8549

Table 4.2: RMSE values for all filters applied with an imperfect map.

there is a noticeable initial estimation error for the state yk until the first turning
point where the horizontal tree row is encountered. Comparing to the estimation
errors for the UKF filters (Figure 4.15), it is concluded that the estimation errors
of the UPF filters are significantly smaller.

The RMSE values across 100 realizations which are tabulated on the last two
rows of Table 4.2 show that the UPF filters have the best performance by a
considerable margin, approaching the performance of their counterparts that
use a normal map (Table 4.1). For the standard UPF, the total computation
time is the same as its counterpart, but the feature-based UPF is more than four
times faster than its counterpart and only twice as slow as the standard UKF.
Thus it showed the largest improvement from the addition of feature extraction.
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Figure 4.22: Standard and feature-based UPF estimates versus the true states.
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Figure 4.23: Standard and feature-based UPF Root Square errors for each
state.
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Chapter 5

Conclusions

5.1 Summary and Discussion

In summary, the current thesis investigated the application of state of the art
nonlinear state estimation methods for the localization of an autonomous guided
vehicle in an outdoor orchard environment, inspired by the works of [2, 10, 22].
The vehicle considered was an automated HAKO tractor, outfitted with rotary
encoders for odometry and a laser range scanner for feature detection.

The vehicle was modeled using a simple kinematic model developed by use of
its steering geometry. The model was motivated by the success it has had in
the robotics community. The uncertainties due to unmodeled dynamics and ex-
ternal disturbances are incorporated as stochastic inputs to this model, whose
distributions were modeled arbitrarily as Gaussian which is a standard proce-
dure in the absence of real data. For the simulation of the vehicle to be possible,
a Pure Pursuit controller was assigned so that the tractor could follow a tra-
jectory specified by via points. These points along with the tuning parameters
of the control were chosen such that the vehicle’s path is feasible at a forward
velocity not exceeding 2 m/s.

Thereafter, the tree rows present in the orchard were modeled as straight lines in
the field, similar to those shown in [10]. A laser scanner function was constructed
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that emulated the behavior of the laser range scanner the tractor is equipped
with. Lastly, a normally distributed noise vector was added to the measurements
so that their spread approximates that of the real laser scans shown in the work
of [2].

Having described the system and the environment, the filtering problem was
formally defined and the Bayesian estimator was presented as its optimal solu-
tion which is however infeasible in the general case of nonlinear systems. The
Extended Kalman Filter was then presented as it is the standard of nonlinear
estimation and to illustrate its suboptimal nature, since it uses a first-order ap-
proximation of the nonlinear functions. The Unscented Kalman Filter, shown
to approximate the state distribution instead of the nonlinear functions, was
subsequently presented, highlighting both its similarity with the EKF and its
improved estimation accuracy.

Particle filtering was presented in depth, discussing its fundamental aspects;
importance sampling, resampling, degeneracy and choice of proposal density.
It was shown to require weak assumptions and to be able to approximate any
probability density, provided a sufficient number of samples were used. Finally,
the persisting problem of sample depletion was described and the Unscented
Particle Filter was presented as a proposal density choice which helps alleviate
the problem and raise the filter’s performance/computation ratio.

The implementation of these filters and an assessment of their performance
was then carried out, focusing mainly on plots of the state estimates versus
the true states and the evaluation of Root Mean Square Errors. The results
showed that the UPF had the best performance among the filters but its per-
formance/computation ratio was lower than the UKF.

The evaluation of the same filters in the special case of having an incorrect
map showed that their estimation quality deteriorates and that they need mod-
ifications so as to be able to reject outliers. Validation gating based on the
Mahalanobis distance and line feature extraction were the two methods inves-
tigated for outlier rejection and for computational burden reduction. These
methods were applied on the UKF and were shown to eliminate the systematic
errors caused by the incorrect map. The feature-based UKF was shown to be
three times faster than its standard counterpart but had twice its total RMSE.

In the case of the particle filter, both methods led to divergence of the state
estimate and a modification of the observation likelihood was proposed to reduce
the large impact faulty measurements had on the importance weighting step.
The assorted figures showed that while it could adequately estimate the vehicle’s
trajectory, it exhibited the worst performance of all filters. Lastly, the UPF was
implemented as the normal particle filter which made calls to the modified UKF
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functions. It was shown that this was sufficient to eliminate the systematic errors
and for both variants, the estimation quality was competitive with the filters
when applied to the normal map. The feature-based UPF in particular was
found to be twice as slow as the standard UKF yet having approximately half
its RMSE.

The conclusion supported by these results is that for the most computationally
demanding, real-time applications, the UKF has the advantage as it can carry
out solid state estimation very quickly. In applications where resources are
more plentiful and the maximum performance is expected, the UPF appears to
be most promising.

5.2 Future Problems

This section briefly discusses the next steps that could be undertaken to extend
this work. The most important step would be to validate the simulation results
by implementing the filters on a real system or, at the very least, using real
measurements. It is expected that this step will highlight previously unfore-
seen problems which will lead to further modifications of the current methods.
Thereafter, the most promising filter could be selected (e.g. the UPF) and ex-
tended for global localization using some adaptive sampling technique to enable
an efficient transition between global localization and tracking. Another course
of action would be to investigate the extend to which the chosen filter can solve
the mapping and obstacle detection problems.
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