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Summary (English)

The goal of the thesis is to explore the mechanisms and tools that enables
efficient development of Recurrent Neural Networks, how to train them and what
they can accomplish in regard to character level language modelling. Specifically
Gated Recurrence Units and Long Short Term Memory are the focal point of
the training and language modelling. Choice of data sets, hyper parameters and
visualization methods, aims to reproduce parts of [KJL15]. More broadly RNN
as a concept is explored through computational graphs and back propagation.
Several concrete software tools written in python 3 is developed as part of the
project, and discussed briefly in the thesis.
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Summary (Danish)

Målet for denne afhandling er en udforskning af de mekanismer og værtøjer
der muliggør efficient udvikling af Recurrent Neurale Netværk, hvorledes de
optimeres og hvad de bibringer til sprogmodellering på bogstavniveau. Gated
Recurrence Units and Long Short Term Memory er de specifikke RNN imple-
menteringer, som optimering og sprogmodellering baserer sig på i afhandlingen.
Valg af hyperparametre, data sæt og visualisering, sigter efter at reproduce-
re dele af resultaterne fra [KJL15]. RNN som mere abstract koncept udforskes
gennem beregningsgrafer og back propagation. I forbindelse med projektet er
udviklet en håndfuld software værktøjer skrevet i Python 3 som kort beskrives
i afhandlingen.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with recurrent neural networks, their architectures, training
and application in character level language modelling.

The thesis consists of a detailed introduction to neural network python libraries,
an extensive training suite encompassing LSTM and GRU networks and exam-
ples of what the resulting models can accomplish.

Lyngby, 19-02-2016

Emil Sauer Lynge
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Chapter 1

Introduction

Many real world problems face the issue of combining very localized prediction
with contextual information. The next character in a sequence is heavily depen-
dent on the immediately preceding characters, and on this input alone we can
expect to robustly predict syllables, and maybe even whole words. But without
contextual information we cannot expect these words or syllables to be coherent
in any way. Context here meaning the position in a parapragh, whether the
language is currently in first or third person, the tense of the sentence etc.

Providing a model with such contextual information, often takes the form of an
n-gram, where data from previous time steps are included explicitly by using a
sliding window, wherein several data points are concatenated into a single fea-
ture vector. This can quickly become a very computationally expensive way of
expanding the temporal scope, as model training effort usually grow super lin-
early with length of the feature vector. Other methods might seek to transform
previous data points into a lower dimensional space in order to fit a longer time
window into fewer features. This however still leaves the problem of explicitly
stating how far back relevant data might be found.

Recurrent Neural Networks introduces a way to draw on information, in prin-
ciple, indefinitely far back in the past without an explicit sliding window. By
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recursively carrying over information from a hidden layer to itself at the next
time step, a hidden state is maintained that can provide contextual information.
This works as a fuzzy window into the past, where the manner and extent to
which hidden states are maintained, defines the size of said window. Weights
between hidden layers are the parameters that defines this behaviour and they
are trainable rather than tuneable. In essence this means that stating what type
of information to retain and for how long it should be retained is for the model
to decide and only the complexity is left up to tuning.

RNNs however, are very dependent on the architecture of the implementation,
which changes performance characteristics and model complexity. As early as
1997 new architectures were shown to vastly outperform the core RNN[HS97],
with faster convergence of training outweighing the difficulties of complexly
connected networks. On the other hand simplified architectures has also been
shown, to some times provide the behaviour and performance of more complex
counterparts, as in the case of GRU and LSTM[Chu+14][KJL15]. Improving
RNN architectures is therefore less a case of introducing more parameters, and
more recognizing which connections serve which purposes, and how to provide
effective paths for errors to propagate to relevant parameters. Doing this re-
quires an understanding of the inner mechanics of the network and the means
to quickly, and with out side effects, play around with network connections.

With new tools and frameworks like Theano[Bas+12] and Lasagne [Die+15]
it’s increasingly feasible to generate a host of complex models. These tools
hides the underlying complexity greatly, making RNN widely accessible. At the
same time, complexity hidden may obscure crucial mechanics leaving a program-
mer with even less understanding of how to effectively implement a RNN. This
leaves an interesting combination of apparent accessibility and actual required
user skill.

1.1 Problem Statement

Recurrent Neural Networks is a very large family of models of varying complex-
ity. They have very interesting character level prediction features as explored
in detail in [KJL15]. I will reproduce some of these result documenting that
my network implementation yields comparable results. Furthermore, I will ex-
plore the building blocks and training process required to create well performing
RNNs. Lastly I will present a single-file program that showcase how such a net-
work could be applied in real word applications.
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Data

To make any results comparable to the ones in [KJL15] I will be using the same
two main data sources. They are simple text files that has been cleaned by
Karparthy [Kar].

2.1 War and Peace

Novel by Leo Tolstoy with very poetic and distinct language. Abbreviated as
WP.

Summary
Pages ∼ 1,225
Line count ∼ 62,000
Word count ∼ 560,000
Characters ∼ 3,250,000
vocabulary 83

With more than 1000 pages this is a very long book, and as such is one of the
more feasible targets for such a complex model that needs a lot of data to avoid
overfitting. Surprisingly the novel scores relatively high in readability measures
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1, meaning that it should be a rather easy read. In general this means words
can be expected to have few letters per word and few words per sentence.
By visual "inspection" it is also found that the author makes heavy use of direct
speech. Direct speech is interesting as it has some very structured components:

• Starts and ends with quotation marks which have very little use outside
direct speech and should be quite a robust delimiter.

• Tense will tend to be in present.

• Certain pronouns will be much more likely than usual eg. I, you, me etc.

Especially newline quotation marks and the likes were reported by [KJL15] to
be well predicted by LSTM.

It is important to note that the vocabulary size of 83 characters diverges from
the 87 characters reported in [KJL15]. This is primarily because I have chosen
to decode the characters rather than reading them in as raw bytes. The text
file is UTF8 encoded, which means that non sc ASCII characters will take up
two or more bytes per character, due to a special scheme where the first bits are
used to encode the number of bytes the character consists off. In the text this
applies to the following characters:

UTF code point bytes occurrences
à U+00E0 c3 a0 4
ä U+00E4 c3 a4 1
é U+00E9 c3 a9 1
ê U+00EA c3 aa 11

BOM U+FEFF ef bb bf 1

The byte c3 in 4 first special characters recurs simply because they are close
together in the character table. The BOM character is a special character that
can occur as the very first character in a stream.
All in all these 5 characters represent 8 unique bytes thus accounting for 3 bytes
"missing" in my vocabulary leaving 1 unaccounted for. The missing byte is the
carriage return character \r which signals that enter has been pressed and the
line should be "reset". In the data set this character always precedes the new-
line character \n. My implementation has been written in Python 3 which has
default newline conversion that translates such \r\n byte pairs into a single \n
newline character. I have chosen to keep this default behaviour for two reasons

1Checked by pasing text in here: http://www.editcentral.com/gwt1/EditCentral.html
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• Their use in the text is effectively as a single character and treating them
as two separate characters, would artificially increase model performance.

• A lot of the models had already been fully trained by the time I discovered
what this "missing" byte was caused by. Rather than scrap those models
along with the days and weeks of GPU time that trained them, it will just
have to be accounted for in my analysis.

2.2 Linux Kernel

Source code written in C from the linux project. Abbreviated as LK.
Summary
Functions ∼ 8700
Variables2 ∼ 5000
Line count ∼ 241,000
Word count ∼ 760,000
Characters ∼ 6,200,000
vocabulary 101

The data is a concatenation of all header and source files that constitutes the
linux kernel. The kernel is the core of an operating system and handles access
to the hardware such as CPUs, RAM, disks and other devices. The language
features variable declaration, ";" to delimit statements and "" to encapsulate
scopes which makes the text very structured. Additionally, the code is well
indented and follows common C guidelines for formatting. Apart from raw
code, the data set includes a lot of inline comments in natural language such as
function documentation and license information.

2The number of unique variable names
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Chapter 3

Theory

3.1 Nodes in networks

Visualization of networks and tools for computing their output and gradients,
relies on an approach that seeks to map out any mathematical expression as a
graph. This section is a short introduction to the terminology I will be using,
how to decode computation graphs and what concrete tools can be used for
node-centric computing.
This section assumes that the reader is familiar with the terms from basic graph
theory, especially relating from directed graphs. A non-exhaustive graph glos-
sary can be found in A.2.1.

3.1.1 Terminology

To discuss the architecture of RNNs I will use a node centered terminology, in
which all parts of the network is represented as a node in a graph. On a broad
level I will be referring to nodes as belonging to one of 3 classes:

• Static All leaf nodes in the graph. i.e. nodes for which the output is static
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and does not depend on an input. Note that this also includes weight
matrices and other parameters as well as the raw data inputs.

• Operator All nodes that has both input and output. This type of node
occurs every time some data is manipulated. The number of inputs de-
pends on the operator type. e.g sigmoid transform takes only one input,
matrix multiplication takes 2 inputs exactly and sum takes an arbitrary
number of inputs.

• Cost An operator node with no parent that produces a scalar value. It
takes as inputs all an estimated outputs and a ground truth static node
and from these calculates some cost measure.

When discussing the Theano library in 3.10 this way of looking at computa-
tions will become central.

As an illustration of this take the computation

XW + b = y (3.1)

Suppose we have estimated a weight matrix West with known input X , bias b
and target value y and want to compute a cost based on the Sum of Squared
Errors henceforth SSE.

CSSE(West) = (yest − y)T (yest − y) (3.2)

This can be computed by laying it out as a graph with 4 static input nodes
representing West, X , b and y, and 6 operator nodes as seen in figure 3.1(a).
The symbolism is as follows:

• Square nodes represents data and they never manipulate other data. The
black squares are static nodes whilst light gray are "imaginary" nodes that
are simply there to increase readability. They are imaginary because they
do not really exist in the computation, but should be seen as labels on the
output of an operator node.

• Round nodes are operator nodes. They have symbols that designate the
type of operation they perform on the input. A full node symbol legend
can be found in the appendix A.1

The last 3 operator nodes together comprise the SSE computation. The inner
workings of such cost metrics is not necessarily relevant and for clarity it can
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C(West)

West

ŷ

yX b

(a)

C(West)
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ŷ

yX

SSE

b

(b)

Figure 3.1: Node representation of a computation that calculates the sum of
squared errors associated with Xest

be reduced it to a single cost node in the graph as done in 3.1(b).

To obtain the resulting cost of the network, values of all static nodes are fed
forward, by passing output data along the edges until it reaches the node for
which we want to know the output. Along the way operator nodes may hold
back inflowing data until all its parent nodes have passed along their output.
This operation is called a forward pass, although in practice an implementation
may very well start of traversing the graph backwards. The key part is that the
data will always flow forwards in the graph.
In fact it is very convenient to implement the forwards pass by calling back
through the graph recursively as seen in snippet 3.1.

3.1.2 Why nodes?

At first glance this node approach can seem overly convoluted, but it provides
some important concepts that become very helpful when dealing with complex
computation such as RNNs. I will very shortly layout the reasoning for this
approach and in later sections go into detail with certain aspects.
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# node1.py

class ForwardNode:

def __init__(self, *input_nodes):

self.output = None

self.input_nodes = input_nodes

@property

def in_values(self):

return [inp for inp in self.input_nodes.forward()]

def forward(self):

if self.output is None:

self.output = self.op(*self.in_values)

return output

Snippet 3.1: Minimal node class that implements forward pass. Node.op is
an abstract method that returns the output of node operation
which any concrete implementation should define.

3.1.2.1 Abstraction

Calling something a node is akin to defining a function, and in doing so labelling
a sequence of computations under a single name. In the case of the + node from
figure 3.1 there is just the one computation in the sequence. But by treating a
whole subcomponent as a composite node, as seen with the cost metric in 3.1b,
we can hide several computations inside one node. The use of functions partly
serves to avoid code-repetition, but more importantly it hides the underlying
complexity allowing the programmer to think in abstract terms and focus on
how concepts interact. In much the same way the abstract term of cost node

allows for a generalized computation network, that illustrates how data interacts
with the cost metric, without the concrete cost implementation cluttering the
graph.
It is important to realize that nodes cannot just be perceived as glorified func-
tions. The type of node indeed represents no more that what could be expressed
by a function, but the input and output together with the underlying function
is what constitutes the node.

Recurrent neural networks has many such complex interactions, both in low
level context such as the inner workings of non-linearities, and on a high level,
with several hidden states interacting across layers and time. With a node
centered approach it is programmatically simple to swap out components and
visualize how those components would affect the system.
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3.1.3 Backpropagation

The ubiquitous method of training neural networks is by iteratively feeding
forward output with given parameters and back-propagating error gradients that
are then used for adjusting these. Programmatically defining such a network
using node objects that inputs from, and outputs to, other node objects makes it
easy to implement a computation of partial derivatives using the chain rule. As
long as we can assert that a node object always computes the correct gradient
given correct input any combination of interconnected node objects are also
assured to compute correct gradients for the network as a whole. We can thus
have relatively few so-called unit tests for every node class and be guaranteed
correct gradients anywhere in any network. Additionally, node objects makes
the bookkeeping simple as every object can simply store its own state, references
to parents and children etc.

3.2 Automatic differentiation

As mentioned briefly in 3.1.3 calculating the gradient of an error wrt some pa-
rameter is the backbone of training neural networks. This section will explain
how nodes in a computational network uses the chain rule for derivatives to
compute the gradient for any parameter - a method called Automatic Differen-

tiation (AD).

In 3.1.1 the cost is a sum of squared errors of a linear equation and the so-
lution can be derived by Ordinary Least squares Estimation, OLE. In the case
of neural network however, non-linearities are introduced that makes solutions
space non-convex whereby such clear-cut solutions cannot be derived.

Consider the slightly more complex example in figure 3.2. This is a standard
neural network with 2 hidden layers for which the output can be written as:

ŷ = ϕ[ϕ(XW1 + b1)W2 + b2]W3 + b3 (3.3)

Where ϕ is some non-linear transformation e.g tanh. Given some estimate for
the parameters Wl we now want to find some direction that minimizes the SSE
cost function.

∂C

∂Wl

= (ŷ − y)
T
(ŷ − y) (3.4)
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C(West)
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W2 SSE
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(a)

C(West)

W3

b2

h2

h1

ŷ
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1
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2
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Figure 3.2: Node representation of a standard neural network with 2 hidden
layers. 3.2b represents the same network as 3.2a with a slightly
more compact way of showing simple chains of connectivity and
has numbering on some, otherwise unnamed, operator nodes.
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It is possible to write out the formulas for all parameter gradients and hardcode
these into the optimizer program. There are some unfortunate downsides to
such an approach:

• Copying errors could become a problem as the formulas may be several
lines of code - especially for parameters such as W1 that lies "hidden"
beneath 2 nonlinear transformations

• The resulting code would be very difficult to update as even small changes
to the overall network architecture would require re-derivation of all for-
mulas

• It might be very inefficient as some expression would appear in several of
the formulas. Intermediate results could be stored for reuse, but this might
introduce yet more complexity that makes updating even more difficult.

A simpler approach is to exploit the chain rule which states that

∂y

∂x
=

∂y

∂z

∂z

∂x
(3.5)

Using this we could as an example define the gradient of the cost for wrt W2 as

∂C

∂W2

=
∂C

∂ŷ

∂ŷ

∂W2

(3.6)

Which can be expanded to a product over the partial derivatives for every single
operation from C to W2

=
∂C

∂ŷ − y

∂ŷ − y

∂ŷ

∂ŷ

∂h2W3

∂h2W3

∂h2

∂h2

∂h1W2 + b2

∂h1W2 + b2
∂h1W2

∂h1W2

∂W2

(3.7)



14 Theory

Where the partial derivatives are

∂C

∂ŷ − y
=

∂

∂ŷ − y
(ŷ − y)

T
(ŷ − y) = 2 (ŷ − y) (3.8)

∂ŷ − y

∂ŷ
= I (3.9)

∂ŷ

∂h2W3

=
∂

∂h2W3

h2W3 + b3 = I (3.10)

∂h2W3

∂h2
= W3 (3.11)

∂h2

∂h1W2 + b2
=

∂

∂h1W2 + b2
ϕ
(

h1W2 + b2
)

=
(

1− tan2
[

h1W2 + b2
])

(3.12)

∂h1W2 + b2
∂h1W2

= I (3.13)

∂h1W2

∂W2

= h1 (3.14)

The product of these, yields the result (leaving out the ones matrices and vec-
tors)

∂C

∂W2

= 2 (ŷ − y)W3

(

1− tan2
[

h1W2 + b2
])

h1 (3.15)

Additionally the gradient for every node in between W2 and SSE can be written
as products between intermediate results and partial derivatives. To clarify the
relationship between equations and the computational graph in figure 3.2, any
node that is not explicitly named will be represented as Nj where j is the number
given to it in the graph.

∂C

∂SSE
= 1 (3.16)

∂C

∂ŷ
=

∂C

∂SSE

∂SSE

∂ŷ
= 1 · 2 (ŷ − y) = 2 (ŷ − y) (3.17)

∂C

∂N3

=
∂C

∂ŷ

∂ŷ

∂N3

= 2 (ŷ − y) I = 2 (ŷ − y) (3.18)

∂C

∂h2
=

∂C

∂N3

∂N3

∂h2
= 2 (ŷ − y)W3 (3.19)

∂C

∂N2

=
∂C

∂h2

∂h2

∂N2

= 2 (ŷ − y)W3

(

1− tan2 [N2]
)

(3.20)

= 2 (ŷ − y)W3

(

1− tan2
[

h1W2 + b2
])

(3.21)

Note that ∂C/∂SSE = 1 because SSE is the cost function, and computationally
this can just be seen as seeding the algorithm.
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# node2.py

class BackwardNode(ForwardNode):

def __init__(self, parent, *input_nodes):

self.output = None

self.grad = None

self.input_nodes = input_nodes

self.parent = parent

def backwards(self, input_node):

if self.grad is None:

self.grad = self.parent.backwards(self)

wrt_idx = self.input_nodes.index(input_node)

dout_din = self.pdev(wrt_idx, self.output, *self.in_values)

return self.grad * dout_din

Snippet 3.2: Minimal node class that implements backwards pass. Node.pdev

is an abstract method that returns the partial derivative of node
output wrt some input index, which any concrete implementation
should define. Note that this class inherits from ForwardNode

from snippet 3.1

An algorithm using above procedure does not need to expand the formula as
done in (3.21). If the proper bookkeeping is done in the forward pass (See figure
3.1), stored output can simply be used directly without worrying about how
that value came to be.
In this way cost gradients can efficiently be calculated for any node, by re-
cursively propagating ∂C/∂SSE backwards through the network. At every node
∂Nout/∂Nin is computed using stored outputs, and the chain rule is applied by
multiplying with ∂C/∂Nout received from the parent node to yield ∂C/∂Nin. A
minimal example of such a node object can be seen in figure 3.2.

3.2.1 Dealing with multiple outputs

Whilst the code example in 3.2 will work for the network in figure 3.2 it does so
only because no nodes outputs to more than 1 other node. Consider instead the
network in 3.3 where the hidden layers share the same weighting matrix. From
3.2 it is known how to compute ∂C/∂N1 and using this value the gradient of the
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C(West)

b2

h2

h1

ŷ

Wout

b

b3

1

W1 y

SSE

4

X

2

3

5

Figure 3.3: Node representation of an unusual neural network with 2 hidden
layers. Note reuse of W1 which is generally a bad idea, but illus-
trates a simple case where a node has several paths to C

cost wrt W1 can be written as

∂C

∂W1

=
∂C

∂N1

∂N1

∂W1

(3.22)

Where

∂N1

∂W1

=
∂

∂W1

W1h
1 (3.23)

Remember that h1 is a function of W1 so the product rule applies

∂N1

∂W1

=

(

∂

∂W1

W1

)

h1 +W1

(

∂

∂W1

h1

)

(3.24)

Where

∂

∂W1

h1 =
∂h1

∂W1

(3.25)

=
∂h1

∂N4

∂N4

∂N5

∂N5

∂W1

(3.26)

Combining equations 3.22, 3.24 and 3.26

∂C

∂W1

=
∂C

∂N1

[(

∂

∂W1

W1

)

h1 +W1

(

∂h1

∂N4

∂N4

∂N5

∂N5

∂W1

)]

(3.27)

=
∂C

∂N1

h1 +
∂C

∂N1

W1

(

∂h1

∂N4

∂N4

∂N5

∂N5

∂W1

)

(3.28)
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Realizing that W1 = ∂N1

∂h1

=
∂C

∂N1

h1 +
∂C

∂N1

∂N1

∂h1

∂h1

∂N4

∂N4

∂N5

∂N5

∂W1

=
∂C

∂N1

h1 +
∂C

∂N5

∂N5

∂W1

(3.29)

And h1 = ∂N1

∂W
1

if h1 is regarded as independent of W1

∼ ∂C

∂N1

∂N1

∂W1

+
∂C

∂N5

∂N5

∂W1

(3.30)

Recognize that this result is sum over derivatives attained from the outgoing
connections using the method in 3.2.

Generally it turns out that a real valued (not symbolic) cost gradients for
a node can be computed by such accumulation over derivatives from outgoing
edges.

N j =

∀k∈PNj
∑

(

Nkg(Nk, Nj)
)

(3.31)

Where

• PNj
is the set of nodes that are parents to node j

• N is the computed value of the cost gradient wrtN

• g(Nk, Nj) is the partial derivative ∂Nk/∂Nj computed under the assumption
that no other children of Nk is dependent on Nj

This means that a node class need only implement a method for computing
g(self, child) with no regard to how the rest of the network is connected. A
slight rewrite to snippet (3.2) implementing this can be seen in snippet 3.3

3.2.2 Concrete implementations

In the code snippets 3.1, 3.2 and 3.3 it is noted that a concrete implementation
should contain certain methods. This is because those snippets contains con-
structs called Abstract Base Classes (ABC). An ABC represents an interface

that guarantees any concrete implementation hereof will exhibit some defined
behaviour. It can be seen as a template with "blank" methods that needs filling
out. In the case of 3.1 a template for a forward node is defined, and for this
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# node3.py

class BackwardNode2(ForwardNode):

def __init__(self, *input_nodes):

self.output = None

self.grad = None

self.input_nodes = input_nodes

self.parents = list()

for inp in self.input_nodes:

inp.register_parent(self)

def register_parent(self, parent):

self.parents.append(parent)

def backwards(self, input_node):

if self.grad is None:

self.grad = sum(p.backwards(self) for p in self.parents)

wrt_idx = self.input_nodes.index(input_node)

dout_din = self.pdev(wrt_idx, self.output, *self.in_values)

return self.grad * dout_din

Snippet 3.3: Minimal node class that implements backwards pass that allows

multiple parents. Node.pdev is an abstract method that returns
the partial derivative of node output wrt some input index, which
any concrete implementation should define. Note that this class
inherits from ForwardNode from snippet 3.1
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# node4.py

class MatMultNode(BackwardNode2):

def pdev(self, wrt_idx, output, left, right):

if wrt_idx == 0:

return right.T

else:

return left.T

def op(self, left, right):

return left @ right

Snippet 3.4: Minimal node class that implements backwards and forward pass
for a matrix multiplication operator node. The @ is a Python3.5
infix operator that does matrix multiplication such that these
expressions are equivalent: A @ B == dot(A, B). Note that this
class inherits from BackwardNode2 from figure 3.4

.

class to work a method ForwardNode.op that returns the result of some opera-
tion must be written. A class that inherits from an ABC and fills out the blank
methods is called a concrete implementation.

To exemplify how a concrete node would work snippet 3.4 shows the concrete
implementation of 3.3 for a matrix multiplication node.

These examples are of course far too simple for practical use. For more in-depth
base classes and concrete implementations that covers most normal operators,
look at the library created as part of this project call nodecentricRNN1.

3.3 Recurrent Neural Network

Recurrent Neural Networks (RNN) is a broad family of neural networks that
carry over information from earlier timesteps implicitly by including the hidden
layer from t− 1 as input when computing the layer at t.
This makes it possible for input at some t to be used at a later time, in principle
it can be carried over indefinitely. In practice however there will be restriction
on how far gradients will be backpropagated, until they vanish or explode and
have to be dropped to prevent them from dominating the computations. Fur-
thermore information will only be carried over insofar the significance/value of

1https://github.com/emillynge/nodecentricRNN

https://github.com/emillynge/nodecentricRNN
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the information preserves some kind of "magnitude" at later timesteps.

The exact mechanism for using hidden layers recurrently is varied and several
methods has been proposed since recurrent nets was introduced [Jor86]. Most
notably LSTM 3.8 and later GRU has improved the results of RNN.

3.4 Central concepts

This section will start of by introducing the simplest conceivable kind of recur-
rent neural network, a so-called vanilla network. Concepts central to recurrent
networks will then be explained using this simple network as base to which the
concepts and methods can be applied.

3.4.1 Vanilla RNN

One of the simplest type of recurrent neural networks is the Elman Network
proposed in 1990 [Elm90]. It differs from a normal neural network by having a
context layer that acts as input to the hidden layer. This context layer is simply
the hidden layer at t− 1. This means that every hidden vector hl

t at layer l and
time step t is dependent on the hidden vector hl−1

t from the layer below and
hl
t−1 which is the context from the previous time step.

hl
t = σ

(

Θcon
l hl

t−1 +Θ
lay
l hl−1

t

)

(3.32)

where Θcon
l is the context weight matrix for layer l and Θ

lay
l is the layer weight

matrix from layer l− 1 to l. Note that the hidden vector at t = 0 is always the
zero vector and at l = 0 it is the input vector xt

In the most basic implementation the topmost hidden vector is used as out-
put.

ŷt = hL
t (3.33)

but more often the output will be a projection of the topmost layer.

ŷt = ϕ
(

ΘouthL
t

)

(3.34)
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where the transformation ϕ depends on the application and desired type of
output. The projection makes it possible to adjust the number of hidden units
in the recurrent layers, independently of the shape of the output.

3.4.2 Skip connections

Deep networks with several recurrent layers, makes for a long distance between
input and output which may result in vanishing gradients. A way to mitigate
this problem is to include so-called "skip connections"[Gra13]
A skip connection is a connection that bypasses layers by either passing input x
to a layer directly or allowing a layer to output directly to the output projection
ŷ . Including such connections changes the hidden update function to

hl
t = σ

(

Θcon
l hl

t−1 +Θ
lay
l hl−1

t +Θin
l xt

)

(3.35)

and the projection to

ŷt = ϕ

(

L
∑

l=1

(

Θout
l hl

t

)

)

(3.36)

In figure 3.4 a graphical representation of the network can be seen. It is fairly
cluttered, mostly because of the weights, and a more compact graph where these
weight are simply labels on the edges can be seen in figure 3.5
Skip connections are marked with red for output and blue for input. From the
graph it is easy to realize that information from an input can flow to any output
node at a later time step, even though the only explicit input is xt. This makes
it possible to solve complex problems, that rely on past information such as
the prototypical XOR problem. The main advantage is that this can be done
without having to increase the dimensionality of input vectors. Past input flows
forward implicitly via contexts instead of explicitly including them as input at
later time steps.

3.4.3 Character level network

To work with character level prediction the network has to handle input and
output that is categorical. This is done using so called one hot encoding where
every character ck is treated as a class of its own and the input that codes for
class k is a unit vector ek of length Nv where

ei =

{

0 for i = k
1 for i 6= k

(3.37)
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Nv is the size of the vocabulary which is the collection of possible characters
that the model can handle.
To obtain output the softmax function is used[Gra13] as projection transforma-
tion ϕ in (3.34, 3.36)

σ(z)k =
ezk

∑Nv

j ezj
= ŷk (3.38)

From the formula it is apparent that softmax guarantees: 1) non-negative el-
ements in ŷ . 2) ŷ has a sum of 1. Therefore softmax is a valid probability
density function and ŷ can be seen as a discrete probability distribution where

P (yt = ek|xt) = σ(z)k = ŷk (3.39)

This distribution is called the coding distribution. To associate this coding
distribution with a scalar cost categorical crossentropy is used

C(ŷ ,y) = −
Nv
∑

i=1

(yilog(ŷi)) (3.40)

= −log(ŷk) |ek = y (3.41)

The cost is works for feeding a single letter through the network, but usually
whole sequences of input/output is evaluated at once for efficiency and ease
training of hidden to hidden weights.

X =
∣

∣x1 · · · xT

∣

∣ Y =
∣

∣y1 · · · yT

∣

∣ (3.42)

which gives the following cost metric

C
(

Ŷ ,Y
)

= −
T
∑

t=1

(

Nv
∑

i=1

(ytilog(ŷti))

)

(3.43)

= −
T
∑

t=1

(log(ŷtk) |yt = ck) (3.44)

= −log

(

T
∏

t=1

P (yt = ck|xt)

)

(3.45)

This translates to the negative log-likelihood of correctly predicting the output
sequence Y

3.4.4 Prediction

When discussing prediction in section one must distinguish between the output
projection ŷ which is a coding distribution and a prediction ê which is a one-hot
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vector.
The prediction is generated by mapping the ŷ → ê using one of the following
methods.

Maximum likelihood sets the highest probability in ŷ to 1 whilst zeroing
all other elements.

êi =

{

1 for yi = max(ŷ)
0 otherwise

(3.46)

Random draw chooses character ck with probability ŷk. There are 3 steps
in this process

1) A random number drawn from the uniform distribution r ∼ U(0, 1)

2) A cumulative distribution generated from ŷ

ŷcumk+1 =

k
∑

i=1

ŷi ŷcum1 = 0 (3.47)

3) The prediction vector êt+1 is generated using

êi =

{

1 for ŷcumi ≤ r < ŷcumi+1

0 otherwise
(3.48)

Random draw with temperature chooses character in the same ways a
random draw, but uses a slightly different nonlinearity than (3.38). This method
is therefore not just a mapping, but also change the way ŷ is produced by using
this slightly modified softmax function.

σ(z)k =
e
zk/τ

∑Nv

j ezj/τ
= ŷk (3.49)

Where τ is a temperature parameter that controls how strongly to prefer highly
probable characters.
For τ = 1 the parameter has no effect
When the temperature approaches zero τ → 0+, the selection is the same as
maximum likelihood.
When the temperature goes to infinity τ → ∞ the selection is completely ran-
dom with the values in ŷ having no influence on the outcome.
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3.4.5 Cold start vs Warm up

In 3.4.1 the Elman network was defined to have a zero valued hidden vector
at t = 0 and this is usually the case for implementations of RNN. This initial
state can also be treated as a parameter to be learned. Another approach is to
seed the model with a sequence sseed by feeding it through the network before
feeding in the real input. This will change hidden state such that it is more
representative of a state "in use".

Wether to use warm up depends the training data available and the concrete
application of the trained model. In this project the training data is one large
contiguous text string, making the start up phase a very small part of the whole.
Normal operation therefore relies on a state that is "in use", which is why some
warm up will be used to kick start a text generation

Note that I do not consider transferring a hidden state from the end of a mini-
batch to the start of another, as being warm up.

3.5 Text generation

In principle a RNN can input any time-series X and be trained to predict a
time series Y from a completely different domain or source. For example one
might input an aggregate of financial data at time t and try to predict the price
of a specific stock at t+ 1. One of the more interesting uses of RNN is however
to predict the next element in the input sequence. For the above example this
would be analogous to predicting the stock price at time t + 1 given the stock
price at time t. To create such a network the output is defined as

yt = xt+1 (3.50)

In this project the input is a text string with length T + 1 and the analogous
task would be to predict the character ct+1 given ct. This string has a one-hot
matrix representation S where the columns are characters

st = ek|ct = ck (3.51)

Input and output is the defined as

yt = st+1 xt = st for = 1...T (3.52)

And the cost of feeding a string sequence S into the network is

C(S) = −log

(

T
∏

t=1

P
(

yt = st+1|st
)

)

(3.53)
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The negative log-likelihood of correctly predicting the next character in the
sequence over all time steps.

Predicting a single character is of very limited use, but since the sole input to
the network at any time step t is a single character, it is possible to feed the
character prediction êt back into the network as xt+1 which in turn will produce
a new prediction êt+1. This can be repeated indefinitely such that sequences
of arbitrary length can be generated. In figure 3.6 a network can be seen that
generates 4 new letters given a single character as input.

In practice, it is the best strategy is to define some sentinel esen, that terminates
the character generation.

3.6 Optimizing Weights

In sections 3.1.3 and 3.4.1 the methods for obtaining error gradients has been
covered. What remains is a mechanism for using the gradients to adjust model
parameters in such way, as to improve model performance. The core loop is the
following:

• Forward propagate data to obtain cost measure.

• Backpropagate derivatives wrt obtained cost, to all parameter nodes.

• For every parameter subtract the gradient scaled by some factor. Different
update strategies mainly focus on optimal choice of this step size.

Usually this core loop will be extended updating inputs to the network in order
to cycle through a data set, as well as wrapping the loop in another loop that
repeats training for a number of epochs. See snippet 3.5 for a simple implemen-
tation of a 1 epoch training function. The exact method of determining and
applying the step size is called the update function.

3.6.1 RMSprop

In this project, an update method called Running Mean Squared RMSprop[TH12]
is used. It uses a per gradient, running average calculate a factor used for de-
termining step size for every minibatch. A step size based on a running average
will smooth out sudden changes in gradients so the step size is more robust
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# train.py

import build_net, load_data

from nodecentricRNN import ConcatenateNode, EntropyCostNode

net = build_net.build(arch="VRNN", lay=2, hu=256, features=83)

Y_hat, input_nodes = ConcatenateNode, list()

for _ in load_data.seq_len:

in_node, y_hat = net.add_t_step()

Y_hat += y_hat

input_nodes.append(in_node)

def train_epoch(stepsz=10^(-5)):

for i in range(load_data.n_batches):

X, Y = load_data.load(i)

for in_node, x in zip(input_nodes, X):

in_node.update_input(x)

cost = EntropyCostNode(Y, Y_hat)

cost.forward_prop()

cost.start_backprop()

for param in net.parameters:

param -= param.gradient * stepsz

cost.backward_reset()

Snippet 3.5: A very naïve implementation of RNN training
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against sudden changes in the gradients caused by very localized phenomena.

The running average is calculated as

rit = ρrit−1 + (1− ρ) · git (3.54)

where gi is the ith gradient to be trained and ρ is the decay factor that deter-
mines how aggressively to smooth. The running average "window" is reciprocal
to ρ such that

window ≈ 1

ρ
(3.55)

The step size becomes

ηit = λ
ηit−1√
rt + ǫ

(3.56)

where λ is a hyper parameter called the learning rate and ǫ is a small value
added for numerical stability.
With the step size the new parameter value is calculated as

wi
t+1 = wi

t − git · ηit (3.57)

In this project the learning rate λ changes throughout the training process as
prescribed in [KJL15], such that the step size becomes smaller and smaller for
each epoch after some. The reason is that too high λ may cause the error to
stagnate, as the model gradient descent overshoots repeatedly. By slowly de-
creasing it, at some point it will start converging, only to stagnate again if the
learning rate is not decreased further. If λ is too small however, the training will
not seem to converge because of the small step size. Therefore it should be kept
just low enough that convergence doesn’t stagnate (or reverse), but seemingly
no lower

Specifically the model is allowed to train for 10 epochs before the learning rate
is decreased. After that, it is decreased by 5% every epoch.

3.7 Long term gradient problem

The main advantage of RNN is the ability of an input at time step k to influence
the error gradient at a later timestep t and therefore gain predition power over
large time scales. In this section I will briefly discuss 2 problems that may arise
over particularly long sequences (large t)
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• Vanishing gradients, which cause the model to lose long term relationships

• Exploding gradients, which cause the model to lose local predictive power
due to long term relationships

The basis of this analysis is [PMB12] who bases their argument on this simple
representation of the RNN state at time t

xt = Wrecσ(xt−1) +Winut + b (3.58)

And the corresponding error gradient wrt. model parameters θ

∂εt
∂θ

=
∑

1≤k≤t

(

∂εt
∂xt

∂xt

∂xk

∂+xk

∂θ

)

(3.59)

The gradient of the error wrt. model parameters at time t is a sum of contri-
butions from every timestep k ∈ [1...t]. Each of these contributions in (3.59)
include the factor

δxt

δxk
=
∏

t≥i>k

(

δxi

δxi−1

)

(3.60)

Initially we will only deal with the relatively simple model where the trans-
formation σ is linear by setting σ to be the identity function and using (3.58)

δxt

δxk
=
∏

t≥i>k

(

δ

δxi−1

Wrecσ(xi−1)

)

(3.61a)

=
∏

t≥i>k

Wrec = (Wrec)
t−k

(3.61b)

Since we can ignore the second term which doesn’t depend on xi−1

For brevity l = t− k is introduced.

Now we consider another factor of the contribution
∂εt

∂xt
expressed in a basis

composed of the eigenvectors Q of Wrec.

∂εt
∂xt

=

N
∑

i=1

ciq
T
i (3.62)
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In this new basis we write the product of the two factors (3.61) (3.62)

δεt
δxt

δxt

δxk
=

N
∑

i=1

(

ciq
T
i

)

(Wrec)
t−k (3.63a)

=

N
∑

i=1

(

ciq
T
i (Wrec)

l
)

(3.63b)

expand using qT
i (Wrec)

l
= λl

iq
T
i

=

N
∑

i=1

(

ciλ
l
iq

T
i

)

(3.63c)

= λl
j

N
∑

i=1

(

ci
λl
i

λl
j

qT
i

)

(3.63d)

if j has the property that cj 6= 0 and cj′ = 0 ∀j′<j then

= cjλ
l
jq

T
j + λl

j

j−1
∑

i=1

(

0
λl
i

λl
j

qT
i

)

+ λl
j

N
∑

i=j+1

(

ci
λl
i

λl
j

qT
i

)

(3.64a)

= cjλ
l
jq

T
j + λl

j

N
∑

i=j+1

(

ci
λl
i

λl
j

qT
i

)

≈ cjλ
l
jq

T
j (3.64b)

As |λj | >
∣

∣λ′
j

∣

∣ ∀j′>j and therefore
∣

∣

∣

λj

λj′

∣

∣

∣

l

≈ 0 when l → ∞
The condition on j simply translates to the largest eigenvalue of Wrec which

correspond to a eigenvector which has a non-zero projection of
∂εt

∂xt

Recall that l is the temporal distance from current step t to a gradient contribu-
tion from step k. As such it is easily realized that as t increases the contributions
with large l will begin to dominate the gradient. Depending on the eigenvalue
λj this may cause one of the 2 problems prefacing this section

gk(l) ∝ λl
j

{

0 if λl < 1

∞ if λl > 1
(3.65)

It is from this that the following conclusion comes:

“It is sufficient for the largest eigenvalue λ1 of the recurrent weight matrix to
be smaller than 1 for long term components to vanish (as t → ∞) and necessary

for it to be larger than 1 for gradients to explode.” [PMB12]
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The implication of this is that small eigenvalues will guarantee vanishing gra-
dient problems, whereas large eigenvalues risk making the gradients explode iff
the first non-zero loading cj correspond to a λj > 1.

Furthermore we can deduce that

• One of the two problems will occur given high enough l unless λj = 1
which is highly unlikely.

• The rate of explosion/vanishing is exponentially tied to how far from 1
the eigenvalues of Wrec are.

This deduction only holds for linear σ but the main insight has been generalized
to non-linear σ by [PMB12] with the main difference that tipping point for λj

is dependent on the σ used.

3.7.1 Gradient clipping

To curb the mentioned gradient problems, a very simple solution called gradient
clipping is often applied. The concept is simply to introduce restrictions in the
gradient back propagation that constrain the values of the gradient. Usually
this is done by setting a cap on the norm of the gradient vector and truncating
or scaling values such that the constraints are satisfied. Typical choice of norm
is L1, L2 or L∞, the exact choice not being crucial to the methods described
below.

In [PMB12] the proposed implementation constrains the gradient to have a
norm below some threshold. If this threshold is overstepped the gradient vector
is scaled the factor

threshold

‖ĝ‖ (3.66)

Which ensures that the norm of the gradient is exactly equal to the threshold.

This method is a variation of a truncation implementation proposed by [Mik12].
Instead of scaling the vector, the individual gradient values is truncated at every
node to be in some range e.g [−15; 15]. This method is used by [KJL15] where
it is reported that truncating to [−5; 5] yields good results for the data sets in
question.
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3.8 Long Short Term Memory

One of the first effective expansions of the RNN architecture was Long Short
Term Memory proposed by [Gra13]. This architecture introduces some new
concepts that will be discussed in this section. An overview of the architecture
can be seen in figure 3.7, which may be a helpful reference when trying to
visualize the concepts explained.

3.8.1 Memory Cells

In LSTM there are 2 sets of hidden units in each layer. The hidden state is
we know it from VRNN, that feeds into other layer and acts as an out to the
"outside". The memory cells however is an internal hidden state that is not
directly fed to other layers. The memory cell vector has same size as the hidden
state and acts as a more long term storage from context. This can be done as
the cells are not directly exposed to the output such that contextual information
not relevant in the current time step can be kept back to be exposed at a later
time. In the same way the input to these cells is not directly exposed, such that
a cell can be directly copied over from a t− 1 at one point in the sequence, and
copied directly form the input to the layer at another point.

3.8.2 Gates

The most significant change over VRNN is the addition of so-called gates. These
are effectively parameters computed on the fly, controlling the data flow between
other nodes in the network. The main purpose of these gates in LSTM is to
control data flow in and out of the memory cells and thus the degree of exposure.

A gate i from node A to node B with associated output and input vectors
of length N , constructs a vector of the same size with values in the range [0; 1].
This vector is then applied by elementwise multiplication on the output of node
A and result is sent to the input of node B.

Bin = Aout ⊙ i (3.67)

Usually the construction of the gate vector is a linear combination of other nodes
with a sigmoid transformation.
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Figure 3.7: A model of a LSTM. All information flows from left to right, and bottom to top. Transformation nodes
are labelled with the type of transform. Edge labels denote what linear transformation is performed on the
data flowing along it. Blue lines are data from raw input, red are data flowing to output
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In LSTM there are 3 gates:

Input gate ilt controls the amount of incoming data from the layer below and
the previous hidden state to store for later use in the memory cells.

ilt = σ
(

Whl−1ilh
l−1
t +Wht−1il

hl
t−1 +Wcolc

l
t−1 + bil

)

(3.68)

It is applied to a candidate memory cell vector based on the layer below and
the previous hidden state

c̃lt = tanh
(

Whl−1clh
l−1
t +Wht−1cl

hl
t−1 + bcl

)

(3.69)

Forget gate f l
t controls the amount of data to retain in layer l from the

previous memory cells to the current. Although it is called the "forget" gate it
can be helpful to think of it as a retention gate, as high activation, results in
high retention rather than high forgetfulness.

f l
t = σ

(

Whl−1f lh
l−1
t +Wht−1f lh

l
t−1 +Wcf lc

l
t−1 + b

f
l

)

(3.70)

It is applied directly to the previous memory cells and together with the flow
from the input gate it generates the current memory cells.

clt = f l
t ⊙ clt−1 + ilt ⊙ c̃lt (3.71)

From (3.71) we see that the are 3 modes for generating a memory cell

• with full retention and no input it is possible to "copy paste" a memory
cell from previous step to next. Saving the value for later use.

• with no retention and full input a cell can be overwritten completely rep-
resenting the "newest" data available

• any mix of these will result in a gradual replacement of memory cells that
could for example compute running averages and other values with a kind
of inertia.

Output gate ol
t controls the amount of data flowing from the layer l memory

cell at time t to the corresponding hidden unit. As the hidden unit is the output
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of the layer this can be seen as the amount of exposure from the memory to the
output.

ol
t = σ

(

Whl−1olh
l−1
t +Wht−1ol

hl
t−1 +Wcolc

l
t−1 + bol

)

(3.72)

It is applied to a candidate hidden state vector tanh
(

clt
)

to create the hidden
state

hl
t = ol

t ⊙ tanh
(

clt
)

(3.73)

Together with 3.71 we can see that the layer can at any point selectively chose
to output new information, more sluggish inertial context or very long term,
almost static, variables. At the same time data cen be held back such that it is
only exposed when relevant.

The crucial part of the system is that the computation of a gate vector is de-
pendent of all the information avaibleble to the system, thus making it possible
to quickly open and close gates depending on the situation.

3.9 Gated Recurrent Unit

A recent addition to the RNN family is the Gated Recurrent Unit (GRU) pro-
posed by [Cho+14]. It is very similar to LSTM, in that it uses a combination of
gates to adjust exposure from input to the hidden states. It does however not
use memory cell, instead opting to fully expose it state to the output, thereby
also doing away the output gate. Switching between full retention, mixed and
forget mode is implemented using a reset gate r and an update gate z.

Reset gate controls the exposure from the previous hidden state hl
t−1 to a

candidate h̃l
t

rl
t = σ

(

Whl−1rh
l−1
t +Wht−1rh

l
t−1

)

(3.74)

h̃l
t = tanh

(

Whl−1hlh
l−1
t +Ul

[

rl
t ⊙ hl

t−1

])

(3.75)
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Update gate Acts as a switch that interpolates between the candidate hidden
state and the previous hidden state.

zl
t = σ

(

Whl−1zh
l−1
t +Wht−1zh

l
t−1

)

(3.76)

hl
t =

(

1− zl
t

)

⊙ hl
t−1 + zl

t ⊙ h̃l
t (3.77)

Full retention is simply achieved by not activating zl
t, which simultaneously

opens for the previous hidden state and closes the incoming candidate. Con-
versely forgetting is achieved by full activation if zl

t and not activating the reset
gate rl

t.

The model thus has most of the features of LSTM with fewer trainable param-
eters and shorter paths from output to the hidden state which may result in
faster convergence. It does however lack the option to not expose it "memory"
to the output, which may hurt long terms memory. Others work has indicated
that GRU and LSTM may perform very similarly[Chu+14], but the fewer pa-
rameters, and smaller memory footprint of GRU models may be advantageous,
given similar performance.

3.10 Theano

Theano[B+10] is a library that uses a node network like the ones mentioned in
3.1 to compute network output and gradients. It has two main features that
makes it considerably faster than a simple, pure python implementation like
nodecentricRNN described in 4.1.

• The computational graph is optimized. For example by recognizing nodes
that hold the same expression and collapsing the graph such that these are
merged into a single node, thereby avoid calculating the same values twice.
Such a optimized graph trades computation time used on optimizing, for
computation time when calculating output. For training of RNNs this is
a very good trade as the same function will be called many times.

• The resulting computation graph is the compiled into C code, and if a
cuda enable GPU is available into C-cuda. A function that interfaces with
the temporary binary produced by the compilation is then returned as
a python object to be used as any other function. Doing calculations is
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lower level languages such as C is often much faster because of the lack
of checks and garbage collection. The most Python interpreters, including
the standard cPython are themselves implemented in C, so it is no surprise
that pure C is strictly faster.

By doing these 2 things, Theano can provide performance comparable, or even
better[Bas+12], than what can be achieved by framework in other languages
that interfaces natively with C, such as Torch which is written in lua.

This does, however come with the cost of compilation time, as the compiled
functions current has no robust way of being stored to disk. This is probably
due to the complex interfaces with Python objects in the run-time environment.

3.11 Lasagne

Lasagne[Die+15] is a neural network framework that implement a layer abstrac-
tion atop the node perspective provided by Theano. It makes it possible to view
the layers themselves as nodes, rather than the hidden vector, weight matrices
and other innards that are contained in a neural network layer. Along with
utility function such as parameter update functions, Lasagne also provides a
number of pre-set layers such as:

• InputLayer, analogous to an input node.

• DenseLayer, useful for projecting a layer to another shape such as hlast →
ŷ.

• LSTMLayer, implements a layer in a LSTM network with gates, memory
cells and everything else contained in the layer instance.

• GRULayer, like, the LSTMLayer, but implementing a GRU layer.

By using one layer as input to the next, focus can be directed towards choosing
the order in which to apply layers to the network, rather than keeping track of
the nitty gritty details and inner workings. The process layering the network is
called making the lasagne.
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Chapter 4

Experimental Setup

In this chapter I will describe the conditions under which experiments was car-
ried out, how they were structured and what choices was made that could in-
fluence the results.

4.1 Environment

Hardware All model training was conducted on a single machine. The ma-
chine has multiple CPUs and GPUs, but the software framework cannot utilize
more than one of each at any time. Multiple processes can however use the
same devices simultaneously, so timings for how long training took might not
be entirely reproducible. Especially since this project was not the only one using
these computing resources.

CPU 12 core
GPU 4 x Nvidia Titan X, 12Gb memory, 3072 cores
Memory 32Gb

At no point was any the GPU thrashing or in other ways memory bound.
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Software All software was written in python 3.5 which makes it incompatible
with 2.7, but in some cases also 3.4. The lasagnecaterer package for instance
will not run on 3.4 or below due to the usage of async and await12 syntax in
the asynchronous batch controller. All critical python packages was using the
newest available version, and in some cases development versions were used.

Any packages mentioned here that is not available through the Python Package
Index (PyPI) can be acquired though the github repositories provided in the
footnotes. These can be easily installed with the following command:
$ pip install git+https://github.com/[gitusername]/[repositoryname].git

Select library versions

• numpy (1.10.4)

• Theano (0.8.0.dev0) (A fork3 of Theano implementing @ infix operator was
used, but should not be essential for making project code run. This fork
is currently under pull request review)

• pycuda (2015.1.3)

• Lasagne (0.2.dev1)

Additionally the code for this project depends on some other, somewhat unre-
lated, software packages of mine.

• elymetaclasses (1.9)4 A collection of metaclasses for use with python 3
changing the usual behaviour of python classes.

• monutils5 A single file package created as a spin-off from this project.
Contains an asyncronous producer-consumer messages model for system
monitoring. This is used for awaiting system resources such as free gpu
devices, and providing a web GUI for monitoring batch job progress and
system load.

There are 3 seperate github repositories containing code central to this project.

1https://www.python.org/dev/peps/pep-0492/
2https://docs.python.org/3/whatsnew/3.5.html
3https://github.com/emillynge/Theano.git
4https://github.com/emillynge/python-metaclasses.git
5https://github.com/emillynge/monutils.git

https://www.python.org/dev/peps/pep-0492/
https://docs.python.org/3/whatsnew/3.5.html
https://github.com/emillynge/Theano.git
https://github.com/emillynge/python-metaclasses.git
https://github.com/emillynge/monutils.git
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• lasagnecaterer (0.3)6 All the experience with training and using RNNs
gained from this project has gone into creating this library. It seeks to cre-
ate single file containers for the models that eases the workflow of training,
testing and using a model in applications. A model consists of 5 entities:

A fridge, which is the model container.

A recipe that build atop the Lasagne library, to provide layer archi-
tectures that are customized through mixin classes. The recipe ensures
unified training, testing and prediction interfaces.

An oven that handles batch generation.

A cook that is handed the other entities and use them to provide
utility such as cross validation and automated model training.

• nodecentricRNN7 The product of the exploration of nodes and compu-
tational networks as discussed in section 3.1. It is mostly useful for un-
derstanding the how recursive gradient computations work and for solving
very simple problems. Large networks are infeasible as there are no graph
optimizations or c-extensions like in the Theano library.

• rnn-speciale8 Main repository for the project with all the miscellaneous
bits and bobs that cannot justify repositories of their own such as scripts
for data aggregation and plotting. This is mainly in internal work tool
and not very user friendly.

4.2 Crossvalidation scheme

The data set is divided into 3 parts: Training, validation and test sets in
80/10/10 proportions. There is a temporal component so the data is not shuf-
fled before partitioning. This means the first 80% of the characters in the data
set is put into the training set, the next 10% is put into validation and the last
10% is put into the test set.

4.2.1 Parameter tuning

Ostensibly only the dropout level is a tuned hyper parameter. But it is im-
portant to note that early stopping during training is done by checking the

6https://github.com/emillynge/lasagne-caterer.git
7https://github.com/emillynge/nodecentricRNN.git
8https://github.com/emillynge/rnn-speciale.git

https://github.com/emillynge/lasagne-caterer.git
https://github.com/emillynge/nodecentricRNN.git
https://github.com/emillynge/rnn-speciale.git
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validation error after every training epoch. The number of epochs to use for
training, therefore falls into a grey area where it is not a hyper parameter per
se, but it does rely on the result of a validation error. This mirrors the im-
plementation in [KJL15], but a case could be made for a practice, where early
stopping relies on a hold out partition of the training data.

The full cross validation suite took approximately 2 weeks per data set to com-
plete. This fact has to be taken into account when considering the limitations
and bound I imposed in the initial phase. Ideally there had been laxer bounds,
but any added tuning complexity may cause cross validation time to become
infeasible for this project and the resources available.

Dropout was determined by training using a predetermined set of dropout
levels and choosing the one that gave the lowest validation error. In early
training and validation, it was found that dropout from the last hidden layer
to the projection layer led to very bad performance for all model sizes. The
experiment was therefore adjusted such that dropout is only applied to the con-
nections between 2 recurrent layers. Dropout on the recurrent connections is
usually problematic and dropout from raw input to the first hidden layer is not
used by [KJL15] so neither was attempted. On models with only 1 layer, this
means there are no connections to perform dropout on and the only application
of the validation error is as early stopping criteria.

None of the initial cross validation results indicated that dropout above 30%
was beneficial and this was therefore chosen as the highest value for subsequent
tuning.

It is possible that better results could be obtained by tuning the dropout level
individually instead of using the same value for all dropout layers. But as men-
tioned above it was not feasible to double computation time by introducing such
extra hyper parameter.

Number of training epochs was determined by computing validation per-
formance after each training epoch and stopping training if no significant im-
provement has been found over the last 10 epochs. To continue training there
must be an average validation cost decrease of 5%��between epochs such that

Ct ≤ Ct−N · (1− τ)N
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Where τ is the tolerance of 5%��and N is the memory of 10 epochs. Once the
training is stopped the model with the lowest validation error is saved for further
use.

4.2.2 Learning rate

[KJL15] proposed that when using RMSprop, a starting learning rate in th range
2·10−2.2 to 2·10−3 produces stabile training results and report settling on 2·10−3.
Early results in this project found the learning rate to have a large impact not
only on convergence time, but also the performance of the converged model.
I therefore chose to do a full cross validation and testing suite for 3 different
learning rates in this range: 2 · 10−2.2, 2 · 10−2.5 and 2 · 10−3.

4.2.3 Testing

Usually one would use the tuned parameters from the cross validation to train
a new model on the concatenated training and validation set. It is however still
necessary to determine the number of training epochs using a separate data set.
Using the test set for this would defeat its purpose as it would not be truly
"unknown" to the trained model prior to testing. Therefore, I decided to reuse
the model with the best validation performance to compute the cost on the test
set without further training.
Including the validation set in a training set that is already quite large, would not
be expected to do much for generalized prediction power. This choice however,
does significantly change the temporal distance from what the model has been
trained on, to the data it is tasked with predicting. This begs the question of
what the testing thought to accomplish, my interpretation being that it should
reflect a "real life" situation where the model is not continually trained on
incoming data. With this choice the test set serves the purpose of showing 2
important things:

• Whether the validation error was low by chance. If that is the case we
expect the test error not to be coincidentally low as well and the error
should be slightly higher.

• Whether the validation error is dependent, on having the model trained
on data that is temporally close to the data it’s used on. If so the test
error will be much higher as the test set is temporally much farther from
the training set than the validation set.
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4.2.4 Initialization of hidden state

It is generally recognized that memory cells and hidden state should be initial-
ized to zero values. But [KJL15] stresses the importance of reusing the hidden
state between minibatches. Therefore the hidden states are only reset at the
beginning of an epoch rather than before every minibatch. In this context the
training, validation and test set are seen as separate epochs such that the hidden
state is reset before computing the validation and test costs.



Chapter 5

Results

This chapter is broadly divided into 2 parts. The first part of this chapter
contains the results obtained from training ∼ 350 different RNN models using
different model sizes, number of layers, architectures, learning rates and dropout
levels. Every combination was trained on both the linux kernel (LK) and war
and peace (WP) data set, producing ∼ 700 models. A large part of the project
is the reproduction of results from [KJL15], so they serve as a standard will
compare my own results to. This part divided into 3 sections: Overall test per-
formance, the generalizeablity of the models and the effect of learning rate

The second part showcase text generation that the best of these models were
able to produce and discusses the results.

5.1 Test performance

In figure 5.2 all test and validation errors can be seen for the 3 different learning
rates. The most interesting of these tables, test error for the best performing
learning rate, is shown below with the corresponding results from [KJL15] to
the right.

The results for the best performing learning rate can be seen in table 5.1. From
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LSTM GRU
1 2 3 1 2 3

W
a
rP

ea
ce 64 1.492 1.459 1.484 1.448 1.403 1.429

128 1.325 1.318 1.335 1.325 1.302 1.326
256 1.303 1.238 1.254 1.281 1.234 1.236
512 1.355 1.223 1.217 1.268 1.332 1.547

L
in

u
x

64 1.639 1.636 1.641 1.597 1.573 1.605
128 1.483 1.435 1.500 1.482 1.412 1.447
256 1.475 1.355 1.375 1.477 1.366 1.365
512 1.525 1.331 1.316 1.515 1.385 1.323

(a) Test error with learning rate 2e-2.2

LSTM GRU
1 2 3 1 2 3

1.449 1.442 1.540 1.398 1.373 1.472
1.227 1.227 1.279 1.230 1.226 1.253
1.189 1.137 1.141 1.198 1.164 1.138
1.161 1.092 1.082 1.170 1.201 1.107
1.355 1.331 1.366 1.335 1.298 1 1.357
1.149 1.128 1.177 1.154 1.125 1.150
1.026 0.972 0.998 1.039 0.991 1.026
0.952 0.840 0.846 0.943 0.861 0.829

(b) Corresponding results from [KJL15]

Table 5.1: The column labels 1,2,3 designate the number of layers in the model.
The row labels 64, 128, 256, 512 designates the model size i.e the
number og hidden units in a 1 layer LSTM model with equivalent
number of parameters

this, it is apparent that the performance obtained in this project falls short of
the standard set in [KJL15], especially for the linux kernel data set, which will
be explored further in section 5.2.
But there are important similarities in the pattern of optimal model configu-
ration. The best combination of architecture and number of hidden layers for
a given model size, seems to be invariant to the data set in both tables. Both
tables also show a tendency of GRU being almost strictly better than LSTM for
any given complexity. This tendency is even more strong in this project, where
GRU outperform LSTM for almost all combinations model size and number of
layers.

5.2 Validation error generalization

An interesting result is how well the validation error generalizes to test error,
that is whether there are significant differences between validation and test er-
rors. In this regard it is important to note that it was decided that the validation
set would not be used for training the model that computes test error. For a
justification see section 4.2.3. Therefore it is the exact same model that has
been used for computing both validation and test error.

Validation and test error for learning rate 2 ·10−2.2 can be seen in table 5.2a and
5.2b. For WP there is a very strong correspondence between the two, to such
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LSTM GRU
1 2 3 1 2 3

W
a
rP

ea
ce 64 1.492 1.459 1.484 1.448 1.403 1.429

128 1.325 1.318 1.335 1.325 1.302 1.326
256 1.303 1.238 1.254 1.281 1.234 1.236
512 1.355 1.223 1.217 1.268 1.332 1.547

L
in

u
x

64 1.639 1.636 1.641 1.597 1.573 1.605
128 1.483 1.435 1.500 1.482 1.412 1.447
256 1.475 1.355 1.375 1.477 1.366 1.365
512 1.525 1.331 1.316 1.515 1.385 1.323

(a) Test error with learning rate 2e-2.2

LSTM GRU
1 2 3 1 2 3

W
a
rP

ea
ce 64 1.502 1.468 1.490 1.458 1.417 1.439

128 1.332 1.326 1.343 1.332 1.310 1.329
256 1.304 1.236 1.260 1.283 1.235 1.239
512 1.354 1.224 1.216 1.265 1.340 1.546

L
in

u
x

64 1.483 1.465 1.462 1.433 1.396 1.422
128 1.313 1.281 1.337 1.301 1.245 1.285
256 1.277 1.184 1.190 1.291 1.185 1.189
512 1.340 1.138 1.134 1.328 1.175 1.131

(b) Validation error with learning rate 2e-2.2

LSTM GRU
1 2 3 1 2 3

W
a
rP

ea
ce 64 1.531 1.514 1.544 1.474 1.424 1.443

128 1.352 1.356 1.375 1.337 1.311 1.333
256 1.285 1.255 1.297 1.289 1.227 1.268
512 1.310 1.205 1.207 1.266 1.219 1.197

L
in

u
x

64 1.660 1.642 1.657 1.624 1.583 1.582
128 1.498 1.476 1.528 1.487 1.431 1.472
256 1.468 1.375 1.388 1.484 1.359 1.369
512 1.477 1.338 1.336 1.493 1.330 1.327

(c) Test error with learning rate 2e-2.5

LSTM GRU
1 2 3 1 2 3

W
a
rP

ea
ce 64 1.531 1.521 1.550 1.481 1.434 1.454

128 1.353 1.365 1.382 1.347 1.320 1.347
256 1.286 1.257 1.306 1.293 1.230 1.270
512 1.307 1.203 1.210 1.268 1.217 1.201

L
in

u
x

64 1.516 1.483 1.478 1.460 1.410 1.414
128 1.336 1.304 1.344 1.310 1.269 1.315
256 1.286 1.196 1.211 1.298 1.169 1.198
512 1.290 1.144 1.150 1.312 1.148 1.137

(d) Validation error with learning rate 2e-2.5

LSTM GRU
1 2 3 1 2 3

W
a
rP

ea
ce 64 1.809 1.779 3.064 1.608 1.567 1.694

128 1.544 1.573 1.876 1.434 1.409 1.502
256 1.397 1.412 1.532 1.316 1.313 1.314
512 1.327 1.303 1.348 1.274 1.225 1.234

L
in

u
x

64 1.829 1.767 1.861 1.750 1.706 1.773
128 1.586 1.540 1.609 1.548 1.523 1.573
256 1.477 1.438 1.479 1.467 1.405 1.455
512 1.494 1.364 1.371 1.538 1.381 1.362

(e) Test error with learning rate 2e-3.0

LSTM GRU
1 2 3 1 2 3

W
a
rP

ea
ce 64 1.531 1.521 1.550 1.481 1.434 1.454

128 1.353 1.365 1.382 1.347 1.320 1.347
256 1.286 1.257 1.306 1.293 1.230 1.270
512 1.307 1.203 1.210 1.268 1.217 1.201

L
in

u
x

64 1.516 1.483 1.478 1.460 1.410 1.414
128 1.336 1.304 1.344 1.310 1.269 1.315
256 1.286 1.196 1.211 1.298 1.169 1.198
512 1.290 1.144 1.150 1.312 1.148 1.137

(f) Validation error with learning rate 2e-3.0

Table 5.2: Test and validation error for 3 different learning rates. The outer-
most index in the rows is the data set: Linux Kernel and War and
Peace. The inner index is the model size which is the number of
hidden units in a LSTM with 1 hidden layer and equivalent number
of parameters in the model. The outermost column is the RNN ar-
chitecture and the innermost is the number of hidden layers in the
model. The model with lowest error in the row is written in bold
and represents the best model of a particular complexity.
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Figure 5.1: Cost for all mini batches in the data set using a 2 layer LSTM
with model size 256 and learning rate of 2 · 10−2.5. Note the how
LK har much more varied performance in the training set.
The LK data set is approximately twice as large as WP, so the x
axis are scaled differently, affecting the slope. Hidden states are
not reset between the partitions
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an extent that several test errors are actually lower than the validation error.
This indicates that the last chapters in the novel somehow follows a structure,
that is slightly more similar to the first part of the novel than the validation set
is, or that their structure is just "simpler" in some way. But for LK there is a
very large discrepancy between the performance on the validation and test set.
A possible reason is that the LK has some long term, temporal dependency not
present in the WP. This could for instance be function or variable names that is
not present in the training partition, but is part the test partition. It is in this
regard interesting that the C programming language used in LK does not permit
the usage of variables or functions that has not been explicitly declared in the
code and that every new function may introduce previously unseen variables. In
contrast, one would expect that a novel does not introduce a lot of new places
or characters in the last chapters, and thusly the model may be able to rely on
the names learned in the training partition.

To examine whether such a mechanism might be at work, the cost of every
minibatch in the two data sets are plotted in figure 5.1. The first observation
is that LK has a much more varied performance, also in the training partition.
It also looks like there is a very sharp performance decrease in LK which is not
as profound in WP. One must, however, remember that the two data sets are
of different size, and the same rate of change per character would give different
slopes in figure 5.1. For at better, and more comparable look and what happens
at the transitions between partitions, see figure 5.2

What we expect to see in these transitions is that the error rate increases sharply
when transitioning from the training partition to the "unknown" data in the val-
idation partition. A major factor in this could be the presence specific words
that the model has learned starts to decrease. One would expect that there are
used temporally localized words such as a variable name specific to a certain
function or a character which is only present in a certain chapter. These may
be trained explicitly by the model, and as it transitions into the validation par-
tition, a majority of these words will be "unknown" to the model. We do also
expect to see the error stabilize because the model have learned some underlying
structures that still has predictive power, even in the test partition. This could
be what character combinations are likely in any word, or specific words that
keeps getting used, such as the names of main characters or keywords specific
to the programming language.

From figure 5.2 it does not seem that the rate of performance loss is significantly
different between WP and LK. But it is very clear that this climb continues for
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Figure 5.2: Cost for all mini batches in the data set using a 2 layer LSTM
with model size 256 and learning rate of 2 · 10−2.5. Note how the
cost increases after the training set stops and then stabilizes in
WP. The LK data set is approximately twice as large as WP, so
the x axis limits are different to make slopes comparable. Hidden
states are not reset between the partitions
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/* struct.c */

struct rb_irq_work {

struct irq_work work;

wait_queue_head_t waiters;

wait_queue_head_t full_waiters;

bool waiters_pending;

bool full_waiters_pending;

bool wakeup_full;

};

Snippet 5.1: An example of a struct definition from LK. The name of the
struct is rb_irq_work and the contents is pairs of data types and
field names such as bool wakeup_full

much longer in LK whereas WP quickly stabilizes. An interpretation could be
that the LK model learns specific words to a higher degree than WP, but that
they have a larger temporal span of useability.

Additionally, there is a clear spike at .92 in LK that affects the averaged
error greatly. In figure 5.3 it can be seen that at this point there is a sudden
spike in the rate of previously unseen words encountered. By inspection of the
data set, it is found that at this point in the data set, there is a section domi-
nated by struct definitions. These structs are named data collections with a lot
of named fields. An example of a struct definition from this part of the LK data
set can be seen in snippet 5.1. This somewhat explains the spike, as this section
is almost nothing, but new words being introduced for the very first time in the
data set. It also further strengthens the suspicion that the LK model is very
reliant on leaning specific words. Note that the figure also shows that there isn’t
an appreciable difference in the rate of new words encountered overall.

5.2.1 Relation to Karpathys results

Although the above might explain why my results shows such a difference be-
tween validation and test error in LK, it does not address that my results show
better performance in WP than LK - which is opposite what is found by [KJL15].
There are two probable scenarios that could explain this.

It is possible that my implementation does not accurately mirror the one in
[KJL15], and that their model is much better at learning more general struc-
tures rather than specific words. Such a model would be much more robust
against the temporal dependencies my models seem to struggle with. Their
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generally better results would support such a theory.

It is also possible that they have chosen to retrain the model after determining
optimal dropout level in cross validation. If such retraining included both the
training and validation partition, the temporal dependencies I have found to
exist in LK may not have had such large effect on their results.

This however would pose the question of what is used as stopping criteria for
the retraining. In the paper they explain that:
“We use early stopping based on validation performance and cross-validate the
amount of dropout for each model individually” [KJL15]

An approach that would not work if the validation partition was used for train-
ing. Therefore, if the model was retrained, it was either trained for the full
50 training epochs without using early stopping or they would have, rather
questionably, used the test error as stopping criteria.

5.3 Learning rate and dropout

Dropout is applied to decrease overfitting issues, and should a cross validation
result in no dropout being the optimal setting it indicates that the model has
may in fact be underfitting. Conversely a high level of dropout indicates a very
complex model that would otherwise tend to overfit. The figure 5.5 shows the
relationship between model size learning rate and number of hidden layers. As
expected there is a clear relationship between model size and optimal dropout
level. This relationship is especially strong in LK

The most significant observation is that models trained with the lowest of the
learning rates has optimal dropout that is very low or none at all. This would
indicate that they are never allowed to become sufficiently flexible to stop under
fitting. This effect is clearly seen in figure 5.4, where the less complex model
has little benefit of dropout when training with the low learning rate. But on
the other hand the more complex model converges too quickly with the higher
learning rate and is unable to utilize the dropout to counter over fitting.The 0.2
and 0.3 lines converges around the same time with the lower dropout providing
better performance indicating that overfitting isn’t the obstacle, but rather that
the training reached a dead end. The lower learning rate here seems able to
more effectively use dropout and keeps favouring higher and higher dropout as
the model fits better and better over the epochs.
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Figure 5.3: The total number of uniqe words in the dataset at any given
point.The steeper the slope, the more higher the rate of previ-
ously unseen words encountered. The Linux Kernel data set is
approximately twice as large as WarPeace, so the x axis limits in
(b) are different to make slopes comparable.
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Figure 5.4: validation error vs training epochs for 2 layer GRU model of model
size 128 and 512 on the LK data set. Dotted line is training error.
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Another insight from figure 5.4 is why the number of training epochs could
be seen as a parameter that needs tuning. Overly complex models clearly over-
fit when trained for too many epochs causing the validation error to rise whilst
the training error keeps dropping. This however does not seem to be a prob-
lem for models with adequate dropout, and it is not entirely certain that early
stopping is required, provided that enough regularization, such as dropout, is
applied.

Another, slightly counter intuitive, observation is that more hidden layers causes
a lower optimal dropout. Remember however, that more hidden layers are com-
pensated by, by having fewer hidden units such that the models share same
baseline. Two models with same model size but with different number of hidden
layers therefore has the same flexibility. But dropout is applied between recur-
rent layers such that a model with 3 layers will have the dropout applied twice
whereas a model with 2 layers only has dropout applied once. To have the same
overall effect on equally complex models a model with fewer hidden layer must
therefore use a higher rate of dropout. What is seen in figure 5.5 is therefore to
be expected.

5.4 Prediction

As mentioned in 3.4.4 the output from the softmax projection layer can be
treated as a probability vector. When doing character prediction, these values
can be used as measure of how confident the model is about the prediction.
Below is an excerpt from WP that has been fed into a 3 layered GRU of model
size 512 trained at learning rate 2 · 10−2.5. The color of each character indicates
the probability the model assigned to it - Red is low probability and green is
high. If the model guessed incorrectly, the prediction is placed below the text
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Figure 5.5: Optimal dropout plotted against model size (baseline) for models
trained at different learning rates. Models with 1 hidden layer is
not shown as they have not been cross validated for dropout.
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There are some interesting patterns. Firstly the model seems to struggle with
the beginning characters of a word, getting better and more confident as it moves
away from the start. An interesting exception is name like word combinations
such as "Prince Andrew", where "Andrew" is immediately guessed.
Only rarely does incorrect prediction occur in a word where the first few char-
acters have been guessed. One such occasion is "that" in the second to last line
where the model incorrectly guesses an "e" in place of the "a". This must be
an effect of a very common word "the" dominating.
It also struggles at the very beginning of the text, but seeing as this is a cold
start it is expected. The same text but warmed up is printed below
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s i v t ’ w c o c t
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Here the first 2 lines are a bit better, but not impressively so, and the per-
formance seems equally good after 2-3 lines.
An interesting piece of the text is the first bit of line 2 "...supper. But...". Note
that the model does recognize that the sentence has ended by correctly pre-
dicting a period. Additionally it recognizes that after a period comes a space,
followed by a capitalized letter. The same happens in line 4 where the period
is mispredicted, but over since the predicted character is a comma it does still
recognize a sentence has ended. And again the space and capitalization follows
the period. In the second to last line this capitalization is not predicted, but
this could be because the model expected a quotation instead.

5.4.1 Text generation

Section 3.5 describes how to use RNNs for text generation. To show how the
model learns, a 3 layered GRU of model size 512 trained at learning rate 2·10−2.5

was trained. Between every training epoch 200 characters was auto generated
from a seed of a period. As the model learned, it developed features more rem-
iniscent of certain language components.
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,,,KKKKKKK44444444O4444444444444444)444OO44444444444444444444444444))4OOOOKO44**44444444444444KKK444444444444**KK44444444444OOO44444::4444KK4K44444444444*K4K4444444444

Initialized Almost completely random text, except for the tendency to produce
the same characters over and over. This is the first hint that a non-stochastic
character generation tends to cycle.

ldn hh hhh hhh hhh hhhh hhh hhhh hhh hhh hhhh hhh hhhh hhh hhhh hhhh hhh hhhh

hhh hhh hhhh hhh hhhh hhhh hhh hhhh hhh hhhh

1 training epoch Already the model seems to have grasped the concept of char-
acter clusters with spaces in between. But the same characters repeats.

TI the and tor to to the tor to to to to to to to to to the tor and to to to the tor to to to to to to the tor to to to the tor to to the tor to to the tor to

3 training epochs The words are now pronounceable. Dominated by small com-
mon words like "the" and "and".

""" sI the countered to the countered to the countered to the countere to the countere to the countere to the countere to the countered to the countere to the

6 training epochs First instance of a long word. Some misspelling.

""

"If they was the could the counted the maye and the could the counter.

"What they they theye was the could the could the could the could the could the counters, and the could the could the counte

9 training epochs

Whole sentences with newlines and periods, but the sentences are gibberish.

""

"I have to the countess of the more and the more of the more and the countess of the sound of the countess of the more of the soldiers of the more of the more

14 training epochs Long, convoluted and difficult to draw meaning from. But
ultimately more or less a valid sentence, and no spelling mistakes.

.." To say the prince of the soldiers and the countess of the

same to the prince of the countess and the soldier who had been and

the soldiers were all the countess of the regiment and the street of t

27 training epochs The width of the lines now starts to match that of the novel.
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.." "I should be a strange to the men with

the same to the countess of the countess and the same to see the same to the

country and the soldiers were all the same to the same to the countess.

"I have

49 training epochs The last model. The same words still cycles through, maybe
even more than earlier.

5.4.2 Randomized

To avoid this cycling through words and phrases a random generation approach
can be used as described in section 3.4.4.

"

"I shall not be a thing and the same time I have not yet going to the

countess. I shall be a state of a conversation in the same time, and

the same time to the same time. I am so glad to say that I shall remember

that the count had been sent to the countess and the countess and the

same time that he was a man who has been so much as a man who was a

consider of the same time. I am so much that the commander-in-chief

to meet the countess and the countess and the same time that is the same

time to do so. I love you and the same time I am not to do it all the

same time. I can’t be a such a consciousness of the same time it was a

strange and more in the count of the countess and a conversation with

men who have been sent to the country of the same time and the same to

the countess and the countess to the countess and the same time that

the countess was a man who had been sent for the same time to the

same time. The count was still more many of the same and the same time that

she had not y

τ = 10−2 As expected the low temperature makes the same words cycle.

"

"You’ll see that the count of the country, and that is it not to take our

Majorse Helene."

"Yes, my dear, and the same young man, but it is no interests, and a

can one another that you would not at all these that the same time I

can that a country. I am so distraction to you."

"All right, and life, that’s a state for infantry, and that the same

time in the same service.... What is the count had been an attack in the
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same position and the same mash think of the commander-in-chief has been

for the regiment. And I think that I don’t never that matter and that

money devil the millions of the Sovion in the Emperor of Moscow and the

third man in the same things is not what I am fellow. Then I understand the

purpose of the Emperor’s head anything to anyone in the way. He is a word

to find the militiamen and the same time, the room with a stern and supers--

and the strange even the count is to do so as much as a battle of

account of him. But this is the soul of the concerning the presence

τ = 10−0.3 A lot more variability, but "the same time" still repeats a bit.

K’te

paid badly, yet just that day the hidted plump like that.

"Now them, understand, why have nurse because Nicholas had been

atquired to see that this," she said to her,

also, and relations spart galloping about a gray behind. If neither to

make the two companion, mercury to open in the comrades.

"Oly he are so much for which anything would be defendions..."

"Ah, letters voice," said some continue; slave trees which the vainchin

showed the commander the first passage. It seemed to the next corners and

with outline banding at Bolkonski.

Juzh deceased by the regiment all, on, natural is to have for his reception and

different former duty. Why of a moments were brighten understand tho

were losing but for their days, now eat going.

"Oh, you are you like it." (At the near morning altoss as they

pleased various look ill was sitting over Prince Andrew’s voice.

"And what you are fortifation? Than God, my dear friend, that issue must

be called, holding a silver." Natasha excased dark, dr

τ = 10−0 No repeats, but the randomization has introduced quite a lot of
spelling mistakes.

5.4.3 NovelWriter

To see what kind of application there might be for this kind of text generation
a small program is made. It’s called NovelWriter and is supposed to "help" an
unskilled author write a novel in the language of a true master. It is basically
just an autocompletion engine trained on WP. Screendumps from the program
can be seen in figure 5.6. The program has the following features:
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Figure 5.6: NovelWriter program. Helps you write novels like Tolstoy by au-
tocompletion

• Always suggest what to write until next whitespace character.

• Press tab to accept the suggestion

• Adjust softmax temperature by using up and down arrows

• Press rightarrow to get a new suggestion

• Limited erase capability by pressing backspace. You can only undo til last
accepted suggestion.

The program is available as a single file program and is started in a terminal
window by calling:
user$ python3 novelwriter.lfr
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Conclusion

The training, computation and development of RNNs relies heavily on flexible
and fast automatic differentiation schemes. The principles of these schemes are
very simple and can easily be implemented, in a easy to understand albeit in-
efficient way. As a learning tool such a simple implementation has its benefits,
but RNNs are not feasible applications for it.

Unfortunately the need to compile at run time when using the more efficient
Theano library, has been a greater challenge than initially anticipated. Much
consideration, and time, has gone into ensuring that Theano functions are de-
fined and cached on demand rather than at model instantiation. This is neces-
sary to avoid spending resources on compiling functions that may, or may not
be used in that session or recompiling an already compiled function. If such
challenges are not addressed it may hinder widespread usage of the Lasagne
library for actual applications.

On-demand functionality has been a key part of rationale behind lasagnecaterer
library written for this project, as well as complex bookkeeping to invalidate
cached functions whenever underlying assumptions change. lasagnecaterer mod-
els can therefore liberally define numerous Theano functions, without having to
consider the compile time of seldom, used functionality. Together with auto-
mated batch generation, containers for packaging the model and other utility,
the framework hopefully reduces the barrier to entry, that may hinder the prac-
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tical use of RNNs.

From my tests I cannot conclude that the Python implementation, provided
through the Lasagne library leads to the exact same performances or training
recommendations as [KJL15].

Learning rate has been found to benefit from a higher value than the one
recommended in [KJL15], although not outside the range recommended. Addi-
tionally there seems to be some dynamic between the learning rate and model
complexity which could suggest that a global learning rate may not be the best
solution. How to tailor the learning rate to complexity though, has not been in
the scope of this project.

Performance of my implementation has been found to fall somewhat short
of the standard set, despite putting considerable effort into making a Lasagne
implementation that is equivalent to the torch implementation by [KJL15]. I
did not find GRU and LSTM to have equal performance. In most cases GRU
strictly outperformed LSTM, but not to a degree that would justify completely
disregarding LSTM as the memory cells could conceivably provide interpretabil-
ity that outweighs the slight performance gap.

Data set nature has had a very large influence on model performance in my
implementation. Although code may have some strict rules that the model can
learn, the nature of the functions and variable names does not seem to lend
itself well to prediction. The natural language of the novel ,however yielded
some interesting results where the models apparently learned not only words,
but also grammatical rules and some punctuation.
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Lookup

A.1 Node legend

A.2 Glossary

A.2.1 Graphs

edge A connection between 2 nodes

flow Moving "something" from a node along the edges in the graph to some
other node is a flow.

(un)directed an edge with an arrow is directed. The direction of the arrow defines which
way flow can occur. If no such arrow exists, an edge is undirected and data
can flow in both directions.

path A sequence of edges from node A to B through which flow can occur is a
path.

traverse The edges that make up the sequence of a path are said to be traversed

by that path.
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A

dot product

ŷ

y

X static

subtraction

transposition

AX = y

nonlinear transform

addition

imaginary

X

connected If there exist a path from A to B they are said to be connected.

connected component a collection of nodes where any two nodes would be connected if all edges
were undirected

cycle A path that connects a node with itself without traversing the same edge
twice is a cycle.

Acyclic graph a connected component wherein no cycles exist is acyclic. Often shortened
to AG

parent Node A is a parent of B if there is a directed edge going from A to B.

child Node A is a child of B if there is a directed edge going to A from B.

ancestor Node A is an ancestor of B if there is a directed path going from A to B.

grandchild Node A is an ancestor of B if there is a directed path going from B to A.

root A node that is ancestor to all other nodes in a graph.

leaf A node that has no children is a leaf node

text An acyclic graph wherein there exists a root
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