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ABSTRACT

Based on an omnibus likelihood ratio test statistic for the
equality of several variance-covariance matrices following the
complex Wishart distribution and a factorization of this test
statistic with associated p-values, change analysis in a time
series of multilook, polarimetric SAR data in the covariance
matrix representation is carried out. The omnibus test statistic
and its factorization detect if and when change(s) occur. The
technique is demonstrated on airborne EMISAR C-band data
but may be applied to ALOS, COSMO-SkyMed, RadarSat-2
Sentinel-1, TerraSAR-X, and Yaogan data also.

1. INTRODUCTION

In earlier publications we have described a test statistic for the
equality of two variance-covariance matrices following the
complex Wishart distribution with an associated p-value [1].
We showed their application to bitemporal change detection
and to edge detection [2] in multilook, polarimetric synthetic
aperture radar (SAR) data in the covariance matrix represen-
tation. The test statistic and the associated p-value is de-
scribed in [3] also. In [4] we focused on the block-diagonal
case, we elaborated on some computer implementation issues,
and we gave examples on the application to change detection
in both full and dual polarization bitemporal, bifrequency,
multilook SAR data.

In [5] we described an omnibus test statistic Q for the equal-
ity of k ≥ 2 variance-covariance matrices following the com-
plex Wishart distribution. We also described a factorization
of Q =

∏k
j=2 Rj where Q and Rj determine if and when a

difference occurs. Additionally, we gave p-values for Q and
Rj . Finally, we demonstrated the use of Q and Rj and the
p-values to change detection in truly multitemporal, full po-
larization SAR data. For more references to change detection
in polarimetric SAR data, see [5].

In [5] we applied the methods to a series of EMISAR [6,7] L-
band data. In this paper we apply the methods to EMISAR C-
band data. The methods may be applied to other polarimetric

SAR data also such as data from ALOS, COSMO-SkyMed,
RadarSat-2 Sentinel-1, TerraSAR-X, and Yaogan.

2. TEST STATISTICS AND THEIR DISTRIBUTIONS

This section gives the main results from [5]. The average
covariance matrix for multilook polarimetric SAR is defined
as [8]
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(1)

where ⟨·⟩ denotes ensemble averaging and ∗ denotes complex
conjugation. Srt denotes the complex scattering amplitude
for receive and transmit polarization (r, t ∈ {h, v} for hori-
zontal and vertical polarization).

2.1. Test for equality of several complex covariance ma-
trices

To test whether a series of k ≥ 2 complex variance-covariance
matrices Σi are equal, i.e., to test the null hypothesis H0

H0 : Σ1 = Σ2 = · · · = Σk

against all alternatives, we use the following omnibus test
statistic (for the real case see [9]; for the case with two com-
plex matrices see [1, 2]; | · | denotes the determinant)

Q =

{
kpk

∏k
i=1 |Xi|
|X|k

}n

. (2)

Here the Σi (and the Xi) are p by p (p = 3 for full pol
data, p = 2 for dual pol data, and p = 1 for single channel
power data), and the Xi = nΣ̂i = n⟨C⟩i follow the complex
Wishart distribution, i.e., Xi ∼ WC(p, n,Σi). Further, X =∑k

i=1 Xi ∼ WC(p, nk,Σ). If the hypothesis is true (“under
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Table 1. Part of the change analysis structure for an example with data from four time points.
t1 = · · · = t4 t2 = · · · = t4 t3 = t4

Omnibus Q(1): P{Q(1) < q
(1)
obs} Q(2): P{Q(2) < q

(2)
obs} Q(3): P{Q(3) < q

(3)
obs}

t1 = t2 R
(1)
2 : P{R(1)

2 < z
(1)
2,obs}

t2 = t3 R
(1)
3 : P{R(1)

3 < z
(1)
3,obs} R

(2)
2 : P{R(2)

2 < z
(2)
2,obs}

t3 = t4 R
(1)
4 : P{R(1)

4 < z
(1)
4,obs} R

(2)
3 : P{R(2)

3 < z
(2)
3,obs} R

(3)
2 : P{R(3)

2 < z
(3)
2,obs}

Table 2. Average no-change probabilities for the grass field.
t1 = · · · = t4 t2 = · · · = t4 t3 = t4

Omnibus 0.0049 0.0076 0.1213
t1 = t2 0.2883
t2 = t3 0.1372 0.1500
t3 = t4 0.0248 0.0378 0.1213

H0” in statistical parlance), Σ̂ = X/(kn). Q ∈ [0, 1] with
Q = 1 for equality.

For the logarithm of the test statistic we get

lnQ = n

{
pk ln k +

k∑
i=1

ln |Xi| − k ln |X|

}
. (3)

Setting

f = (k − 1)p2

ρ = 1− (2p2 − 1)

6(k − 1)p

(
k

n
− 1

nk

)
ω2 =

p2(p2 − 1)

24ρ2

(
k

n2
− 1

(nk)2

)
− p2(k − 1)

4

(
1− 1

ρ

)2

the probability of finding a smaller value of −2ρ lnQ is (z =
−2ρ ln qobs, where qobs is the observed value of Q)

P{−2ρ lnQ ≤ z} ≃ P{χ2(f) ≤ z} (4)

+ ω2[P{χ2(f + 4) ≤ z} − P{χ2(f) ≤ z}].

P{−2ρ lnQ ≤ −2ρ ln qobs} = P{Q ≥ qobs} is the change
probability, 1−P{−2ρ lnQ ≤ −2ρ ln qobs} = P{Q < qobs}
is the no-change probability.

2.2. Test for equality of first j ≤ k complex covariance
matrices

If the above test shows that we cannot reject the hypothesis of
equality, no change has occurred over the time span covered
by the data. If we can reject the hypothesis, change has oc-
curred at some time point. To test whether the first j complex
variance-covariance matrices Σi are equal, i.e., given that

Σ1 = Σ2 = · · · = Σj−1

then the likelihood ratio test statistic Rj for testing the hy-
pothesis

H0,j : Σj = Σ1 against H1,j : Σj ̸= Σ1

is

Rj =

{
jjp

(j − 1)(j−1)p

|X1 + · · ·+Xj−1|(j−1)|Xj |
|X1 + · · ·+Xj |j

}n

or

lnRj = n{p(j ln j − (j − 1) ln(j − 1))

+ (j − 1) ln |
j−1∑
i=1

Xi|+ ln |Xj | − j ln |
j∑

i=1

Xi|}.

Furthermore, the Rj constitute a factorization of Q

Q =

k∏
j=2

Rj

or lnQ =
∑k

j=2 lnRj . If H0 is true the Rj are independent.
Finally, letting

f = p2

ρj = 1− 2p2 − 1

6pn

(
1 +

1

j(j − 1)

)
ω2j = −p2

4

(
1− 1

ρj

)2

+
1

24n2
p2(p2 − 1)

(
1 +

2j − 1

j2(j − 1)2

)
1

ρ2j

we get (zj = −2ρj ln rj,obs, where rj,obs is the observed
value of Rj)

P{−2ρj lnRj ≤ zj} ≃ P{χ2(f) ≤ zj}
+ ω2j [P{χ2(f + 4) ≤ zj} − P{χ2(f) ≤ zj}].



(a) 21 March

(b) 20 May

Fig. 1. C-band EMISAR data in Pauli representation; same
stretching applied to all four images.

(a) 16 June

(b) 15 July

Fig. 2. C-band EMISAR data in Pauli representation; same
stretching applied to all four images.



(a) −2ρ lnQ

(b) p-value

Fig. 3. Test statistic (a) and p-value with grass field marked
as black (b); p is approximately 1 in the grass field; in both
(a) and (b) dark areas are no-change.

Fig. 4. Shows changes from t1 to t2 as blue, from t2 to t3
as green, from t3 to t4 as red; change probability significance
level is 99.99%.
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Fig. 5. For the grass field this figure shows average omnibus
test based no-change probabilities tabulated in Table 2.
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Fig. 6. For the grass field this figure shows average (first plot)
backscatter coefficients and span, (second plot) determinant
of the covariance matrix, (third plot) magnitude of the cor-
relation between HH and VV, (fourth plot) phase difference
between HH and VV, and (fifth plot) pairwise (green stems)
and omnibus test based no-change probabilities (blue stems),
5% significance level shown also.

3. CHANGE VISUALIZATION EXAMPLES

To illustrate the above we use full polarimetry EMISAR [6,7]
C-band data acquired in 1998 over a Danish agricultural test
site on 21 March (t1), 20 May (t2), 16 June (t3) and 15 July
(t4). Figures 1 and 2 show the diagonal elements of the co-
variance matrix in the Pauli representation where red shows
single- or odd-bounce scattering, green shows volume scat-
tering, and blue shows double or even-bounce scattering.

Table 1 shows the change structure built (for each pixel) for
an example with data from four time points. The first column
indicates which tests are performed for the row in question.
The second column shows Q(1) and P{Q(1) < qobs} (“Om-
nibus” row), or R

(1)
j and P{R(1)

j < rj,obs}, j = 2, . . . , 4
for all time points t1 through t4. The third column shows
Q(2) and P{Q(2) < qobs} (“Omnibus” row), or R

(2)
j and

P{R(2)
j < rj,obs}, j = 2, 3 for time points t2 through t4.

The fourth column shows Q(3) and P{Q(3) < qobs} (“Om-
nibus” row), or R(3)

j and P{R(3)
2 ≤ r2,obs} for time points

t3 to t4. Remember, that for a test for R(ℓ)
j to be valid, all

previous tests for R(ℓ)
i , i = 2, . . . , j − 1 must show equality,

see hypothesis H0,j in Section 2.2.

Note, that R(ℓ)
2 are the (marginal, non-omnibus) pairwise tests

for equality.

3.1. Per pixel change visualization

Figure 3 shows the quantity −2ρ lnQ and the corresponding
p-value, i.e., the change probability.

As an example of per pixel change visualization Figure 4
shows changes from t1 to t2 as blue, from t2 to t3 as green,
and from t3 to t4 as red. Black areas have not changed.

3.2. Per field change visualization

Table 2 shows the average no-change probabilities for the
grass field shown in Figure 3. Figure 5 shows the same prob-
abilities as graphs, one line per column in Table 2.

As an example of visualization of per field change detec-
tion Figure 6 shows mean values over the grass field of the
backscatter coefficients and the span (first plot), the determi-
nant of the covariance matrix (second plot), the magnitude
of the correlation between HH and VV (third plot), and the
phase difference between HH and VV for all four acquisi-
tions (fourth plot). The last plot shows the average pairwise
and omnibus based no-change probabilities.

These plots are meant to assist the analyst in determining
what caused a possible change, for example an increase in



backscatter as opposed to a decrease in phase angle. We
expect that plots like these will be even more useful for in-
terpreting change in longer time series covering for example
several years where possible annual oscillations will be im-
portant and potentially conspicuous.

Both Table 2, Figures 5 and 6 show that the pairwise tests
show no change over time for the grass field. The omnibus
test shows change (P{Q(1) < q

(1)
obs} = 0.0049) and the

change occurs between June and July (P{R(1)
4 ≤ r

(1)
4,obs} =

0.0248).

4. SOFTWARE

We plan to publish Matlab code to perform the analysis de-
scribed. This will include updating of the change analysis
with new data and generation of some of the tables and fig-
ures shown above. Also Python code will be made available.

5. CONCLUSIONS

The new omnibus test statistic and its factorization with their
p-values show if and when change(s) occur in a time series
of multilook, polarimetric SAR data. Contrary to consecutive
pairwise comparisons the omnibus test statistic in the example
given shows change in C-band SAR data between June and
July acquisitions for a grass field.

This type of analysis will become increasingly important and
interesting as the databases with relevant SAR data collected
routinely and globally keep growing.
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