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ABSTRACT

Based on an omnibus likelihood ratio test statistic for the
equality of several variance-covariance matrices following
the complex Wishart distribution with an associated p-value
and a factorization of this test statistic, change analysis in a
short sequence of multilook, polarimetric SAR data in the
covariance matrix representation is carried out. The om-
nibus test statistic and its factorization detect if and when
change(s) occur. The technique is demonstrated on airborne
EMISAR L-band data but may be applied to Sentinel-1,
Cosmo-SkyMed, TerraSAR-X, ALOS and RadarSat-2 or
other dual- and quad/full-pol, and even single-pol data also.

1. INTRODUCTION

In earlier publications we have described a test statistic for the
equality of two variance-covariance matrices following the
complex Wishart distribution with an associated p-value [1].
We showed their application to bitemporal change detection
and to edge detection [2] in multilook, polarimetric synthetic
aperture radar (SAR) data in the covariance matrix represen-
tation. The test statistic and the associated p-value is de-
scribed in [3] also. In [4] we focused on the block-diagonal
case, we elaborated on some computer implementation issues,
and we gave examples on the application to change detection
in both full and dual polarization bitemporal, bifrequency,
multilook SAR data.

In [5] we described an omnibus test statistic Q for the
equality of k ≥ 2 variance-covariance matrices following the
complex Wishart distribution. We also described a factoriza-
tion of Q =

∏k
j=2 Rj where Q and Rj determine if and when

a difference occurs. Additionally, we gave p-values for Q and
Rj . Finally, we demonstrated the use of Q and Rj and the
p-values to change detection in truly multitemporal, full po-
larization SAR data.

For more references to change detection in polarimetric
SAR data, see [5].

The methods may be applied to other polarimetric SAR
data also such as data from Sentinel-1, COSMO-SkyMed,

TerraSAR-X, ALOS, and RadarSat-2 and also to single-pol
data.

2. TEST STATISTICS AND THEIR DISTRIBUTIONS

This section gives the main results from [5]. The average
covariance matrix for multilook polarimetric SAR is defined
as [6]

⟨C⟩ =




⟨ShhS∗
hh⟩ ⟨ShhS∗

hv⟩ ⟨ShhS∗
vv⟩

⟨ShvS∗
hh⟩ ⟨ShvS∗

hv⟩ ⟨ShvS
∗
vv⟩

⟨SvvS∗
hh⟩ ⟨SvvS∗

hv⟩ ⟨SvvS∗
vv⟩




where ⟨·⟩ denotes ensemble averaging and ∗ denotes complex
conjugation. Srt denotes the complex scattering amplitude
for receive and transmit polarization (r, t ∈ {h, v} for hori-
zontal and vertical polarization).

2.1. Test for equality of several complex covariance ma-
trices

To test whether a series of k ≥ 2 complex variance-covariance
matrices Σi are equal, i.e., to test the null hypothesis

H0 : Σ1 = Σ2 = · · · = Σk

against all alternatives, we use the following omnibus test
statistic (for the real case see [7]; for the case with two com-
plex matrices see [1, 2]; | · | denotes the determinant)

Q =

{
kpk

∏k
i=1 |Xi|
|X|k

}n

.

Here the Σi (and the Xi) are p by p (p = 3 for full pol
data, p = 2 for dual pol data, and p = 1 for single chan-
nel power data), and the Xi = nΣ̂i = n⟨C⟩i follow the
complex Wishart distribution, i.e., Xi ∼ WC(p, n,Σi). n is
the equivalent number of looks. Further, X =

∑k
i=1 Xi ∼

WC(p, nk,Σ). If the hypothesis is true (“under H0” in sta-
tistical parlance), Σ̂ = X/(kn). Q ∈ [0, 1] with Q = 1 for
equality.
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Fig. 1. RGB images of diagonal elements of the L-band data March, April, May (top row, left to right), June, July, August
(bottom row, left to right).

For the logarithm of the test statistic we get

lnQ = n

{
pk ln k +

k∑

i=1

ln |Xi| − k ln |X|
}

.

A simple expression for the probability of finding a smaller
value of −2 ln Q is (z = −2 ln qobs)

P{−2 ln Q ≤ z} ≃ P{χ2((k − 1)p2) ≤ z}.

A better a approximation for P can be obtained. Setting

f = (k − 1)p2

ρ = 1 − (2p2 − 1)

6(k − 1)p

(
k

n
− 1

nk

)

ω2 =
p2(p2 − 1)

24ρ2

(
k

n2
− 1

(nk)2

)
− p2(k − 1)

4

(
1 − 1

ρ

)2

the probability of finding a smaller value of −2ρ ln Q is (z =
−2ρ ln qobs)

P{−2ρ ln Q ≤ z} ≃ P{χ2(f) ≤ z}
+ ω2[P{χ2(f + 4) ≤ z} − P{χ2(f) ≤ z}].

P{−2ρ lnQ ≤ −2ρ ln qobs} = P{Q ≥ qobs} is the change
probability, 1−P{−2ρ ln Q ≤ −2ρ ln qobs} = P{Q < qobs}
is the no-change probability.

2.2. Test for equality of first j < k complex covariance
matrices

If the above test shows that we cannot reject the hypothesis of
equality, no change has occurred over the time span covered
by the data. If we can reject the hypothesis, change has oc-
curred at some time point. To test whether the first j complex
variance-covariance matrices Σi are equal, i.e., given that

Σ1 = Σ2 = · · · = Σj−1

then the likelihood ratio test statistic Rj for testing the hy-
pothesis

H0,j : Σj = Σ1 against H1,j : Σj ̸= Σ1

is

Rj =

{
jjp

(j − 1)(j−1)p

|X1 + · · · + Xj−1|(j−1)|Xj |
|X1 + · · · + Xj |j

}n
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Table 1. Part of the change analysis structure for an example with data from six time points.

t1 = · · · = t6 t2 = · · · = t6 t3 = · · · = t6 t4 = · · · = t6 t5 = t6

Omnibus Q(1): P{Q(1) < q
(1)
obs

} Q(2): P{Q(2) < q
(2)
obs

} Q(3): P{Q(3) < q
(3)
obs

} Q(4): P{Q(4) < q
(4)
obs

} Q(5): P{Q(5) < q
(5)
obs

}
t1 = t2 R

(1)
2 : P{R

(1)
2 < z

(1)
2,obs

}
t2 = t3 R

(1)
3 : P{R

(1)
3 < z

(1)
3,obs

} R
(2)
2 : P{R

(2)
2 < z

(2)
2,obs

}
t3 = t4 R

(1)
4 : P{R

(1)
4 < z

(1)
4,obs

} R
(2)
3 : P{R

(2)
3 < z

(2)
3,obs

} R
(3)
2 : P{R

(3)
2 < z

(3)
2,obs

}
t4 = t5 R

(1)
5 : P{R

(1)
5 < z

(1)
5,obs

} R
(2)
4 : P{R

(2)
4 < z

(2)
4,obs

} R
(3)
3 : P{R

(3)
3 < z

(3)
3,obs

} R
(4)
2 : P{R

(4)
2 < z

(4)
2,obs

}
t5 = t6 R

(1)
6 : P{R

(1)
6 < z

(1)
6,obs

} R
(2)
5 : P{R

(2)
5 < z

(2)
5,obs

} R
(3)
4 : P{R

(3)
4 < z

(3)
4,obs

} R
(4)
3 : P{R

(4)
3 < z

(4)
3,obs

} R
(5)
2 : P{R

(5)
2 < z

(5)
2,obs

}

Table 2. Average no-change probabilities for the grass field.
t1 = · · · = t6 t2 = · · · = t6 t3 = · · · = t6 t4 = · · · = t6 t5 = t6

Omnibus 0.0003 0.0010 0.0210 0.0653 0.0791
t1 = t2 0.2753
t2 = t3 0.0171 0.0784
t3 = t4 0.0341 0.0895 0.2688
t4 = t5 0.0015 0.0048 0.0309 0.1287
t5 = t6 0.3565 0.3016 0.2184 0.1521 0.0791

or

lnRj = n{p(j ln j − (j − 1) ln(j − 1))

+ (j − 1) ln |
j−1∑

i=1

Xi| + ln |Xj | − j ln |
j∑

i=1

Xi|}.

Furthermore, the Rj constitute a factorization of Q

Q =
k∏

j=2

Rj

or lnQ =
∑k

j=2 lnRj . If H0 is true the Rj are independent.
A simple expression for the probability of finding a smaller
value of −2 ln Rj is (zj = −2 ln rj,obs)

P{−2 ln Rj ≤ zj} ≃ P{χ2(p2) ≤ zj}.

A better a approximation for P can be obtained. Letting

f = p2

ρj = 1 − 2p2 − 1

6pn

(
1 +

1

j(j − 1)

)

ω2j = −p2

4

(
1 − 1

ρj

)2

+
1

24n2
p2(p2 − 1)

(
1 +

2j − 1

j2(j − 1)2

)
1

ρ2
j

we get (zj = −2ρj ln rj,obs)

P{−2ρj ln Rj ≤ zj} ≃ P{χ2(f) ≤ zj}
+ ω2j [P{χ2(f + 4) ≤ zj} − P{χ2(f) ≤ zj}].

3. CHANGE VISUALIZATION EXAMPLES

To illustrate the above we use full polarimetry EMISAR [8,9]
L-band data acquired in 1998 over a Danish agricultural test
site on t1 = 21 March, t2 = 17 April, t3 = 20 May, t4 = 16
June, t5 = 15 July, and t6 = 16 August. Figure 1 shows the
diagonal elements of the covariance matrix. ⟨ShvS∗

hv⟩ (red)
is stretched linearly between –36 dB and –6 dB, ⟨ShhS∗

hh⟩
(green) between –30 dB and 0 dB and ⟨SvvS∗

vv⟩ (blue) be-
tween –24 dB and 0 dB. The darker areas in the March and
April images are bare surfaces corresponding to spring crops,
and the very bright areas in all images are forest areas, pri-
marily coniferous forest. The development of the crops dur-
ing the growing season is clearly seen in the series of images
from March to August.

Table 1 shows the change structure built (for each pixel)
for an example with data from six time points. The first col-
umn indicates which tests are performed for the row in ques-
tion. The second column shows Q(1) and P{Q(1) < qobs}
(“Omnibus” row), or R

(1)
j and P{R

(1)
j < rj,obs}, j =

2, . . . , 6 for all time points t1 through t6. The third col-
umn shows Q(2) and P{Q(2) < qobs} (“Omnibus” row),
or R

(2)
j and P{R

(2)
j < rj,obs}, j = 2, . . . , 5 for time

points t2 through t6. The fourth column shows Q(3) and
P{Q(3) < qobs} (“Omnibus” row), or R

(3)
j and P{R

(3)
j <

rj,obs}, j = 2, . . . , 4 for time points t3 to t6, etc. Remember,
that for a test for R

(ℓ)
j to be valid, all previous tests for R

(ℓ)
i ,

i = 2, . . . , j − 1 must show equality, see hypothesis H0,j in
Section 2.2.

Note, that R
(ℓ)
2 are the (marginal, non-omnibus) pairwise

tests for equality.
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(a) −2ρ ln Q

(b) p-value

Fig. 2. Test statistic (a) and p-value with grass field marked
as black (b). Dark areas are no-change. p is approximately 1
in the grass field.

3.1. Per pixel change visualization

As examples of per pixel change visualization, Figure 2 shows
the quantity −2ρ lnQ and the corresponding p-value, i.e., the
change probability. Figure 3 shows changes from t1 to t2 as
blue, from t3 to t4 as green, and from t5 to t6 as red after
applying a 3 by 3 mode filter. Black areas have not changed.

3.2. Per field change visualization

Table 2 shows the average no-change probabilities for the
grass field shown in Figure 2. Table 2 shows that the
pairwise tests reveal no change over time for the grass
field (p-values are 0.2753, 0.0784, 0.2688, 0.1287 and
0.0791, respectively). The omnibus test statistic Q indi-
cates change at some time point between March and August
(P{Q(1) < q

(1)
obs} = 0.0003), and the Rj show that the

first change for this field occurs between April and May

Fig. 3. Shows changes from t1 to t2 as blue, from t3 to t4 as
green, from t5 to t6 as red (after application of a 3 by 3 mode
filter); change probability significance level is 99.99%.

(P{R
(1)
3 ≤ r

(1)
3,obs} = 0.0171). The second and last change

for this field occurs between June and July (P{Q(2) <

q
(2)
obs} = 0.0010 and P{R

(2)
4 ≤ r

(2)
4,obs} = 0.0048).
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