
Bounded Model Checking for RSL
using RT-Tester

Peter Holm Østergaard

Kongens Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The goal of this thesis is to implement a translator that takes the specification
of a given RSL state transition system, and translates it into a corresponding
model in RT-Tester. The purpose of this translation is to combine the powerful
specification capabilities of RSL with the model checking capabilities of RT-
Tester.

The method chosen to accomplish this goal, is to design an intermediate lan-
guage which acts as a concise, concrete syntax for RT-Tester. RSL specifications
are translated to this intermediate language, which is then parsed into a model
in RT-Tester to be model checked.

The subset of RSL, which the translator accepts, is presented, and the syntax of
the intermediate language is defined in the form of a BNF grammar. The trans-
lation to the intermediate language is defined mathematically using a system of
inference rules.

The implementation of the translator and parser is described, and the imple-
mentation is tested to show that it matches the design.

In conclusion the goal of the thesis is deemed fulfilled, albeit only for a subset
of RSL.

ii

Summary (Danish)

Målet for denne afhandling er at implementere en oversætter der tager specifi-
kationen af et givet RSL transitionssystem, og oversætter det til en tilsvarende
model i RT-Tester. Formålet med denne oversættelse er, at kombinere RSLs
stærke specifikationsevner med RT-Testers evne til at modeltjekke.

Den valgte metode til at opnå dette mål, er at designe et mellemliggende sprog
der kan agere som en kortfattet, konkret syntaks for RT-Tester. RSL specifi-
kationer bliver så først oversat til dette mellemliggende sprog, som så derefter
parses til en model i RT-Tester og bliver modeltjekket.

Den delmængde af RSL som oversætteren accepterer bliver præsenteret, og syn-
taksen af det mellemliggende sprog bliver defineret i form af en BNF gramma-
tik. Oversættelsen til det mellemliggende sprog bliver defineret matematisk ved
hjælp af et system af inferensregler.

Implementeringen af oversætteren og parseren bliver beskrevet, og implemente-
ringen bliver testet for at vise at den er i overensstemmelse med designet.

Afslutningsvis bliver målet med afhandlingen anset som værende opnået, dog
kun for en delmængde af RSL.

iv

Preface

This thesis was prepared at DTU Compute, Technical University of Denmark,
in fulfilment of the requirements for acquiring an M.Sc. in Engineering, and is
credited with 30 ECTS points. It was prepared in the period of 24th of August
2015 to 25th of January 2016.

The thesis deals with bounded model checking of RSL state transition systems,
by way of translating RSL specifications into models in RT-Tester.

The thesis consists of this report along with an associated file thesis.zip, con-
taining the software which has been developed during the thesis work.

The thesis has been supervised by Associate Professor Anne Elisabeth Hax-
thausen.

Lyngby, 25-January-2016

Peter Holm Østergaard

vi

Acknowledgements

First and foremost, I would like to thank my supervisor Anne Elisabeth Hax-
thausen for her help and support throughout this project. Our weekly meetings,
in particular, have been an invaluable source of motivation and inspiration.

I would also like to thank Linh Hong Vu for his help with the technical side of the
thesis work, and in particular his help with understanding and using RT-Tester.
Without his help, I would never have been able to complete the RT-Tester part
of the implementation.

Finally, I would like to thank Jan Peleska for granting me permission to access
the code base of RT-Tester, without which this project could not exist.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Goal . 1
1.2 Motivation . 1
1.3 Reader prerequisites . 2
1.4 Chapter overview . 2

2 Project context 5
2.1 Model checking . 5
2.2 RSL . 6
2.3 RT-Tester . 7

2.3.1 Model checking using RT-Tester 7
2.4 Related work . 9

3 Method analysis 11
3.1 Language translation in general 11
3.2 Translation methods . 12

3.2.1 Direct translation . 12
3.2.2 Translation using an intermediate step 13

3.3 Translation tools . 16
3.3.1 rsltc and Gentle . 16
3.3.2 ANTLR . 16

x CONTENTS

3.3.3 Lex and Yacc . 17
3.4 The chosen method . 17

4 Design choices and analysis 19
4.1 Translatable subset of RSL . 20

4.1.1 Declarations . 20
4.1.2 Class Expressions . 23
4.1.3 Type Expressions . 23
4.1.4 Value Expressions . 24
4.1.5 Discarded constructions 27
4.1.6 Example of a translatable RSL specification 29

4.2 Design of the intermediate language 31
4.2.1 Structure . 31
4.2.2 BNF grammar . 32
4.2.3 Example of intermediate language model 34

4.3 Translation analysis . 35
4.3.1 The general approach . 36
4.3.2 Transition rules . 37
4.3.3 If expressions . 38
4.3.4 Case expressions . 39
4.3.5 System of inference rules for RSL translation 40

4.4 Parsing the intermediate language 58
4.5 Variable bounds . 59
4.6 Providing bounds for model checking 61

5 Implementation 63
5.1 RSL translator . 63

5.1.1 Changes to existing files 64
5.1.2 rtt.g . 64

5.2 Intermediate language parser . 69
5.2.1 RttParserOutput.cpp/h 69
5.2.2 RttSubtype.cpp/h . 70
5.2.3 rttparser_lex.ll . 70
5.2.4 rttparser_yacc.ypp . 71
5.2.5 Subtypes . 74

5.3 Model checking . 75
5.3.1 main function . 76
5.3.2 createGlobalTransRel function 76
5.3.3 solveGoal function . 77

CONTENTS xi

6 Testing the RSL translator 79
6.1 Scheme declarations . 80

6.1.1 Test 1 - Passed . 80
6.2 Abbreviation type definitions . 81

6.2.1 Test 2 - Passed . 81
6.2.2 Test 3 - Passed . 81

6.3 Variant type definitions . 82
6.3.1 Test 4 - Passed . 82

6.4 Explicit value definitions . 83
6.4.1 Test 5 - Passed . 83

6.5 Explicit function definitions . 84
6.5.1 Test 6 - Passed . 84

6.6 Variable definitions . 85
6.6.1 Test 7 - Passed . 85

6.7 Transition rule definitions . 86
6.7.1 Test 8 - Passed . 86
6.7.2 Test 9 - Passed . 87
6.7.3 Test 10 - Passed . 88

6.8 LTL assertion definitions . 89
6.8.1 Test 11 - Passed . 89

6.9 Rewriting value expressions . 90
6.9.1 Test 12 - Passed . 90

7 Demonstration of software application 93
7.1 RSL specification . 93

7.1.1 Airports.rsl . 94
7.2 Intermediate language translation 96

7.2.1 Airports.rtt . 96
7.3 Bounded model checking result 100

8 User guide 101
8.1 RSL translator . 101

8.1.1 Installation . 101
8.1.2 Usage . 103

8.2 RT-Tester parser and model checker 103
8.2.1 Installation . 103
8.2.2 Usage . 104

9 Further development 107
9.1 Extend translatable subset of RSL 107
9.2 k induction . 108
9.3 Reusing the RSL translator for other model checking tools 108
9.4 Comparing performance with other model checking tools 108

xii CONTENTS

10 Conclusion 111

A Appendix 113
A.1 Example translations from RSL to the intermediate language . . 113

A.1.1 Airport1 - Transition system and LTL assertion 113
A.1.2 Airport2 - Explicit value definition 114
A.1.3 Airport3 - Subtype definition 116
A.1.4 Airport4 - Explicit function definition and function appli-

cation expression . 117
A.1.5 Airport5 - If expression and case expression 118
A.1.6 Airport6 - Variant type definition 120

A.2 Example of rewriting value expressions containing if expressions . 122

Bibliography 129

Chapter 1

Introduction

In this chapter, the goal of this thesis is presented, followed by the motivation for
fulfilling this goal. Furthermore, the prerequisites necessary to fully understand
this thesis is listed, as well as a overview of the contents of this report.

1.1 Goal

The goal of this thesis is to implement a translator that takes the specification
of a given RSL state transition system, and translates it into a corresponding
model in RT-Tester. The purpose of this translation is to combine the powerful
specification capabilities of RSL with the model checking capabilities of RT-
Tester.

1.2 Motivation

Testing the correctness of software is a major part of software engineering. It
is estimated that 30-50% of the cost of software projects are spent on testing

2 Introduction

[7]. And even then, bugs and malfunctions can still occur, which is especially
problematic in safety-critical systems.

Model checking offers a way to mathematically prove whether a system meets
the required specification, and it could therefore be viewed as a solution the
current issues with manual testing. However, due to the state explosion problem,
it is only feasible to model check systems with a relatively small number of
components. Although, this boundary continues to be pushed as model checking
techniques are improved, and more powerful computers are developed.

RT-Tester is a test automation tool, which can also be used to perform bounded
model checking. The tool has recently been used push the boundary of model
checking interlocking railway systems, in terms of the size of the systems being
verified [8]. However, when feeding the models being verified to RT-Tester, it is
currently only possible using SyML/UML [6].

RSL is specification language designed for specifying models mathematically,
and is therefore much better suited as an input language for RT-Tester, com-
pared to SysML/UML.

1.3 Reader prerequisites

In formulating this thesis, it is assumed that the reader has a basic understand-
ing of the following topics:

• Model checking

• Translation concepts, such as lexers, parsers and syntax trees

• The RAISE specification language (RSL)

• Inference rules

1.4 Chapter overview

This thesis contains the following chapters:

Chapter 2 - Project Context The relevant context and background is pre-
sented, such as how model checking, RSL and RT-Tester fit together in
this project. The existing work related to this project is also discussed.

1.4 Chapter overview 3

Chapter 3 - Method Analysis The overall method of the project is analysis,
and the chosen method is presented.

Chapter 4 - Design Choices and Analysis The translatable subset of RSL
is presented, and the design of the translation is analysed and presented
in the form of a system of inference rules.

Chapter 5 - Implementation The implementation of the RSL translation is
outlined, as well as the implementation of the intermediate language parser
and model checking in RT-Tester.

Chapter 6 - Testing the RSL translator The implementation is tested in
terms of whether the translator behaves as specified in Chapter 4.

Chapter 7 - Demonstration of software application The application of this
project is demonstrated by showing the translation and model checking of
an RSL specification.

Chapter 8 - User Guide A user guide of how the user can build and execute
the program is presented.

Chapter 9 - Further Development The more interesting areas of this project,
which could be further developed in the future, is discussed.

Chapter 10 - Conclusion A conclusion of the project is presented and the
goal and content of the thesis is reflected on.

4 Introduction

Chapter 2

Project context

In this chapter, the relevant context of this project will be presented.
The following topics form the main content of this chapter:

• An outline of how model checking works.

• A description of RSL, and how it relates to this project.

• A description of RT-Tester, how it relates to this project, and how to use
it for model checking purposes.

• A discussion on previous work that relates to this project, and what has
been accomplished.

2.1 Model checking

Model checking is a process of system verification. In short, the process consist
of three steps:

• Creating a model, which is a mathematically precise and unambiguous
representation of the system.

6 Project context

• Specifying the system properties which are to be verified.

• Feeding the model and properties to a model checking tool, where all the
possible states of the model are explored and checked against the given
properties.

These steps are also illustrated in Figure 2.1.

System
Model checking

tool

Model

Property
Specification

Yes

No

Figure 2.1: The process of model checking

The first step, where the model and properties are created, is a very important
part of the verification process. If the model is not a completely accurate rep-
resentation of the system, any verification result using the faulty model cannot
be trusted [7].
However, this project does not consider the creation of the model and prop-
erties, and whether model accurately represent any system. Instead the focus
is entirely on the final step, where a given model and property specification is
given to a model checking tool.

2.2 RSL

RSL (RAISE specification language)[1] was developed as part of RAISE (Rigor-
ous Approach to Industrial Software Engineering), which is a product consisting
of three parts [10]:

• A software development method

• A formal specification language (RSL)

• Tools supporting the language and method

The focus of RAISE is on the use of formal methods, which is a mathemati-
cally based technique for specifying, developing and verifying both software and

2.3 RT-Tester 7

hardware systems. The motivation for using formal methods in general, is the
increased reliability and robustness it offers, compared to conventional methods.

Because RSL was developed with formal methods in mind, it is a powerful
language for making system specifications. It is a formal language, and it has
features from many different language styles [11], such as:

• Property-oriented and model-oriented styles

• Applicative and imperative styles

• Sequentiality and concurrency styles

The primary advantages of using formal specifications such as RSL, is that
formal specifications are precise and easier allows for mathematical analysis [9].
With the tools currently available for RSL, is not possible to execute or verify
the specification directly, without translating it to some other representation.
This is where RT-Tester comes in.

2.3 RT-Tester

RT-Tester is a commercial product, developed by Verified Systems International
GmbH [6]. It is a test automation tool for automatically generating, executing
and evaluating tests. RT-Tester is written in C++.

For this project, the main feature of interest in RT-Tester, is the ability to verify
properties defined in linear temporal logic (LTL) on a given model specification.
RT-Tester has its own way of representing the models internally, using a number
of C++ classes and objects. So part of the challenge of the project is to find
a way to translate a given specification (in this case an RSL specification) into
RT-Testers internal model representation.

2.3.1 Model checking using RT-Tester

When performing model checking using RT-Tester, there are a few things to
consider.
The model checking in RT-Tester is done using a SMT (Satisfiability Modulo
Theory) solver, which is similar to a SAT (Boolean Satisfiability Problem) solver,
except SMT solvers can include other theories, such as theories for integers, real
numbers, arrays and other data structures.

8 Project context

When given a model and a LTL formula, the SMT solver works by looking for
an interpretation of the model which satisfies the formula. In other words, it
looks for witnesses to a given LTL formula. This means that the solver does not
check whether the given LTL formula is satisfied in all possible computations of
the model, but rather attempts to find a single computation which is satisfied.
This needs to be taken into account when the user constructs the LTL formulae
that needs checking.
For instance, consider the following LTL formula, checking whether it holds
globally that no errors occur:

G(¬error)

If this formula is checked by the solver, it will attempt to find a single com-
putation without errors, and will say nothing about possible errors in other
computations.
The way to handle this, is by using the concept of proof by contradiction. We
instead negate the formula, and model check the following:

F (error)

If the solver now is unable to find a witness for this formula, it must hold that
no error occurs in any of the possible computations. A similar case, is when
checking that a certain state is eventually reached:

F (success)

This can also only be checked by using proof by contradiction, and instead
looking for the absence of witnesses satisfying the following formula:

G(¬success)

Another thing to consider, is that the SMT solver only performs bounded model
checking, where a model is only being explored for a finite number of computa-
tional steps. Therefore the verification only guarantees the result up to a certain
point.
It would be much preferred if the model checking using RT-Tester could provide
assurances regardless of the number of transitions taken. Although it has not
been done for this project, it is possible to achieve this by combining bounded
model checking with k-induction [5].
The general idea of this method is to prove that a property G(φ) holds in all
possible steps, if the following holds for k > 0 :

The base case: φ holds for any computational path of length k, starting from
the initial state.

2.4 Related work 9

The induction step: If φ holds for any computational path of length k + 1
starting from an arbitrary reachable state, then it also holds for any next
state after the initial.

Implementing an automated way of doing k-induction would be an interesting
topic for future work.

2.4 Related work

The most closely related work, is the Ph.d. thesis Formal Development and
Verification of Railway Control Systems [8] by Linh Hong Vu. In this thesis,
RT-Tester is used along with k-induction to perform verification of railway con-
trol systems. The models being verified are specified using a domain specific
language, which is inspired by RSL and even reuses subsets of RSL.
The main difference in relation to this project is that this project attempts
to translate any RSL specification, rather than railway systems specified for a
certain domain.

SAL (Symbolic Analysis Laboratory) is a specification language which is sup-
ported by a tool suite that includes a number of different model checkers. As
part of the rsltc tool, which was developed to support the RAISE specification
language, there exists a translator from RSL to SAL, which enables the model
checking of RSL specifications using that translator [3].
One thing to note here, is that SAL, like RSL, is a specification language. It is
therefore conceptually more similar to RSL compared to the internal represen-
tation of models in RT-Tester. In general, specification languages tend to offer
a high level of abstraction, whereas RT-Tester is represented at a lower level of
abstraction, offering little in terms of data structures.

In the master thesis Model Checking RAISE Specifications using nuXmv [13]
by Kim Sørensen, a translator from RSL specifications to nuXmv is developed.
nuXmv is a symbolic model checker [14], so there is a strong resemblance be-
tween that project and this one, with the only difference being the target model
checker.

There also exists a number of other RSL translators, namely translators to SML,
C++ and PVS [2]. While the target language in these translations are not very
relevant to this project, the way in which the RSL specifications are processed,
before the target language is generated, may be similar. The C++ translator in
particular may be relevant, seeing as RT-Tester is implemented in C++, though
the translation in this project is to an existing C++ system rather than to the

10 Project context

C++ language itself.

Chapter 3

Method analysis

In this chapter, the overall translation method will be analysed.
The following topics form the main content of this chapter:

• A very brief outline of the steps involved in language translation.

• A method analysis of how RSL can be translated to RT-Tester.

• A discussion of existing tools, which could be used in the implementation
of the translator.

• A presentation and justification of the chosen method of translation.

A discussion of the more low-level design choices relevant to the translation, can
be found in Chapter 4.

3.1 Language translation in general

Translating programming languages is a common problem in computer science,
and as such there already exists a lot of theory developed on the subject.
In short, a typical language translation is done using the following steps:

12 Method analysis

• Lexing, where characters from the source language are grouped into to-
kens.

• Parsing, where the tokens are grouped into syntactical units, forming a
parse tree or abstract syntax tree.

• Code generation, where the parse tree or abstract syntax tree is trans-
formed into code for the target language.

These steps can be accomplished in a variety of different ways, but since language
translation is a common problem, a lot of tools already exist to help facilitate
these steps, some of which will be presented in Section 3.3.

3.2 Translation methods

It is important to note, that RT-Tester is a program implemented in C++,
rather than being an actual language in and of itself. Because of this, when an
RSL specification is translated to RT-Tester, the resulting code is primarily a
series of C++ object constructions. Compared to the original RSL specifica-
tion, this is neither very concise nor readable for the user. Because of this, it
is very difficult and time consuming to manually create models in RT-Tester.
Ideally, this problem of conciseness and readability should be addressed by the
translation method.

3.2.1 Direct translation

The most intuitive method of translating an RSL specification to the corre-
sponding model in RT-Tester, is to do it in a single step. That is, the RT-Tester
model is generated directly based on the RSL specification, as seen in Figure
3.1. The advantage of doing the translation directly, is that the process be-
comes conceptually simpler. However, this approach does nothing to handle the
problem outlined in the paragraph above.

RSL
specification

RT-Tester
model

RSL C++

Figure 3.1: Translation method 1 - Direct translation

3.2 Translation methods 13

3.2.2 Translation using an intermediate step

Another method could be to add another step to the translation, such that
the RSL specification is first translated to some intermediate language repre-
sentation, which is then translated into an RT-Tester model. This approach is
visualized in Figure 3.2.

RSL
specification

RT-Tester
model

RSL
Intermediate
 language

C++

Translated
model

Figure 3.2: Translation method 2 - Intermediate step

This extra step can have a number of advantages, depending on how the inter-
mediate language is designed.

In order to solve the conciseness and readability problem mentioned earlier, the
intermediate language could be designed to function as a concrete ASCII syn-
tax for RT-Tester models. With this method, rather than having two separate
translation steps, the second step would instead be a simple parsing step, where
the RT-Tester model is parsed from a concrete ASCII syntax to the correspond-
ing C++ objects.
This usefulness of such a concrete ASCII syntax can be easily demonstrated by
the following comparison. Consider the following intermediate language expres-
sion:

(x == 1 && x’ == 2) || (y == 2 && y’ == 3)

This expression is much more concise and readable compared to the correspond-
ing expression tree construction in RT-Tester:

RttTgenExpTree expr =
new RttTgenExpTree("||",INFIXOPERATOR,BOOLOR);

RttTgenExpTree exprLeft =
new RttTgenExpTree("&&",INFIXOPERATOR,BOOLAND);

expr.setLeft(exprLeft);
RttTgenExpTree exprRight =

new RttTgenExpTree("&&",INFIXOPERATOR,BOOLAND);
expr.setRight(exprRight)

14 Method analysis

RttTgenExpTree exprLeftLeft =
new RttTgenExpTree("==",INFIXOPERATOR,BOOLAND);

RttTgenExpTree exprLeftRight =
new RttTgenExpTree("==",INFIXOPERATOR,BOOLAND);

exprLeft.setLeft(exprLeftLeft);
exprLeft.setRight(exprLeftRight);
RttTgenExpTree x

= new RttTgenExpTree("x",IDENTIFIER,NAMEX);
x.setVersion(0);
exprLeftLeft.setLeft(x);
exprLeftLeft.setRight(new RttTgenExpTree(1ll));
RttTgenExpTree xPrime =

new RttTgenExpTree("x’",IDENTIFIER,NAMEX);
x.setVersion(1);
exprLeftRight.setLeft(x);
exprLeftRight.setRight(new RttTgenExpTree(2ll));

RttTgenExpTree exprRightLeft =
new RttTgenExpTree("==",INFIXOPERATOR,BOOLAND);

RttTgenExpTree exprRightRight =
new RttTgenExpTree("==",INFIXOPERATOR,BOOLAND);

exprRight.setLeft(exprRightLeft);
exprRight.setRight(exprRightRight);
RttTgenExpTree y =

new RttTgenExpTree("y",IDENTIFIER,NAMEX);
y.setVersion(0);
exprRightLeft.setLeft(y);
exprRightLeft.setRight(new RttTgenExpTree(2ll));
RttTgenExpTree yPrime =

new RttTgenExpTree("y’",IDENTIFIER,NAMEX);
x.setVersion(1);
exprRightRight.setLeft(y);
exprRightRight.setRight(new RttTgenExpTree(3ll));

In this particular case, the intermediate language expression is very similar to its
corresponding RSL representation. One could therefore argue, that it is not clear
what is to be gained by the intermediate step. However, as it will be discussed
in Section 4.3, there are several important structural differences between RSL
and RT-Tester, where the concrete ASCII syntax can help visualise the resulting
RT-Tester model.

There is an additional advantage if the intermediate language is designed as de-

3.2 Translation methods 15

scribed above, namely that the parsing step when going from the intermediate
language to RT-Tester should be very straightforward to implement, since the
structure of the intermediate language will be based on RT-Tester. The imple-
mentation is also aided by the fact, that there already exists a parser within
RT-Tester, which can parse LTL expressions written in an ASCII syntax to
the corresponding objects in RT-Tester. This parser can then be reused in the
implementation of the complete intermediate language parser.

3.2.2.1 Aiding future RSL translations

Translating RSL specifications to an intermediate language also offers an inter-
esting opportunity.
The intermediate language could be designed in such a way, that the entire
RSL translator could be reused in other projects similar to this one. There
exists many different model checking tools, and one could easily imagine future
projects which deal with the translation from RSL to such another tools.
If the intermediate language in this project is designed to act as a universal
language for similar models, the only thing left to develop in future projects
would be the parsing from the intermediate language to the model checker.
This idea is illustrated below in Figure 3.3:

RSL
specification

Model checker

RSL
Intermediate
 language

Translated
model

Model checker

Model checker

Translator delevoped
in this project

Individual parsers

Figure 3.3: Reusing the intermediate language

16 Method analysis

3.3 Translation tools

There exists a wide array of tools that can aid with language translation. Here is
a short description of some of the more appealing tools that has been considered
for this project:

3.3.1 rsltc and Gentle

The RSL Type Checker (rsltc) is a set of useful tools specifically for RSL [2]. It
has many useful features, such as translating RSL to various other languages,
but the two most relevant tools in relation to this project, is the type checker
and the construction of abstract syntax trees. The type checker can be used
to check the static correctness of RSL specifications before they are translated,
and the existing construction of abstract syntax trees can be reused to save the
time it would take to implement this from scratch.

The rsltc tool set is made using Gentle, which is a compiler construction system
[4]. If one were to make an extension to rsltc, it would be obvious to also use
Gentle for this, so the rsltc source code can be amended directly. Like most
other tools, Gentle allows the use of high-level descriptions when generating
compilers or translators, which makes the tool relatively easy to use.

3.3.2 ANTLR

ANTLR (Another Tool for Language Recognition) is one of the most popular
tools for constructing recognizers, interpreters, compilers and translators [12].
The tool works by taking a context-free grammar specifying a language as input,
and generates the code for a recognizer in a selection of programming languages.
A recognizer simply checks whether an input follows a certain grammar, so in
order to do something more useful with the language, actions can be attached
to elements of the grammar. ANTLR also provides a consistent notation for
specifying lexers and parsers, which can also be generated by the tool.

ANTLR is one of the more easy language recognition tools to use, and is widely
used both in industry and academia. But besides its usability, there are no
distinguishing features in ANTLR relevant for this project compared to other
tools.

3.4 The chosen method 17

3.3.3 Lex and Yacc

Lex and Yacc [15] are a set of programs often used in conjunction with each
other. Lex is used to generate lexers and Yacc is used to generate parsers.
There exists a variety of different implementations of Lex and Yacc, also for a
variety of programming languages. It is worth noting, that the existing parsers
in RT-Tester already use Lex and Yacc.

3.4 The chosen method

The chosen method for this project, is to translate using a concrete ASCII syntax
of RT-Tester models as an intermediate language, and parsing this language into
an RT-Tester representation. The focus of the intermediate language is first and
foremost to act as a concise and readable representation, which can easily be
parsed into the corresponding RT-Tester model. However, it is also with the
idea that the intermediate language can be reused in other future projects, where
RSL specifications are translated and used by other model checking systems than
RT-Tester.

The translation into the intermediate language will be implemented by using
Gentle to extend the rsltc tool set, and thereby reusing key parts of the tool,
namely the type checker and the construction of abstract syntax trees. For the
intermediate language parser, the existing LTL parser will be extended using Lex
and Yacc to cover the parsing of entire models, rather than just LTL formulae.
This method of approach is illustrated below in Figure 3.4.

RSL
specification

RT-Tester

RSL Intermediate
 language

C++

Extending existing
LTL parser

rsltc extension
using Gentle

Translated
model

Figure 3.4: Chosen translation method

18 Method analysis

By using the intermediate language, it should allow for easier testing and debug-
ging, since any RSL specification can be manually replicated in the intermediate
language and compared with the implemented translation. Also, by simply ex-
tending rsltc, rather than developing a translator from scratch with another tool,
it should be possible to quickly develop a translator for a small subset of RSL
and then extending it incrementally, thereby easing the development process.

Chapter 4

Design choices and analysis

In this chapter, the overall design of the translation from RSL to RT-Tester will
be presented and discussed. The following topics form the main content of this
chapter:

• A presentation of the RSL constructs that can be translated in this project,
and a discussion of why certain constructions have been left out.

• A description of the structure of the intermediate language, and how it
relates to the structure of RT-Tester models.

• An analysis of the RSL translation, and a presentation of the system of
inference rules, that defines the translation from RSL to the intermediate
language.

• A short description of how the intermediate language is parsed into a
model in RT-Tester.

• A discussion of variable bounds and how they can be handled in a number
of different ways.

• An outline of how the number of transition steps used in the model checker
can be provided by the user.

20 Design choices and analysis

4.1 Translatable subset of RSL

In this project, only a small subset of the constructions available in RSL is
accepted by the translator. This section will outline this subset, and justify
why certain constructions have been left out. What the different constructions
are translated to, is described in Section 4.3.

Please note that many definitions in this section has been taken from [1].

4.1.1 Declarations

The following declarations are accepted by the translator:

4.1.1.1 Scheme declarations

Scheme declarations are accepted by the translator. Formal scheme parameters
are not accepted.
Accepted scheme declarations have the form:

scheme optionalName = class_expression

4.1.1.2 Type declarations

Type declarations are accepted by the translator.
Accepted type declarations have the form:

type
type_definition_list

Type declarations may only contain Abbreviation definitions and Variant defi-
nitions.

Abbreviation type definitions
Accepted abbreviation type definitions have the form:

4.1 Translatable subset of RSL 21

id = type_expression

Variant type definitions
Accepted variant type definitions have the form:

id == variant_1 | ... | variant_n

Only constant variants are accepted.

4.1.1.3 Value declarations

Value declarations are accepted by the translator.
Accepted value declarations have the form:

value
value_definition_list

Value declarations may only contain Explicit value definitions and Explicit func-
tion definitions.

Explicit value definitions
Accepted explicit value definitions have the form:

binding : type_expression = value_expression

Explicit function definitions
Accepted explicit function definitions have the form:

id : type_expression_1 × ... × type_expression_n →
type_expression
id(binding_1,...,binding_n) ≡ value_expression

Recursive and partial function definitions are not accepted.

22 Design choices and analysis

4.1.1.4 Transition system declarations

Transition system declarations are accepted by the translator.
Accepted transition system declarations have the form:

transition_system [name]
local

variable_definition_list
in

transition−rule_definition_1
debc
...
debc
transition−rule_definition_n

where n ≥ 1 Variable definitions
Accepted variable definitions have the form:

id : type_expression := value_expression

Transition rule definitions
Accepted transition rule definitions have the form:

[name] value_expression −→ value_expression

4.1.1.5 LTL assertion declarations

LTL assertion declarations are accepted by the translator.
Accepted LTL assertion declarations have the form:

ltl_assertion
assertion_definition_list

LTL assertion definitions
Accepted LTL assertion definitions have the form:

[name] id ` ltl_formula

4.1 Translatable subset of RSL 23

4.1.2 Class Expressions

The following class expressions are accepted by the translator:

4.1.2.1 Basic class expressions

Basic class expressions are accepted by the translator.
Accepted basic class expressions have the form:

class
declaration_list

end

4.1.3 Type Expressions

The following type expressions are accepted by the translator:

4.1.3.1 Type names

Type names are accepted by the translator.
Accepted type names have the form:

name

where name must represent a type.

4.1.3.2 Type literals

Type literals are accepted by the translator.
The type literals accepted by the translator are:

• Int

• Real

24 Design choices and analysis

• Bool

4.1.3.3 Subtype expressions

Subtype expressions are accepted by the translator.
Accepted subtype expressions have the form:

name = {|id : type_literal • value_expression |}

4.1.4 Value Expressions

The following value expressions are accepted by the translator:

4.1.4.1 Variable names

Variable names are accepted by the translator.
Accepted variable names have the form:

name

where name must represent a variable.

4.1.4.2 Value names

Value names are accepted by the translator.
Accepted value names have the form:

name

where name must represent a value.

4.1 Translatable subset of RSL 25

4.1.4.3 Value literals

Value literals are accepted by the translator.
The value literals accepted by the translator are:

• Int literals

• Real literals

• Bool literals

4.1.4.4 Function application expressions

Function application expressions are accepted by the translator.
Accepted function application expressions have the form:

id(value_expression_list)

4.1.4.5 Value infix expressions

Value infix expressions are accepted by the translator.
Accepted value infix expressions have the form:

value_expression_1 infix_operator value_expression_2

where infix_operator is one of the following operators:

= : equality

+ : addition

− : subtraction

∗ : multiplication

/ : division

< : less than

> : greater than

26 Design choices and analysis

≤ : less than or equal to

≥ : greater than or equal to

∨ : boolean disjunction

∧ : boolean conjunction

4.1.4.6 Value prefix expressions

Value prefix expressions are accepted by the translator, but only for the negation
operator.
Accepted value prefix expressions have the form:

∼value_expression

4.1.4.7 If expressions

If expressions are accepted by the translator.
Accepted if expressions have the form:

if logical−value_expression
then value_expression_1

optional−elsif_branch_list
else value_expression_2

end

where elsif_branch has the form:

elsif logical−value_expression then value_expression

If expressions are only allowed as part of transition rule definitions and as part
of explicit function definitions where the function returns a boolean value. This
is due to the way variables are represented in RT-Tester models (more on this
in Section 4.3.3).

4.1 Translatable subset of RSL 27

4.1.4.8 Case expressions

Case expressions are accepted by the translator.
Accepted case expressions have the form:

case value_expression of case_branch_list end

where case_branch has the form:

pattern → value_expression

At least one of the case branches must use the wildcard pattern ’_’. Like if
expressions, case expressions are only allowed as part of transition rule defini-
tions and as part of explicit function definitions where the function returns a
boolean value. This is due to the way variables are represented in RT-Tester
models (more on this in Section 4.3.3).

4.1.5 Discarded constructions

In general, the reason why this project only deals with the constructions listed
earlier, is simply due to time constraints. RSL is far too comprehensive to be
translated in its entirety within the scope of this project.
However, due to the nature of RT-Tester, there are some RSL constructions
that would be particularly difficult to translate, and some that are outright
impossible.

4.1.5.1 Difficult constructions

Lists
The way lists function in RSL is very similar to how arrays are represented in
RT-Tester models. It would therefore be natural to use the existing structure
for arrays, when translating RSL lists into RT-Tester. However, the SMT solver
which perform the model checking in RT-Tester is currently not equipped to
handle arrays. So even if the translation of lists was implemented using arrays,
there is no way to make use of the constructs in the solver.
If the SMT solver should be updated to handle arrays in the future, it would be
obvious to include translation of lists in any further development of this project.

28 Design choices and analysis

Sets and maps
Sets and maps are common in RSL specifications, and are very useful construc-
tions when modelling systems. It would therefore be preferred to include them
in this project. However, this would be a very complicated task.
First of all, there are no similar constructions in RT-Tester, so any direct trans-
lation is not an option. If only sets and maps of constant size were considered,
it would be possible to create simple typed variables in RT-Tester for each el-
ement in the RSL construction. As long as a fixed number of variables can be
created before verifying the model, this method would be an option. Constant
sized sets and maps can still be useful for modelling, and this could therefore a
logical feature in any further development of this project.
The major problem comes, when the size of the sets and maps are dynamic, i.e.
elements are added and removed when transition rules are taken. Here it is no
longer an option to just create a number of simple typed variables, and it would
require a lot of changes to the implementation of the SMT solver in RT-Tester,
in order to be able to create and delete variables in the symbol table during
model checking. The implementation of the solver is fairly complex, and it has
therefore been deemed too time-consuming to attempt to make it compatible
with dynamic data structures.

4.1.5.2 Impossible constructions

Axioms
Axiomatic declarations and definitions are a way of properties in RSL, which
must hold in the model. There are no corresponding mechanism in RT-Tester
for defining axioms, which makes sense seeing as the whole purpose of model
checking in the first place, is to prove whether the model satisfies some given
properties. Therefore, the idea is that rather than defining the properties as
axioms (invariants), the properties should be written as LTL formulae, which
are then model checked in RT-Tester.

Channels
Channel declarations and definitions are used in RSL to introduce concurrency,
and there is currently no way to represent concurrency when model checking
using RT-Tester.

Chaos
The expression Chaos is used in RSL to represent chaotic behaviour of pro-
grams, such as a program that never terminates. Though the behaviour of
Chaos is well defined in RSL (for instance when used in if expression or when
used in boolean connectives), there is no clear way of representing this in RT-
Tester.

4.1 Translatable subset of RSL 29

Even if there was a corresponding mechanism is RT-Tester, Chaos is very rarely
used in RSL specification, and how not be a priority to include in the translator.

4.1.6 Example of a translatable RSL specification

Below is an example of an RSL specification which uses most of the constructions
that are accepted by the translator in this project. To get a gradual introduction
to the translatable constructions, see Appendix A.1, where six RSL specification
examples are given along with their translation, ending with the example given
below.

This example specifies a simple airport system.
There are two types defined in the specification. Weather, which is a type variant
listing the possible weather conditions, and nat which is a subtype defining all
natural numbers. The basic type Nat is not one of the accepted type literals, so
nat is manually defined instead.

There are two variables in the specification, namely numberOfPlanes of type
nat which tracks the number of planes in the airport, and weatherConditions of
type Weather which tracks the current weather. There is also a constant value
planeCapacity of type nat which restricts the number of planes allowed in the
airport.

There are two function definitions in the specification.
The function hasFreeCapacity checks whether the airport can handle an arriving
flight, and it takes the number of planes, the plane capacity and the weather
conditions as parameters.
The function hasAvailablePlanes checks whether the airport can handle a flight
departure, and it takes the number of planes and weather conditions as param-
eters.

There are six transition rules in the specification.
The first transition rule planeArrival uses the function hasFreeCapacity as guard
and increments the number of planes if possible.
The second transition rule planeDeparture uses the function hasAvailablePlanes
as guard and decrements the number of planes if possible.
The final four transitions simply change the weather conditions to a value dif-
ferent than the current one.

30 Design choices and analysis

scheme Airport6 =
class

type
Weather == Sunny | Cloudy | Stormy | Hurricane,
nat = {| n : Int • n ≥ 0 |}
value
planeCapacity : nat = 150,
hasFreeCapacity : nat × nat × Weather → Bool
hasFreeCapacity(p,c,w) ≡
if w = Stormy ∨ w = Hurricane then false else p < c end,

hasAvailablePlane : nat × Weather → Bool
hasAvailablePlane(p,w) ≡
case w of
Stormy → false,
Hurricane → false,
→ p > 0

end
transition_system [TS]
local
numberOfPlanes : nat := 100,
weatherConditions : Weather := Sunny

in
[planeArrival]
hasFreeCapacity(numberOfPlanes,planeCapacity,weatherConditions) −→

numberOfPlanes′ = numberOfPlanes + 1
debc
[planeDeparture]
hasAvailablePlane(numberOfPlanes,weatherConditions) −→

numberOfPlanes′ = numberOfPlanes − 1
debc
[SunnyWeather] weatherConditions 6= Sunny −→

weatherConditions′ = Sunny
debc
[CloudyWeather] weatherConditions 6= Cloudy −→

weatherConditions′ = Cloudy
debc
[StormyWeather] weatherConditions 6= Stormy −→

weatherConditions′ = Stormy
debc
[HurricaneWeather] weatherConditions 6= Hurricane −→

weatherConditions′ = Hurricane
end

4.2 Design of the intermediate language 31

ltl_assertion
[CapacityConstraint] TS ` G(numberOfPlanes ≤ planeCapacity ∧

numberOfPlanes ≥ 0)
end

4.2 Design of the intermediate language

The purpose of the intermediate language, as established in the previous chapter,
is to act like a bridge between RSL and RT-Tester, such that the intermediate
language displays the same information as contained in an RT-Tester model,
but in an easily readable language. As such, the intermediate language should
be designed in such a way, that the process of parsing the intermediate language
into a model in RT-Tester is as straightforward as possible. To achieve this, the
structure of the intermediate language should be a reflection of the structure of
models in RT-Tester.

4.2.1 Structure

RT-Tester is written in the C++ language. As such, an RT-tester model is really
a collection of objects defined in C++. At the highest level of abstraction, the
SMT solver used in RT-Tester must be provided four different objects, in order
to perform model checking:

• A symbol table, where all the variable types, variable instances and
functions are defined.

• Initial values of variables, given as an expression in propositional logic.

• A transition relation, given as an expression in propositional logic.

• LTL formulae, representing the properties to be verified.

In order to mirror the structure of RT-Tester models and make parsing easier,
the intermediate language structure is divided into four parts in a similar fashion.

The first part contains the information needed to create the symbol table in RT-
Tester, i.e. all custom type, variable and function definitions. The two keywords
’SYM_TABLE_DECL’ and ’SYM_TABLE_DECL_END’ are used to delimit
this part:

32 Design choices and analysis

SYM_TABLE_DECL
symboltable definitions
SYM_TABLE_DECL_END

The second part contains the initial values of all variables. The two keywords
’INIT_VAL’ and ’INIT_VAL_END’ are used to delimit this part:

INIT_VAL
initial values
INIT_VAL_END

The third part contains the transition relation, and the two keywords ’TRANS_REL’
and ’TRANS_REL_END’ are used as delimiters:

TRANS_REL
transition relation
TRANS_REL_END

The final part contains the property specifications to be verified, and is delimited
by the keywords ’PROP_SPEC’ and ’PROP_SPEC_END’:

PROP_SPEC
property specifications
PROP_SPEC_END

Of course, this is just the superficial structure of the intermediate language.
The syntax of the language will be defined in the following section, and the
translation from RSL will be discussed and presented as a system of inference
rules in Section 4.3.

4.2.2 BNF grammar

The exact syntax of the intermediate language, is defined by the following BNF
grammar. The analysis that lead to this syntax and its relation to RSL is de-
scribed in Section 4.3.
Note that the regular expression operator ’*’ is used to represent any number
of repetitions, and ’\n’ is used to represent a line break.

<grammar> ::= "SYM_TABLE_DECL \n" <sym_tab_defs>
"SYM_TABLE_DECL_END \n" "INIT_VAL \n"
<init_vals> "INIT_VAL_END \n" "TRANS_REL \n" <trans_rel>

4.2 Design of the intermediate language 33

"TRANS_REL_END \n n" "\n PROP_SPEC \n" <prop_specs>
"PROP_SPEC_END"

<sym_tab_defs> ::= <sym_tab_def> "\n" (<sym_tab_def> "\n")*

<sym_tab_def> ::= <var_def> | <const_def> | <fun_def> |
<type_def>

<var_def> ::= <type> " " <id>

<const_def> ::= "const " <id> " " <id> " == " <val_expr>

<fun_def> ::= <id> " " <id> " (" (<id> " " <id>)* ")
return" <val_expr> ""

<type_def> ::= <variant_type_def> | <abbrev_type_def> |
<sub_type_def>

<variant_type_def> ::= <id> " == " <id> (" | " <id>)*

<abbrev_type_def> ::= <id> " == " <id>

<sub_type_def> ::= <id> " == " <id> " " <id> " where "
<val_expr>

<init_vals> ::= <init_val> "\n" (<init_val> "\n")*

<init_val> ::= <id> " == " <val_expr>

<trans_rel> ::= <bool_expr> ("|| \n" <bool_expr>)*

<prop_specs> ::= <prop_spec> "\n" (<prop_spec> "\n")*

<prop_spec> ::= bool_expr | "Globally[" <prop_spec> "]" |
"Finally[" <prop_spec> "]" | "Next[" <prop_spec> "]" |
"[" <prop_spec> "] Until [" <prop_spec> "]"

<val_expr> ::= <literal> | <val_expr> <arith_op> <val_expr> |
<id> "(" <val_expr>+ ")"

<bool_expr> ::= <bool_literal> | <val_expr> <bool_op> <val_expr> |
<prefix_op> <bool_expr>

34 Design choices and analysis

<literal> ::= <id> | <digit>* | <bool_literal>

<bool_literal> ::= "true" | "false"

<infix_op> ::= <arith_op> | <bool_op>

<prefix_op> ::= "!"

<arith_op> ::= "+" | "-" | "*" | "/"

<bool_op> ::= "==" | "<=" | ">=" | "<" | ">" | "&&" | "||"

<id> ::= <letter> | <char>*

<char> ::= <letter> | <digit> | "_" | "’"

<letter> ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |
"q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |
"y" | "z" | "A" | "B" | "C" | "D" | "E" | "F" |
"G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" |
"O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" |
"W" | "X" | "Y" | "Z"

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
"8" | "9"

4.2.3 Example of intermediate language model

The following intermediate language model is the translation of the RSL exam-
ple from Section 4.1.6:

SYM_TABLE_DECL
Weather == Sunny | Cloudy | Stormy | Hurricane
nat == int n where n >= 0
const nat planeCapacity == 150
bool hasFreeCapacity (nat p,nat c,Weather w)

{return ((w == Stormy || w == Hurricane && false) ||
(!(w == Stormy || w == Hurricane) && p < c))}

bool hasAvailablePlane (nat p,Weather w)

4.3 Translation analysis 35

{return (w == Stormy && false) || (w == Hurricane && false) ||
(!(w == Hurricane) && !(w == Stormy) && p > 0)}

nat numberOfPlanes
Weather weatherConditions
SYM_TABLE_DECL_END

INIT_VAL
numberOfPlanes == 100
weatherConditions == Sunny
INIT_VAL_END

TRANS_REL
(hasFreeCapacity(numberOfPlanes,planeCapacity,weatherConditions)

&& numberOfPlanes’ == numberOfPlanes + 1
&& weatherConditions’ == weatherConditions) ||

(hasAvailablePlane(numberOfPlanes,weatherConditions)
&& numberOfPlanes’ == numberOfPlanes - 1
&& weatherConditions’ == weatherConditions) ||

(weatherConditions != Sunny && weatherConditions’ == Sunny &&
numberOfPlanes’ == numberOfPlanes) ||

(weatherConditions != Cloudy && weatherConditions’ == Cloudy &&
numberOfPlanes’ == numberOfPlanes) ||

(weatherConditions != Stormy && weatherConditions’ == Stormy &&
numberOfPlanes’ == numberOfPlanes) ||

(weatherConditions != Hurricane &&
weatherConditions’ == Hurricane &&
numberOfPlanes’ == numberOfPlanes)

TRANS_REL_END

PROP_SPEC
Globally[numberOfPlanes <= planeCapacity && numberOfPlanes >= 0]
PROP_SPEC_END

4.3 Translation analysis

In this section, the translation from the translatable RSL subset defined in
Section 4.1 to the intermediate language will be analysed, and a system of
inference rules defining the translation will be presented. The exact syntax
of all intermediate language constructions can then be inferred based on this
system. Examples of this translation can be seen in Appendix A.1.

36 Design choices and analysis

4.3.1 The general approach

The general approach to this translation, is to make intermediate language as
similar to an RT-Tester model as possible. This means that whenever there is
a conceptual difference between RSL models and RT-Tester models, this should
be resolved in the first translation step to the intermediate language, rather
than in the subsequent parsing step. In doing this, the intermediate language
becomes a readable representation of an RT-Tester model. This is very useful
since an RT-Tester model in and of itself is a collection of C++ objects, with
very little transparency in relation to the model it represents.

In keeping with this approach, the syntax of some of the RSL constructions must
be changed in the translation, so that the intermediate language matches the
syntax used in RT-Tester. This way, the existing LTL parser in RT-Tester can
also be reused as a parser for the intermediate language without any changes
being made to it.
Most of these translations are trivial, such as the boolean operators ∧ and ∨
being translated to && and ||. There are a few non-trivial translations, which
will be analysed in the Sections 4.3.2, 4.3.3 and 4.3.4.

Another benefit to this approach, is that the translator from RSL to the interme-
diate language may be reused in other similar project, where RSL specifications
are being model checked by some model checking system other than RT-Tester.
Of course, this is assuming that such systems have a similar structure to that
of RT-Tester.

An important thing to note, is that the intermediate language is not designed
to act as an independent or consistent language. There will be made no effort
in the following system of inference rules to do any kind of type checking of
the constructions being translated. Instead, it is the idea that the existing
RSL type checker (rsltc) will be used to check any model before translation
is attempted. Additionally, the rsltc can also be used to generate so-called
confidence conditions. This does not find clear cut errors similar to the type
checker, but it will point to potential issues in the model (such as a function
which divides by zero for certain parameters). These confidence conditions can
then be used by the user, to manually check the correctness of the model, before
attempting to translate it.

4.3 Translation analysis 37

4.3.2 Transition rules

There are two important differences between how a transition rule is represented
in RSL and in RT-Tester.

The first difference is in the structure of the transition rule. In RSL a transition
rule has the following form:

guard→ update

Here the guard is a boolean expression, which enables the transition rule to be
available, and the update is an expression updating the value of some variables.
A concrete example of this in RSL syntax could be:

x = 1 ∧ y = 1 −→ x′ = 2 ∧ y′ = 2

In RT-Tester, the transition rules have following form:

guard && update

The previous example then translates to the following in RT-Tester:

x = 1 && y = 1 && x′ = 2 && y′ = 2

When multiple transition rules are combined to form the transition relation in
RT-Tester, all the transition rule expressions are put into a single disjunction
of transition rules, as shown below:

guard1 ∧ update1
[]

guard2 ∧ update2
[]

. . .

[]

guardn ∧ updaten

These rules translate to following transition relation in RT-Tester:

(guard1 && update1) || (guard2 && update2) || . . . || (guardn && updaten)

The second difference between transition rules in RSL and RT-Tester is more
conceptual. In RSL, it is only necessary to list the variables which are being

38 Design choices and analysis

updated, when the transition rule is used. It can then be inferred, that the
value of all other variables in the model remain unchanged. However, this is not
the case in RT-Tester. Here it must be explicitly stated what the value of each
variable is after using a given transition rule.
An example of this can be seen in the following RSL transition system:

transition_system [name]
local

x : Int := 1,
y : Int := 2

in
x = 1 −→ x′ = 2
debc
y = 2 −→ y′ = 3

The two transition rules in this example would translate to the following in
RT-Tester:

(x == 1 && x′ == 2 && y′ == y) || (y == 2 && y′ == 3 && x′ == x)

4.3.3 If expressions

If expressions do not have a directly corresponding construction in the RT-
Tester model language. There is such a construction within the SMT solver
used in RT-Tester, but this is not used, since the RT-Tester model should work
regardless of which SMT solver is used for model checking.
So instead, the way if expression then are translated, is by considering what
the underlying logical statement of such an expression is. Take for instance the
following if expression, which could be used as the guard in a transition rule:

if x = 0 then y = 1 else y = 2 end

This will then be rewritten to an equivalent logical statement:

(x = 0 ∧ y = 1) ∨ (∼(x = 0) ∧ y = 2)

However, rewriting if expression in such a manner may produce problems when if
expressions are used as part of a larger value expression. Consider the following
value expression:

4.3 Translation analysis 39

x′ = (if x = 0 then 1 else 2 end)

This is a perfectly valid expression in RSL, but when the if expression is rewrit-
ten to a separate logical statement, is becomes the following:

(x = 0 ∧ 1) ∨ (x = 1 ∧ 2)

Since 1 and 2 are not boolean expressions, this is no longer a useful expression
in RT-Tester.
The solution to this, is to consider the entire value expression that surrounds
the if expression. We can then first rewrite the value expression in such a way,
that the if expression is the outermost construction, before it is translated into
a logical statement.
Consider the value expression from earlier:

x′ = (if x = 0 then 1 else 2 end)

This can be rewritten into the following equivalent expression:

if x = 0 then x′ = 1 else x′ = 2 end

By having the if expression as the outermost construction, the expression can
now be translated to an equivalent logical statement.
However, if the value expression that includes the if expression does not evaluate
to a boolean value, then it cannot be rewritten to a meaningful logical statement,
which is why the translator only accepts if expressions when used as part of
transition rule definitions and explicit function definitions with boolean return
values.

The inference rules that define this rewriting process can be found in Section
4.3.5.26, and the inference rules that define the translation of if expressions can
be found in Section 4.3.5.24.
A full example using these rules can be found in Appendix A.2.

4.3.4 Case expressions

Like if expressions, case expressions does not have a corresponding construction
in RT-Tester.

40 Design choices and analysis

However, both expression types are really just two ways of representing the same
expression. Consider the following if and case expressions, and note that they
are equivalent:

if x = 0 then 1
elsif x = 1 then 2

else 3 end

case x of
0 → 1,
1 → 2,
→ 3

end

So instead of having inference rules which translate both if and case expres-
sion to the intermediate language, all case expressions will be rewritten into an
equivalent if expression, and then translated using the translation rules for if
expressions.

Because case expressions are rewritten to if expression, case expression also
share the same limitation of only being accepted in transition rule definitions
and function definitions with boolean return values.

4.3.5 System of inference rules for RSL translation

In the following system of inference rules, the translation from RSL to the
intermediate language is defined by the operator �.

Contexts
When translating an RSL specification to the intermediate language, it is often
the case the translation result from a declaration is used in multiple parts of the
intermediate language.
An example of this is the transition system declaration. This declaration con-
tains information relevant for both the symbol table, initial value and transition
relation part of the intermediate language.
Because of this, the concept of contexts has been introduced in the following
system of inference rules. Then by using four different context keyword and
applying them to the appropriate rules, it is possible to produce the desired

4.3 Translation analysis 41

output based on which part of the intermediate language is being created. The
following context keywords are used:

st : symbol table

iv : initial values

tr : transition relation

ps : property specifications

Contexts are placed to the left of the symbol `. So c ` e � e′ means that e
translates to e’ in context c. Some RSL constructions only contribute to the
translation in a given context. An example of this could be a type declaration,
which only contributes in the context ’st’ (when defining the symbol table).
This is reflected by adding a rule such as the following, where ε represents the
empty translation result:

c 6= st

c ` type_decl � ε

Because many of the RSL constructs should be translated the same regardless
of the context (e.g. operators), the context notation is only used for rules where
is makes a difference for the translation. Such rules are simply denoted without
using context, as such:

e� e′

This means that e translates to e’ regardless of the given context.

Besides the contexts mentioned earlier, the context ’vs’ is also used, but for
another purpose. When translating transition rules, the variables which are not
updated by the rule must be part of the translation. Therefore, the context ’vs’
is used to collect the identifiers of all variable definitions. The context can then
be passed on to the inference rule for transition rules, where it is compared with
the set of variables that are updated in the transition rule.

Term variables
In order to make the rules more concise, some term variables will be used
throughout the system of inference rules. These term variables only matches
constructs in to the subset of RSL defined in Section 4.1.

s : Any string, typically an identifier.

e : A value literal or an identifier, i.e. the smallest component of any value
expression.

42 Design choices and analysis

op : An operator.

ve : A value expression, meaning any combination of literals, identifiers, op-
erators, if expressions or case expressions. The term e is also a value
expression.

be : A boolean expression, i.e. a value expression that evaluates to a boolean
value.

type : A type name.

List notation
Also note, that a shorthand notation ’..’ is used whenever a construction contains
an unknown number of terms. For instance, a variant definition may contain
any number enumerators, and is therefore represented as the following:

type == e1 | .. | en

When using the translation operator � with this notation, it corresponds to
translating each of the elements separately. This way, the following two con-
structions are equivalent when n = 4 :

e1 � e′1, e2 � e′2, e3 � e′3, e4 � e′4
e1 | e2 | e3 | e4 � e′1 | e′2 | e′3 | e′4

e1, .. , en � e′1, .. , e
′
n

e1 | .. | en � e′1 | .. | e′n

Normal form
As described in Sections 4.3.3 and 4.3.4, value expressions containing if or case
expression are rewritten such that case expressions become if expressions, and
if expressions become the outermost construction.
Value expression that adhere to these requirements is said to be in normal form.
A value expression in normal form must adhere to the following rules:

• The value expression does not contain case expressions.

• The value expression does not contain if expression with elsif branches.

• The value expression does not contain if expression as part of an infix,
prefix or function application expression.

This concept of normal form is used in some of the following inference rules, to
determine whether further rewriting of a value expression is necessary.

Here are some examples of value expression not in normal form:

4.3 Translation analysis 43

x = 1 + if true then 2 else 3 end

x = if y = 1 then 1 else 2 end + if y = 2 then 3 else 4 end

Here are the same expression rewritten to normal form:

if true then x = 1 + 2 else x = 1 + 3 end

if y = 1 ∧ y = 2 then x = 1 + 3 else
if y = 1 ∧ ∼(y = 2) then x = 1 + 4 else

if ∼(x = 1) ∧ y = 2 then x = 2 + 3 else x = 2 + 4
end

end
end

An example of rewriting value expressions using the system of inference rules
can be found in Appendix A.2.

4.3.5.1 Scheme declarations

The following inference rules define the translation operator � for scheme dec-
larations:

st ` scheme� sym_tab_defs, vs
iv ` scheme� init_vals
tr, vs ` scheme� trans_rel
ps ` scheme� prop_specs

scheme�

sym_tab_defs
init_vals
trans_rel
prop_specs

(4.1)

where scheme is a scheme declaration

44 Design choices and analysis

st ` decl1, .. , decln � decl′1, vs1, .. , decl
′
n, vsn

st ` scheme s =

class

decl1

..

decln

end

�

SYM_TABLE_DECL
decl′1 .. decl

′
n

SYM_TABLE_DECL_END, vs1 ∪ .. ∪ vsn

(4.2)

where decli is a type declaration, value declaration,
transition system declaration or LTL assertion declaration

iv ` decl1, .. , decln � decl′1, .. , decl
′
n

iv ` scheme s =

class

decl1

..

decln

end

�

INIT_V ALS
decl′1 .. decl

′
n

INIT_V ALS_END

(4.3)

where decli is a type declaration, value declaration,
transition system declaration or LTL assertion declaration

4.3 Translation analysis 45

tr, vs ` decl1, .. , decln � decl′1, .. , decl
′
n

tr, vs ` scheme s =

class

decl1

..

decln

end

�

TRANS_REL
decl′1 .. decl

′
n

TRANS_REL_END

(4.4)

where decli is a type declaration, value declaration,
transition system declaration or LTL assertion declaration

ps ` decl1, .. , decln � decl′1, .. , decl
′
n

ps ` scheme s =

class

decl1

..

decln

end

�

PROP_SPEC
decl′1 .. decl

′
n

PROP_SPEC_END

(4.5)

where decli is a type declaration, value declaration,
transition system declaration or LTL assertion declaration

46 Design choices and analysis

4.3.5.2 Type declarations

The following inference rules define the translation operator � for type decla-
rations:

type_def1, .. , type_defn � type_def ′1, .. , type_def ′n
st ` type

type_def1,
..

type_defn
�

type_def ′1 .. type_def
′
n, {}

(4.6)

where type_defi is an abbreviation type definition
or a variant type definition

c 6= st

c ` type_decl � ε
(4.7)

where type_decl is a type declaration

4.3.5.3 Value declarations

The following inference rules define the translation operator � for value decla-
rations:

value_def1, .. , value_defn � value_def ′1, .. , value_def ′n
st ` value

value_def1,
..

value_defn
�

value_def ′1 .. value_def
′
n, {}

(4.8)

where value_defi is an explicit value definition
or an explicit function definition

c 6= st

c ` value_decl � ε
(4.9)

where value_decl is a value declaration

4.3 Translation analysis 47

4.3.5.4 Transition system declarations

The following inference rule defines the translation operator � for transition
system declarations:

st ` var_def1, .. , var_defn � var_def ′1, vs1, .. , var_def ′n, vsn
st ` transition_system[s]

local

var_def1,
..

var_defn
in

trans_rule1
[]

..

[]

trans_rulen
end

�

var_def ′1 .. var_def
′
n, vs1 ∪ .. ∪ vsn

(4.10)

where var_defi is a variable definition
and trans_rulei is a transition rule definition

48 Design choices and analysis

iv ` var_def1, .. , var_defn � var_def ′1, .. , var_def ′n
iv ` transition_system[s]

local

var_def1,
..

var_defn
in

trans_rule1
[]

..

[]

trans_rulen
end

�

var_def ′1 .. var_def
′
n

(4.11)

where var_defi is a variable definition
and trans_rulei is a transition rule definition

tr, vs ` trans_rule1, .. , trans_rulen � trans_rule′1, .. , trans_rule′n
tr, vs ` transition_system[s]

local

var_def1,
..

var_defn
in

trans_rule1
[]

..

[]

trans_rulen
end

�

trans_rule′1 || .. || trans_rule′n
(4.12)

4.3 Translation analysis 49

where var_def is a variable definition
and trans_rule is a transition rule definition

c = ps

c ` trans_sys_decl � ε
(4.13)

where trans_sys_decl is a type declaration

4.3.5.5 LTL assertion declarations

The following inference rules define the translation operator � for LTL assertion
declarations:

ps ` ltl_def1, .. , ltl_defn � ltl_def ′1, .. , ltl_def ′n
ps ` ltl_assertion

ltl_def1,
..

ltl_defn
�

ltl_def ′1 .. ltl_def
′
n

(4.14)

where ltl_defi is a ltl assertion definition

c 6= ps

c ` ltl_decl � ε
(4.15)

where ltl_decl is a LTL assertion declaration declaration

4.3.5.6 Abbreviation type definitions

The following inference rule defines the translation operator � for abbreviation
type definitions:

type_expr � type_expr′

id = type_expr � id == type_expr′
(4.16)

where type_expr is a type name, type literal or a subtype expression

50 Design choices and analysis

4.3.5.7 Variant type definitions

The following inference rule defines the translation operator � for variant type
definitions:

e1, .. , en � e′1, .. , e
′
n

s == e1 | .. | en � s == e′1 | .. | e′n
(4.17)

4.3.5.8 Explicit value definitions

The following inference rule defines the translation operator � for explicit value
definitions:

type� type′, e� e′

s : type = e � const type′ s == e′
(4.18)

4.3.5.9 Explicit function definitions

The following inference rule defines the translation operator � for explicit func-
tion definitions:

e1, .. , en � e′1, .. , e
′
n, type, .. , typen � type′, .. , type′n, ve� ve′

id : type1 >< .. >< typen → type

id(e1, .. , en) is ve

�

type′ id(type′1 e
′
1, .. , type

′
n e

′
n) {return ve′}

(4.19)

4.3.5.10 Variable definitions

The following inference rules define the translation operator � for variable def-
initions:

type� type′

st ` s : type := e � s type′, {s}
(4.20)

e� e′

iv ` s : type := e � s == e′
(4.21)

4.3 Translation analysis 51

4.3.5.11 Transition rule definitions

The following inference rules define the translation operator � for transition
rule definitions:

Here all declared variables are updated in the transition rule

vs \ {id1, .. , idn} = ∅, be� be′, ve1, .. , ven � ve′1, .. , ve
′
n

vs ` be −→ id′1 = ve1, .. , id
′
n = ven

�

(be′ && id′1 == ve′1 && ..&& id′n == ve′n)

(4.22)

Here not all declared variables are updated in the transition rule

vs \ {id1, .. , idn} = {uc1, .. , ucm},
be� be′, ve1, .. , ven � ve′1, .. , ve

′
n

vs ` be −→ id′1 = ve1, .. , id
′
n = ven

�

(be′ && id′1 == ve′1 && ..&& id′n == ve′n

&& uc′1 == uc1 && ..&& uc′m == ucm)

(4.23)

4.3.5.12 LTL assertion definitions

The following inference rules define the translation operator � for LTL assertion
definitions:

be� be′

G(be) � Globally[be′]
(4.24)

be� be′

F (be) � Finally[be′]
(4.25)

be� be′

X(be) � Next[be′]
(4.26)

be1 � be′1, be2 � be′2
U(be1, be2) � [be′1]Until[be

′
2]

(4.27)

52 Design choices and analysis

4.3.5.13 Identifiers

The following inference rule defines the translation operator � for identifiers:

e � e
(4.28)

where e is an identifier

4.3.5.14 Operators

The following inference rules define the translation operator � for operators.
Note that the operator used in the intermediate language is different in some
cases, such as ∧ becoming &&. This is such that the intermediate language
matches the existing toString methods and parsers used in RT-Tester.

= � ==
(4.29)

+�+
(4.30)

−�−
(4.31)

∗� ∗
(4.32)

/� /
(4.33)

< � <
(4.34)

> � >
(4.35)

≤ � ≤
(4.36)

≥ � ≥
(4.37)

∨� ||
(4.38)

∧�&&
(4.39)

∼ � !
(4.40)

4.3 Translation analysis 53

4.3.5.15 Type names

The following inference rule defines the translation operator � for type names:

type� type
(4.41)

4.3.5.16 Type literals

The following inference rules define the translation operator � for type literals:

Int � int
(4.42)

Real � real
(4.43)

Bool � bool
(4.44)

4.3.5.17 Subtype expressions

The following inference rule defines the translation operator � for subtype ex-
pressions:

type� type′, ve� ve′

s1 = {| s2 : type : −ve |} � s1 == type′ s2 where ve′
(4.45)

4.3.5.18 Variable names

The following inference rule defines the translation operator � for variable
names:

id� id
(4.46)

4.3.5.19 Value names

The following inference rule defines the translation operator � for value names:

id� id
(4.47)

54 Design choices and analysis

4.3.5.20 Value literals

The following inference rule defines the translation operator � for value literals:

e � e
(4.48)

where e is a value literal

4.3.5.21 Function application expressions

The following inference rule defines the translation operator � for function ap-
plication expressions:

ve1, .. , ven � ve′1, .. , ve
′
n

id(ve1, .. , ven)� id(ve′1, .. , ve
′
n)

(4.49)

4.3.5.22 Value infix expressions

The following inference rules define the translation operator � for value infix
expressions:

ve1 � ve′1, ve2 � ve′2, op� op′

ve1 op ve2 � ve′1 op
′ ve′2

(4.50)

where ve1 and ve2 are in normal form

ve1 ≡ rw_ve1, ve2 ≡ rw_ve2,
rw_ve1 op rw_ve2 ≡ rw_infix,
rw_infix� rw_infix′

ve1 op ve2 � rw_infix′
(4.51)

4.3.5.23 Value prefix expressions

The following inference rules define the translation operator � for value prefix
expressions:

ve� ve′

∼ ve� !ve′
(4.52)

4.3 Translation analysis 55

where ve is in normal form

ve ≡ rw_ve, ∼ rw_ve ≡ rw_prefix, rw_prefix� rw_prefix′

∼ ve � rw_prefix′
(4.53)

4.3.5.24 If expressions

The following inference rules define the translation operator � for if expressions:

If expression with elsif-branches

if be then ve1 elsif_branch else ve2 end ≡ rw_if_expr,
rw_if_expr � if_expr′

if be then ve1 elsif_branch else ve2 end� if_expr′
(4.54)

where elsif_branch is an elsif branch and
where ve1 and ve2 are boolean expressions

If expression without elsif-branches

be� be′, ve1 � ve′1, ve2 � ve′2
if be then ve1 else ve2 end

�

((be′ && ve′1) || (!(be′) && ve′2))

(4.55)

where ve1 and ve2 are boolean expressions and
where be, ve1 and ve2 are in normal form

be ≡ rw_be, ve1 ≡ rw_ve1, ve2 ≡ rw_ve2,
if rw_be then rw_ve1 else rw_ve2 � rw_if_expr′ end

if be then ve1 else ve2 end� rw_if_expr′
(4.56)

where ve1 and ve2 are boolean expressions

4.3.5.25 Case expressions

Note that case expressions are not translated directly, but rather rewritten into
an equivalent if expression and then translated.

56 Design choices and analysis

The following inference rule defines the translation operator � for case expres-
sions:

case_expr ≡ if_expr, if_expr � if_expr′

case_expr � if_expr′
(4.57)

where case_expr is a case expression

4.3.5.26 Rewriting value expressions

The following inference rules define the rewriting operator ≡ for value expres-
sions.
The inference rules below should be applied in the order they are presented,
such that the first rule has the highest priority. An example showing the use of
these rules can be found in Appendix A.2.

Rewrite case expression into equivalent if expression

ve1, .. , ven+1 ≡ rw_ve1, .. , rw_ven+1

case e of
e1 → ve1

e2 → ve2

..

en → ven

_→ ven+1

≡
if e = e1 then rw_ve1 else

if e = e2 then rw_ve2 else

..

if e = en then rw_ven else rw_ven+1 end

..

end

end

(4.58)

Rewrite if expression containing else if branches

4.3 Translation analysis 57

ve ≡ rw_ve, ve1, .. , ven ≡ rw_ve1, .. , rw_ven,
be1, .. , ben ≡ rw_be1, .. , rw_ben

if be1 then ve1

elsif be2 then ve2

..

elsif ben then ven

else ve end

≡
if rw_be1 then rw_ve1 else

if rw_be2 then rw_ve2 else

..

if rw_ben then rw_ven else rw_ve
..

end

end

(4.59)

Rewrite two if expressions used in the same value expression

ve1 ≡ rw_ve1, ve′1 ≡ rw_ve′1, ve2 ≡ rw_ve2, ve′2 ≡ rw_ve′2,
be1 ≡ rw_be1, be2 ≡ rw_be2
rw_ve1 op rw_ve2 ≡ rw_infix1, rw_ve1 op rw_ve′2 ≡ rw_infix2,
rw_ve′1 op rw_ve2 ≡ rw_infix3, rw_ve′1 op rw_ve′2 ≡ rw_infix4

if be1 then ve1 else ve′1 end

op

if be2 then ve2 else ve′2 end

≡
if rw_be1 ∧ rw_be2 then rw_infix1 else

if rw_be1∧ ∼ rw_be2 then rw_infix2 else

if ∼ rw_be1 ∧ rw_be2 then rw_infix3 else rw_infix4
end

end

end

(4.60)

Rewrite if expression used in infix value expression (right)

58 Design choices and analysis

be ≡ rw_be, ve1 ≡ rw_ve1, ve2 ≡ rw_ve2
e op rw_ve1 ≡ rw_infix1, e op rw_ve2 ≡ rw_infix2

e op if be then ve1 else ve2 end

≡
if rw_be then rw_infix1 else rw_infix2 end

(4.61)

Rewrite if expression used in infix value expression (left)

be ≡ rw_be, ve1 ≡ rw_ve1, ve2 ≡ rw_ve2
rw_ve1 op e ≡ rw_infix1, rw_ve2 op e ≡ rw_infix2

if be then ve1 else ve2 end op e

≡
if rw_be then rw_infix1 else rw_infix2 end

(4.62)

Rewrite if expression used in prefix value expression

be ≡ rw_be, ve1 ≡ rw_ve1, ve2 ≡ rw_ve2
∼ (if be then ve1 else ve2 end)

≡
if rw_be then ∼ (rw_ve1) else ∼ (rw_ve2) end

(4.63)

No if expressions to rewrite

ve ≡ ve
(4.64)

where ve is in normal form

ve1 ≡ rw_ve1, ve2 ≡ rw_ve2, rw_ve1 op rw_ve2 ≡ rw_infix
ve1 op ve2 ≡ rw_infix

(4.65)

4.4 Parsing the intermediate language

The intermediate language is designed in such a way, that it is essentially a
string representation of its corresponding RT-Tester model, which makes the

4.5 Variable bounds 59

parsing process very straightforward. The main challenge is to know which RT-
Tester model object to use for each part, which requires some familiarity with
the existing source code. However, this is an implementation issue, and does
not involve any design choices.

As mentioned in the previous chapter, there already exists a parser for LTL
formulae in RT-Tester, which takes a string representation of LTL formulae and
creates the corresponding RT-Tester model objects. This parser is reused in this
project, and the contents of the property specification part of the intermediate
language model is designed to work with the parser without any changes.

The existing LTL parser also makes the parsing of the initial values and the
transition relation easier. Both of these are simple logical expressions, so the
part of the LTL parser, which reads logical expressions can also be reused here.

The biggest task is to create the symbol table based on the content of the
intermediate language model. The existing parser cannot be used here, so this
part needs to be implemented from scratch.

4.5 Variable bounds

It is a requirement when doing model checking in RT-Tester, that the variables
within the model are bounded. This means that all variables must have an
associated finite range of possible values, which are allowed. The reason for
this requirement is, that the underlying SMT solver, which RT-Tester uses to
perform model checking, works by assigning values to all variables, such that a
given logical formula is satisfied. If there is an infinite set of possible values, the
SMT solver can try different assignments of values forever, without a clear way
of knowing if the logical formula is satisfiable.

The idea of bounded variables presents an issue when translating a model speci-
fied in RSL to the corresponding model in RT-Tester, since RSL allows variables
to be unbounded. Because of this, any time an RSL model which contains un-
bounded variables (such as a simple integer variable) is represented in RT-Tester,
the state space of the corresponding RT-Tester model will be smaller compared
to the RSL model.

At first glance, this seems like a major problem, since a translated RT-Tester
model ideally should represent the same state space as the original RSL model.
But in reality, it is only the reachable state space that must remain the same.
Another way of looking at this requirement, is that the model checking per-

60 Design choices and analysis

formed on the translated model, should yield the same result as for the original
model. If we imagine that all of the missing states from the state space of the
translated model are actually unreachable states, then the model checking result
will remain the same, despite the smaller state space.

Only eliminating unreachable states is not always possible to accomplish. Con-
sider the following RSL specification:

scheme infinite_state_space =
class

transition_system [T]
local

x : Int := 1
in

[incrementX] x > 0 −→ x′ = x + 1
end

end

This model has an infinite reachable state space. Any translated model will
have a finite state space, due to the requirement of variable ranges. Therefore
it cannot always be avoided, that the translated model will have a smaller
reachable state space.
However, for RSL specification with a finite reachable state space, it is possible
to define the variable bounds such that the reachable state space is identical for
the translated model.

The way the variable bounds are handled in this project, is by having a rela-
tively small default range for each variable type. If that range turns out to be
insufficient, the user can change the RSL specification, and use subtype expres-
sions to define custom type ranges. In terms of identifying whether variable
ranges are insufficient, the generation of confidence conditions (available in the
rsltc tool) can be used to aid the user.
The idea behind this solution is, that a relatively small variable range will be
sufficient in most cases, while keeping the performance impact on the SMT
solver negligible. In the few cases where the default ranges negatively impact
the reachable state space of the translated model, the user can then provide
custom ranged based on the nature of the particular model.
The default ranges for each type has been chosen as follows:

• Int: [-100 .. 100]

• Real: [-100 .. 100]

4.6 Providing bounds for model checking 61

• Bool: [0 .. 1] - this range is trivial, but still needs to be defined in
RT-Tester.

4.6 Providing bounds for model checking

As mentioned in Section 2.3.1, RT-Tester only performs bounded model checking,
i.e. the model is only checked for a finite number of transition steps. The exact
number of steps being checked, can be customized in RT-Tester for each run of
the SMT solver.
The way this is being handled, is by allowing the user to give the desired number
of steps as an argument to the parser in RT-Tester. If no argument is given, the
default number of steps is 10.

62 Design choices and analysis

Chapter 5

Implementation

In this chapter the implementation of the software developed in this thesis will
be outlined. The implementation will be described in three parts:

• The RSL translator, which is an extension of the existing rsltc tool.

• The intermediate language parser, which is implemented using Lex and
Yacc.

• The executable in RT-Tester, which performs the model checking based
on a parsed model.

The source code for the implementation can be found in the associated thesis.zip
file.

5.1 RSL translator

The RSL translator is implemented by reusing as much of the existing rsltc tool
as possible.
Before the RSL translation is attempted, the existing type checker is used to
check the static correctness of the given RSL specification. While the type

64 Implementation

checking is performed, an abstract syntax tree of the given specification is build.
It is based on this abstract syntax tree that the translation is performed.

5.1.1 Changes to existing files

A few changes have been made to the existing files grammar.g, ext.g, main.c
and files.c, which can be found the rsltc/src directory. These changes simply
to allow the user to access the RSL translator directly in the rsltc executable,
using the following command:

./rsltc -rtt <filename>.rsl

For more on how to use the translator, see Section 8.1.2.

5.1.2 rtt.g

The implementation of the RSL translator is located in the file rtt.g, which can
be found the rsltc/src directory.

The structure of the implementation is fairly similar to the structure of the
system of inference rules defined in Section 4.3.5. It mainly consists of a number
of Actions, which is a Gentle construction. Many of the Actions in this file have
the prefix ’gen’ (e.g. gen_class). These Actions are responsible for generating
the intermediate language code.

Most of the generating Actions have an associated type in the abstract syntax
tree that they generate code for. An example of this, is the gen_class Action
which translates the type CLASS as seen below:

’type’ CLASS

basic (decls : DECLS)
extend (left : CLASS,

right : CLASS)
hide (hides : DEFINEDS,

class : CLASS)
rename (renames : RENAMES,

class : CLASS)
with (pos : POS,

5.1 RSL translator 65

objects : OBJECT_EXPRS,
class : CLASS)

instantiation (name : NAME,
parm : OBJECT_EXPRS)

nil

’action’ gen_class(CLASS)

’rule’ gen_class(basic(Ds)):
check_enums_for_duplicates(Ds, nil)
WriteFile("SYM_TABLE_DECL")
gen_sym_table_decls(Ds)
WriteFile("\nSYM_TABLE_DECL_END\n\nINIT_VAL")
gen_init_values(Ds)
WriteFile("\nINIT_VAL_END\n\nTRANS_REL")
gen_transition_relations(Ds)
WriteFile("\nTRANS_REL_END\n\nPROP_SPEC")
gen_property_specifications(Ds)
WriteFile("\nPROP_SPEC_END")

’rule’ gen_class(_):
ErrorUsage("Error: only basic classes are accepted")

In general, the rules of an action determine which instances of a given type is
accepted by the translator. In this example, the only instance of type CLASS
that is accepted is basic(decls : DECLS). For any other instance, the program
is aborted and an error message is printed.

In the system of inference rules, a context is also provided for rules which should
only be used in a certain context. The same principle is also used in the imple-
mentation of the translator. The following type CONTEXT is defined:

’type’ CONTEXT

sym_table_decl
init_val
trans_rel

This type is used as parameter for certain Actions, where they are relevant
to the code generation. An example of this, is the gen_variable_def Action,
responsible for generating the code for variable definitions:

66 Implementation

’action’ gen_variable_def(VARIABLE_DEF, CONTEXT)

’rule’ gen_variable_def(single(_, Id, Type, _),
sym_table_decl):

WriteFile("\n")
gen_type_expr(Type)
WriteFile(" ")
id_to_string(Id -> S)
WriteFile(S)

’rule’ gen_variable_def(single(_, Id, _, initial(VE)),
init_val):

WriteFile("\n")
id_to_string(Id -> S)
WriteFile(S)
WriteFile(" == ")
gen_value_expr(VE)

Here the two rules defined in gen_variable_def correspond to the two inference
rules (4.20) and (4.21) respectively, and the context keys sym_table_decl and
init_val is used to distinguish the two.
However, there are some cases where separate Actions are created rather than
using the CONTEXT type. This can be seen in the way the type DECLS is
handled, where four different Actions are used. Here it is the Rules within each
Action that determines whether a certain declaration is translated or not, rather
than a CONTEXT:

’action’ gen_sym_table_decls(DECLS)
...
’rule’ gen_sym_table_decls(list(type_decl(_, TDs), Ds)):

gen_type_declarations(TDs)
gen_sym_table_decls(Ds)

’rule’ gen_sym_table_decls(list(value_decl(_, VDs), Ds)):
gen_value_declarations(VDs)
gen_sym_table_decls(Ds)

’rule’ gen_sym_table_decls(list(trans_system_decl(_, TSs),
Ds)):

gen_transition_systems(TSs, sym_table_decl)
gen_sym_table_decls(Ds)

...

5.1 RSL translator 67

’action’ gen_init_values(DECLS)
...
’rule’ gen_init_values(list(trans_system_decl(_, TSs), Ds)):

gen_transition_systems(TSs, init_val)
gen_init_values(Ds)

...

’action’ gen_transition_relations(DECLS)
...
’rule’ gen_transition_relations(list

(trans_system_decl(_, TSs), Ds)):
gen_transition_systems(TSs, trans_rel)

...

’action’ gen_property_specifications(DECLS)
...
’rule’ gen_property_specifications(list(property_decl(_, P),

Ds)):
gen_properties(P)

...

This example does not correspond directly to the system of inference rules,
however it will still generate code identical to the intended design. The reason
for this inconsistency between the design and implementation, is that the system
of inference rules was developed after some parts of the implementation.

The code being generated in the different Actions is written string by string
directly to an output file. If the file being translated is example.rsl, the generated
intermediate language code will be written to a file example.rtt in the same folder
as the executable.

5.1.2.1 Rewriting if- and case expressions

In the system of inference rules defined in Section 4.3.5, any value expression,
which is not in normal form, is rewritten according to the equivalence operator
≡ as defined in Section 4.3.5.26.
In the implementation of the translator, the similar Condition has_if_expr
is used to check whether a given value expression contains any if or case ex-
pressions. If a value expression contains an if or case expression, the Action
rewrite_if_expr is used:

68 Implementation

’action’ rewrite_if_expr(VALUE_EXPR -> VALUE_EXPR)

’rule’ rewrite_if_expr(if_expr(P, G, T, P2, nil, else(P3, E))
-> if_expr(P, G2, T2, P2, nil, else(P3, E2))):
...

’rule’ rewrite_if_expr(if_expr(P, G, T, P2, EIs, else(P3, E))
-> NewIf):
...

’rule’ rewrite_if_expr(val_infix(_,
if_expr(Pl, Gl, Tl, P2l, EIsl, El), Op,
if_expr(Pr, Gr, Tr, P2r, EIsr, Er)) -> NewIf):
...

’rule’ rewrite_if_expr(val_infix(_, Left, Op,
if_expr(P, G, T, P2, EIs, else(P4, E))) -> NewIf):
...

’rule’ rewrite_if_expr(val_infix(_,
if_expr(P, G, T, P2, EIs, else(P4, E)), Op, Right)
-> NewIf):
...

’rule’ rewrite_if_expr(val_infix(P, Left, Op, Right)
-> NewIf):
...

’rule’ rewrite_if_expr(ax_prefix(P, not, VE)
-> ax_prefix(P, not, VE2)):
...

’rule’ rewrite_if_expr(case_expr(P, VE, P2, Bs) -> IF):
...

’rule’ rewrite_if_expr(VE -> VE):
...

The Rules used in this Action are similar to the inference rules defined in Section
4.3.5.26.

The first Rule corresponds to inference rule (4.56), dealing with the rewriting
of if expressions such that their nested value expressions also are rewritten.

5.2 Intermediate language parser 69

The second Rule corresponds to inference rule (4.59), dealing with if expres-
sion containing else-if branches.

The third Rule corresponds to inference rule (4.60), dealing with infix ex-
pressions where both sides are if expressions.

The fourth Rule corresponds to inference rule (4.61), dealing with infix ex-
pressions where only the left side is an if expression.

The fifth Rule corresponds to inference rule (4.62), dealing with infix expres-
sions where only the right side is an if expression.

The sixth Rule corresponds to inference rule (4.63), dealing with prefix ex-
pressions.

The seventh Rule corresponds to inference rules (4.64) and (4.65), dealing
with infix expressions where neither side is an if expression.

The eighth Rule corresponds to inference rule (4.58), dealing with case ex-
pressions.

The last Rule corresponds to inference rule (4.65), where none of the other
cases matches and nothing is rewritten.

5.2 Intermediate language parser

The intermediate language parser is implemented in the files rttparser_lex.ll
and rttparser_yacc.ypp, which are located in the rtttgen_V2/parsers/rttparser
directory. These files are based on the existing LTL parser files ltlparser_lex.ll
and ltlparser_yacc.ypp, which are located in the rtttgen_V2/parsers/ltlparser
directory.

Some auxiliary classes which are used by the parser have also been created: The
files RttParserOutput.cpp, RttParserOutput.h, RttSubtype.cpp and RttSub-
type.h, all located in the rtttgen_V2/rsl directory.

5.2.1 RttParserOutput.cpp/h

This class is simply a wrapper class for the different output types the parser
produces.
The parser produces five different outputs: A map from ids to subtypes, a sym-
bol table, an initial value constraint, a transition relation and a list of property
specifications.

70 Implementation

class RttTgenParserOutput{

private :
map<st r i ng , RttSubtype∗> ∗subtypeMap ;
RttTgenSymbolTable ∗ symbolTable ;
RttTgenExpTree ∗ i n i t i a l V a l u e s ;
RttTgenExpTree ∗ t r a n s i t i o nRe l a t i o n ;
vector<RttTgenLTLFormula∗> ∗ p r op e r t ySp e c i f i c a t i o n s ;

. . .
}

5.2.2 RttSubtype.cpp/h

This class is used to store relevant information about a single subtype defined
in the parsed model.
In each instance of this class, the following is stored: The name of the subtype,
its maximal type, the value expression which constrains the subtype, and the
name of the local variable used in the value expression.
class RttSubtype{

private :
s t r i n g ∗typeName ;
s t r i n g ∗ subtypeOf ;
s t r i n g ∗ localVarName ;
RttTgenExpTree ∗ va lueExpres s ion ;

. . .
}

5.2.3 rttparser_lex.ll

By reusing the file ltlparser_lex.ll, this lexer is already capable of producing
most of the tokens needed to parse the intermediate language. Only the following
was added to this file:

"SYM_TABLE_DECL" { rttparser_currentline +=
rttparser_text; return(SYM_TABLE_DECL_START); }

"SYM_TABLE_DECL_END" { rttparser_currentline +=
rttparser_text; return(SYM_TABLE_DECL_END); }

"INIT_VAL" { rttparser_currentline +=
rttparser_text; return(INIT_VAL_START); }

"INIT_VAL_END" { rttparser_currentline +=

5.2 Intermediate language parser 71

rttparser_text; return(INIT_VAL_END); }
"TRANS_REL" { rttparser_currentline +=

rttparser_text; return(TRANS_REL_START); }
"TRANS_REL_END" { rttparser_currentline +=

rttparser_text; return(TRANS_REL_END); }
"PROP_SPEC" { rttparser_currentline +=

rttparser_text; return(PROP_SPEC_START); }
"PROP_SPEC_END" { rttparser_currentline +=

rttparser_text; return(PROP_SPEC_END); }

"const" { rttparser_currentline +=
rttparser_text; return(CONST); }

"return" { rttparser_currentline +=
rttparser_text; return(RETURNKEY); }

"where" { rttparser_currentline +=
rttparser_text; return(WHEREKEY); }

"’" { rttparser_currentline +=
rttparser_text; return(PRIME); }

The functions parse_rtt_string and parse_rtt_file were also changed to return
RttParserOutput instead of RttTgenLTLFormula.

5.2.4 rttparser_yacc.ypp

This file is based on the file ltlparser_yacc.ypp. The existing code has only been
changed slightly, but since parsing LTL formulae is only part of what needs to
be done, a lot has also been added.

A number of global variables have been added to the parser, which are used
throughout the parser:

RttTgenParserOutput *parseroutput = new RttTgenParserOutput();
RttTgenSymbolTable *symboltable = new RttTgenSymbolTable(true);
map<string, RttSubtype*> *typeNameToSubtype =

new map<string, RttSubtype*>();
map<string, RttSubtype*> *varNameToSubtype =

new map<string, RttSubtype*>();
vector<RttTgenLTLFormula*> *formulae =

new vector<RttTgenLTLFormula*>();

string int_min = "-100";

72 Implementation

string int_max = "100";
string bool_min = "0";
string bool_max = "1";
string real_min = "-100";
string real_max = "100";

To accommodate the new tokens added in rttparser_lex.ll, the following token
declarations have been added:

%token PRIME CONST RETURNKEY WHEREKEY
%token SYM_TABLE_DECL_START SYM_TABLE_DECL_END INIT_VAL_START

INIT_VAL_END TRANS_REL_START TRANS_REL_END
PROP_SPEC_START PROP_SPEC_END

Finally, a number of rules have been added, enabling the parsing of the symbol
table, the initial values of variables and the transition relation.
The starting rule of the parser is parser_output, where the content of the
RttParserOutput class returned by the parser is set:

parser_output:
sym_table_declarations_final initial_values_final

transition_relation property_specifications_final
{
parseroutput->setSymbolTable(symboltable);
parseroutput->setInitialValues($2);
parseroutput->setTransitionRelation($3);
parseroutput->setPropertySpecifications(formulae);
parseroutput->setSubtypeMap(varNameToSubtype);
}

In addition, the following rules have been created to parse the symbol table,
initial values of variables and transition relation:

sym_table_declarations_final:
SYM_TABLE_DECL_START sym_table_declarations

SYM_TABLE_DECL_END { }

sym_table_declarations:
sym_table_declaration { }
| sym_table_declarations sym_table_declaration { }

sym_table_declaration:

5.2 Intermediate language parser 73

variable_declaration { }
| function_declaration { }
| constant_declaration { }
| subtype_declaration { }
| enum_declaration { }

initial_values_final:
INIT_VAL_START initial_values INIT_VAL_END { $$ = $2; }

initial_values:
equality_expression { $$ = $1; }
| initial_values equality_expression

{ $$ = new RttTgenExpTree("&&", INFIXOPERATOR, BOOLAND);
$$->setLeft($1);
$$->setRight($2);

$$->setVersion(0,true); }

transition_relation:
TRANS_REL_START logical_or_expression TRANS_REL_END { $$ = $2; }

property_specifications_final:
PROP_SPEC_START property_specifications PROP_SPEC_END { }

property_specifications:
pathformula { }
| property_specifications pathformula { }

Note here that the rules initial_values, transition_relation and property_specification
are reusing rules from the original LTL parser to create the appropriate objects.

To give an example of how these rules work, consider the following section from
the rule variable_declaration:

variable_declaration:
INT_T IDENT
{ map<string,RttTgenType*> &typemap = symboltable->getTypeMap();

RttTgenType *type = typemap["signed long int"];
RttTgenSymbolTableVarEntry* entry =

new RttTgenSymbolTableVarEntry(
*type,
new RttTgenVariableSymbol(string($2),rttTgenInputVar,

"signed long int",int_min,int_min,int_max),

74 Implementation

SYMTAB_IMR);
symboltable->addVarEntry(string($2),entry); }
| REAL_T IDENT
{ ... }
| BOOL_T IDENT
{ ... }
| IDENT IDENT
{ ... }

As shown here, there are four cases of variable declarations. The variable type
is either an int, a real, a bool or a custom type.
In the case of an int, a new variable entry is created using the existing integer
type in the symbol table, after which the entry is added to the map of variable
entries in the symbol table.

5.2.5 Subtypes

There is not a direct way to represent subtypes in the symbol table. So the
way subtypes are handled, is by declaring variables in the symbol table as the
maximal type of the subtype. The RttSubtype class is used to store the relevant
information about the subtype, such as the constraints being imposed upon the
maximal type. The information contained in this class is then used to constrain
the values of the subtype, when a global transition relation is created in the
main executable (see Section 5.3.2).

This process is best explained with an example. Consider the following subtype
declaration and variable declaration:

nat == int n where n >= 0
nat x

When the subtype declaration is read by the parser, the following RttSubtype
class instance is created in the rule subtype_declaration, and added to the global
map typeNameToSubtype:

RttTgenExpTree *constraint = new RttTgenExpTree(...)
RttSubtype *subtype =

new RttSubtype("nat","int","n",constraint);
typeNameToSubtype->insert(

pair<string,RttSubtype*>("nat",subtype));

5.3 Model checking 75

When the variable declaration is then read, the variable is included in the symbol
table with the type int, while also being added to the global map varNameTo-
Subtype:

RttSubtype* subType = (*typeNameToSubtype)["nat"]
varNameToSubtype->insert(

pair<string,RttSubtype*>("x",subType));

map<string,RttTgenType*> &typemap = symboltable->getTypeMap();
RttTgenType *type = typemap["int"];
RttTgenSymbolTableVarEntry* entry =

new RttTgenSymbolTableVarEntry(
*type,
new RttTgenVariableSymbol("x",rttTgenInputVar,

"int",int_min,int_min,int_max),
SYMTAB_IMR);

symboltable->addVarEntry("x",entry);

After the parsing has been completed, the bounds for all variables are added as
constraints to the transition relation (as described in Section 5.3.2). Here the
map varNameToSubtype is also used to include the constraints imposed upon
the subtypes. For this particular example, the following constraint will be added
to the transition relation:

x >= 0

where the local variable name n has been substituted with the actual variable
name x.

5.3 Model checking

The executable which uses the parser and performs model checking, is imple-
mented in the file rtt-rsl.cpp, located in the rtttgen_V2/executables/rtt-rsl di-
rectory.

The file consists of three functions, main, createGlobalTransRel and solveGoal.

76 Implementation

5.3.1 main function

The main function takes either one or two arguments, the first being the path
for the intermediate language file being parsed, and the second being the step
bound necessary for model checking. If no second argument is given, the default
of 10 steps is used.

The parser is then called to produce an instance of the class RttParserOutput.
Using the symbol table contained in that class, an instance of the solver class
RttTgenSonolarTransRelSolver is initialized:

RttTgenSonolarTransRelSolver ∗ s o l v e r =
new RttTgenSonolarTransRelSolver (symtab , true) ;

A global transition relation (see Section 5.3.2) is created using the createGlob-
alTransRel function, and is fed to the solver along with the initial values:

RttTgenExpTree∗ g loba lTrans =
createGlobalTransRel (transRel , symtab , subtypeMap) ;

s o l ve r−>se tTran s i t i onRe l a t i on (i n i tVa l s , g loba lTrans) ;

Finally the list of property specifications (LTL formulae) are model checked one
by one using the solveGoal function (see Section 5.3.3).

5.3.2 createGlobalTransRel function

This function creates a so-called global transition relation, which is a constraint
that must hold in all states of the model checking process (unlike the initial value
constraint, which only has to hold in the initial state). The global transition
relation is a logical conjunction, consisting of the transition relation coming from
the parser, and the bounds imposed on each variable.

The function takes three arguments, a transition relation, a symbol table and a
subtype map, and return a global transition relation:

RttTgenExpTree∗ createGlobalTransRel (RttTgenExpTree∗ transRel ,
RttTgenSymbolTable∗ symTab , map<st r i ng , RttSubtype∗>∗ subtypeMap){
. . .

}

Both the variable map contained in the symbol table and the subtype map are
then iterated through, adding the variable bound constraints to the transition
relation.

5.3 Model checking 77

One thing to note, is that the symbol table always contains a variable called
_timeTick, which is used when modelling real time systems. This variable must
be skipped when iterating through the variables, and a constraints stating that
the variable never changes must also be added to the global transition relation:
// add "/\ _timeTick ’ == _timeTick"
RttTgenExpTree ∗ timeTickExpr =

new RttTgenExpTree ("==" , INFIXOPERATOR, COMPEQ) ;
RttTgenExpTree ∗ t imeTickLeft =

new RttTgenExpTree ("_timeTick" , IDENTIFIER , NAMEX) ;
t imeTickLeft−>setVer s i on (1 , true) ;
RttTgenExpTree ∗ t imeTickRight =

new RttTgenExpTree ("_timeTick" , IDENTIFIER , NAMEX) ;
timeTickRight−>setVer s i on (0 , true) ;
timeTickExpr−>se tL e f t (t imeTickLeft) ;
timeTickExpr−>setRight (timeTickRight) ;

g loba lTransRel = RttTgenExpTree : : createANDExpr (tempTransRel ,
timeTickExpr) ;

5.3.3 solveGoal function

The function solveGoal takes four arguments, a property specification (or goal),
an initial value constraint, an instance of the solver and a step bound.
void so lveGoal (RttTgenLTLFormula∗ propSpec ,

RttTgenExpTree∗ i n i t i a lC on s t r a i n t s ,
RttTgenSonolarTransRelSolver ∗ so l ve r , int stepBound){
. . .

}

Note that the solver only accept vectors of goals, so the goal argument is simply
given as a vector with one element. Another option would be to attempt to
solve all the goals stated in the original specification at the same time, but then
it would not be possible to distinguish which goal failed in the verification.

The solver method solveConstraintWithTransRelInitial is then called using the
appropriate arguments:
vector< : : l a t t i c e l i b : : ConcreteLatt i ce<bool> > s t e p P o s s i b i l i t i e s ;
vector<RttTgenExpTree∗> gu id ingCons t ra in t s ;
I n i t i a lVa lu e s_t i n i tVa l s ;
vector<RttTgenLTLFormula∗> goalVec ;
goalVec . push_back (propSpec) ;
unsigned int s o l v e rS t ep = 0 ;
bool so lved = fa l se ;

s o lved = so lve r−>so lveCons t ra in tWi thTransRe l In i t i a l (goalVec ,
&in i tVa l s , i n i t i a lC on s t r a i n t s , s t e p P o s s i b i l i t i e s ,

78 Implementation

gu id ingConst ra int s , stepBound , so lve rStep , NULL) ;

If a witness is found, the values of all variables (except _timeTick) are then
printed for each step.

Chapter 6

Testing the RSL translator

In this chapter, the implementation of the RSL translator will be tested, to see
if it matches the design presented in Chapter 4. Each test consist of three parts,
the test input, the expected output and the actual output. The headline of each
test indicates whether that test has passed or failed.

Note that only the RSL constructions which directly produce code in the trans-
lation will be tested. This means that constructions such as type declarations
will not be tested as such, but rather the type definitions contained within the
declaration.
There are also many constructions which cannot be tested without being part of
larger construction. For instance, a type name cannot appear alone in an RSL
specification, but must be part of a type definition or similar. It will therefore be
mentioned after each test, which "sub-constructions" also have been indirectly
tested.

80 Testing the RSL translator

6.1 Scheme declarations

6.1.1 Test 1 - Passed

Test input

scheme test1 =
class
end

Expected output

SYM_TABLE_DECL
SYM_TABLE_DECL_END

INIT_VAL
INIT_VAL_END

TRANS_REL
TRANS_REL_END

PROP_SPEC
PROP_SPEC_END

Actual output

SYM_TABLE_DECL
SYM_TABLE_DECL_END

INIT_VAL
INIT_VAL_END

TRANS_REL
TRANS_REL_END

PROP_SPEC
PROP_SPEC_END

6.2 Abbreviation type definitions 81

6.2 Abbreviation type definitions

6.2.1 Test 2 - Passed

Test input

scheme test2 =
class
type MyInt = Int

end

Expected output

SYM_TABLE_DECL
MyInt == int
SYM_TABLE_DECL_END
...

Actual output

SYM_TABLE_DECL
MyInt == int
SYM_TABLE_DECL_END
...

This test also shows that the type name MyInt and the type literal Int were
translated as expected.

6.2.2 Test 3 - Passed

Test input

scheme test3 =

82 Testing the RSL translator

class
type MySubtype = {| x : Int • 0 ≤ x ∧ x ≤ 10 |}

end

Expected output

SYM_TABLE_DECL
MySubtype = int x where 0 <= x && x <= 10
SYM_TABLE_DECL_END
...

Actual output

SYM_TABLE_DECL
MySubtype = int x where 0 <= x && x <= 10
SYM_TABLE_DECL_END
...

This test also shows that the value literals 0 and 10 were translated as expected.

6.3 Variant type definitions

6.3.1 Test 4 - Passed

Test input

scheme test4 =
class
type Variant == enum1 | enum2 | enum3

end

Expected output

6.4 Explicit value definitions 83

SYM_TABLE_DECL
Variant == enum1 | enum2 | enum3
SYM_TABLE_DECL_END
...

Actual output

SYM_TABLE_DECL
Variant == enum1 | enum2 | enum3
SYM_TABLE_DECL_END
...

6.4 Explicit value definitions

6.4.1 Test 5 - Passed

Test input

scheme test5 =
class
value x : Real = 1.0

end

Expected output

SYM_TABLE_DECL
const x real == 1.0
SYM_TABLE_DECL_END
...

Actual output

84 Testing the RSL translator

SYM_TABLE_DECL
const x real == 1.0
SYM_TABLE_DECL_END
...

This test also shows that the value name x was translated as expected.

6.5 Explicit function definitions

6.5.1 Test 6 - Passed

Test input

scheme test6 =
class
value
f : Int × Int → Bool
f(x,y) ≡ x = y

end

Expected output

SYM_TABLE_DECL
bool f (int x, int y) {return x == y}
SYM_TABLE_DECL_END
...

Actual output

SYM_TABLE_DECL
bool f (int x, int y) {return x == y}
SYM_TABLE_DECL_END
...

6.6 Variable definitions 85

This test also shows that the value infix expression x = y was translated as
expected.

6.6 Variable definitions

6.6.1 Test 7 - Passed

Test input

scheme test7 =
class
transition_system [TS]
local
x : Bool := false

in
...

end
end

Expected output

SYM_TABLE_DECL
bool x
SYM_TABLE_DECL_END

INIT_VAL
x == false
INIT_VAL_END
...

Actual output

SYM_TABLE_DECL
bool x
SYM_TABLE_DECL_END

86 Testing the RSL translator

INIT_VAL
x == false
INIT_VAL_END
...

This test also shows that the variable name x was translated as expected.

6.7 Transition rule definitions

6.7.1 Test 8 - Passed

Test input

scheme test8 =
class
transition_system [TS]
local
...

in
[name1] x = 0 −→ x′ = 1

end
end

Expected output

...
TRANS_REL
(x == 0 && x’ == 1)
TRANS_REL_END

Actual output

...
TRANS_REL

6.7 Transition rule definitions 87

(x == 0 && x’ == 1)
TRANS_REL_END

6.7.2 Test 9 - Passed

Test input

scheme test9 =
class
transition_system [TS]
local
x : Int := 0,
y : Bool := false

in
[name1] f(x) −→ y′ = ∼y

end
end

Expected output

...
TRANS_REL
(f(x) && y’ == !y && x’ == x)
TRANS_REL_END

Actual output

...
TRANS_REL
(f(x) && y’ == !y && x’ == x)
TRANS_REL_END

This test also shows that the function application expression f(x) and the value
prefix expression ∼ y were translated as expected.

88 Testing the RSL translator

6.7.3 Test 10 - Passed

Test input

scheme test10 =
class
transition_system [TS]
local
x : Int := 0

in
[name1] if x = 0 then true else false end −→ x′ = 1
debc
[name2] case x of 0 → true, → false end −→ x′ = 1

end
end

Expected output

...
TRANS_REL
(((x == 0 && true) || (!(x == 0) && false)) && x’ == 1) ||
(((x == 0 && true) || (!(x == 0) && false)) && x’ == 1)
TRANS_REL_END

Actual output

...
TRANS_REL
(((x == 0 && true) || (!(x == 0) && false)) && x’ == 1) ||
(((x == 0 && true) || (!(x == 0) && false)) && x’ == 1)
TRANS_REL_END

This test also shows that the if expression if x = 0 then true else false and
the case expression caseof x 1 → true, _ → false end were translated as
expected.

6.8 LTL assertion definitions 89

6.8 LTL assertion definitions

6.8.1 Test 11 - Passed

Test input

scheme test11 =
class
transition_system [TS]
...
ltl_assertion
[name1] TS ` G(x = 0),
[name1] TS ` F(x = 0),
[name1] TS ` X(x = 0),
[name1] TS ` U(x = 0,x = 1),
[name1] TS ` G(F(x = 0))

end

Expected output

...
PROP_SPEC
Globally[x == 0]
Finally[x == 0]
Next[x == 0]
[x == 0]Until[x == 1]
Globally[Finally[x == 0]]
PROP_SPEC_END

Actual output

...
PROP_SPEC
Globally[x == 0]
Finally[x == 0]
Next[x == 0]
[x == 0]Until[x == 1]
Globally[Finally[x == 0]]

90 Testing the RSL translator

PROP_SPEC_END

6.9 Rewriting value expressions

The following test checks whether the inference rules defining the rewriting op-
erator ≡ from Section 4.3.5 has been implemented correctly. A manual rewriting
process using the system of inference rules can be found in Appendix A.2, also
using the value expression shown in the guard in the following RSL specification.

The expected output is different from the actual output in the following test.
However, the two expressions are logically equivalent, so the test is deemed as
passed.

6.9.1 Test 12 - Passed

Test input

scheme test12 =
class
value
...
transition_system [TS]
local
c : Int := 0

in
[name] x = if y = 1 then 2 else 3 end + 4 +

if z = 5 then 6 else 7 end
−→ c′ = c + 1

end
end

Expected output

...
TRANS_REL
(((y == 1 && z == 5 && x == 2 + 4 + 6) ||

6.9 Rewriting value expressions 91

(!(y == 1 && z == 5) &&
((y == 1 && !(z == 5) && x == 2 + 4 + 7) ||
(!(y == 1 && !(z == 5)) &&
((!(y == 1) && z == 5 && x == 3 + 4 + 6) ||
!(!(y == 1) && z == 5) && x == 3 + 4 + 7)))))

&& c’ == c + 1)
TRANS_REL_END
...

Actual output

...
TRANS_REL
(((z == 5 && ((y == 1 && x == 2 + 4 + 6) ||

(!(y == 1) && x == 3 + 4 + 6))) ||
(!(z == 5) && ((y == 1 && x == 2 + 4 + 7) ||

(!(y == 1) && x == 3 + 4 + 7))))
&& c’ == c + 1)
TRANS_REL_END
...

92 Testing the RSL translator

Chapter 7

Demonstration of software
application

In this chapter, the application of the software developed in this thesis is demon-
strated by translating and model checking an RSL specification.
The chapter consists of three parts:

• The RSL specification along with an informal description of the model.

• The intermediate language translation, obtained using the developed RSL
translator.

• The model checking result, obtained using the intermediate language parser
and model checker.

7.1 RSL specification

For this demonstration of the application of the thesis, the model Airports.rsl
has been created, representing three connected airports, Billund, Frankfurt and
Heathrow.

94 Demonstration of software application

Each airport has the following associated information: A plane capacity, a num-
ber of planes currently in the airport and the local weather conditions. The
weather conditions may change at any time.

Planes can fly from one airport to another, but only on a number of conditions.
The first airport must have a plane available for take off, and the second airport
must not be at full capacity.
Furthermore, the local weather in both airports may not be stormy.

There are two properties being verified. The first is that no airport goes above its
plane capacity. The second is that the number of planes in the system remains
the same.
Both properties are global properties, and have therefore been negated, so they
can be proven by contradiction.

7.1.1 Airports.rsl

scheme Airports =
class

type
Weather == Sunny | Stormy,
nat = {| n : Int • n ≥ 0 |}

value
billund_capacity : nat = 20,
frankfurt_capacity : nat = 30,
heathrow_capacity : nat = 40,

hasFreeCapacity : nat × nat × Weather → Bool
hasFreeCapacity(p,c,w) ≡
if w = Stormy then false else p < c end,

hasAvailablePlane : nat × Weather → Bool
hasAvailablePlane(p,w) ≡
if w = Stormy then false else p > 0 end

transition_system [TS]
local
billund_planes : nat := 15,
frankfurt_planes : nat := 20,
heathrow_planes : nat := 30,

billund_weather : Weather := Sunny,

7.1 RSL specification 95

frankfurt_weather : Weather := Sunny,
heathrow_weather : Weather := Stormy

in
[billund_frankfurt]

hasFreeCapacity(frankfurt_planes,frankfurt_capacity,
frankfurt_weather) ∧

hasAvailablePlane(billund_planes,billund_weather) −→
frankfurt_planes′ = frankfurt_planes + 1,
billund_planes′ = billund_planes − 1

debc
[frankfurt_billund]

hasFreeCapacity(billund_planes,billund_capacity,billund_weather) ∧
hasAvailablePlane(frankfurt_planes,frankfurt_weather) −→
billund_planes′ = billund_planes + 1,
frankfurt_planes′ = frankfurt_planes − 1

debc
[billund_heathrow]

hasFreeCapacity(heathrow_planes,heathrow_capacity,
heathrow_weather) ∧

hasAvailablePlane(billund_planes,billund_weather) −→
heathrow_planes′ = heathrow_planes + 1,
billund_planes′ = billund_planes − 1

debc
[heathrow_billund]

hasFreeCapacity(billund_planes,billund_capacity,billund_weather) ∧
hasAvailablePlane(heathrow_planes,heathrow_weather) −→
billund_planes′ = billund_planes + 1,
heathrow_planes′ = heathrow_planes − 1

debc
[heathrow_frankfurt]

hasFreeCapacity(frankfurt_planes,frankfurt_capacity,
frankfurt_weather) ∧

hasAvailablePlane(heathrow_planes,heathrow_weather) −→
frankfurt_planes′ = frankfurt_planes + 1,
heathrow_planes′ = heathrow_planes − 1

debc
[frankfurt_heathrow]

hasFreeCapacity(heathrow_planes,heathrow_capacity,
heathrow_weather) ∧

hasAvailablePlane(frankfurt_planes,frankfurt_weather) −→
frankfurt_planes′ = frankfurt_planes + 1,
frankfurt_planes′ = frankfurt_planes − 1

debc

96 Demonstration of software application

[billund_SunnyWeather]
billund_weather 6= Sunny −→ billund_weather′ = Sunny

debc
[billund_StormyWeather]

billund_weather 6= Stormy −→ billund_weather′ = Stormy
debc
[frankfurt_SunnyWeather]

frankfurt_weather 6= Sunny −→ frankfurt_weather′ = Sunny
debc
[frankfurt_StormyWeather]

frankfurt_weather 6= Stormy −→ frankfurt_weather′ = Stormy
debc
[heathrow_SunnyWeather]

heathrow_weather 6= Sunny −→ heathrow_weather′ = Sunny
debc
[billund_StormyWeather]

heathrow_weather 6= Stormy −→ heathrow_weather′ = Stormy
end

ltl_assertion
[CapacityConstraint]

TS ` F((billund_capacity < billund_planes) ∨
(frankfurt_capacity < frankfurt_planes) ∨
(heathrow_capacity < heathrow_planes)),

[PlaneConsistency]
TS ` F((billund_planes + frankfurt_planes + heathrow_planes) 6= 65)

end

7.2 Intermediate language translation

Using the developed RSL translator, the following intermediate language code
is produced:

7.2.1 Airports.rtt

SYM_TABLE_DECL
Weather == Sunny | Stormy
nat == int n where n >= 0

7.2 Intermediate language translation 97

const nat billund_capacity == 20
const nat frankfurt_capacity == 30
const nat heathrow_capacity == 40
bool hasFreeCapacity (nat p, nat c, Weather w)

{return ((w == Stormy && false) || (!(w == Stormy) && p < c))}
bool hasAvailablePlane (nat p, Weather w)

{return ((w == Stormy && false) || (!(w == Stormy) && p > 0))}
nat billund_planes
nat frankfurt_planes
nat heathrow_planes
Weather billund_weather
Weather frankfurt_weather
Weather heathrow_weather
SYM_TABLE_DECL_END

INIT_VAL
billund_planes == 15
frankfurt_planes == 20
heathrow_planes == 30
billund_weather == Sunny
frankfurt_weather == Sunny
heathrow_weather == Stormy
INIT_VAL_END

TRANS_REL
(hasFreeCapacity(frankfurt_planes,frankfurt_capacity,

frankfurt_weather) && hasAvailablePlane(billund_planes,
billund_weather) && frankfurt_planes’ == frankfurt_planes + 1
&& billund_planes’ == billund_planes - 1 &&
heathrow_weather’ == heathrow_weather &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(hasFreeCapacity(billund_planes,billund_capacity,
billund_weather) && hasAvailablePlane(frankfurt_planes,
frankfurt_weather) && billund_planes’ == billund_planes + 1
&& frankfurt_planes’ == frankfurt_planes - 1 &&
heathrow_weather’ == heathrow_weather &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&

98 Demonstration of software application

frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(hasFreeCapacity(heathrow_planes,heathrow_capacity,
heathrow_weather) && hasAvailablePlane(billund_planes,
billund_weather) && heathrow_planes’ == heathrow_planes + 1
&& billund_planes’ == billund_planes - 1 &&
heathrow_weather’ == heathrow_weather &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(hasFreeCapacity(billund_planes,billund_capacity,
billund_weather) && hasAvailablePlane(heathrow_planes,
heathrow_weather) && billund_planes’ == billund_planes + 1
&& heathrow_planes’ == heathrow_planes - 1 &&
heathrow_weather’ == heathrow_weather &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(hasFreeCapacity(frankfurt_planes,frankfurt_capacity,
frankfurt_weather) && hasAvailablePlane(heathrow_planes,
heathrow_weather) && frankfurt_planes’ == frankfurt_planes + 1
&& heathrow_planes’ == heathrow_planes - 1 &&
heathrow_weather’ == heathrow_weather &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(hasFreeCapacity(heathrow_planes,heathrow_capacity,
heathrow_weather) && hasAvailablePlane(frankfurt_planes,
frankfurt_weather) && frankfurt_planes’ == frankfurt_planes + 1
&& frankfurt_planes’ == frankfurt_planes - 1 &&
heathrow_weather’ == heathrow_weather &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
billund_planes’ == billund_planes) ||

(billund_weather != Sunny && billund_weather’ == Sunny &&
heathrow_weather’ == heathrow_weather &&

7.2 Intermediate language translation 99

frankfurt_weather’ == frankfurt_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(billund_weather != Stormy && billund_weather’ == Stormy &&
heathrow_weather’ == heathrow_weather &&
frankfurt_weather’ == frankfurt_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(frankfurt_weather != Sunny && frankfurt_weather’ == Sunny &&
heathrow_weather’ == heathrow_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(frankfurt_weather != Stormy && frankfurt_weather’ == Stormy &&
heathrow_weather’ == heathrow_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(heathrow_weather != Sunny && heathrow_weather’ == Sunny &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes) ||

(heathrow_weather != Stormy && heathrow_weather’ == Stormy &&
frankfurt_weather’ == frankfurt_weather &&
billund_weather’ == billund_weather &&
heathrow_planes’ == heathrow_planes &&
frankfurt_planes’ == frankfurt_planes &&
billund_planes’ == billund_planes)

TRANS_REL_END

PROP_SPEC
Finally[(billund_capacity < billund_planes) ||

(frankfurt_capacity < frankfurt_planes) ||
(heathrow_capacity < heathrow_planes)]

Finally[(billund_planes + frankfurt_planes +
heathrow_planes) != 65]

PROP_SPEC_END

100 Demonstration of software application

7.3 Bounded model checking result

Using the intermediate language parser and model checker, the specification is
checked for 10 steps and the following output is produced:

Attempting to solve the goal:
Finally ([((20 < billund_planes@0) ||

(30 < frankfurt_planes@0) ||
(40 < heathrow_planes@0))])

[SOLVER] No solution found after 10 steps. This took 2.356s.
Aborting search.

Attempting to solve the goal:
Finally ([(((billund_planes@0 + frankfurt_planes@0) +

heathrow_planes@0) != 65)])

[SOLVER] No solution found after 10 steps. This took 1.981s.
Aborting search.

Based on this output, we can see that no witness has been found for either of
the specified properties. Seeing as how the specified properties were negated, it
is concluded that the informal properties both hold for the given bounds.

Chapter 8

User guide

This chapter contains a user guide, detailing how the software developed in this
project can be installed and used.
The software has been developed for Linux systems, and has been tested on
Ubuntu 14.04.3 LTS.
The source code necessary to follow this user guide can be found in the associated
file thesis.zip.

8.1 RSL translator

This section details how to install and use the RSL translator.

8.1.1 Installation

Two things must be installed for the RSL translator to work; the rsltc tool set,
which has been extended to include the translator, and Gentle, which is the
compiler tool rsltc is build upon.

102 User guide

8.1.1.1 Gentle

Go to the gentle-97/gentle directory, and run the script ’build ’ (i.e. type ./build
in a command console/terminal).

Go to the gentle-97/lib directory, and run the script ’build ’.

Go to the gentle-97/reflex directory, and run the script ’build ’.

8.1.1.2 rsltc

Besides Gentle, rsltc has the following dependencies:

• Cmake

• Flex

• GNU Bison

• gcc

• Automake

These can be installed with the following commands:

Cmake: sudo apt-get install cmake

Flex: sudo apt-get install flex

GNU Bison: sudo apt-get install bison

gcc: sudo apt-get install gcc

Automake: sudo apt-get install automake

When these are installed, go to the rsltc directory and run the following com-
mand, where <GENTLE-PATH> is the path to the gentle-97/gentle directory:

./configure -DGENTLE=<GENTLE-PATH>

Then go to the rsltc/build directory and install rsltc with the following com-
mand:

sudo make install

8.2 RT-Tester parser and model checker 103

8.1.2 Usage

After installation, the rsltc executable will be located in the directory rsltc/build/src.
To type check an RSL specification, use the following command:

./rsltc <filename>.rsl

To type check and translate an RSL specification to the intermediate language,
use the following command:

./rsltc -rtt <filename>.rsl

This will generate the translation file <filename>.rtt in the same directory.

To type check an RSL specification and generate confidence conditions, use the
following command:

./rsltc -cc <filename>.rsl

8.2 RT-Tester parser and model checker

This section details how to install and use the RT-Tester parser and model
checker.

8.2.1 Installation

RT-Tester has a number of dependencies, which must be installed:

• sudo apt-get install build-essential g++ python-dev

• sudo apt-get install autotools-dev libicu-dev libbz2-dev

• sudo apt-get install libboost-all-dev libclang-dev

• sudo apt-get install libxml2 libxml2-dev

• sudo apt-get install doxygen

104 User guide

• sudo apt-get install zlibc

• sudo apt-get install sqlite3

• sudo apt-get install libsqlite3-0 libsqlite3-dev

• sudo apt-get install libc++1 libc++-dev

Go to the rtttgen_V2 directory, and use the following command:

./build.sh

If it complains about missing dependencies, simply install the dependencies in
question (which should appear in the resulting output), delete the directories
build.Debug and build.Release, and run build.sh again.

Go to the build.Debug directory, and use the following command:

make rtt-rsl

Building and making RT-Tester may take up to an hour to complete, depending
on the speed of the computer being used.

8.2.2 Usage

After installation, the RT-Tester executable will be located in the directory
rtttgen_V2/build.Debug/executables/rtt-rsl.
To parse and model check a model specified in the intermediate language, use
the following command:

./rtt-rsl <filename>.rtt <stepbound>

If for instance the intermediate language file test.rtt is located in the same
directory as the executable, and the model should be checked for 10 steps, the
following command is used:

./rtt-rsl test.rtt 10

8.2 RT-Tester parser and model checker 105

The result of the model checking will the appear as output in the terminal,
displaying the LTL formula being checked and the variable values in each step,
in case a witness was found. An example of a result output could be:

Attempting to solve the goal: Finally ([success])

[SOLVER] Reached goal after 2 steps within 0.089s.

Variables in step 0:
x = 0
success = 0

Variables in step 1:
x = 1
success = 0

Variables in step 2:
x = 2
success = 1

106 User guide

Chapter 9

Further development

In this chapter, the most interesting areas for further development on this
project is discussed.

9.1 Extend translatable subset of RSL

The subset of RSL which is currently accepted by the translator, is a very limit-
ing factor in terms of which specifications can be model checked, and therefore
also limits the usefulness of the developed translator. Thus the first step in
continued work with the translator, could therefore be to extend the translator
to include more of the available constructions in RSL.

Collections, such as the lists, sets and maps, in particular, would be a nice addi-
tion to the translator, seeing as these collections would be useful in practically
all large system specifications. As pointed out in Section 4.1.5, collections with
dynamic sizes would be difficult to implement in RT-Tester, but even collections
with constant sizes would still be a useful addition to the translator.

Another important extension would be object arrays in RSL. By using object
arrays, it would be much easier to create more involved specifications, where

108 Further development

multiple objects are created based on some parameter.

9.2 k induction

An interesting addition to the work done is this thesis, would be to use k in-
duction, as mentioned in Section 2.3.1, to perform model checking regardless of
any bounds on the number of steps checked. This technique has already been
used successfully with RT-Tester in the Ph.d. thesis by Linh Hong Vu [8], so
his existing work could be used as a blueprint for how it can be implemented.

9.3 Reusing the RSL translator for other model
checking tools

One of the ideas behind using the intermediate language, was the possibility
of reusing it for other model checking tools besides RT-Tester. Though the
intermediate language was designed with this in mind, it has not been tested
whether it is feasible.

As such, it should always be possible to create a model based on the kind of
information stored in the intermediate language. The more relevant question
would rather be, how easily the information could be parsed into other model
checking tools.

One would assume that for model checking tools which use satisfiability solving,
similar to RT-Tester, it would be relatively straightforward, seeing as how the
initial values and the transition relation in the intermediate language can simply
be viewed as a set of constraints. However, this is certainly an area that deserves
further investigation, if this project is to receive further development.

9.4 Comparing performance with other model check-
ing tools

One of the motivating factor behind using RT-Tester for model checking, was
the hope that RT-Tester could out-perform other model checking tools.
Due to the relatively small subset of RSL that is accepted by the translator, it is

9.4 Comparing performance with other model checking tools 109

difficult (or rather very tedious) to develop a model large enough, to determine
whether RT-Tester can handle larger models compared to other model checking
tools.

If there were more time available, or if constructions such as lists, sets and maps
were to be accepted by the translator, a performance test comparing RT-Tester
to SAL [18] and nuXmv [17] would be interesting.

110 Further development

Chapter 10

Conclusion

As a product of working on this thesis, a translator has been developed for a
subset of RSL, which enables bounded model checking to be performed on RSL
state transition systems using RT-Tester. The overall goal of this thesis has
therefore been fulfilled, albeit only for a subset of RSL.

The translation has been designed in such a way, that the RSL specification is
first translated to an intermediate language, which has been designed to act as
a concrete syntax for RT-Tester. The intermediate language is then parsed into
a model in RT-Tester, where bounded model checking is performed.

The purpose for using an intermediate language is twofold.
Firstly, it should be a readable and concise representation of a model in RT-
Tester. This purpose is clearly fulfilled, as demonstrated by comparing how
simple expressions are represented in the intermediate language, compared to
RT-Tester (see Section 3.2.2).
Secondly, it should be possible to reuse this language (and therefore also the
RSL translator) in other projects similar to this one, where other model check-
ing tools are used. One thing that speaks in favour of this, is the fact that
high level constructions (such as if/case expressions) is represented by purely
logical expressions. This means that such constructions can be fed to a model
checking tool exactly as for any other logical expression, regardless of whether
the model checking tool supports the original construction. This is also the case

112 Conclusion

for transition relations, which are represented as one single logical expression,
which acts as a constraint for any possible transition. Because of this, it could
be argued that any model checking tool that uses satisfiability solvers and con-
straints to perform model checking (like RT-Tester), should be able to reuse the
intermediate language on a conceptual level.
However, the exact syntax of the language has been designed specifically for
RT-Tester. Therefore the language is not as generally applicable as possible,
and it would most likely not be as straightforward to parse into other model
checking tools, compared to RT-Tester.

The implementation of the translator has been tested, to show that it functions
as intended in the design of the system. The application of the developed
software has also been demonstrated, by performing bounded model checking
on an RSL specification, using both the RSL translator and the intermediate
language parser.

Finally, some of the possible further developments that could be done on this
project have been discussed. In particular extending the subset of RSL which
can be translated, and also using k induction to perform global model checking
rather than bounded model checking.

Appendix A

Appendix

A.1 Example translations from RSL to the inter-
mediate language

The following examples show translations from RSL to the intermediate lan-
guage, starting with a very simple RSL specification, using only a few construc-
tions, and gradually adding more of the translatable constructions.

A.1.1 Airport1 - Transition system and LTL assertion

Airport1.rsl

scheme Airport1 =
class

transition_system [TS]
local
numberOfPlanes : Int := 100,
planeCapacity : Int := 150

in

114 Appendix

[planeArrival]
numberOfPlanes < planeCapacity −→

numberOfPlanes′ = numberOfPlanes + 1
debc
[planeDeparture]
numberOfPlanes > 0 −→ numberOfPlanes′ = numberOfPlanes − 1

end
ltl_assertion
[CapacityConstraint] TS ` G(numberOfPlanes ≤ planeCapacity ∧
numberOfPlanes ≥ 0)

end

Airport1.rtt

SYM_TABLE_DECL
int numberOfPlanes
int planeCapacity
SYM_TABLE_DECL_END

INIT_VAL
numberOfPlanes == 100
planeCapacity == 150
INIT_VAL_END

TRANS_REL
(numberOfPlanes < planeCapacity &&

numberOfPlanes’ == numberOfPlanes + 1 &&
planeCapacity’ == planeCapacity) ||

(numberOfPlanes > 0 &&
numberOfPlanes’ == numberOfPlanes - 1 &&
planeCapacity’ == planeCapacity)

TRANS_REL_END

PROP_SPEC
Globally[numberOfPlanes <= planeCapacity && numberOfPlanes >= 0]
PROP_SPEC_END

A.1.2 Airport2 - Explicit value definition

Airport2.rsl

A.1 Example translations from RSL to the intermediate language 115

scheme Airport2 =
class

value
planeCapacity : Int = 150
transition_system [TS]
local
numberOfPlanes : Int := 100

in
[planeArrival]
numberOfPlanes < planeCapacity −→

numberOfPlanes′ = numberOfPlanes + 1
debc
[planeDeparture]
numberOfPlanes > 0 −→ numberOfPlanes′ = numberOfPlanes − 1

end
ltl_assertion
[CapacityConstraint] TS ` G(numberOfPlanes ≤ planeCapacity ∧
numberOfPlanes ≥ 0)

end

Airport2.rtt

SYM_TABLE_DECL
const int planeCapacity == 150
int numberOfPlanes
SYM_TABLE_DECL_END

INIT_VAL
numberOfPlanes == 100
INIT_VAL_END

TRANS_REL
(numberOfPlanes < planeCapacity &&

numberOfPlanes’ == numberOfPlanes + 1) ||
(numberOfPlanes > 0 && numberOfPlanes’ == numberOfPlanes - 1)
TRANS_REL_END

PROP_SPEC
Globally[numberOfPlanes <= planeCapacity && numberOfPlanes >= 0]
PROP_SPEC_END

116 Appendix

A.1.3 Airport3 - Subtype definition

Airport3.rsl

scheme Airport3 =
class

type
nat = {| n : Int • n ≥ 0 |}
value
planeCapacity : nat = 150
transition_system [TS]
local
numberOfPlanes : nat := 100

in
[planeArrival]
numberOfPlanes < planeCapacity −→

numberOfPlanes′ = numberOfPlanes + 1
debc
[planeDeparture]
numberOfPlanes > 0 −→ numberOfPlanes′ = numberOfPlanes − 1

end
ltl_assertion
[CapacityConstraint] TS ` G(numberOfPlanes ≤ planeCapacity ∧
numberOfPlanes ≥ 0)

end

Airport3.rtt

SYM_TABLE_DECL
nat == int n where n >= 0
const nat planeCapacity == 150
nat numberOfPlanes
SYM_TABLE_DECL_END

INIT_VAL
numberOfPlanes == 100
INIT_VAL_END

TRANS_REL
(numberOfPlanes < planeCapacity &&

numberOfPlanes’ == numberOfPlanes + 1) ||
(numberOfPlanes > 0 && numberOfPlanes’ == numberOfPlanes - 1)

A.1 Example translations from RSL to the intermediate language 117

TRANS_REL_END

PROP_SPEC
Globally[numberOfPlanes <= planeCapacity && numberOfPlanes >= 0]
PROP_SPEC_END

A.1.4 Airport4 - Explicit function definition and function
application expression

Airport4.rsl

scheme Airport4 =
class

type
nat = {| n : Int • n ≥ 0 |}
value
planeCapacity : nat = 150,
hasFreeCapacity : nat × nat → Bool
hasFreeCapacity(p,c) ≡ p < c,
hasAvailablePlane : nat → Bool
hasAvailablePlane(p) ≡ p > 0
transition_system [TS]
local
numberOfPlanes : nat := 100

in
[planeArrival]
hasFreeCapacity(numberOfPlanes,planeCapacity) −→ numberOfPlanes′ =
numberOfPlanes + 1
debc
[planeDeparture]
hasAvailablePlane(numberOfPlanes) −→

numberOfPlanes′ = numberOfPlanes − 1
end
ltl_assertion
[CapacityConstraint] TS ` G(numberOfPlanes ≤ planeCapacity ∧
numberOfPlanes ≥ 0)

end

Airport4.rtt

118 Appendix

SYM_TABLE_DECL
nat == int n where n >= 0
const nat planeCapacity == 150
bool hasFreeCapacity (nat c,nat p) {return p < c}
bool hasAvailablePlane (nat p) {return p > 0}
nat numberOfPlanes
SYM_TABLE_DECL_END

INIT_VAL
numberOfPlanes == 100
INIT_VAL_END

TRANS_REL
(hasFreeCapacity(numberOfPlanes,planeCapacity) &&

numberOfPlanes’ == numberOfPlanes + 1) ||
(hasAvailablePlane(numberOfPlanes) &&

numberOfPlanes’ == numberOfPlanes - 1)
TRANS_REL_END

PROP_SPEC
Globally[numberOfPlanes <= planeCapacity && numberOfPlanes >= 0]
PROP_SPEC_END

A.1.5 Airport5 - If expression and case expression

Airport5.rsl

scheme Airport5 =
class

type
nat = {| n : Int • n ≥ 0 |}
value
planeCapacity : nat = 150,
hasFreeCapacity : nat × nat × Bool → Bool
hasFreeCapacity(p,c,b) ≡
if b then false else p < c end,

hasAvailablePlane : nat × Bool → Bool
hasAvailablePlane(p,b) ≡
case b of
true → false,
→ p > 0

A.1 Example translations from RSL to the intermediate language 119

end
transition_system [TS]
local
numberOfPlanes : nat := 100,
badWeatherConditions : Bool := false

in
[planeArrival]
hasFreeCapacity(numberOfPlanes,planeCapacity,badWeatherConditions)

−→ numberOfPlanes′ =
numberOfPlanes + 1
debc
[planeDeparture]
hasAvailablePlane(numberOfPlanes,badWeatherConditions) −→

numberOfPlanes′ = numberOfPlanes − 1
debc
[goodWeather] badWeatherConditions −→ badWeatherConditions′ =
false
debc
[badWeather] ∼badWeatherConditions −→ badWeatherConditions′ = true

end
ltl_assertion
[CapacityConstraint] TS ` G(numberOfPlanes ≤ planeCapacity ∧
numberOfPlanes ≥ 0)

end

Airport5.rtt

SYM_TABLE_DECL
nat == int n where n >= 0
const nat planeCapacity == 150
bool hasFreeCapacity (nat p,nat c,bool b)

{return ((b && false) || (!(b) && p < c))}
bool hasAvailablePlane (nat p,bool b)

{return (b && false) || (!(b) && p > 0)}
nat numberOfPlanes
bool badWeatherConditions
SYM_TABLE_DECL_END

INIT_VAL
numberOfPlanes == 100
badWeatherConditions == false
INIT_VAL_END

120 Appendix

TRANS_REL
(hasFreeCapacity(numberOfPlanes,planeCapacity,

badWeatherConditions) &&
numberOfPlanes’ == numberOfPlanes + 1 &&
badWeatherConditions’ == badWeatherConditions) ||

(hasAvailablePlane(numberOfPlanes,badWeatherConditions) &&
numberOfPlanes’ == numberOfPlanes - 1 &&
badWeatherConditions’ == badWeatherConditions) ||

(badWeatherConditions && badWeatherConditions’ == false &&
numberOfPlanes’ == numberOfPlanes) ||

(!badWeatherConditions && badWeatherConditions’ == true &&
numberOfPlanes’ == numberOfPlanes)

TRANS_REL_END

PROP_SPEC
Globally[numberOfPlanes <= planeCapacity && numberOfPlanes >= 0]
PROP_SPEC_END

A.1.6 Airport6 - Variant type definition

Airport6.rsl

scheme Airport6 =
class

type
Weather == Sunny | Cloudy | Stormy | Hurricane,
nat = {| n : Int • n ≥ 0 |}
value
planeCapacity : nat = 150,
hasFreeCapacity : nat × nat × Weather → Bool
hasFreeCapacity(p,c,w) ≡
if w = Stormy ∨ w = Hurricane then false else p < c end,

hasAvailablePlane : nat × Weather → Bool
hasAvailablePlane(p,w) ≡
case w of
Stormy → false,
Hurricane → false,
→ p > 0

end
transition_system [TS]
local

A.1 Example translations from RSL to the intermediate language 121

numberOfPlanes : nat := 100,
weatherConditions : Weather := Sunny

in
[planeArrival]
hasFreeCapacity(numberOfPlanes,planeCapacity,weatherConditions)

−→ numberOfPlanes′ =
numberOfPlanes + 1
debc
[planeDeparture]
hasAvailablePlane(numberOfPlanes,weatherConditions) −→

numberOfPlanes′ = numberOfPlanes − 1
debc
[SunnyWeather] weatherConditions 6= Sunny −→ weatherConditions′ =
Sunny
debc
[CloudyWeather] weatherConditions 6= Cloudy −→ weatherConditions′ =
Cloudy
debc
[StormyWeather] weatherConditions 6= Stormy −→ weatherConditions′ =
Stormy
debc
[HurricaneWeather] weatherConditions 6= Hurricane −→

weatherConditions′ =
Hurricane

end
ltl_assertion
[CapacityConstraint] TS ` G(numberOfPlanes ≤ planeCapacity ∧

numberOfPlanes ≥ 0)
end

Airport6.rtt

SYM_TABLE_DECL
Weather == Sunny | Cloudy | Stormy | Hurricane
nat == int n where n >= 0
const nat planeCapacity == 150
bool hasFreeCapacity (nat p,nat c,Weather w)

{return ((w == Stormy || w == Hurricane && false) ||
(!(w == Stormy || w == Hurricane) && p < c))}

bool hasAvailablePlane (nat p,Weather w)
{return (w == Stormy && false) || (w == Hurricane && false) ||

(!(w == Hurricane) && !(w == Stormy) && p > 0)}
nat numberOfPlanes

122 Appendix

Weather weatherConditions
SYM_TABLE_DECL_END

INIT_VAL
numberOfPlanes == 100
weatherConditions == Sunny
INIT_VAL_END

TRANS_REL
(hasFreeCapacity(numberOfPlanes,planeCapacity,weatherConditions)

&& numberOfPlanes’ == numberOfPlanes + 1 &&
weatherConditions’ == weatherConditions) ||

(hasAvailablePlane(numberOfPlanes,weatherConditions) &&
numberOfPlanes’ == numberOfPlanes - 1 &&
weatherConditions’ == weatherConditions) ||

(weatherConditions != Sunny && weatherConditions’ == Sunny &&
numberOfPlanes’ == numberOfPlanes) ||

(weatherConditions != Cloudy && weatherConditions’ == Cloudy &&
numberOfPlanes’ == numberOfPlanes) ||

(weatherConditions != Stormy && weatherConditions’ == Stormy &&
numberOfPlanes’ == numberOfPlanes) ||

(weatherConditions != Hurricane &&
weatherConditions’ == Hurricane &&
numberOfPlanes’ == numberOfPlanes)

TRANS_REL_END

PROP_SPEC
Globally[numberOfPlanes <= planeCapacity && numberOfPlanes >= 0]
PROP_SPEC_END

A.2 Example of rewriting value expressions con-
taining if expressions

The following is an example of how a value expression containing if expressions
can be rewritten and translated using the inference rules defined in Section
4.3.5. The approach used here, is to find rule that matches a given expression,
and then filling in the parts of the rule which is known, and assigning variables
to the unknown parts. Also note that many trivial steps have been skipped,
where expressions already are in normal form, in order to keep this example a
bit shorter.

A.2 Example of rewriting value expressions containing if expressions 123

Consider the following value expression:

x = if y = 1 then 2 else 3 end + 4 + if z = 5 then 6 else 7 end

The expression matches the rule (4.51):

x ≡ A1, if y = 1 then 2 else 3 end+ 4 + if z = 5 then 6 else 7 end ≡ A2,
A1 = A2 ≡ A3,
A3�A4

x = if y = 1 then 2 else 3 end+ 4 + if z = 5 then 6 else 7 end� A4

The expression x ≡ A1 matches the rule (4.65):

x ≡ x
and so A1 is x.

The expression if y = 1 then 2 else 3 end+ 4 + if z = 5 then 6 else 7 end ≡
A2 matches the rule (4.65):

if y = 1 then 2 else 3 end ≡ B1,

4 + if z = 5 then 6 else 7 end ≡ B2, B1 +B2 ≡ A2
if y = 1 then 2 else 3 end+ 4 + if z = 5 then 6 else 7 end ≡ A2

The expression if y = 1 then 2 else 3 end ≡ B1 matches the rule (4.65):

if y = 1 then 2 else 3 end ≡ if y = 1 then 2 else 3 end

and so B1 is if y = 1 then 2 else 3 end

The expression 4 + if z = 5 then 6 else 7 end ≡ B2 matches the rule (4.61):

z = 5 ≡ C1, 6 ≡ C2, 7 ≡ C3,
4 + C2 ≡ C4, 4 + C3 ≡ C5
4 + if z = 5 then 6 else 7 end

≡
if C1 then C4 else C5 end

The expression z = 5 ≡ C1 matches the rule (4.64):

z = 5 ≡ z = 5

124 Appendix

and so C1 is z = 5.

The expressions 6 ≡ C2 and 7 ≡ C3 both match the rule (4.65):

6 ≡ 6

7 ≡ 7

and so C2 is 6 and C3 is 7.

The expressions 4 + C2 ≡ C4 and 4 + C3 ≡ C5 both match the rule (4.64):

4 + 6 ≡ 4 + 6

4 + 7 ≡ 4 + 7

and so C4 is 4 + 6 and C4 is 4 + 7.

Using C1, C4 and C5, we find that the value of B2 is if z = 5 then 4 +
6 else 4 + 7 end

Using B1 and B2, we get the expression B1+B2 ≡ A2 which matches the rule
(4.60):

2 ≡ D1, 3 ≡ D2, 4 + 6 ≡ D3, 4 + 7 ≡ D4, y = 1 ≡ D5, z = 5 ≡ D6

D1 +D3 ≡ D7, D1 +D4 ≡ D8, D3 +D2 ≡ D9, D2 +D4 ≡ D10

if y = 1 then 2 else 3 end

+

if z = 5 then 4 + 6 else 4 + 7 end

≡
if D5 ∧D6 then D7 else

if D5∧ ∼ D6 then D8 else

if ∼ D5 ∧D6 then D9 else D10

end

end

end

To simplify this process a bit, lets say we already found that
D1 is 2

A.2 Example of rewriting value expressions containing if expressions 125

D2 is 3
D3 is 4 + 6
D4 is 4 + 7
D5 is y = 1
D6 is z = 5
D7 is 1 + 4 + 6
D8 is 1 + 4 + 7
D9 is 4 + 6 + 3
D10 is 3 + 4 + 7
This can be found in a similar way to C1, C2, C3, C4 and C5.

Using this, we get that A2 is
if y = 1 ∧ z = 5 then 2 + 4 + 6 else

if y = 1∧ ∼ (z = 5) then 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then 4 + 6 + 3 else 3 + 4 + 7

end

end

end

In the original rule, we have A1 = A2 ≡ A3. Using the values of A1 and A2,
we get:
x =

if y = 1 ∧ z = 5 then 2 + 4 + 6 else

if y = 1∧ ∼ (z = 5) then 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then 4 + 6 + 3 else 3 + 4 + 7

end

end

end

≡
A3

126 Appendix

This expression matches the rule (4.61):

y = 1 ∧ z = 5 ≡ E1,

2 + 4 + 6 ≡ E2,

if y = 1∧ ∼ (z = 5) then 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then 4 + 6 + 3 else 3 + 4 + 7

end

end

≡ E3

x = E2 ≡ E4

x = E3 ≡ E5

x =

if y = 1 ∧ z = 5 then 2 + 4 + 6 else

if y = 1∧ ∼ (z = 5) then 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then 4 + 6 + 3 else 3 + 4 + 7

end

end

end

≡
if E1 then E4 else E5 end

Again to simplify this process a bit, lets say we already found that
E1 is y = 1 ∧ z = 5
E2 is 2 + 4 + 6
E3 is
if y = 1∧ ∼ (z = 5) then 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then 4 + 6 + 3 else 3 + 4 + 7

end

end
E4 is x = 2 + 4 + 6
E5 is
if y = 1∧ ∼ (z = 5) then x = 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then x = 4 + 6 + 3 else x = 3 + 4 + 7

end

end

A.2 Example of rewriting value expressions containing if expressions 127

Using this, we get that A3 is
if y = 1 ∧ z = 5 then x = 2 + 4 + 6 else

if y = 1∧ ∼ (z = 5) then x = 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then x = 4 + 6 + 3 else x = 3 + 4 + 7

end

end

end

Going back to the first rule we used, we now have the translation expression
if y = 1 ∧ z = 5 then x = 2 + 4 + 6 else

if y = 1∧ ∼ (z = 5) then x = 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then x = 4 + 6 + 3 else x = 3 + 4 + 7

end

end

end

�

A4

This matches the rule (4.55):

y = 1 ∧ z = 5� F1, x = 2 + 4 + 6� F2,

if y = 1∧ ∼ (z = 5) then x = 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then x = 4 + 6 + 3 else x = 3 + 4 + 7

end

end

� F3

if y = 1 ∧ z = 5 then x = 2 + 4 + 6 else

if y = 1∧ ∼ (z = 5) then x = 2 + 4 + 7 else

if ∼ (y = 1) ∧ z = 5 then x = 4 + 6 + 3 else x = 3 + 4 + 7

end

end

end

�

((F1 && F2) || (!(F1) && F3))

Again to simplify this process a bit, lets say we already found that
F1 is y == 1 && z == 5

128 Appendix

F2 is x == 2 + 4 + 6
F3 is
((y == 1 && !(z == 5) && x == 2 + 4 + 7) ||

(!(y == 1 && !(z == 5)) && ((!(y == 1) && z == 5 && x == 3 + 4 + 6) ||
!(!(y == 1) && z == 5) && x == 3 + 4 + 7)))

Using F1, F2 and F3 in the expression ((F1 && F2) || (!(F1) && F3)), we
now know that the final result A4 is
((y == 1 && z == 5 && x == 2 + 4 + 6) ||
(!(y == 1 && z == 5) &&

((y == 1 && !(z == 5) && x == 2 + 4 + 7) ||
(!(y == 1 && !(z == 5)) &&

((!(y == 1) && z == 5 && x == 3 + 4 + 6) ||
!(!(y == 1) && z == 5) && x == 3 + 4 + 7)))))

thus concluding this process of rewriting and translating.

Bibliography

[1] The RAISE Language Group: Chris George, Peter Haff, Klaus Havelund,
Anne E. Haxthausen, Robert Milne, Claus Bendix Nielsen, Søren
Prehn, Kim Ritter Wagner, The RAISE Specification Language, ISBN:
0137528337, Prentice Hall International (UK) Ltd, Campus 400, Maylands
Avenue, UK, 1992.

[2] Chris George, RAISE Tool User Guide, April 17, 2008 UNU-IIST Report
No. 227.

[3] Juan Ignacio Perna and Chris George,Model checking RAISE specifications,
November, 2006 UNU-IIST Report No. 331.

[4] Friedrich Wilhelm Schröer, The GENTLE Compiler Construction System,
Metarga, Berlin, 2005.

[5] Anne E. Haxthausen and Jan Peleska, Model Checking and Model-based
Testing in the Railway Domain, R. Drechsler, U Kühne (eds.), Formal
Modelling and Verification of Cyber-Physical Systems, DOI 10.1007/978-
3-658-09994-7_4, Springer Fachmedien Wiesbaden 2015.

[6] Verified Systems International GmbH, RT-Tester Model-Based Test Case
and Test Data Generator, Version 9.0-1.3.0, User Manual, Document-Id:
Verified-INT-003-2012.

[7] Christel Baier and Joost-Pieter Katoen, Principles of model checking, 2008,
ISBN 978-0-262-02649-9, The MIT Press, Cambridge, Massachusetts, Lon-
don, England.

[8] Linh Hong Vu, Formal Development and Verification of Railway Control
Systems, PHD-2015-395, DTU Compute. 2015,

130 BIBLIOGRAPHY

[9] Anne E. Haxthausen, An Introduction to Formal Methods for the Develop-
ment of Safety-critical Applications, DTU Informatics, August 30, 2010.

[10] Anne E. Haxthausen, Lecture notes on The RAISE Development Method,
April 1999.

[11] Anne E. Haxthausen, Introduction to RAISE, Lecture slides, DTU Infor-
matics, 2015.

[12] ANTLR, http://www.antlr.org/about.html, last checked: 12-01-2016.

[13] Kim Sørensen, Model Checking RAISE Specifications using nuXmv, DTU
Compute, 2015.

[14] nuXmv, https://nuxmv.fbk.eu/, last checked: 12-01-2016.

[15] Lex and Yacc, http://dinosaur.compilertools.net/, last checked: 14-01-
2016.

[16] S. Owre, S. Rajan, J. M. Rushby, N Shankar and M. Srivas, PVS: Combin-
ing Specification, Proof Checking and Model Checking, Computer Science
Laboratory, SRI International, 1996.

[17] M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,
A. Micheli, S. Mover, M. Roveri, S. Tonetta, nuXmv 1.0 User Manual, FBK
- Via Sommarive 18, 38055 Povo (Trento) - Italy, 2014.

[18] Leonardo de Moura, Sam Owre and N. Shankar. The SAL Language Man-
ual, CSL Technical Report SRI-CSL-01-02 (Rev. 2), August, 2003.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Goal
	1.2 Motivation
	1.3 Reader prerequisites
	1.4 Chapter overview

	2 Project context
	2.1 Model checking
	2.2 RSL
	2.3 RT-Tester
	2.3.1 Model checking using RT-Tester

	2.4 Related work

	3 Method analysis
	3.1 Language translation in general
	3.2 Translation methods
	3.2.1 Direct translation
	3.2.2 Translation using an intermediate step

	3.3 Translation tools
	3.3.1 rsltc and Gentle
	3.3.2 ANTLR
	3.3.3 Lex and Yacc

	3.4 The chosen method

	4 Design choices and analysis
	4.1 Translatable subset of RSL
	4.1.1 Declarations
	4.1.2 Class Expressions
	4.1.3 Type Expressions
	4.1.4 Value Expressions
	4.1.5 Discarded constructions
	4.1.6 Example of a translatable RSL specification

	4.2 Design of the intermediate language
	4.2.1 Structure
	4.2.2 BNF grammar
	4.2.3 Example of intermediate language model

	4.3 Translation analysis
	4.3.1 The general approach
	4.3.2 Transition rules
	4.3.3 If expressions
	4.3.4 Case expressions
	4.3.5 System of inference rules for RSL translation

	4.4 Parsing the intermediate language
	4.5 Variable bounds
	4.6 Providing bounds for model checking

	5 Implementation
	5.1 RSL translator
	5.1.1 Changes to existing files
	5.1.2 rtt.g

	5.2 Intermediate language parser
	5.2.1 RttParserOutput.cpp/h
	5.2.2 RttSubtype.cpp/h
	5.2.3 rttparser_lex.ll
	5.2.4 rttparser_yacc.ypp
	5.2.5 Subtypes

	5.3 Model checking
	5.3.1 main function
	5.3.2 createGlobalTransRel function
	5.3.3 solveGoal function

	6 Testing the RSL translator
	6.1 Scheme declarations
	6.1.1 Test 1 - Passed

	6.2 Abbreviation type definitions
	6.2.1 Test 2 - Passed
	6.2.2 Test 3 - Passed

	6.3 Variant type definitions
	6.3.1 Test 4 - Passed

	6.4 Explicit value definitions
	6.4.1 Test 5 - Passed

	6.5 Explicit function definitions
	6.5.1 Test 6 - Passed

	6.6 Variable definitions
	6.6.1 Test 7 - Passed

	6.7 Transition rule definitions
	6.7.1 Test 8 - Passed
	6.7.2 Test 9 - Passed
	6.7.3 Test 10 - Passed

	6.8 LTL assertion definitions
	6.8.1 Test 11 - Passed

	6.9 Rewriting value expressions
	6.9.1 Test 12 - Passed

	7 Demonstration of software application
	7.1 RSL specification
	7.1.1 Airports.rsl

	7.2 Intermediate language translation
	7.2.1 Airports.rtt

	7.3 Bounded model checking result

	8 User guide
	8.1 RSL translator
	8.1.1 Installation
	8.1.2 Usage

	8.2 RT-Tester parser and model checker
	8.2.1 Installation
	8.2.2 Usage

	9 Further development
	9.1 Extend translatable subset of RSL
	9.2 k induction
	9.3 Reusing the RSL translator for other model checking tools
	9.4 Comparing performance with other model checking tools

	10 Conclusion
	A Appendix
	A.1 Example translations from RSL to the intermediate language
	A.1.1 Airport1 - Transition system and LTL assertion
	A.1.2 Airport2 - Explicit value definition
	A.1.3 Airport3 - Subtype definition
	A.1.4 Airport4 - Explicit function definition and function application expression
	A.1.5 Airport5 - If expression and case expression
	A.1.6 Airport6 - Variant type definition

	A.2 Example of rewriting value expressions containing if expressions

	Bibliography

