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SOLUTION TO PROBLEM 9.1

The center frequency is F. = 50 and the bandwidth is B = 20. According to Ch.
9.1. the minimum sampling frequency is given by F i = 1/1" = 2Br'/r where
r'=F,/B+1/2=50/20+1/2 =3 and r = [r'| = 3. That is, F} , = 2B = 40.
In general, we require that the p’th and the (p + 1)’th replication of the spectrum
in the sampled signal does not interfere with the original signal spectrum as shown
in Fig 9.1.
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This gives the inequalities:

F.—B/2 > pF,—F.+ B/2
F.+B/2 < (p+1)F,—F.—B/2

Here we assume F,. > B/2 and p is an integer. Rewriting yields:
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which implies the natural condition:
F, > 2B

The minimum sampling frequency is achieved when p is maximized. Using the
natural condition, the first inequality gives

and the second gives
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Choosing p as the integer, ppax = |_% — %J, ensures that the replicated parts of the

sampled signal are distributed equally along the frequency axis. Applying puax in

the inequalities results in:
! /

9B < F, < 2BZ
T S

where r' = F,/B+1/2,r=|r'], s = F,/B—1/2, and s = |¢].

SOLUTION TO PROBLEM 9.4

Solution to Question (a):  Using the sampling frequency Fy = 2B, X(f) will be a
periodic replication of the original spectrum X,(F) with period Fy cf. Eq. (4.2.85)
X(f) = Fs - Y52 _ oo Xo((f — k)Fs). The spectrum of y(n), say Y (f) is obtained
by using the fact that multiplication in the time-domain corresponds to convolution
in the frequency domain. Finally, y;(¢) is found by low-pass filtering y(n) using a
passband F' € [0; B].

X, (F) has ideal low-pass filter characteristic, say X,(f) =1 |F| < B, and zero oth-
erwise. The spectrum X (f) = Fi, V|f| < 1/2, i.e., constant. Thus z(n) = F0(n).
y(n) = 2%(n) = F2§(n) with spectrum Y (f) = F2, V|f| < 1/2. Consequently, by
Eq. (4.2.87) Y (F) = F; for |F| < B, and zero otherwise. That is, y;(t) = F; - z1(1).

The spectrum of s,(t) = 2%(t) is found using convolution in the frequency domain,

ie.,

2B—|F| ,-2B<F <2B
0 , otherwise

Sa(F) = /OO Xo(S)Xo(F — S)dS = {

—0o0

The sketch of the spectra is shown in Fig. 9.4.1.
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Thus y»(t) = 2Bx(t) = 2By (t)/ Fs = (D).

Solution to Question (b):  x,(t) = cos(2n Fyt) with spectrum X, (F) = 0.5-0(F+ Fy),
where £y = 20 Hz.

Using Fy = 50 Hz > 2F} the sampling theorem is fulfilled. X (F'/F;) has components
of amplitude F;/2 for F = +(20 + p50) Hz, p = 0,1,2,---. By using the rule of
convolution in the frequency domain Y (F/F;) has components for ' = £10Hz
with amplitude F/4 and a DC component (F' = 0) with amplitude F;/2. By ideal
D/A we have y;(t) = 1/2 4 1/2 - cos(2r (10 Hz)t). s,(t) = 22(t) = cos*(2nFyt) =
1/2 4+ 1/2cos(2m2Fpt), ie., X,(F) has a DC component with amplitude 1/2 and
two components at F' = £40 Hz with amplitude 1/4. Sampling with F, = 50 Hz
will now cause aliasing. S(F/Fy) will have components at F' = 0 with amplitude
F;/2 and two components at F' = £10Hz with amplitude F;/4. Ideal D/A gives
y2(t) = v (t).

When sampling with F; = 30 Hz the sampling theorem is not fulfilled. z(n) will
have components at F' = £10Hz with amplitudes F/2. y(n) consequently have
components at F'+ 10 Hz with amplitudes F;/4 at a DC component with amplitude
1/2. Reconstruction gives y;(t) = 1/2 4 1/2 - cos(27(10 Hz)t). Sampling s,(t) with
Fy; = 30Hz results in s(n) with a DC component with amplitude F;/2 and two
components F' = +10 Hz with amplitudes F;/4. Reconstruction gives y»(t) = yi1(?).

SOLUTION TO PROBLEM 4.83

Solution to Question (a): From Fig. P4.83 we notice that frequency-inversion scram-
bling is done by shifting the spectrum by f = 1/2 (w = ), thus Y (f) = X(f—1/2).
The corresponding time domain operation is found by using the frequency shift prop-
erty — or modulation theorem Ch. 4.3.2: y(n) = (=1)"z(n).

Solution to Question (b): The unscrambler is a similar frequency shift of f = 1/2,
thus z(n) = (=1)"y(n) = (=1)**z(n) = z(n).

SOLUTION TO PROBLEM 9.5

A analog TV signal z,(t) is corrupted by an echo signal. The received signal is:
So(t) = xa(t) +a-24(t —7), o] <1, 7>0
By using the time shifting property, the spectrum of s,(t) is given by:

So(F) = X (F)+a- X, (F)e T
= Xo(F)- (14 ae7T)



Since the bandwidth of ,(t) is B, clearly the bandwidth of s,(t) is also B. Choosing
the sampling frequency in accordance with the sampling theorem F; > 2B and such
that 7 = ng/Fy = noT’, where ny is a positive integer, and 7" is the sampling interval,
the digital equivalent becomes:

s(n) = x(n) + ax(n — ng)

with spectrum

S(f) = X(f)- (1 +ae??mIm)

In order to get y(n) = z(n) and consequently y,(t) = x,(t) when using an ideal
reconstruction, i.e., a BL interpolator with cut-off frequency B, we need a filter
H(f) which is the inverse of 1 + ae 72™/"0_ thus:

1
" 1+ ae-i2Tno

H(f)

The corresponding transfer function is H(z) = 1/(1 + az~™), i.e., the filter is an
all-pole filter with poles found by solving the binomial equation of degree nyg:

2" = —«
The ng poles is therefore given by:
of || - ed(2mp/m0) ,—l<a<0,p=0,1,---,ny—1

“p = :
o |a| - eI (r/mot2mp/no) 0 < a <1, p=0,1,---,n9 — 1

The poles are inside the unit circle, i.e., |z,| < 1 for |a| < 1, thus the filter is (BIBO)
stable and causal.

If ng =1 the filter is a low-pass filter for o < 0 cf. Ch. 4.5.2. For o > 0 the filter is
the corresponding high-pass filter found by using the modulation theorem (frequency
shifting) Ch. 4.3.2. This is easily seen as h(n)(—1)" corresponds to H(f—1/2). Thus
shifting H(f) gives:

1 1 1
1+ ae-27U=1/2) ~ 1t qeime—d2nf 1 — qe—i2nl

H(f-1/2) =

Denote by H,,(f) the filter using ng. The filters of ng is easily found from H;(f).
Since Hy(z) = 1/(1 — az™!'), then H, (z) = Hi(2™), see Ch. 4.5.5 and 10.3. That
is, the spectrum H,,,(f) = Hy,(2)]s)=ei2=s is found by

Hno(f) = Hl(nof)

That is, H,,(f) is a comb filter c¢f. Ch. 4.4.5. Fig. 9.5.1 and 9.5.2 show typical
spectra.
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SOLUTION TO PROBLEM 9.7

z(n) is a stationary random signal with mean E[z(n)] = 0, variance V[z(n)] = o2
and autocorrelation function, 7,,(m). We consider using a delta modulator.

Solution to Question (a):  Since d(n) = z(n) — ax(n — 1) and E[z(n)] = 0 also
E[d(n)] = 0, i.e., the variance o3 of d(n) is found by evaluating
o} = Bld(n)
= E|(z(n) - az(n—1))’]
= E[2*(n)] — 2aE[z(n)x(n — 1)] + a*Elz*(n — 1)]
= 02— 2aYu(1) + a*o?

= o2 (1+a® = 2ap..(1))
where we used that the normalized autocorrelation function (Ch. 2.6.2) p,,.(m) =
Solution to Question (b): An extremum of o3 is found by solving

2
doj

aazo

That is, the optimal value a* is given by

2
o

=202 (a* — 1)) = * = 1
aa Ux (a pa:a:( )) 0 <~ a pﬂ?i?( )

Since §%02/da* = 202 > 0 the extremum is a minimum. By substituting a* we get:

03 =02 (14 p2,(1) = 2p0s(1)pu(1)) = 02 (1 = p2,(1))

Solution to Question (c): 027 < o2 is obtained when 1 — p2 (1) < 1, i.e., p2,(1) > 0
which always is the case except when z(n) is a white noise signal for which v,,(m) =
a2d(m).

Solution to Question (d):  In order to study the second order prediction error
d(n) =z(n) — ayz(n — 1) — asx(n — 2) we define two column vectors:

a — (al,ag)T, T = (.’L’(n_l);x(n_z))—r

Then we express d(n) = x(n)—x "a. The variance of d(n) is found by first evaluating
d*(n):

d*(n) = x(n)—:cTa)2

= 2%(n) —2z(n)x'a+a'zx'a



Performing the expectation E[-]

E[d(n)] = Elz*(n)] — 2E[z(n)z"]a + a" Elzz]a

where
Elz(n)z'] = (Blz(n)z(n —1)], Blz(n)z(n - 2)]) = (yae(1), 2x(2))
Elza’] = Elz(n—1)z(n—1)] Elz(n—1)z(n — 2)] ] _ [ Yoz (0) Veu(1) ]
Elz(n —1)a(n—2)] Elz(n —2)z(n — 2)] Yaz(1)  Vaz(0)
Since 7,4 (0) = 02 we define
pro= B ) 0n@)

p — Ble='] _ [ pm1(1) pml(l) ]

Notice that R is positive definite, i.e., ¢' Rq > 0 for all g # 0 since
02 (q'Rq) = Elg'za'q] = E[(q'®)*] >0, ¢ £ 0
Now we have the expression
o5 =02 (1 —2P"a+ aTRa)
Extremum is found by solving do?/da = 0, i.e.,

2
doj

e = 02(—2P +2Ra) =0

That is the optimal a, say a*, is
a*=R'P

Note that R™' exists since it is positive definite. Moreover, the optimum is a
minimum since the second order derivative matrix 0%03/0ada’ = R is positive
definite.

By substituting the optimal value a* into the expression for o2 we get
03 = 02(1-2P"R'P+ P 'R'RR'P)
o(1-P'R'P)
P'R™'P > 0 since R is positive definite and equals zero if P = 0, i.e., when

puz(m) = 0 for m > 1 (white noise). Thus, except for the white noise case, 0% < 02
is always fulfilled. Further note it is possible to show P'"R'P <1 since o2 > 0.



SOLUTION TO PROBLEM 9.11

Solution to Question (a):  Consider the rewritten second order SDM model shown
in Fig. 9.11.1

e(n)

Fig. 9.11.1

where H(z) cf. Fig. P9.11 is defined by H(z) = 1/(1—2z""). Using the superposition
principle we can write:

Dy(2) = —=Dy(2)H(z)z *(L+ H(2)) + H*(2)2 ' X(2) + E(2)
That is,

- H(z)2 X(2) + :
1+ H(2)z Y1+ H(2)) 1+ H(z)z="(1+ H(2))

Dy(z)

E(2)

By using the expression for H(z), the noise transfer function is

1
T 1+ H() 1+ H(2)

=(1—-2z1?

and the signal transfer function is

- H?(z)z7!
Hy(z) = 1+ H(2)27'(1+ H(z2))

_= Zil

Solution to Question (b): The magnitude frequency response is found by evaluating
at |H,(z)| at z = /¥ i.e.,

) = |(1- )] = |(1- 20 4 o))
= ‘e‘j“’ (ej“’ -2+ e_j“’)‘
= | —2+2cos(w)|



The noise magnitude responses of a first and a second order SDM is shown in Fig.
9.11.2

Noise Frequency Responses

Fig. 9.11.2

The 6 dB difference is due to an extra zero for the 2nd order system.

Solution to Question (c): Using the fact that the quantization noise is white, it has
the power spectral density S.(F) = 02/F; where Fy is the sampling frequency and
o2 is the noise power. Using Eq. (9.2.19) where B is the bandwidth of the signal

Zq(t), we get

[\

2 = [ FIRSF) aF

o’ B
- 4—8/ (=1 + cos(2rF/F,))? dF
F.,J) B
2 2 2w B/ F
= Ue/ (=1 + cos(w))? dw
T J-2xB/F,
. 2rB/Fs
2 3 2
= Zo? l—w + sin(2w) _ ZSin(w)]
2 4 —onB/F,
2 67 B in(4w B/ F .
= ;agl ;s + sin 7; /F:) —4s1n(27rB/Fs)]

Taylor series expansion of sin(z) = x — z®/3! + 2°/5! for x < 1 corresponding to

Fy > B gives:
, wio? <2B >5
on R —
" 5 F
A doubling of Fj gives a reduction of o2 by a factor of 32 which corresponds to
approx. 15dB.
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SOLUTION TO PROBLEM 9.12

Given z(n) = cos(2rn/N), n =0,1,---, N — 1. The signal is reconstructed through
an ideal D/A converter with sampling interval 7" corresponding to a sampling fre-
quency Fy =1/T.

Solution to Question (a):  In general, cf. Ch. 4.2, a periodic digital signal has
normalized frequency components at f = k/N, k=0,1,---, N—1, and consequently
frequency components at F' = kF;/N. A cosine has spectral components for k£ = 1

and k = N — 1 only. Thus, Fy = F,/N.

Solution to Question (b): If Fj is fixed and we only use the given lookup table,
the only possibility is to sample x(n). Downsampling a discrete-time signal with a
factor of D is equivalent to

Tsam (n) = x(n) io: d(n — qD)

q——00
The spectrum is found by (see e.g., Ch. 10 or the textbooks in signal analysis)

1 D—-1

Xsam(f)ZEZOX(f_Q/D)

The spectrum of the signal z(n) considered as a aperiodic signal of length N can be
interpreted as the corresponding period signal multiplied with a square wave signal
of length N. Thus the spectrum is the convolution of the spectrum of the square
wave signal and the cosine signal:

_sinmnfN

IO L B = 1/N)/24 8(F +1/N)/2)

X(/)

The spectrum is X(1/N) = X(—1/N) = 1/2 and has zeros at f = k/N k # *1.
The sampled signals spectrum is a replication of X (f) with ¢/D. Thus if D is a
divisor in N, say N = KD, Xqn(f) =1/D for f =1/N+¢q/D = (1+¢K)/N, q =
0,1,---, D—1 and zero for all other multiples of 1/N. The infinitely replicated signal
is forming a periodic signal with frequencies at k = 1, 1+ K, 1+2K,---,1+(D-1)K
and k= -1+ K,—-1+2K,---,—1+ DK. Changing to the new sampling frequency
1/D gives components at D/N corresponding to Fy = DF;/N. The number of
possible frequencies is thus the number of all possible products of prime factors in
N. Ifeg., N=12=2-2-3 the possible D € {2,3,4,6}.

If D is not a divisor in N then Xg,,(f) will have non-zero values for most multiples
of 1/N thus the replicated signal is not a cosine.

This is shown in the following Figures 9.12.1-4.
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SOLUTION TO PROBLEM 5.20

Solution to Question (a): X (k) <5~ @(n) where N is an even number and (n)

fulfill the symmetry property:

Recall that Wy = e™2"/N. By evaluating X (k) we get:

N—-1
X(k)y = > a(n)Wy"

n=0
N/2—-1 N—1
n=0 n=N/2
N/2—-1 N/2—-1

= S a()WE + 3 a(n+ N/2)WRHN)
n=0 n=0
N/2—-1 N/2—-1

= S )W+ S —a(n)WRNPwhe
n=0 n=0
N/2—1

= Y [zm)+ (=) am)| Wi
n=0

Here we used the fact that W2 = e=im = (1), Now for k = 2K, k' =
0,1,-++,N/2 — 1 we have: z(n)+ (=1)*"tz(n) = 0, thus X (2k') = 0.

Solution to Question (b): Evaluating the odd harmonics we get:

N/2-1

X(2k" -+ 1) = Z I:x(n) + (_1)2k’+2x(n)] W](\[Qk’—i—l)n

n=0
N/2—1

= > Ra(mW W
n=0
N/2-1

= > [Ra(m)WRIWR),

/
n=0

DFT

That is, X(2k' +1) <7z y(n) where y(n) = 22(n)Wy, n=0,1,--- N/2 - 1.
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