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Summary

This thesis is concerned with computational and theoretical aspects of Gabor systems
in time-frequency analysis and, in particular, the representation of signals in terms of
time-frequency shifts of B-splines constituting a frame. Frames are systems of “simple”
functions or building blocks which deliver ways of analysing and representing signals in
a stable manner, even in the presence of noise. Because of these desirable properties,
frames play an important role in both harmonic analysis and signal processing.

One of the fundamental problems in Gabor analysis is to determine for which
sampling and modulation rates, controlled by two parameters a > 0 and b > 0,
respectively, the corresponding time-frequency shifts of a given generator constitutes
a frame. The so-called frame set of a generator is the parameter values (a, b) ∈ R2

+ for
which the associated Gabor system generated by the generator function is a frame.

Except for the first B-spline very little is known about the frame set for B-splines.
This thesis adds a considerable amount of new information on the frame set for B-
splines. We first review some of the known characteristics of the frame set for B-
splines. We then prove a new domain of parameter values (a, b) for which the Gabor
system generated by B-splines is indeed a frame. Furthermore, we examine some of the
unknown areas numerically, both in Matlab and Maple. From these simulations, we
discover new parameter values (a, b) which do not belong the frame set of the B-splines
of order two. This, in turn, disproves a recent conjecture by Karlheinz Gröchenig.
Finally, we formulate two new conjectures on the frame set of the B-splines of order
two based on our numerical and theoretical findings.
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Resumé

Dette speciale omhandler numeriske og teoretiske aspekter af Gabor systemer i tids-
frekvens analyse og specielt repræsentation af signaler ved brug af tids-frekvens forskyd-
ninger af B-splines der udgør en frame. Frames er systemer af “simple” funktioner som
giver en metode til stabil analyse og repræsentation af signaler, selv hvis de indeholder
støj. Grundet disse fordelagtige egenskaber spiller frames en vigtig rolle i b̊ade har-
monisk analyse og signalbehandling.

Et af de grundlæggende problemer i Gabor analyse er at bestemme for hvilke sam-
pling og modulations rater, kontrolleret af parametrene a > 0 og b > 0, de tilhørende
tids-frekvensforskydninger af en given generator udgør en frame. Den s̊akaldte frame-
mængde af en generator g er de parameterværdier (a, b) ∈ R2

+, for hvilke Gabor sys-
temet genereret af g er en frame.

Bortset fra for den første B-spline er det ikke meget der er kendt omkring frame-
mængden for B-splines. Dette speciale tilføjer betydelig ny viden om frame-mængden
for B-splines. Først undersøger vi nogle af de kendte beskrivelser af frame-mængden
for B-splines. Derefter beviser vi en ny mængde af parameterværdier (a, b), for hvilke
Gabor systemet genereret af B-splines er en frame. Derudover undersøger vi en del
af de ukendte omr̊ader numerisk b̊ade i Matlab og i Maple. Fra disse simuleringer
opdager vi nye parameterværdier (a, b), der ikke tilhører frame-mængden for den B-
spline, der har orden to. Derved modbeviser vi en formodning af Karlheinz Gröchenig.
Til sidst formulerer vi to nye formodninger om frame-mængden for B-splines baseret
p̊a vores numeriske undersøgelser.
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A guide to the reader

The thesis consists of 4 sections and an Appendix. Section 2 to 4 provide a theoretical
background on frames in Hilbert spaces, B-splines and Gabor systems. Section 5
contains both known and new results for the frame set of B-splines. The appendix
provides Matlab code for the numerical parts of section 5 and a Maple sheet with
calculations used in section 5.

Notation is self-explanatory or it is introduced in the main text.
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1 Introduction

Frames are a useful tool to analyze and represent complex signals in terms of smaller
and simpler building blocks. In the analysis process a frame converts the signal to
a sequence of coefficients in `2(N). In the synthesis process a so-called dual frame is
used to bring back the original signal from the sequence of coefficients in a stable way,
even if the analysis coefficients are corrupted by noise.

Gabor system are used for time-frequency analysis of signals, where the building
blocks are time-frequency shifts of a given generator function along the translation
lattice aZ and modulation lattice bZ for some fixed a, b > 0. The Gabor system
generated by a generator function g ∈ L2(R) is given by

{e2πibmxg(x− na)}n,m∈Z.

In the analysis transform using Gabor frames one obtains information about the time-
frequency content of a signal.

One of the fundamental problems in Gabor analysis is to determine for which
sampling and modulation rates, controlled by the two parameters a > 0 and b > 0,
respectively, the Gabor system generated by a given generator function g ∈ L2(R) is a
frame. The set of parameter values (a, b) ∈ R2

+ for which the associated Gabor system
generated by generator function g is a frame is called the frame set of g.

This thesis considers Gabor systems, where the generator g is a B-spline. We study
B-splines since these generators are widely used in applications as they have several
useful properties, e.g., they are piecewise polynomial and have a good time-frequency
localisation. However, even though B-splines are among the standard choices of Gabor
generators, very little is known about their frame set. Hence, our main goal of this
work is to give a detailed study of the frame set of B-splines. We study the known
results on the frame set of the B-splines and based on these we develop methods to
extend the frame set. We also use numerical methods to investigate the frame set
further and thus find new results about the frame set.

Section 2 gives an introduction to frames in general Hilbert spaces. We give the
basic definitions of frames and present results about frames and dual frames. Sec-
tion 3 introduces both the cardinal and symmetric B-splines. We present and prove
fundamental properties of the B-splines.

Section 4 introduces the Gabor systems on rectangular lattices aZ× bZ. We intro-
duce the Zak transform of functions in L2(R). This is an important tool in numerical
analysis of the Gabor system. We also prove that results about frame properties also
hold for translates of the generator g.

Section 5 is the largest and most important section of the thesis. It presents known
and new results about Gabor systems with B-spline generators. Subsection 5.1 to 5.3
consider B-splines of any order as generators while we focus on the B-splines of order
N ≥ 2 from Subsection 5.4 and onward. We use numerical methods to get some
intuition in Subsection 5.2 and Subsection 5.6. In Subsection 5.3 we use numerical
methods to estimate the frame bounds for some Gabor systems. In Subsection 5.7 we
prove a new (a, b)-value for which the Gabor system generated by the second B-spline
is not a frame, thus disproving a conjecture by Karlheinz Gröchenig.
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The thesis ends with a summary of the known and new results about the frame set
of B-splines with graphical representation for the second and third B-spline. Subsec-
tion 5.9 gives suggestions for further studies based on the work in this thesis.
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2 Frames in Hilbert spaces

The purpose of this section is to give an introduction to frames in separable Hilbert
spaces. First the basic definitions are given. Then some properties of frames are given.
Throughout this section H 6= 0 will denote a separable Hilbert space. Unless other-
wise stated the proofs in this section will follow the proofs given in [1, Sections 5.1-5.2].

First we need the definition of a frame.

Definition 2.1 (Frame). A sequence {fk}∞k=1 in H is said to be a frame for H if
constants A,B > 0 exist, such that

A‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2, ∀f ∈ H. (2.1)

If the upper frame condition holds, then {fk}∞k=1 is said to be a Bessel sequence with
bound B. The constants A,B are called the frame bounds for {fk}∞k=1. The highest
possible A and lowest possible B such that (2.1) still holds are called the optimal frame
bounds. It can also be the case that the optimal frame bounds coincide. In that case
we have a special type of frame known as a tight frame.

Definition 2.2. A sequence {fk}∞k=1 in 〈 is said to be a tight frame for H if a constant
A > 0 exists, such that

∞∑
k=1

|〈f, fk〉|2 = A‖f‖2, ∀f ∈ H. (2.2)

From the definition of a frame it can easily be seen that a frame satisfies

span{fk}∞k=1 = H (2.3)

since the frame conditions make sure that if an element f ∈ H is orthogonal to every
element fk of a frame, then necessarily f = 0. Since H is complete, this is sufficient
to imply (2.3) by [5, Theorem 3.6-2].

The synthesis and analysis operators are two important operators for a frame. The
operators work on sequences in `2(N) and elements in H, respectively. Let {fk}∞k=1 be
a frame for H. Then the synthesis operator is defined as

T : `2(N)→ H, T{ck}∞k=1 =
∞∑
k=1

ckfk, (2.4)

and the analysis operator is defined as

T ∗ : H → `2(N), T ∗f = {〈f, fk〉}∞k=1. (2.5)

For any Bessel sequence {fk}∞k=1 with bound B, the synthesis operator T given by
(2.4) is well-defined and bounded with ‖T‖ ≤

√
B by [1, Theorem 3.1.3]. The upper
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frame condition directly shows that T ∗ is well-defined and bounded with ‖T ∗‖ ≤
√
B,

since

‖T ∗f‖2 = ‖{〈f, fk〉}∞k=1‖2 =
∞∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2 ⇔ ‖T ∗f‖ ≤
√
B‖f‖.

It can be shown [1, Lemma 3.1.1] that T ∗ is indeed the adjoint operator of T , which
justifies the notation.

By composing T and T ∗ the frame operator is obtained

S : H → H, Sf = TT ∗f =
∞∑
k=1

〈f, fk〉fk. (2.6)

Some of the important properties of the frame operator are stated in Lemma 2.3.
In the proof of Lemma 2.3 we will use a partial ordering on the set of self-adjoint
operators on H. The partial ordering is given by

U1 ≤ U2 ⇔ 〈U1x, x〉 ≤ 〈U2x, x〉, ∀x ∈ H. (2.7)

To show that this is in fact a partial ordering we need to show that it is reflexive,
antisymmetric and transitive. Let U1, U2 and U3 be self-adjoint operators on H. Then

〈U1x, x〉 = 〈U1x, x〉, ∀x ∈ H,

and thus we see that U1 ≤ U1 showing that (2.7) is reflexive. Now assume that U1 ≤ U2

and U2 ≤ U1, then

〈U1x, x〉 ≤ 〈U2x, x〉, ∀x ∈ H and 〈U2x, x〉 ≤ 〈U1x, x〉, ∀x ∈ H.

Hence
〈U1x, x〉 = 〈U2x, x〉, ∀x ∈ H.

If H is assumed to be complex, this gives us

〈U1x, x〉 − 〈U2x, x〉 = 〈(U1 − U2)x, x〉 = 0, ∀x ∈ H,

and thus U1 − U2 = 0 by [5, Theorem 3.9-3(b)], that is, U1 = U2. This shows that
(2.7) is antisymmetric. Finally, assume that U1 ≤ U2 and U2 ≤ U3, then

〈U1x, x〉 ≤ 〈U2x, x〉, ∀x ∈ H and 〈U2x, x〉 ≤ 〈U3x, x〉, ∀x ∈ H.

This shows that
〈U1x, x〉 ≤ 〈U3x, x〉, ∀x ∈ H.

Thus U1 ≤ U3 and we have shown that (2.7) is transitive. Since (2.7) satisfies the
three properties it is a partial ordering.
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Lemma 2.3. Let {fk}∞k=1 be a frame with frame bounds A,B and frame operator S.
Then the following holds

(i) S is bounded, invertible, self-adjoint and positive.

(ii) {S−1fk}∞k=1 is a frame with frame operator S−1 and frame bounds B−1, A−1.

(iii) If A,B are the optimal frame bounds for {fk}∞k=1 then B−1, A−1 are the optimal
frame bounds for {S−1fk}∞k=1.

Proof. (i): S is bounded since it is composed of two bounded operators. Furthermore,

‖S‖ = ‖TT ∗‖ = ‖T‖ ‖T ∗‖ = ‖T‖2 ≤ B.

It is easy to show that S is self-adjoint since

S∗ = (TT ∗)∗ = T ∗∗T ∗ = TT ∗ = S.

Note that

〈Sf, f〉 = 〈TT ∗f, f〉 = 〈T ∗f, T ∗f〉 = ‖T ∗f‖2 =
∞∑
k=1

|〈f, fk〉|2. (2.8)

It can be seen from (2.8) that the frame condition (2.1) can be written as

A‖f‖2 ≤ 〈Sf, f〉 ≤ B‖f‖2, ∀f ∈ H. (2.9)

This way of writing the frame condition immediately shows that S is positive due to
the lower bound. Using the partial ordering given in (2.7) we can rewrite(2.9) as

AI ≤ S ≤ BI (2.10)

We can rearrange (2.10) to get −BI ≤ −S ≤ −AI, that is, 0 ≤ I − B−1S ≤ B−A
B
I.

From this it follows that

‖I −B−1S‖ = sup
‖f‖=1

‖(I −B−1S)f‖

= sup
‖f‖=1

|〈(I −B−1S)f, f〉| ≤ B − A
B

< 1.

Hence, by using Neumann series [5, Theorem 7.3-1] it is seen that B−1S is invertible
and thus S itself is invertible as B is simply a constant.

(ii): We start by noting that since S is self-adjoint, then S−1 is also self-adjoint.
Using this we show that

∞∑
k=1

|〈f, S−1fk〉|2 =
∞∑
k=1

|〈S−1f, fk〉|2 ≤ B‖S−1f‖2∀f ∈ H.
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Here the equality comes from S−1 being self-adjoint and the inequality comes from the
fact that {fk}∞k=1 is a frame. Furthermore, since S−1 is bounded, we have ‖S−1f‖ ≤
‖S−1‖ ‖f‖, so

∞∑
k=1

|〈f, S−1fk〉|2 ≤ B‖S−1‖2 ‖f‖2.

Hence, {S−1fk}∞k=1 is a Bessel sequence. Therefore the frame operator for {S−1fk}∞k=1

is well-defined and by definition its action on an element f ∈ H is

f 7→
∞∑
k=1

〈f, S−1fk〉S−1fk = S−1

[
∞∑
k=1

〈S−1f, fk〉fk

]
= S−1

[
S
(
S−1f

)]
= S−1f. (2.11)

The first equality in (2.11) follows from the fact that S−1 is bounded and thus con-
tinuous and the second equality uses the definition of the frame operator. Thus we
have shown that S−1 is the frame operator for {S−1fk}∞k=1. The operator S−1 com-
mutes with both S and I and they are all self-adjoint. This means that we can use [1,
Theorem 2.4.2] and multiply the inequalities (2.10) with S−1 whereby we can obtain

B−1I ≤ S−1 ≤ A−1I,

which is the same as

B−1‖f‖2 ≤ 〈S−1f, f〉 ≤ A−1‖f‖2, ∀f ∈ H.

Using (2.11) this means that

B−1‖f‖2 ≤
∞∑
k=1

|〈S−1f, fk〉|2 ≤ A−1‖f‖2, ∀f ∈ H,

which shows that {S−1fk}∞k=1 is a frame with frame bounds B−1 and A−1.

(iii): We aim to prove this property by contradiction. Let B be the optimal up-
per bound for {fk}∞k=1 and assume that the optimal lower bound for {S−1fk}∞k=1 is
C > B−1. By using the result from (ii) we see that {S−1 (S−1fk)}∞k=1 = {fk}∞k=1 has
upper bound C−1 < B, but this contradicts the initial assumption. Thus, B−1 is the
optimal lower bound for {S−1fk}∞k=1. The result for the optimal upper bound A−1 can
be proved similarly as shown in [1].

The new frame {S−1fk}∞k=1 described in Lemma 2.3 is called the canonical dual
frame of {fk}∞k=1. In general, two Bessel sequences {fk}∞k=1 and {gk}∞k=1 are dual frames
if f =

∑∞
k=1〈f, gk〉fk holds for all f ∈ H. It can be shown that dual frames are indeed

frames. We will use this later in Section 5 to prove that certain functions generate
frames by showing that they have a dual.

For the Gabor frames that will be introduced in Section 4 the canonical dual will
also have the Gabor structure. However, this is not the case for any structure. As an
example the canonical dual of a wavelet frame will not necessarily have the wavelet
structure, though it can be guaranteed if the frame is tight.
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The result given in Theorem 2.4 is very important for frames. It shows that any
elements in a Hilbert space H can be represented using a frame {fk}∞k=1 for H. The
theorem shows that frames can be seen as a kind of generalisation of a basis. The
frame differs from an orthonormal basis in the sense that the representation is not
necessarily unique.

Theorem 2.4. Let {fk}∞k=1 be a frame with frame for H with operator S. Then

f =
∞∑
k=1

〈f, S−1fk〉fk, ∀f ∈ H, (2.12)

and

f =
∞∑
k=1

〈f, fk〉S−1fk, ∀f ∈ H. (2.13)

Proof. Let f be in element in H. Using the fact that f = SS−1f and the fact that
S−1 is self-adjoint we get

f = S
(
S−1f

)
=
∞∑
k=1

〈S−1f, fk〉fk =
∞∑
k=1

〈f, S−1fk〉fk, ∀f ∈ H.

Similarly, using the fact that f = S−1Sf and the fact that S is self-adjoint we get

f = S−1 (Sf) =
∞∑
k=1

〈Sf, S−1fk〉S−1fk =
∞∑
k=1

〈f, fk〉S−1fk, ∀f ∈ H.

Theorem 2.4 shows that an element in H can be represented entirely by the coef-
ficients {〈f, S−1fk〉}∞k=1, which are known as the frame coefficients. However, to find
these coefficients we would need to be able to calculate the effect of S−1. In general
this can be a difficult task, but in special cases simple results exist. One such example
is tight frames.

Corollary 2.5. If {fk}∞k=1 is a tight frame with frame bound A > 0, then the dual
frame is {A−1fk}∞k=1 and

f =
∞∑
k=1

〈f, S−1fk〉fk =
1

A

∞∑
k=1

〈f, fk〉fk, ∀f ∈ H. (2.14)

Proof. Let {fk}∞k=1 be a tight frame with frame bound A. Then

∞∑
k=1

|〈f, fk〉|2 = A‖f‖, ∀f ∈ H.

It has previously been shown that this is the same as

〈Sf, f〉 = A‖f‖ = 〈Af, f〉 ⇔ 〈(S − AI) f, f〉 = 0, ∀f ∈ H.

By [1, Lemma 2.4.3] this implies S − AI = 0, that is, S = AI, which shows that
S−1 = A−1I. Finally the result follows from applying S−1 to (2.12).

7



It has already been mentioned that a frame can be seen as generalisation of bases.
Now we look at some relationships between Riesz bases and frames. A Riesz basis for
a Hilbert space H is a family of the form {Uek}∞k=1 where {ek}∞k=1 is an orthonormal
basis and U : H → H us a bounded bijective operator.

Theorem 2.6. Let {fk}∞k=1 be a Riesz basis for H, then it is also a frame for H and
the Riesz basis bounds coincide with the frame bounds. The unique dual Riesz basis of
{fk}∞k=1 equals the canonical dual frame {S−1fk}∞k=1.

The proof for Theorem 2.6 follows from the properties of a Riesz basis and can be
found in [1, Theorem 5.2.1].

Theorem 2.6 shows that a Riesz basis will always be a frame, but one may wonder
what conditions are needed in order for a frame to be a Riesz basis. Theorem 2.7 gives
a sufficient condition for a frame to also be a basis.

Theorem 2.7. If {fk}∞k=1 is a frame for H, then the following are equivalent.

(i) {fk}∞k=1 is a Riesz basis for H.

(ii) If
∑∞

k=1 ckfk = 0 for some {ck}∞k=1 ∈ `2(N), then ck = 0, ∀k ∈ N.

Proof. (i)⇒ (ii): Assume that {fk}∞k=1 is a Riesz basis for H and that there exists a
sequence {ck}∞k=1 ∈ `2 (N) such that

∑∞
k=1 ckfk = 0. We know that a Riesz basis can

be related to an orthonormal basis {ek}∞k=1 by some bounded, bijective operator U on
H. This can be written as {fk}∞k=1 = {Uek}∞k=1 and from this it follows that

0 =
∞∑
k=1

ckfk =
∞∑
k=1

ckUek = U
∞∑
k=1

ckek.

Since U is bijective this implies that
∑∞

k=1 ckek = 0 and since {ek}∞k=1 is an orthonormal
basis this shows that ck = 0, ∀k ∈ N.
(ii)⇒ (i): Assume (ii) is true. Then the synthesis operator T associated with {fk}∞k=1

will be well-defined, bounded and injective. Furthermore, since {fk}∞k=1 is a frame T
is also surjective. Now, let {δk}∞k=1 denote the canonical orthonormal basis for `2 (N).
Now we can relate {fk}∞k=1 to {δk}∞k=1 using T as Tδk = fk. Then the result follows
directly from the definition of a Riesz basis.

A frame that is not a Riesz basis is called an overcomplete frame and the reason
can be seen from Theorem 2.7. Indeed, if {fk}∞k=1 is a frame, but not a basis, it follows
from Theorem 2.7 that there exists a sequence of coefficients {ck}∞k=1 ∈ `2(N) \ {0}
such that

f =
∞∑
k=1

ckfk = 0.

Using (2.12) this shows that any element f ∈ H has several representations in terms
of the frame {fk}∞k=1. Indeed, by using such coefficients {ck}∞k=1 ∈ `2(N) \ {0} we get
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f =
∞∑
k=1

〈f, S−1fk〉fk =
∞∑
k=1

(
〈f, S−1fk〉+ ck

)
fk = 0.

This result shows that there are other ways of representing an element f ∈ H. It does
not guarantee that the sequence of coefficients {〈f, S−1fk〉+ ck}∞k=1 come from a frame
as in (2.12). However, it is possible to prove that every overcomplete frame has other
dual frames than the canonical dual.

Theorem 2.8. Assume that {fk}∞k=1 is an overcomplete frame. Then there exists
frames {gk}∞k=1 6= {S−1fk}∞k=1 for which

f =
∞∑
k=1

〈f, gk〉fk, ∀f ∈ H. (2.15)

Proof. The proof is split in two cases. First we assume that f` = 0 for some ` ∈ N for
this index we have S−1f` = 0. Let gk = S−1fk for all k 6= ` and choose g` to be any non-
zero element of H. Then the frame decomposition (2.12) shows that (2.15) is satisfied,
since the terms 〈f, g`〉f` = 〈f, S−1f`〉f` = 0 and 〈f, gk〉fk = 〈f, S−1fk〉fk, ∀k 6= `. By
construction {gk}∞k=1 6= {S−1fk}∞k=1.

In the other case we assume f` 6= 0 for all k ∈ N. Since {fk}∞k=1 is an overcomplete
frame it follows from Theorem 2.6 that there exists a sequence {ck}∞k=1 ∈ `2 (N) \ {0}
such that

∞∑
k=1

ckfk = 0.

For some ` ∈ N we have c` 6= 0, and we can take the corresponding term out of the
sum to get

f` =
−1

c`

∑
k 6=`

ckfk.

We want to use this to show that {fk}k 6=` is a frame for H. It is enough to prove that
{fk}k 6=` has a lower frame bound since the upper frame bound for {fk}∞k=1 will still
hold for {fk}k 6=`. Note that for any f ∈ H the Cauchy-Schwarz inequality shows that

|〈f, f`〉|2 =

∣∣∣∣∣〈f, −1

c`

∑
k 6=`

ckfk〉

∣∣∣∣∣
2

=

∣∣∣∣∣−1

c`

∑
k 6=`

ck〈f, fk〉

∣∣∣∣∣
2

≤ 1

|c`|2
∑
k 6=`

|ck|2
∑
k 6=`

|〈f, fk〉|2.

Let C = 1
|c`|2

∑
k 6=` |ck|2. Then letting A denote the lower frame bound for {fk}∞k=1,

this implies that

A‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 =
∑
k 6=`

|〈f, fk〉|2 + |〈f, f`〉|2

9



≤ (1 + C)
∑
k 6=`

|〈f, fk〉|2.

Hence, {fk}k 6=` satisfies the lower frame condition with frame bound A
1+C

.
Let {gk}k 6=` denote the canonical dual frame of {fk}k 6=` and let g` = 0. Then

(2.15) holds for {gk}∞k=1, but it is different from the canonical dual for {fk}∞k=1, since
S−1f` 6= 0 ⇔ S−1f` 6= g`.

As the inverse of frame operator can be difficult to calculate it is not always easy
to find the expansions in (2.12) and (2.13). Therefore it is interesting to know that
other dual frames exist, but it is not certain when the different duals should be used.
Different cases will be discussed specifically for Gabor frames in a later section.
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3 B-Splines

Now we focus on a specific class of functions in L2(R) namely the cardinal B-splines
and the symmetric B-splines. To define the cardinal B-splines Nn(x) we start by
defining the first function N1(x) as

N1(x) := χ[0,1](x). (3.1)

Then the cardinal B-splines of higher order are defined recursively using convolution
as

Nn+1(x) := Nn ∗N1(x) =

∫ ∞
−∞

Nn(x− t)N1(t)dt =

∫ 1

0

Nn(x− t)dt. (3.2)

We calculate the expression for the function N2(x) since it will be useful for examples:

N2(x) =

∫ 1

0

N1(x− t)dt =

∫ 1

0

χ[0,1](x− t)dt =


x, 0 ≤ x < 1

2− x, 1 ≤ x < 2

0, otherwise

(3.3)

A plot of N2(x) is given in Figure 1.

−1 1 2 3

1
2

1

Figure 1: The second B-spline N2(x).

Some basic and important properties of the B-splines are given in Theorem 3.1.

Theorem 3.1. Given n ∈ N, the B-spline Nn has the following properties

(i) supp Nn = [0, n] and Nn > 0 on ]0, n[,

(ii)
∫∞
−∞Nn(x)dx = 1,

(iii) For n ≥ 2, ∑
k∈Z

Nn(x− k) = 1, ∀x ∈ R. (3.4)

For n = 1 the formula (3.4) holds for all x ∈ R \ Z.

(iv) For any continuous function f : R→ C,∫ ∞
−∞

Nn(x)f(x)dx =

∫
[0,1]n

f(x1 + · · ·+ xn)dx1 · · · dxn (3.5)

11



Proof. The proofs for these properties all rely on induction and the formula (3.2).
(i): It is trivial to see that (i) holds for N1(x) = χ[0,1]. Now assume that (i) holds
for Nn(x) for some n ∈ N and consider Nn+1(x). For t ∈ [0, 1] the function Nn(x− t)
can only be non-zero for x ∈]0, n + 1[, since Nn > 0 on ]0, n[. Thus, by (3.2)
supp Nn+1 ⊆ [0, n + 1]. On the other hand if x ∈]0, n + 1[, then there exists a
t ∈ [0, 1] such that x− t ∈ [0, n] and thus by the induction hypothesis Nn(x− t) > 0.
By using (3.2) this shows that Nn+1 > 0 and it also shows that supp Nn+1 = [0, n+ 1].

(ii): For n = 1 we have∫ ∞
−∞

N1(x)dx =

∫ ∞
−∞

χ[0,1](x)dx =

∫ 1

0

1dx = 1.

Now assume that (ii) holds for Nn(x) for some n ∈ N and consider Nn+1(x).∫ ∞
−∞

Nn+1(x)dx =

∫ ∞
−∞

∫ 1

0

Nn(x− t)dtdx

=

∫ 1

0

∫ ∞
−∞

Nn(x− t)dxdt

=

∫ 1

0

∫ ∞
−∞

Nn(y)dydt =

∫ 1

0

1dt = 1.

The first equality comes from (3.2). The second follows from Tonelli’s Theorem for
non-negative functions. The third comes from using the substitution y = x− t on the
inner integral. The fourth comes by using the induction hypothesis.

(iii): For n = 2 we can see that there will only be two non-zero terms in the sum
(3.4), since supp N2 = [0, 2] and the translation parameter k is an integer. The two
non-zero terms arise when x − k = x − bxc ∈ [0, 1] and x − k = x − bxc + 1 ∈ [1, 2[.
Using (3.3) this shows that∑

k∈Z

N2(x− k) = (x− bxc) + 2− (x− bxc+ 1) = 1.

Hence (iii) holds for n = 2. Now assume that (iii) holds for Nn(x) for some n ∈ N\{1}
and consider Nn+1(x).

∑
k∈Z

Nn+1(x− k) =
∑
k∈Z

∫ 1

0

Nn(x− k − t)dt

Using the substitution y = x− t we get∑
k∈Z

Nn+1(x− k) =
∑
k∈Z

(
−
∫ x−1

x

Nn(y − k)

)
dy

=
∑
k∈Z

(∫ x

x−1
Nn(y − k)

)
dy

12



=

∫ x

x−1

(∑
k∈Z

Nn(y − k)

)
dy.

Finally, using the induction hypothesis, we get∑
k∈Z

Nn+1(x− k) =

∫ x

x−1

(∑
k∈Z

Nn(y − k)

)
dy =

∫ x

x−1
1dy = 1.

For n = 1 it is clear that in cases where x ∈ R \Z, the sum in (3.4) will only have one
term which will be equal to one and thus (3.4) holds. However, in the case x ∈ Z the
sum in (3.4) will have two terms which will both be equal to one and thus∑

k∈Z

N1(x− k) = 2, ∀x ∈ Z.

(iv): Let f : R → C be a continuous function. First we check that (3.5) holds for
n = 1. For n = 1 we have∫ ∞

−∞
N1(x)f(x)dx =

∫ ∞
−∞

χ[0,1](x)f(x)dx =

∫
[0,1]

f(x)dx.

Thus (3.5) holds for n = 1.
Now assume that (iv) holds for Nn(x) for some n ∈ N and consider Nn+1(x). Then∫ ∞

−∞
Nn+1(x)f(x)dx =

∫ ∞
−∞

∫ 1

0

Nn(x− t)dtf(x)dx.

Using a substitution by y = x− t, we get∫ ∞
−∞

∫ 1

0

Nn(x− t)dtf(x)dx =

∫ ∞
−∞

∫ 1

0

Nn(y)f(y + t)dtdy

=

∫ ∞
−∞

Nn(y)

∫ 1

0

f(y + t)dtdy.

The result of the inner integral can be written as some function of y, say F (y) =∫ 1

0
f(y + t)dt. Then by using the induction hypothesis, we get∫ ∞

−∞
Nn(y)

∫ 1

0

f(y + t)dtdy =

∫ ∞
−∞

Nn(y)F (y)dy

=

∫
[0,1]n

F (x1 + · · · xn)dx1 · · · dxn.

Finally, using the definition of F (y), we get∫
[0,1]n

F (x1 + · · ·xn)dx1 · · · dxn =

∫
[0,1]n

∫
[0,1]

f(x1 + · · ·xn + t)dtdx1 · · · dxn

=

∫
[0,1]n+1

f(x1 + · · ·xn+1)dx1 · · · dxn+1.
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It will later be seen that the property (3.4) is important in relation to Gabor
frames. The formula (3.5) can be used to prove the following result about the Fourier
transform of the B-splines.

Corollary 3.2. For n ∈ N, the Fourier transform of the B-spline Nn is given by

N̂n(γ) =

(
1− e−2πiγ

2πiγ

)n
(3.6)

Proof. Using the definition of the Fourier transform we have

N̂n(γ) =

∫ ∞
−∞

Nn(x)e−2πixγdx =

∫
[0,1]n

e−2πi(x1+···+xn)γdx1 · · · dxn

=

∫
[0,1]n

e−2πix1γ · · · e−2πixnγdx1 · · · dxn

=

∫
[0,1]

e−2πix1γdx1 · · ·
∫
[0,1]

e−2πixnγdxn

=

(∫
[0,1]

e−2πixγdx

)n
=

([
−e
−2πixγ

2πiγ

]1
0

)n

=

(
1− e−2πiγ

2πiγ

)n

The B-splines discussed so far have support on the positive part of the x-axis.
However, there is also a symmetric version of the B-splines. For n ∈ N define

Bn(x) := T−n
2
Nn(x) = Nn

(
x+

n

2

)
. (3.7)

The functionsBn are called symmetric B-splines since they are supported on an interval
that is symmetric around zero. In the same way that the cardinal B-splines Nn are
defined by (3.1) and (3.2), the symmetric B-splines Bn can be defined recursively by

B1(x) := χ[−1/2,1/2](x), Bn+1(x) := Bn ∗B1(x), n ∈ N. (3.8)

Thus, we get the result

Bn+1(x) =

∫ 1
2

− 1
2

Bn(x− t).

Since the symmetric B-splines Bn(x) are simply translations of the B-splines Nn(x),
several properties of Bn(x) are direct consequences of the results for Nn(x). Some
properties for Bn(x) are given in Corollary 3.9.
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Corollary 3.3. For n ∈ N, the symmetric B-spline Bn has the following properties:

(i) For n ≥ 2, ∑
k∈Z

Bn(x− k) = 1, ∀x ∈ R. (3.9)

For n = 1 the formula holds for x ∈ R, except those that can be written in the
form x = m+ 1

2
, m ∈ Z.

(ii)

B̂n(γ) =

(
eπiγ − e−πiγ

2πiγ

)n
=

(
sin(πγ)

πγ

)n
(3.10)

Proof. (i): It is trivial that (i) still holds for Bn(x) and n ≥ 2. The translation of
Nn(x) is equivalent to using (iii) from (3.1) with x + n

2
and thus the result is still

correct since it holds for all x ∈ R. Similarly, for n = 1 the result also still holds for
a.e. x ∈ R. However, the exceptions have also been translated so the equality does
not hold for any x = m+ 1

2
, m ∈ Z.

(ii): Here we use the fact that T̂af(γ) = E−af̂(γ). This gives

B̂n(γ) = ̂T−n
2
Nn(x)(γ) = e−2πi(−

n
2 )γN̂n(γ)

= enπiγ
(

1− e−2πiγ

2πiγ

)n
=

(
eπiγ

(
1− e−2πiγ

2πiγ

))n
=

(
eπiγ − e−πiγ

2πiγ

)n
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4 Gabor Frames

In Section 2 we considered general frames in abstract Hilbert spaces. We now go into
the more specific case of Gabor systems in the space L2 (R). Some results here are
stated without proof, they are from [1, Chapter 9].

First, let us recall the translation and modulation operators on L2 (R).

Translation by a ∈ R, Ta : L2 (R)→ L2 (R) , (Taf)(x) = f(x− a),

Modulation by b ∈ R, Eb : L2 (R)→ L2 (R) , (Ebf)(x) = e2πibxf(x).

Gabor systems are built using the translation and modulation operators. One can
either look at an integral representation where all possible translations and modula-
tions are considered or restrict the operations to a lattice in phase space. Here the
focus will be on the latter case, in particular, we look at systems with translations and
modulations on a rectangular lattice {(na,mb)}m,n∈Z. We now give the definition of a
Gabor system.

Definition 4.1. Let Eb and Ta be the modulation and translation operators on L2 (R)
and let g be some function in L2 (R). Then for a, b > 0 the collection of functions

G(g, a, b) := {EmbTnag}m,n∈Z (4.1)

is called a Gabor system.

The function g ∈ L2(R) that is used to generate the Gabor system is called the
generator function or the window function. Using Definition 4.1 a Gabor frame for
L2 (R) is a frame of the form (4.1) where a, b > 0 are given parameters and g ∈ L2 (R)
is a given function.

One of the fundamental problems within Gabor analysis is for which parameters
(a, b) ∈ R2

+ the Gabor system G(g, a, b) is a frame. For a Gabor system G(g, a, b), the
frame set F(g) is exactly the set of parameters (a, b) that make the system a frame.
So to state it formally, the frame set for a function g is

F(g) = {(a, b) ∈ R2
+ | G(g, a, b) is a frame}.

Frame sets can be different depending on the generator function g. In Section 5 we
will look at the frame set for Gabor systems with B-spline generators. However, in
this section we will focus on results that hold for Gabor systems with an arbitrary
generator g ∈ L2(R).

Theorem 4.2 gives some results about the frame set that hold for any g ∈ L2(R).
Other results in this section will help us determine whether a Gabor system is a frame
for a given set of parameters.

Theorem 4.2. Let g be a function in L2(R) and a, b > 0 be given. Then the following
holds:

(i) If ab > 1, then G(g, a, b) cannot be a frame for L2(R).

(ii) If G(g, a, b) is a frame then

ab = 1⇔ G(g, a, b) is a Riesz basis. (4.2)
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By Theorem 4.2 we can focus the investigation of the frame set F(g) of any gener-
ator g ∈ L2(R) on values of a and b where ab ≤ 1. This area is represented in Figure 2.
If we are on the hyperbola ab = 1, then the frame property implies that the Gabor
system is also a Riesz basis.

a

b

1 2 3

1

2

3

Figure 2: The gray area represents the possible frame set for a function g ∈ L2(R).

Now we will look at various methods to determine whether the Gabor system
G(g, a, b) is a frame for a given generator function g ∈ L2(R) and given parameters
(a, b) ∈ R2

+. The Zak transform which is given in Definition 4.3 is one tool we can use
to determine this.

Definition 4.3. Let f be a function in L2(R). Then the Zak transform Zλf of f is a
function of two real variables, defined as

(Zλf) (t, ν) =
√
λ
∑
k∈Z

f (λ(t− k)) e2πikν , t, ν ∈ R. (4.3)

For f ∈ W (R), the Zak transform is defined pointwise and is bounded on R2. Here
W (R) denotes the Wiener space defined by:

W (R) = {f ∈ L∞(R) | ‖f‖W <∞},
where

‖f‖W =
∑
k∈N

ess sup
x∈[0,1]

|Nn(x+ k)|.

If f ∈ W (R) ∪ C0(R), then, by [3, Lemma 8.2.1(c)], the Zak transform Zλf is also
continuous. For general functions in L2(R) we have to carefully consider how the
definition of the Zak transform is interpreted. It can be shown [1, Lemma 9.7.1], that
the series defining Zλf converges in L2([0, 1[2) for all f ∈ L2(R).
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From the definition of the Zak transform we can easily see that is 1-periodic in ν
since

(Zλf) (t, ν + 1) =
√
λ
∑
k∈Z

f (λ(t− k)) e2πik(ν+1)

=
√
λ
∑
k∈Z

f (λ(t− k)) ei(2πkν+2πk)

=
√
λ
∑
k∈Z

f (λ(t− k)) e2πikν

= (Zλf) (t, ν).

The final equality comes from the 2π-periodicity of the complex exponential. Further-
more, the Zak tranform is quasi-periodic in t since

(Zλf) (t+ 1, ν) =
√
λ
∑
k∈Z

f (λ(t+ 1− k)) e2πikν

=
√
λ
∑
`∈Z

f (λ(t− `)) e2πi(`+1)ν

=
√
λ
∑
`∈Z

f (λ(t− `)) e2πi`νe2πiν

= e2πiν (Zλf) (t, ν).

We recall that the absolute value of the complex exponential with a purely imaginary
exponent is 1. Hence, if we are only interested in the absolute value of the Zak
transform then it will be sufficient to consider the Zak transform for (t, ν) ∈ [0, 1] ×
[0, 1]. In any case it will be easy to compute the Zak transform for any point (t, ν) ∈ R2

+

when you already know its values for (t, ν) ∈ [0, 1]× [0, 1].
In Proposition 4.4 we look at some special properties when we look at parameters

a, b such that ab = 1. This type of sampling is called critical sampling. The critical
sampling gives the opportunity of getting Riesz bases.

Proposition 4.4. Let g ∈ L2(R) and a, b > 0 with ab = 1 be given. Then the following
holds:

(i) G(g, a, b) is complete in L2(R) if and only if Zag 6= 0, a.e.

(ii) G(g, a, b) is a Bessel sequence with bound B if and only if |Zag|2 ≤ B, a.e.

(iii) G(g, a, b) is a frame for L2(R) with bounds A,B if and only if
A ≤ |Zag|2 ≤ B, a.e.

(iv) G(g, a, b) is an orthonormal basis for L2(R) if and only if |Zag|2 = 1, a.e.

As we are interested in the frame property for Gabor systems, we will mostly be
using the characterization in (iii). Notice that since we assume ab = 1 in Proposition
4.4, it follows from (ii) in Theorem 4.2 that being a frame is equivalent to being a
Riesz basis.

18



The Zak transform is not only useful in the case ab = 1. For this alternative appli-
cation we need to assume that the Gabor system G(g, a, b) is rationally oversampled,
which means that

ab ∈ Q, ab =
p

q
gcd(p, q) = 1.

Since we have to have ab ≤ 1 we know that we must have 1 ≤ p ≤ q.
For a rationally oversampled Gabor system, the so-called Zibulski-Zeevi matrix is

a p× q matrix defined by

Φg(t, ν) = p−
1
2

(
(Z 1

b
g)(t− `p

q
, ν +

k

p
)

)
k=0,...,p−1;`=0,...,q−1

, a.e. t, ν ∈ R.

In the Zebulski-Zeevi matrix we have turned the infinite dimensional Gabor system
G(g, a, b) into a finite dimensional vector system. We can use this to determine the
frame properties of the infinite dimensional system.

Theorem 4.5. Let G(g, a, b) be a rationally oversampled Gabor system and let A,B >
0 be given. Then G(g, a, b) is a Gabor frame if and only if

AI ≤ Φg(t, ν) (Φg(t, ν))∗ ≤ BI, a.e. (t, ν) ∈ [0, 1]2. (4.4)

The finite system will be of dimension p and we wish to determine if the q columns
of the Zibulski-Zeevi matrix constitute a frame for Cp. We can determine this by
checking whether (4.4) holds for some A,B > 0. If we assume that the singular values
are given as σ1 ≥ σ2 ≥ · · · ≥ σp then this is equivalent to verifying that σp ≥

√
A and

σ1 ≤
√
B for a.e. (t, ν) ∈ [0, 1]2.

Theorem 4.5 looks simple, but it is not always easy to determine the singular values
for almost every pair (t, ν) ∈ [0, 1] × [0, 1

p
]. In particular, we will use this method in

Subsection 5.6 to investigate the frame properties of a Gabor system numerically by
checking (4.4) on a grid of (t, ν) values in [0, 1]2.

The next result shows that the frame set is invariant under translation of the
generator function.

Lemma 4.6. Let r ∈ R and let a, b > 0, g ∈ L2(R), A,B > 0. Then

G(g, a, b) is a frame with frame bounds A,B

if and only if
G(Trg, a, b) is a frame with frame bounds A,B.

Proof. Assume that G(g, a, b) is a frame. Then there exists A,B > 0 such that

A‖f‖2 ≤
∑
n,m∈Z

|〈f, EmbTnag〉|2 ≤ B‖f‖2

for all f ∈ L2(R). Consider the frame inequalities for Trf . Then, as ‖Trf‖ = ‖f‖, we
have:

A‖f‖2 ≤
∑
n,m∈Z

|〈T−rf, EmbTnag〉|2 ≤ B‖f‖2.
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Since (T−r)
∗ = Tr, we can move the translation operator in the inner product by

changing the sign in front of r, and we get

A‖f‖2 ≤
∑
n,m∈Z

|〈f, TrEmbTnag〉|2 ≤ B‖f‖2.

Then we apply the relation TrEmb = e−2πimbrEmbTr along with the fact that two
translation operators commute with each other. That way we get

A‖f‖2 ≤
∑
n,m∈Z

|〈f, e−2πimbrEmbTna(Trg)〉|2 ≤ B‖f‖2.

Since e−2πimbr is a constant, we can take it out of the inner product. Thus we obtain

A‖f‖2 ≤
∑
n,m∈Z

|e−2πimbr|2|〈f, EmbTna(Trg)〉|2 ≤ B‖f‖2.

Finally, since |e−2πimbr| = 1 we get

A‖f‖2 ≤
∑
n,m∈Z

|〈f, EmbTnaTrg〉|2 ≤ B‖f‖2.

This proves that G(Trg, a, b) is a frame. To prove the other direction one could choose
f ′ = Trf and then do similar calculations.

This shows that if G(g, a, b) is a frame, then translating the generator function g
will neither affect the frame property nor the frame bounds. This is interesting when
it comes to the B-splines as any results proved for the symmetric B-splines Bn will
also hold for the cardinal B-splines Nn and vice versa. Thus if it is simpler to prove
a result for either of the B-spline types, then we can prove it for that B-spline, and it
will automatically hold for the other.

For a Gabor system G(g, a, b) we consider translations of g along the lattice aZ. If
G(g, a, b) is a frame then one may wonder what happens with the frame properties if
we consider translations along a finer lattice for which aZ is a sublattice.

Lemma 4.7. Let g ∈ L2(R). If G(g, a, b) is a frame with frame bounds A and B, then
G(g, a

k
, b) with k ∈ N is also a frame with bounds kA and kB.

Proof. Let k = 2. Assume that G(g, 2a, b) is a frame with frame bounds A and B.
Then

A‖f‖2 ≤
∑
n,m∈Z

|〈f, EmbTn2ag〉|2 ≤ B‖f‖2. (4.5)

By translating f with one and remembering that ‖T−1f‖ = ‖f‖, we obtain the equation

A‖f‖2 ≤
∑
n,m∈Z

|〈T−af, EmbTn2ag〉|2 ≤ B‖f‖2.

Since (T−a)
∗ = Ta, we get

A‖f‖2 ≤
∑
n,m∈Z

|〈f, TaEmbTn2ag〉|2 ≤ B‖f‖2.
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We apply the relation TaEmb = e−2πimbaEmbTa to obtain

A‖f‖2 ≤
∑
n,m∈Z

|e−2πimba||〈f, EmbTaTn2ag〉|2 ≤ B‖f‖2.

Collecting the two translations and applying |e−2πimba| = 1 we get

A‖f‖2 ≤
∑
n,m∈Z

|〈f, EmbT(2n+1)ag〉|2 ≤ B‖f‖2. (4.6)

By adding the two inequalities (4.5) and (4.6), we get

2A‖f‖2 ≤
∑
n,m∈Z

|〈f, EmbTnag〉|2 ≤ 2B‖f‖2.

Hence we see that G(g, 2a
2
, b) = G(g, a, b) is a frame with frame bounds 2A and 2B.

This gives the proof for the case where k = 2. For k > 2 the method is similar.
We start with the frame inequality

A‖f‖2 ≤
∑
n,m∈Z

|〈f, EmbTn2ag〉|2 ≤ B‖f‖2.

This can then be translated by 1, 2, . . . , k − 1 so we obtain k inequalities which when
added gives the frame inequality for G(g, a, b).

Even if A,B > 0 are optimal frame bounds for G(g, a, b), we cannot guarantee that
kA and kB are optimal frame bounds for G(g, a

k
, b).
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5 The frame set of B-splines

So far we have studied results about frame sets F(g) for arbitrary generators g ∈ L2(R)
and considered methods to determine whether a given Gabor system is a frame. In this
section we explore the frame set F(BN) for the B-splines. We will both give results
that are already known, prove some new results and look at numerical results.

5.1 Known non-frame areas

We start with some negative results, meaning areas where the system G(g, a, b) is not
a frame. A simple result of this kind for the B-splines BN given in Proposition 5.1.

Proposition 5.1. G(BN , a, b) is not a frame if a > N .

Proof. Since supp BN =
[
−N

2
, N

2

]
a translation parameter a > N would mean that

union of the supports of the translates TnaBN , n ∈ Z does not cover the entire real
line. Hence, the system can not be complete in L2(R) and is not a frame.

As a concrete example of a function not in the span of G(BN , a, b) where a > N
take f = χ[N

2
,a
2
] ∈ L2(R). For this function we have

〈f, EmbTnaBN〉 =

∫ ∞
−∞

f(x)EmbTnaBN(x)dx = 0, ∀n,m ∈ Z,

since the support for the functions do not overlap. Thus the lower frame bound will
be violated and G(BN , a, b) where a > N is not be a frame.

For the next part we need a general result for Gabor frames.

Proposition 5.2. Let g ∈ L2(R) and a, b > 0 be given. Assume that G(g, a, b) is a
frame with frame bounds A,B, then

bA ≤
∑
n∈Z

|g(x− na)|2 ≤ bB, a.e. x ∈ R, (5.1)

and
aA ≤

∑
n∈Z

|ĝ(γ − nb)|2 ≤ aB, a.e. γ ∈ R. (5.2)

The result in Corollary 5.3 has previously had more complicated proofs. However,
using (5.2) from Proposition 5.2, a very simple proof is possible. The proof stated here
is from [7].

Corollary 5.3. G(BN , a, b) is not a frame when N > 1 and b = 2, 3, 4, . . . .

Proof. Let b ∈ N \ {1}, n ∈ Z, and γ = 1. Then using (3.10) we get

B̂N(1− nb) =

(
sin (π (1− nb))
π (1− nb)

)N
= 0.

So the lower bound in (5.2) is violated.

One might wonder whether the method used to prove Corollary 5.3 could be used
in situations where b /∈ N \ {1}. However, this is not the case since the proof relies
crucially on hitting the zeros of the sine function that are located at x = nπ, n ∈ Z.
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5.2 Zak transform methods at critical sampling ab=1

In Definition 4.3 in Section 4 we introduced the Zak transform. In this section we will
use the Zak transform, and particularly the results given in Proposition 4.4 to show
known results about the B-splines BN and their associated Gabor systems G(BN , a, b)
on the hyperbola ab = 1.

We start by estimating the Zak transform of N1 and N2 in Matlab. The Matlab
scripts used for these calculations can be found in Appendix A.1. The numerical
calculations can be used to give intuition about the behaviour of the Gabor systems
before stating the formal results.

(a) a = 1
4 (b) a = 1

3

(c) a = 1
2 (d) a = 1

Figure 3: |ZaN1|2 for a = 1
4
, 1
3
, 1
2
, 1.

In Figure 3 we see |ZaN1|2 for four different values of a. In Figure 3d it appears
that for a = 1 the Zak transform of N1 is constantly 1, except for the lines where
t = 0 and t = 1. So we see that |Z1N1|2 = 1, a.e. and we have the situation (iv) from
Proposition 4.4, meaning that G(N1, 1, 1) is an orthonormal basis, and, in particular,
it is also a frame. For other values of a we get a function which seems to be constant
along lines ν = const ∈ [0, 1]. In Figures 3a-3c it appears that the lower bound in (iii)
is violated and thus we do not have a frame. The reason we have chosen values of a of
the form a = 1

n
, n ∈ N, is that they are the exact points for which the Zak transform

is constant along all lines where ν is constant. For 1
M+1

< ν < 1
M
, M ∈ N, the graph

of (ZaN1) (t0, ν) as a function of ν for a fixed t0 ∈ [0, 1
a
− [ 1

a
]] will look like the graph

of for
(
Z 1

M+1
N1

)
(t, ν), t ∈]0, 1[. Similarly, the graph of (ZaN1) (t0, ν) as a function of

ν for a fixed t0 ∈] 1
a
− [ 1

a
], 1] will look like the graphs of

(
Z 1

M
N1

)
(t, ν), t ∈]0, 1[.

We now consider at Figure 4 which shows the Zak transform of N2 for different
values of a. Since N2 has support on [0, 2], the Zak transform will have more non-zero
terms when a is decreased, and the transform will have an equal number of non-zero

23



terms for all t when a = 2
1
, 2
2
, 2
3
, . . . , that is, a = 2, 1, 2

3
, . . . .

For N2 it is not as easy to determine a pattern for the Zak transform. However,
from the Figures 4a-4d it appears that the Zak transforms of N2 violate the lower
bound of (iii) in Proposition 4.4. Hence, G(N2, a, b) is not a frame for ab = 1 when
a = 1

2
, 2
3
, 1, 2.

(a) a = 1
2 (b) a = 2

3

(c) a = 1 (d) a = 2

Figure 4: |ZaN2|2 for a = 1
2
, 2
3
, 1, 2.

To examine the number of zeros in the Zak transform, Figure 5 shows the Zak
transform of N2 for three different values of a and fixed values of ν ∈ [0, 1]. According
to [8] the Zak transform of cardinal B-splines for a = 1 with n ≥ 2 will have exactly
one zero in [0, 1[2, namely at (1

2
, 1
2
) for even n and (0, 1

2
) for odd n. From Figure 5c

we can see that this is the case. Figure 5 also shows the Zak transform for a = 1
2

and
a = 2

3
to see what happens in those cases. We see that zeros still occur on the line

ν = 1
2
. For a = 2

3
we still only have one zero on [0, 1[2, but for a = 1

2
we have an

infinite number of zeros along the line ν = 1
2
.

In Figure 3 and Figure 4 we got an indication about the frame properties of the
Gabor systems G(N1, a, b) and G(N2, a, b) for ab = 1. These findings can be proved
mathematically using properties of the Zak transform, and they can also be extended
to B-splines of arbitrary order. The results are summed up in the following theorem.

Theorem 5.4 (Critical sampling). Let ab = 1 and N ∈ N. Then G(BN , a, b) is not a
frame unless N = 1 and a = b = 1.

Proof. Assume that ab = 1. We prove the result for the first B-spline using the cardinal
B-spline N1 since this is simpler. By Lemma 4.6 this implies that the result also holds
for the symmetric B-spline B1. Consider the cardinal the B-spline N1 = χ[0,1]. For
a > 1 the conclusion follows from Proposition 5.1.
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(a) a = 1
2 (b) a = 2

3 (c) a = 1

Figure 5: The Zak transform of N2 for a = 1
2
, 2
3
, 1 calculated for different values of ν.

Now let for a = 1, then the Zak transform is given by

(Z1N1) (t, ν) =
∑
k∈Z

χ[0,1] (t− k) e2πikν .

For t ∈]0, 1[ the indicator function will only be non-zero for one k, namely k = 0.
Hence we only get one term and the Zak transform becomes

(Z1N1) (t, ν) = e2πi0ν = 1.

For t = 0 we get two terms and the Zak transform becomes

(Z1N1) (t, ν) = e2πi0ν + e2πi1ν = 1 + e2πiν .

This function is continuous in ν and has a zero at ν = 1
2
. However, since the line t = 0

is a set of measure zero, we still have

|Z1N1|2 = 1, a.e.

Thus, by (iv) in Proposition 4.4, N1 is an orthonormal basis and thus a frame for
a = b = 1.

Now let a < 1 while still consideringN1. Then we have to look at the Zak transform:

(ZaN1) (t, ν) =
√
a
∑
k∈Z

χ[0,1] (a(t− k)) e2πikν .

The functions χ[0,1] (a(t− k)) will be translated by the parameter k so the support is
translated by 1 when k is increased, while the parameter a scales the functions so each
function has support, and thus is 1, on t ∈ [k, k + 1

a
[. First of all, for t ∈ [0, 1[ this

means that we will only get contributions for k = 0,−1,−2,−3, ..., since the functions
translated with a positive k will only have support outside the interval [0, 1[. This also
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explains why there is an equal number of non-zero terms for all t ∈]0, 1[ and ν = [0, 1]
when a = 1

M
, M ∈ N, as this gives support on t ∈ [k, k + 1

( 1
N )

[= [k, k + N [. For

1
M+1

< a < 1
M
, M ∈ N, we get M + 1 terms when t ∈ [0, 1

a
− [ 1

a
]] and M terms for

t ∈ [ 1
a
− [ 1

a
], 1[. The case with M + 1 terms will be

(ZaN1) (t, ν) =
√
a

M∑
k=0

e2πikν , t ∈ [0,
1

a
−
[

1

a

]
[, ν ∈ [0, 1]

and the case with M terms will be

(ZaN1) (t, ν) =
√
a

M−1∑
k=0

e2πikν , t ∈ [
1

a
−
[

1

a

]
, 1[, ν ∈ [0, 1].

Both these Zak transforms are continuous in ν since each of the exponential func-
tions are continuous. Hence, the Zak transform is piecewise continuous on (t, ν) ∈[
0, 1

a
− [ 1

a
]
]
× [0, 1] and (t, ν) ∈

]
1
a
− [ 1

a
], 1
]
× [0, 1]. Thus, if we can show that the

function has a zero on either of those rectangles, then the lower bound in (iii) in
Proposition 4.4 will be violated.

We know that in general
m−1∑
k=0

e2πi
k
m = 0.

Hence, for t ∈
[
0, 1

a
− [ 1

a
]
]

and ν = 1
M+1

we have

M∑
k=0

e2πikν =
M∑
k=0

e2πi
k

M+1 = 0,

Thus we have shown that the Zak transform has zeros on (t, ν) ∈
[
0, 1

a
− [ 1

a
]
]
× [0, 1]

and since it is continuous that means that the lower bound in (iii) in Proposition 4.4
will be violated. Hence, we conclude that N1 is not a frame for ab = 1 and a < 1.
It is enough to show that the Zak transform has these zeros, but the argument works
similarly for t ∈

]
1
a
− [ 1

a
]
]

and ν = 1
M

since we have

M−1∑
k=0

e2πikν =
M−1∑
k=0

e2πi
k
M = 0.

Now we let N ≥ 2 and we consider the symmetric B-splines BN . It is easily seen
that the B-splines BN lie in the space W (R) ∩ C0(R) for N ≥ 2. Therefore the Zak
transform ZaBN will be continuous on R2. It then follows from [3, Lemma 8.4.2] that
ZaBN has a zero. Since the Zak transform is continuous, this means that the lower
bound in (iii) in Proposition 4.4 will be violated. Hence BN is not a frame for N ≥ 2
and ab = 1.

To summarise our findings so far, we have proved that for N ≥ 2,

F(BN) ⊂ {(a, b) ∈ R2
+|ab < 1, a < N, b 6= 2, 3, . . . }.

As no other non-frame (a, b)-vales for the B-splines of order N ≥ 2 are known,
Gröchenig conjectured the following in [4]:
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Conjecture 1 (Gröchenig). Let N ≥ 2. Then

F(BN) = {(a, b) ∈ R2
+|ab < 1, a < N, b 6= 2, 3, . . . }.

We will investigate this conjecture further in the following subsections. In partic-
ular, we will show in Subsection 5.7 that the conjecture is false.

5.3 The painless case

We will now consider some of the cases, where the Gabor systems generated by the
B-splines are in fact frames. We will actually show the results for a more general class
of compactly supported generators and obtain the results for the B-splines as a special
case.

Theorem 5.5. Suppose that g ∈ L2(R) is supported on [0, N ]. If a ≤ N and b ≤ 1
N

,
then the frame operator S is given by the multiplication operator

Sf(x) =

(
1

b

∑
k∈Z

|g(x− ak)|2
)
f(x). (5.3)

Thus, G(g, a, b) is a frame with frame bounds A and B if and only if

bA ≤
∑
k∈Z

|g(x− ak)|2 ≤ bB, a.e. (5.4)

For continuous generators g with support on an interval I of length |I| <∞, we can
show that (5.4) will be satisfied for some A,B > 0 if g is positive on the interior of I.
The next result is stated without proof in [1]. We give a proof here for completeness.

Theorem 5.6. Suppose that g ∈ L2(R) is a continuous function with support on an
interval I of length |I| <∞ and that g(x) > 0 on the interior of I. Then G(g, a, b) is
a frame for all (a, b) ∈]0, |I|[×]0, 1

|I| ]. If a = |I| and b ∈]0, 1
|I| ] then G(g, a, b) is not a

frame.

Proof. Let g ∈ L2(R) be a continuous function with support on an interval I = [αI , βI ]
of length |I| < ∞ and assume that g(x) > 0 on the interior of I. Assume that
(a, b) ∈]0, |I|[×]0, 1

|I| ]. Then by Theorem 5.5, the Gabor system G(g, a, b) is a frame

if the function 1
b

∑
k∈Z |g(x − ak)|2 has finite lower and upper bounds A,B > 0. It

can easily be seen that an upper bound will be satisfied since g only has support on a
bounded interval, and thus the number of non-zero terms in the sum will be finite.

Now consider g(x0 − ak) for a fixed x0 ∈ R. Since a < |I| there exists at least one
k0 ∈ Z such that x0 + ak0 lies in some closed bounded interval J which is a subset of
the support I. Since g is continuous, we know that the image of a closed and bounded
subset under g will also be mapped into a closed and bounded subset. Thus we know
that g(x) ∈ [α, β] for x ∈ J and some α, β ∈ C. Furthermore, since g(x) > 0 on the
interior of I we know that α, β > 0. Thus, we know that at least one of the terms
in the sum

∑
k∈Z |g(x− ak)|2 will be positive. Hence, the sum will be strictly greater

than zero giving us an optimal lower bound A > 0, meaning that G(g, a, b) is a frame.
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Now let a = |I| and let x = αI , then x+a = βI . Since g is continuous and g(x) = 0
for x /∈ [αI , βI ] we know that g(αI) = g(βI) = 0. Furthermore, all other elements of
the sum will also be equal to zero since they lie outside the support of g. Thus,∑

k∈Z |g(x − ak)|2 = 0. Since the sum is continuous in x, this means that the lower
bound in (5.4) will be violated. Hence, G(g, |I|, b) is not a frame for b ∈]0, 1

|I| ].

Of course the B-splines are a special case of the generators in Theorem 5.6.

Corollary 5.7. For N ≥ 2 the B-splines BN generate Gabor frames for all (a, b) ∈
]0, N [×]0, 1

N
]. And for N ≥ 2 the B-splines BN do not generate Gabor frames for

a = N and b ∈ ×]0, 1
N

].

Since B1 is not continuous, it will have to be treated separately. However, its frame
properties for (a, b) ∈]0, 1]×]0, 1] can also be proved using Theorem 5.5.

Theorem 5.8. B1 generates Gabor frames for all (a, b) ∈]0, 1]×]0, 1].

Proof. Let (a, b) ∈]0, 1]×]0, 1]. Then by Theorem 5.5, the Gabor system G(B1, a, b) is
a frame if the sum

∑
k∈Z |B1(x − ak)|2 has lower and upper bounds A,B > 0. Once

again it is clear that the upper bound will be satisfied since there will only be a finite
number of non-zero terms in the sum. However, since B1 is 1 on all of its support,
there will always be at least one term in the sum. Hence, the lower bound is satisfied
and G(B1, a, b) is a frame.

Note that for B-splines of order N ≥ 2, the Gabor system G(BN , a, b) is not a
frame for a = N . However, the Gabor system G(B1, a, b) is also a frame for a = 1.

With the specific expression for the frame operator given in Theorem 5.5, we can
examine the optimal frame bounds for the B-splines for (a, b) ∈]0, N [×]0, 1

N
]. Let

G(x) =
∑
k∈Z

|g(x− ak)|2.

Then G(x) is periodic with period a since

G(x+ a) =
∑
k∈Z

|g(x+ a− ak)|2 =
∑
k∈Z

|g(x− a(k − 1))|2 =
∑
`∈Z

|g(x− a`)|2 = G(x),

Therefore we only have to calculate G(x) for x ∈ [0, a]. This will be done for B1 and
B2. In both cases we find G(x) for some points in the interval [0, a]. By finding the
maximum and minimum of these values we determine Ab and Bb. Since b is present on
both, sides we can find the ratio between A and B as Ab

Bb
= A

B
. This also means that the

ratio is independent of b, as long as we stay within the rectangle (a, b) ∈]0, n[×]0, 1
n
].

Figure 6 shows the ratio A
B

for B1 as a function of a. In this case we get a staircase
pattern. This makes sense since we once again add another term to the sum as a each
time we, as a increases, get to one of the points a = 1

2
, 1
3
, 1
4
, . . . ; each of these terms

will be equal to one as g = χ[0,1]. In fact, in all the cases where we hit those specific
values of a, we will have G(x) = 1

a
in all points except x = ma, m ∈ Z. We also see

that the ratio decreases as a → N = 1. However, by using the Zak transform of B1
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Figure 6: The relation A
B

of the frame bounds for B1 in the case where a ≤ N = 1 and
b ≤ 1

N
= 1.

Figure 7: The relation A
B

of the frame bounds for B2 in the case where a ≤ N = 2 and
b < 1

N
= 1

2
.

in Figure 3, we saw that G(B1, 1, 1) is a frame and therefore the ratio does not go to
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(a) (b)

(c) (d)

Figure 8: Plots of the ratio A
B

for the B-Splines B3, B4, B5 and B6 in the case where
a ≤ N and b < 1

N
.

zero.
In Figure 7 we see the same ratio A

B
for the B-spline of order 2. Here we see that

the ratio starts close to 1 and then the ratio decreases as a → N = 2. This seems
reasonable considering the fact that we saw from the Zak transform of B2 that it was
not a frame for a = 2 and b = 1

2
. To get an idea of the convergence of the ratio A

B
we

have plotted the line C(a − N)2 for C = 1
2
. This lies right on top of the graph of A

B

for a > 1, so this seems to be the rate that this converges with.
We have also plotted the ratio A

B
for other B-Splines in Figure 8. Here we can

see that the ratio generally appears to stay close to one for 0 < a < 1. After that it
declines in at what looks like a polynomial rate that appears to get higher order as N
is increased, and the ratio goes to zero as a→ N .

5.4 The dual frame method: Known results

Until now we have proved results for B-splines of any order N ∈ N. However, in the
remainder of this thesis we will focus on the case of BN with N ≥ 2. This makes sense
as they are different types of functions. For example we have BN ∈ W (R)∪C0(R) for
N ≥ 2, whereas B1 /∈ W (R) ∪ C0(R). Furthermore, the problem of finding the frame
set for B1 has already been solved in [2].

In this subsection we focus on the area of the (a, b)-plane where N
2
≤ a < N . The

result for the B-splines in the part of this area where b ≤ 1
N

was found in Corollary
5.7. However, for certain continuous generators g with support on a symmetric interval
around 0, we can also prove the frame properties on the part of that area where b > 1

N
.
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The general result for continuous generators g with support on a symmetric interval
around zero is given in Theorem 5.9. We apply that theorem to functions that are
positive on the interior of their support to obtain Corollary 5.10. The results are given
for functions with support on a symmetric interval around zero since this makes the
proofs simpler. However, we recall that by Lemma 4.6 these results will also hold for
generators supported on other bounded intervals as long as the generator satisfies the
rest of the conditions.

First we need to define the functions of interest. Let the set Vα be defined as

Vα = {f ∈ C(R) | supp f = [−α, α], f has a finite number of zeros on [−α, α]}

From [6] we have the following characterisation of Gabor frames with generators in
Vα.

Theorem 5.9 ([6],Theorem 2.1). Let g ∈ Vα for some α > 0 and assume that α ≤
a < 2α and ab ∈

[
M−1
M

, M
M+1

[
for some M ∈ N \ {1}. Let κ ∈ {0, 1, . . . ,M − 1} be the

largest integer for which (1− ab)κ ≤ bα. Then G(g, a, b) is a Gabor frame if and only
if the following conditions are satisfied:

(i) |g(x)|+ |g(x+ a)| > 0, x ∈ [−a, 0];

(ii) If κ 6= 0 and if there exists n+ ∈ {1, 2, . . . , κ} and y+ ∈]a − α, α − (1 − ab)n+

b
]

such that g(y+) = 0 and limy→y+ |Rn+(y)| =∞, then

g(y+ + (1− ab)n+

b
− a) 6= 0;

(iii) If κ 6= 0 and if there exists n− ∈ {1, 2, . . . , κ} and y− ∈ [−α+ (1− ab)n−
b
, α− a[

such that g(y−) = 0 and limy→y− |Ln−(y)| =∞, then

g(y− − (1− ab)n−
b

+ a) 6= 0;

(iv) For y+, y−, n+, n− as in (ii) and (iii),

y+ + (1− ab)n+

b
6= y− − (1− ab)n−

b
+ a.

If we further restrict the function to be positive on ] − α, α[, then we get the
following result.

Corollary 5.10. Let g ∈ Vα for some α > 0 and assume that g(x) > 0 for x ∈]−α, α[.
Furthermore, assume that α ≤ a < 2α. Then G(g, a, b) is a Gabor frame. In particular,
G(BN , a, b) is a frame for N

2
≤ a < N and 0 < b < 1

a
for each N ≥ 2.

Proof. Let g ∈ Vα for some α > 0 and assume that g(x) > 0 for x ∈] − α, α[. Then
as the function does not have any zeros inside the support we do not have to consider
any of the requirements (ii)− (iv) of Theorem 5.9.
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We state Theorem 5.9 and Corollary 5.10 without proof as the focus here is on
properties of the B-splines. Therefore we will end up giving a proof in the specific case
where g = BN rather than proving the general case. The method used to prove these
results is based on finding a function h ∈ L2(R) which generates a Bessel sequence
G(h, a, b) that is a dual frame to G(g, a, b). Hence we need a result that characterises
when two functions generate dual frames.

Theorem 5.11. Let g, h ∈ L2(R) and a, b > 0 be given. Let G(g, a, b) and G(h, a, b)
be two Bessel sequences. Then they form dual frames if and only if, for all n ∈ Z,∑

k∈Z

g(x− n/b− ka)h(x− ka) = bδn,0, a.e. x ∈ [0, a]. (5.5)

Note that in order to use this theorem we also need to prove that G(h, a, b) defines
a Bessel sequence. However, in most cases we will define h in a way such that it is
bounded and compactly supported. In this case G(h, a, b) is indeed a Bessel sequence
by [1, Corollary 9.1.6].

First we will give an example where the frame property is proven for B2 with fixed
values a, b, where 1 ≤ a < 2 and b > 1

2
. We prove that G(B2, a, b) is a frame by

showing that there exists a dual frame. The structure of the example is inspired by
that of [6, Example 2.2]. The example is given in order to give the intuition of the
way that duals can be constructed before giving the full proof.

Example 5.12. Let g(x) = B2(x). Since B2 ∈ V1, we have α = 1. B2(x) > 0 for
x ∈]−1, 1[. Thus the conditions for the generator in Corollary 5.10 are satisfied and we
know that G(B2, a, b) will be a frame for any α ≤ a < 2α. However, we will construct
a dual generator which is also the way that the general result is proved. Choose a and
b such that α ≤ a < 2α, ab ≤ 1, and α ≤ 1

b
− a

2
. For the B-spline B2, the values a = 4

3

and b = 3
5

would be an example of this since α = 1 and 1
b
− a

2
= 5

3
− 2

3
= 1. Thus,

we have α ≤ 1
b
− a

2
. For this choice we have (1−ab)

b
=

(1− 4
5)

( 3
5)

= 1
3
. So κ = 3 is the

largest integer for which the inequality (1−ab)
b

κ ≤ α holds. Furthermore, we see that
ab = 4

5
∈
[
M−1
M

, M
M+1

[
for M = 5.

Then inspired by [6, Lemma 3.3] we set

h(x) = 0, x /∈ −

(
κ⋃
k=1

[
k

b
, ak + α]

)
∪ [−α, α] ∪

κ⋃
k=1

[
k

b
, ak + α]. (5.6)

This is done so (5.5) will hold for some values of x and n 6= 0.
Now we need to define h(x) on the set given in (5.6). We start by defining h on

[−α, α]. Since g(x) > 0 for x ∈]− α, α[ and a
2
< α we can obtain a bounded function

by setting

h(x) =

{
b

g(x)
, x ∈ [−a

2
, a
2
]

0, x ∈ [−α, α] \ [−a
2
, a
2
]

(5.7)

This way h and g satisfy (5.5) for n = 0.
Finally, we need to define h on the set

⋃κ
k=1[

k
b
, ak+α] and its symmetric counterpart

on the negative part of the axis. Due to the support of g we know that only some of
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the terms in (5.5) will be non-zero, and thus we only need to check the equations

g(x− n

b
)h(x) + g(x− n

b
+ a)h(x+ a) = bδn,0 for a.e. x ∈ [

n

b
− a, n

b
] (5.8)

for n = 0,±1, . . . ,±(M − 1). This gives the idea to define h on [1
b
, a+ α] by

h(x+ a) = −
g
(
x− 1

b

)
h(x)

g
(
x− 1

b
+ a
) , x ∈ [

1

b
− a, α].

However, g(x− 1
b
) has support on [1

b
−α, 1

b
+α] and h(x) has support on [−a

2
, a
2
]. Thus,

since we have chosen a and b such that α ≤ 1
b−a

2
, the two supports will not overlap as

α ≤ 1

b− a
2

⇔ a

2
≤ 1

b
− α

Thus we will have

h(x) = 0, x ∈
[

1

b
, a+ α

]
.

When we define h in a similar way for the other two intervals in
⋃κ
k=1[

k
b
, ak + α] as

well as the corresponding intervals on the negative axis, we get h(x) = 0 for x in these
intervals. Hence, the final definition of h(x) will be:

h(x) =

{
b

g(x)
, x ∈ [−a

2
, a
2
]

0, otherwise
(5.9)

Since h is bounded and compactly supported G(h, a, b) is a Bessel sequence and we
can apply Theorem 5.11. Now we need to show that this definition of h indeed satisfies
the equations (5.5). Since the infinite sum (5.5) is a-periodic in x, it is enough to show
that the equations hold for a.e. x in an interval of length a. Consider x ∈ [−a

2
, a
2
].

Then h(x−ka) = 0 for all k ∈ Z\{0}. Hence, we only have to look at one term in the
sum (5.5), namely the one where k = 0. Hence, the equations we will have to check
are

g
(
x− n

b

)
h(x) = bδn,0, a.e. x ∈ [−a

2
,
a

2
], n ∈ Z.

For n = 0 this is easily verified since the equation becomes

g(x)h(x) = b, a.e. x ∈ [−a
2
,
a

2
],

and we have defined h(x) = b
g(x)

exactly on the interval [−a
2
, a
2
]. We have already shown

that the support of the functions g(x− 1/b)h(x) and h(x) do not overlap. This shows
that

g

(
x− 1

b

)
h(x) = 0, a.e. x ∈ [−a

2
,
a

2
].

When n is increased functions g
(
x− n

b

)
are translated further away from h(x) and

thus the equation

g
(
x− n

b

)
h(x) = 0, a.e. x ∈ [−a

2
,
a

2
]
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−1 1

1

2

Figure 9: The two functions g = B2 (blue) and h (red) that generate dual frames when
g(x) = B2(x), a = 4

3
and b = 3

5
.

also holds for all n ∈ N. A similar argument also holds for the negative values n ∈ −N.
Thus, we have shown that the equations (5.5) are satisfied.

In Figure 9 we have plotted the function B2(x) along with the function h(x), de-
scribed in this example, that generates a dual frame to G(B2,

4
3
, 3
5
).

The example gave a very simple dual function. This particular dual will work for
any a and b that satisfy the inequalities

ab ≤ 1, α ≤ a < 2α, and α ≤ 1

b
− a

2
.

This holds as the specific values were not used when proving that the generators g and
h satisfied (5.5). However, if α � 1

b
− α, then the argument for h(x) becoming zero

on [1
b
, a + α] fails, and we have to construct the function h to be non-zero on more

intervals. Figure 10 shows the curve α ≤ 1
b
− a

2
where all points (a, b) below the curve

will have simple duals. When going above the curve more non-zero intervals will be
added to the dual h and thus its support will be wider.

The method here only shows us that G(BN , a, b) is a frame on this area of the
(a, b)-plane and does not give any direct frame bounds. However, it would be possible
to give estimates on the frame bounds based on the values of the generator function.

The general result for the B-splines on the area of the (a, b)-plane where N
2
≤ a < N

and 0 < b < 1
a

is given in Theorems 5.13 and 5.14. The theorems also specifies a dual
for a B-spline for any point in that area.
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1 2

1

2

Figure 10: The hyperbola ab = 1 (dashed) plotted with the curve 1 = 1
b
− a

2
(solid).

Theorem 5.13. Let N ≥ 2, N
2
≤ a < N , 0 < b < 1

a
and N

2
≤ 1

b
− a

2
. Then the Gabor

system G(BN , a, b) is a frame and

h(x) =

{
b

BN (x)
x ∈ [−a

2
, a
2
],

0 otherwise.

is a dual generator of BN(x).

Proof. Assume that N ≥ 2,N
2
≤ a < N , 0 < b < 1

a
and a

2
≤ 1

b
− N

2
. Define the function

h as

h(x) =

{
b

BN (x)
, x ∈ [−a

2
, a
2
]

0, otherwise

First of all the function h is well defined since BN(x) > 0 for x ∈ [−a
2
, a
2
]. Furthermore,

h is bounded and compactly supported. Thus, G(h, a, b) is a Bessel sequence and we
can apply Theorem 5.11. Now want to show that h and BN generate dual frames,
because then BN itself generates a frame. To show that h is a dual function we will
show that the equations (5.5) are satisfied for h(x) and g(x) = BN(x). Since the
support of h is on [−a

2
, a
2
], the functions h(x − ka) are equal to zero for x ∈ [−a

2
, a
2
]

and k 6= 0. Hence we only have to check that

h(x)BN(x− n

b
) = δ0,nb, x ∈ [−a

2
,
a

2
], n ∈ Z. (5.10)

For n = 0 we get

h(x)BN(x) =
b

BN(x)
BN(x) = b, x ∈ [−a

2
,
a

2
].

Thus (5.10) is satisfied for n = 0. Looking at the equation for n = 1 we get

h(x)BN(x− 1

b
) = 0, x ∈ [−a

2
,
a

2
]. (5.11)
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Looking at the functions individually we see that h(x) has support on [−a
2
, a
2
] while

BN(x− 1
b
) has support on [1

b
− N

2
, 1
b

+ N
2

]. Since a and b have been chosen such that
a
2
≤ 1

b
− N

2
, the support of the functions will not overlap and thus (5.11) holds. We

use a similar argument for n = −1 by multiplying with minus one on both sides of the
inequality to get N

2
− 1

b
≤ −a

2
. For higher values of |n| we are simply translating the

function BN further away from the support of h. Thus (5.10) is satisfied for all n ∈ Z.
This shows that G(BN , a, b) and G(h, a, b) generate dual frames. Particularly, it shows
that G(BN , a, b) is a frame.

The result in Theorem 5.13 only concerns part of the area of the (a, b)-plane where
N
2
≤ a < N and 0 < b < 1

a
. It is included because of the simple dual. However, the full

result for (a, b)-values satisfying N
2
≤ a < N and 0 < b < 1

a
is given in Theorem 5.14.

Theorem 5.14. Let N ≥ 2, N
2
≤ a < N , 0 < b < 1

a
and ab ∈ [M−1

M
, M
M+1

[. Let κ be

the largest integer such that (1− ab)κ ≤ N
2
b holds. Then the Gabor system G(BN , a, b)

is a frame and symmetric function h, defined on the positive axis as

h(x) =


b

BN (x)
x ∈ [0, a

2
],

−BN (x−n
b
−a)h(x−a)

BN (x−n
b
)

x ∈ [n
b
, N

2
+ na], n = 1, 2, . . . , κ,

0 x > otherwise.

Let h(x) = h(−x) for x < 0. Then h is a dual generator of BN(x).

Proof. Assume thatN ≥ 2, N
2
≤ a < N , 0 < b < 1

a
and ab ∈ [M−1

M
, M
M+1

[. Furthermore,
assume that h is defined as stated in the theorem. First of all it is guaranteed that
we will not divide by zero for x ∈ [0, a

2
] since BN(x) > 0 for x ∈ [−N

2
, N

2
] and

a
2
< N

2
. We also want to make sure that we do not divide by zero on any of the

other intervals. We know that BN(x) > 0 for x ∈ [−N
2
, N

2
]. In the denominator we

have the functions BN(x − n
b
) on x ∈ [n

b
, N

2
+ na]. So the arguments will be in the

interval x− n
b
∈ [0, N

2
+na− n

b
]. Since we know that suppBN = [−N

2
, N

2
], and we have

N
2

+ na− n
b
< N

2
+ na− na = N

2
, we know that we will not divide by zero.

We wish to prove that h is a dual generator of g = BN . Since h is bounded and
compactly supported, we know that G(h, a, b) is a Bessel sequence. Thus, we can use
Theorem 5.11 to prove that G(BN , a, b) by showing BN and h satisfy the equations
(5.5). This time we can simplify the equations somewhat because of the bounded
support of BN . In (5.5) we check the equations for x ∈ [0, a], but the sum is a-
periodic so we can actually check it on any interval of length a. In order to simplify
the equations we choose to look at the interval x ∈ [n

b
− a, n

b
]. We can then determine

which k ∈ N will make g(x− n
b
−ka) non-zero. We know that suppBN = [−N

2
, N

2
]. So

looking at the argument of g we wish to determine the k ∈ N for which the left end
point is within the support of g. The left end point is found by replacing x by n

b
− a

in the expression x− n
b
− ka. That way we get the equation(n
b
− a
)
− n

b
− ka = −a (k + 1) <

N

2
. (5.12)

Similarly, we want the right end point to be in the support of g, and this gives the
following equation (n

b

)
− n

b
− ka = −ka > −N

2
. (5.13)
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We start by determining values of k that satisfy (5.12). Since we assume N
2
≤ a, we

have −a ≥ −N
2

. Thus we get

−a (k + 1) ≤ −N
2

(k + 1) <
N

2
, for k ≥ −1.

Similarly, we can determine the values of k that satisfy (5.13). To do this we use the
assumption that a < N , and thus −a > −N . This gives

−ka > −kN > −N
2
, for k ≤ 0.

Combining these results we see that for x ∈ [n
b
− a, n

b
] the function g(x − n

b
− ka) is

non-zero for −1 ≤ k ≤ 0. Hence we can simplify (5.5), and the equations we have to
check are

h(x)g(x− n

b
) + h(x+ a)g(x− n

b
+ a) = δn,0b, n ∈ Z. (5.14)

In (5.14) we still have to check an infinite number of equations. However, we can
also reduce this to a finite number. By definition supph ⊆ [−N

2
− κa, N

2
+ κa]. Using

the relations N
2
≤ a and κ ≤M − 1, we see that

N

2
+ κa ≤ a+ κa ≤ a+ (M − 1)a = aM.

Thus supph ⊆ [−aM, aM ].
Now we can determine how far we have to translate g before its support no longer

overlaps with the support of h. By comparing supph ⊆ [−aM, aM ] and supp g(x −
n
b
) = [n

b
− N

2
, n
b

+ N
2

] we can see that the two do not overlap when

n

b
− N

2
> aM.

This happens for n > M − 1, since this gives

n

b
− N

2
> (M − 1)a− N

2
≥ (M − 1)a− a = aM.

Since both functions are symmetric, this also means that the supports of h(x) and
g(x− n

b
) will not overlap when n < −(M − 1). Thus it is proved that we only need to

consider (5.14) for n = 0,±1,±2, . . . ,±(M − 1).
For n = 0 the equation (5.14) is satisfied since we have

h(x)g(x) + h(x+ a)g(x+ a) =
b

g(x)
g(x) + 0 · g(x+ a) = b, x ∈]− a

2
,
a

2
].

For n = 1, 2, . . . , κ, we separate the interval [n
b
−a, n

b
] into the two cases [n

b
−a, N

2
+

a(n− 1)] and ]N
2

+ a(n− 1), n
b
[. We start by looking at x ∈]N

2
+ a(n− 1), n

b
[. Then we

will have x+ a ∈]N
2

+ an, n
b

+ a[⊂]N
2

+ an, n+1
b

[. By definition of h this means that

h(x)g(x− n

b
) + h(x+ a)g(x− n

b
+ a) = 0 · g(x− n

b
) + 0 · g(x− n

b
+ a) = 0,
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for x ∈]N
2

+ a(n− 1), n
b
[ and n = 1, . . . , κ. Now we look at x ∈ [n

b
− a, N

2
+ a(n− 1)].

Here we have x+ a ∈ [n
b
, N

2
+ na]. Thus by definition of h we have

h(x)g(x− n

b
) +

(
−
g(x− n

b
)h(x)

g(x− n
b

+ a)

)
g(x− n

b
+ a)

= h(x)g(x− n

b
)− g(x− n

b
)h(x) = 0

for x + a ∈ [n
b
, N

2
+ na] and n = 1, . . . , κ. Hence we have shown that g and h satisfy

(5.14) for x ∈ [n
b
− a, n

b
] and n = 1, . . . , κ.

For n = κ, . . . , (M − 1), we have h(x) = h(x + a) = 0 for x ∈ [n
b
− a, n

b
]. We

can see this by looking at the values of h that are involved. We have x ∈ [n
b
− a, n

b
]

and x + a ∈ [n
b
, n
b

+ a]. By the definition of κ we have bN
2
< (κ + 1)(1 − ab), thus

aκ+ N
2
< (κ+1)

b
− a. Hence

([
n
b
− a, n

b
+ a
])
∩ supph = ∅. Therefore we have

h(x)g(x− n

b
) + h(x+ a)g(x− n

b
+ a) = 0 · g(x− n

b
) + 0 · g(x− n

b
+ a) = 0,

for x ∈ [n
b
− a, n

b
] and n = κ+ 1, . . . , (M − 1).

We have now proved that the equations (5.14) hold for n = 0, 1, 2, . . . , (M − 1).
Since both g and h are symmetric around the x-axis this means that they also hold
for n = −1,−2, . . . ,−(M − 1). Thus we have shown that the equations (5.14) are
satisfied. Hence h is a dual generator for g, and the Gabor system G(BN , a, b) with
the given conditions is a frame.

Using oversampling on the result from Theorem 5.14, we can extend the area of
the frame set.

Corollary 5.15. Let N ≥ 2 then G(BN , a, b) is a frame if there exists a k ∈ N such
that 1

N
< b < 2

N
, N

2
≤ ak < 1

b
.

Proof. Let N ≥ 2 and assume that

1

N
< b <

2

N
,
N

2
≤ ak <

1

b
.

This is the same as the condition

1

N
< b <

1

a
,
N

2
≤ ak < N.

By Theorem 5.14 this implies that G(BN , ak, b) is a frame. Hence, by Lemma 4.7, it
implies that G(BN , a, b) is also a frame.

5.5 The dual frame method: New results

From Theorems 5.13 and 5.14 we know that for each N ≥ 2 the B-splines generate
frames for a, b such that N

2
≤ a < N and 1

N
≤ b < 1

a
. With the result in Lemma

4.7, we have shown that this implies that for each N ≥ 2 the B-splines also generate
frames for a, b if there exists a k ∈ N such that N

2
≤ ka < N and 1

N
≤ b < 1

a
.
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Theorem 5.16. Let N ≥ 2, 0 < a < N
2

, 0 < b < 1
a

and N
2
≤ 1

b
− a

2
. Then the Gabor

system G(BN , a, b) is a frame and the function

h(x) =

{
b

BN (x)
, x ∈ [−a

2
, a
2
]

0, otherwise

generates a dual frame.

Proof. Let BN be a B-spline with N ≥ 2. Assume 0 < a < N
2

, 0 < b < 1
a

and
N
2
≤ 1

b
− a

2
. Define the function h as

h(x) =

{
b

BN (x)
, x ∈ [−a

2
, a
2
]

0, otherwise

The Gabor system G(h, a, b) is clearly a Bessel sequence, and therefore we can apply
Theorem 5.11. To show that G(BN , a, b) and G(h, a, b) generate dual frames, we will
show that they satisfy the equations (5.5). Since the support of h is only on [−a

2
, a
2
],

we will only have one term in the sum in (5.5) for x ∈ [−a
2
, a
2
]. Thus the equations we

have to check are

g
(
x− n

b

)
h(x) = bδn,0, a.e. x ∈ [−a

2
,
a

2
],

for n ∈ Z. For n = 0 the equation is easily satisfied since

g (x)h(x) = g (x)
b

g(x)
= b, a.e. x ∈ [−a

2
,
a

2
].

For n ≥ 1 the support of h(x) and g(x − n
b
) do not overlap since a and b satisfy the

inequality
a

2
≤ 1

b
− N

2
≤ n

b
− N

2
.

Thus G(BN , a, b) and G(h, a, b) generate dual frames. More importantly it shows that
BN is a frame when 0 < a < N

2
, 1
N
< b < 1

a
and a

2
≤ 1

b
− N

2
.

To further investigate the area of the (a, b)-plane where we do not have results
about the frame property, we have looked at some specific examples that lie above
the curve a

2
= 1

b
− N

2
, that is, (a, b)-values satisfying N

2
> 1

b
− a

2
. Both the following

examples use a similar way of defining the dual h to what we have done previously. In
Example 5.17 we get a dual function with bounded support. In Example 5.18 we see
a dual function that does not have bounded support, but it still lies in L2(R).

Example 5.17. First we look at an example where we have a = 6
7

and b = 14
17

. With
these values of a and b we have 1

b
− N

2
= 17

14
− 1 = 3

14
� 3

7
= a

2
. Hence we are outside

the area proven in Theorem 5.16. Furthermore, there does not exist a k ∈ N such that
N
2
≤ ak < 1

b
, i.e., 1 ≤ 6

7
k < 17

14
. Hence, we are outside the area proved in Theorem 5.14

and Corollary 5.15.
To generate a dual we first consider satisfying the equation (5.5) for n = 0. There-

fore we define

h(x) =
b

B2(x)
, for x ∈ [−a

2
,
a

2
].
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1 2

1

Figure 11: Creation of a dual generator h (dashed) for B2 with a = 6
7

and b = 14
17

. The
red parts of h are the parts that overlap with more than one of the translates of B2.

This way we have ensured that∑
k∈Z

h(x− ka)B2(x− ka) = h(x)B2(x) =
b

B2(x)
B2(x) = b, for x ∈ [−a

2
,
a

2
].

Thus (5.5) will be satisfied for n = 0 and all x ∈ R. However, we now have a piece of
h that overlaps with the support of B2(x − 1

b
) and one that overlaps with the support

of B2(x+ 1
b
). Since we will make h symmetric we will focus on the part that overlaps

with B2(x− 1
b
) as shown in Figure 11.

To cancel out this part we define h on some translate of the interval x ∈ [1
b
− 1, a

2
]

which is where h and B(x − 1
b
) overlap. We want to translate with a multiple of a

since all terms in (5.5) get translated by multiples of a. Furthermore we do not want
the interval to overlap with the support of B2(x). For the values of a and b used in
this example we can translate the interval by a. Thus we define h on

x ∈ [
1

b
− 1 + a,

a

2
+ a] = [

17

14
− 1 +

6

7
,
3

7
+

6

7
] = [

15

14
,
9

7
].

The way we define h on that interval is similar to what we did in the previous examples.
When we multiply h by B2(x− 1

b
) we want to get something that cancels out with the

contribution from B2(x− 1
b
)h(x) on x ∈ [1

b
− 1, a

2
]. Thus we define h to be

h(x) = −
h(x− a)B2(x− 1

b
− a)

B2(x− 1
b
)

, for x ∈ [
1

b
− 1 + a,

a

2
+ a] = [

15

14
,
9

7
].

This way we will get

h(x)B2

(
x− 1

b

)
=


h(x)B2(x− 1

b
) x ∈ [1

b
− 1, a

2
],

−h(x− a)B2(x− 1
b
− a) x ∈ [1

b
− 1 + a, a

2
+ a],

0 otherwise.

So when we look at (5.5) for n = 1 we get∑
k∈Z

h(x−ka)B2(x−
1

b
−ka) = h(x−ka)g(x− 1

b
−ka)−h(x−ka)B2(x−

1

b
−ka) = 0,
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for x ∈ [1
b
− 1 + ka, a

2
+ ka] and all k ∈ Z. For x /∈ [1

b
− 1 + ka, a

2
+ ka], k ∈ Z we will

have ∑
k∈Z

h(x− ka)B2(x−
1

b
− ka) =

∑
k∈Z

0 = 0.

Thus the equation (5.5) is satisfied for x ∈ R and n = 1. Since B2 is symmetric, we
can define h(x) = h(−x) for x ∈ [−a

2
− a,−1

b
+ 1− a], and then (5.5) is also satisfied

for x ∈ R and n = −1.
We can see that a

2
+a = 9

7
≤ 20

14
= 2

b
−1).Hence the function h does not overlap with

B2(x− n
b

for n = ±2,±3, . . . . Thus (5.5) is satisfied for x ∈ R and n = ±2,±3, . . . .
Since G(h, a, b) is a Bessel sequence, this means that the functions B2 and h generate
dual frames and thus G(B2,

6
7
, 14
17

) is a frame.

Example 5.18. Now we look at another case where a = 4
7

and b = 7
8
. Once again we

are outside the are considered in Theorem 5.16 since 1
b
− N

2
= 8

7
− 1 = 1

7
� 2

7
= a

2
.

Furthermore, there does not exist a k ∈ N such that N
2
≤ ak < 1

b
, i.e., 1 ≤ 4

7
k < 7

8
.

Hence, we are outside the areas proved in Theorem 5.14 and Corollary 5.15.

1 2 3

1

Figure 12: Creation of a dual generator for B2 with a = 4
7

and b = 7
8
. The red parts

of h are the parts that overlap with more than one of the translates of B2

First we start like we did in Example 5.17 by defining h on the interval x ∈ [−a
2
, a
2
]

as h(x) = b
B2(x)

. Just as before this ensures that

∑
k∈Z

h(x− ka)B2(x− ka) = h(x)g(x) =
b

B2(x)
B2(x) = b, for x ∈ [−a

2
,
a

2
].

Thus (5.5) will be satisfied for n = 0 and all x ∈ R.
As indicated by the red part on the figure there is a part of h that overlaps with

B2(x− 1
b
) and therefore there will also be a part on the negative axis that overlaps with

B2(x+ 1
b
). To cancel these out we need to define h on an interval that is a translation

of the overlap, i.e., x ∈ [1
b
− N

2
+ ka, a

2
+ ka], /k ∈ N \ {0}. Furthermore, k needs to be

chosen such that [
1

b
− N

2
+ ka,

a

2
+ ka

]
∩
[
−N

2
,
N

2

]
= ∅, (5.15)

and [
1

b
− N

2
+ ka,

a

2
+ ka

]
⊂
[

1

b
− N

2
,
1

b
+
N

2

]
. (5.16)
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If we choose k = 1 then (5.15) does not hold since

1

b
− N

2
+ ka =

8

7
− 1 +

4

7
=

5

7
≤ 1 =

N

2
.

And thus
[
1
b
− N

2
+ a, a

2
+ a
]
∩
[
−N

2
, N

2

]
6= ∅ and we need to choose a larger k. For

k = 2 the two conditions (5.15) and (5.16) both hold. In general we do not have to try
k’s until we find a suitable one. A sufficiently large k can be found by setting

k = d
(
N

2
−
(

1

b
− N

2

))
/ae.

We then define h as

h(x) = −
h(x− 2a)B2(x− 1

b
− 2a)

B2(x− 1
b
)

, for x ∈
[

1

b
− 1 + 2a,

a

2
+ 2a

]
=

[
9

7
,
10

7

]
.

This way we will get

h(x)B2

(
x− 1

b

)
=


h(x)B2(x− 1

b
) x ∈ [1

b
− 1, a

2
],

−h(x− 2a)B2(x− 1
b
− 2a) x ∈ [1

b
− 1 + 2a, a

2
+ 2a],

0 otherwise.

Hence we have∑
k∈Z

h(x− ka)B2(x−
1

b
− ka) = h(x− ka)g(x− 1

b
− ka)− h(x− ka)g(x− 1

b
− ka) = 0,

for x ∈ [1
b
− 1 + ka, a

2
+ ka]. If we have x /∈ [1

b
− 1 + ka, a

2
+ ka] then∑

k∈Z

h(x− ka)B2(x−
1

b
− ka) =

∑
k∈Z

0 = 0.

Thus, the equation (5.5) is satisfied for n = 1 and x ∈ R. If we define

h(x) = h(−x), for x ∈
[
−
(a

2
+ 2a

)
,−
(

1

b
− 1 + 2a

)]
=

[
−10

7
,
9

7

]
,

then, due to the symmetry of B2(x), (5.5) is also satisfied for n = −1 and x ∈ R.
As we can see in Figure 12 the new parts of h overlap with the functions B2(x −

2
b
) and B2(x + 2

b
). Therefore we need to define h on another interval to cancel out

its contribution in the equation (5.5) with n = 2. Notice, that we have (1/b)/a =
8
7
7
4

= 2. This means that when we defined h on
[
1
b
− 1 + 2a, a

2
+ 2a

]
then that interval

starts exactly at the left starting point of the support of B2(x − 2
b
). So to cancel

out the contribution that h gives to (5.5) with n = 2, we will have to translate the
interval

[
1
b
− 1 + 2a, a

2
+ 2a

]
by another 2a and define h similarly to the way we did

on
[
1
b
− 1 + 2a, a

2
+ 2a

]
. The translated interval then has its left end point in exactly
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the same point as the left end point of the support of B2(x− 3
b
). Thus to satisfy (5.5)

for all n ∈ Z we will need to define h on the positive axis as

h(x) =


b

B2(x)
, x ∈ [0, a

2
],

−h(x−2a)B2(x−n
b
−2a)

B2(x−n
b
)

x ∈
[
n
b
− 1 + 2a, a

2
+ 2an

]
, n ∈ N,

0 otherwise.

Then h is defined on the negative axis as h(x) = h(−x). This means that the support
of h will not be bounded. However, the condition that we have on h is that it must lie
in L2(R). We know that on the interval

[
n
b
− 1 + 2a, a

2
+ 2an

]
we will have B2(x −

n
b
− 2a) ≤ 1

7
and B2(x− n

b
) ≥ 1− 2

7
= 2

7
. Thus we have

−
h(x− 2a)B2(x− n

b
− 2a)

B2(x− n
b
)

≤ −h(x− 2a)
(1/7)

(2/5)
= −1

5
h(x− 2a),

for x ∈
[
n
b
− 1 + 2a, a

2
+ 2an

]
. Therefore h(x) → 0 as x → ±∞. To prove that

h ∈  L2(R) we must show that
∫∞
−∞ |h(x)|2dx < ∞. Since h is an even function we

have ∫ ∞
−∞
|h(x)|2dx = 2

∫ ∞
0

|h(x)|2dx.

Furthermore, we can split the interval so we get

2

∫ ∞
0

|h(x)|2dx = 2

(∫ a
2

0

|h(x)|2dx+
∞∑
n=1

∫ a
2
+2an

n
b
−1+2a

|h(x)|2dx

)
.

On [0, a
2
] we have a bounded function on a bounded interval and therefore we can find

a constant 0 < C such that |h(x)| ≤ C, for all x ∈ [0, a
2
]. Then we will also have

|h(x)| ≤
(
1
5

)n
C for x ∈

[
n
b
− 1 + 2a, a

2
+ 2an

]
. Thus we get

2

(∫ a
2

0

|h(x)|2dx+
∞∑
n=1

∫ a
2
+2an

n
b
−1+2a

|h(x)|2dx

)
≤ 2

(∫ a
2

0

C2dx+
∞∑
n=1

∫ a
2
+2an

n
b
−1+2a

((
1

5

)n)2

dx

)

= 2

(
a

2
C2 +

∞∑
n=1

1

7

(
1

5

)2n
)

= aC2 +
2

7

∞∑
n=1

(
1

25

)n
= aC2 +

2

7

1

1− 1/25
<∞.

Thus we have shown that h lies in L2(R). In order to use Theorem 5.11 we should
also show that h is a Bessel Sequence. We will not do that here, but if h is a Bessel
sequence then B2 and h generate dual frames since they satisfy (5.5). Particularly this
would show that the Gabor system G(B2,

4
7
, 7
8
) is a frame.

Examples 5.17 and 5.18 prove that two specific points outside the known area of
the frame set of BN , N ≥ 2. For now we have not found a general way of producing
dual functions outside the known areas of the frame set. However, it does seem like it
might be possible to generate duals for BN in a way similar to what has been done in
this subsection as long as a < N

2
and 1

N
< b < 2

N
. Figure 13 shows the two functions

B2(x) and B2(x − n
b
) when 1

N
< b < 2

N
. In general it will hold for all N ≥ 2 that

the condition 1
N
< b < 2

N
ensures that at most two translates of the B-spline BN will

overlap for any given point x ∈ R.
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−1 1 2

1

(a)

−1 1 2 3

1

(b)

Figure 13: B2(x) (solid) and B2(x− 1
b
) (dashed) for b = 2

N
and 1

N
.

5.6 Numerical methods

There are still areas of the (a, b)-plane that have not been proven to be in frame set
F(BN). In Subsection 5.1 we introduced the conjecture by Gröchenig that the frame
set of the B-splines for N ≥ 2 consists of all the points (a, b) ∈ R2

+ that avoid the
known obstructions. It is interesting to investigate whether this conjecture seems to
hold. We can do this numerically by using the Zibulski-Zeevi matrix and the results in
Theorem 4.5. In this analysis we will restrict our attention to B2 as it has the simplest
form.

Our approach is as follows. We choose several rational values of a and b such that
ab < 1. When a and b are rational their product ab will also be rational. For the plots
in Figure 14 we have chosen a = 0.1, 0.2, 0.3, 0.4, 0.5. For each value of a we choose
b such that it starts from 0.1 and is increased in steps of 0.1 until it reaches a value
such that ab ≥ 1 or b = 5. For each point (a, b) we calculate the Zibulski-Zeevi matrix
on a grid spanned by 25 evenly spaced points along both the t- and the ν-axis. For
each Zibulski-Zeevi matrix we calculate the singular vales and record the smallest one.
Once the results are found for all points on the (t, ν) grid, we find the smallest of them
all and that is stored for the point (a, b). For each point (a, b) Figure 14 shows the
minimum value of σp of the Zibulski-Zeevi matrix on a 25 × 25 grid in (t, ν). This
value is an estimate of

√
A. Hence, if it goes to zero it also indicates that A = 0, and

thus that G(B2, a, b) is not a frame in such a point.

(a) (b)

Figure 14: Plots of the estimate of
√
A.
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Figure 14a shows the full result for (a, b) ∈ [0, 0.5]× [0, 5]. However, the values for
b > 1.5 are smaller compared to those where b < 1.5 which is why they appear to be
zero in this plot. A log plot of the values did not look good, therefore Figure 14b shows
the same results but zooms in on the a smaller area where (a, b) ∈ [0, 0.5]× [2, 5], and
we can see that there are indeed non-zero values here.

From Theorem 4.5 we know that if the smallest singular value we find is greater
than zero then the Gabor system G(BN , a, b) is a frame. So the results in Figure 14
mostly seem to agree with the conjecture as most values are positive except for the
lines b = 2, 3, 4, 5, 6, 7. However, the point (a, b) = (7

2
, 1
5
) does stand out as it has value

zero up to machine precision. If the conjecture holds we would expect it to be positive
as ab = 7

2
1
5

= 7
10
< 1 and it is not in any of the known non-frame areas. Therefore we

will examine this point more carefully.
First of all we look at the specific point with different grid sizes to see if the result

could be affected by the grid being to coarse. In Figure 15 we see the results of
increasing the grid size.

(a) (b)

Figure 15: Plots of the smallest and largest singular values as a function of the grid
size.

In Figure 15 we see that the values of both the first and the pth singular value
are the same for the different grid sizes. Indeed σp seems to be equal to zero up to
machine precision for all grid sizes. In Figure 16 we have plotted the value of σp for the
Zibulski-Zeevi matrix with (t, ν) ∈ [0, 1

p
]× [0, 1] and a grid size of 200. The reason we

can consider (t, ν) ∈ [0, 1
p
]×[0, 1] rather than (t, ν) ∈ [0, 1]2 is down to the 1-periodicity

of the Zak transform. From the figure we can see why the size of the smallest value of
σp does not change with the grid size. The smallest of σp is found at the edge of the
grid where t = 0 or t = 1 and those points will always be included in the grid. Also,
it is worth noting that if we have already found a place where the smallest value of σp
across the grid was zero then that will still be there when we increase the grid size.

The grid used in Figure 14 was very coarse. So it could be interesting to look at a
finer grid. However, as we increase the number of points then the matrices for which
we need to find the singular values generally get larger as well. Therefore we focus on
the line where b = 3.5 and calculate the smallest singular values for different values of
a. The result of this can be seen in Figure 17.
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Figure 16: A plot of σp for (t, ν) ∈ [0, 1
p
]× [0, 1] with 200 points in both the t and the

ν direction.

(a) (b)

Figure 17: Plots of
√
A for b = 3.5 and 0 < a < 1

b
.

In Figure 17a we see that the minimal value of σp found on the (t, ν) grid decreases
in a seemingly smooth way and flattens out until we get close to the point a = 1

5
. Here

the value decreases quicker until it reaches zero in a = 1
5

and starts increasing again.
The de- and increase is quicker than in the first part of the plot, but it still seems
smooth. Figure 17b shows a smaller interval just around a = 1

5
with more points than

there was in that area in Figure 17a. Here we see that smallest value of σp, and thus
the frame bound, seems to be zero in the point a = 1

5
and non-zero on the interval

just around a = 1
5
. There may also be some points where the smallest value of σp is

zero for a > 1
5
, but it is not clear from Figure 17a.
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(a) (b)

(c) (d)

Figure 18: Plots of the estimate of
√
A based on the Zibulski-Zeevi matrix for b =

1.5, 2.5, 4.5, 5.5 and 0 < a < 1
b
.

Since we found a zero for b = 7
2

it would be interesting to see if we also get zeros
for other values of b. In Figure 18 we plotted the smallest singular value found for
other fixed b’s of the form b = 2m+1

2
for m ∈ N and 0 < a < 1

b
.

Figure 18a shows the value of the smallest singular value for b = 1.5 and 0 < a < 1
b
.

We see that there does not seem to be any points where the smallest singular value
and thus the lower frame bound goes to zero.

However, in Figure 18b we have b = 2.5 and the
√
A estimate, which we will refer

to as the plot in the following, does seem to drop to zero. We have plotted the estimate
of
√
A and the vertical line on the plot is the line a = 1

3
. The plot appears to go to

zero in the point a = 1
3
. At the higher values of a the values are lower, and it is not

clear whether they are all non-zero.
In Figure 18c we have b = 4.5, and the plot also appears to drop to zero. We have

plotted the estimate of
√
A and from left to right the vertical lines on the plot are

a = 1
7
, a = 1

6
(dashed) and a = 1

5
. Here the lower frame bound appears to be zero

in all the points indicated by vertical lines. Once again the vales of A for the higher
values of a are lower than the rest and it is difficult to determine if there are more
zeros there.
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In Figure 18d the plot does seem to drop to zero. We have plotted the estimate
of
√
A and from left to right the vertical lines on the plot are a = 1

9
, a = 1

8
(dashed),

a = 1
7

and a = 1
6

(dashed). Here the lower frame bound also appears to be zero in all
the points indicated by vertical lines.

We wish to further investigate these points that appear not to be in the frame set.
We start with the point b = 2.5 = 5

2
and a = 1

3
. This gives ab = 5

6
and we wish to

see whether all points along this hyperbola are non-frame points. Therefore we tried
to calculate the lower frame bound for ab = 5

6
and different values of b which gave the

plot in Figure 19. Here we see that the lower frame bound appears to be zero on some,
but not all, of the hyperbola ab = 5

6
. The non-frame points all seem to have b-values

in a symmetric interval around b = 5
2
.

Figure 19: Plot of
√
A for ab = 5

6
and b ∈ [2, 4].

(a) (b)

Figure 20: Plots of the estimate of
√
A based on the Zibulski-Zeevi matrix for b ∈ [3, 4]

and ab = 7
10
, 7
8
.

In Figure 18 and Figure 17, we saw that the lower bound seemed to be zero in
some points when we had b = 2.5, 3.5, 4.5. Now we will examine the two zeros that
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we have for b = 3.5 further. For b = 3.5 the two points that appear to not be in the
frame set are a = 1

5
and 1

4
which give ab = 7

10
and ab = 7

8
, respectively. We examine

the frame bound for points on these hyperbolas with b close to 3.5 and the result is
seen in Figure 20. Again we see that there are non-frame points on the hyperbolas
ab = 7

10
and ab = 7

8
when b is in some symmetric interval around 3.5.

5.7 New non-frame (a, b)-values

We will now prove that Conjecture 1 is false by proving that the Gabor system
G(B2,

1
3
, 5
2
) is not a frame. We will also state conjectures about further (a, b)-values

that do not belong to the frame set of B2.

Theorem 5.19. The Gabor system G(B2,
1
3
, 5
2
) is not a frame.

Proof. Let a = 1
3

and b = 5
2

and consider the Gabor system G(B2, a, b). We wish
to prove that this system is not a frame showing that the Zibulski-Zeevi matrix does
not have full rank and thus the lower frame bound in Theorem 4.5 is violated. In
Theorem 4.5 it is stated that the lower frame condition needs to hold for a.e. point
(t, ν) ∈ [0, 1]2. However, since B2 ∈ W (R) ∪ C0(R), we know that the Zak transform
is continuous. Therefore, each entry of the Zibulski-Zeevi matrix will be continuous
and the singular values of the matrix depend continuously on the entries. Hence, if we
prove that the rank is not full in one point, and thus that σp = 0, then we know that
the lower frame bound will be violated.

First we remind ourselves of the Zibulski-Zeevi matrix for a rationally oversampled
Gabor system G(g, a, b) with ab = p

q
where gcd(p, q) = 1:

Φg(t, ν) = p−
1
2

((
Z 1

b
g
)

(t− `p
q
, ν +

k

p
)

)
k=0,...,p−1;`=0,...,q−1

We consider the Zibulski-Zeevi matrix for the Gabor system G(B2,
1
3
, 5
2
) in the point

(t, ν) = (0, 0). Since ab = 1
3
5
2

= 5
6
, we get the following 5× 6 Zibulski-Zeevi matrix

ΦB2(0, 0) = 5−
1
2

((
Z 2

5
B2

)
(−`5

6
,
k

5
)

)
k=0,...,4;`=0,...,5

The reduced row echelon form of ΦB2(0, 0) is:

ΦB2(0, 0)
Gauss-Jordan elimination−−−−−−−−−−−−−−→


1 0 0 0 1 1
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 1 1
0 0 0 0 0 0

 .

The reduced row echelon form is obtained by Gauss-Jordan elimination. Since the
computation and the notation is cumbersome, we perform these algebraic manipula-
tions in Maple in Appendix A.3.

We see that the Zibulski-Zeevi matrix does not have full rank in the point (t, ν) =
(0, 0). Hence, by Theorem 4.5, the lower frame bound is violated and the Gabor system
G(B2,

1
3
, 5
2
) is not a frame.
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In the proof we used Maple to calculate the reduced row echelon form of the
Zibulski-Zeevi matrix. To double check we also let Maple find a vector in the null
space:

v =


0

5e−
4
5
πi − 3e−

2
5
πi + 3e

2
5
πi − 5e

4
5
πi

−3e−
4
5
πi − 5e−

2
5
πi + 5e

2
5
πi + 3e

4
5
πi

3e−
4
5
πi + 5e−

2
5
πi − 5e

2
5
πi − 3e

4
5
πi

−5e−
4
5
πi + 3e−

2
5
πi − 3e

2
5
πi + 5e

4
5
πi


We also find row operations that will lead to a row of zeros. The first row operations

are replacing row two, R2, and row three, R3, with R2−R5 and R3−R4, respectively.
Then the new second row, R2, is normalised by dividing with its second element.
Similarly, the new third row, R3, is normalised by dividing with its second element.
Finally, we perform the row operation R2 − R3 which yields a row of zeros showing
that the Zibulski-Zeevi matrix does not have full rank. Interestingly, the same row
operations on the Zibulski-Zeevi matrices of other Gabor systems G(B2, a, b) with
5
2
− 1

6
≤ b ≤ 5

2
+ 1

6
and ab = 5

6
also yields a row of zeros.

We have further investigated some of the points from Figure 18 that did not appear
to be in the frame set for B2. The points were investigated both by using Matlab
plots like the ones in Figure 19 and Figure 20 as well as using the Maple sheet in
Appendix A.3. Based on these investigations we pose Conjecture 2.

Conjecture 2. The Gabor system G(B2, a0, b0) is not a frame for the points

a0 =
1

2m+ 1
, b0 =

2n+ 1

2
, n,m ∈ N, n > m, a0b0 < 1. (5.17)

Furthermore, the Gabor system G(B2, a, b) is not a frame along the hyperbolas

ab =
2n+ 1

2 (2m+ 1)
, with b ∈

[
b0 − a0

k

2
, b0 + a0

k

2

]
(5.18)

for all a0 and b0 defined by (5.17).

Conjecture 2 only deals with the non-frame points where a has an odd denominator.
Based on the numerical analysis in Subsection 5.6 it seems that there are also non-
frame points for values of a with an even denominator.

Conjecture 3. The Gabor system G(B2, a, b) is not a frame for

a =
1

2m
, b =

2n+ 1

2
, n,m ∈ N, n > m, ab < 1. (5.19)

There also appears to be an interval along the hyperbolas corresponding to the
points in Conjecture 3, where the Gabor systems G(B2, a, b) are not frames. However,
we have not been able to determine expressions for these interval b needs to be in.

In both conjectures above we have the condition n > m. There was not time
to investigate this further. For example it would have been a good idea to estimate
the frame bounds for non-integer values of b that were not of the form 2n+1

2
, n ∈ N.

However, from what we have seen so far it would appear that the Gabor system
G(B2, a, b) is a frame as long as ab ≤ 1

2
and we avoid the usual obstructions.
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5.8 Summary of results

We summarise the now known results on the frame set of B-splines BN with N ≥ 2 in
Proposition 5.20. The results here are only results that give us areas or curves in the
(a, b)-plane. There are some points outside these areas that are known to be in the
frame set.

Proposition 5.20. Let N ∈ N \ {1}, and consider a, b > 0 such that ab < 1. Then
the following hold

(i) G(BN , a, b) is not a frame if a ≥ N .

(ii) G(BN , a, b) is not a frame if b = 2, 3, . . . .

(iii) G(BN , a, b) is a frame if a < N , b ≤ 1
N

.

(iv) G(BN , a, b) is a frame if there exists a k ∈ N such that

1

N
< b <

2

N
,
N

2
≤ ak <

1

b

.

(v) G(BN , a, b) is a frame if b ∈ {1, 1
2
, . . . , 1

N−1}.

(vi) G(BN , a, b) is a frame if a = k
p

for some k = 1, . . . , N − 1, p ∈ N, and b < 1
k
.

(vii) G(BN , a, b) is a frame if a < N , and 1
b
− N

2
≥ a

2
.

(i) is Proposition 5.1. (ii) is Corollary 5.3. (iii) is Corollary 5.7. (iv) is Corol-
lary 5.15. The results (v) and (vi) have not been studied in this thesis, for the interested
reader we refer to [9]. (v) is by Kloos and Stöckler [9] who also proved (vi) for p = 1,
the case with p ∈ N is an oversampling of the case with p = 1. (vii) is our new result
from Theorem 5.16.

Furthermore, we proved in Theorem 5.19 that

G(B2,
1

3
,
5

2
)

is not a frame which proved that Conjecture 1 is not true.
Figure 21 shows the known frame set for the B-splines of order 2 and 3, including

non-frame areas. The new non-frame point for B2 is also included in Figure 21a. For
N = 2 we see that the vertical lines from (vi) overlap with the lines of the yellow areas
that are due to (iv). However, for N = 3 these lines lie in different places, and thus
add something to the frame set.
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Figure 21: The frame set of BN for N = 2 (a) and N = 3 (b). Red is non-frame area.
White below the curve ab = 1 is unknown. All other colors indicate frames. The gray
area is Corollary 5.7 (painless case), yellow is Corollary 5.15, green is [9] and blue is
Theorem 5.16.
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5.9 Possibilities for future work

Now we look at some of the subjects in this thesis that could give basis for further
work. There are three main subjects that would be interesting to study further. Those
are the dual frame method, numerical computations using the Zibulski-Zeevi matrix
and further studies of Conjecture 2 and Conjecture 3.

We used the dual frame method used to prove the new part of the frame set for the
B-splines (Theorem 5.16. Though there was not enough time to go further with this,
it does seem like it might be worth trying to extend the method to prove the frame
properties for all (a, b)-values satisfying 0 < a < N

2
and 1

N
< b < 2

N
.

For the numerical computations it would be good to have a look at the code could
be optimized further. With an improved computation time, it would be easier to
consider finer grids in the (a, b)-plane. It would also make it possible to increase the
grid size in t and ν, hence making the results more stable, with less numerical errors.
One way to make the code more efficient could be re-writing it in such a way that we
could use Matlabs fft function to calculate sums of exponentials. As we have seen our
numerical methods provide good tools to help one find possible non-frame points to
study analytically.

Finally, it would be interesting to see if a general proof could be found for Conjec-
ture 2 and Conjecture 3 other than proving it pointwise by showing that the Zibulski-
Zeevi matrix does not have full rank. It would also be interesting to see whether
similar results hold for B-splines of order N ≥ 3.
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A Appendix

A.1 Calculations of the Zak transform for N1 and N2

1 % Function that calculates the value of the indicator function on an
2 % interval [a,b] for given points x.
3 % Input:
4 % x − a vector of points to evaluate the indicator function in.
5 % a − the left end point of the support of the indicator function.
6 % b − the right end point of the support of the indicator function.
7 % Output:
8 % chi − the value of the indicator function on [a,b] in the points x.
9 function chi = indicator(x,a,b)

10

11 chi = (x >= a) & (x <= b);

1 % Function that calculates the value of N2 for given points x.
2 % Input:
3 % x − a vector of points to evaluate N2 in.
4 % Output:
5 % res − the value of N2 in the points x.
6 function res = N2(x)
7 % Calculate N2 for x.
8 res=max(1−abs(x−1),0);

1 % Function that calculates the value of the Zak transform of N1 with
2 % parameter a in the point (t,nu).
3 % Input:
4 % a − the parameter of the Zak transform.
5 % t − the point t where we calculate the Zak transform.
6 % nu − the point nu where we calculate the Zak transform.
7 % Output:
8 % res − the value of teh Zak transform of N1 in the point (t,nu).
9 function res = zakN1(a,t,nu)

10 % Finds the smallest k such that a*(t−k)<=1.
11 k min = ceil(t−2/a);
12 % Finds the largest k such that a*(t−k)>=0.
13 k max = floor(t);
14 % These are the k's that will contribute in the sum.
15 k = k min:k max;
16 % The non zero terms of the sum.
17 vec = indicator(a*(t−k),0,1).*exp(2*pi*1i*k*nu);
18 % Calculate the Zak transform.
19 res = sqrt(a)*sum(vec);

1 % Function that calculates the value of the Zak transform of N2 with
2 % parameter a in the point (t,nu).
3 % Input:
4 % a − the parameter of the Zak transform.
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5 % t − the point t where we calculate the Zak transform.
6 % nu − the point nu where we calculate the Zak transform.
7 % Output:
8 % res − the value of teh Zak transform of N2 in the point (t,nu).
9 function res = zakN2(a,t,nu)

10 % Finds the smallest k such that a*(t−k)<=2.
11 k min = ceil(t−2/a);
12 % Finds the largest k such that a*(t−k)>=0.
13 k max = floor(t);
14 % These are the k's that will contribute in the sum.
15 k = k min:k max;
16 % The non zero terms of the sum.
17 vec = N2(a*(t−k)).*exp(2*pi*1i*k*nu);
18 % Calculate the Zak transform.
19 res = sqrt(a)*sum(vec);

1 % The number of grid points in t and nu.
2 N=100;
3 % The points that we use on the t and nu axes.
4 t = linspace(0,1,N);
5 nu = linspace(0,1,N);
6 % A grid of t and nu in [0,1]ˆ2.
7 [T,NU] = meshgrid(t,nu);
8 % The vales of a for which we wish to calculate the Zak transform.
9 a = [1/4,1/3,1/2,1];

10 % We go through all values of a.
11 for k = 1:length(a)
12 zak = zeros(N,N);
13 % We calculate the Zak transform in all points of the (t,nu) grid.
14 for ii = 1:N
15 for jj = 1:N
16 zak(ii,jj) = abs(zakN1(a(k),T(ii,jj),NU(ii,jj)));
17 end
18 end
19 % For each a we plot | Z a N 1 |ˆ2.
20 FigHandle = figure('Position', [100, 100, 500, 300]);
21 mesh(T,NU,zak.ˆ2)
22 xlabel('t')
23 ylabel('\nu')
24 colorbar
25 end
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1 % The number of grid points in t and nu.
2 N=101;
3 % The points that we use on the t and nu axes.
4 t = linspace(0,1,N);
5 nu = linspace(0,1,N);
6 % A grid of t and nu in [0,1]ˆ2.
7 [T,NU] = meshgrid(t,nu);
8 % The vales of a for which we wish to calculate the Zak transform.
9 a = [1/2,2/3,1,2];

10 % We contruct an array to save the Zak transform for all values of a.
11 zak g = zeros(N,N,length(a));
12 % We go through all values of a.
13 for k = 1:length(a)
14 zak = zeros(N,N);
15 % We calculate the Zak transform in all points of the (t,nu) grid.
16 for ii = 1:N
17 for jj = 1:N
18 zak(ii,jj) = abs(zakN2(a(k),T(ii,jj),NU(ii,jj)));
19 end
20 end
21 % For each a we plot | Z a N 1 |ˆ2.
22 FigHandle = figure('Position', [100, 100, 500, 300]);
23 mesh(T,NU,zak.ˆ2)
24 xlabel('t')
25 ylabel('\nu')
26 colorbar
27 % We save the values of the Zak transform.
28 zak g(:,:,k) = zak;
29 end
30

31 for k = 1:(length(a)−1)
32 % We plot the Zak transform for nu=.5, .25, .12 and t in [0,1].
33 FigHandle = figure('Position', [100, 100, 400, 600]);
34 plot(t,zak g(51,:,k).ˆ2)
35 hold on
36 plot(t,zak g(26,:,k).ˆ2)
37 plot(t,zak g(13,:,k).ˆ2)
38 hold off
39 legend('\nu = .5','\nu = .25','\nu = .12','Location','northeast')
40 xlabel('t')
41 ylabel(sprintf(' | Z {%f}N 2 |',a(k)))
42 end
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A.2 Calculations of frame bounds

1 % The points a in [0,1[ where we calculate the frame bounds for N 1.
2 k = 1:986; a = k./997;
3 N = length(a);
4 % Initialise vectors to save the frame bounds.
5 A = zeros(1,N);
6 B = zeros(1,N);
7 % For each a we calculate the frame bounds A and B.
8 for ii = 1:N
9 % We calculate the sum of |N1(x−ak)|ˆ2 for k from −ceil(1/a) to

10 % ceil(1/a). This includes all non−zero terms.
11 x = linspace(0.001,a(ii)−0.001,1000);
12 gSum = indicator(x,0,1);
13 for jj = 1:ceil(1/a(ii));
14 gSum = gSum + indicator(x+a(ii)*jj,0,1);
15 gSum = gSum + indicator(x−a(ii)*jj,0,1);
16 end
17 % What we calculate here is actually Ab and Bb, but since we divide
18 % the two later the b's cancel out.
19 A(ii) = min(gSum);
20 B(ii) = max(gSum);
21 end
22 % Calculates the rate A/B.
23 rate = A./B;
24 % Plots the rate A/B as a function of a.
25 FigHandle = figure('Position', [100, 100, 600, 400]);
26 plot(a,rate)
27 xlabel('a','FontSize',14)
28 ylabel('A/B','FontSize',14)
29 ylim([0.45,1])
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1 % The points a in [0,1[ where we calculate the frame bounds for N 2.
2 k = 1:2000; a = k./1000;
3 N = length(a);
4 % Initialise vectors to save the frame bounds.
5 A = zeros(1,N);
6 B = zeros(1,N);
7 % For each a we calculate the frame bounds A and B.
8 for ii = 1:N
9 % We calculate the sum of |N2(x−ak)|ˆ2 for k from −ceil(2/a) to

10 % ceil(2/a). This includes all non−zero terms.
11 x = linspace(0,a(ii),1000);
12 gSum = N2(x).ˆ2;
13 for jj = 1:ceil(2/a(ii));
14 gSum = gSum + N2(x+a(ii)*jj).ˆ2;
15 gSum = gSum + N2(x−a(ii)*jj).ˆ2;
16 end
17 % What we calculate here is actually Ab and Bb, but since we divide
18 % the two later the b's cancel out.
19 A(ii) = min(gSum);
20 B(ii) = max(gSum);
21 end
22 % Calculates the rate A/B.
23 rate = A./B;
24 % Plots the rate A/B as a function of a with a 2nd order polynomial.
25 FigHandle = figure('Position', [100, 100, 600, 400]);
26 c=1/2;
27 plot(a,rate)
28 hold on
29 plot(a(501:2000),c*(a(501:2000)−2).ˆ2)
30 xlabel('a','FontSize',14)
31 ylabel('A/B','FontSize',14)
32 legend('A/B',sprintf('%f(a−2)ˆ2', c))
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The plots of the rate A/B for Nn, n = 3, 4, 5, 6 uses the same outline as the two
pieces of code above. All that is changed is that we need to have a ∈ [0, n] and we
need to use the right B-spline. For this I have made a function that calculates the
value of any B-spline Nn of order n ≥ 2 in a point x. The formula used in this Matlab
function is [1, Theorem 6.1.3].

1 % Function that calculates the value of N n for some n >= 2 and given
2 % points x.
3 % Input:
4 % x − a vector of points to evaluate the indicator function N n in.
5 % n − the order of the B−spline.
6 % Output:
7 % res − the value of N n in the points x.
8 function res = MyBSplines(x,n)
9 res = zeros(1,length(x));

10 for j = 0:n
11 cond = ((x−j) > 0);
12 res = res + cond.*(−1)ˆj.*nchoosek(n,j).*(x−j).ˆ(n−1);
13 end
14 res = 1/factorial(n−1)*res;
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A.3 Calculations of the Zibulski-Zeevi matrix

A function to calculate the Zak transform of B2.

1 % Function that calculates the value of the Zak transform of B2 with
2 % parameter a in the point (t,nu).
3 % Input:
4 % a − the parameter of the Zak transform.
5 % t − the point t where we calculate the Zak transform.
6 % nu − the point nu where we calculate the Zak transform.
7 % Output:
8 % res − the value of teh Zak transform of B2 in the point (t,nu).
9 function res = zakB2(a,t,nu)

10 % Finds the smallest k such that a*(t−k)<=1.
11 k min = floor(t−1/a);
12 % Finds the largest k such that a*(t−k)>=−1.
13 k max = ceil(t+1/a);
14 % These are the k's that will contribute in the sum.
15 k = k min:k max;
16 % The non zero terms of the sum.
17 vec = B2(a*(t−k)).*exp(2*pi*1i*k*nu);
18 % Calculate the Zak transform.
19 res = sum(vec);

This is a function that calculates the Zibulski-Zeevi matrix foor tthe second B-spline
and given parameters t, ν, b, p and q.

1 % Function that calculates the Zibulski−Zeevi matrix for B2 with
2 % parameter b and ab=p/q in the point (t,nu).
3 % Input:
4 % t, nu − the point t where we evaluate the Zibulski−Zeevi matrix.
5 % b,p,q − parameters of the Zibulski−Zeevi matrix.
6 % Output:
7 % zz − the Zibulski−Zeevi matrix in the point (t,nu).
8 function zz = ZZmatrix(t,nu,b,p,q)
9 % Initialise the Zibulski−Zeevi matrix.

10 zz = zeros(p,q);
11 % Go through each point of the Zibulski−Zeevi matrix.
12 for ii = 1:p
13 for jj = 1:q
14 zz(ii,jj) = zakB2(1/b,t−(jj−1)*p/q,nu+(ii−1)/p);
15 end
16 end
17 zz = zz/sqrt(p);
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This script calculates the singular values on the grid used in Figure 14.

1 % Define the (t,nu) grid.
2 N = 25; M = 25;
3 t = linspace(0,1,N);nu = linspace(0,1,M);
4 [T,NU] = meshgrid(t,nu);
5 % Define the (a,b) grid.
6 Amax = 5; Bmax = 70;
7 aq = 10; bq = 10;
8 % Initialise.
9 lowerBound = zeros(Bmax,Amax);

10 % Run through the (a,b) grid.
11 for ap = 1:Amax
12 for bp = 1:min(Bmax,(aq*bq/ap))
13 % Calculate the parameters.
14 b = bp/bq;
15 k = gcd(ap*bp,aq*bq);
16 p = ap*bp/k; q = aq*bq/k;
17 % Initialise.
18 minvals = zeros(M,N);
19 % Run through the (t,nu) grid.
20 for ii = 1:N
21 for jj = 1:M
22 % Calculate the Zibulski−Zeevi matrix.
23 zz = ZZmatrix(T(ii,jj),NU(ii,jj),b,p,q);
24 % Calculate the singular vales of the Zibulski−Zeevi matrix.
25 [U,S,V] = svd(zz);
26 % Save the singular value(s) in a vector.
27 if p == 1
28 v = S(1,1);
29 else
30 v = diag(S);
31 end
32 % Find the smallest singular value.
33 minvals(ii,jj) = min(v);
34 end
35 end
36 % Save the smallest of all singular values on the (t,nu) grid.
37 lowerBound(bp,ap) = min(min(minvals));
38 end
39 end
40 % Plot the values of the estimate of sqrt(A) on the (a,b) grid
41 figure(1)
42 imagesc(flipud(lowerBound));colorbar
43 xticklabels = 0.1:0.1:0.5;
44 xticks = linspace(1, size(lowerBound, 2), numel(xticklabels));
45 set(gca, 'XTick', xticks, 'XTickLabel', xticklabels)
46 xlabel('a','FontSize',14)
47 yticklabels = [0.1,0.5:.5:5];
48 yticks = linspace(1, size(lowerBound, 1), numel(yticklabels));
49 set(gca, 'YTick', yticks, 'YTickLabel', flipud(yticklabels(:)))
50 ylabel('b','FontSize',14)
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This script calculates the smallest singular values in the point (1/5,7/2) for varying
grid sizes.

1 % Parameters.
2 a=1/5; b=7/2;p=7; q=10;
3 % Different grid sizes.
4 gridSizes = 5:5:200;
5 % Initialise.
6 minSingVal = zeros(length(gridSizes),1);
7 maxSingVal = zeros(length(gridSizes),1);
8 % Run through the different grid sizes.
9 for kk = 1:length(gridSizes)

10 % Dedfine the (t,nu) grid.
11 N = gridSizes(kk); M = ceil(N/1);
12 t = linspace(0,1,N); nu = linspace(0,1/p,M);
13 [T,NU] = meshgrid(t,nu);
14 % Initialise.
15 minvals = zeros(M,N);
16 maxvals = zeros(M,N);
17 % Run through the (t,nu) grid.
18 for ii = 1:M
19 for jj = 1:N
20 % Calculate the Zibulski−Zeevi matrix.
21 zz = ZZmatrix(T(ii,jj),NU(ii,jj),b,p,q);
22 % Calculate the singular vales of the Zibulski−Zeevi matrix.
23 [U,S,V] = svd(zz);
24 % Save the singular values in a vector.
25 v = diag(S);
26 % Find the smallest and largest singular values.
27 minvals(ii,jj) = min(v);
28 maxvals(ii,jj) = max(v);
29 end
30 end
31 % Save the smallest and largest singular values on the current (t,nu)
32 % grid.
33 minSingVal(kk) = min(min(minvals));
34 maxSingVal(kk) = max(max(maxvals));
35 end
36 % Plot the results
37 figure(1)
38 plot(gridSizes,minSingVal);
39 xlabel('Grid size − M,N','FontSize',14);
40 ylabel('$$\sqrt{A}$$','Interpreter','latex','FontSize',14);
41 figure(2)
42 plot(gridSizes,maxSingVal);
43 xlabel('Grid size − M,N','FontSize',14);
44 ylabel('$$\sqrt{B}$$','Interpreter','latex','FontSize',14);
45 figure(3)
46 mesh(T,NU,minvals)
47 xlabel('t'); ylabel('\nu')
48 zlabel('$$\sqrt{A}$$','Interpreter','latex')
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This script estimates
√
A for a fixed value of b and a chosen such that ab = p

q
with

gcd(p, q) = 1, p ≤ 24 and q ≤ 25.

1 % Defines the (t,nu) grid.
2 N = 100; M = 100;
3 t = linspace(0,1,N);nu = linspace(0,1,M);
4 [T,NU] = meshgrid(t,nu);
5 % Defines p and q such that we go through all fractions of the type p/q,
6 % where gcd(p,q)=1 and p<=24, q<=25.
7 ps = [ones(24,1);
8 2*ones(12,1);
9 3*ones(14,1);

10 4*ones(11,1);
11 5*ones(16,1);
12 6*ones(7,1);
13 7*ones(16,1);
14 8*ones(9,1);
15 9*ones(11,1);
16 10*ones(6,1);
17 11*ones(13,1);
18 12*ones(5,1);
19 13*ones(12,1);
20 14*ones(5,1);
21 15*ones(7,1);
22 16*ones(5,1);
23 17*ones(8,1);
24 18*ones(3,1);
25 19*ones(6,1);
26 20*ones(2,1);
27 21*ones(3,1);
28 22*ones(2,1);
29 23*ones(2,1);
30 24];
31 qs = [(2:25)';
32 (3:2:25)';
33 4;5;7;8;11;13;14;16;17;19;20;22;23;25;
34 5;7;9;11;13;15;17;19;21;23;25;
35 6;7;8;9;11;12;13;14;16;17;18;19;21;22;23;24;
36 7;11;13;17;19;23;25;
37 8;9;10;11;12;13;15;16;17;18;19;20;22;23;24;25;
38 9;11;13;15;17;19;21;23;25;
39 10;11;13;14;16;17;19;20;22;23;25;
40 11;13;17;19;21;23;
41 12;13;14;15;16;17;18;19;20;21;23;24;25;
42 13;17;19;23;25;
43 14;15;16;17;18;19;20;21;22;23;24;25;
44 15;17;19;23;25;
45 16;17;19;21;22;23;24;
46 17;19;21;23;25;
47 18;19;20;21;22;23;24;25;
48 19;23;25;
49 20;21;22;23;24;25;
50 21;23;
51 22;23;25;
52 23;25;
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53 24;25;
54 25;];
55 % Sorts the fractions in increasing order.
56 [ab,I] = sort(ps./qs);
57 ps = ps(I);qs = qs(I);
58 % Initialise.
59 NN = length(ps);
60 lowerBound = zeros(NN,1);
61 % Set the value of b.
62 b = 9/2;
63 % Run though all vales of ab.
64 for kk = 1:NN
65 % Define p and q.
66 p = ps(kk); q = qs(kk);
67 % Initialise.
68 minvals = zeros(M,N);
69 % Run through (t,nu) grid.
70 for ii = 1:N
71 for jj = 1:M
72 % Calculate the Zibulski−Zeevi matrix.
73 zz = ZZmatrix(T(ii,jj),NU(ii,jj),b,p,q);
74 % Calculate the singular vales of the Zibulski−Zeevi matrix.
75 [U,S,V] = svd(zz);
76 % Save the singular value(s).
77 if p == 1
78 v = S(1,1);
79 else
80 v = diag(S);
81 end
82 % Find the smallest singular value
83 minvals(ii,jj) = min(v);
84 end
85 end
86 % Save the smallest of all singular values on the (t,nu) grid.
87 lowerBound(kk) = min(min(minvals));
88 end
89 % Plot the results
90 plot(ab/b,lowerBound)
91 set(gca,'fontsize',18)
92 title('M,N=100, b=4.5','FontSize',20)
93 xlabel('a','FontSize',18);
94 ylabel('$$\sqrt{A}$$','Interpreter','latex','FontSize',18)
95 hold on
96 plot([1/7,1/7],[0,0.5],'k')
97 plot([1/6,1/6],[0,0.5],'k−−')
98 plot([1/5,1/5],[0,0.5],'k')
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This script estimates
√
A for fixed ab = p

q
and varying values of b.

1 % Define the (t,nu) grid.
2 N = 100; M = N;
3 t = linspace(0,1,N);nu = linspace(0,1,M);
4 [T,NU] = meshgrid(t,nu);
5 % Define parameters.
6 p=5; q=6;
7 bs = 2:0.01:3;
8 % Initialise.
9 minvals = zeros(N,M);

10 K = length(bs);
11 lowerBound = zeros(1,K);
12 % Run through the different values of b.
13 for kk = 1:K
14 b = bs(kk);
15 for ii = 1:N
16 for jj = 1:M
17 % Calculate the Zibulski−Zeevi matrix.
18 zz = ZZmatrix(T(ii,jj),NU(ii,jj),b,p,q);
19 % Calculate the singular vales of the Zibulski−Zeevi matrix.
20 [U,S,V] = svd(zz);
21 % Save the singular value(s) in a vector.
22 if p == 1
23 v = S(1,1);
24 else
25 v = diag(S);
26 end
27 % Find the smallest singular value.
28 minvals(ii,jj) = min(v);
29 end
30 end
31 % Save the smallest of all singular values on the (t,nu) grid.
32 lowerBound(kk) = min(min(minvals));
33 end
34 % Plot the results.
35 plot(bs,lowerBound);
36 xlabel('b','FontSize',14);
37 ylabel('$$\sqrt{A}$$','Interpreter','latex','FontSize',14)
38 title('ab=9/14, M=N=100','FontSize',16);
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>>

>>

>>

(2)(2)

>>
(3)(3)

>>

(1)(1)

>>

restart:with(LinearAlgebra):
interface(rtablesize=15);

10
B2:=x->piecewise(-1<=x and x<0, 1+x,0<=x and x<1,1-x,0);

B2 := x/piecewise K1% x and x! 0, 1Cx, 0% x and x! 1, 1Kx, 0

plot(B2,-2..2);

K2 K1 0 1 2

0.2

0.4

0.6

0.8

1

Zak := proc(lambda,t,nu)
local min_k, max_k;

min_k := ceil(t-1/lambda);
max_k := floor(t+1/lambda);
sqrt(lambda)*sum(B2(lambda*(t-k))*exp(2*Pi*I*k*nu),k=min_k..

max_k);
end proc;

Zak := proc lambda, t, nu
local min_k, max_k;

min_k := ceil tK 1 / lambda ;
max_k := floor tC1 / lambda ;
sqrt lambda * sum B2 lambda * tK k * exp 2 * I* Pi * k * nu , k = min_k ..max_k

end proc



(4)(4)

(7)(7)

>>

(6)(6)

(9)(9)

(8)(8)
>>

>>

(10)(10)

>>
>>

>>

(5)(5)

>>

>>

>>

>>

b:=5/2; a:=1/b*5/6; a*b;

b :=
5
2

a :=
1
3

5
6

p:=numer(a*b);
p := 5

q:=denom(a*b);
q := 6

t:='t':nu:='nu':
t:=0:nu:=0:
Entries:=(k,l)->Zak(1/b,t-(l-1)*p/q,nu+(k-1)/p);

Entries := k, l /Zak
1
b

, tK
lK1 p

q
, nC kK1

p
Z:=1/sqrt(p)*Matrix(p,q,Entries):
Rank(evalf(Z));

4
ReducedRowEchelonForm(Z);

1 0 0 0 1 1

0 1 0 0 K1 0

0 0 1 0 0 K1

0 0 0 1 1 1

0 0 0 0 0 0

NullSpace(Transpose(Z));
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(4)(4)

>>

(11)(11)

(12)(12)

>>

>> evalf(Z);
0.7353910522, 0.7165348712, 0.6976786906, 0.6788225098, 0.6976786906, 0.7165348712

,

0.2961967334C0. I, 0.1408959466K0.2458332466 I,K0.1408959469
K0.2458332465 I,K0.2961967340C0. I,K0.1408959469C0.2458332466 I,
0.1408959465C0.2458332465 I ,

0.04321452108C0. I,K0.02775886191K0.003234088118 I, 0.02775886157
K0.003234088118 I,K0.04321452136C0. I, 0.02775886157C0.003234088124 I,
K0.02775886190C0.003234088118 I ,

0.04321452108C0. I,K0.02775886190C0.003234088118 I, 0.02775886157
C0.003234088124 I,K0.04321452136C0. I, 0.02775886157K0.003234088118 I,
K0.02775886191K0.003234088118 I ,

0.2961967334C0. I, 0.1408959465C0.2458332465 I,K0.1408959469
C0.2458332466 I,K0.2961967340C0. I,K0.1408959469K0.2458332465 I,
0.1408959466K0.2458332466 I
Z1:=RowOperation(Z,[2, 5],-1):evalf(%);

0.7353910522, 0.7165348712, 0.6976786906, 0.6788225098, 0.6976786906, 0.7165348712

,

0., 1. 10-10K0.4916664931 I, 0.K0.4916664931 I, 0., 0.C0.4916664931 I,K1. 10-10

C0.4916664931 I ,
0.04321452108C0. I,K0.02775886191K0.003234088118 I, 0.02775886157
K0.003234088118 I,K0.04321452136C0. I, 0.02775886157C0.003234088124 I,
K0.02775886190C0.003234088118 I ,

0.04321452108C0. I,K0.02775886190C0.003234088118 I, 0.02775886157
C0.003234088124 I,K0.04321452136C0. I, 0.02775886157K0.003234088118 I,
K0.02775886191K0.003234088118 I ,

0.2961967334C0. I, 0.1408959465C0.2458332465 I,K0.1408959469
C0.2458332466 I,K0.2961967340C0. I,K0.1408959469K0.2458332465 I,
0.1408959466K0.2458332466 I



(4)(4)

(11)(11)

(15)(15)

>>

>>

>>

(14)(14)

>>

(13)(13)
Z2:=RowOperation(Z1,[3, 4],-1):evalf(%);

0.7353910522, 0.7165348712, 0.6976786906, 0.6788225098, 0.6976786906, 0.7165348712

,

0., 1. 10-10K0.4916664931 I, 0.K0.4916664931 I, 0., 0.C0.4916664931 I,K1. 10-10

C0.4916664931 I ,

0.,K1. 10-11K0.006468176236 I, 0.K0.006468176242 I, 0., 0.C0.006468176242 I,

1. 10-11C0.006468176236 I ,

0.04321452108C0. I,K0.02775886190C0.003234088118 I, 0.02775886157
C0.003234088124 I,K0.04321452136C0. I, 0.02775886157K0.003234088118 I,
K0.02775886191K0.003234088118 I ,

0.2961967334C0. I, 0.1408959465C0.2458332465 I,K0.1408959469
C0.2458332466 I,K0.2961967340C0. I,K0.1408959469K0.2458332465 I,
0.1408959466K0.2458332466 I
Z3:=RowOperation(Z2,2,1/Z2(2,2)): evalf(%);

0.7353910522, 0.7165348712, 0.6976786906, 0.6788225098, 0.6976786906, 0.7165348712

,

0., 1., 1.000000000K2.033899023 10-10 I, 0.,K1.000000000C2.033899023 10-10 I,

K1.000000000C0. I ,

0.,K1. 10-11K0.006468176236 I, 0.K0.006468176242 I, 0., 0.C0.006468176242 I,

1. 10-11C0.006468176236 I ,

0.04321452108C0. I,K0.02775886190C0.003234088118 I, 0.02775886157
C0.003234088124 I,K0.04321452136C0. I, 0.02775886157K0.003234088118 I,
K0.02775886191K0.003234088118 I ,

0.2961967334C0. I, 0.1408959465C0.2458332465 I,K0.1408959469
C0.2458332466 I,K0.2961967340C0. I,K0.1408959469K0.2458332465 I,
0.1408959466K0.2458332466 I
Z4:=RowOperation(Z3,3,1/Z3(3,2)): evalf(%);

0.7353910522, 0.7165348712, 0.6976786906, 0.6788225098, 0.6976786906, 0.7165348712

,

0., 1., 1.000000000K2.033899023 10-10 I, 0.,K1.000000000C2.033899023 10-10 I,

K1.000000000C0. I ,

0., 1., 1.000000001C1.546030851 10-9 I, 0.,K1.000000001K1.546030851 10-9 I,

K1.000000000C0. I ,
0.04321452108C0. I,K0.02775886190C0.003234088118 I, 0.02775886157
C0.003234088124 I,K0.04321452136C0. I, 0.02775886157K0.003234088118 I,
K0.02775886191K0.003234088118 I ,

0.2961967334C0. I, 0.1408959465C0.2458332465 I,K0.1408959469
C0.2458332466 I,K0.2961967340C0. I,K0.1408959469K0.2458332465 I,
0.1408959466K0.2458332466 I



(4)(4)

(11)(11)

(17)(17)

(18)(18)

>>

(16)(16)

>>

>>

>>

(13)(13)

Z5:=RowOperation(Z4,[2, 3],-1): evalf(%);

0.7353910522, 0.7165348712, 0.6976786906, 0.6788225098, 0.6976786906, 0.7165348712

,

0., 0.,K1. 10-9K1.749420753 10-9 I, 0., 1. 10-9C1.749420753 10-9 I, 0.C0. I ,

0., 1., 1.000000001C1.546030851 10-9 I, 0.,K1.000000001K1.546030851 10-9 I,

K1.000000000C0. I ,
0.04321452108C0. I,K0.02775886190C0.003234088118 I, 0.02775886157
C0.003234088124 I,K0.04321452136C0. I, 0.02775886157K0.003234088118 I,
K0.02775886191K0.003234088118 I ,

0.2961967334C0. I, 0.1408959465C0.2458332465 I,K0.1408959469
C0.2458332466 I,K0.2961967340C0. I,K0.1408959469K0.2458332465 I,
0.1408959466K0.2458332466 I
simplify(Z5(2,1..5));

0 0 0 0 0

simplify(Z5);
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