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Abstract—The temporal structure in music is an essential
aspect when we as humans categorize and describe the cultural,
perceptual and cognitive aspects of music such as genre, emotions,
preference and similarity. Historically, however, temporal infor-
mation has largely been disregarded when building automatic
annotation and labeling systems of music. Both in music navi-
gation and recommendation systems. This paper addresses this
apparent discrepancy between common sense and the majority
of modeling efforts by first providing an analysis and survey of
existing work, proposing a simple taxonomy of the many possible
feature representations. Next, the different paths in the taxonomy
are evaluated by testing the hypothesis whether it is beneficial to
include temporal information for predicting high-order aspects of
music. We specifically look into the emotions expressed in music
as a prototypical high-order aspect of audio.

We test the hypothesis and difference between representa-
tions using the following pipeline: 1) Extract features for each
track obtaining a multivariate feature time-series. 2) Model
each track-level time-series by a probabilistic model: Gaus-
sian Mixture models, Autoregressive models, Linear Dynamical
Systems, Multinomial models, Markov and Hidden Markov
models. 3) Apply the Probability Product Kernel to define a
common correlation/similarity function between tracks. 4) Model
the observations using a simple, well-known (kernel) logistic
classification approach specifically extended for two-alternative-
forced choice to ensure robustness. The evaluation is performed
on two data sets, including two different aspects of emotions
expressed in music.

The result provides evidence that increased predictive perfor-
mance is obtained using temporal information, thus supporting
the overall hypothesis.

I. INTRODUCTION

With the ever-growing collections and online availability of
music, easy and intuitive methods of accessing these large
collections has become more pertinent than ever.

This has been addressed in various ways, ranging from
context and collaborative approaches to purely content-based
models. The focus of this work is on the content-based
approach, from the audio signal itself, where the aim is
to predict aspects which are of relevance in navigating and
exploring music archives, such as high-order cognitive aspects
like genre, emotion and perceived similarity.

Such content-based, predictive models have largely re-
lied on three major elements: First, self-reported annotations
(rankings, ratings, comparisons, tags, etc.) for quantifying
the specific higher-level cognitive aspect. Secondly, finding a
suitable audio representation (using audio or lyrical features),
and finally associating the two aspects using machine-learning
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methods with the aim to create predictive models of the
labels/annotations.

This traditional approach has seemingly reached a glass
ceiling for predicting e.g. the emotions expressed in music,
as mentioned in [1], genre prediction [2] and melody [3].
An example of the glassceiling is the MIREX Automatic
Mood Classification (AMC) competition. Despite the many
attempts over the years to use an increasing number of audio
features and greater modeling complexity, there seems to be a
66% limit on the classification accuracy. Even later work [4]
using the same taxonomy for acquiring labels, reached similar
limitations. In [1] they argued that the annotation procedure,
model of representing emotions and the taxonomy used are
all likely to be the limiting factors, and they set a natural
limit for how well a system can perform. In a similar fashion,
music genre recognition also suffers from acquiring reliable
genre labels [5] and sets natural limits to how well models
can perform on solving the specific task.

It has been argued [3] that one reason for the performance
limit is the so-called semantic gap, i.e. a fundamental gap
between handcrafted, low-level audio features designed to
capture different musical aspects and the actual higher-order,
cognitive aspects which are of relevance for a particular
task. A source for this gap can easily be identified in the
way predictive systems represent the audio itself, since au-
dio streams are often represented with frame-based features.
The signal is thus divided into frames with various lengths
depending on the musical aspect which is to be analyzed.
Features are extraction of the enframed signal resulting in
a multivariate time series of features. In order to use these
features in a modern discriminative setting, they are often
represented using simple pooling functions such as the mean,
or a single/mixture Gaussian. This reduces the full time series
to a single vector which is applicable in traditional linear
models or kernel machines, e.g. Support Vector Machines
(SVM). The main problem is that this approach disregards
all temporal information in the extracted features.

Some work has gone into examining temporal integration
[6], and this has shown an improved performance on genre
prediction and emotion recognition [7]. In [7] we proposed
specifically extending the audio representation by including a
feature representation as an additional aspect to consider, as
illustrated in Figure II-G2. We proposed a common framework
to code both temporal and non-temporal aspects in discrete
and continuous features using generative models. This both
unified and extended previous work in how to code features
for creating predictive models. We see that an important step to
narrowing the semantic gap and potentially breaking through
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the glassceiling is to add a layer of temporal modeling to the
low-level handcrafted features.

Our aim in this work is to outline and summarize state-of-
the art in representing the audio in music with and without
temporal integration, and subsequently evaluate the potential
benefits in including temporal information for current and
relevant prediction tasks. In order to ensure a fair comparison
of the representations, we suggest a common model for com-
paring the representation based on probabilistic representations
and a particular kernel-based model.

In the evaluation, we consider the emotions expressed by
music, a prototypical example of a higher-level cognitive
aspect. Music’s ability to represent and evoke emotions is an
attractive and yet a very complex quality for navigating and
searching music archives.

This extends the work from [7] by exploring the use
of a number of additional generative models as the feature
representation, and using these models on five, often-used,
handcrafted, low-level features showing a significant perfor-
mance gain from using these models.

The organization of this paper is as follows. In Section II
a broad background of the content-based modeling pipeline is
presented. In Section III the proposed framework for feature
representation is presented. In Section IV the pairwise kernel
logistic regression model used for incorporating the feature
representations is presented. In Section ?? the dataset and the
evaluation methods are presented. In Section V we present the
results of the proposed feature representations, evaluated on
pairwise emotion comparisons. In Section VI we discuss the
results and lastly in Section VII we conclude on our findings.

II. BACKGROUND

In this section, we give a broad overview of the elements
involved in creating predictive models of higher-level aspects
of music such as genre, tags and expressed emotions based on
the audio signal itself. We use the term audio representation
as a placeholder for all the approaches used to represent the
audio in a mathematical form when going from the digitized
audio signal to finally serve as an input to a predictive model
(i.e. regression or classification).

The following overview is based on the informal taxonomy
given on Fig. II-A. At the lowest level, the audio is represented
in either the temporal or spectral domain, as illustrated on
Fig. II-A. These domains are naturally used interchangeably
throughout MIR and are used as the basic input for the
two major directions. The first approach (feature extraction)
extracts low-level/handcrafted features, designed to capture
different aspects of the audio signal using both the temporal
and spectral domain (Section II-B). The second approach uses
either the time-signal or the tempo-spectral representation of
the audio directly, typically using e.g. the spectrogram (Section
II-C). Common for both approaches is that many (either
implicitly or explicitly) find compact representations of the
continuous data using either subspace methods (Section II-D)
or discretize the basic representations, such as the spectrogram,
to find meaningful (or at least computationally tractable)
representations (Section II-E).

Figure 1. System overview.

Regardless of the approach, the result is a time series of
either discrete or continuous values, which is summarized us-
ing an appropriate feature representation (Section III). Finally,
the feature representation serves as an input to the predictive
model (Section II-G), e.g a SVM or the final layer in a DNN.

We note that some methods, such as Deep Neural Networks
integrate many of the elements into one structure, however,
for the sake of presentation, we differentiate between the
representation (e.g. lower layers) and the prediction (last layer)
in order to provide a unified overview.

A. Pre-segmentation

Pre-segmentation is often used prior to any feature extrac-
tion or representation to account for the naturally segmented
structure of music. The segmentation is also used to capture
some of the temporal evolution in music e.g. [8], [9], [10],
[11], [12] using fixed-sized windows as [13] introduced as
texture windows. The size of the texture windows can be
optimized in this pre step as in [14] using e.g. boosting.
Late integration techniques can be used on top of this pre-
segmentation to obtain a single label as an output of a
predictive model of e.g. genre, tags or emotions (see Section
II-F1 for more about integration methods).

B. Feature extraction

A great deal of work has been put in to automatically extract
features which are often found in the musical literature and
used by musicologists in their work, such as tempo, onsets,
beat and downbeats, multiple fundamental frequencies, key
and chord extraction (MIREX tasks1). These hand-crafted

1http://www.music-ir.org/mirex/wiki
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features have been the building blocks of the machine-learning
methods used to predict the higher-order aspects of music for
a long time. The often-used approach for low-level features is
the frame-based digital signal processing approach, whereby
the waveform is windowed into overlapping frames and dif-
ferent musical aspects are extracted. Some attempts have been
made to build temporal information across frames into the
features themselves, e.g. using fluctuation patterns [15] or in
the multi-timescale Principal Mel-Spectrum Components by
using simple summary statistics [16].

For the specific task of creating predictive models of emo-
tions in music, the approaches have been agnostic in feature
selections and often gathered a great deal of different features
and let the predictive performance guide which features were
appropriate e.g. [17]. Multiple combinations have since been
used and no greater insight seems to have surfaced [18], [1]
into which features to use.

C. Spectrogram

The spectrogram is often used as a basic representation
of the audio signal, typically followed by an unsupervised
machine-learning technique, for example to find subspaces
(see II-D) and/or sparse coding to find key components
[19]. An often-realized option is to compute tempo-spectral
representations which align with the human perceptual and
cognitive understanding. Various transforms are used to this
end, such as log scaling of the frequency bands e.g. mel-scaled
spectrogram [9], [20] or using a constant-Q transform [10], [8].

D. Subspace representation

A subspace representation effectively reduces the dimen-
sionality of the original signal/feature space and provides a
more compact representation of the signal/features, either with
the purpose to provide an interpretable and meaningful view
on low-level features or spectrogram - or simply functioning
as a more practical and compact representation, potentially
increasing the performance of subsequent modeling steps.

1) Spectrogram: The raw spectrogram potentially captures
redundant and irrelevant information for the task at hand.
To filter this irrelevant information and empathize/extract the
important aspect of the signal, many approaches are used
to find the underlying informative subspace which poten-
tially increases the performance of the subsequent predictive
model, such as principle component analysis, non-negative
matrix factorization or independent component analysis. These
methods are also used as a step towards discretization using
dimensionality-reduction techniques like PCA [21]. Further-
more, sparse versions/extensions have been widely used for
e.g. music annotation [22], tag prediction [20], genre predic-
tion [19] and sound-effect retrieval [23].

With the evolution of artificial neural networks and the
ability to use highly parallel computing, neural networks have
grown with multiple layers into so-called deep architectures,
often trained in a mixture between unsupervised and super-
vised approaches. The first layers of neural network, e.g.
trained with unsupervised, restricted Boltzmann machines,

autoencoders, can be seen as a projection of the input fea-
tures onto a subspace (like on Fig. II-A), defined by vectors
represented by the weights and activation functions on the
individual nodes in each layer. Hence, the neural network finds
a non-linear/linear subspace given the specific architecture
in a similar fashion to the other subspace methods, albeit
sometimes in a supervised fashion. We here separate the
decision part and the purely unsupervised part of the network,
although these are often an integrated architecture.

Various combinations of supervised and unsupervised neural
networks have been used in many fields, starting with speaker,
phone and gender recognition e.g. [24], and there have been
adopted for MIR tasks, e.g. for genre prediction [25], instru-
ment detection [26], artist recognition [27], music similarity
[28] and for finding structures useful in emotion prediction
[29].

The temporal aspect can be incorporated implicitly into
neural networks using e.g. convolutive and recurrent neural
networks. This has been done for speech recognition in [30]
using recurrent neural networks, however within MIR it has
not yet been adopted widely. In MIR, the typical approach is
still to analyze and predict on texture windows of a certain
length and do late decision/majority voting effectively in a
different step.

2) Low-level features: The dimensionality of the extracted
low-level features is often high, and PCA, NMF, PKLS [31],
ICA and other dimensionality-reduction techniques are used as
a step prior to the feature representation [28] or explicitly to
decorrelate features [32][24], [20]. DNNs are also used in this
context to find suitable subspace representations of low-level
features, as used by [27] for genre prediction using Echonest2

features provided by the Million Song Dataset3.

E. Discretization

The output of the feature extraction (or the signal itself)
can be both discrete or continuous, as shown on Fig. II-A. A
particularly computationally efficient way of representing the
audio is through discretization in which the continuous time-
series (e.g. spectrogram or low-level features) are encoded as
belonging to a finite set of codewords in a given codebook.
This discretization is divided into two steps, namely defining
the codewords and subsequently assigning features/signal to a
finite number of these codewords:

I Codebook construction: Codebook construction is tradi-
tionally done in a multitude of different ways, depending on
the task and input (see II-A):

• Manually defining or fixing the basis functions is possi-
ble, e.g. for the raw audio signal or low-level features, and
typically entails a sinusoidal, gammatone [33], wavelets
or Gabor basis resulting in a traditional spectral transform
4

2http://developer.echonest.com/acoustic-attributes.html
3http://labrosa.ee.columbia.edu/millionsong/
4We note that the outline in figure TODO supports
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• Learning the cookbook from data - either the current
corpus or an independent one - is typically done using the
aforementioned subspace methods such as PCA, NMF, k-
means, sparse coding, or LASSO.

• Exemplar -based cookbook is constructed from the ob-
served data, and has shown to give similar performance
to learning the dictionary [10].

• Random projections in which the basis is simply ran-
domly initialized have also been used for music applica-
tion, e.g. [34], although not as widely as e.g. NMF or
similar.

II Encoding: The actual process of discretization, i.e. as-
signing the signal/features to one or more code words in a
binary manner, varies from simple threshold/max to solving
sparse/dense coding problems [9]. Top-τ vector quantization
was introduced in [35], assigning the τ -nearest codewords to
each frame. Interestingly enough, increasing τ to a certain
level makes the discrete encoding more robust and results
in better performance in query-by-tag and query-by-example
tasks. In this setting, standard vector quantization is obtained
for τ = 1 and k-means with euclidean is what is traditionally
referred to as vector quantization (VQ)

1) Low-level features: Codebooks are computed using stan-
dard methods e.g. k-means [35], [36], [37], [20] and LASSO
[23], [35] on MFCC features, with different distance measures
(euclidean, cosine similarity etc.). Sparse version has been
applied for tag prediction and genre recognition on MFCC
[10], [20] and Sonogram [10] and Principle Mel-spectrum
components [9] for genre recognition. Another approach is to
see the parametrization of different generative models trained
on music excerpts or segments as a word and using the
likelihood as a distance function between an excerpt and the
generative models. The codebook is now the parametrization
of generative models, if the feature representation is a simple
frequency-based representation, i.e. counting the frequency of
each model, then this results in what the authors call a Bag-
of-Systems (BoS) [38]. This approach can work on different
timescales e.g. sizes of texture windows, and therefore the
number of words for each song can vary.

2) Spectrogram: A more efficient representation of the
spectrogram can be found via a dense and/or sparse basis
via e.g. k-means or sparse coding. K-means is a fast method
of finding cluster centers, e.g. in the context of codebook
construction-dense codewords. In part due to the sheer speed
of computation, this method has been used extensively e.g.
for tag prediction [20], genre classification [39], and it has
been expanded to use patches of the spectrogram in [40].
One popular method is using Sparse Coding (SC) for genre
classification [10], [21], [9], [8], instrument recognition and
tag prediction [9], [20]. Common for these approaches is that
they largely disregard the temporal aspects of the codewords.

F. Feature representation

Common, for most of the approaches described above, is an
output which still has a temporal dimension, i.e. a time series
of features, codewords, subspace projection (from e.g. a neural
network at a particular layer), or spectral representation.

Regardless of whether the output of previous steps is con-
tinuous or discrete, the new time series has to be summarized
over time, allowing one to map the potentially variably sized
vector into a representation that can be fed to a classifier.
Some methods often used to summarize this representation
are temporal pooling, here used to encompass a vast amount
of methods.

1) Temporal pooling/integration: We define a temporal
pooling function as any function that is able to transform
the time series of the features (or annotation) into a more
temporally compact representation. This can be done using
e.g. summary statistics or probabilistic models encoding the
temporal structure of the time-series. When frame-based anal-
ysis is used, a texture window is represented by the chosen
pooling function. If the annotation is on the entire track and not
on each texture window, a method of integrating the decision
to achieve one single prediction is required e.g. tag, genre or
emotion. This process is often referred to as late integration
[41], where methods like decision fusion (e.g. majority voting
[6]), kernels (e.g. convolutive or alignment kernels [41][42]) or
HMM can be used [41]. Depending on whether the features are
discrete or continuous, different types of strategies are used for
early integration/temporal pooling, summarizing the features
locally.

Discrete: A discrete time series (e.g. following discretiza-
tion) of features or a spectrogram has to be somehow repre-
sented before being input to a model. A very popular way is
to obtain the frequency of each discrete entry and represent
this as a histogram, which in most literature is called Bag-of-
Features or Bag-of-Frames representation. Due to the simple
counting, the representation neglects all temporal information
in the time series. Methods have been attempted to account for
some temporal content using e.g. the texture windows [9] and
using so-called Bag-of-Histograms where a BoF representation
is obtained for each texture window, however temporal infor-
mation is not coded locally within each window. The term
’pooling functions’, first used in image processing, has also
been adapted in the audio community e.g. [43][21]. Here a
multitude of functions have been proposed for summarizing
features across time e.g. average, max, log, energy, magnitude,
cuberoot, etc. In [44] they use string compressibility as a
summary statistic for song year prediction and music simi-
larity showing improved performance compared to traditional
summary statistics. In previous work [7] we proposed using
generative models to code temporal content in discrete data for
emotion prediction. Here Markov and Hidden Markov models
were trained on each track and used in a discriminative setting
using kernel methods.

Continuous: The combination of using summary statistics
and texture windows is a popular way of summarizing some
temporal information using e.g. mean [12] and standard devi-
ation [13] forming a single-vector representation or exploring
other simple statistics and window sizes [11][14]. Variants
of this also propose using temporal feature stacking using a
lag window to further account for temporal evolution through
music [45][29]. The use of generative models to obtain a rep-
resentation on the track level using non-temporal models such
as the GMM has been proposed by [46][47][48], treating the
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features as Bag-of-Frames. Some of the first work accounting
for temporal structure using generative models was [42][6]
where the AR model was used to summarize each texture
window for genre prediction. This idea was continued in [41]
for instrument classification exploring different methods of
early and late integration. One drawback of using kernel-based
methods is the scaling, especially when a great number of
texture windows are used, since the kernel evaluations grow
quadratically. This issue was addressed specifically when using
the AR model in [49], where instead of a distance between all
AR models fitted, a mixture of AR models was proposed to
reduce the number of kernel evaluations.

G. Modeling

In this section we review some of the methods used to
take temporal aspects of the musical signal into account on
the modeling side of creating predictive models of higher-
order cognitive categorization of music as e.g. tags, genre and
emotions.

1) Generative: A very popular generative model taking the
sequence of features into account is the HMM, often used
in speech recognition, which has been adapted for use on
classic MIR tasks. Segmentation of audio [50] and chords
[51] were amongst the first to be adopted. Later came genre
recognition [52][53] and key estimation [54]. Extending to a
non-parametric treatment of the classic HMM, [55] used the
Hierarchical Dirichlet process to select the number of states in
the HMM, modeling the temporal evolution of music. Linear
dynamical systems or Dynamic textures has also been used
for segmentation [56], where they extend the classic model
to include a mixture of DTs (DTM). In [57] they showed
that using the DTM model to represent the feature time series
of MFCCs, taking temporal dynamics into account, carried a
substantial amount of information about the emotional content.

2) Discriminative: The discriminative models are by far the
majority of models used in MIR, where SVM/SVR, K-NN and
traditional linear methods like RLS are very commonly used
[58][59]. Some of the methods used to include temporal in-
formation about the audio using discriminative models include
using the probability product kernel between AR models fitted
to excerpts [49][42][7] thus using the generative models in a
discriminative setting. In modeling the emotions expressed in
music, the temporal aspect of emotion has been centered on
how the labels are acquired and treated, not on how the musical
content is treated. E.g. in [60] they used a Conditional Random
Field (CRF) model to essentially smooth the predicted labels
of an SVM, thus still not providing temporal information
regarding the features. In [12] a step to include some tem-
poral information regarding the audio features was made by
including some first and second order Markov properties for
their CRF model, however still averaging the features for one-
second windows.

H. Present work

In the present work, we focus on creating a common
framework for evaluating the importance of temporal in-
formation using generative models as feature representation

for multivariate-feature time series. In particular, we focus
the evaluation on modeling aspects related to the emotions
expressed in music. Since very little work has been done on
evaluating temporal integration within this field, we make a
broad comparison of a multitude of generative models of time-
series data.

We distinguish between how the time series are modeled
on two aspects: whether the time series are continuous or
discrete, and whether temporal information should be taken
into account or not. This results in four different combinations,
which we investigate:

1) Continuous, temporally independent representation:
using mean, single Gaussian and GMM models.

2) Continuous, temporally dependent representation: us-
ing Autoregressive models, Linear Dynamical Systems
(LDS) and Hidden Markov Models with Gaussian emis-
sions (HMMcont).

3) Discretized, temporally independent representation: us-
ing vector quantization in a Bag-of-Audiowords model.

4) Discretized, temporally dependent representation: us-
ing Markov and Hidden Markov Models (HMM).

A multitude of these models have never (to our knowl-
edge) been used in MIR as a track-based representation and
compared systematically. To use these generative models in a
discriminative setting, the Product Probability Kernel (PPK) is
selected as a natural kernel for all considered feature represen-
tations. We extend a kernel-generalized linear model (kGLM)
specifically for pairwise observations for use in predicting the
emotions expressed in music.

In total, nine different feature-representation models are ap-
plied on five different popular low-level features. We evaluate
the features and the feature-representation models using pre-
dictive performance on two datasets of pairwise comparisons
evaluated on the valence and arousal dimensions.

III. FEATURE REPRESENTATION

In order to model higher-order cognitive aspects of mu-
sic, we first consider standard audio-feature extraction which
results in a frame-based, vector-space representation of the
music track. Given T frames, we obtain a collection of T
vectors with each vector at time t denoted by xt ∈ RD, where
D is the dimension of the feature space.The main concern here
is how to obtain a track-level representation of the sequence of
feature vectors for use in subsequent modelling steps. In the
following, we will outline a number of different possibilities
— and all these can be considered as probabilistic densities
over either a single feature vector or a sequence of such (see
also Table. I).

Continuous: When considering the original feature space,
i.e. the sequence of multivariate random variables, a vast
number of representations have been proposed, depending on
whether the temporal aspects are ignored (i.e. considering each
frame independently of all others) or modeling the temporal
dynamics by temporal models.

In the time-independent case, we consider the feature as
a bag-of-frames representation, and compute moments of the
independent samples; namely the mean. Including higher order
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Figure 2. System overview. Starting from the bottom (left): each excerpt is represented by its temporal waveform, from which standard audio feature extraction
transforms the data into a window-based multivariate vector representation. This vector representation acts as input for a multitude of statistical density models.
The first decision is whether to operate in the original continuous vector space (Continuous) or encode the vector space using vector quantization (Discrete)
(which implies initially operating in the continuous domain to identify codewords and perform encoding). Following this choice, the main decision is whether
to encode the temporal (Sequential) aspect or not ”Temporal independence”. The computation of a specific density representation for all excerpts is then fed
to the kernel function in order to effectively define similarity between excerpts. This is finally used in the pairwise kernel GLM model. The pairwise kernel
GLM utilizes these representations to model the pairwise judgment by each subject between two excerpts in terms of their expressed Arousal or Valance.

moments will naturally lead to the popular choice of represent-
ing the time-collapsed time series by a multivariate Gaussian
distribution (or other continuous distributions). Generalizing
this leads to mixtures of distributions such as the GMM (or
another universal mixture of other distributions) used in an
abundance of papers on music modeling and similarity (e.g.
[62], [63]).

Instead of ignoring the temporal aspects, we can model
the sequence of multivariate feature frames using well-known
temporal models. The simplest models include AR models
[6]. Further extending this principle leads to Linear Dynam-
ical Systems (LDS) [61] or with discrete states the Hidden
Markov Model with e.g. Gaussian observation (HMMcont).
Mixtures of any of the mentioned representations may also be
considered, as in [49].

Discrete: In the discrete case, features are naturally discrete
or the original continuous feature space can be discretized
using e.g. VQ with a finite set of codewords resulting in a
dictionary(found e.g. using K-means). Given this dictionary,
each feature frame is subsequently assigned a specific code-
word in a 1-of-P encoding such that a frame at time t is defined

as vector x̃t with one non-zero element.
At the track level and time-independent case, each frame

is encoded as a Multinomial distribution with a single draw,
x̃ ∼ Multinomial(λ, 1), where λ denotes the probability of
occurrence for each codeword and is computed on the basis of
the histogram of codewords for the entire track. In the time-
dependent case, the sequence of codewords, x̃0, x̃1, ..., x̃T ,
can be modeled by a relatively simple (first order) Markov
model, and by introducing hidden states this may be extended
to the (homogeneous) Hidden Markov model with Multinomial
observations (HMMdisc).

A. Estimating the Representation
The probabilistic representations are all defined in terms

of parametric densities which in all cases are estimated using
standard maximum likelihood estimation (see e.g. [61]). Model
selection, i.e. the number of mixture components in the
GMM, order of the AR model, number of hidden states in
the HMM models and dimensionality of latent dimension in
LDS, is explored using two different approaches. A global
representation where model selection is performed by e.g.
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Seq.
Markov p (x̃0, x̃1, .., x̃T |θ) = λx̃0

T∏
t=1

Λx̃t,x̃t−1 λ,Λ Multinomial

HMMdisc p (x̃0, x̃1, .., x̃T |θ) =
∑
z0:T

λz0

T∏
t=1

Λzt,zt−1Φt λ,Λ,Φ Multinomial

Table I
CONTINUOUS: x ∈ RD ,Λzt,zt−1 = p (zt|zt−1),Γt = p (xt|zt), p

(
xt|zt(i)

)
= N

(
xt|µ(i),Σ(i)

)
, ηz0 = N (z0|µ0,Σ0),

Υt = N (xt|Bzt),Ωzt,zt−1 = N (zt|Azt−1). L IS THE NUMBER OF COMPONENTS IN THE GMM, P INDICATES THE ORDER OF THE AR MODEL, A
AND C ARE THE COEFFICIENTS AND NOISE COVARIANCE IN THE AR MODEL RESPECTIVELY AND T INDICATES THE LENGTH OF THE SEQUENCE.

DISCRETE: x̃ ∼ Multinomial (λ), Λx̃t,x̃t−1
= p (x̃t|x̃t−1), Φt = p (x̃t|zt), p

(
xt|zt(i)

)
= Multinomial

(
λ(i)

)
. THE BASIC MEAN

REPRESENTATION IS OFTEN USED IN THE MIR FIELD IN COMBINATION WITH A SO-CALLED SQUARED EXPONENTIAL KERNEL ([61]), WHICH IS
EQUIVALENT TO FORMULATING A PPK WITH A GAUSSIAN WITH THE GIVEN MEAN AND A COMMON, DIAGONAL COVARIANCE MATRIX CORRESPONDING

TO THE LENGTH SCALE WHICH CAN BE FOUND BY CROSS-VALIDATION AND SPECIFICALLY USING q = 1 IN THE PPK.

Information Criteria and an individualized representation using
cross validation.

1) Global representations: This approach is likelihood-
based and penalizes the number of parameters used to
estimate the model for each feature time-series. We explore
the Bayesian Information Criteria (BIC) for HMM and LDS.
For the AR models, there are likelihood-based criteria (e.g.
AIC, BIC, etc.) and prediction-error (PFE*) approaches to
determine the appropriate order of the models. This is global
in the sense that the selection of parameters for the feature
representation is only dependent of the individual feature
time series.

2) Individual representations: Using cross validation, we
can specify a feature representation individualized to each
participant. The assumption is that each person listens and
perceives the music differently, e.g. emphasizes different
aspects and structures in the musical signal, and therefore
the representation should also be individualized. We use two
different types of cross-validation 1) simply sweeping across
model order i.e. for AR models the temporal lag, HMM and
LDS models the dimension of transition matrix 2) using the
idea of information criteria but simply using crossvalidation
to weigh the penalty term for the number of parameters used.
The difference here is that each excerpt potentially ends up
with different model orders as compared to using method 1.
This in turn also examines all possible information criteria
that use the same form as the AIC and BIC.

B. Kernel Function

The various track-level representations outlined above are
all described in terms of a probability density as outlined in

Table I, for which a natural kernel function is the Probability
Product Kernel [64]. The PPK forms a common ground for
comparison and is defined as,

k
(
p (x|θ) , p

(
x|θ′

))
=

∫ (
p (x|θ) p

(
x|θ′

))q
dx, (1)

where q > 0 is a free model parameter. The parameters of the
density model, θ, obviously depend on the particular repre-
sentation and are outlined in Tab.I. All the densities discussed
previously result in (recursive) analytical computations, [64],
[42]. It should be noted that using the PPK does not require
the same length T of the sequences (the musical excerpts).
For latent variable models, such as the HMM and LDS, the
number of latent states in the models can also be different.
The observation space, including the dimensionality D, is the
only thing that has to be the same. This is convenient in the
case where excerpts of different lengths should be compared.

IV. PAIRWISE KERNEL GLM

The pairwise paradigm requires an untraditional modeling
approach, for which we derive a relatively simple kernel
version of the Bradley-Terry-Luce model [65] for pairwise
comparisons. The resulting kernel is also applicable in other
kernel machines such as support vector machines.

We first collect the vector representation x for N audio
excerpts in the set X = {xi|i = 1, ..., N}, where xi ∈ RD,
denotes a standard, D dimensional audio feature vector for
excerpt i. In the pairwise paradigm, any two distinct excerpts
with index u and v, where xu ∈ X and xv ∈ X , can be
compared in terms of a given aspect (such as arousal/valance).
With M such comparisons, we denote the output set as
Y = {(ym;um, vm)|m = 1, ...,M}, where ym ∈ {−1,+1}
indicates which of the two excerpts had the highest valence
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(or arousal). ym = −1 means that the um’th excerpt is picked
over the vm’th and visa versa when ym = 1.

The basic assumption is that the choice, ym, between the
two distinct excerpts, u and v, can be modeled as the difference
between two function values, f(xu) and f(xv). The function
f : X → R hereby defines an internal, but latent absolute
reference of valence (or arousal) as a function of the excerpt
(represented by the audio features, x).

Modeling such comparisons can be accomplished by the
Bradley-Terry-Luce model [65], [66], here referred to more
generally as the (logistic) pairwise GLM model. The choice
model assumes logistically distributed noise [66] on the in-
dividual function value, and the likelihood of observing a
particular choice, ym, for a given comparison m therefore
becomes

p (ym|fm) ≡ 1

1 + e−ym·zm
, (2)

with zm = f(xum)− f(xvm) and fm = [f(xum), f(xvm)]T .
The remaining question is how the function, f(·), is mod-

eled. In the following, we derive a kernel version of this
model in the framework of kernel Generalized Linear Models
(kGLM). We start by assuming a linear and parametric model
of the form fi = xiw

> and consider the likelihood defined
in Eq. (2). The argument, zm, is now redefined such that
zm =

(
xumw> − xvmw>

)
. We assume that the model

parameterized by w is the same for the first and second input,
i.e. xum

and xvm . This results in a projection from the audio
features x into the dimensions of valence (or arousal) given
by w, which is the same for all excerpts. Plugging this into
the likelihood function we obtain:

p (ym|xum
,xvm ,w) =

1

1 + e−ym((xum−xum)w>)
. (3)

Following a maximum likelihood approach, the effective cost
function, ψ(·), defined as the negative log likelihood is:

ψGLM (w) = −
∑M

m=1
log p (ym|xum

,xvm
,w). (4)

Here we assume that the likelihood factorizes over the ob-
servations, i.e. p (Y|f) =

∏M
m=1 p (ym|fm). Furthermore, a

regularized version of the model is easily formulated as

ψGLM−L2 (w) = ψGLM + λ ‖w‖22 , (5)

where the regularization parameter λ is to be found using
for example cross-validation, as adopted here. This cost is
still continuous and is solved with a standard optimization
technique.

This basic pairwise GLM model has previously been used to
model emotion in music [67]. In this work the pairwise GLM
model is extended to a general regularized kernel formulation
allowing for both linear and non-linear models. First, consider
an unknown, non-linear map of an element x ∈ X into a
Hilbert space, H, i.e., ϕ(x) : X 7→ H. Thus, the argument zm
is now given as

zm = (ϕ (xum)− ϕ (xvm))wT (6)

The representer theorem [68] states that the weights, w —

despite the linear difference between mapped instances —
can be written as a linear combination of the inputs such
that It is easily shown that as with standard kernel logistic
regression (KLR) [?], we can write the weights, w, as a linear
combination of the inputs in order to use the kernel trick, so
with

w =
∑M

l=1
αl (ϕ (xul

)− ϕ (xvl)) . (7)

Inserting this into Eq. (6) and applying the ”kernel trick” [61],
i.e. exploiting that 〈ϕ (x)ϕ (x′)〉H = k (x,x′), we obtain

zm = (ϕ (xum
)− ϕ (xvm))

M∑
l=1

αl (ϕ(xul
)− ϕ(xvl))

=

M∑
m=1

αl (ϕ (xum
)− ϕ (xvm)) (ϕ(xul

)− ϕ(xvl))

=

M∑
l=1

αl(ϕ (xum)ϕ(xul
)− ϕ (xum)ϕ(xvl)

− ϕ (xvm
)ϕ(xul

) + ϕ (xvm)ϕ(xvl))

=

M∑
l=1

αl(k (xum ,xul
)− k (xum ,xvl)

− k (xvm ,xul
) + k (xvm ,xvl))

=

M∑
l=1

αlk ({xum ,xvm}, {xul
,xvl}). (8)

Thus, the pairwise kernel GLM formulation leads exactly to
standard kernel GLM like [69], where the only difference is
the kernel function, which is now a (valid) kernel between two
sets of pairwise comparisons 5. If the kernel between inputs is
a linear kernel, we obtain the basic pairwise logistic regression
presented in Eq. (3). The cost function is now defined as

ψkGLM−L2 (α) = −
M∑

m=1

log p (ym|α,K) + λα>Kα,

i.e. in terms of α, but it is of the same form as for the basic
model and we can apply standard optimization techniques to
find the L2 regularized solution. Predictions for unseen input
pairs {xr,xs} is easily calculated as

∆frs = f (xr)− f (xs) (9)

=
∑M

m=1
αm k ({xum

,xvm}, {xr,xs}). (10)

Thus, as seen from Eq. (8), predictions exist naturally only as
delta predictions. however. it is easy to obtain a “true” latent
(arbitrary scale) function for a single output by aggregating
all the delta predictions. To evaluate the different feature
representations, two datasets are used. The first dataset consists
of NIMM = 20 excerpts and is described in [71]. It comprises
all MIMM = 190 unique pairwise comparisons of 20 different
15 second excerpts, chosen from the USPOP20021 dataset. 13
participants (3 female, 10 male) were compared on both the

5In the Gaussian Process setting this kernel is also known as the Pairwise
Judgment kernel [70].

1http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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dimensions of valence and arousal. The second dataset [72]
consists of MYANG = 7752 pairwise comparisons made by
multiple annotators on different parts of the NYANG = 1240
different Chinese 30-second-long excerpts, on the dimension
of valence.

Feature Description Dimension
Mel-frequency
cepstral
coefficients
(MFCC)6

The discrete cosine transform of the
log-transformed short-time power
spectrum on the logarithmic mel-
scale.

20

Chromagram [73]
The short-time energy spectrum is
computed and summed appropri-
ately to form each pitch class.

12

Loudness [74] Loudness is the energy in each crit-
ical band. 24

Echonest Timbre7 Proprietary features to describe tim-
bre. 12

Echonest Pitch?? Proprietary chroma-like features. 12
Table II

ACOUSTIC FEATURES USED FOR EMOTION PREDICTION.

A. Performance Evaluation

In order to evaluate the performance of the proposed repre-
sentation of the multivariate feature time series, we compute
learning curves. We use the so-called Leave-One-Excerpt-Out
cross validation, which ensures that all comparisons with a
given excerpt are left out in each fold [67]. Furthermore
a ’win’-based baseline (Baselow) as suggested in [71] is
used. This baseline represents a model with no information
from features, i.e. testing against this baseline tests whether
information is found in the features for predicting expressed
emotion in music represented by the pairwise comparisons.
We use the McNemar paired test between each model and the
baseline, with the Null hypothesis that the two models are the
same, if p < 0.05 then the models can be rejected as equal on
a 5% significance level.

V. RESULTS

We consider the pairwise classification error on the two
outlined datasets with the L2 regularized pairwise kernel GLM
model, and the outlined pairwise kernel function combined
with the PPK kernel (with q=1/2). For the YANG dataset, a
global regularization parameter λ was estimated using 5-fold
cross validation. The 14 different track-level representations
are evaluated on the 5 different features extracted from the
two datasets. The quantization of the multivariate time series,
i.e. the vector quantization, was performed using a standard
online K-means algorithm, namely sofia K-means [75] with
random initialization and a standard Euclidean metric. To
prevent overfitting, the codebook was estimated for each
LOEO fold on the IMM dataset and for the YANG dataset
the codebooks were estimated on the entire dataset. The
estimations where chosen as the best representation out of
10 repetitions. The codebook sizes for the temporal models
were 8, 16, 24 and 32 audiowords and for the VQ models
256, 512 and 1024 were tested. For the continuous emitting
HMMs, 2 to 5 states were chosen, with a single Gaussian for
each state. Introducing a GMM for each state did not show any

performance improvements, and using more states only made
the model estimation more difficult due to the small number
of samples in these feature time series. Similarly, the LDS/DT
models showed that only a low dimensionality of the transition
matrix was possible. Hyperparameters and kernel parameters
were estimated individually for each participant in the IMM
dataset, whereas for the YANG dataset global parameters were
estimated.

We present the results comparing the two different domains
of feature representations namely a continuous and discretized
representation.

A. Continuous
Comparing the performance of the kGLM-L2 model pre-

dicting pairwise comparisons using the 5 different features on
the YANG dataset, on average across feature representations
we see that the MFCC, Loudness and Echonest Pitch features
are the best-performing, while Chroma and Echonest Timbre
perform rather poorly. The traditional approach of taking the
mean across the entire multivariate time-series of the 30-
second excerpts is the worst-performing representation. In-
creasing complexity and using a single Gaussian with diagonal
covariance improves performance for all features, and using a
full covariance further improves the representation. Introduc-
ing additional Gaussians using a GMM is the best-performing,
non-temporal representation and for the Chroma features is
the best method of representing the features for this specific
task. Introducing temporal coding using the HMM with full
covariance Gaussian emissions does not improve performance
for most features except for Echonest Pitch features, where an
improvement of 1.9% compared to a full Gaussian is observed.
The AR models, as previously shown in [7], perform very well
in coding MFCC features, likewise for Loudness and Echonest
Timbre. For loudness, a diagonal model with order of p=9
is the best performing, whereas for MFCCs the VAR model
performs best; again with rather high order of p=4. Adding
an extra dimension of complexity with the latent dimensions
of the LDS/DT model does not seem to improve the feature
representation, regardless of how the complexity of the model
is chosen. The AIC and BIC for the Diagonal AR models
do not perform well across the different features in selecting
an order that is useful as feature representation for emotion
prediction, whereas the FPE for the VAR model seems to be
a good method.

Using the continuous representation, the AR models again
have the best predictive performance, with the best perfor-
mance obtained for all but echonest pitch features. The strategy
of finding the best order is again using cross validation. The
AIC and BIC perform rather poorly compared to CV and
completely fail for the echonest features due to selecting too
high orders, making the computation of the PPK improper.
The order selected is rather low (p=2-5) as compared to the
order selected for the valence data on both the YANG and IMM
datasets (p=6-10). It seems that the more complex LDS/DT
model does not perform that well for the arousal data for any
of the features as compared to the related AR models.

Using the HMM models with continuous emissions shows
rather poor predictive performance, here included using both



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. X, NO. X, X 2015 10

Obs. Time States Models
Features

MFCC Chroma Loudness Timbre Pitch

C
on

tin
uo

us

Indp.
Observed

Mean 0.256 0.332 0.283 0.311* 0.269
N (x|µ, σ) 0.254 0.295* 0.269 0.307* 0.272
N (x|µ,Σ) 0.239 0.280 0.242 0.276 0.250
GMMdiag,BIC 0.238 0.252 0.238 0.270 0.260
GMMfull,BIC 0.229 0.250 0.235 0.264 0.247

Temp.

Observed

ARdar,p=7 0.245 0.264 0.238 0.263 0.239
ARdar,p=8 0.242 0.273 0.235 0.259 0.238
ARdar,p=9 0.241 - 0.234 0.257 0.237
ARdar,p=10 0.239 - 0.342 0.258 0.237
ARdar,AIC 0.306 0.273 0.238 0.300 0.270
ARdar,BIC 0.250 0.285 0.256 0.266 0.243
ARvar,p=1 0.253 0.296* 0.254 0.277 0.254
ARvar,p=2 0.233 0.273 0.239 0.257 0.245
ARvar,p=3 0.223 0.271 1.000 - -
ARvar,p=4 0.221 0.274 1.000 - -
ARvar,FPE 0.223 0.271 0.239 0.277 0.254

Latent

LDSfull,s=1 0.265 0.277 0.264 0.269 0.257
LDSfull,s=2 0.262 0.273 0.261 0.257 0.255
LDSfull,s=3 0.269 0.276 0.265 0.259 0.254
LDSfull,BIC 0.273 0.274 0.269 0.264 0.258
HMMfull,s=2 0.232 0.255 0.240 0.258 0.231
HMMfull,s=3 0.233 0.254 0.241 0.257 0.240
HMMfull,s=4 0.233 0.251 0.241 0.262 0.249
HMMfull,s=5 0.232 0.250 0.243 0.264 0.255

D
is

cr
et

e

Indp. Observed
VQp=256 0.268 0.329 0.282 0.327 0.267
VQp=512 0.266 0.313 0.280 0.319 0.260
VQp=1024 0.264 0.308* 0.272 0.308* 0.257

Temp.

Observed

Markovp=8 0.260 0.305 0.264 0.260 0.245
Markovp=16 0.236 0.258 0.257 0.259 0.236
Markovp=24 0.233 0.256 0.244 0.260 0.235
Markovp=32 0.233 0.257 0.237 0.263 0.238

Latent

HMMs=2,p=8 0.268 0.309* 0.279 0.282 0.248
HMMs=3,p=8 0.264 0.310* 0.275 0.270 0.246
HMMs=4,p=8 0.248 0.293 0.262 0.263 0.252
HMMBIC,p=8 0.268 0.305 0.291 0.275 0.248
HMMs=2,p=16 0.254 0.272 0.254 0.261 0.238
HMMs=3,p=16 0.256 0.270 0.248 0.262 0.244
HMMs=4,p=16 0.255 0.269 0.246 0.266 0.246
HMMBIC,p=16 0.268 0.264 0.277 0.261 0.243
HMMs=2,p=24 0.262 0.265 0.252 0.271 0.253
HMMs=3,p=24 0.261 0.261 0.251 0.264 0.246
HMMs=4,p=24 0.262 0.271 0.257 0.265 0.245
HMMBIC,p=24 0.261 0.261 0.256 0.264 0.244
HMMs=2,p=32 0.259 0.266 0.250 0.260 0.240
HMMs=3,p=32 0.260 0.265 0.256 0.260 0.262
HMMs=4,p=32 0.258 0.268 0.262 0.264 0.246
HMMBIC,p=32 0.259 0.264 0.254 0.263 0.248
Baseline 0.262 0.262 0.262 0.262 0.262

Table III
RESULTS OF THE KGLM-L2 MODEL EVALUATING DIFFERENT FEATURE AND FEATURE REPRESENTATION USING A 10-FOLD CROSS VALIDATION ERROR
RATE PERFORMED ON THE YANG DATASET EVALUATING THE DIMENSION OF VALENCE. RESULTS IN BOLD INDICATE THE BEST PERFORMING FEATURE
REPRESENTATION FOR THAT PARTICULAR FEATURE AND RESULTS IN italic INDICATE THE BEST PERFORMING FEATURE REPRESENTATION FOR EITHER

CONTINUOUS OR DISCRETE OBSERVATION SPACE.

a diagonal and full covariance emission distribution. Multiple
attempts were made to find different implementations and
use multiple initializations to find suitable models to repre-
sent the feature, but with no luck. Internally, attempts with
higher orders (s¿5) and using GMM emissions (p¿1) for each
latent state were made, but with little difference. Here we
do see some difference between using a diagonal emission
distribution, whereas for the YANG dataset no difference was
observed.

The valence data for the IMM dataset on figure V again
shows that the MFCC features perform well as previously
shown [7]. The AR models again show a great performance
improvement as compared to any of the independent models
across all features except for the echonest pitch features.

Surprisingly, many of the non-temporal representations per-
form very poorly, being non-significant from baseline in many
cases. We do see that adding the extra latent dimensions using
the LDS/DT model is beneficial as feature-representation for
chroma and echonest timbre features, when selecting states
using CV. Using a full correlation between each feature di-
mension in the VAR model seems to perform poorly compared
to only using a diagonal model in the DAR.

B. Discretized
Looking at the discretized features, the three different

independent models are the worst performing of the feature
representations. Surprisingly, the VQ performs equally poorly
compared to simply taking the average across the features.
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Adding some temporal coding of the discretized features
using the Markov model yields a great improvement in the
performance. Across all features used in this work, it is the
best performing feature representation for discretized data. For
the HMM there is a decrease in performance and it seems the
structures this more complex model finds are not suitable to
predict the valence annotations of the YANG dataset.

For the discretized acoustical features, the Markov model
shows a slight improvement as compared to the Vector Quanti-
zation data across all features for the IMM arousal dataset. For
the MFCC, Chroma, and echonest timbre feature there is a sig-
nificant difference between best performing VQ and Markov
representation, whereas for loudness there is no significant
difference. Increasing the memory in the feature representation
using the HMM models of the discretized data we specially
see a performance improvement for the Chroma and echonest
pitch features as compared to the Markov representation,
where in the echonest pitch was not a significant improvement
compared to a simple VQ representation. The selection of
latent states shows again that the information-criteria approach
fails compared to the two cross-validation strategies. However
comparing the HMMWIC,p=16 and HMMCV,p=16 there is
no significant difference.

In the discretized feature case, the simple-independent VQ
representation performs surprisingly badly, not just in the
MFCC case, but all features. Also here where we see the
biggest and consistent performance improvements when in-
creasing temporal complexity in the feature representation.
For the MFCC features going from VQ to Markov means
an absolute improvement is obtained of 3.34% and relative
of (11.95%) and for Chroma of 2.55% (8.57%), Loudness
of 4.25% (14.68%) and echonest timbre of 2.06% (7.14%).
Increasing the complexity further from a Markov to an HMM
representation the performance further increases for MFCC
features of 1.34% (5.43%), Chroma of 3.95% (14.50%),
Loudness of 1.34% (5.41%), echonest timbre of 1.28%
(4.75%) and echonest pitch of 1.94% (7.78%)

VI. DISCUSSION

In essence, we are looking for a way of representing an
entire track based on the simple features extracted. That is, we
are trying to find generative models that can capture meaning-
ful information coded in the features specifically for coding
aspects related to the emotions expressed in music. In this
case, we compare single features with single representations,
finding which single representation is most suitable for each
feature. Since these are unsupervised methods, we perform
an explorative approach in finding which feature and feature
representation combination is most suitable. The advantage of
using this framework is that we can use any generative model
for feature representation and using such a representation
replace the entire feature time series by the model, since the
distances between tracks are now between the models trained
on each of the tracks and not directly on the features. This
provides a significant reduction in the number of parameters to
store for each track. Furthermore, it allows us to code different
temporal structures for each feature and potentially combine
features extracted on different time scales.

The five features each represent aspects of music which
could explain the emotions expressed in music. The MFCC
and Echonest timbre features are said to capture timbre,
whereas the Chroma and Echonest pitch are both of tonal
character and the loudness being of psychoacoutic origin.

A. Discretized

When discretizing features such as the Echonest pitch
and Chroma features, using k-means we can analyze the
codewords. The first codewords using p = 8 and p = 16
are essentially single and double tones. As the number of
codewords (p > 16) increase, we see more and more complex
chords. This means that when using a VQ model (p > 255)
it thus codes which keys/chords are present in the track.
Coding the tonal keywords using a Markov or HMM model
essentially produces a probabilistic key and chord-transition
representation. The predictive performance difference between
coding only the presence of keys/chords and coding transitions
can clearly be seen across all datasets used. On the arousal
data, an increase of 3.8% and valence of 6.5% for the IMM
dataset and 5.2% on the YANG dataset. 8 The echonest pitch
feature, using a severely reduced temporal resolution, does
not show the same improvement using the smaller 15-second
excerpt of the IMM dataset, whereas for the YANG dataset
an improvement of 2.2% is obtained. Across all datasets we
observed that this reduced temporal resolution in the echonest
features made the estimation of representations rather hard
and did not aid in gaining any more detailed insight into
the temporal dynamics. Discretizing the Loudness features
captures different energy patterns across the critical bands used
in the loudness model. Using the Markov and HMM produces
a dynamical loudness representation. Only using the presence
of loudness patterns shows rather poor predictive performance
of the valence data both IMM and YANG dataset but coding the
transitions with Markov and HMM improves the performance
significantly. For arousal data, however, this does not seem
to be the case, which is something that should be looked
further into. When discretizing MFCC and Echonest timbre
features, the codewords can be somewhat hard to interpret.
We do however see the same pattern that simply using a VQ
is performing poorly as compared to the Markov and HMM.

Using the smaller excerpts of 15 seconds in the IMM
dataset seems to favor the HMMs. Naturally more memory
is present in the HMMs as compared to the Markov models,
thus enabling the coding of more complex temporal structures,
which is essential for coding the valence dimension across all
the features. Thus potentially finding hidden structures in the
features not coded in each frame of the features but, by their
longer term temporal structures, captured by the models.

B. Continuous

We see the same trend with the continuous observations,
i.e. including temporal information significantly increases pre-
dictive performance. This is the case for all features used to

8To compare the difference in the number of keywords used for the VQ
models and Markov and HMMs, the VQ representation was used for the same
codewords as the Markov and HMMs and performed very poorly.
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Obs. Time States Models
Features

MFCC Chroma Loudness Timbre Pitch

C
on

tin
uo

us

Indp. Observed

Mean 0.203 0.282* 0.219 0.215 0.228
N (x|µ, σ) 0.188 0.228 0.202 0.215 0.214
N (x|µ,Σ) 0.205 0.244 0.215 0.240 0.228
GMMdiag,BIC 0.249 0.256 0.224 0.260 0.242
GMMfull,BIC 0.213 0.264 0.224 0.272* 0.272*
GMMdiag,CV 0.189 0.222 0.202 0.212 0.213
GMMfull,CV 0.205 0.244 0.214 0.239 0.228

Temp.

Observed

ARdar,p=2 0.198 0.235 0.179 0.214 0.232
ARdar,p=3 0.195 0.251 0.181 0.219 0.251
ARdar,p=4 0.188 0.256 0.196 0.239 0.261
ARdar,CV 0.175 0.214 0.172 0.202 0.213
ARdar,AIC 0.200 0.265* 0.595 - -
ARdar,BIC 0.195 0.259 0.181 - -
ARvar,p=1 0.184 0.264 0.182 0.244 0.260
ARvar,p=2 0.201 0.270* 0.195 1.000 1.000
ARvar,CV 0.181 0.259 0.180 0.244 0.260

Latent

LDSfull,WIC 0.241 0.250 0.210 0.233 0.254
LDSfull,BIC 0.276 0.265* 0.254 0.244 0.261*
LDSfull,CV 0.232 0.218 0.204 0.224 0.237
HMMfull,s=2 0.258 0.251 0.263 0.262 0.270*
HMMfull,s=3 0.266* 0.255 0.261 0.265 0.269*
HMMfull,s=4 0.264* 0.250 0.265* 0.273* 0.267*
HMMfull,s=5 0.256 0.241 0.267* 0.273 0.272*
HMMdiag,s=2 0.239 0.240 0.255 0.247 0.265*
HMMdiag,s=3 0.254 0.243 0.267* 0.262 0.281
HMMdiag,s=4 0.261 0.249 0.273 0.257 0.269*
HMMdiag,s=5 0.260 0.244 0.270* 0.257 0.287

D
is

cr
et

e

Indp. Observed
VQp=256 0.188 0.251 0.185 0.232 0.201
VQp=512 0.188 0.243 0.176 0.231 0.213
VQp=1024 0.189 0.244 0.179 0.246 0.210

Temp.

Observed

Markovp=8 0.190 0.258 0.177 0.228 0.230
Markovp=16 0.178 0.242 0.178 0.247 0.216
Markovp=24 0.195 0.231 0.191 0.224 0.220
Markovp=32 0.197 0.240 0.199 0.243 0.236

Latent

HMMp=8,CV 0.193 0.225 0.182 0.217 0.229
HMMp=8,BIC 0.247 0.267* 0.207 0.235 0.243
HMMp=16,CV 0.196 0.207 0.185 0.229 0.234
HMMp=16,BIC 0.218 0.236 0.203 0.240 0.257
HMMp=24,CV 0.214 0.220 0.205 0.234 0.203
HMMp=24,BIC 0.212 0.245 0.238 0.250 0.238
HMMp=32,CV 0.199 0.228 0.191 0.229 0.200
HMMp=32,BIC 0.229 0.260 0.223 0.243 0.254
Baseline 0.269 0.269 0.269 0.269 0.269

Table IV
RESULTS OF THE KGLM-L2 MODEL EVALUATING DIFFERENT FEATURE AND FEATURE REPRESENTATION USING A 10-FOLD CROSS VALIDATION ERROR

RATE PERFORMED ON THE IMM DATASET EVALUATING THE DIMENSION OF AROUSAL

predict the YANG dataset, except for the chroma feature. Using
a 10-fold CV scheme as compared to [7] makes the results
non-comparable, but the VAR model is still the best feature
representation for the MFCC features. Surprisingly, a non-
temporal representation of the Chroma features performs well,
essentially only coding key/chord presence in the entire track.
The AR model is a very fast and easy method of obtaining
a track representation, however, choosing order is tricky and
across all datasets the best approach seems to be cross valida-
tion. The HMMs with continuous emission are rather hard to
estimate and show only slight or no improvements compared
to the other continuous feature representation. In the longer
sequence in the YANG dataset, the LDS/DT models do not
show any improvement as compared to the simpler AR models.
The same applies for the arousal data in the IMM dataset,
but for the valence dataset we see a rather large improvement
across all features used. This shows there is no clear-cut case
in disregarding any feature representation.

C. Model selection

A challenge across latent variable models like GMM, HMM
and LDS and for observed-state models like AR models, is
model selection. We have investigated two different situations,
namely a personalized case, where representations are fitted
specifically for each subject, and a static case, where no
information is present about each user in the YANG case.

Individual representations
The idea of using individualized feature representation specific
for each user works very well for the IMM dataset for both
valence and arousal. Although it is a rather small dataset,
we do see that using individualized model orders of the AR
models produces a dramatic performance gain and should be
further investigated on larger datasets where the details of each
user is known. The same observation goes for the GMM,
LDS and HMM models, that comparing the use of global
representations shows rather poor performance compared to
finding individual model orders. The downside is that more
resources should be invested in finding these model orders.
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Obs. Time States Models
Features

MFCC Chroma Loudness Timbre Pitch

C
on

tin
uo

us

Indp. Observed

Mean 0.272 0.446 0.270 0.301 0.251
N (x|µ, σ) 0.287* 0.276* 0.282* 0.301 0.270
N (x|µ,Σ) 0.255 0.277* 0.267 0.294 0.254
GMMdiag,BIC 0.262 0.290* 0.269 0.291 0.283*
GMMfull,BIC 0.254 0.283* 0.277* 0.283* 0.287*
GMMdiag,CV 0.252 0.268 0.262 0.274 0.264
GMMfull,CV 0.257 0.272 0.269 0.277 0.257

Temp.

Observed

ARdar,p=8 0.244 0.333 0.255 0.284* 0.280*
ARdar,p=9 0.237 0.380 0.259 0.284* 0.284*
ARdar,p=10 0.234 - 0.263 0.284* 0.285*
ARdar,CV 0.225 0.251 0.240 0.262 0.256
ARdar,AIC 0.237 0.281* 0.512 - -
ARdar,BIC 0.308 0.273 0.263 - -
ARvar,p=1 0.275* 0.283* 0.280* 0.286* 0.269
ARvar,p=2 0.260 0.287* 0.261 1.000 1.000
ARvar,CV 0.246 0.275* 0.250 0.286* 0.269

Latent

LDSfull,WIC 0.241 0.265 0.249 0.271 0.279*
LDSfull,BIC 0.286* 0.265 0.277* 0.273 0.283*
LDSfull,CV 0.229 0.247 0.248 0.253 0.268
HMMfull,s=2 0.275 0.282* 0.282* 0.283* 0.281*
HMMfull,s=3 0.284* 0.279 0.286* 0.289 0.285*
HMMfull,s=4 0.283* 0.272 0.283* 0.289 0.284*
HMMfull,s=5 0.280* 0.279* 0.284* 0.283* 0.284*
HMMdiag,s=2 0.282* 0.265 0.277 0.279 0.262
HMMdiag,s=3 0.281* 0.275* 0.280* 0.283* 0.286*
HMMdiag,s=4 0.276* 0.283* 0.283* 0.283* 0.280*
HMMdiag,s=5 0.286* 0.277* 0.282* 0.285* 0.292

D
is

cr
et

e

Indp. Observed
VQp=256 0.286* 0.321 0.313 0.315 0.258
VQp=512 0.282* 0.308 0.304 0.289* 0.255
VQp=1024 0.280* 0.298 0.290* 0.291 0.247

Temp.

Observed

Markovp=8 0.252 0.277* 0.256 0.268 0.261
Markovp=16 0.248 0.279* 0.247 0.272 0.252
Markovp=24 0.246 0.272 0.253 0.272 0.262
Markovp=32 0.254 0.272 0.256 0.277* 0.249

Latent

HMMp=8,CV 0.242 0.251 0.247 0.260 0.253
HMMp=8,BIC 0.253 0.275* 0.283* 0.277* 0.283*
HMMp=16,CV 0.233 0.248 0.241 0.256 0.240
HMMp=16,BIC 0.267 0.273 0.269 0.279* 0.274
HMMp=24,CV 0.244 0.233 0.238 0.260 0.234
HMMp=24,BIC 0.261 0.275 0.271 0.281* 0.250
HMMp=32,CV 0.255 0.235 0.234 0.257 0.230
HMMp=32,BIC 0.266 0.275 0.263 0.283* 0.251
Baseline 0.285 0.285 0.285 0.285 0.285

Table V
RESULTS OF THE KGLM-L2 MODEL EVALUATING DIFFERENT FEATURE AND FEATURE REPRESENTATION USING A 20-FOLD CROSS VALIDATION ERROR

RATE PERFORMED ON THE IMM DATASET EVALUATING THE DIMENSION OF VALENCE

Comparing the weighted information criteria with the more
simple CV approach showed that the information criteria
approach is not the way to go for feature representation in
any form evaluated on this specific dataset.

Global representations
For the GMM model, using the BIC when information is
present about each user’s annotations seems like a rather poor
approach, but on the YANG dataset, performance is good. For
the IMM dataset all criteria were not a great success, as the
FPE failed to find proper representation and in some cases
it was similar for the AIC and BIC case. For the LDS/DT
models, CV was clearly the best performing strategy, using
the same order for all excerpts or using BIC performed poorly.
The same story with the HMMs across all datasets showed that
using BIC is not appropriate for feature representation given
these datasets.

D. Future work

We have here worked with using one single feature and fea-
ture representation combinations, however, this is potentially
a simplified view of music. Different musical features and
structures most likely can explain what emotions are expressed
in music. Thus combining both features and feature representa-
tions would be an obvious extension to the existing approach.
Given the framework presented here, using generative models
and the PPK, this could be achieved using Multiple Kernel
Learning - essentially learning optimal feature and feature
representation combinations. Another extension would be to
use more rich representations such as spectrograms, and still
use the same approach as presented here.

VII. CONCLUSION

In this work, we provided a general review of current
audio and feature representations focusing on the temporal
aspect of modeling music. We identified and presented a
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general probabilistic approach for evaluating various track-
level representations for modeling and predicting higher-level
aspects of music, such as genre, tag, emotion and similarity,
focusing on the benefit of modeling temporal aspects of
music. With the aim to do a thorough comparison between
many different temporal representations, we focused on one
of these aspects; namely emotion expressed in music. Here we
considered datasets based on robust, pairwise paradigms for
which we extended a particular kernel-based model forming
a common ground for comparing different track-level repre-
sentations of music using the probability product kernel. A
wide range of generative models for track-level representations
was considered on two datasets, focusing on evaluating using
both continuous and discretized observations. Modeling the
valence and arousal dimensions of expressed emotion showed
a significant gain in applying temporal modeling on both
the datasets included in this work. In conclusion, we have
found evidence for the hypothesis that a statistically significant
gain is obtained in predictive performance by representing the
temporal aspect of music for emotion prediction using five
different features.
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