Modelling and analyses of
synthetic biology

Joachim Kirkegaard Friis

DTU

I

Kongens Lyngby 2015

Technical University of Denmark

Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

Summary (English)

The goal of the thesis is to investigate current means of modelling and analysing
chemical reaction systems, in the context of synthetic biology.

Synthetic cells that are proposed to act as electronic gates, called synthetic ge-
netic devices, are simulated under different conditions in order to assess the
adequacy of Gillespie’s direct method and Oded Maler’s proposed model for
spatial dynamics.

Both of these models are examined and described in terms of their level of
abstraction, i.e. how true-to-nature they are. Experiments are then conducted
by utilising a tool proposed and developed for this thesis. The tool itself is de-
signed, such that the models can later be refined and extended. It incorporates
a current format for specifying the devices, making it suitable for biochemists
to use.

It is concluded that Gillespie’s model is in fact sufficient for described the syn-
thetic genetic devices considered in this thesis, under the right circumstances.
The motion of the particles, the devices consist of, had a great impact on the
simulated dynamic behaviour compared to the expected. This revealed how
sensitive the devices are to the parameters of the given simulation.

Keywords: Synthetic biology; Stochastic simulation; Spatial dynamics; Ther-
modynamic motion; Automated analysis

Summary (Danish)

Malet for denne athandling er at undersgge de nuvaerende metoder brugt til mo-
dellering og analyse af kemiske reaktionssystemer, i forbindelse med syntetisk
biologi.

Syntetiske celler, der er ment til at fungere som elektroniske porte, kaldet syn-
tetiske genetiske enheder, simuleres under forskellige betingelser, for at vurdere
tilstraekkeligheden af Gillespies direkte metode og Oded Malers foreslaede model
for spatial dynamik.

Begge disse modeller er undersggt og beskrevet i form af deres abstraktions-
niveau, dvs. hvor virkelighedstro de er. Eksperimenter er derefter udfert ved
anvendelse af et veerktgj praesenteret og udviklet til denne afhandling. Selve
vaerktgjet er udformet, saledes at modellerne senere kan raffineres og udvides.
Det benytter sig af et aktuelt format til angivelse af enhederne, hvilket ggr det
velegnet for biokemikere.

Det konkluderes, at Gillespies model er faktisk tilstraekkelig til beskrevet de
syntetiske genetiske enheder, der betragtes i denne afhandling, under de rette
omstaendigheder. Bevaegelsen af de partikler enhederne bestar af, havde en stor
indvirkning pé& det simulerede dynamiske adfeerd i forhold til det forventede.
Dette afslgrede, hvor sarbare enhederne er overfor parametrene for den givne
simulation.

Nggleord: Syntetisk biologi; Stokastisk simulation; Spatial dynamik; Termody-
namisk beveegelse; automatiseret analyse

Preface

This thesis was prepared at DTU Compute in fulfilment of the requirements for
acquiring an M.Sc. in Computer Science and Software Engineering.

The thesis deals with stochastic simulation of synthetic genetic devices, by im-
plementing a modular tool used for experimenting different set ups of such
devices.

The thesis consists of both the documentation of the software implemented

and the research done in order to refine and experiment on current models of
chemical reaction systems.

Lyngby, 02-August-2015

Joachim Kirkegaard Friis

Acknowledgements

I would like express my gratitude to both of my supervisors, Jan Madsen and
Michael Reichhardt Hansen, for giving me free rein when initially considering
the focus of this thesis. Throughout the work of this thesis, our interesting dis-
cussions about the connections between synthetic biology and computer science
have kept me highly motivated.

I would also like to thank my family and friends for supporting me during
the work of this thesis.

viii

Contents

Summary (English)

Summary (Danish)

Preface

Acknowledgements

1

Introduction

1.1 Core motivation behind synthetic biology
1.2 Current state synthetic biology
1.3 Problem and Goal
1.4 A framework for synthetic biology
1.5 Structure of the thesis

Problem Description

2.1 Approach
2.2 Problem
2.3 Requirements Lo

Background

3.1 Manipulation of DNA
3.2 Engineering synthetic genetic devices
3.3 Quantitative and stochastic simulation
3.4 Dynamics of mass action systems
3.5 Thermodynamic motion
3.6 Systems Biology Markup Language (SBML)
3.7 Implementation environment
3.8 Summary

iii

vii

SR W N -

© 00 3N

X CONTENTS
4 Design 39
4.1 SBML Parser 40
4.2 Stochastic Petri Net 43
4.3 Compiler 50
4.4 Simulator 51
4.5 Chemical system simulation algorithm 53
4.6 Statistical analysis L o oL 54
4.7 Presentation 59
4.8 Summaryo 57

5 Implementation 59
5.1 Parser and compilero 60
5.2 Simulatoro 60
5.2.1 Generating random numbers in parallel 62

5.3 Presentation and statistics 0oL 63
5.4 Stochastic petrinet L. 63
5.4.1 Faster neighbour search 65

5.5 Summary 66

6 Tests 67
6.1 Test overview 67
6.1.1 Parser 68

6.1.2 Compiler 68

6.1.3 Data structures Lo oL 69

6.1.4 Simulator and Simulation algorithms 70

6.1.5 Presentation and statistics 70

6.2 Summary e e e 71

7 Experimens and results 73
7.1 Experiments. 74

7.2 SUmMmaryo e e e e e 111

8 Conclusion 113
8.1 Summary 113
82 Evaluation. 114
83 Futurework 116

A negdevice.xml 119
B andgatedevice.xml 123
C ChemicalSystemModel.fs 127
D Parser.fsy 129

CONTENTS

xi

a9 oo

—

w m o Y O Z zZ & R

Lexer.fsl
ParserUtil.fs
SPNbase.fs
SPNint.fs

SPNIlist.fs
SPNarray.fs
BrownianMotion.fs
Space.fs
SPNbaseCompiler.fs
Simulator.fs
Gillespie.fs & SpatialGillespie.fs
Statistics.fs
DataWriter.fs
Plotter.fs

viz.m

Bibliography

135

137

139

143

145

147

149

151

155

157

159

161

165

169

171

173

Xii CONTENTS

CHAPTER 1

Introduction

Synthetic biology is the engineering of biological components that can behave
in a predefined way. One can for instance affect the process in which a strand of
deoxyribonucleic acid (DNA) is split in a cell, such that concentrations of spe-
cific compounds change in a restricted and predefined manner. This can then
be composed into larger components e.g. biological walkers that can traverse
the predefined paths carrying cargo and perform computations [MF13]. This
could be done by means of constructing components providing the behaviour of
an electronic logical gate, just as we see in computers today. Examples of such
cells would be a negative feedback- or an and-gate device, both keeping a steady
signal reflected by certain concentration level of a produced protein within the
cell.

In terms of nanorobotics and the relying synthetic components this particular
field of study has shown, as of writing this report, potential especially in the
field of manufacturing ’empty’ cells with the purpose of inserting custom ma-
nipulative DNA strings with specific behaviour. But a lot of challenges in terms
of creating such in practice are still to be overcome, one being the seemingly
random behaviour of chemical reactions within a cell. This motivates research
and development of tools for easing the process of wet lab experiments for biol-
ogists, when they want to test a specific set up.

The purpose of this thesis is to then explore how we can model and analyse
such biological systems from the perspective of a computer scientist. The pro-

2 Introduction

cess of modelling such systems will provide us with several choices that have to
be made in order to narrow down the work of this thesis. The model should
describe the behaviour of a given setup of a device consisting of some key com-
ponents, this is illustrated further in Figure 1.1. The components specified in

Cell
Co?nu;;?l;nnts Set of cell OS operations
cell operation
— ‘ op. A
‘ op. B
l ©
Different types of working custom cells
® @ ® @ -

Figure 1.1: An illustration showing a very simplified procedure of inputting
some biological components into an "empty" cell in order to gain
some predefined behaviour.

the illustration are sequences of DNA strings that should change the behaviour
of the given cell. The main purpose of the model is to then apply a means of sim-
ulation in order to get an indication on whether the set up of such components
will work or not. To give a short analogy, the cell can be seen as an operat-
ing system of a computer, where specific mechanics and procedures contribute
to the capabilities of the operating system. The same works for a cell, where
physical limitations are restricting what set ups work, one being that potential
chemical energy stored in a cell is limited and will eventually be exhausted, if
not taken into account, after which the given cell will die.

1.1 Core motivation behind synthetic biology

The ability to successfully construct a synthetic cell, that is, a cell containing
customs components in order to achieve a specific behaviour as described ear-
lier, would then open doors to potentially revolutionise the field of engineering,
comparable to the invention of the first computer, e.g. in terms of energy con-
sumption [LB14]. This will for an engineer spark ideas for countless applications
and optimizations of current technology solutions, e.g. rebuilding the computer
solely of biological components thus achieving much lower power consumption.

In terms of computation, one of the main ideas is to achieve the behaviour of

1.2 Current state synthetic biology 3

general electronics components such as memory storage and logic gates [KC10],
which would lead to mimicking the functionalities of a digital computer. Addi-
tionally data protection by means of DNA-based encryption is also a possible
application, as mentioned in [Wid14]. Another fields of application outside of
computation are biosensing, therapeutics, and the production of biofuels [SO:],
pharmaceuticals and biomaterials [KC10]. What these have in common, is that
they rely on the ability to construct and manipulate the structure and behaviour
of the cells as mentioned.

The field of synthetic biology would thus benefit from a collaboration between
different domains of engineering, which in this case are the biologists and an-
other given domain, which would in the setting of this thesis be a computer
scientist or an electrical engineer. This requires a common ground of terminol-
ogy and exchange of paradigms that exists in the two domains. This can be
quite challenging, since e.g. the term 'model’ might have a different meaning
to a biologist compared to a computer scientist’s. This aspect should serve as a
motivation to collaborate in a structured and well-defined manner.

In the context of this, an important note on the terminology used by biologist is
the difference between operations done to cells: in vivo, that is, the operations
are done on living and complete cells, and in vitro, that is, operations, such as
DNA synthesis, that are done in a controlled environment [Wid14]. And relat-
ing back to the analogy in Figure 1.1, the synthetic DNA strand is injected into
an empty cell in vitro.

1.2 Current state synthetic biology

Continuous progress is currently made in synthetic biology. It is often proposed
to synthesize artificial components in the fields of medicine and biotechnology
such as yeast and plants, but more interesting - mammalian cells (cells that
mammals (including humans) are made of)[KJKC15]. As stated in [LB14], the
cost of DNA sequencing, that is, to read the information stored DNA string, is
ever decreasing since its discovery and has fallen drastically during recent years
due to technological improvements.

Research of synthetic biology is now at a state where different fields of engi-
neering can provide tools and solutions for the different challenges that are now
starting to appear. E.g. the practical experiments conducted can be a quite
costly process especially in terms of time required. Due to this fact, a tool that
could ’'filter’ out definite faulty set-ups of an experiment, would provide much
value to both in an academical and industrial sense. Thus in order to speed up

4 Introduction

the engineering of the before discussed biological components, the tool should
simulate key parts of the dynamics of a cell, providing valuable insight. This
brings the cross communication of different faculties into view - i.e. the termi-
nology of a cell should be adapted into a mathematical model on which well
defined and mature frameworks of computer science can be utilised.

1.3 Problem and Goal

The main problem of modelling and simulating chemical reaction systems mo-
tivates this thesis. The problems we want to solve in are based on the following
questions:

e Which models are adequate for automatised analyses of synthetic genetic
devices?

e Are the models proposed by Gillespie and Oded Maler sufficient i.e. true-
to-nature when used for simulating synthetic genetic devices?

e And under which conditions do these models work?

The stochastic model used by Gillespie [Gil77] and the spatial model proposed
by Oded Maler [MHML14] both present an environment for simulating chemical
reactions system, but with different arguments on how particles collisions should
be modelled. These will then be compared by experimenting with different de-
vices under variable conditions and models describing the environment of the
cell itself.

Implementing a framework for comparing the different models, such as deploying
a spatial model, is then the main goal when solving this problem. This requires
disciplined use of software engineering techniques during the design phase, af-
ter which extensions are done to the model in order to evaluate the degree of
modularity of the proposed design.

1.4 A framework for synthetic biology

The main purpose of a tool for simulation would be to create an interface linking
the qualifications of synthetic biology engineers with the given software system.
The most popular solution to do this is the SBML format. This format enables
declaration of chemical reaction systems, used in synthetic biology. Below is a
snippet of an SBML file:

1.4 A framework for synthetic biology 5

<reaction id="transcription" reversible="false">
<listOfProducts>
<speciesReference species="mRNA"/>
</list0fProducts>
<listOfModifiers>
<modifierSpeciesReference species="Plac"/>
</list0fModifiers>

As described in [LB14] a framework providing the basis for simulation consists
of a parser for SBML files describing a given set up of biological components
and their interaction with each other, i.e. one or more chemical reactions.
A translator inputs a model resulted from parsing an SBML file. In order
to introduce flexibility in terms of running different kinds of simulations, a
simulator should then be able to be parametrised. One kind of simulation would
be to simulate the behaviour of a synthetic device, running on the premise of
described process of central dogma in Chapter 3. Additional simulations could
then be done in order to broaden the result space, increasing the reliability and
flexibility of the evaluation and analysis that is to be done to the given result.
A general analysis that could be done is to evaluate the behaviour described
by the simulation with its expected behaviour. The result of the simulation(s)
can also then be illustrated in any given way, be it through a graphical user
interface, or a simple graph showing the concentration of certain components of
a reaction as a function of time. Said framework is illustrated in Figure 1.2.

Parameter
input

data
input Translator F28f Simulator » Antalyls 1S »! output
SBML 00 result

Figure 1.2: Frame work for specifying a synthetic biological reaction, which
is simulated with a given data structure and iterated in order to
increase result precision.

4

It should be noted that modularity in this framework is significant due to envi-
sioned extensions and refinements of the illustrated components. Thus keeping

6 Introduction

the level of abstraction at a high level and specifying a clear interface between
the components in the framework is going to be a key exercise. The reason be-
hind striding for modularity is to gain the ability to easily replace components.
E.g. when extensions to the model is to be added, it would be beneficial if it
did not require too much code to be rewritten, reused, or restructured. Thus
the data structure and the given algorithm for simulation should have close to
no relation/knowledge of each other. Choosing existing technologies and frame-
works, i.e. using SBML, will serve as starting point in the process of designing
and implementing such system, after which the model will be extended in order
to improve on the quality of the analyses.

1.5 Structure of the thesis

The structure of this thesis is the following:

e Chapter 2 contains a problem description, detailing the requirements of
the tool developed.

e Chapter 3 contains the research done for this thesis.

e Chapter 4 contains a detailed description of the tool implemented, later
used for conducting experiments.

e Chapter 5 contains the technical considerations and reflections taken dur-
ing the implementation, with the focus on parallelised simulations and
neighbour search.

e Chapter 6 contains a description of how the tool has been tested, with
short examples of such when considering the different components.

e Chapter 7 contains a catalogue of the experiments conducted in order to
answer the question stated earlier.

e Chapter 8 contains a conclusion, summarising the tool and experiments,
an evaluation of these, and a short section about further improvements
and extensions that could be done.

e Appendix A and B contains the SBML files for the devices considered in
this thesis.

e Appendix C to S contains the source code of the tool implemented.

CHAPTER 2

Problem Description

This chapter will outline the fundamental problem that is investigated, by stat-
ing the minimum requirements for a framework as proposed in [LB14]|, with a
particular focus on modular components enabling easy model extensions. But
first we must discuss the main approach taken during the work of this thesis,
which in turn affects the requirements of the tool implemented e.g. if the model
and/or analyses should be at focus.

2.1 Approach

As described in Chapter 1, the main purpose of this thesis is to explore the
possibilities that arise when we want to model and analyse chemical reaction
systems describing synthetic devices. By experimentation we will then test the
different models, to see if the their current level of abstraction is adequate. We
will do so by testing the devices under different conditions using either model,
to see what aspects of spatial dynamics are important to consider.

The main goal is then to model space into the simulations, i.e. taking the
particles positions within the cell into account, to see if they are close enough
to react. Aside from the software engineering aspects of this thesis, a general

8 Problem Description

scientific approach in terms of experiments is also motivated in order to test the
different stages of the model and compare them with the initial one.

2.2 Problem

Looking back at the illustration in Figure 1.1, the main purpose of construct-
ing synthetic cells is to achieve a defined functionality within the cell e.g. for
electronic artificial cells storing information or performing logical operations.
A tool for testing a setup of a cell fast and cheaply is then motivated by the
alternative of time consuming and costly wet-lab experiments. And through
simulation we can gain a deeper understanding of the dynamic behaviour of a
given device, by determining the estimated state of the device at each time step
of the simulation, which is hard to achieve in an actual wet-lab experiment with
current technology.

The overall process in which this tool comes into play is illustrated in Figure
2.1 as an activity diagram in its simplest form.

Biochemist Simulation tool Analyser

Simulate
setup n times

Construct
setup

Analyse result

Figure 2.1: An activity diagram with three swimming lanes; one for the actor
(biochemist), one for the simulation tool, and one for the given
analysis that is conducted on the result of the simulation. The
number n is specified by the user and is included in this diagram
in order describe the requirement of multiple simulation results.

In Figure 2.1 wee see that the biochemist/user of the system provides the
simulation tool with a setup of a cell containing the species (particles that take
part in the set up), the reaction system describing how the species interact with

2.3 Requirements 9

each other, and other parameters that describe the environment depending on
how refined the working model is. From a given amount of simulations, the
analyser then conducts a given analysis - be it a simple graph visualisation
and/or extraction of relevant statistics. If the user is then satisfied with the
result of the simulation i.e. it confirms his/her hypothesised behaviour, the
activity ends, otherwise the user can then alter the set up of the device and
conduct a new run of simulations and following analyses.

The main problem is to then construct a tool in which the activity diagram
is the main use case with additional features in terms of the underlying model
used for simulation and analysis.

2.3 Requirements

The requirements for the tool implemented in this thesis were not formulated at
the initial stages of the project, but rather added in an agile fashion. Meaning
that initially a rough idea of how the framework looked like, inspired by [LB14],
was the fundamental requirement. Any further features in terms of modelling,
analysis, and visualisation were later formulated during the project depending
on what seemed interesting to research, implement, and experiment with.

The framework for simulating synthetics biological devices/cells will be de-
scribed in terms of listing the rough requirements - i.e. the functional require-
ments will be few whilst the non-functional requirements will elaborate on the
required quality of the tool. Keeping the functional requirements on a 'rough’
level gives more freedom during the design phase in terms of achieving modu-
larity.

The framework described in Chapter 1 consists of the following components:
a compiler, a simulator, and an analysis tool. These component are, as men-
tioned, inspired and build on by the framework proposed in [LB14], and are for
that reason required to be in the end product. The requirements are then be
described by the basis of the components. As they are illustrated in Figure 1.2,
it remains unclear what the exact purpose of each components is. The main
purposes and functional and non-functional requirements of these components
are as following:

1. Compiler: This will simply input an SBML file, supporting the version
developed for this thesis, much most likely will change.

Functional:

10 Problem Description

(a) It must contain a parser for SBML, that outputs a model reflecting
the describe chemical system.

(b) The model must then be compiled into a given data structure.
(¢) The parser should be able to parse SBML files of the current version
of SBML as of writing this thesis (version 3.1 [HBH*10]).

Non-functional:

(a) The compiler should be maintainable in the sense that the model
outputted should be easily modified or replaced.

2. Simulator: This will input the data structure reflecting translated SBML
file and output the given result of one or more simulations.

Functional:

(a) It must be able to input different kinds of simulation algorithms,
including Gillespie’s direct method and the spatial algorithm adapted
from Oded Maler (detailed in Chapter 3).

(b) It should be able to evaluate different parameters describing the given
simulation criteria, such as: an arbitrary number of simulations, a
formatting parameter describing which species are of interest!.

Non-functional:

(a) The simulator could be optimized in terms of performance thus en-

abling simulations of complex setups while avoiding high run times?.

3. Analysis tool: The exact structure of this component is purposefully
kept at an abstract level, since it could be included as a parameter/sub-
component for the simulator in order gain performance. And, as it turned
out, is not the main focus of this project.

Functional:
(a) The data from the simulator must be presented through different
means of visualisation: graphs, 3D scatter plots, and animations.

(b) It must compute statistics of the data, such as an accumulated aver-
age concentration of given species.

(¢) It could be able to analyse the data by validating it by comparison
of the expected behaviour.

1This is not the full list of parameters the simulator could evaluate, but the most essential.

21t is of course rather unclear how ’high run times’ is quantified, but the purpose of stat-
ing this requirement is to maintain disciplined code structure during implementation and to
motivate exploration of different techniques used for performance measuring and optimisation
in the context of simulating biological systems.

2.3 Requirements 11

It should be noted that there are no non-functional requirements for the analysis
tool, since, as mentioned in the requirements, it will most likely be a part of
the simulator and then inherits the requirements of the simulator in terms of
performance.

The requirements listed above are few, but the nature of this project, i.e. the
element of exploring refinements of how we model synthetic biology, did not
allow too specific details of the end product itself. So when the requirements
are later compared with the end product, the tests and discussion of the end
product will be extending by evaluating the additional implemented features.

12

Problem Description

CHAPTER 3

Background

This chapter will start by presenting the biological aspect of this thesis i.e how
DNA sequencing and assembly works. This should give the reader the basis for
understanding the purpose of simulation and evaluation of the results presented
in Chapter 7, where we test the different devices. The devices are then given a
detailed description and discussed in terms of their functionality in their given
context, what their expected behaviour is, and how it should be compared with
a simulation result.

The model presented by Gillespie takes a different approach when modelling par-
ticle collisions than the model proposed by Oded Maler. This will be discussed
by comparing the models in terms of how they describe a chemical reaction
systems in relation the devices and the cells they are reside in.

3.1 Manipulation of DNA

The purpose of this section is to give the reader sufficient information, to un-
derstand and evaluate the work done in this thesis. The following description
is thus not meant to be detailed in any sense, but to give a computer scientist,
without any preliminary knowledge about the topic at hand, a rough idea about
the mechanics of DNA replication in a cell etc. If needed, a much more detailed

14 Background

description of such can be found in [LB14].

DNA is the building blocks for any kind of mammalian, bacterial or viral cells,
that is, e.g. the building blocks of life as we know it. It contains deep informa-
tion about how the given body should be build - from very basic functionalities
to refined characteristics, that makes every living being unique. DNA is a dou-
ble helix storing information by allocating bases ((A) adenine, (G) guenine, (T)
thymine, and (C) cytosine) in a restricted manner. In Figure 3.1 a small part
of an example DNA is shown.

The main purpose the double-helix structure of DNA is for greater robustness,
i.e. if one helix is damaged the other can be utilised instead. This is achieved
by the bound created between the bases, these bounds are restricted such that
adenine can only bind to thymine and genuine and only binds with cytosine.

Figure 3.1: An example illustrating the structure of the DNA double helix in
which the base pairs are bound to each other following the binding
rules. Each pair is connected to a sugar, which is then connected
to phosphate connecting the whole structure.

In order to read this information, a DNA string is split in half such that the bases
are exposed. This splitting happens when DNA needs to be replicated in order to
create new cells. In this process other important macro-molecules/nucleotides'
are to be mentioned; the proteins and the ribonucleic acid (RNA) involved in
the process. It should be noted that RNA exists in different forms, each hav-
ing its own purpose; mRNA (messenger), SRNA (small), and tRNA (transfer),
though their purpose is out the scope of this thesis.

Genes are small stretches of a given DNA strand. They utilise the informa-
tion stored in the DNA to produce a gene product. This product is either an

Lconsists of molecules of relative smaller molecular mass

3.1 Manipulation of DNA 15

RNA or a protein, where the protein is in our particular interest as it is in
[LB14].

The process known as the central dogma of molecular biology, where the infor-
mation stored in DNA is read, is illustrated in Figure 3.2. The protein structure
is controlled by components better known as regulatory segments of the given
DNA strand. These are the promoters, ribosome binding site (RBS), protein
coding sequence (PCS), and the terminator [LB14]. These components affect
the process described in Figure 3.2.

e The process in which the mRNA is synthesized is called transcription.
Initially a DNA strand is split in two, an enzyme RNA polymerase sits on
one of the strand and produces a mRNA that is matched by the exposed
bases. It should be noted that many polymerases can sit on a given strand,
resulting in concurrent mRNA production. The production stops when the
polymerase meets a terminator.

e As then seen on Figure 3.2 the mRNA is translated into specific amino-
acids that are the components of a protein. An important aspect of this
the information space introduced by the different possible type of amino-
acids i.e. 20. Although there exists 64 different codons?.

i dibdiivdie Eee
Sy

Transcription

Translation

Figure 3.2: The process known as the central dogma, where DNA is replicated
such that genes can be translated.

A lot of aspects in terms of transporting the RNA’s in transcription and trans-
lation cause random fluctuations of how much protein is generated in the given

2A sequence of three bases e.g. A-G-G

16 Background

process. The components described can also simply decay in the process, which
turns out to have an important impact of gene expressions. This random ele-
ment is crucial to the understanding of the mechanics of DNA sequencing and
is the general foundation behind the analyses and modelling done in this thesis.
An example will later be given in this chapter, outlining the relation between
the stochastic and desired behaviour of said mechanics.

An important aspect of the genes central to production of proteins is the possible
interaction between the promoter and the produced proteins, this is called gene
requlation. When regulation occurs the amount of protein is regulated, since
the promoter is 'turned on or off’ respectively caused by inducing or repressing
proteins. This effect causes a steady-state of proteins in the cell. As concluded
by [LB14], this behaviour can be compared with the on- and off state of an
electric transistor.

Sequencing, synthesising, and assembly

When talking about synthesising DNA, we do not only talk about creating
custom DNA but also to combine parts of different strands to create a new
one. But before we can synthesise, we must be able to sequence DNA on our
own, which is to obtain information about the base pairs in the given DNA
strand. This can be achieved in numerous ways, but [LB14] describes the Sanger
sequencing.

In short it emulates the transcription phase discussed earlier, by splitting a given
DNA strand in two - a template and a complementary. The template is then
mixed with a polymerase in four different separate containers, after which a
mixture of nucleotides and a PCR? are put in as well. The strand then repairs
itself in a unique manner different to each container. From this the sequence
of base pairs in the given DNA strand can be determined. Sequencing and
assembly of DNA strand then allows the creation of artificial DNA strand - i.e
synthetic DNA strand through DNA synthesis. In this process strands of few
base pairs are coupled together forming a larger strand. This enables insertion
of such strand into an ’empty’ cell, afterwhich a given dynamic behaviour is
expected given the process of the central dogma described earlier.

This process is rather costly in terms of time needed for creating a specific set
up of a custom DNA strand. Motivating the tool implemented in this thesis.

3a technology used to generate a high number of copies of the DNA strand

3.2 Engineering synthetic genetic devices 17

3.2 Engineering synthetic genetic devices

In order to simulate a biological system, more precisely - its set of chemical
reactions, important choices must be made in terms of abstractions from the
real world. In theory, one could simulate a cohesive true-to-nature model repre-
senting reality. But many indeterminable variables cause unreliable behaviour
in ’chaotic’ chemical reactions systems, i.e. a system sensitive to its initial con-
ditions. Such behaviour is in probabilistic sense called stochastic, meaning that
a state of a system is randomly determined. Further meaning, that we cannot
precisely predict the outcome of a given reaction, but we may apply statistical
analyses in order to conclude something from a simulation.

What can we simulate?

The general purpose of simulation in this context is to estimate the behaviour of
a given setup of a device, on basis of the process described earlier. Such device
is specified by the user of the system, on which the simulation is done and a set
of analyses can then be applied. What we can simulate is then directly related
to the model and how true-to-nature it is. An example of a device is a simple
negative-feedback device, as proposed in [LB14], can be seen in Figure 3.3. This
device describes a specific gene where the produced protein provides a negative
feedback loop on the promoter itself, restricting the concentration of the protein,
such that it reaches a point of repression at a given time, i.e. steady-state. The
notation used for the device is an adaptation of the Synthetic Biology Open
Language (SBOL) which is notated below the device in Figure 3.3.

il

Plac
Lacl

Concentration

~ a B T

Promoter Ribosome entry site PCS Terminator

(a) (b)

Time

Figure 3.3: (a) The negative feedback device described in a special notation
used in [LB14]. (b) Its expected behaviour of repression of the Lacl
protein at some point in time, since the chance of Lacl reacting
with the promoter is proportional to the amount of Lacl.

18 Background

It should be noted that the graph to the right shows the average behaviour of
the device, meaning that the result of a single simulation would show ’spikes’
in concentration of Lacl. Upon reaching the steady-state the concentration of
Lacl is expected to stay within a certain interval. This interval is then the key
factor of evaluation, later done in the experiments in Chapter 7.

As stated in [LB14], the model presented by Gillesipe contains abstractions
from the real world. One example of how this model can be extended, is to
introduce the dynamics of mass action systems. That is; a system with species
reacting with each other only upon actual contact, not only based on probable
estimation. Meaning that a reaction rule will only occur if the related species
are in fact close enough to each other.

Another suitable example to introduce, would be a device exerting the same
behaviour as a logical AND-gate. The SBOL representation of this device can
be seen in Figure 3.4.

- B

P1 P1
TetR IPTG

ﬁ._F

Ara

Figure 3.4: A device that behaves the same way as a logical AND-gate, given
that the promoter P2 is induced by both of the proteins produced
above.

Here we see two inducing proteins interacting with the promoter (P2), thus
activating/turning it on. The expected behaviour of this device can be compared
with that of the negative feedback device - that once the promoter is activated,
we should see steady-state of the Ara protein due to the limit of induction of
P2. The purpose of chosen this example will become much clearer, once we
introduce the extended model - taking the particles position into account i.e.
given the fact that if the two inducers are not near each other they should not
activate the promoter, resulting in a different behaviour.

3.3 Quantitative and stochastic simulation 19

3.3 Quantitative and stochastic simulation

In this section the different means of simulation will be introduced and com-
pared. Introducing the simplest form of modeling chemical reaction systems by
deterministic analysis, will be introduced to show how a "too" simplified ap-
proach would lead to unrealistic results. This motivates an extended model, by
introducing stochastic elements and spatial dynamics. Once the spatial model,
proposed by Oded Maler, has been introduced, research into how particles move
in a cell has to be done to further refine the model to be as true-to-nature as
possible.

A key challenge when simulating the models of devices, introduced earlier, is
to find suitable initial parameters: such as reaction rate, size of the different
species relative to the cell, and the viscosity of cytoplasm (the majority fluid
in a cell) etc.. The is the main limitation when simulating biological system is
finding reaction rates, which is very difficult to measure by experimentation.

Deterministic and stochastic methods

There are two distinctly different ways to simulate a chemical reaction system
composing of a set of species and the defined rules of reactions. One is the
deterministic and continuous technique, such as solving a set of ordinary differ-
ential equations (ODEs) describing the laws of mass action [LB14]. This model
does not reflect reality, since chemical reaction system describe a stochastic sys-
tem i.e. the model should over-approximate in terms of fluctuation in rates of
which species react with each other. By over-approximation, we mean that the
resulting population sizes of a given species, when simulation of the same device
is repeated, should not evaluate to a specific amount but rather an interval of
which it might be in. The fluctuations between repeated simulations should also
provide deeper understanding of the mechanics of the devices.

A popular stochastic simulation algorithm, proposed by Gillespie [Gil77], is the
direct method. A procedure of running the direct method is then to obtain a set
of resulting simulations and average them in order to get a sense of behaviour
of the given system.

20 Background

What do the ODEs of a reaction describe?

Before describing further, we should formalise a chemical system. As defined
[Gil77], such system consists of a set S of n species, where a set R of m reactions
defines the reactions between the species in S. A factor that defines the rate of
which a reaction happens is the rate function A; . ,,. When a reaction occurs
state change vectors v; . ,, describe the change of each species. The Predator-
Prey example is often used to illustrate such system, in which population growth
and decay of predators and prey in a forest changes over time. As described in
[LB14], the ODE’s for this system are as following:

% = ky[Prey| — ko[Prey|[Predator] (3.1)
w = ko[Prey|[Predator] — ks[Predator] (3.2)

In equation 3.1 and 3.2 we see that the rates of each population is dependent
on each other. The equations are formalised through the law of mass action,
where each reaction in the form of Xg+..4+ X; — Y has a rate function defined
Ay defined as:

o=k] X (3.3)

Si€-p

Given equation 3.3 we see that the reaction rate of a given reaction is propor-
tional to the amount of each population/species included in the reactions, hence
the intuition behind having an increase amount of particles in an isolated sys-
tem with spatial boundaries, the chance of them interacting increases. This is
the basic principle behind this model, which is the point of investigation of this
thesis:

Is it enough to model particle interaction through deterministic calculations,
statistical estimation through stochastic simulation, or through real-time simu-
lation of the particles exact movement and position?

Given this property of reaction rates provided by the law of mass action, we
see that it would reflect the expected behaviour of the devices proposed earlier
in Figure 3.3, as the given amount of produced proteins increases. We see the
same behaviour in the Predator-Prey system [LB14], in which the rate of prey
reproduction is proportional to the amount of prey present. Predators repro-
duce by consuming prey and is also proportional to the amount of predators
present etc.

The model described by ODEs leaves out any fluctuations that could happen in

3.3 Quantitative and stochastic simulation 21

this system, if it was set in the real world, where we increase the amount of un-
known variables i.e. add a stochastic element. One could for instance ask: what
if some of the prey got smarter, and would not always be caught when hunted
by the predators? How would this be modeled into a deterministic system?

Stochastic analysis using Gillespie’s direct method

Adding a stochastic element to a model is done when we cannot definitely de-
termine a factor within a system, be it by empirical knowledge or logical argu-
mentation. By adding stochastic behaviour to a system, such as the chemical
reaction system described earlier, we would get different results of behaviour
at each simulation. This will provide us with deeper knowledge about different
possible states of which the system can be in. Furthermore, evaluation of such
system can be supported by utilising statistical methods such as comparing dif-
ferent setups or models, to see if they reflect the same behaviour within a certain
degree of confidence.

There are many possible ways of achieving this, be it by statistical model check-
ing or statistical evaluation of simulation results. In this case, we will focus on
extending the model proposed by [LB14] as described in Chapter 2 and compare
different versions of it by means of statistical evaluation of simulation results.

A stochastic system as proposed by [Gil77], describes a system in which particles
move around in space with a statistical estimation of collision. This extends the
deterministic model, by not always ’allowing’ a reaction R, to happen, if it by
the current state of the system has a too low probability compared to the other
reactions in R,,.

Other means of describing reaction system do exists. One would be to, as pro-
posed in [BFROS§], construct high-order conditional multiset rewriting, taking
a more generic approach on how to compute and extended on current models.
But as mentioned earlier, Gillespie’s direct method is a broadly used model thus
motivating the investigation of its spatial abstractions later discussed.

The stochastic petri net

In terms of data structures, there are different ways of describing a chemical
reaction system, or in a more general sense - population systems. One could
for instance choose to just keep the entire population/particles of the system in
one dictionary, uniquely identifying each particle, providing fast search queries.

22 Background

But a dictionary is not suitable for a dynamic environment, when we want to
dynamically 'move’ them around or keep tracks of population sizes. This fact
illustrates the importance of choosing a suitable data structure when we start
proposing a model.

Petri nets are powerful when modelling biological systems, as they model dis-
crete continuous systems. They provide a nice graphical notation, which can
be extended, leading to a wide range of applications. There are many different
classes of Petri nets, but the one we are interested in, is the Stochastic Petri
net (SPN). The SPN is used to describe a quantitative time-dependent system
[MAB11], in which the before mentioned stochastic behaviour can be incorpo-
rated. The general Pteri net has the following formal definition [MAB11]:

DEFINITION 1 (Standard Petri net) A standard Petri net is a quadruple N =
(P, T, f,mq), where:

e P, T are finite, non-empty, disjoint sets. P is the set of places. T is the
set of transitions.

o f:((PxT)U(T x P)) — Ny defines the set of directed arcs, weighted by
non-negative integer values.

e mg: P — Ny gives the initial marking.

Let us consider to following example of a Petri net with a modification, as seen
in Figure 3.5:

Figure 3.5: (a) A simple example of a Petri net. (b) The modifier arc graphical
notation.

3.3 Quantitative and stochastic simulation 23

Here we have a Petri net consisting of two places, two arcs, one transition, and
one token. This Petri could e.g. describe the chemical reaction of A — B, where
A is the reactant consumed in order to create the product B. The state of this
reaction is then described by the initial marking mq, which in case is denoted by
the single token residing the first place p;. If the chemical reaction then occurs,
the transition ¢; is then "fired", after which the token is consumed and a new
one is created in ps. An important note on firing should be taken. The general
rule for firing a transition can be described as following:

When a transition ¢ is fired, it is first checked if it is enabled, that is, if all
places p;, of all incoming arcs have atleast one token. If so, one token is con-
sumed from each place in p;,. All places of outgoing arcs p,,: then gets a new
token added.

Below the Petri net example in Figure 3.5, an extension called the 'modifier are’
has been proposed by [LB14] and is also utilised in this project. The modifier
arc alters the firing rule, by not consuming tokens in p;, when firing its transi-
tion. This enables simple modelling of reactions in the form of A+ B — A+ C,
where e.g. A can be seen as the promoter in device 3.3 - the promoter is of
course not consumed when it produces mRNA.

Firing a token happens instantaneously and does not consume any time. Mean-
ing that, when firing a token we are simply talking about transitioning from one
marking to another in a discrete manner.

The basic Petri presented can then be extending by adding stochastic functional-
ity in 7', meaning that transitions also have chance of not being fired upon being
selected, even though they are enabled, when transitioning to a new marking.
This is done by adding a probability density function, describing the chance of
firing a transition proportional to the time elapsed since enabled. This function
is defined as:

Where T is an exponentially distributed random variable ranging from [0, co].
Wee see, that the law of mass action is used in order to model the increasing
likelihood of reaction proportional to the population size of the given species.
This function is then adapted into the Petri net, defining the SPN.

Looking back at the negative feedback device illustrated earlier, we can now
construct an example when it is transformed into an SPN. Before doing so, we
must first declare the reaction system in terms of stating the reaction set R:

24 Background

Plac —— Plac + mRNA

Plac + Lacl 2, PlacLacl
PlacLacl — Plac + Lacl
PlacLacl — PlacLacl + mRNA
mRNA — mRNA + Lacl
mRNA —

Lacl —7 ()

The last two reactions denote the decay of mRNA and the produced Lacl pro-
tein. cr, denotes the reaction rate, which is part of the input when simulating,
which will be described in further detail in Equation 3.5. The resulting SPN for
this system is then illustrated in Figure 3.6.

PlacLacl

¢l mRNA

c6 c7

Figure 3.6: The reflected SPN of the negative feedback device in Figure 3.3

Simulation algorithm

Gillespie’s direct method is one method of analysing and simulating a chemical
reaction systems. The simulation algorithm gives a random result of the given
setup of a device, which depends highly on the inputted parameters. The overall
flow of the algorithm is as shown in Figure 3.7. For a more detailed description
of this algorithm, please refer to [Gil77] or [LB14]. But the the fundamentals

3.3 Quantitative and stochastic simulation 25

Decide which
Input SPN reaction should
occur next.

Generate random
numbers

Fire transition
and calculate the
new state

Calculate time
elapsed

Figure 3.7: A flow diagram showing the general process of Gillespie direct
method. The algorithm terminates when sufficient time iterations
(loops of this diagram) have been done.

are as following:

The variables a; and ag are respectively the propensity function of each reac-
tion/transition, and the sum of all propensity functions. The propensity of each
reaction is, again, adapted from the law of mass action. Thus it is defined as:

ap = cuh(p) (3.5)

Where ¢, is the rate constant k,,, and h(yu) is the product of all quantities of each
species, as seen in equation 3.3. It is important to note that c, is a statistical
estimation of particle collisions, which leads to the coming discussion about the
level of abstraction that this model takes in terms of describing how and when
particles collide in a given environment.

The time between each iteration of the simulation then depends on the gen-
erated variables, which is defined by: 7 = (%)ln(%), where r1 is one of the
randomly generated numbers taken from a uniform distribution. From this, we
can see that when ag increases, i.e. as the population grows, the time steps
decrease - illustrating that a higher amount of particles increases the amount of
collisions happening. This can also be formalised as - when the environment gets
progressively more "well-stired" /uniformly distributed the greater the probabil-
ity of reactions occuring is. To combine this, we can now describe the algorithm
by the following pseudo-code:

26 Background

Data: Stochastic Petri Net describing a chemical reaction system.
Result: A set of states of the system of each time step.

set t = 0 and n = 0;

while n < maz do

Calculate a; and ao;

Generate two random numbers r; and ro;

Take 7 = (a—lo)ln(%),

Take p that is smallest of a; such that a, > raao;

Putt=t+m;
Fire transition of a, and calculate next state;
Putn=n+1;

end

Algorithm 1: Gillespie’s direct method

Level of abstraction

The argument behind taking a statistical approach when simulating particle
interaction is best described by illustration in Figure 3.8. Two molecules/parti-
cles S1 and S5 are spheres traveling in a closed volume. They respectively have
reactionradius r1 and ro. They then collide if their relative distance d < r1+7s.
Their velosities can then describe a reaction volume at each time step, and a
statistical estimation can be done in terms of the reaction rate of where the
particles are included.

MOLECULE 2

Figure 3.8: Illustration from [Gil77| showing the reaction volume’ of a particle
relative to another.

3.3 Quantitative and stochastic simulation 27

This describes which level of abstraction this model is at. A question then arises:
Does this estimate in fact describe collisions sufficiently?

We do know that Gillespie’s model takes Brownian motion into account when
estimating collision, but as it turns out, the movement of particles is highly
dependable on the given thermodynamic model used for describing the motion.
Determining the motion of particles in a cell is a point of research in itself,
in which many parameters are discussed in terms of their affect on Brownian
motion. In Gillespie’s model it is stated that "Since the system is in ther-
mal equilibrium, the molecules will at all times be distributed randomly and
uniformly throughout the containing volume V."[Gil77]. This is a crucial as-
sumption, in which the exact velocities vector are now out of context.

This motivates the next iteration of model extension, i.e. investigation of dy-
namics of mass actions system. In which it is interesting to see if distribution
of particles affect the reaction rates in R.

28 Background

3.4 Dynamics of mass action systems

Another mathematical model describing a population system, in which species
react be means of reactions as in the chemical reactions system described ear-
lier, is proposed by Oded Maler in [MHML14|. This model is more generalised
towards mass action systems, that is, any population system, be it a social net-
work or other, in which the law of mass action describes a polynomial relation
between reaction rates and population sizes, as we seen before in Equation 3.3.

In the paper [MHML14]|, in which this model is proposed, different stages of
the model is investigated, starting from a standard model corresponding to the
ODEs described earlier. They then refine the model by adding stochastic be-
haviour, much like the model proposed in [Gil77], under the same assumption
- that particles are "well-stirred" i.e. uniformly distributed, thus not including
space. Their last iteration of the model then takes space into account, by keep-
ing track of the particles positions as they move at each discrete time step. This
model is referred to as taking individual spatial dynamics into account.

A tool Populus is then presented, from which they conduct a few experiments
in order to compare the different models. They can then evaluate on the hypoth-
esis that abstracting away from spacial dynamics, has an effect on the stochastic
behaviour i.e. the behaviour of reaction systems.

Probabilistic automaton

The species of the system and the reactions are described similarly to the SPN,
but as a Probabilistic Automaton (PA). The PA will not be described in the
same level of detail as the SPN, but it is still interesting to compare the two,
and see if they model the same system.

In short, the PA describes a transition system of a set @) of n species. An
example of such can be seen in Figure 3.9.

N 0 a2 s |
g1 ({09 01 0010 00 00|07 02 01|07 00 03 ‘
g2/ 01 08 01|00 06 04|00 10 00|01 09 00 ‘
g3 (|00 00 10,07 00 03|03 04 03|00 00 1.0 ‘

Figure 3.9: An example of a PA, where the probability functions of for all
combinations of reactions are shown in a table. MHML14|

3.4 Dynamics of mass action systems 29

A transition §(q1, g2, q3), referred to as a binary rule, then refers to the reaction
q1 + g2 — g3, i.e. when ¢ collides with a particle of type g2, it then produces a
particle of type ¢g3. L denotes a spontaneous reaction, e.g. a reaction ¢; — ¢s,
which transition is referred to as a solitary rule. From the transitions table we
then see that e.g. the probability of the reaction ¢o — g1 occurring is 0.1.

Comparing this with the SPN, we see that the entire possible state space of
the system is covered, which is not the case in SPN. The SPN only contains
the necessary transitions, where the PA’s generic nature results in a larger set
of transitions. It would still be possible to describe the device through a PA,
but the SPN also provides stronger graphical fidelity, easing the process when
a given device is modeled by a biologist. Let us consider a much more com-
plex device, compared to the ones described earlier, consisting of a larger set of
reactions. The PA would then grow exponentially whilst the SPN grows pro-
portionally to the amount of reactions. So, even though the PA provides a good
foundation for a lot of applications, it would in practice be rather cumbersome
to model a complex chemical reaction system.

So if we wanted to extend our model, such that it takes space into account.
It is motivated to extend the SPN, by first considering tokens at individual par-
ticles. So when firing a transition with two or more incoming places, we simply
find a pair of particle/tokens colliding. But we should also consider how this
should be simulated.

Algorithm for individual spatial dynamics

The algorithm for simulating a time step in the system proposed in [MHMLI14]
is listed in Algorithm 2. A list of particles described by their type and coordi-
nate in the two-dimensional place is the input. The particles are then initially
moved. Then, for each particle, its neighbours are computed and the related
rules in the PA are applied.

It is important to note, that when a particle has more than one neighbour,
all the relating binary rules are applied after which one of the outcomes are ran-
domly chosen. The reason for not just initially chosing one neigbour at random
and then apply that one rule, seems unclear.

When comparing this algorithm with the direct method described in 1, we should
note that this one works in discrete time. This differs from the propensity func-
tions in Equation 3.4, that describes an increasing probability as a function of
time enabled.

But the behaviour described by kinetic law of mass action is still maintained.
Lets consider we have one type of particles A, the chance of them being included

30 Background

Data: A List L of particles and states including planar coordinates.
Result: A List L’ representing the next micro-state.
L:—0;
L’:=moveParticles in L;
foreach particle p in L' do
N:=findNeighbours for p in L';
if N = () then
q:=apply solitary rule for p;
L':= insert ¢ into L’ ;
nd
else
M :=0;
foreach n in N do
q:=apply binary rule for p and n;
M:= insert q into M ;
end
L':= insert random ¢ from M into L' ;
end

0

end
Algorithm 2: Oded Maler’s algorithm for individual spatial dynamics

in a reaction in Algorithm 2 increases proportionally to the size of its popula-
tion, and when we apply the rules we will maintain the stochastic behaviour.
But the abstraction of discrete time will not allow us to generate appropriate re-
sults, which motivates a 'mix’ of the two algorithms, based on the direct method
in which we find and choose neighbouring particles for reaction following the this
method.

Level of abstraction

One interesting abstraction taken by the individual spatial model, is the addi-
tion of geometric limitation provided by the description of periodic boundary
condition. This is described by a rectangular boundary that causes particles
moving outside of the rectangle to re-appear on the opposite side. This effect is
illustrated in Figure 3.10.

3.4 Dynamics of mass action systems 31

dx dx

Figure 3.10: Illustration of the periodic boundary condition, where a particle
(blue) reaches the limit of the volume considered in the given
simulation. The particle then ’teleports’ to the opposite side, by
a displacement of the remainder of the movement vector.

This is a common technique used when simulating any kind of spatial system. It
describes an infinite surface on which the particles traverse. In geometric terms,
it is a torus i.e. ’donut’ shape. Whether this is suitable for simulating a real
biological cell, seems rather unclear. One could assume that this abstraction
would suffice at an increasing density of particles, as we get closer to a uniform
distribution. But in the opposite situation, a poison distribution of particle
would result in rather unrealistic behaviour once a cluster of particles reaches a
boundary. These two situations are illustrated in Figure 3.11.

bo, o °° o o°
o o
50 %o o 94 o °f
o o o °o o
o
o o °
66 o .0 o °
o} o O o4 S ° o,
o [S)S °
© 06 o0 9 o 9% . ©
o0 © (o) o °
oo
° o o
o o o~ o
00 % o %9
[e] fele) o
(a) (b)

Figure 3.11: Two examples where the periodic boundary condition has close
to no effect (a) on the behaviour, and another (b) having a great
impact on the behaviour. By 'behaviour’, we mean how close to
reality the results are of a simulation when using the periodic
boundary.

Here we see that in the case of poison distribution, a cluster of particles might

32 Background

appear. If this cluster reaches the boundary, some of its particles (red) will
be out of reach for reacting with the rest (blue). Given the description of the
central dogma given in Figure 3.2, intuitively we might think the device as a
cluster of particles in which the said mechanics happen. For this reason, the
boundary condition will not suffice as means of describing the membrane of the
cell. An implementation of a physical wall, where particles simply ’bounce’ back
upon impact, is then needed (described in detail in Chapter 4).

Another limitation of this model is the motion of the particles, which are de-
scribed as random displacement within a circle. How this relates to actual
movement of particle in a cell, is at this stage unclear, which motivates the next
iteration in this chapter.

The experiment results presented in [MHML14|, obtained by using the Pop-
ulus tool, indicate that by initially placing particles closer to each other result
in higher reaction rate, compared to that of a uniform distribution. How reliable
their results are is at question, since they do not provide any structured presen-
tation of their experiments with the parameters they used. But the inverse of
this observation would be interesting to test - i.e, would an increased distance
between particles result in lower reaction rates?. Later addressed in Chapter 7.

3.5 Thermodynamic motion 33

3.5 Thermodynamic motion

How well the before mentioned models are suitable for simulating genetic devices
in a synthetic cell, relies much on the parameters describing how the different
species move and interact within the cell. One could argue, that the components
of the devices described earlier, do in fact not move like gaseous particles, i.e.
not resulting in a uniform distribution. This could be caused by a possible
higher viscosity of the cytoplasm they travel through, and the more complex
structures of the components compared to simple molecules, both causing less
rapid movement.

This section will discuss what possible extensions we can do to the model, in
terms of motion of the particles.

Brownian motion

Brownian motion is in itself a field of research, but for the purposes of this
thesis, we will take a short look at its formal definition in order to access its
properties. This will provide us with an understanding of said motion, such that
we can later implement and experiment the devices in terms of motion patterns.

Brownian motion describes a random walk on d-dimensional space. A particle
is displaced in a random fashion by a vector v, describing possible particle-to-
particle- or external force interaction. As formalised in [MP11], such random
walk should have the following properties:

e Each iteration of the walk should be independent with its previous itera-
tions, called independent increments. E.g. the direction of the displace-
ment does not rely on the previous displacement.

e Each iteration of the walk should be have stationary increments. E.g. the
'size’ of the displacement does not rely on the previous displacement.

e The entire random walk has 'most surely’ a continuous path. Meaning, a
particle does not 'vibrate’ within an area, but moves unrestricted through-
out the d-dimensional space.

e The displacement vector v is normally distributed (with additional prop-
erties that are out of scope of this thesis).

34 Background

From a physical point on view, we can see that Brownian motion does not reflect
inertia of particles or sense of direction. This will simplify the model by exclud-
ing complex physical variables, by providing a simple mathematical notion of
Brownian motion instead.

In terms of the experiments done in Chapter 7, normally distribution vectors
will be compared with uniformly distributed vector of displacement. Given the
complex nature of the biological devices, it is hard to predict if this has an effect
on their behaviour, which motivates the experiment itself for the purpose for
simply exploring the given model implemented.

Thermodynamic models of motion

The systems described in this chapter can be defined as thermal dynamic sys-
tems. Such systems have defined properties such as the state of equilibrium.
Earlier we mentioned that [Gil77] assumes thermal equilibrium, resulting in a
uniform distribution of particles when particles are also assumed to behave as
gasses. Thermal equilibrium is defined as stable state of system that is not af-
fected by external forces. But as the following description of Brownian motion
provides, we know that it includes external forces on the particles of the system.
And as it turns out, most thermodynamic system are never in reality at thermal
equilibrium.

This motivates a model that is able to include some description of Brownian
motion depending on a given thermodynamic model.

The most basic model that determines the velocity of particles within a thermo-
dynamic system is derived from kinetic theory, in which the energy of a particle
is defined as following [Kit71]:

1
Ej, = 5mv2 = ng (3.6)

where m is the mass of the particle, v is its velocity, k is the Boltzmann con-
stant (used instead of the ideal gas constant, when we are considering exactly
particle amount rather that substances), and T is the temperature in Kelvin.
If we wanted to use this formula for describing the velocity of the particles of
the device, it clearly provides some limitations. Since it is used for modeling
gaseous particles, they are considered to move in a vacuum. This means we
cannot model the viscosity of cytoplasm, which would intuitively lead to a lower
velocity.

Another model proposed by [JHZGO07], determines the displacement of a particle

3.6 Systems Biology Markup Language (SBML) 35

described by Brownian motion as a function of temperature:

3kT
2= t 3.7
" 3mna (3:7)

Where r is the one-dimensional displacement, n is the viscosity of the given
liquid the particle is submerged in, and « = 67na, where a is the radius of the
particle (which is assumed to be a sphere). This would then seem more suitable
in terms of modeling the thermodynamic motion of the species of the devices.
Although, much more precise models of motion of complex structures such as
DNA strands and the finer hydrodynamic interactions between particles have
been proposed in [AS13] and [GW09).

3.6 Systems Biology Markup Language (SBML)

A popular data representation of chemical reactions systems is SBML. Since it is
based on the XML format, it is a standard of expressing a computational model
with a wide range of applications. Generally an SBML file is read by a given
parser and compiled into a data structure on which a simulation algorithm can
be applied. The version, of which the parser for the project is constructed, is
3.1. The documentation for the whole language can be seen in [HBH™10].

Parsers for SBML do already exist ready for use, but only supporting specific
platforms not including .NET. The frameworks that seem most supported is
Python [pyt] and Java [jav] [lib]. For this reason, we are going to construct our
own parser, in which we extract the relevant data for simulation. The parser is
further discussed in Chapter 4.

Describing a chemical reaction system in SBML

The SBML language is quite extensive, both adopting syntax from XML and
MathML and others, meaning that we will only look at the most essential parts
of the syntax.

The main components are: a set of compartments, species, and reactions. A
compartment specifies an environment, where a set of species react by a set of
reactions, much like as described earlier. An example of the concrete syntax of
a compartment is as follows:

36 Background

<listOfCompartments>
<compartment id="compartmentl" spatialDimensions = "3.0" size="2000"/>
</list0fCompartments>

where the id is a unique identifier later used to reference it when declaring
species and reactions, the spatialDimensions parameter denotes in how many
dimensions the compartment is considered (in this case 3), and the size pa-
rameter denotes the physical size of the compartment.

A species can be declared by the following:

<listOfSpecies>
<species id="Plac" compartment="compartmentl" initialAmount="1"
hasOnlySubstanceUnits="true"/>

<species id="Plac_Lacl" compartment="compartmentl" initialAmount="0"
hasOnlySubstanceUnits="true"/>
</list0fSpecies>

where the id is a unique identifier later used to reference it in reactions, the
compartment parameters is the identifier of the compartment it is in, the initialAmount
parameter denotes the amount of the given species at the initial state of the
chemical system, and the hasOnlySubstanceUnits denotes how the amount

of the given should be interpreted in reactions, e.g. if true it should be an
amount not depending on the size of the compartment. The reactions can then

be specified as follows:

<listOfReactions>
<reaction id="transcription" reversible="false">
<listOfProducts>
<speciesReference species="mRNA"/>
</1list0fProducts>
<listOfModifiers>
<modifierSpeciesReference species="Plac"/>
</list0fModifiers>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.5 </cn>

3.6 Systems Biology Markup Language (SBML) 37

<ci> Plac </ci>
</apply>
</math>
</kineticLaw>
</reaction>
</list0OfReactions>

where a reaction has a unique identifier id, the reversible denotes in which
directions the reaction is allowed, i.e. if it is false, it describes a reaction of
A — B. Tt is then described by its list of products, and reactants or modifiers,
and a kinetic law. The product and reactant/modifiers each have a reference
to a species as described before. A modifier relates directly to the modifier arc
proposed earlier for the SPN, i.e. a reaction in the form of A — A 4+ B. The
kinetic law then describes the kinetic law of mass action in Equation 3.3. Here
we have a ci parameter denoting the rate constant and the ci parameter de-
noting the species the rate function relies on.

This only describes a small part of the SBML syntax, in which the same chem-
ical system can be described in different ways, depending on application it is
meant for. And as described in Chapter 4, this means we will not cover the
whole syntax including all possible XML and MathML constructs.

The standard for SBML is also in an ever changing state. This results in a lim-
itation of the end product, since it will be deemed for continues maintenance,
since the parser is custom made for the framework.

38 Background

3.7 Implementation environment

Before transitioning to the design phase, an important aspect of the project, is
also to investigate whether the choice of implementation technology has a role to
play, once we start altering/modifying the implementation. Be it, by changing
or extending the model or other.

A modular design and implementation of the framework is important, which
in software engineering also is an important discipline to master. Achieving
this highly relies on methodology, but also the choice of technology, depending
on the experience which the implementer has within the given technology. A
frequent and popular choice of technology i.e. programming language, in many
cases of software implementation, resides in the object-oriented family.

Java is a good example of this - providing a wide range of mature and versatile
tools. But as the implementation grows in size (lines of code), extending with
features or refining the model often becomes cumbersome, often caused by high
cohesion between the different components of the framework. Choosing another
programming paradigm such as the functional, will provide much easier means
of implementing a modular and extensible framework.

3.8 Summary

In this chapter we have identified the key components of the synthetic genetic
devices, such that we are now able to understand and evaluate the behaviour
resulted from simulations done later in Chapter 7.

In order to model such devices, they were introduced as general chemical reaction
systems, introducing a broad selection of model and algorithms. The general
method of ODEs was described in order to motivate a more sophisticated model,
introducing stochastic elements. Gillespie’s is considered the golden standard for
simulating a stochastic chemical reaction systems, motivating further research
into the statistical estimation of particle collisions. A link between this direct
method and the ODE was identified as the model of increasing rate of reaction
proportional to the population size of the relevant species. Which is the general
mechanic of this basic model, i.e. with an increasing population the probability
of two particle interaction increases. This argument will later be interesting to
test in Chapter 7, by comparing the negative feedback device (in which a protein
can only meet one promoter) with the and-gate device (in which two proteins
of equal population size meet for reaction).

CHAPTER 4

Design

To give an overview of the tool developed, a component diagram is presented in
Figure 4.1.

SBML Parser Compiler Stochastic Petri
Net
Chemical system
Presentation Simulator le— simulation
algorithm
Statistical analysis Simulation
parameters

Figure 4.1: A component diagram of the entire system.

The tool should enable simulation of the genetic devices shown earlier in Fig-
ure 3.3 and 3.4. The process of doing so, should follow the flow presented in
the activity diagram in Figure 2.1, thus satisfying the requirements stated in
Chapter 2.

We see that an SBML parser parses an SBML file describing a genetic device,
outputting a model which is then compiled into a stochastic petri net (SPN).

40 Design

That is then used in a simulator, which inputs a given chemical systems simu-
lation algorithm among other simulation specific parameters, such as duration
and amount of simulations. The result of the simulation can then be analysed,
e.g. by performing some statistical analysis. A presentation, be it a simple
graph or animation, can then illustrate the simulation result to the user, which
should provide some insight of mechanics of the given device.

These components can then be replaced or improved on, hence the discussed re-
quirement of easy model refining or other improvements to the tool in general.

4.1 SBML Parser

The parser is constructed using the FsLex and FsYacc framework. As mentioned
in Chapter 3, there are no suitable solutions for parsing SBML files currently
available for the .NET framework. The chosen frame work will then provide us
with the flexibility of constructing our own custom parser, though not covering
the whole SBML specification.

An SBML file is first read into a lexer, recognising key words which are tok-
enized. For an explanation of the concrete syntax of SBML, please refer for
Chapter 3. The abstract syntax tree (AST) then describes the structure of file
containing terminal and non-terminal symbols. The grammar will be described
in terms of presenting the most essential parts, leaving out details of smaller
parts of it. The outputted AST consists of non-terminal symbols Parts, being
either a list of compartments, species, or reactions. This part of the grammar
is as follows.

(Part) == (Compartments)
| (Speciess)
|

(Reactions)

This means the order of which these parts are declared is of no significance.
But in general, one or more compartments are first declared followed by their
respective species and reactions.
A list of compartments is then denoted as the non-terminal symbol Compart-
ments of the following grammar:

(Compartments) ::= STARTTAG COMPARTS ENDTAG (CompMap) START-
TAG END COMPARTS ENDTAG

4.1 SBML Parser 41

Here, the list of compartments are enclosed by a specific sequence of tokens! i.e.
’<...> ...compartments...</ ...> which is the general XML notation for
maintaining the hierarchical structure. The non-terminal symbol CompMap
denotes the resulting map of compartments of the model outputted by the
parser, later described in detail. The rest of the grammar should now be self-
explanatory, in which compartments and species are defined by a number of
parameters and identifiers, and each reaction has it kinetic law described, in
which the parser can handle simple constructs such as 'Plac*0.1’, as seen in
the concrete syntax in Chapter 3. A reaction also contains a list of reactants
and products, in which the reactant can be a modifier relating directly to the
modifier-arc described for the SPN.

(CompMap) ::= €
| (CompMap) (Compartment)

(Comparment) ::= STARTTAG COMPART ID EQ STRING (CompartParas)
END ENDTAG

(CompartParas) ::= (Name) (SpaDim) (Size) (Units) (Constant)

(Speciess) == STARTTAG SPECS ENDTAG (SpecMap) STARTTAG END SPECS
ENDTAG

(SpecMap) = €
| (SpecMap) (Species)

(Species) := STARTTAG SPECIES ID EQ STRING (SpeciesParas) END END-
TAG

(SpeciesParas) ::= (Name) COMPART EQ STRING (InitAmt) (InitConc) (SubsUnits)
HASSUB STRING (BoundCond) (Constant) (ConvFact)

(Reactions) := STARTTAG RECS ENDTAG (RecMap) STARTTAG END RECS
ENDTAG

(RecMap) ::= ¢
| (RecMap) {Reaction)

(Reaction) := TARTTAG REACTION ID EQ STRING (Name) REVERS EQ
STRING (Fast) (CompartRef) ENDTAG (AgentList) START-
TAG KLAW ENDTAG (KinecticLaw) STARTTAG END KLAW
ENDTAG STARTTAG END REACTION ENDTAG

IPlease note, that when talking about tokens in the context of the parser, we are referring
to the tokenized non-terminals, not tokens in an SPN.

42 Design

The whole AST of the SBML file seen in Appendix A is rather large. But in
order to illustrate its structure, a snippet of an AST produced is illustrated
in Figure 4.2. Here, a part contains a map of compartments, in which one
compartment resides with its respective parameters.

Part

STARTTAG COMPARTS ENDTAG | | CompMap | | STARTTAG END COMPARTS ENDTAG

Compartment

STARTTAG COMPART ID |
STRING

CompartParas

END ENDTAG

|SpaDim| | Units | Constant

! ! ! ! !

Figure 4.2: An example abstract syntax tree of a declaration of a compart-
ment.

The parser outputs a model of the following type, seen in Appendix C:

type Part = | AllCompartments of Map<string,Compartment>
| AllSpecies of Map<string,Species>
| AllReactions of Map<string,Reaction>
| Undefined

type Model = List<Part>

The underlying type declarations for Compartment, Species, and Reaction are
omitted in this case.

The Compartment type describes the environment in general, such as defining
custom units etc.

The Species type describes the different species in the system, such as declaring
its name, what compartment it is in and its initial amount.

The Reaction type describes the set of reactions defining the device and the
transitions of the later compiled SPN. An important note on this type, is its
vulnerability towards changes in the SBML documentation, causing alteration
in the parser, after which the Model type should be changed. For this, the
type Undefined is included for managing artefacts not supported by the parser.

4.2 Stochastic Petri Net 43

Adding this type, the process of extending the parser whilst keeping the com-
piler untouched should be easy, i.e. the compiler will ignore such even though
the parser understands the concrete syntax of the given statement in SBML.
Of course the compiler must eventually be extended, but in terms of developing
the tool, this provides some independence between the modules.

The implemented parser is not complete in terms of understanding the full XML
format of complex MathML constructs. This means that the parser itself should
be subject to refinements and extensions, if needed. Pleae refer to the full gram-
mar supported by the parser in Appendix D and lexer in Appendix E. And the
full specification of SBML can be found in [HBH'10].

The main reason for not having the parser just output an SPN instead of the
generic Model, is to leave the possibility of implementing a whole new data
structure e.g. if we wanted to implement the probabilistic automaton described
in Chapter 3.

An SBML file is parsed by utilizing the ParserUtil module, which has the
functions listed in Table 4.1.

Name Type Legend

parseString string -> Model | Reads a string

(SBML file) and returns the model.
parseFromFile | string -> Model | Opens a file, and if it exists,

uses parseString to read the file.

Table 4.1: Functions for parsing SBML in the ParserUtil module. Please refer
to Appendix F.

4.2 Stochastic Petri Net

Before we describe the compiler, taking the Model as input and outputs and
SPN, we need to describe how it is defined. Due to its many stages through the
project, when experimenting with different data structures and models, a base
type for an SPN is declared as following:

type Tokens<'a> = 'a

type RateFunction = float

type Transition = string * RateFunction

type Place = string

type Arc = | TransPlace of Transition * Place
| PlaceTrans of Place * Transition

44 Design

| Modifier of Place * Transition

type SPN<'TokenCollection,'Token> = {
marking : Map<Place, 'TokenCollection>;
transitions : Map<Transition,Arc List>;
genTokens : int->'TokenCollection;
optional : Option<Space>;
tokensInPlace : Map<Place, 'TokenCollection>->Place->int

removeToken : 'TokenCollection->'TokenCollection
fireRule : SPN<'TokenCollection, 'Token>->Place list->Transition->Option<
Space>

->'Token option*Map<Place, 'TokenCollection>
addToken : Map<Place, 'TokenCollection>->Place list->'Token->Map<Place,'

TokenCollection>
nextState : SPN<'TokenCollection, 'Token>->float->SPN<'TokenCollection,'
Token>

The data structure keeps track of all the places by keeping them in a map,
providing fast look-ups, with the place (i.e. name of the species) as the key.
A marking is then contained within each place denoting how many tokens it
has. A transition then has a name, i.e. the name of the respective reaction,
and a rate function specified by its respective kinetic law. The transitions are
then linked to the places by keeping them in map, having the transition as the
key. An arc is then either pointing from a place to the transition or from the
transition to a place. So when firing a transition, we simply have to work with
just these two sub data structures.

This base type should then be extended by first declaring the necessary types of
tokens and how they are collected - e.g. a list or array. The generic genTokens
function is used when compiling the model outputted by the parser to generate
the given type of token. The tokensInPlace function counts the tokens in a
given place of the SPN, which differs in terms of how the tokens a collected.
The removeToken function removes a token from the specified type of token
collection, e.g. if it was an array, a special function is then needed to maintain
the integrity of the array.

The fireRule function is essential for simulation, i.e. it describes how transi-
tions are fired. If for instance we want to describe the spatial model proposed
by O.Maler, we want to try and find two neighbouring particles if the given
transition has two ingoing places, instead of simply checking if the transition is
enabled.

The addToken functions adds a token depending on the collection of tokens,
much like the removeToken function. Lastly, the nextState function computes

4.2 Stochastic Petri Net 45

the next spatial state of the chemical system presented by the SPN, given by
the optional field option, which is to be ignored in the basic SPN with integer
counter for tokens.

This enables the declaration of any kind of SPN, in terms of how we see par-
ticlesby the different model abstractions. But also in a technical sense when
improving performance, e.g. when finding neighbouring particles. Auxiliary
functions used for simulation are provided in the SPNbase module, which are
listed in Table 4.2.

Name Type Legend
Outputs a new SPN
SPN<’a, ’b>-> where the given
genlextState (float ->SPN<’a,’b>) function nextState
is applied.
Outputs the
state SPN<’a, ’b>-> marking of the SPN,
Map<Place,int> where tokens have been

counted for each place.
Checks if the transition
Transition ->string list | has outgoing places with

isOfInterest

->SPN<’a, ’b>->bool the name of at least
one in the list of strings.
a SPN<’a, ’b>-> Outputs the propensity
(string * float) list of each transition.

Table 4.2: Functions for the SPNbase module. Pleaser refer to Appendix G.

Space and Motion

When considering the positions of particles in a chemical system, we need to
keep track of their coordinates. This is described by the following type:

type Coordinate = {x : float; y : float; z : float}

One could have extended this type to be flexible in terms of describing a coor-
dinate in n-dimensions, but for the purpose of jumping straight to three dimen-
sions, simulating in two dimensions is unnecessary.

The different SPNs used in this tool are then each constructed in the SPNint,
SPN1list, SPNarray modules. They each have a function for initialising their
respective SPN of the type SPNbase. The functions are listed in Table 4.3.

46 Design

Name Type Legend
Instantiates an SPN with
SPNint.makeSPNint SPN<int,int> integers as tokens with
proper functions
Space -> Instantiates an SPN with
SPNlist.makeSPNlist SPN<Coordinate list, coordinate lists as tokens
Coordinate> with proper functions
Space -> Instantiates an SPN with

SPNarray.makeSPNarray | SPN<Coordinate array, | coordinate arrays as tokens

Coordinate> with proper functions

Table 4.3: Functions for the SPNint, SPNlist, and SPNarray modules. Please
refer to Appendix H, I, and J.

The purpose of having SPNlist and SPNarray modules are to compare their
performance when simulating the SPN, which is later evaluated in Chapter 5.

When extending the basic model for spatial dynamic, it was also determined
that it would be suitable to simulate with realistic thermodynamic motion and
other parameters. For purposes of experimentation, it would be suitable to test
different kinds of motion: with constant speed, or with velocity vectors as de-
fined in Equation 3.5 or 3.6. The type Motion is then defined as follows, such
that we can alter between different kinds of motion.

type Motion =
| Constant of float
| VelocityAtTemp of (float -> float)
| VelocityAtTempRad of (float -> float -> float)

How the noise vector, described in Chapter 3 about Brownian motion, is dis-
tributed would will also be subject to experimentation. For this, the type
Distribution is declared, such that when displacements of particles coordi-
nates are applied, the type of distribution is checked by matching the following

type.

type Distribution =
| UniformDist of ContinuousUniform
| NormalDist of Normal

These types are declared in the BrownianMotion module, containing additional
functions for generating noise vectors and applying the different types of motion,
which are listed in Table 4.4.

4.2 Stochastic Petri Net

47

Table 4.4: Functions for the BrownianMotion module.

Name Type Legend
Generates a
. Ditribution -> | noise vector
genNoiseVector Coordinate following the
given distribution.
Outputs the unit
Motion -> length of the
applyMotion float ->float velocity vector

->float

depending on the
motion.

pendix K.

Please refer to Ap-

The spatial model considered in this project, inspired by the individual dynamic
model proposed by O.Maler, is defined by the type Space. It contains all nec-
essary fields for simulating the different kinds of Motion and Distribution,
but also how large the environment (cell) is, the radius of the particles, and
how much kinetic energy is lost when a particle bounces into the barrier of the
environment.

type Space = {

size :
radius :
temperature :
motion :

float;

float;
float;
Motion;

distribution : Distribution;
elasticity : float}

The Space type is declared in the Space module, e.g. containing functions for
finding neighbouring particles and moving particles. These functions are listed
in Table 4.5.

Design

Name Type Legend
float —> Qutputs a legal
boundar Space -> displacement, that
y P is within the boundaries
float
of the space.
Outputs a new

Space -> displacement vector
genMove float -> for a particle, which

Coordinate depends on the given

motion type that is used.
. Checks whether two

Coordinate -> . .

: . coordinates are in range
inRange Coordinate -> .
of each other, given by

Space ->bool .

a radius in the space type.

Coordinate list Outputs a random pair
findneichbours ->Coordinate of coordinates, one partner

& list ->Space -> from each list, that are

Coordinate list neighbours.

Coordinate array Outputs a random pair
findneigbhours- ->Coordinate array | of coordinates, one partner
array ->Space -> from each array, that are

Coordinate array neighbours.

Table 4.5: Essential functions in the Space module. Please refer to Appendix L

A clear distinction between this module and the BrownianMotion model must
be made, in terms of the responsibilities. In Table 4.5 we see the genMove func-
tion, which does not generate the displacements of the particles, applies the
moves generated by the motion module. Having a clear means of delegation
here, enables ease of possible extension of the thermodynamic model.

When moving a particle, a displacement vector is generated depending on the
before mentioned types of motion and noise vector distribution. If a gener-
ated move would cause an ’illegal’ position, i.e. out of the boundaries of the
cell, the boundary function mimics a bouncing of the particle on the cell mem-
brane, where the particle loses a given amount of kinetic energy given by the
elasticity factor. This effect is illustrated in Figure 4.3. If the speed of
the particle is so great, that upon bouncing back to another? illegal position
is produced, the function recursively bounces the particle back again until its
displacement factor has been exhausted.

2Which turns out to be the case, when using the thermodynamic model described by
Equation 3.5

4.2 Stochastic Petri Net 49

displacement
factor
O >
x *el X (remaining)
cell membrane

Figure 4.3: An illustration show a particle moving past the boundary of the
cell membrane.

It is also important to note that the functions for finding neighbouring particle
both output a pair which is chosen at random, eliminating any priority of which
particles are added and removed from places in the SPN. Doing so, we achieve
the same neighbour evaluation as in Algorithm 2 for individual spatial dynamics
proposed in [MHML14].

We can now, by utilizing these types, initialise an empty SPN, for which a Model
will be compiled onto it. Let us consider the following example of initialising a
space environment.

let kB = 1.3806488e-23 //Boltzmann's constant
let particleMass = 6.4e-22 //realistic mass of protein in grams
let unitScale = 10.0e+9 //for nanometer

let space = {
size = 2000.0;
radius = 4.0;
temperature = 298.0;
motion = VelocityAtTemp(fun temp ->
(sqrt ((3.0*kB*temp) /particleMass))*unitScale)
distribution = NormalDist(normalDist);
elasticity = 0.5}

Here we have defined a space describing a cell of 2000.0 unit length in nanome-
tres, the radius of each particle in the device is set to 4.0, and the temperature
is 298 Kelvin. The motion is set to that of Equation 3.5, and particles should
lose half their kinetic energy when they bounce into the cell membrane.

50 Design

A instance of SPNbase with arrays and coordinates can then be declared as the
following:

let spnarr = makeSPNarray space;;

Doing so, leaves the marking and transitions empty. This is because the infor-
mation of the chemical reaction system is yet to be compiled onto it, which is
the next step.

4.3 Compiler

The information of a model, outputted by the parser, is then inserting in an
empty SPN of type SPNbase. The SPNbaseCompiler module provides the nec-
essary function for this, as seen in Table 4.6.

Name Type Legend
Compiles the given
SPN<’a, ’b>-> | model into the

compileModel | Model -> empty SPN; initialising
SPN<’a, ’b> its marking and
transitions.

Table 4.6: Function for the SPNbaseCompiler module. Please refer to Ap-
pendix M

An important note on the compiler is that in SBML specification, species and
reactions are linked to a compartment through identifiers. Which the compiler
does not take care of, since the models described in SBML used for this project
do not describe more than one compartment. The purpose of having different
compartments, is if one wants to declare several reactions system within the
same SBML file, which in terms of the genetic devices, is not of importance.
But if this should be added, one would simply only have to extend the compiler
module, such that it either creates an SPN instance of each compartment or
disjoint SPNs within the same instance of an SPN. We would then either sim-
ulate the different SPNs separately or together, depending on the nature of the
chemical reactions system of course.

Continuing the example, we can compile the SPN as following:

let m = ParserUtil.parseFromFile ".. .\casestudy.xml" N

4.4 Simulator 51

val m : Model =
[AllCompartments (map [("compartmentl", name = null;
spatialDim = Some 3.0;
size = Some 2000;
units = null;
constant = null;)]);
AllSpecies(map[("Lacl”, ...);("Plac", ...);("Plac_Lacl",
...);("mRNA", ...)]);
AllReactions
(map[("decay_Lacl”,...); ("decay_mRNA", ("regulation”,...);
("repressed_transcription”,...); ("transcription”,...);
("translation”,...); ("unbinds",...)])]

let spn = compileModel spnarr m;;
val spnl : SPlNbase.SPN<Coordinate.Coordinate array,Coordinate.Coordinate>
={marking =map[("Lacl”, [//]); ("Plac", [lz = 1000.0;y = 1000.0;z =
1000.0;11);
("Plac_Lacl”, [/]1]);
("mRNA", []11)];
transitions =map[(("decay_Lacl", 0.0012), [PlaceTrans
("Lacl", ("decay_Lacl", 0.0012))]1);
(("decay_mRNA", 0.0058), [PlaceTrans ("mRNA",("decay_mRNA", 0.0058))]);
R
L}

This gives us the full SPN, where tokens are considered by their coordinates
stored in an array. The environment illustrated here, is that of the negative
feedback device mentioned in Chapter 3 and listed in Appensix A. Here we see
e.g. the promoter is the only initial particle in the cell, residing in the centre of
the cell.

4.4 Simulator

When the given chemical reaction system is compiled into a given SPN, it is
ready to be simulated. The module Simulator inputs a simulation algorithm, a
data structure (in this case an SPN), a list of particles names that are of interest
of the simulation, an interval of which snapshots should be taken during the
simulation(s), a duration for each simulation, and how many simulations that
should be run. This function is listed in Table 4.7. The types used for the
simulations are as follows:

52 Design

type Data = (float*float) list list

type MinMaxData = ((float*float) list*(float*float) list) list

type Snapshots<'datastructure> = 'datastructure list

type SimulationResult<'datastructure> = ((Data * MinMaxData) * Snapshots<'
datastructure>) * float list list

The Data type denotes a list of data points describing the concentration of a
type of species in the cell at a given time step, of which there is a list for each
type of species that is of interest.

The MinMaxData type denotes a list of data points for each species of inter-
est, which is the 'maximum’ and 'minimum’ of all the simulations done. And by
that, a 'maximum’ of a simulation is global maximum measurement (yielding
the highest integral) of each time step and vice versa for 'minimum’, later used
for presentation. This could of course have been done later in the statistical
analysis itself. But by declaring this type and evaluating the maximum and
minimum during simulation, we can easily distinguish between these two types
of data later e.g. during presentation.

The Snapshots type denotes a list of states of a given data structure, be it
an SPN or other, at each given time interval, later converted into text files and
plotted and animated in Matlab.

Lastly, the SimulationResult type denotes the result of a simulation, con-
taining the data of accumulated average behaviour of the given device, the
maximum and minimum measurement, the snapshots, and a list of the concen-
trations measured for at the last time step of each particle of interest, later used
for calculating an interval of mean concentration in a given level of confidence.

Name Type Legend

Inputs a given chemical
system given by a

data structure by a

given simulation algorithm
and outputs a simulation
result.

’algo ->datastructure ->
string list ->’snapinterval
simulate | ->’duration ->
’simulations ->int ->
SimulationResult<’spntype>

Table 4.7: Function for the Simulator module. Please refer to Appendix N

The simulations are parallelised. For this, a functionality for managing how
many simulations are done per task is provided. Providing the flexibility of
achieving optimal performance, depending on the amount of threads provided

4.5 Chemical system simulation algorithm 53

by the given hardware contra the overhead of constructing the task list itself.

4.5 Chemical system simulation algorithm

The different kinds of simulation algorithms used for this project are imple-
mented as individual modules as listed in Table 4.8

Name Type Legend
SPN<’a, ’b>->
string list -> Inputs an SPN, parts of
float ->int -> interest,a snapshot interval,
System.Random -> duration,a random number
gillespie | (SPN<’a,’b>x generator, andouputs the
float) list snapshots and markings
* at each time step. Calculated
(float * using Gillespie’s direct method.
Map<string,int>) []
SPN<’a, ’b>->

string list ->
float ->int ->

System.Random -> Inputs the same as gillespie,
spatial (SPN<’a, ?b>* but takes the particles positions

float) list into account.

*

(float *

Map<string,int>) []

Table 4.8: Functions for the simulation algorithm modules: Gillespie and Spa-
tialGillespie. Please refer to Appendix O.

The main difference between the two is that one is the general Gillesipe algo-
rithm, and the other is an extension of such inspired by the individual spatial
model proposed by O.Maler. These are later compared in the experiments in
Chapter 7.

Continuing the example, we can now initiate a simulation as follows:
let duration = 4000;;

let simulations = 100;;
let snaplInterval = 1.0;;

54 Design

let partsOfInterest = ["mRNA";"Lacl"l;;

let spatialsims = simulate spatial spn partsOfInterest snapInterval
duration simulations;;

val spatialsims :SimulationResult<SPN<Coordinate.Coordinate
array, Coordinate. Coordinate> *float> =((([[(435.6666642, 275.6831683);
... (425.1273841, 276.2475248); ...1;[(435.6666642, 3.217821782);
... (425.1273841, 3.297029703); ...11,[([(395.8935861,
364.0);...(385.0487857, 369.0); ...],[(492.4948919,
154.0);...(482.1576449, 152.0); ...]1);([(395.8935861,
4.0);...(385.0487857, 4.0); ...1, ...); ...1), ...)0, ...)

Here we get the result of 100 simulations, where each simulation has run the
spatial function for simulating the spatial model. Each simulation then stops
when 4000 seconds have elapsed, given by the time step calculation in Gillespie
seen in Algorithm 1. About 1000 snapshots have then been taken, which are
later seen as 'frames’ of an animation. The snippet of the result above leaves
out a lot, but we can see that the average concentration of the Lacl protein at
the last time step was 275.68 and 3.22 for mRNA. We also see that there is a
high variance of the Lacl concentration given by 364 and 154.

4.6 Statistical analysis

In order to evaluate the results the Statistics module provides functions for
calculating a confidence interval of a mean. But auxiliary functions such as
finding the coordinates that define the out limits of the device, later used for
animations and graph representation.

The confidence interval calculated describes an interval of means, which with
a significance of 5% can be within. This module would be the main focus, if
the tool would to be extended in terms of the requirements of analysis done on

synthetic biology described in Chapter 1.

The interval can then be calculated as follows:

let interval = confidencelnterval (snd spatialsims) 0;;

val interval : float * float = (265.445203, 287.714797)

4.7 Presentation 55

Name Type Legend

Outputs the confidence
interval of a list of
float list list | measurements at the

confidencelnterval | ->int -> same time step of several
float * float simulations. At is
calculated at a significance
of 5%.
Snapshots< Outputs the minimum and
SPN<’Coordinate | maximum X,y, and z value
£indMinMaxCoords [1,’a»-> of the provided snapshots.

float * float * | Later used for defining
float * float * | scatter plot dimensions in
float * float animations.

Outputs the maximum

x and y value of the
provided data. Later
used for defining plot
dimensions.

Data ->

1 1M
globalMax float * float

Table 4.9: Functions for the Statistics module. Please refer to Appendix P.

So when we later, in Chapter 7, compare the behaviour of another device under
different conditions, we can with a significance of said 5% say they are the
same, if the resulted average concentration is within the interval calculated for
a control.

4.7 Presentation

The data is now ready for presentation. For this, the tool provides two options:
generating a simple Gnu-plot or extraction of the data, such that it can be
imported into Matlab for 3D scatter plots and animations. Although the simple
plot will provide knowledge on the general behaviour of the given device, some
valuable insight on the movement of the particlea can be gained by generating
animations of them. The DataWriter module provides the necessary functions
for saving snapshots of a given simulation, listed in Table 4.10.

Continuing the example, where we have the result of a given simulation, we can
save the snapshots as follows:

let snapshots = snd (fst spatialsims)

56 Design
Name Type Legend
'a _>strin Stores a value of
saveValue . & given type ’a at the
->unit .
given path.
Restores a value of
restoreValue | string ->’a type ’a. Must be
annotated.
string -> Write the sequence
linesTofile seq<string> of string into the file
->unit in the path.
Snapshots->
int ->int ->
m o Stores snapshots of
->Space -> . .
a simulation as
float->float ->
saveSnapshots text files at a
float * float * .
directory. Note:
float x float x change director,
float * float -> & v
unit

Table 4.10: Functions for the Data Writer module, used for storing data and
extracting data for animations. Please refer to Appendix Q.

let boundaries = findMinMaxCoords snapshots
saveSnapshots snapshots duration simulations space maxX maxY boundaries;;

val 2t : wunit = ()

The boundaries will be used to set the axis of the scatter plot.

For creating the simple plot the Plotter modules provides the function for
plotting the result, where one has to declare legend titles and colors, and specify
if the maximum and minimum data should be shown. The function is listed in
Table 4.11.

Name Type Legend
Plots the simulation
SimulationResult<’a>-> result Wl),ch R
. . . and maximum as
plotdata | string list ->Color list -> . .
) optional. A list of
bool ->unit .
titles and colors are
given for the legend.

Table 4.11: Function for the Plotter module. Please refer to Appendix R.

4.8 Summary 57

Plotting the data can then be done as follows:

let titles = ["avg-Lacl";"avg-mRNA";"min-Lacl";
"max-Lacl";"min-mRNA" ; "max-mRNA"]
let colors = [Color.Red;Color.Green;Color.DarkGray;
Color.DarkBlue;Color.LightGreen;
Color.LightGreen]

plotdata allSpacialsimulationsThermo2 titles colors true;;
val it : wunit = ()

Showing the graph in Figure 4.4.

0 50 100 150 200 20 30 350

Figure 4.4: A plot of the example simulation done in this chapter.

Inspired by the neat 3D visualisations done in [{HCKMK13|. Animations are
done in Matlab, please refer to the Matlab-script in Appendix S. In short, it
reads two files for each snapshot taken during a simulation containing the in-
formation used to plot the concentration of Lacl and another for a scatter plot
showing the position of all the particles. Please refer to the experiment results
in Chapter 7 for examples of these.

4.8 Summary

The described modules should now enable the fundamental work flow both de-
scribed in the activity diagram in Figure 2.1 and framework in Figure 1.2.
A simulation is started by the user through a script of maybe a graphical user

58 Design

interface, in which a data structure reflecting an SBML file is compiled. The
simulation then starts and runs a given number of times, at each time step of
said simulation the state of the environment is changed, which at the end is
return as the result.

Looking back at the component diagram in Figure 4.1, the compiler module
could for instance have just been a sub module of the SPN module, resulting
in fewer components, but this would complicate possible modification and re-
placement of a data structure, since the compiler for the data structure would
also have to be reworked.

One could also propose that the Statistics module should somehow be incor-
porated into the Simulator module, referring back to the note on performance
gain on procedural analysis during simulation. But due to wide range of differ-
ent analysis that are possible, it was chosen to keep this module separate, thus
achieving the behaviour described in Figure 2.1.

CHAPTER 5

Implementation

In this chapter we will give a brief overview of the implementation of each mod-
ule, in terms of non-trivial choices that have been taken especially in the context
of performance. One of the main challenges when implementing the toll was to
try and satisfy the requirement stated in Chapter 2 for the simulator - that
exploration of different techniques used for performance optimisation should be
done.

For this, some key features within the F# framework have been utilised for
both measuring and improving performance. The main goal here, wa to run
simulations in parallel instead of sequentially.

Later when the spatial model was implemented, a performance bottleneck was
introduced in terms of finding neighbouring particles, in which the same proce-
dure was applied.

Neighbour searching in a dynamic system, i.e. ever moving particles, is a subject
of its own, and will be shortly discussed in terms of what solutions are possible.

60 Implementation

5.1 Parser and compiler

Implementing the parser and compiler was done, as mentioned in Chapter 4,
by utilising the FsLex and FsYacc frame work for constructing a scanner and
parser. After which the parsed model from the given SBML file is compiled onto
a stochastic petri net. The structure of the implementation itself for both the
parser and compiler, seen in Appendix E, D, and M, follows the basics concepts
for constructing any given parser and compiler.

5.2 Simulator

Before discussing the implementation of the different kinds of stochastic petri
nets, the simulator was first optimized.

Running an increasing amount of simulations is the most straightforward bottle-
neck present within the tool, thus exploiting the simple implementation overhead
needed for doing a task parallel computation was highly motivated. We can see
each simulation as a task that has to be done, to which a thread can be delegated.

Let us consider two different ways of computing the simulations:

let tasks = 20
let duration = 4000
let iterations = 160
let simulateFor time =
for i in 0..iterations do gillesipe spn duration []

let rec naiveSimulate i max =
if i < max then simulateFor resultSize::naiveSimulate (i+1) max
else [simulateFor duration]

let sequential = naiveSimulate O tasks

let simulationtasks = Array.init tasks (fun _ -> duration)
let parallel = Array.Parallel.map simulateFor simulations

Here we are computing 3.200 (20 x 160) simulations each running until 4000
seconds have passed in simulated time. The first sequential function computes
the simulations recursively until its finished and stores the results in a list. The
second parallel utilised the Array.Parallel library in which an array of tasks
is first initialised, on which the Array.Parallel.map functions maps over the

5.2 Simulator 61

task array. The results for both of the simulations are stored in a list. The
performance of these are shown in Figure 5.1.

Performance when results are stored in a list

1]

—8— Sequential
ArrayParallel

—_
\)
T

—_
o

Run time in seconds

0 | | | | | |
20 40 60 8 100 120 140 160

Number of simulations

Figure 5.1: A plot showing the running times of the sequential and parallel
simulations, where the result of each simulation is stored in a list.

Although we do see some performance gain, the simulations are run one a system
with four cores, in which we could have expected to have gained performance by
a factor of four. Using lists for storing the results of the simulations will, with the
rather large amount of data stored in them, cause poor cache performance. This
is mainly due to the List type describing a linked list, which provide good inser-
tion and removal time complexity but poor memory complexity - O(2n) where
n is the amount of data points. To improve on this, storing the simulations re-
sults in an array which, having a memory complexity of O(n), was implemented.

Let us consider the following:

let result =
Array.init resultSize (fun _ -> (0.0,[("",0)1))
let simulateFor time =
for i in O..iterations do gillespie spn3 resultSize result

When we then run the same functions again, we get the performance shown in
Figure 5.2.

62 Implementation

Performance when results are stored in an array

T T T T T T
—=— Sequential
—5— ArrayParallel

i

—_
[\
T

[
o

Run time in seconds

|

0 | | | | |
20 40 60 80 100 120 140 160

Number of simulations

Figure 5.2: A plot showing the running times of the sequential and parallel
simulations, where the result of each simulation is stored in an
array.

Here we clearly see, that we are getting closer to the desired speed-up of factor
four. The end result of the simulator can be seen in Appendix N, in which the
simulations are computed in parallel following the technique described before.
The user can specify maximum allowed number of simulations per task, which
purpose is discussed in the section about stochastic petri nets.

5.2.1 Generating random numbers in parallel

A major, an later discovered, limitation of the popular tool for generating ran-
dom numbers System.Random is its missing thread safety property. If we ran
parallel simulations using this, the object created would eventually break by
continuously returning a zero-value. A solution to this would be to wrap this
object around a thread safe environment e.g. by implementing a semaphore.
But the popular MathNet tool already provides a wrapped random number gen-
erator which is thread safe. As seen in the Motion type described in Chap-
ter 4, uniformly and normally distributed numbers are generated using the
MathNet.Numerics.Distribution libraries.

5.3 Presentation and statistics 63

5.3 Presentation and statistics

Different kinds of tools were used for presentation, a GnuPlot type provider is
used for generating in-tool graphs showing the results of the given simulation(s).
The Plotter module, Appendix R, was implemented enabling different kinds of
plots, i.e. optional minimum/maximums presentation and custom colours and
titles for legends.

For computing the animations, MatLab has been used, where the data of a
simulation is extracted by the DataWriter module Appendix Q. Data can be
stored and restored, in which it is important to note that one should provide
type annotation once restoring data from a file (which could otherwise corrupt
the data file).

The MathNet .Numerics.Statistics library is used in the Statistics module
for calculating the interval of confidence for a mean. It should be noted, that
the function does not support a variable level of confidence, which is set to be
5%, hence the critical value of 1.96 seen in Appendix P.

5.4 Stochastic petri net

When introducing space into our model, we also increase the computational re-
quirements for the simulations. When finding a pair of particles that are close
enough for reaction, both the data structure in which they are stored and the
search algorithm affect the performance. There exists a wide range of solutions
for fast neighbouring searching dynamic systems, where the data structure has
to be updated in terms of particle positions at each time step.

Let us consider two different ways of instantiating a simulation:

let spnlist =
simulate spatial spnlist partsOfInterest snapInterval duration
simulations

let spnarray =
simulate spatial spnarray partsOfInterest snapInterval duration
simulations

The difference between the two SPNs, as described in Chapter 4, is how we
store the coordinates of the particles in an array, we can perform the neighbour
search in parallel. This is done as following, in the Space module:

64 Implementation

let neighbours =
tokens2 |> Array.Parallel.choose
(fun t -> if inRange ta t space then Some(t) else None)

Before doing so, we first ensure that tokens2 is the longest of the two arrays in
which we must find a pair. This avoids the common case, where we only have
very few particles of one type that can react with a larger amount of another

type.
The performance gains are listed in Table 5.1.

Name Motion Run time
spnlist | Constant(0.0) | 19.691 s
spnlist | Constant(6.0) | 41.981 s
spnlist | Thermol 1797.226 s
spnarray | Constant(0.0) | 17.695 s
spnarray | Constant(6.0) | 18,395 s

spnarray | Thermol 237.488 s

Table 5.1: A table of run times, where neighbours are first searched for se-
quentially spnlist, and in parallel spnarray.

20 simulations were done for each, where the simulator was allowed a minimum
of 10 simulations per task (i.e. a task list of two tasks consisting of 10 simulations
each), potentially leaving cores free for the parallel call for neighbour search.
Allowing the simulator to use an unlimited amount of resources/threads, the
gains of this improvement will either be small or actually decrease performance,
since threads will be sleeping more. This illustrates the need for the flexibility
needed in the simulator, in terms of task management.

The first simulations, where the particles do not move (hence Constant (0.0)),
were done as a control and see the high variance in run time of the spatial
model itself. The speed of the particles were then increased, ending with the
thermodynamic motion described by Equation 3.6 in Chapter 3.

When increasing the number of simulations per tasks, when using the parallel
neighbour search, close to no speed-up was achieved as seen in Table 5.2. This
indicates that once a parallel simulation task exhausting the thread pool, later
calling parallel computation provides no gains in terms of run times.

5.4 Stochastic petri net 65

Tasklist Run time
[l1101] 314.485 s
[15;51] 324.505 s
[13;3;4] 276.649 s
[12;2;2;4]] 292.829 s
[l1;1515151;1;1;1;1;11] | 287.858 s

Table 5.2: A table of run times, where the maximum simulations per task is
decreased.

A major improvement that could be done to the current implementation of
the SPNarray, in Appendix J, is to improve the amortised cost of inserting
and removing tokens. The current solution simply inserts a token by using the
Array.append function, and removes a token by create a whole new array where
the given token is not present. This could be improved by describing an array
of type Coordinate option array in which arrays are doubled in size, when
the array is full of Some(...) instances of tokens.

5.4.1 Faster neighbour search

A solution for finding neighbouring particles in a static system, would be to
construct a kd-tree of coordinates. In short, a kd-tree is a k-dimensional tree
containing the sorted coordinates, e.g. each a level for the x, y, and z-values for
3 dimensions. By doing so, it effectively partitions the space in sub-areas. This
provides fast range queries, average case O(log n) where n is the amount of given
type of particle, i.e. finding a set of coordinates that are within a given radius.
But utilising a kd-tree for storing coordinates in a dynamic system, changing
the positions of the particle at each time step, we would have to re-construct
the entire tree, resulting in an amortized cost of O(m log n), where m is the
total number of particles, for reconstructing the tree. This is rather ineffective
compared to O(m) time for applying moves provided by either the list or array
solution.

Solutions providing optimized data structures that adapt the concept of the
kd-tree are found in the following:

e [DRF12] proposes a packed memory array (PMA), where particles are
sorted by which ’cell’ they belong to, i.e. much like the sub-areas of
the kd-tree. Some indexes are then left empty to achieve and O(log n)
amortised cost of moves i.e. updating their positions in each time step.

66 Implementation

e [ABRS12] proposes a list for adaptive resolution particles simulations, im-
proving performance for simulating system in which particles have differ-
ent reaction radii. The varying sizes of the species in the devices; mRNA
strands and complex proteins, are not included in the model proposed
in this thesis. But adapting this solution into the current model would
be beneficial, and interesting to see if it had an effect on the dynamic be-
haviour of the devices. Though it should be noted, that this data structure
does not provide as fast updates as in the PMA.

e [GWO09] proposes an efficient data structure for computing hydrodynamic
(HI) interactions between spherical particles, as described in Chapter 3.
In physics, when computing HI a diffusion tensor is constructed with a
runtime of O(n?). So if we later wanted to include HI into our model,
we would introduce another bottleneck. An algorithm is then proposed,
achieving an optimized runtime of O(n?).

5.5 Summary

The premise for showing the techniques used for improving on performance, was
to show how little work is needed in order to speed up code in F#. We saw
that by changing just a few lines of code, we could easily exploit the multiple
cores available to us, which is a common set-up as of writing this report. We
saw a performance gain by a factor of four - proportional to the amount of cores
available when computing simulations in parallel. And an even greater factor
when finding neighbouring particles in parallel.

Though it should be noted, that a task potentially utilising all threads leaves no
more room for later parallel computations during run time. This means, that
the speed-up of parallel simulations is no longer present once we parallelised the
neighbour search. So depending on the device that is simulated, the gains of
parallel neighbour search were not as prominent as expected. Although, storing
tokens in arrays does not only provide parallel computation capabilities, but
is also much more memory efficient, as we saw in the simulator section in this
chapter. Let us consider a device that produces a high amount of a given species
during a simulation. The list-solution would then potentially run out of memory
much sooner than the array-solution, hence the doubled memory complexity of
a list compared to an array.

Further improvements in terms of performance were described in terms of alter-
native data structures and algorithms, which will also later be summarised in
the conclusion, ChapterS8.

CHAPTER 6

Tests

Testing the entire implementation has not been of focus during the project. But
a few test of essential components of the tool will be proposed in this chapter.
The main purpose of doing this, would be to confirm the requirements listed in
Chapter 2, thus concluding the software engineering aspect of this thesis.

6.1 Test overview

Testing a software system can be done in numerous ways, but they must be
conducted such that they test both the functional- and non-functional require-
ments. One way is to do white- and black-box tests. White-box tests inspect
the inner workings of the software, whilst the black-box tests cover the func-
tionality of the software with no knowledge of how the given output is generated.

When testing the tool against the requirements, the method known as static
black-box testing is used [Pat06]. The general process of this is to form a test
case, be it a use-case of user scenario. The test should then be conducted with
both input that is known to be correct and incorrect, after which the output is
carefully evaluated. Different techniques for such tests are e.g. pairwise testing
or decision tables.

68 Tests

6.1.1 Parser

The purpose of testing the parser is to see, if can parser the SBML files describing
the devices in Appendix A and B. The parser does not cover the whole SBML
specification, mainly due to its extensive documentation and flexibility in terms
of defining a chemical reaction system.

The main process was first to see if tokens were correctly generated, by producing
printouts when they were pattern matched by the lexer. The model outputted
by the parser was then inspected, by comparing the generated F# types with
the model described in the file.

6.1.2 Compiler

The compiler was first tested by constructing a basic instance of the Model type,
containing no species etc. It was then expected that the compiled data structure
would contain empty collections, i.e. remain untouched by the compiler. The
following illustrates such test:

> let m:Model = [];;
val m : Model = []

> let spn = makeSPNint;;
val spn : SPN<int,int> = {marking = map [];transitions = map [];...}

> let compiledSPN = compileModel spn m;;
val compiledSPN : SPN<int,int> = {marking = map [];transitions = map

[;...}

To see if a simple model describing a reaction system of A — B would e.g.
produce a stochastic petri with still an empty marking, but with the correct
collection of transitions, was also important to test.

Lastly, an outputted model from the parser was then used to compile its reflected
SPN. Again, the evaluation of the result was done by carefully inspecting it for
correct marking and collection of transitions. It was also important the we
maintained the correct propensity functions in the transition, such that the
simulated dynamic behaviour is correct in terms of the given parameters.

6.1 Test overview 69

6.1.3 Data structures

The key feature of the SPNs is that they keep track of the global state of the
given chemical reaction system it describes. For this, it was important to test
if the fireRule function and its auxiliary functions for adding and removing
tokens were as intended. An SPN having two places p; and py connected by a
transition ¢ with the initial marking m = [(p1, 1), (p2,0)], then served as a base
case for this type of test. By firing the transition it was then expected to remove
the token in p; and add it to pa such that m = [(p1,0), (p2,1)]. Continuing the
test in the section before, we can do as follows:

> let spnwithmarking =
{spn with marking = Map.ofList [("p1",1);("p2",0)]1};;

val spnwithmarking : SPN<int,int> ={marking = map [("p1", 1); ("p2",
0)];transitions = map [];...}

> let spnwithtrans = {spnwithmarking with transitions = Map.ofList [(("t"
,0.0),[PlaceTrans ("p1",("t",0.0));TransPlace (("t",0.0),"p2")1)1};;

val spnwithtrans : SPN<int,int> ={marking = map [("p1", 1); ("p2",
0)];transttions =map[(("t", 0.0),[PlaceTrans ("p1",("t", 0.0));
TransPlace (("t", 0.0),"p2")])];...}

> let firedspn = fire spnwithtrans ("t",0.0);;

val firedspn : SPN<int,int> ={marking = map [("p1", 0); ("p2", 1)];...}

Later more complex models were tested during the experiments themselves,
which can be seen and evaluated by the results presented in Chapter 7. It
should be noted, that in practice the SPNlist module was not used because of
the described model extensions and performance gains provided by SPNarray
in Chapter 5.

The spatial model defined by the modules BrownianMotion and Space both
contain critical functions such as the boundary function ensuring that particles
stay inside the cell. The premise of this function is described in Chapter 4,
and can be tested in three cases; 'moves’ being legal, illegal, and illegal whilst
causing recursion as follows:

> let space = {size = 100.0; ... }

let casel = boundary 110.0 space

let case2 = boundary 90.0 space

let case3 = boundary 2000.0 space;;

...val casel : float = 40.0 wal case2 : float = 90.0
val cased : float = 31.25

70 Tests

The correctness of spatial model implemented is supported by the animations
done in Chapter 7, showing particles moving within a restricted area with defined
motion.

6.1.4 Simulator and Simulation algorithms

One could for instance test the simulation algorithms by means of conducting a
pairwise test - by testing all possible input pairs, or test the simulator through
a decision table by means of different parameters described in a decision table.
An example of such can be seen in Table 6.1.

Conditions Rule 1 | Rule 2 | ... | Rulen
snapinterval < duration | T F .. | F
partsOflnterest exists in T T P

data structure

duration > 0 T T F
maxTasks > 0 T T F
Action
Simulation is possible T T F | F

Table 6.1: Example of a decision table used for testing the simulator with
different parameters.

White box test were done when implementing the different simulation algo-
rithms, by conducting a branch test, [Khall], much like the decision table.
Different parameters were then used to reach possible outcomes of the algo-
rithms. One being the duration of the simulation, and another being the data
structure reflecting the given device. A major vulnerability exposed by doing so,
was the lacking robustness of the Gillespie’s direct method and also the spatial
model algorithm, in terms of possible input creating infinite amounts of a given
particle resulting in a memory exception being thrown.

6.1.5 Presentation and statistics

Since the correctness of the presentation done relies much on the libraries utilised
- GnuPlot and Matlab, extensive testing would not be necessary compared to the
rest of the system. Although, it was important that the correct axis and legends

6.2 Summary 71

were constructed, which would be crucial to the outcome of the experiments if
were done incorrectly. This was done by following the same procedure as for
the rest of the system, i.e. starting with a base case followed by real examples.

6.2 Summary

This chapter should serve as an outline for conducting tests for the tool, if later
needed. The general process of the tests follow the pair-wise testing method,
with carefully chosen parameters covering both a base and special cases.
During implementation tests were done but not documented, which should have
been done in hindsight, thus improving the overall quality of the documenta-
tion.

72

Tests

CHAPTER 7

Experimens and results

The purpose of this chapter is to catalogue the experiments that are the basis for
the evaluation and analysis of the different models. The results of these exper-
iments will then each be listed with a hypotheses given by detailed description
and the expected result, parameters, results, and evaluation. After each experi-
ment a rational will be given, motivating the next iteration of experiments and
why they were chosen.

The naming scheme for the experiments is as following; a number describing
which model or combination of models is used, and a letter uniquely describing
experiment. The data of the experiments can be found through the following
link.! The order in which the experiments are set is illustrated in the road map
in Figure 7.1.

Thttps://drive.google.com/folderview?id=0B1mLIuFDRGGERzEOeF1FaUo2N2susp=sharing

74 Experimens and results

Experiment 1: Gillespie

e N 1b N Experiment 2: Gillespie and O. Maler
; 1a) Average : BT T EETETTrrTIIS
: A baseline . : :
behaviour H : 2c
for later : : 2a 2b
comparison (over several . : . Behaviour
p _simulations)) : ;| Sanity-check Average affected when
for basic and behaviour of speed and
spacial model spacial model reaction radil Is
(1c N (1 N P P changed
1d
IOWeI’ Ty
higher rate of
rate of rg ulation {
translation 9 : Experiment 3: Speed and radii
\§ J J T PR .
4 N [N : 3a 3b 3c
1e 1f : : Relative low Increasing the Reaction radii just
higher rate of . : speed of speed of the a quarter of the
decay of lower rate of : particles result in particles does speed has a large
translation : : localised indeed affect influence on the
mRNA L) : : movement their distribution behaviour.
Experiment 4: Thermodynamic motion
4a Co nte4r.'t|)1t itive 4c 4d
Extended model unterintuitiv Uniformly vs. Thermodynamic
. movement given y
with by the normally motion by
thermodynamic thermodynamic c_ilstnbuted wsx:.osny a_nd
movement formula noise vectors. particle radius

.. l .. B

Experiment 5: AND-gate

5b
5a Closer look
Thermodynamic
i at
motion shows
vulnerability thermodynam
-ic motion

Figure 7.1: A road map showing the experiments conducted in this chapter
and the order they are in. The experiment are divided into sub-
experiments, where different stages of the models are tested with
different parameters in order to confirm or disprove the expected
results.

7.1 Experiments

Reaction rates for feedback device:

Below are the reaction rates of the reaction system given by the negative feedback-
and and-gate device. These rates describe the behaviour of the device depending
on the simulation algorithm i.e. Gillespie. The rates are based on the law of
mass actions system i.e. a rate function for each reaction in the system. The

7.1 Experiments 75

name of the rate function is given followed by the function itself dependent on
a rate constant and an amount of a given species. The parameters are based on
used in [LB14], in which this device is a sub component of an oscillator device.

Transcription 0.5 * Plac
Regulation 1* Plac % Lacl
Unbinds 9% Plac_ Lacl
Repressed_transcription | 5% 10™* x Plac_ Lacl
Translation 0.167 + mRN A
Decay of mRNA 0.0058 * mRN A

0.0012 * Lacl

Decay of LacI

Table 7.1: Negative feedback device parameters

0.0001 x IPTG * Lacl
0.012 * Pro

Promoter activation

Transcription

Translation

0.009 *x mRNA_Ara

Decay of mRNA_Ara

0.01*mRNA Ara

Decay of Ara

0.01 x Ara

Table 7.2: And-gate device parameters

76

Experimens and results

Experiment 1la

The first experiment will serve as a basis of comparison for the rest of the
experiments which are done.

Description | A simulation of the negative feedback device in Figure 3.3, show-

ing the concentrations of mRNA and Lacl species over time.
Purpose To create a baseline of comparison when we refine the model or

change parameters or amount of simulations.
Expected The concentration of the protein Lacl is expected to be repressed
result at certain point since the chance of regulation happening is pro-

portional to the amount of Lacl. The concentration of mRNA is

expected to slowly decay over time, since the chance of transcrip-

tion happening decreases as the frequency regulation increases.
Parameters | See Table 7.1 for device parameters. 1 simulation.

/./W Bt
’//‘
~
x‘/.
V//ﬂ
/j’
: /
/

Result ‘ ° ° ° = ° ”

Run time: ~ 1.5 seconds
Evaluation | The results show that the protein Lacl (red) is repressed once it

reaches a concentration of ~ 200 particles, although the stochastic
element of the simulation presented by the fluctuations of said
concentration after repression. One can also see that the mRNA
(green) decays over time.

Table 7.3: Experiment la, the first axes in the graph is time and second is
concentration.

7.1 Experiments 77

Rational

Experiment la in Table 7.3 shows the expected behaviour of the negative
feedback device, but in theory it would be hard to determine a confident con-
centration measurement of the different types of species, based solely on one
simulation, because of the stochastic aspects of the system. One way to achieve
this, would be to calculate a statistical average over several simulations. The
next experiment is to then see if the averaged simulations would still reflect the
expected behaviour of the device.

78

Experimens and results

Experiment 1b

Description | 100 simulations of the negative feedback device in Table 7.1,
showing the concentrations of mRNA and Lacl species over time.

Purpose To see if the average behaviour of the device is that of the ex-
pected.

Expected As in experiment la in Table 7.3 the concentration of the protein

result Lacl is expected to be repressed at certain point depending on the
concentration, after which the amount of Lacl is maintained. The
concentration of mRNA is also expected to decay over time.

Parameters | See 7.1 for device parameters. 100 simulations

300 ‘avg-normal-Lacl —

avg-normal-mRNA —

250

200

150

100

0l=

Result 0 50 100 150 200 250 300 350 400

Run time: ~ 7.8 seconds

confidence interval mean Lacl at steady-state = [240.78; 264.78]
Evaluation | The results show a smooth curve of both the Lacl (red) and mRNA

(green). We see that in experiment la 7.3 the repressed concentra-
tion of Lacl did in fact deviates from the average by an amount of
~ 50 particles, which illustrates the high variance of the behaviour
of the device.

Table 7.4: Experiment 1b

7.1 Experiments 79

Rational

These first two experiments conclude the ’basic’ model used by Gillespie. The
results showed the expected behaviour of the device - i.e. repression of specific
protein concentration at a given state of the device. The stochastic the be-
haviour is also illustrated by the high variance and fluctuations of the protein,
which are highly dependant on the input parameters used in Table 7.1 which
is also concluded in [LB14]. So the next four experiments are based on testing
the hypothesis that these parameters are indeed affecting the overall behaviour
of the device.

Experiment 1c

The following experiments will test the device under different parameters in
terms of reactions rates of translation, regulation, decay of mRNA, and trans-
lation. The experiments are conducted on the hypothesis that the behaviour of
the devices is closely affected by the inputed parameters of the user.

80

Experimens and results

Description | 100 simulations of the negative feedback device in Table 7.1, show-
ing the concentrations of mRNA and Lacl species over time. The
rate of translation is lowered by a factor of 1071.

Purpose To see if the average behaviour of the negative feedback device
is affected by the rate of which translation happens, i.e. when
mRNA is translated into the Lacl protein.

Expected It is expected that by lowering the translation rate, the amount of

result Lacl presented in the cell should be lower compared to the results
in Table 7.4.

Parameters | See 7.1 for device parameters, with the rate of translation lowered
by a factor of 10~!. 100 simulations, duration = 10x of that in
Table 7.4.

Result 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Run time: ~ 71 seconds

Evaluation

The steady state of Lacl rests at a concentration of ~ 100, in
which the concentration of mRNA is noticeably higher at the start
of the simulation. The much larger x-axis indicates that reactions
where mRNA or Lacl are produced are chosen not as often. This
shows that the time for the device to reach its steady state is much
higher.

Table 7.5: Experiment 1c

7.1 Experiments 81

Rational

We see that by lowering the rate of translation we do still achieve the desired be-
haviour of the Lacl protein reaching a steady state. Though it should be noted,
by the lower concentration, the lifespan of the device itself would be shorter
given by the proportionally faster decay of the protein.

82

Experimens and results

Experiment

1d

Description

100 simulations of the negative feedback device in Table 7.1,
showing the concentrations of mRNA and Lacl species over time.
The rate of regulation is increased by a factor of 100.

Purpose To see if the average behaviour of the negative feedback device is
affected by the rate of which regulation happens, i.e. when a Lacl
protein meets the promoter and produces PlacLacl.

Expected By increasing the rate of regulation, we specify that Lacl proteins

result meet the promoter more often, in which is is consumed to produce
another protein. By this, we can expect a lower steady state
concentration of Lacl.

Parameters | See 7.1 for device parameters, with the rate of translation in-
creased by a factor of 100. 100 simulations

Result 0 50 100 150 200 250 300 350 400
Run time: ~ 30 seconds

Evaluation | The steady state of Lacl rests at a concentration of ~ 55. This

is most likely caused by the expected effect of increasing the rate
of regulation - that more Lacl proteins are the reactants for said
reaction.

Table 7.6: Experiment 1d

7.1 Experiments 83

Rational

The results indicate that regulation solely maintains the concentration level
of Lacl, and does not affect any of the other aspects of the dynamic behaviour
of the device.

84

Experimens and results

Experiment

le

Description

100 simulations of the negative feedback device in Table 7.1,
showing the concentrations of mRNA and Lacl species over time.
The rate of decay of mRNA is increased by a factor of 10.

Purpose To see if the average behaviour of the negative feedback device is
affected by the rate of which decay of mRNA happens.

Expected If the transcribed mRNA strands decay much faster, the amount

result of Lacl translated should thus be affected in some way.

Parameters | See 7.1 for device parameters, with the rate of decay of mRNA
increased by a factor of 10. 100 simulations, duration = 10x of
that in Table 7.4.

Result 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Run time: ~ 200 seconds

Evaluation | We see that the amount of mRNA present in the cell indeed has

an effect on the concentration of Lacl. Again, as seen in Table 7.5,
the time it takes for the device to reach its steady state is much
higher.

Table 7.7: Experiment le

7.1 Experiments 85

Rational

We see that by decreasing the rate of which decay of mRNA happens, that
regulation is not the sole factor that describes the steaty-state of Lacl.

86

Experimens and results

Experiment 1f
Description | 100 simulations of the negative feedback device in Table 3.3,
showing the concentrations of mRNA and Lacl species over time.
Purpose To see if the rate of translation has any further effect by lowering
it even more compared to that in Table 7.5 by a factor of 1072,
Expected If we lower the rate of translation even more, we should see an
result increase of mRNA, since it will not be translated into the Lacl
protein as often. Which will also result in a lower concentration
of Lacl.
Parameters | See 7.1 for device parameters, with the rate of translation lowered
by a factor of 1072, 100 simulations, duration = 10x of that in
Table 7.4.
Result 0 1000 2000 3000 4000 5000 6000
Run time: ~ 194 seconds
Evaluation | We see that, as the mRNA reaches a concentration of ~ 38, trans-
lation is the most likeliest to be chosen by the algorithm, thus
resulting in the consumption of mRNA and lower steady-state of
~ 27.

Table 7.8: Experiment 1f

7.1 Experiments 87

Rational

This concludes the experiments for the basic model, not taking the spatial
model into consideration. We saw that, given by the parameters in Table 7.1,
the mean concentration of Lacl in its steady-state would lay in the interval of
[240.78; 264.78] with a 95% level of confidence described in Chapter 4. This will
later be our point of comparison, when we do a sanity-check of the spatial model
developed, and later experimentation of thermodynamic model of motion. The
last four experiments showed the vulnerability of the device, which relates back
to the importance of the parameters we use in general when simulating synthetic
genetic devices.

Experiment 2a

The following experiments will compare the basic model with a refined one tak-
ing the particles exact position within the cell into account in order to simulate
collisions, compared to Gillespie’s that estimates collisions in a statistical man-
ner, this model is an adaptation by the model proposed in [MHML14]| and is
referred to as the ’spatial’ model.

The size N describes a N3 square cell, the radius describing the reaction radii
for all particles, the temperature T" in Kelvin, the motion m either defined as a
constant or a function describing the velocity of the particles i.e. be it constant
or a function of temperature etc., the elasticity constant e describing the energy
loss of cell wall interaction.

The size of the cells are set to reflect the size of a virus cell, which varies,
but mostly is about 100-120 nm. On the other hand, bacterial cells are quite
larger by a magnitude of 10 compared to the virus cells, the smallest being a
Escherichia coli cell [Kub90| being 2 pm long and 0.5 pm in diameter. But for
the purpose of clarity, the size of a virus cell is used as the basis for N. Later
N will be tested once we have evaluated the motion of particles.

88

Experimens and results

Description

Simulations comparing the basic model with the refined version
taking the particles exact positions into account. In this experi-
ment the particles do not move hence the purpose described below.

Purpose

This experiment should serve as sanity-check, i.e. if the new model
illustrates the same behaviour under parameters describing the
basic model - the speed of the particles is set to 0 i.e. not moving
thus allowing particles to react with each other no matter their
relative positions.

Expected
result

We expect that the concentrations of both mRNA and Lacl for
both models to be close to equal. But due to the stochastic be-
haviour of the device we should not expect exact equal results,
but one should at least be able to see some correlation between
the two result sets.

Parameters

For the spacial model: N = 100.0; r = 129.0; T" = 1.0; m =
Constant (0.0); e = 0.5; 1 simulation

It should be noted that once the motion is defined as
'Constant (0.0)’ the particles will not move, hence reflecting a
device where all the cells are close enough to each other to react.
The radius is also set to be arbitrarily larger than the cell size to
ensure the same. The temperature and elasticity can be ignored
in this case.

Result

normal-avg-spacial-mRNA —

normal-avg-spacial-Lacl —
spacial-avg-spacial-mRNA —
350 spacial-avg-spacial-Lacl —

0 50 100 150 200 250 300 350 400

Run time: ~ 1.3 seconds

Evaluation

We see that the Lacl concentrations in the spacial model (dark
red) follows the basic model (red) in some sense, but again, due
to the fluctuations it remains inconclusive whether the two results
sets reflect the same behaviour.

Table 7.9: Experiment 2a

7.1 Experiments 89

Rational

When comparing the two result sets of just one simulation of each model, the
resemblance between them remains inconclusive. This, again, motivates an av-
eraged behaviour of several simulations.

90

Experimens and results

Experiment 2b

Description | 100 simulations to test if we can see a correlation of the two models
with the same input parameters as in 7.9.

Purpose This experiment should show that the spacial model reflects the
same behaviour as the basic model under a specific set of param-
eters, as mentioned in Table 7.9, but by comparing the average
behaviour based on an increased amount of simulations.

Expected We expect that the concentrations of both mRNA and Lacl are

result close to equal for both models. When increasing the amount of
simulations, one should see a close-to-overlapping lines for Lacl
and mRNA concentrations.

Parameters | The parameters remain as in 7.9, but with simulations set to 100
for both models.

Result ’ 0 50 100 150 200 250 300 350 400
Run time: ~ 96 seconds

Evaluation | When increasing the amount of simulations the concentrations of

Lacl in both of the models get closer to each other, they are not
exact overlapping, but this experiment shows that the average be-
haviour is indeed the same for both model under said parameters,
since 250 lays within the interval we found earlier.

Table 7.10: Experiment 2b

7.1 Experiments 91

Rational

The average concentrations of Lacl are not exactly overlapping, but achiev-
ing this would potentially require are much larger amount of simulations. Thus
the sanity check for the spacial model is concluded. The next step is to then
see if the positions of the particles in fact matter for the device.

92

Experimens and results

Experiment 2c

Description

Simulation that will compare the basic model with the spacial
model used in 7.9 and 7.10 but with altered parameters for the
spacial model reflecting moving particles.

Purpose

The purpose of this experiment is to show that increasing the
speed and decreasing the reaction radii of the particles in the cell
influences the behaviour of the device in some way.

Expected
result

With an increased speed and decreased reaction radii compared to
the ’stationary’ particles in Table 7.9 and 7.10, we should see a
decreased repression rate of Lacl, given the intuition that the rate
of regulation in the device will decrease since more Lacl particles
will not be close enough to react with the Plac promoter.

Parameters

The parameters for the basic model remain. For the spacial
model:space = N = 100.0; r = 1.0; T'= 1.0; m = Constant (0.50);
e = 0.5; 100 simulation

Result

normal-avg-spacial-mRNA —
normal-avg-spacial-Lacl —
spacial-avg-spacial-mRNA ——
spacial-avg-spacial-Lacl —

]
300

250

200 S

150 /

100 /
/

ole==
0 50 100 150 200 250 300 350 400

Run time: ~ 78 seconds.

Evaluation

We clearly see, compared to Table 7.10, that the repression rate
is indeed decreased thus allowing a larger amount of Lacl to be
present compared to the basic model, which reflects a more uni-
form distribution of slowly moving particles, i.e. having a small
chance of returning to their origin.

Table 7.11: Experiment 2c

7.1 Experiments 93

Rational

This concludes the experiments comparing the basic model with the spacial
model. We saw that increasing the speed by a small amount relative to the cell
size, had an influence on the behaviour of the device. The experiment in 7.11
also shows that the device could potentially be ’broken’ if the distribution of
the particles get closer to be uniform, given the particles have a low enough
speed such that they stay distant from each other. But the exact motion and
distribution are hidden in said experiments, which motivates animations of the
device in 3D enabling more in depth analysis of the device.

Experiment 3a

The following experiments will test the spacial model on the hypothesis that the
speed of the particles relative to the size of the cell has an influence on how they
are distributed, and if so, it should affect the behaviour of the device. The move-
ment is modelled such that particles move freely throughout the cell without
interacting with each other, and when they bump into the barrier/membrane
of the cell, they will simply bounce back losing some kinetic energy in the pro-
cess based on the elasticity parameter. Their movement is modelled to reflect
Brownian motion as a noise vector with mean p = 0.0 and variance o = 1.0 in
a uniform distribution.

In order to evaluate the behaviour in terms of movement of the particles, ani-
mations of 3D scatterplots have been rendered for all relevant experiments and
can be accessed through the following link?. The naming scheme for the ex-
periments is adapted for the videos e.g. the video for experiment 3a is called
'EXP3A’.

2https://drive.google.com /folderview?id=0B1mLIuFDRGGERzE0eFIFaUo2N2susp=sharing

94 Experimens and results

Description | A simulation showing small and localised movement of particles.
The result is presented in a 3D scatter plot on the left and a
graph similar to the previous experiments on the right showing
the concentration of the Lacl protein over time.

Purpose The purpose of this experiment is to test if a relative low speed
of the particles will result in particles moving in a localised area
around the device, given by the start position the promoter.

Expected The particles are expected to move around in a small area relative

result to the size of the cell. Given the following nature of the device:
starting with just one Plac promoter that transcribes mRNA | that
is translated into the Lacl protein, we can predict that the Lacl
particles will be closely distributed around the promoter.

Parameters | The parameters are the same as in Table 7.11 with » = 110.0; 1
simulation.

Result
Run time: ~ 0.74 seconds.

Evaluation | We see that the particles indeed move in a localised area (Lacl

protein (blue), mRNA (red), and Plac(green), and we maintain
the behaviour illustrated in the graph to the right. The behaviour
is only maintained since we have set the reaction radius to larger
than the cell itself - i.e all particles can reach each other.

Table 7.12: Experiment 3a

7.1 Experiments 95

Rational

The reason behind allowing all particles to react with each other no matter
the distance between them, was to maintain the behaviour while moving the
particles. The localised movement shown was achieved with a low speed, which
motivates the next experiment with increased speed.

96

Experimens and results

Experiment 3b

Description | A simulation with the same parameters as in Table 7.12, but with
an increased particle speed.
Purpose This experiment should show that increasing the speed of the
particles does indeed affect their distribution, which would then
affect the behaviour of the device as seen in Table 7.11.
Expected We expect the distribution of particles to be closer to uniform
result relative to the entire cell caused by the increased speed.
Parameters | The parameters are the same as in 7.12, but with motion set to
m = Constant (10.0); 1 simulation
i 350
N
N
i “ 300
EY o N
; KRN
%0 ° %%‘i 200
w 5 B Rem S
e,
NSty o SN
10 O,D & %&8‘%%300:%’00
o % ;o © 100
80 : Qoo ?3% (S
Result
Run time: ~ 0.85 seconds.
Evaluation | The scatter splot shows the last recorded state of the simulation.

Compared to the results in 7.12, wee see that the cells are indeed
more uniformly distributed throughout the cell.

Table 7.13: Experiment 3b

7.1 Experiments 97

Rational

Now that we have shown that the speed of the particles influence the distri-
bution, it now makes sense to see if it also affects the behaviour of the device,
thus by decreasing the reaction radius to be more ’sensible’ compared to the
unrealistic length, greater than the cell itself, used in the experiments above.

98

Experimens and results

Experiment 3c

Description | This experiment will take more ’sensible’ parameters into account,
one being the ratio between the reaction radii and the speed of
the particles.

Purpose The purpose of this experiment is to show that having a reaction
radius (size of the particles) just a quarter of the speed has a large
influence on the behaviour of the device.

Expected It is expected that we will see an increased amount of Lacl com-

result pared to the last two experiments, since fewer Plac and Lacl par-
ticle will be neighbouring each other for the regulation reaction to
happen, resulting in lower repression rate of Lacl.

Parameters | N = 100.0; » = 0.25; T' = 1.0; m = Constant(1.0); e = 0.5; 1
simulation

Result
Run time: ~ 5 seconds.

Evaluation | Even though the particles stay localised in the same area in the

cell, the much lower reaction radius has had a major impact on
the behaviour of the device resulting in an ever increasing concen-
tration or indeterminable steady-sate of the Lacl protein (blue),
which in this case means that we have ’broken’ the device i.e. the
expected behaviour is lost.

Table 7.14: Experiment 3c

7.1 Experiments 99

Rational

The experiments in this section prove the said hypothesis - that the speed of the
particles affects their distribution relative to each other, and thus also affects
the behaviour. But, as mentioned earlier, the way we model the movement of
the particles does not take collisions of particles and other physical aspects, such
as hydrodynamic interactions, into account. This motivates further refinements
and experiments of the spacial model.

Experiment 4a

The following experiments will test refinements done to the spacial model in
terms of how particles move in the cell. This will be done by gradually extend-
ing the 'motion’ parameter to be more true-to-nature and realistic by adding
additional parameters:

e Boltzmann constant is set to 1.3806488 x 10723 J/K [MTN11].

o The cell sizes are found in [Lea]. Where viral cells are about 100 nm, and
its containing particles to be about 4 nm.

e Determining the weight of the particles, is done on the basis of a Lacl
protein weighing 38.59 kD (kiloDalton) [Bio|, which is about 6.40 x 10~2°
grams.

e The temperature of a cell is expected to be at room temperature i.e. 298
Kelvin.

e The viscosity of cytoplasm is said to be 8 times greater than water [MBTKS84]
[IMRS86] (which has a viscosity of 1).

The following experiments will use thermodynamics in order to determine the
velocity of the particles depending on the temperature within the cell. The
velocities are determined by the formula described by Equation 3.6 in Chapter 3.

100 Experimens and results

Description | A simulation with the thermodynamic model described above,
with parameters that result in the same motion behaviour as seen
earlier.

Purpose This experiment should show that the model can easily be ex-
tended in terms of motion, in this case a formula determining the
velocity of the particles as a function of temperature.

Expected The distribution of particles is expected to be similar to what was

result found in Table 7.12.

Parameters | N = 100.0; r = 110.0; T" = 2.0; m = VelocityAtTemp(fun temp
-> sqrt((3.0%1.3806488e-23*temp)/0.0005)*10.0e+9); e =
0.5; 1 simulation

Result
Run time: ~ 1.46 seconds.

Evaluation | We see that we need a temperature of just 2.0 Kelvin and a particle

mass of 0.0005 g, which is quite unrealistic, in order to maintain
the behaviour of the device.

Table 7.15: Experiment 4a

7.1 Experiments 101

Rational

The behaviour achieved by the rather unrealistic parameters shows the abstrac-
tions of the current model, one of them being the abstraction of non-colliding
particles but also the fact that the thermodynamic formula models particles
moving in a vacuum. But the localised movement of particles is based on the
intuition that they do not move in a rapid fashion within the entire cell, which
also constitutes to the rather unrealistic parameters needed in order to achieve
the desired behaviour. But what if the particles do in fact move rapidly through-
out the entire cell? To illustrate this, in the next experiment we try to input
some realistic parameters for the cell size, protein size (reaction radius), and
temperature.

102

Experimens and results

Experiment 4b

Description | This experiment will show the behaviour under realistic parame-
ters when the model is refined in terms of particle movement by
the thermodynamic formula described earlier.

Purpose The purpose of this experiment is to show the limitations of the
current model, as stated in the rational before.

Expected Particles are expected to move at high speed, given that we drasti-

result cally decrease the mass of the particles and raise the temperature
in the cell to room temperature i.e. 298 degrees Kelvin.

Parameters | N = 100.0; r = 4.0; T' = 298.0; m = VelocityAtTemp(fun temp
-> (sqrt((3.0%1.3806488e-23*temp)/6.4e-22))*10.0e+9); e
= 0.5; 1 simulation

SENN

1o %oi o |° g }o 700
05 o % 89 ° [So
o 3l ° O]

Result
Run time: ~ 13.35 seconds.

Evaluation | An interesting observation to make here, is that with the uniform

distribution and rapidly moving particles, the model still reflects
the expected behaviour in this environment, though with a lower
repression rate resulting in much higher steady-state concentra-
tion of Lacl.

Table 7.16: Experiment 4b

7.1 Experiments 103

Rational

The last two experiments motivates further refinement of the model, such as
computing the force from interaction with neighbour particles etc.. The noise
vector generated in order to achieve the Brownian motion, is as mentioned of
uniform distribution. But what if it was normally distributed i.e. in the nature
of Gaussian noise as described in [AS13]|? The next experiment thus compares
a uniform noise voice against a Gaussian noise vector.

Experiment 4c

In order to specify what kind of noise utilised when moving particles, the spacial
model is extended with a distribution parameter d. The normal distribution is
of mean 1 = 0.0 and variance o = 0.25, describing a noise vector in the range
of ([-1;1],[-1;1],[-1;1]) - the same as the uniformly distributed noise vector
used in previous experiments.

104

Experimens and results

Description

100 simulations for two different kinds of noise vectors describing
the Brownian motion.

Purpose

The purpose of this experiment is to see if the noise vector has
influence on the movement of the particle thus the behaviour.

Expected
result

When the movement is normally distributed instead of uniformly,
the intuition here is that the particles will move in lower average
speed. The lower speed will result in a lower chance of regulation
of the promoter and a Lacl protein.

Parameters

The parameters for both of the models are the same as in 7.16, but
with extra parameter d = NormalDist (normalDist) for the nor-
mal distribution simulation and d = UniformDist (uniformDist)
for the uniform distribution simulation. 100 simulations for
each model. Both of the number generators are from the
MathNet.Numerics.Distributions library, where uniformDist
is an instance of ContinuousUniform and normalDist is of
Normal (mean, stddev) with the respective mean and standard
deviation described before.

Result

normal-spacial-avg-spacial-mRNA ——
normal-spacial-avg-spacial-Ladl —
uniform-spacial-avg-spacial-mRNA —
uniform-spacial-avg-spacial-Lacl —

600

——

500

400

300

200

100

0

0 50 100 150 200 250 300 350 400

Run time: ~ 14 minutes 18 seconds

confidence interval mean Lacl at steady-state = [543.21;582.47]
of uniformDist.

Evaluation

We see that changing the motion to be normally distributed has
little to no affect on the repression rate of Lacl, which confirms
the intuition that though the average movement will be lower
compared to the uniformly distributed motion, the relatively high
velocity of the particles as still high enough to achieve the same
behaviour when the noise vector is normally distributed.

Table 7.17: Experiment 4b

7.1 Experiments 105

Rational

Given the results found in Table 7.16 the thermodynamic formula does not
provide a suitable environment for testing different noise vectors. This moti-
vates the introduction of a refined formula that takes the viscosity and size of
the particles into account in terms of their movement.

106

Experimens and results

Experiment 4d

Description

100 simulations of the negative feedback device, in which the ther-
modynamic formula described by Equation 3.7 is utilised.

Purpose

To see if the refined model for thermodynamic motion is suffi-

cient to simulate the expected dynamic behaviour of the negative
feedback device.

Expected
result

We now know that the speed relative to the size of the particle
is what determines of the device works or not. Given by Equa-
tion 3.7, we introduce drag proportional to the size of the cell
which will decrease the speed. But it is hard to predict if it de-
crease enough.

Parameters

The parameters are the same as in Table 7.17, but with the
motion replaced with VelocityAtTempRad(fun temp rad ->
sqrt (2.0*kB*temp/ (3.0*pi*eta*(alpha rad))*unitScale))
where alpha is a function describing the drag proportional to
the radius of the particles, and eta the viscosity set to 8. 100
simulations.

Result

avg-mRNA —

300 avg-Lad —

200

150 /

100

0l=

Run time: ~ 99 seconds

Evaluation

We clearly see that this model of thermodynamic motion might be
sufficient to describe the motion of particles within a cell, given the
parameters used and device that is simulated. Compared to the
result in Table 7.17, we did reach a steady-state within confidence
interval.

Table 7.18: Experiment 4d

7.1 Experiments 107

Rational

This concludes the experiments of the thermodynamic models of motions in-
troduced in this thesis and comparison of noise vectors. As the results show,
there is room for refining the model with hydrodynamic interactions, which could
lead to lower speeds [AS13]. In the following last set of experiments, we will try
and see if another device, i.e. the and-gate device illustrated in Figure 3.4 in
Chapter 3, works under the same conditions.

108

Experimens and results

Experiment 5a

Description | 100 simulations of the and-gate using the basic model.

Purpose To later compare the basic model with the spatial where the cell
contains 100 of each proteins that have to meet in order to activate
a steady-state.

Expected We expect the IPTG and Lacl proteins to meet and activate the

result promoter, such that mRNA is transcribed and translated into
mRNA Ara.

Parameters | The reaction rates of the chemical reaction system describing this
device are listed in Table 7.2. The important aspect of these
experiments, is that two proteins have to meet in order to produce
a promoting protein that produces a steady-state of a protein.
Concentration of IPTG and Lacl is set to 100. 100 simulations.

Wﬂﬁ
60 T

Result 0 500 1000 1500 2000 2500 3000 3500 4000
Run time: ~ 10 seconds. confidence interval mean Pro at steady-
state = [73.74;76.29)

Evaluation | We see that the basic model simulates the expected behaviour,

i.e. a steady state of mRNA Ara protein.

Table 7.19: Experiment 5a

7.1 Experiments 109

Rational

This experiment illustrates the expected behaviour of the and-gate device, show-
ing a steady-state of a given protein activated by two other proteins. The core
motivation behind choosing this device for testing, is that we intuitively can say
if the key proteins do not meet often enough the behaviour of the and-gate will
be different, when we simulate it with the spatial model. Although, given by
the relative high initial amount of particles, we could predict that the device
would not be effected by this.

110

Experimens and results

Experiment 5b

Description

10 simulations of the and-gate using spatial model with the same
parameters as in Table 7.19.

Purpose To see spatial model will simulate the same behaviour of the and-
gate as in the basic model.

Expected It is hard to predict, whether the behaviour is maintained or not,

result when we take the positions of the particles into account. One
could, as mentioned, intuitively say - given by the law of mass
action described in Chapter 3, the high concentrations would lead
to a sufficient propensity function for the given reaction needed
for activating the steady-state.

Parameters | The parameters are the same as in Table 7.18. 100 simulations.

Result o 500 1000 1500 2000 2500 3000 3500 4000
Run time: ~ 6 minutes.

Evaluation | We see that we have the same concentration of the Pro protein,

but different concentrations of Ara and mRNA Ara. This could
be due to the reaction producing mRNA might be chosen at a
lower rate, since the reaction producing Pro is chosen more often
even though there are no neighbouring pairs to be found.

Table 7.20: Experiment 5b

7.2 Summary 111

Rational

The behaviour of the and-gate is maintained when utilising the same thermo-
dynamic model as in Table 7.18. Though whether the concentrations of mRNA
or mRNA Ara is of importance is unclear, but if so, the behaviour is not main-
tained fully. We see that by having a population size of 100 particles of each
protein, as seen in Appendix B, we have maintain the propensity function for
the relating reaction. As mentioned in Chapter 3, this was an interesting point
of experimentation; to see if the rate of reaction is in fact proportional to the
population size of the given species.

7.2 Summary

The purpose of this chapter was conduct experiments, testing the negative
feedback- and and-gate device under different conditions. A main conclusion
can be made in terms of the vulnerabilities of synthetic genetic device:

The speed of which the given particles of the negative feedback device move,
compared to their size, is of great importance.

This was found in experiment 3c in Table 7.14, showing that a particle size
just a quarter of the speed had a great impact on the behaviour.

Later we saw that introducing the thermodynamic model of motion described
by Equation 3.6 in Chapter 3, required unrealistic parameters in order to main-
tain the behaviour of the negative feedback device. From this, we can conclude
that:

The thermodynamic model of motion used has a major impact on the speed
of the particles, thus affecting the behaviour of the device.

When we then tried to input realistic parameters and utilise the model in Equa-
tion 3.7, we were able to maintain the behaviour. But, it is still motivated to
introduce a refined model concerning hydrodynamic interactions.

The last experiments, where we simulated the and-gate device, showed that
the well-stirred assumption made by Gillespie might be sufficient for this spe-
cific device.

The parameters used are still a rough estimate. One being that the species/-
particles are not the same size and weight and, for that reason, do not at the
same speed. E.g. considering the produced protein to be the same size and

112 Experimens and results

structure (spheres) as a strand of mRNA, is a crucial assumption that is made
by the utilised spatial model. This assumption, among others, motivates further
refinements to the spatial model, such as considering mRNA strands as complex
structures.

CHAPTER 8

Conclusion

In this thesis we have shown how to model and analyse synthetic genetic devices
with focus on particle collisions, to see if the current means of simulating such
suffice.

8.1 Summary

As stated in the introduction in Chapter 1, the proposed problem required the
implementation of a suitable framework for simulating synthetic genetic devices,
that should be easily extensible and modifiable.

This was done by stating some minimum requirements in Chapter 2, in short
describing a tool for simulation any kind of chemical reaction system specified
in SBML format. Before specifying the structure of the design in Chapter 4,
research had to be done in terms of how synthetic genetic devices can be simu-
lated whilst assessing the level of abstraction of the different approaches.

In Chapter 3 two models were then compared - Gillespie’s stochastic model
and Oded Maler’s spatial model. The key difference between the two was evalu-
ated in terms of describing particle collisions, where Gillespie’s model includes a
statistical estimation compared to Oded Maler’s, describing actual particle col-
lisions. A combination of the two models was then proposed in which Gillespie’s

114 Conclusion

direct method was extended with Oded Maler’s approach of finding and choos-
ing neighbouring particles for reaction, thus maintaining stochastic behaviour.
Lastly, different thermodynamic models of motion were introduced extending
the model to be as true-to-nature as possible, e.g. simulating the devices under
realistic parameters, such as the temperature within the cell.

The design of the tool was then introduced by stating the different modules
in terms of their role and functionality relative to the whole system. The func-
tional paradigm provided us with easy model extension, e.g. when different
data structures were needed for simulation particle motion and interaction. De-
scribing a polymorphic type instantiated with specific parameters and functions
then provided us with the flexibility needed for e.g. comparison and extensi-
bility. The level of cohesion between the different modules was kept as low as
possible, later enabling a simulator module taking any kind of simulation algo-
rithm and data structure describing the chemical reaction system.

Performance was a concern during implementation, and the process of mea-
suring such and deploying optimisations was a key exercise. The achieved per-
formance gains were done with little effort in terms of lines of code needed by
parallelising the simulator and neighbour search, after which a speed up relative
to the number of cores available was achieved. Given the run times listed in
Chapter 7, ranging from a couple of seconds to several minutes, the performance
highly depends on the parameters specified for the device, indicating the bot-
tleneck when finding neighbouring particles.

As mentioned in Chapter 6 the tests for the tool were done during implementa-
tion, leading to little documentation of such. Though given by the extensive ex-
periments done in Chapter 7, an evaluation of the functional and non-functional
requirements can be proposed through these.

8.2 Evaluation
The central question that arose during the work of this thesis, concerning a
sufficient level of abstraction of the models were:

Does a statistical estimation of particle collision sufficiently describe how parti-
cles interact within a synthetic genetic device?

As concluded by the experiment conducted in Chapter 7, we can answer this by
the following:

8.2 Evaluation 115

Given realistic parameters for temperature and sizes of protein etc., we can
say that Gillespie’s model of statistical estimation is in fact sufficient. This
is mainly a result of the low net movement of the particles when utilising a
thermodynamic model of motion. This caused the particles to be situated in a
localised area around the origin of the chemical system the device is described
by. A key observation made during the experiments, was that the speed of the
particles relative to their reaction radii, described how the particle were pro-
gressively going to be distributed in the given environment. And as the speed
of the particles increased (though to unrealistic heights), the negative feedback
device was close to working.

When looking back at the functional requirements stated in Chapter 2, we can
evaluate these as follows:

e The parser was implemented such that it can parse SBML files of a specific
structure exemplified in Appendix A. The parser is then not complete in
terms of understanding the whole SBML specification listed in [RM14].
Given the extend of this specification, it was chosen not to put further work
into the parser. If one was to later extend the parser, the process of doing
so would include extending the lexer, followed by the parser returning the
correct sub types of the model described in Appendix C.

e The model, that is later compiled into an SPN, follows the SBML specifi-
cation fully. Some constructs of the SBML files used for experimentation
do defer from the SBML specification, in terms of which parameters are
optional or not.

e The simulator module was implemented, such that it can handle any kind
of algorithm for simulating chemical reaction system, following the correct
type signature as specified in Chapter 4. The signature of the algorithm
limits the possible kinds of algorithms, but still defines a generic type of
a discrete event simulation algorithm.

e Parametrising a simulation is done by specifying the duration and amount
of simulations, amongst others. These are declared as hard values within
the given script issuing the simulation. One could argue, it would be
suitable to specify these parameters in the given SBML file, enabling a
simple tool where SBML is the sole interface. From a usability point of
view, the gains of doing so would greatly depend on how the given GUI
of an actual tool, utilising this framework, would work.

e Examples of how the data is outputted by the simulator module are shown
in the experiments in Chapter 7. A module for presenting simple plots
was implemented for easy and quick evaluation. When we later wanted to
verify the motion of particle against our stated hypothesises, we needed a

116 Conclusion

more sophisticated means of visualisation. This was done by implementing
a small Matlab script, so that the particles movement and interactions
would be revealed. One could have tried to explore what possible solution
for such exists within the .NET framework. But given the broad and
mature tool set for data visualisation provided by Matlab, it only required
means of data extraction and a few lines of code in Matlab to enable 3D
scatter plots and animations.

e Calculating and evaluating statistical measures of a simulation correctly,
was of great importance and contains some common pitfalls. When cal-
culating the ’average’ behaviour of a device of a set of simulations, was
done by finding a moving average, which differs from the general average.
Confirming that two results set reflect the same behaviour, then relied on
performing some statistical evaluation provided by a level of significance.
One could argue that evaluating the last measurement of a concentration
of given species as the basis for the comparison, might not be enough, and
a more sophisticated comparison must be made.

As mentioned in the summary, the main non-functional requirements was a
modular and extensible framework. The described design was achieved first
evaluating the key types needed to describe the flow of which data should be
exchanged between the modules, given by the requirements and information
stored in the model.

8.3 Future work

During the research and implementation of the tool, many choices had to be
made in order to narrow down the scope of this thesis. This lead to exploration of
the different branches of particle simulation and computer scientific approaches
to analysis of discrete continuous systems. The most essential aspects of these
are as follows:

e Statistical model checking: Performing statistical model checking as
proposed in [NH14| and [DLLT15], would serve as another means of esti-
mating and evaluating the behaviour of a synthetic genetic devices. Doing
so, the entire result from a set simulations would be evaluated by stat-
ing some logical condition that must be uphold. Given the comparable
analogy used in [NH14] to the SPN, this could be achieved by utilising
the already implemented features of conducting several simulations, after
which this form of evaluation could be applied.

8.3 Future work 117

e Static analysis: The inputted SBML files might contain inconsistencies
or spurious reaction statements, either causing unwanted behaviour or
exceeding the technical limitations of the hardware, e.g. reaching a upper
limit of particles. This relates directly to the subject of static analysis
within computer science, better known a program analysis. As proposed
in [NNH99], an over-approximation given by an interval-analysis could be
utilised for estimating memory vulnerabilities caused by the given set up.

e Faster neighbour search: As emphasized in Chapter 5, finding neigh-
bouring particles is the main bottle neck when ultilising the spatial model.
Many aspects of particle motion, size, and diffusion tensor calculation are
crucial, which performance relies on the given data structure used. Intro-
ducing these optimizations will be important if/when the future genetic
devices grow in complexity in terms of acting parts.

e Interactive GUI/visualisation: An obviously missing part of the tool,
presented in this thesis, is a ’binding’ component, combining the compo-
nents thus providing the functionalities needed for e.g. specifying parame-
ters for simulation and initiating illustrations. When creating such a GUI,
it will be important to take note on the work flow of a biochemist etc.,
introducing some aspects of user experience- and usability engineering.

e Model refinements:

— Hydrodynamic interactions (HI). As mentioned in [AS13], HI between
particles moving inside a fluid has a great impact on their net move-
ment. This could be an interesting point of research - to see if the
components included in the process of the central dogma are affected,
potentially affecting the dynamic behaviour of the synthetic genetic
devices.

— Variable reaction radii would affect the displacement calculated at
each time step, given by the thermodynamic model formalised in
Equation 3.7 in Chapter 3. This could e.g. result in stationary mRNA
strands whilst the regulated proteins move more freely.

— Motion of complex structures could also be included by describing the
mRNA strand as chains of linked spheres instead of simple individual
spheres.

118 Conclusion

APPENDIX A

negdevice.xml

<?xml version="1.0" encoding="UTF-8"2>
<sbml xmlns="http://www.sbml.org/sbml/level2/version3" level="2" version="3">
<model>
<listOfCompartments>
<compartment id="compartmentl" spatialDimensions="3.0" size="100"/>
</listOfCompartments>
<listOfSpecies>
<species id="Plac" compartment="compartmentl" initialAmount="1" hasOnlySubstanceUnits="
true"/>
<species id="mRNA" compartment="compartmentl" initialAmount="0" hasOnlySubstanceUnits="
true"/>
<species id="Lacl" compartment="compartmentl" initialAmount="0" hasOnlySubstanceUnits="
true"/>
<species id="Plac_Lacl" compartment="compartmentl" initialAmount="0"
hasOnlySubstanceUnits="true"/>
</1listOfSpecies>
<listOfReactions>
<reaction id="transcription" reversible="false">
<listOfProducts>
<speciesReference species="mRNA"/>
</1list0fProducts>
<listOfModifiers>
<modifierSpeciesReference species="Plac"/>
</listOfModifiers>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>

120 negdevice.xml

<cn> 0.5 </cn>
<ci> Plac </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="regulation" reversible="false">
<listOfProducts>
<speciesReference species="Plac_Lacl"/>
</1list0fProducts>
<listOfReactants>
<speciesReference species="Plac"/>
<speciesReference species="Lacl"/>
</listOfReactants>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 1.0 </cn>
<ci> Plac </ci>
<ci> Lacl </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="unbinds" reversible="false">
<listOfReactants>
<speciesReference species="Plac_Lacl"/>
</listOfReactants>
<listOfProducts>
<speciesReference species="Plac"/>
<speciesReference species="Lacl"/>
</1list0fProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 9.0 </cn>
<ci> Plac_Lacl </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="repressed_transcription" reversible="false">
<listOfProducts>
<speciesReference species="mRNA"/>
</1listO0fProducts>
<listOfModifiers>
<modifierSpeciesReference species="Plac_Lacl"/>
</listOfModifiers>
<kineticLaw>
<math xmlns="http://wuw.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.0005 </cn>

121

<ci> Plac_Lacl </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="translation" reversible="false">
<listOfProducts>
<speciesReference species="Lacl"/>
</1list0fProducts>
<listOfModifiers>
<modifierSpeciesReference species="mRNA"/>
</list0OfModifiers>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.167 </cn>
<ci> mRNA </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="decay_mRNA" reversible="false">
<listOfReactants>
<speciesReference species="mRNA"/>
</listOfReactants>
<kineticLaw>
<math xmlns="http://wuw.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.0058 </cn>
<ci> mRNA </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="decay_Lacl" reversible="false">
<listOfReactants>
<speciesReference species="Lacl"/>
</listOfReactants>
<kineticLaw>
<math xmlns="http://wwuw.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.0012 </cn>
<ci> Lacl </ci>
</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>
</model>
</sbml>

122 negdevice.xml

APPENDIX B

andgatedevice.xml

<?xml version="1.0" encoding="UTF-8"2>
<sbml xmlns="http://www.sbml.org/sbml/level2/version3" level="2" version="3">
<model>
<listOfCompartments>
<compartment id="compartmentl" spatialDimensions="3.0" size="100"/>
</listOfCompartments>
<listOfSpecies>
<species id="Pro" compartment="compartmentl" initialAmount="0" hasOnlySubstanceUnits="
true"/>
<species id="lacI" compartment="compartmentl" initialAmount="100" hasOnlySubstanceUnits=
"true"/>
<species id="IPTG" compartment="compartmentl" initialAmount="100" hasOnlySubstanceUnits=
"true"/>
<species id="Ara" compartment="compartmentl" initialAmount="0" hasOnlySubstanceUnits="
true"/>
<species id="mRNA_Ara" compartment="compartmentl" initialAmount="0"
hasOnlySubstanceUnits="true"/>
</1listO0fSpecies>
<listOfReactions>
<reaction id="IPTG_lacI_p" reversible="false">
<listOfProducts>
<speciesReference species="Pro"/>
</list0fProducts>
<listOfModifiers>
<modifierSpeciesReference species="IPTG"/>
<modifierSpeciesReference species="lacI"/>
</list0fModifiers>
<kineticLaw>

124 andgatedevice.xml

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.0001 </cn>
<ci> IPTG </ci>
<ci> lacI </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="tc_Ara" reversible="false">
<listOfReactants>
<speciesReference species="Pro"/>
</listOfReactants>
<listOfProducts>
<speciesReference species="mRNA_Ara"/>
</1listO0fProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.012 </cn>
<ci> Pro </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="tl_Ara" reversible="false">
<listOfProducts>
<speciesReference species="Ara"/>
</1list0fProducts>
<listOfModifiers>
<modifierSpeciesReference species="mRNA_Ara"/>
</listOfModifiers>
<kineticLaw>
<math xmlns="http://wuw.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.009 </cn>
<ci> mRNA_Ara </ci>
</apply>
</math>
</kineticLaw>
</reaction>
<reaction id="decay_mRNA_Ara" reversible="false">
<listOfReactants>
<speciesReference species="mRNA_Ara"/>
</listOfReactants>
<kineticLaw>
<math xmlns="http://wuw.w3.org/1998/Math/MathML">
<apply>
<times/>
<cn> 0.01 </cn>
<ci> mRNA_Ara </ci>
</apply>

125

</math>
</kineticLaw>
</reaction>
<reaction id="decay_Ara" reversible="false">
<listOfReactants>
<speciesReference species="Ara"/>
</listOfReactants>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>

<cn> 0.01 </cn>
<ci> Ara </ci>
</apply>
</math>
</kineticLaw>
</reaction>
</listOfReactions>
</model>
</sbml>

126 andgatedevice.xml

APPENDIX C

ChemicalSystemModel.fs

module ChemicalSystemModel
open System

type Species = {
name: string option;
compartId: string;
initAmount: float option;
initConc: float option;
substanceUnits: string option; //IdRef //differs from doc => not option
hasOnlySubstanceUnits: bool;
boundaryCond: bool option; //differs from doc => not option
constant: bool option; //differs from doc => not option
converFactor: string option}

type Compartment = {
name: string option;
spatialDim: float option;
size: int option //size="le-14"
units: string option //IdRef
constant: bool option} //differs from doc => not option

type LocalParameter = {
name: string option;
value: float option;
units: string option}

type Variable = | Numerical of float

128 ChemicalSystemModel.fs

| VarName of string

type Law = {
func: string;
variables: List<Variable>;

}

type SpecRef = {stoichiometry: float option; constant: bool option} //constant option differs
from doc

type ReactionAgent = | Reactants of Map<string,SpecRef>

| Products of Map<string,SpecRef>

| Modifiers of List<string>

type ReactionDesc = {
name: string option;
reversible: bool;
fast: bool option; //differs from doc => not option
compartment: string option; //IdRef
kineticLaw: Law}

type Reaction = ReactionDesc * List<ReactionAgent>

type Part = | AllCompartments of Map<string,Compartment>
| AllSpecies of Map<string,Species>
| AllReactions of Map<string,Reaction>
I

Undefined

type Model = List<Part>

APPENDIX D

Parser.fsy

13t
open ChemicalSystemModel
open System

h}

J%token QMARK XML VER ENCD SBML XMLNS LEVEL MODEL EQ

%token COMPARTS SPECS RECS ID NAME SPARDIM SIZE UNITS CONST COMPART SPECIES REACTION INITAMT
J%token HASSUB BOUNDCOND INITCONC SUBSUNIT CONSTANT REVERS FAST CONVFACT

J%token REACTANTS PRODUCTS MODIFS SPECREF MODREF STOICH VALUE

J%token KLAW MATH APPLY TIMES CN CI URL

%token <string> STRING

%token <int> INT

%token <float> FLOAT

Jtoken QUOTE STARTTAG ENDTAG END EQUALS

%token EOF

%start Main
%type <Model> Main

T

Main:
XmlHeader SBMLHeader ModelStart Model SBMLEnd EOF { $4 }

ModelStart: STARTTAG MODEL ENDTAG {}

ModelEnd: STARTTAG END MODEL ENDTAG {}
SBMLEnd: STARTTAG END SBML ENDTAG {}

130

Parser.fsy

XmlHeader:

STARTTAG QMARK XML VER EQ FLOAT ENCD EQ STRING QMARK ENDTAG {3}

SBMLHeader:

STARTTAG SBML XMLNS EQ URL LEVEL EQ INT VER EQ INT ENDTAG {}

Model:
Part ModelEnd { [$11 ¥
| Part Model { $1 :: $2 }

Part: {1}

| STARTTAG COMPARTS ENDTAG CompMap STARTTAG END COMPARTS ENDTAG { AllCompartments(Map.

ofList $4) }

| STARTTAG SPECS ENDTAG SpecMap STARTTAG END SPECS ENDTAG
| STARTTAG RECS ENDTAG RecMap STARTTAG END RECS ENDTAG

UndefPart: STARTTAG StringList ENDTAG { }
UndefComponent: STARTTAG StringList END ENDTAG { }

StringList:
I {1}
| StringList STRING { }

UndfComponentList:
| {1}
| UndfComponentList UndefComponent { }

CompMap :
{01
| CompMap Compartment { $2 :: $1 }

{ AllSpecies(Map.ofList $4) }

{ AllReactions(Map.ofList $4) }

Compartment: STARTTAG COMPART ID EQ STRING CompartParas END ENDTAG { $5, $6 }

CompartParas:

Name SpaDim Size Units Constant { {name = $1; spatialDim = $2; size =

constant = $5} }

SpecMap:
{[1}
| SpecMap Species { $2 :: $1 }

Species: STARTTAG SPECIES ID EQ STRING SpeciesParas END ENDTAG { $5, $6 }

SpeciesParas:
Name COMPART EQ STRING InitAmt InitConc

SubsUnits HASSUB EQ STRING BoundCond Constant ConvFact { {name = $1; compartId = $4

initAmount = $5;

initConc = $6; substanceUnits

$3; units

$4;

>

$7;

hasOnlySubstanceUnits = Boolean.
Parse($10);

boundaryCond = $11; constant

converFactor

$13}

$12;

131

RecMap:
| {C[1}
| RecMap Reaction { $2 :: $1 }

Reaction: STARTTAG REACTION ID EQ STRING Name REVERS EQ STRING Fast CompartRef ENDTAG
AgentList
STARTTAG KLAW ENDTAG KinecticLaw STARTTAG END KLAW ENDTAG
STARTTAG END REACTION ENDTAG { $5, ({name = $6; reversible = Boolean.Parse($9); fast

= $10;
compartment = $11; kineticLaw = $17
}, $13) }
AgentList:
I {03
| AgentList ReactionAgent { $2 :: $1 }
ReactionAgent:
| STARTTAG REACTANTS ENDTAG RefMap STARTTAG END REACTANTS ENDTAG { Reactants($4 |> Map.
ofList) }
| STARTTAG PRODUCTS ENDTAG RefMap STARTTAG END PRODUCTS ENDTAG { Products($4 |> Map.
ofList) }

| STARTTAG MODIFS ENDTAG RefList STARTTAG END MODIFS ENDTAG { Modifiers($4) }

RefMap:
| SpecRef { [$1] }
| RefMap SpecRef { $2 :: $1 }

SpecRef: STARTTAG SPECREF SPECIES EQ STRING SpecRefParas END ENDTAG { $5, $6 }

RefList:
| ModRef { [$11 }
| RefList ModRef { $2 :: $1 }

ModRef: STARTTAG MODREF SPECIES EQ STRING END ENDTAG {%$5 1}

SpecRefParas:
Stoich Constant { {stoichiometry = $1; constant = $2} }

KinecticLaw:
STARTTAG MATH XMLNS EQ URL ENDTAG
STARTTAG APPLY ENDTAG
STARTTAG TIMES END ENDTAG
Variables
STARTTAG END APPLY ENDTAG
STARTTAG END MATH ENDTAG { {func = "apply"; variables = $14} }

Numericals:
| Num {[$11%}
| Numericals Num { $2 :: $1 }

Num: STARTTAG CN ENDTAG FLOAT STARTTAG END CN ENDTAG { $4 }
Variables:

| {011}
| Variables Var { $2 :: $1 }

132 Parser.fsy

Var:
| STARTTAG CI ENDTAG STRING STARTTAG END CI ENDTAG { VarName($4) }
| STARTTAG CN ENDTAG FLOAT STARTTAG END CN ENDTAG { Numerical($4) }

InitAmt:
{ None }
| INITAMT EQ INT { Some(float($3)) }
| INITAMT EQ FLOAT { Some($3) }

InitConc:
{ None }
| INITCONC EQ FLOAT { Some($3) }

SubsUnits:
{ None }
| SUBSUNIT EQ STRING { Some($3) }

BoundCond:
{ None }
| BOUNDCOND EQ STRING { Some(Boolean.Parse($3)) }

ConvFact:
{ None }
| CONVFACT EQ STRING { Some($3) }

Name:
{ None }
| NAME EQ STRING { Some($3) }

SpaDim:
{ None }
| SPARDIM EQ FLOAT { Some($3) }

Size:
{ None }
| SIZE EQ INT { Some($3) }

Constant:
{ None }
| CONSTANT EQ STRING { Some(Boolean.Parse($3)) }

Fast:
{ None }
| FAST EQ STRING { Some(Boolean.Parse($3)) }

CompartRef:
{ None }
| COMPART EQ STRING { Some($3) }

Units:
{ None }
| UNITS EQ STRING { Some($3) }

Stoich:

133

{ None }
| STOICH EQ INT { Some(float($3)) }
| STOICH EQ FLOAT { Some($3) }

134 Parser.fsy

APPENDIX E

L exer.fsl

{

module Lexer
open System
open System.Text
open Parser

open Microsoft.FSharp.Text.Lexing

let keyword s
match s with

| "xml" -> XML

| "version" -> VER

| "encoding" -> ENCD

| "sbml" -> SBML

| "model" -> MODEL

| "xmlns" -> XMLNS

| "level" -> LEVEL

| "listOfCompartments" -> COMPARTS
| "listOfSpecies" -> SPECS

| "listOfReactions" -> RECS

| "ig" -> ID

| "name" -> NAME

| "spatialDimensions" -> SPARDIM
| "size" -> SIZE

| "units" -> UNITS

| "compartment" -> COMPART

| "species" -> SPECIES

| "reaction" -> REACTION

| "initialAmount" -> INITAMT

136 Lexer.fsl

"initialConcentration" -> INITCONC
"substanceUnits" -> SUBSUNIT

"hasOnlySubstanceUnits" -> HASSUB
"boundaryCondition" -> BOUNDCOND

"constant" -> CONSTANT
"converFactor" -> CONVFACT
"reversible" -> REVERS

"fast" -> FAST
"listOfReactants" -> REACTANTS
"1ist0fProducts" -> PRODUCTS
"listOfModifiers" -> MODIFS
"kineticLaw" -> KLAW

"value" -> VALUE

"speciesReference" -> SPECREF
"modifierSpeciesReference"-> MODREF

"stoichiometry" -> STOICH
"math" -> MATH
"apply" -> APPLY
"times" -> TIMES
"cn" -> CN
"ci" -> CI
_ -> STRING s
}
let digit = ['0'-'9']
let int = '-'?7digit+
let float = '-'?digit+ '.' digit+
let whitespace = [' ' '\t']
let newline = ('\n' | '\r' '\n")
let letter = ['A'-'Z' 'a'-'z']
let identifier = letter(letter|digitl|float|['_']JI['-'1)*
let escapes = LI I l\lll I |'l I l!l I " | I_l
let comment = "<!--" ([~'-'] [~'-'] [~'>'])*
let quote = '\"'
let url = quote "http" ([~'\"'])* quote

rule tokenize = parse

| m<m { STARTTAG }

| n>n { ENDTAG }

| nen { QMARK }

o= { EQ }

| whitespace { tokenize lexbuf }

| newline { lexbuf.EndPos <- lexbuf.EndPos.NextLine; tokenize lexbuf }
| comment { tokenize lexbuf }

| url { URL}

| int { INT<| Int32.Parse(Encoding.UTF8.GetString(lexbuf.Lexeme)) }
| float { FLOAT <| float (Encoding.UTF8.GetString(lexbuf.Lexeme)) }
| Il/ll { END }

| escapes { tokenize lexbuf }

|

identifier { let s = Encoding.UTF8.GetString(lexbuf.Lexeme);
keyword(s) }
| eof { EOF }

APPENDIX F

ParserUtil.fs

module ParserUtil

open System.IO
open System.Text
open Microsoft.FSharp.Text.Lexing

open ChemicalSystemModel
open Lexer
open Parser

let parseString (text:string) =
let lexbuf = LexBuffer<_>.FromBytes(Encoding.UTF8.GetBytes(text))
try
Parser.Main Lexer.tokenize lexbuf
with e ->
let pos = lexbuf.EndPos
printfn "Error near line %d, character %d\n" pos.Line pos.Column
failwith "parser termination"

let parseFromFile filename =
if File.Exists(filename)
then parseString(File.ReadAllText(filename))
else invalidArg "ParserUtil" "File not found"

138 ParserUtil.fs

APPENDIX G

SPNbase.fs

module SPNbase

open Space
open Coordinate

type Tokens<'a> = 'a
type RateFunction = float
type Transition = string * RateFunction
type Place = string
type Arc = | TransPlace of Transition * Place
| PlaceTrans of Place * Transition
| Modifier of Place * Transition //extension - is always enabled and doesn't

consume tokens upon fire

type SPN<'TokenCollection,'Token> = {
marking : Map<Place, 'TokenCollection>;
transitions : Map<Transition,Arc List>;
genTokens : int->'TokenCollection;
optional : Option<Space>;
tokensInPlace : Map<Place, 'TokenCollection>->Place->int
removeToken : 'Token->'TokenCollection->'TokenCollection
fireRule : SPN<'TokenCollection,'Token>->Place list->Transition->Option<Space>
->'Token option*Map<Place, 'TokenCollection>
addToken : Map<Place, 'TokenCollection>->Place list->'Token->Map<Place, 'TokenCollection>
nextState : SPN<'TokenCollection,'Token>->float->SPN<'TokenCollection, 'Token>

}

let placesOut t transitions =

140 SPNbase.fs

Map.find t transitions |> List.fold (fun ls arc -> match arc with
| TransPlace(tl,p) when ti1
| - ->1s) [1

t -> p::ls

let placesIn t transitions =
Map.find t transitions |> List.fold (fun ls arc -> match arc with
| PlaceTrans(p,tl) when t1 = t -> p::ls
| Modifier(p,t1) when tl =t -> p::ls
I - ->1s) [

let rec isModifier place t spn =
Map.find t spn.transitions |> List.fold (fun isMod arc ->match arc with
| Modifier(p,tl) when tl1 =t && p =
place-> true
| _ -> isMod) false

let canFire spn t =
placesIn t spn.transitions |> List.fold (fun canfire p -> spn.tokensInPlace spn.marking p
> 0 &% canfire) true

let removeTokenFromPlace place trans token spn =
if not (isModifier place trans spn) then spn.marking |> Map.map (fun p (tks:'a) -> if p =
place then spn.removeToken token tks else tks)
else spn.marking

let fire spn t =

if canFire spn t then
let pIn = placesIn t spn.transitions
let (token,newMarking) = spn.fireRule spn pIn t spn.optional
let tempspn = {spn with marking = newMarking}
match token with
| Some tok -> let firedMarking = spn.addToken tempspn.marking (placesOut t tempspn.

transitions) tok
{ tempspn with marking = firedMarking }

| None -> spn

else spn

//auxilliary functions for simulation
let genNextState spn = spn.nextState spn

let state spn = spn.marking |> Map.map (fun p t -> spn.tokensInPlace spn.marking p)

let getTransition trans spn =
spn.transitions |> Map.fold (fun t (name,haz) arcs -> if name = trans then (name,haz) else
t) (un’0.0)

let isOfInterest trans (placesOfInterest:string list) spn =
placesOfInterest |> List.fold (fun exists p -> (placesOut trans spn.transitioms) |> List.
exists (fun pl -> p = pl) || exists) false

let h spn t =
let places = placesIn t spn.transitions
spn.marking |> Map.fold (
fun prod pl t -> if places |> List.exists(fun p2 -> pl = p2) then prod * float(spn.
tokensInPlace spn.marking pi)

141

else prod) 1.0

let a spn = spn.transitions |> Map.fold (fun 1s (t1,hazard) arcs -> (tl,hazard * h spn (t1,
hazard))::1s) []

//for debugging
let tokensInplace place spn = List.length (Map.find place spn.marking)

142 SPNbase.fs

APPENDIX H

SPNint.fs

module SPNint
open SPNbase

let makeSPNint : SPN<int,int> =
{
marking = Map.ofList [];
transitions = Map.ofList [];
genTokens = (fun i -> i);
optional = None;
tokensInPlace = (fun marking place -> marking |> Map.find place);
removeToken = (fun _ i -> i-1);
fireRule = (fun spn places t opt ->
(Some (1) ,spn.marking |> Map.map (fun p tks ->
if List.exists (fun pl -> pl = p) places then
if isModifier p t spn then tks else tks-1
else tks)));
addToken = (fun marking places token ->
marking |> Map.map (fun p tks -> if List.exists (fun pl -> pl = p)
places then tks+1l else tks))
nextState = (fun spn deltaT -> spn)
}

144 SPNint.fs

APPENDIX I

SPNIlist.fs

module SPNlist

open Coordinate
open Space
open SPNbase

let fireTransition spn places t space =

let placesWithTokens = spn.marking |> Map.filter (fun p tks -> List.exists (fun pl -> pl =
p) places) |> Map.toList

let p = fst (List.head placesWithTokens)

let (t1,_) = pickRandomFromList (snd (List.head placesWithTokens))

match List.length placesWithTokens with

| 1 -> (Some (t1),removeTokenFromPlace p t t1 spn)

| 2 -> let n = findneighbours (snd (List.nth placesWithTokens 0)) (snd (List.nth

placesWithTokens 1)) (Option.get space)

let p2 = fst (List.nth placesWithTokens 1)
match n with

[l -> (None, spn.marking) //no neighbouring particles were found and we should
not consume tokens
| [t1;t2] -> let newspn = {spn with marking = removeTokenFromPlace p t t1 spn}
(Some (meanPosition n), removeTokenFromPlace p2 t t2 newspn)
| _ -> failwith "error: not ment to find more than two neighbours"

_ -> failwith "error: got too many places pointing to transition - abstracted to atmost
two"

let putTokens marking places token =

marking |> Map.map (fun p tks ->if List.exists (fun pl
-> pl = p) places

then token::tks

146

SPNIist.fs

let

let

else tks)

rec removeTokenFromList (token:Coordinate) (tokens:Coordinate list)
let rec remove tks =

match tks with

| t::ts when t = token -> ts

| t::ts -> t::remove ts

| - >0

remove tokens

makeSPNlist space : SPN<Coordinate list,Coordinate> =

{

marking = Map.ofList [];

transitions = Map.ofList [];

genTokens = (fun i -> List.init i (fun _ -> genCoordinate space));
optional = Some(space);

Coordinate list

tokensInPlace = (fun marking place -> List.length (Map.find place marking));

removeToken = removeTokenFromList;
fireRule = fireTransition;
addToken = putTokens

nextState = (fun spn deltaT ->

{spn with marking = spn.marking |> Map.map (fun p tks -> applyMoves (
List.init tks.Length (fun _ -> genMove (Option.get spn.optional)

deltaT)) tks [] (Option.get spn.optional)) })

APPENDIX J

SPNarray.fs

module SPNarray

open Coordinate
open Space
open SPNbase

let removeTokenFromArray token (tokens:Coordinate array) = //this function is not robust,
since we imply that t exists in tokens
let t = let randomindex = rnd.Next(Array.length tokens - 1)
tokens. [randomindex]
let rec initArray (array:Coordinate array) newi oldi skipped max =
match newi < max with
| true -> if tokens.[oldi] = t && skipped then array.[newi] <- tokens.[01ldi];
initArray array (newi+l) (oldi+1) skipped max
elif tokens.[oldi] = t && not skipped then array.[newi] <- tokens.[(oldi+1)
1; initArray array (newi+1) (o0ldi+2) true max

else array.[newi] <- tokens.[oldil; initArray array (newi+1) (oldi+1)
skipped max
| false -> array

let dummyToken = {x = System.Double.MaxValue; y =System.Double.MaxValue; z = System.Double
.MaxValue}

let newLength = Array.length tokens - 1
let newArray = Array.create newLength dummyToken
initArray newArray O O false (Array.length newArray)

//removes a token from each place and returns the new marking and mean position of the tokens
that were removed

let fireTransition spn places t space =

148 SPNarray.fs

let

let

let

let placesWithTokens = spn.marking |> Map.filter (fun p tks -> List.exists (fun pl -> pl =
p) places) |> Map.tolList
let p = fst (List.head placesWithTokens)
let tokens:Coordinate array = (snd (List.head placesWithTokens))
let (t1,_) = pickRandomFromArray tokens//is returned in case the transition only has one
ingoing place
match List.length placesWithTokens with
| 1 -> (Some (t1),removeTokenFromPlace p t tl spn)
| 2 -> let (tokensl,tokens2) = ((snd (List.nth placesWithTokens 0)),(snd (List.nth
placesWithTokens 1)))
let (longest,shortest) =
if (Array.length tokensl) >= (Array.length tokens2) then (tokensl,tokens2) else
(tokens2,tokens1)
let n = findneighboursarray shortest longest (Option.get space)
let p2 = fst (List.nth placesWithTokens 1)
match n with
| [-> (None, spn.marking) //no neighbouring particles were found and we should
not consume tokens
| [t1;t2] -> let newspn = {spn with marking = removeTokenFromPlace p t tl spn}
(Some (meanPosition n), removeTokenFromPlace p2 t t2 newspn)
| _ -> failwith "error: not ment to find more than two neighbours"
| _ -> failwith "error: got too many places pointing to transition - abstracted to atmost
two"

putTokens marking places token = marking |> Map.map (fun p tks ->if List.exists (fun pil
-> pl = p) places
then Array.append [|token|] tks
else tks)

tokensInPlacel marking place = Array.length (Map.find place marking)

makeSPNarray space : SPN<Coordinate array,Coordinate> =
{
marking = [] |> Map.ofList;
transitions = [] |> Map.ofList;
genTokens = (fun i -> Array.init i (fun _ -> genCoordinate space));
optional = Some(space);
tokensInPlace = (fun marking place -> Array.length (Map.find place marking));
removeToken = removeTokenFromArray;
fireRule = fireTransition;
addToken = putTokens
nextState = (fun spn deltaT ->
{spn with marking = spn.marking |>
Map.map (fun p tks -> let moves = Array.init tks.Length (fun _ ->
genMove (Option.get spn.optional) deltaT)
let newtks = applyMovesArray moves tks (Option.
get spn.optional)
newtks) })

APPENDIX K

BrownianMotion.fs

module BrownianMotion

open MathNet.Numerics.Distributions
open Coordinate

type Motion =
| Constant of float
| VelocityAtTemp of (float->float)
| VelocityAtTempRad of (float->float->float)

type Distribution =
| UniformDist of ContinuousUniform
| NormalDist of Normal

let pi System.Math.PI

let kB = 1.3806488e-23 //Boltzmann's constant

let eta = 8.0 //cytoplasm has 8 times the viscosity
let alpha r = 6.0*pi*eta*r

let direction n = if n % 2 = O then 1.0 else -1.0

let genNoiseVector (distribution:Distribution) =
let (xdir:float,ydir:float,zdir:float) =
match distribution with

| NormalDist(normal) -> (normal.Sample(),normal.Sample(),normal.Sample())

| UniformDist(rnd) -> (rnd.Sample() * (direction (int (rnd.Sample()*10.0))),
rnd.Sample() * (direction (int (rnd.Sample()*10.0))),
rnd.Sample() * (direction (int (rnd.Sample()*10.0))))

150 BrownianMotion.fs

{x = xdir; y = ydir; z = zdir}

let applyMotion motion temp radius =
match motion with
| Constant(f) -> f
| VelocityAtTemp(f) -> f temp / sqrt 3.0 //for vector |v| = sqrt 3 * distance
| VelocityAtTempRad(f) -> f temp radius / sqrt 3.0

APPENDIX L

Space.fs

module Space

open System

open BrownianMotion

open Coordinate

open MathNet.Numerics.Distributions

let rnd = System.Random()
let (mean,stddev) = (0.0,0.25)
let normalDist = new Normal (mean, stddev)

//s is in nanometres, temperature is in Kelvin
//elasticity is the energyabsorbtion of membrane interaction
type Space = {

size : float;

radius : float;

temperature : float;

motion : Motion;

distribution : Distribution;

elasticity : float}

let genCoordinate dim =
{x = dim.size; y = dim.size; z = dim.size} / 2.0

let rec boundary x space =
if x < space.size && x > 0.0 then x
elif x < 0.0 then boundary (-x*space.elasticity) space
else
let left = x - space.size * space.elasticity

152 Space.fs

boundary (space.size-left) space

let genMove space deltaT =
let noise = genNoiseVector space.distribution
let speed = applyMotion space.motion space.temperature space.radius
let distance = speed * deltaT
distance * noise

let applyMove space coordinate move =
{x = boundary (coordinate.x + move.x) space;
y = boundary (coordinate.y + move.y) space;
z = boundary (coordinate.z + move.z) space}

let rec applyMoves moves coords newCoords space =
match moves with
| [1 -> newCoords
| m::ms -> match coords with
| [1 -> newCoords
| c::cs -> let newCoord = (applyMove space c¢ m)
applyMoves ms cs (newCoord::newCoords) space

let applyMovesArray (moves:Coordinate array) coords space =
coords |> Array.mapi (fun i ¢ -> applyMove space c¢ moves.[i])

let inRange cl c2 space =
let xd = cl.x-c2.x
let yd = cl.y-c2.y
let zd = cl.z-c2.z
sqrt (xd*xd + yd*yd + zd*zd) < space.radius

let meanPosition coords =
let sum = coords |> List.fold (fun s ¢ -> s + ¢) {x = 0.0; y = 0.0; z = 0.0}
let nr0fCoords = float (List.length coords)
sum / nr0fCoords

let pickRandomFromList particles =
let choose = rnd.Next(List.length particles - 1)
let p = particles. [choose]
let particles = particles |> List.filter (fun pl -> not(pl = p))
(p,particles)

let rec findneighbours tokensl tokens2 space =

match tokensl with

I 0->0

| _ -> let (ta,tas) = pickRandomFromList tokensil
let neighbour = tokens2 |> List.tryFind(fun t -> inRange ta t space)
match neighbour with
| None -> findneighbours tas tokens2 space
| Some(tb) -> [ta;tb]

let pickRandomFromArray particles =
let choose = rnd.Next(Array.length particles - 1)
let p = particles. [choose]
let particles = particles |> Array.filter (fun pl -> not(pl = p))
(p,particles)

153

let rec findneighboursarray tokensl tokens2 space = //assumes tokens2 is the largest

match tokensl with

I 01 -> 100

| _ -> let (ta,tas) = pickRandomFromArray tokensl
let neighbours = tokens2 |> Array.Parallel.choose (fun t -> if inRange ta t

space then Some(t) else None)

match neighbours with
| [11] -> findneighboursarray tas tokens2 space
| _ -> [ta;neighbours. [rnd.Next (Array.length neighbours - 1)]]

154 Space.fs

APPENDIX M

SPNbaseCompiler.fs

module SPNbaseCompiler

open SPNbase
open ChemicalSystemModel
open Space

let getRate (law:Law) =
List.fold (fun r v -> match v with
| Numerical(rate) -> rate
| VarName(_) -> r) 0.0 law.variables

let transRecAgent recAgent transition =
match recAgent with
| Reactants(rects) -> Map.fold (fun r rName _ -> PlaceTrans(rName,transition)::r) [] rects
| Products(prods) -> Map.fold (fun r pName _ -> TransPlace(transition,pName)::r) [] prods
| Modifiers(mods) -> List.fold (fun r mName -> Modifier (mName,transition)::r) [] mods

let transReactions reactions spn =
Map.fold (fun s name (recDesc,recAgents) ->
{spn with transitions = s.transitions.Add ((name,getRate recDesc.kineticLaw),
List.fold(fun a recAgent -> (transRecAgent
recAgent (name,getRate recDesc.kineticLaw)
)@a) [] recAgents);
}) spn reactions

let transSpecies species spn =
Map.fold (fun s name (species:Species) ->

156 SPNbaseCompiler.fs

{spn with marking = s.marking.Add (name,match species.initAmount with Some (i) -> spn.
genTokens (int i) | None -> spn.genTokens 0)
}) spn species

let transCompart compartments spn

Map.fold (fun s name (compartment:Compartment) ->
{spn with optional =

match compartment.spatialDim with
| Some(3.0) -> match spn.optional with

| Some (space) -> Some({space with size

= float (
Option.get compartment.size)}:Space)
| None -> None
| -> printf "Please define the spatial dimensions.";None
}) spn compartments

let transPart (p:Part) spn =
match p with
| AllSpecies(species) -> transSpecies species spn
| AllReactions(reactions) -> transReactions reactions spn
|
|

AllCompartments (comparments) -> transCompart comparments spn
_ -> spn

let compileModel (spn:SPN<_,_>) (model:Model) =
List.fold (fun s part -> transPart part s) spn model

APPENDIX N

Simulator.fs

module Simulator

open Microsoft.FSharp.Collections
open MathNet.Numerics.Distributions
open Statistics

type Data = (float*float) list list

type MinMaxData = ((float*float) list*(float*float) list) list

type Snapshots<'datastructure> = 'datastructure list

type SimulationResult<'datastructure> = ((Data * MinMaxData) * Snapshots<'datastructure>) *
float list list

let rnd = new ContinuousUniform()

let formatData data s =
data |> Array.fold (fun 1ls (t,marking) ->
(t,marking |> Map.fold(fun r p tokens ->
if p = s then float tokens else r) 0.0)::1s) []

let formatSimulation names res formatter =
names |> List.fold (fun 1ls n -> (formatter res n)::1s) []

let createTasks simulations maxTasks =
let rest = (max simulations maxTasks) J (min simulations maxTasks)
let simsPerTask = (max simulations maxTasks) / (min simulations maxTasks)
if simulations > maxTasks then

if rest = O then Array.init maxTasks (fun _ -> simsPerTask)

158 Simulator.fs

else Array.init maxTasks (fun i -> if i = (maxTasks - 1) then simsPerTask+rest else
simsPerTask)
else Array.create simulations 1

let getLastMeasurements (data: (float*float) list list) : float list =
List.init (List.length data) (fun i -> snd (List.head (List.nth data i)))

let simulate algo datastructure partsOfInterest snapInterval duration simulations maxTasks
SimulationResult<_> =
let rec runSimulations spn count sims minmax partsOfInterest algo snapInterval snapshots
lastmeasurements simulations =
if count >= simulations then
printf "simulation done\n";((((sims,minmax),snapshots),lastmeasurements),
simulations)
else
let (snapshots,res) = algo spn partsOfInterest snapInterval duration rnd
let formattedData = formatSimulation partsOflInterest res formatData
let minmaxData = updateAllAccumilatedMinMax formattedData minmax []
let averagedData = averageAllData formattedData sims [] count //used for plotting
the average behaviour
let lastmeasurements = (getLastMeasurements formattedData)::lastmeasurements //
later used for statistical analysis
runSimulations spn (count+1) averagedData minmaxData partsOfInterest algo
snapInterval snapshots lastmeasurements simulations
let tasks = createTasks simulations maxTasks
printf "tasklist %A\n" tasks
let results =
Array.Parallel.map
(runSimulations datastructure O [] [] partsOfInterest algo snapInterval [] [])
tasks
|> Array.tolList
let combinedResult =
results |> List.reduce (fun ((((accData,accMinMax),snap),lastml),simsl) ((((data,_),_)
,lastm2) ,sims2)
-> (((averageAllData data accData [] (simsl+sims2),
updateAllAccumilatedMinMax data accMinMax [1),
snap) ,lastmi@lastm2),
(sims1+sims2))
fst combinedResult

APPENDIX O

Gillespie.fs &
SpatialGillespie.fs

module Gillespie

open SPNbase
open MathNet.Numerics.Distributions

let gillespie spn partsOfInterest snapShotInterval maxT (rnd:MathNet.Numerics.Distributions.
ContinuousUniform) =
let result = Array.init maxT (fun _ -> (0.0,Map.ofList [("",0)1))
let rec sim spnl t i snapshots nextSnap lastSnapT =
let aj = a spnl
let a0 aj |> List.fold (fun sum (t,a) -> sum + a) 0.0
let r1 = rnd.Sample()
let r2 = rnd.Sample()
let tau = (1.0 / a0) * log (1.0 / rl)
let a = aj |> List.filter (fun (_,ai) -> ai > r2 * a0 &% ai <= a0)
let (trans,_) = match a with
| [1 -> aj I> List.minBy (fun (t,h) -> h)
| _ -> a |> List.minBy (fun (t,h) -> h)
let transToFire = getTransition trans spnl
let t =t + tau
let newspn = fire spnl transToFire
let (nextSnap,snapshots,lastSnapT) =
if t > nextSnap then
(nextSnap + snapShotInterval, (newspn,lastSnapT)::snapshots,t-lastSnapT)
else (nextSnap,snapshots,lastSnapT)
if i < maxT-1 then

160 Gillespie.fs & SpatialGillespie.fs

if isOfInterest transToFire partsOfInterest newspn then
result. [i] <- (t, state newspn)
sim newspn t (i+1) snapshots nextSnap lastSnapT
else sim newspn t i snapshots nextSnap lastSnapT
else result.[i] <- (t, state newspn);snapshots
(sim spn 0.0 0 [] 0.0 0.0,result)

module SpatialGillespie
open MathNet.Numerics.Distributions
open SPNbase

let spatial spn partsOfInterest snapShotInterval maxT (rnd:MathNet.Numerics.Distributions.
ContinuousUniform) =
let result = Array.init maxT (fun _ -> (0.0,Map.ofList [("",0)]))
let rec sim spnl t i snapshots nextSnap lastSnapT =
let aj = a spnl
let a0 = aj |> List.fold (fun sum (t,a) -> sum + a) 0.0
let rl = rnd.Sample()
let r2 = rnd.Sample()
let tau = (1.0 / a0) * log (1.0 / r1)
let a = aj |> List.filter (fun (_,ai) -> ai > r2 * a0)
let (trans,_) = match a with
| [1 ->aj |> List.minBy (fun (t,h) -> h)
| _ -> a |> List.minBy (fun (t,h) -> h) //|> List.min
let transToFire = getTransition trans spnl
let firedspn = fire spnl transToFire
let movedspn = genNextState firedspn tau
let t =t + tau
let (nextSnap,snapshots,lastSnapT) =
if t > nextSnap then
(nextSnap + snapShotInterval, (movedspn,lastSnapT): :snapshots,t-lastSnapT)
else (nextSnap,snapshots,lastSnapT)
if i < maxT-1 then
if isOfInterest transToFire partsOfInterest movedspn then
result. [i] <- (t, state movedspn)
sim movedspn t (i+1) snapshots nextSnap lastSnapT
else sim movedspn t i snapshots nextSnap lastSnapT
else result.[i] <- (t, state movedspn) ;snapshots
(sim spn 0.0 0 [] 0.0 0.0,result)

[

APPENDIX P

Statistics.fs

module Statistics

open MathNet.Numerics.Statistics
open SPNbase
open Coordinate

let localmaxTime data = data |> List.fold (fun m (time,_) -> max m time) 0.0
let localmaxAmount data = data |> List.fold (fun m (_,amt) -> max m amt) 0.0
let globalMaxofData data =
data |> List.fold (fun (maxT,maxA) d
-> (max maxT (localmaxTime d), max maxA (localmaxAmount d)))
(0.0,0.0)

let maxFloatVal = System.Double.MaxValue
let minDummy = {x = maxFloatVal; y = maxFloatVal; z = maxFloatVal}
let maxDummy = {x = 0.0; y = 0.0; z = 0.0}

let minmaxofCoords coords =
let (minx,miny,minz,maxx,maxy,maxz) =
coords |> List.fold (fun (cminx,cminy,cminz,cmaxx,cmaxy,cmaxz) c
-> (Coordinate.minX(cminx,c),

Coordinate.minY(cminy,c),
Coordinate.minZ(cminz,c),
Coordinate.maxX (cmaxx,c),
Coordinate.maxY (cmaxy,c),
Coordinate.maxZ(cmaxz,c)))
(minDummy ,minDummy ,minDummy ,maxDummy ,maxDummy ,maxDummy)

(minx.x,miny.y,minz.z,maxx.x,maxy.y,maxz.z)

162 Statistics.fs

let findMinMaxCoords snaps =
let allCoords =
snaps |> List.fold (fun 1ls (spn,_) -> (spn.marking |> Map.fold (fun pls p tks -> (
Array.tolList tks)@pls) [])els) []
minmaxofCoords allCoords

let confidencelnterval (data: float list list) indexOflInterest : float * float =
let measurements = data |> List.fold (fun ls entry -> (List.nth entry indexOfInterest)::ls
) O
let sampleSize = List.length measurements
let criticalVal = 1.96 // z0.025 - confidence of 95
let standardDeviation = Statistics.StandardDeviation measurements
let sampleMean = Statistics.Mean measurements
let standardError = standardDeviation / sqrt (float sampleSize)
let marginOfError = criticalVal * standardError
(sampleMean - marginOfError, sampleMean + marginOfError)

let rec averageData n datal avg res =
match datal,avg with
| ((amti,t1)::ds,(amt2,t2)::bs) -> let avghAmt = (amtl+n*amt2)/(n+1.0)
let avgT = (t1+n*t2)/(n+1.0)
averageData n ds bs ([(avgAmt,avgT)]@res)
| _ -> res

let sortByTime (t1,_) (t2,_) = if t1 < t2 then 1 else -1

let rec averageAllData data avg res n =
match data,avg with
| (d::ds,a::als) -> averageAllData ds als (List.rev ((averageData (float n) d a [] |> List
.sortWith sortByTime)::res)) n
| (d::ds,[1) -> data
| _ -> res

let getMinMax (meas:float*float) (mins:float*float) (maxs:float*float) =
match meas,mins,maxs with
| (amt1,t1), (minamt,mint), (maxamt,maxt) -> if amtl < minamt then ((amtl,t1),maxs)
elif amtl > maxamt then (mins, (amti,t1))
else (mins,maxs)

let rec accumilated d acc =
match d with
| (amt,_)::ds -> accumilated ds (acc+amt)
| [0 -> acc

let getAccumilatedMinMax data mins maxs =
let newacc = accumilated data 0.0
let minacc = accumilated mins 0.0
let maxacc = accumilated maxs 0.0
if newacc < minacc then (data,maxs)
elif newacc > maxacc then (mins,data)
else (mins,maxs)

let rec updateMinMax data mins maxs resmins resmaxs : ((floatxfloat)list*(float*float)list) =
match data,mins,maxs with

163

| (d::ds,mina::minss,maxa::maxss) -> let (newmin,newmax) = getMinMax d mina maxa
updateMinMax ds minss maxss (newmin::resmins) (newmax::
resmaxs)
| _ -> (resmins |> List.sortWith sortByTime,resmaxs |> List.sortWith sortByTime)

let rec updateAllAccumilatedMinMax data minmax res =
match data,minmax with
| (d::ds, (mins,maxs)::ms) -> updateAllAccumilatedMinMax ds ms (List.rev ((
getAccumilatedMinMax d mins maxs)::res))

| (d::ds,[]) -> updateAllAccumilatedMinMax ds minmax (List.rev ((getAccumilatedMinMax d d
d)::res))
| _ -> res

let rec updateAllMinMax data minmax res =
match data,minmax with

| (d::ds, (mins,maxs)::ms) -> updateAllMinMax ds ms (List.rev ((updateMinMax d mins maxs []

[1)::res))

| (d::ds,[]) -> updateAllMinMax ds minmax (List.rev ((updateMinMax d d d [] [1)::res))
| _ -> res

164 Statistics.fs

APPENDIX Q

DataWriter.fs

module DataWriter

open Coordinate

open Space

open SPNbase

open System.IO

open System.Runtime.Serialization.Formatters.Binary

let saveValue v path =
use fsOut = new FileStream(path,FileMode.Create)
let formatter = new BinaryFormatter()
formatter.Serialize (fsOut,box v)
fsOut.Close()

let restoreValue path =
use fsIn = new FileStream(path,FileMode.Open)
let formatter = new BinaryFormatter()
let res = formatter.Deserialize(£fsIn)
fsIn.Close()
unbox res

let paramsToString rs sims sp =
"" + string rs + "x" + string sims + "x" + string sp.size
+ "x" + string sp.radius + "x" + string sp.temperature

let linesTofile path (lines: string seq) =
use writer = File.CreateText path
lines |> Seq.iter (fun line -> writer.WriteLine line)

166 DataWriter.fs

let

let

let

let

let

let

particleNameToColor name possibleNames =
match possibleNames |> List.findIndex (fun n -> n = name) with
| 3 -> "o"
I 2 _> ||1ll
I 1 -> "gn
I _ > "{o"
round (x:float) = System.Math.Round(x, 1)
coordToString coord =
"" + string (round coord.x) + " " + string (round coord.y) + " " + string (round coord.z)
coordsToStringSeq coords name names t (minx,miny,minz,maxx,maxy,maxz) =
coords |> List.fold (fun 1s c¢ ->
(coordToString c) + " " +
(particleNameToColor name names) + " " +
string (round t) + " " +

string (round minx)
string (round miny)
string (round minz)
string (round maxx)
string (round maxy)
string (round maxz)

::1s) [0

+ o+ o+ o+ o+
+ o+ o+ o+ o+

|> List.toSeq

amtToStringSeq amt name names t (maxX:float) (maxY:float) =

[(particleNameToColor name names) + " " + string(amt) + " " + string (round t) + " " +
string (int maxX) + " " + string (int maxY)]

|> List.toSeq

saveSnapshots snaps resultSize simulations space maxX maxY boundaries =

let names = snaps |> List.fold (fun 1ls (resultSPN,_) -> (resultSPN.marking |> Map.fold (
fun ps p _ -> p::ps) [1)::1s)[]

let parms = (paramsToString resultSize simulations space)

let directory = "C:\\Users\\Joachim\\Dropbox\\Speciale\\data\\"

let rec genPaths ps amtls i m =
if i = m then (ps,amtls)

else let newps = (String.concat "" [directory; "particles"; parms; "-"; (string i); "
.txt"])::ps
let newamtls = (String.concat "" [directory; "amount"; parms; "-"; (string i); ".

txt"]) ::amtls
genPaths newps newamtls (i-1) m
let (particlePaths,amtPaths) = genPaths [] [] snaps.Length O
let rec genParticlesAndAmtSeq names snaps ps amtls =
match (names,snaps) with
| (n::ns,(s,t)::ss) -> let newps = (s.marking |> Map.fold (fun ls p tks -> Seq.append
(coordsToStringSeq (Array.toList tks) p n t boundaries) 1s) (List.toSeq [1))::ps
let newamtls = (s.marking |> Map.fold (fun 1ls p tks -> Seq.append
(amtToStringSeq (tks.Length) p n t maxX maxY) 1s) (List.
toSeq []))::amtls
genParticlesAndAmtSeq ns ss newps newamtls
| _ -> (ps,amtls)
let (particlesStrings,amtStrings) = genParticlesAndAmtSeq names snaps [] []

167

printf "paths: %A\n strings: %A\n" amtPaths amtStrings

let toDoParticles = List.zip particlePaths particlesStrings
toDoParticles |> List.iter (fun (path,lines) -> linesTofile path lines)
let toDoAmounts = List.zip amtPaths amtStrings

toDoAmounts |> List.iter (fun (path,lines) -> linesTofile path lines)

168 DataWriter.fs

APPENDIX R

Plotter.fs

module Plotter

open FnuPlot

open System

open Simulator

open Statistics
open System.Drawing

let gp = new GnuPlot()

let plotdata (simulations:SimulationResult<_>) (titles:string list) (colors:Color list)
showminmax =
let (datasets,minmaxsets) = fst(fst simulations)
let axis = if showminmax then
let maxes = List.collect (fun (max,min) -> [max]) minmaxsets
globalMaxofData maxes
else globalMaxofData datasets
let maxX = fst axis
let maxY = snd axis
let points = if showminmax then
datasets@(List.collect(fun (min,max) -> [max]@[min])minmaxsets)
else datasets
if not((List.length points) = (List.length colors)) || not((List.length points) = (List.
length titles)) then
failwith "please provide proper amount of colors and titles."
let combined = List.zip points titles |> List.zip colors
let lines =
combined |> List.fold (fun 1ls (color, (data,title))

170 Plotter.fs

-> (Series.Lines(data, title = title,lineColor = color))::1ls)
(1
gp.Set(style = Style(fill = Solid), range = Range.[0.0 .. maxX, -1.0 .. max¥*1.2])
lines |> gp.Plot

20
21

22
23
24
25

26

APPENDIX S

VIiZ.m

size = int2str(4000);
simulations = int2str(1);
unitLength = int2str(100);
radius = num2str(4);
temperature = int2str(298);

snapshots = 420;

particlepath = 'C:

\Users\Joachim\Dropbox\Speciale\data\particles';

amtpath = 'C:\Users\Joachim\Dropbox\Speciale\data\amount';

speedUp = 500;

mov (1:snapshots) = struct('cdata', [],'colormap', [1);
set(gca, 'nextplot', 'replacechildren');

amountdata = [];
timedata = [];
typedata = [];

FigHandle = figure;
set (FigHandle, 'Position', [100, 100, 1200, 5001);
for n = 1:snapshots

particlefilename = strcat(particlepath,size,'x',simulations, 'x',unitLength, 'x',radius,'x"',

temperature,'-',int2str(n),'.txt');
[x,y,2z,t,deltaT,minx,miny,minz,maxx ,maxy,maxz] = importer2(particlefilename);
amtfilename = strcat(amtpath,size,'x',simulations, 'x',unitLength,'x',radius, 'x',

temperature, '-',int2str(n),'.txt');
[type,amt,deltaT,maxX,maxY] = importer3(amtfilename);
pause (deltaT/speedUp) ;

subplot(1,2,1)

scatter3(x,y,z,[],t);

axis ([minx(1)

maxx (1) miny(1) maxy(1) minz(1) maxz(1)1);

172 viz.m

27 ti = strcat('temperature: ',temperature,' kelvin | radius: ',radius,' units | frame: ',
int2str(n),'/',int2str(snapshots));

28 title ({ti});

29 subplot(1,2,2)

30 amountdata = [amountdata amt];

31 timedata = [timedata deltaT];

32 typedata = [typedata typel;

33 plot(amountdata(4, :),'LineWidth',2);

34 axis ([0 maxX(1) 0 (max¥(1)*1.5)]);

35 title ({'concentration over time'});

36 mov(n) = getframe(gcf);

37 end

38

39 J%aniName = strcat('animation-',speed,'x',radius,'x',snapshots,'.avi');
40 movie2avi(mov, 'ANIMATION.avi', 'compression', 'None');

Bibliography

|ABRS12

[AS13)]

[BFROS]

[Bio]

[dHCKMK13]

[DLL*+15|

Omar Awile, Ferit Bueyuekkececi, Sylvain Reboux, and Ivo F.
Sbalzarini. Fast neighbor lists for adaptive-resolution parti-
cle simulations. COMPUTER PHYSICS COMMUNICATIONS,
183(5):1073-1081, 2012.

Tadashi Ando and Jeffrey Skolnick. On the importance of hydro-
dynamic interactions in lipid membrane formation. Biophysical
Journal, Biophys. J, 104(1):96-105, 2013.

J. p. Banétre, P. Fradet, and Y. Radenac. Principles of chemical
programming. 2008.

Biocyc.org. Escherichia coli k-12 substr. mgl655 laci dna-
binding transcriptional repressor. http://biocyc.org/ECOLI/
NEW- IMAGE?type=ENZYME&object=PD0O0763.

Pablo de Heras Ciechomski, Michael Klann, Robin Mange, and
Heinz Koeppl. From biochemical reaction networks to 3d dy-
namics in the cell: The zigcell3d modeling, simulation and visu-
alisation framework. Biovis 2018 - Ieee Symposium on Biological
Data Visualization 2013, Proceedings, Biovis - Ieee Symp. Biol.
Data Vis., Proc, pages 41-48, 2013.

Alexandre David, Kim Guldstrand Larsen, Axel Legay, Marius
Mikucionis, and Danny Bggsted Poulsen. Uppaal smc tutorial.
International Journal on Software Tools for Technology Transfer,
17:1-19, 2015.

174

BIBLIOGRAPHY

[DRF12|

[Gil77]

[GW09)

[HBH*10]

[IMR386]

Liav]

[JHZGO7]

[KC10]

[Khall]

[Kit71]

[KJKC15]

Marie Durand, Bruno Raffin, and Francois Faure. A packed mem-
ory array to keep moving particles sorted. Vriphys 2012 - 9th
Workshop on Virtual Reality Interactions and Physical Simula-
tions, Vriphys - Workshop Virtual Real. Interact. Phys. Simul,
pages 69-77, 2012.

DT Gillespie. Exact stochastic simulation of coupled
chemical-reactions. JOURNAL OF PHYSICAL CHEMISTRY,
81(25):2340-2361, 1977.

Tihamer Geyer and Uwe Winter. An o(n-2) approximation for
hydrodynamic interactions in brownian dynamics simulations.

JOURNAL OF CHEMICAL PHYSICS, 130(11):—, 2009.

Michael Hucka, Frank T. Bergmann, Stefan Hoops, Sarah M.
Keating, Sven Sahle, James C. Schaff, Lucian P. Smith, and Dar-
ren J. Wilkinson. The systems biology markup language (sbml):
Language specification for level 3 version 1 core. 2010.

LANG I, SCHOLZ M, and PETERS R. Molecular mobility and
nucleocytoplasmic flux in hepatoma cells. Journal of Cell Biol-
ogy, 102(4):1183-1190, 1986.

Jigcell sbml parser. http://jigcell.cs.vt.edu/jigcell/
docs/SBML/index.html. (Visited on 07/08/2015).

Dongdong Jia, Jonathan Hamilton, Lenu M. Zaman, and Anura
Goonewardene. The time, size, viscosity, and temperature de-

pendence of the brownian motion of polystyrene microspheres.
AMERICAN JOURNAL OF PHYSICS, 75(2):111-115, 2007.

Ahmad S. Khalil and James J. Collins. Synthetic biology:
applications come of age. NATURE REVIEWS GENETICS,
11(5):367-379, 2010.

Mohd Ehmer Khan. Different approaches to white box test-
ing technique for finding errors. International Journal of Soft-
ware Engineering and Its Applications, Int. J. Softw. Eng. Appl,
5(3):1-14, 2011.

C. Kittel. Thermal physics. AMFERICAN JOURNAL OF
PHYSICS, 39(7):847, 1971.

Albert J. Keung, J. Keith Joung, Ahmad S. Khalil, and James J.
Collins. Chromatin regulation at the frontier of synthetic biology.
NATURE REVIEWS GENETICS, 16(3):159-171, 2015.

BIBLIOGRAPHY 175

[Kub90]

[LB14]

[Leal

[lib]

IMAB11]

[MBTKS84]

[MF13]
[MHML14]
[MP11]

[MTN11]

[NH14|

[NNH99)

[Pat06]

[pyt]

HE Kubitschek. Cell-volume increase in escherichia-coli af-
ter shifts to richer media. JOURNAL OF BACTERIOLOGY,
172(1):94-101, 1990.

Sune Mglgaard Laursen and Jakob Jakobsen Boysen. A mod-
elling framework for synthetic biology, 2014.

Learn.Genetics. Cell size and scale. http://learn.genetics.
utah.edu/content/cells/scale/.

Software/libsbml - sbml.caltech.edu. http://sbml.org/
Software/1ibSBML. (Visited on 07/08/2015).

Wolfgang Marwan Mary Ann Blatke, Monika Heiner. Tutorial
Petri Nets in Systems Biology. 2011.

A. M. Mastro, M. A. Babich, W. D. Taylor, and A. D. Keith.
Diffusion of a small molecule in the cytoplasm of mammalian
cells. Proceedings of the National Academy of Sciences of the
United States of America, 81(11):3414-3418, 1984.

Constantinos. Mavroidis and Antoine. Ferreira. Nanorobotics :
current approaches and techniques. Springer, 2013.

Oded Maler, Adam M. Halasz, Ouri Maler, and Olivier Lebeltel.
Exploring the dynamics of mass action systems. 2014.

Peter Morters and Yuval Peres. Brownian motion. 2011.

Peter J Mohr, Barry N Taylor, and David B Newell. The 2010 co-
data recommended values of the fundamental physical constants.
Web version, 6(2), 2011.

Doktors Der Naturwissenschaften and Holger Hermanns.
Stochastic satisfiability modulo theories: A symbolic technique
for the analysis of probabilistic hybrid systems dissertation zur
erlangung des grades eines. 2014.

Flemming. Nielson, Hanne Riis. Nielson, and Chris. Hankin.
Principles of program analysis. Springer-Verlag, 1999.

Ron Patton. Software testing. Sams Pub., 2006.

libsbml python api: Libsbml features at a glance. http:
//sbml.org/Special/Software/1ibSBML/docs/python-api/
libsbml-features.html. (Visited on 07/08/2015).

176

BIBLIOGRAPHY

[RM14]

[SO:]

[Wid14]

Nicholas Roehner and Chris J. Myers. A methodology to anno-
tate systems biology markup language models with the synthetic
biology open language. ACS SYNTHETIC BIOLOGY, 3(2):57—
66, 2014.

New synthetic biology technique boosts mi-
crobial production of diesel fuel | berkeley
lab. http://newscenter.lbl.gov/2012/03/26/

dsrs-boosts-microbial-production-of-diesel-fuel/.

Alexander R Widdel. Synthetic biology: Secure digital storage,
dna-based computation and the organic computer. In Confer-
ence, page 55, 2014.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Core motivation behind synthetic biology
	1.2 Current state synthetic biology
	1.3 Problem and Goal
	1.4 A framework for synthetic biology
	1.5 Structure of the thesis

	2 Problem Description
	2.1 Approach
	2.2 Problem
	2.3 Requirements

	3 Background
	3.1 Manipulation of DNA
	3.2 Engineering synthetic genetic devices
	3.3 Quantitative and stochastic simulation
	3.4 Dynamics of mass action systems
	3.5 Thermodynamic motion
	3.6 Systems Biology Markup Language (SBML)
	3.7 Implementation environment
	3.8 Summary

	4 Design
	4.1 SBML Parser
	4.2 Stochastic Petri Net
	4.3 Compiler
	4.4 Simulator
	4.5 Chemical system simulation algorithm
	4.6 Statistical analysis
	4.7 Presentation
	4.8 Summary

	5 Implementation
	5.1 Parser and compiler
	5.2 Simulator
	5.2.1 Generating random numbers in parallel

	5.3 Presentation and statistics
	5.4 Stochastic petri net
	5.4.1 Faster neighbour search

	5.5 Summary

	6 Tests
	6.1 Test overview
	6.1.1 Parser
	6.1.2 Compiler
	6.1.3 Data structures
	6.1.4 Simulator and Simulation algorithms
	6.1.5 Presentation and statistics

	6.2 Summary

	7 Experimens and results
	7.1 Experiments
	7.2 Summary

	8 Conclusion
	8.1 Summary
	8.2 Evaluation
	8.3 Future work

	A negdevice.xml
	B andgatedevice.xml
	C ChemicalSystemModel.fs
	D Parser.fsy
	E Lexer.fsl
	F ParserUtil.fs
	G SPNbase.fs
	H SPNint.fs
	I SPNlist.fs
	J SPNarray.fs
	K BrownianMotion.fs
	L Space.fs
	M SPNbaseCompiler.fs
	N Simulator.fs
	O Gillespie.fs & SpatialGillespie.fs
	P Statistics.fs
	Q DataWriter.fs
	R Plotter.fs
	S viz.m
	Bibliography

