
M.Sc. Thesis
Master of Science in Engineering

Content-Based Information Flow
Verification for C
Tomasz Maciążek

Kongens Lyngby 2015

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Richard Petersens Plads, Building 324
2800 Kongens Lyngby
Denmark
Phone: +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

Integration of hardware and software in avionics industry started in 1990s and
was followed by increasing interconnectivity with external networks. Since then,
the companies producing planes, designed for military and public transport
alike, struggled with not only the safety, but also security problems. The cer-
tification processes that they were already using for safety had to be extended
with security concerns, as these could also impact safety. Concepts such as
Integrated Modular Avionics (IMA) and later Multiple Independent Levels of
Security (MILS) emerged. They leveraged modularity of previously separate
components and proposed solutions for controlling information flow between
them. Those solutions involved enforcement of separation and restriction of
communication, using separation kernels capable of securely partitioning re-
sources, and secure gateways that could examine the content of the exchanged
messages and filter them.

Although the proposed solutions considerably reduced the costs of certifica-
tion for those safety-critical systems, the code ensuring separation and filtering
was still required to display correctness assurance. This has lead to develop-
ment of static analysis techniques allowing automatic verification of such code,
where the Decentralized Label Model (DLM) seemed to be the most promis-
ing tool. Unfortunately, DLM proved to be insufficient, as it cannot be used
to provide assurance for a code where the labels (the DLM version of policies)
are content-dependent. An obvious solution was to augment DLM with such
content-dependent policies, however, this introduced another problem – the ne-
cessity to reason about the possible states which the program may be in.

This work builds on the previous works in this topic and introduces a version
of DLM with content-dependent policies for a subset of the C programming
language. A formal type system, which uses Hoare logic to reason about the
state of the program, is built and thoroughly explained on examples. Another
product of this work is a C# implementation of a verification tool called C2if,
which is based on that type system. The implementation uses Z3, an SMT
solver, as the core for the state- and constraint-based reasoning, and ATLR, a
parser generator, as the tool for generating an abstract syntax tree (AST) from
the input code.

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor,
Professor Hanne Riis Nielson, for giving me an opportunity of working on such
interesting and challenging project, for providing brilliant guidance, inspiring
ideas and always pointing me in the right direction.

I would like to thank both Professor Hanne Riis Nielson and Professor
Flemming Nielson for sharing and explaining drafts of their work on a Content-
Dependent Information Flow Control type system. It was an invaluable and
solid foundation on which this thesis has been built.

I would also like to thank the rest of the "Airbus Club": Jan Midtgaard,
Ximeng Li and Kasper Laursen, for engaging talks during the "Airbus Club"
meetings, valuable comments and suggestions.

To Kevin Müller, from the Airbus Group Innovations, I am extremely grate-
ful for explaining usage of MILS and PikeOS in practice, as well as for providing
ideas for benchmarks.

Finally, I would like to thank my family and friends for supporting me dur-
ing the most challenging and stressful periods, and for always believing in my
success, giving me the strength when I needed it the most.

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Certification . 2
1.1.2 Integrated Modular Avionics 2
1.1.3 Multiple Independent Levels of Security 2
1.1.4 Secure gateways . 3

1.2 The use case scenario . 4
1.3 Information flow control . 4
1.4 Goals . 6

2 Concepts of DLM and Jif 7

3 Development process 11
3.1 Methodology . 11
3.2 Technologies used . 12

4 Non-referential C analysis 13
4.1 Language specification . 13

4.1.1 Syntax . 14
4.1.2 Example . 15

4.2 DLM labels . 17
4.3 Policies . 19

4.3.1 Policy syntax . 19
4.3.2 Policy semantics . 20

4.4 Validation of programs . 21
4.4.1 Informal description . 22
4.4.2 Type system . 23

5 Referential C analysis 33
5.1 Language specification . 33

5.1.1 Syntax . 34
5.1.2 Example . 35

5.2 Policies . 36
5.2.1 Policy syntax . 36
5.2.2 Policy semantics . 36

5.3 Validation of programs . 37
5.3.1 Informal description . 37
5.3.2 Type system . 37

CONTENTS

5.3.3 Tracking values of static arrays 46

6 Implementation 49
6.1 Requirements analysis . 49

6.1.1 Functional requirements 49
6.1.2 Non-functional requirements 50

6.2 Architecture overview . 50
6.3 Helper classes . 52
6.4 Implementation details . 55
6.5 Benchmarks . 59

6.5.1 Verification of the extended language example 59
6.5.2 Verification of the use case scenario 61
6.5.3 Other examples . 63

6.6 Unit tests . 66

7 Conclusions 69

Index of notation 75

Index 77

List of Figures

1.1 The demultiplexer use case scenario 5

4.1 Type system for the non-referential language 24
4.2 Axiom for block of atomic assignments 28
4.3 Syntax driven type system for the non-referential language 32

5.1 Skip, declaration and simple assignment axioms 39
5.2 Complex assignment axioms . 43
5.3 Composition and control statement judgements 45

6.1 Overview of the architecture . 51
6.2 Helper classes . 53
6.3 Interfaces and abstract classes . 56
6.4 The architecture of labels . 58

Listings

4.1 Example usage of policies in the simple language 16
4.2 Example labeling . 18
4.3 Example policy specification . 19
4.4 Example of a non-self-influencing assignment 25
4.5 Example of leak if self-assignments are unrestricted 26
4.6 Example of partial structure update problem 27
4.7 Example of structure initialization policy erasure problem 27
4.8 Example of sequential assignment accumulation problem 29
4.9 Example of multiple assignment problem 30
5.1 Example usage of policies in the extended language 35
5.2 Example policy specification . 36
5.3 Example of sub-component pointer assignment problem 44
6.1 Output of the tool for flow validation failure 60
6.2 Output of the tool for invariant validation failure 61
6.3 The use case scenario code . 62
6.4 The multiplexer – the reversed use case scenario code 62
6.5 Example of wrong structure initialization 63
6.6 Output for wrong structure initialization example 64
6.7 Example of array subscripts influence 64
6.8 Output for the array subscripts influence example 65
6.9 Output for the partially corrected array subscripts influence ex-

ample . 65
6.10 Example of volatility of pointers 66
6.11 Output for the volatility of pointers example 67

Chapter 1

Introduction

The main purpose of this work is to provide a proof of concept showing that
content-based verification of information flow security can be done even for
languages, such as C, that allow complex data structures, pointers and arrays.
Another purpose is to create a tool that implements such verification and is
be able to process simple programs. Thus, the product of this thesis is a type
system displaying the theory behind the verification of information flow security
in programs written in a modified subset of C (C11 standard), as well as its
implementation.

In this chapter I will first introduce the background and motivation behind
the topic of this thesis, and shortly describe the development of the information
flow analysis that has been the foundation of the solutions presented in the next
chapters. In the end I will precisely state the goals that this work shall achieve.

1.1 Background

Security has become an important factor in industries where it previously was
not concerned. Industries dealing with safety-critical systems such as avion-
ics, automotive and railways started to integrate their systems into common
hardware platforms and connected them to the Internet. There were multiple
reasons for this development. The most important one was to reduce the costs
by minimising amount of separate controllers, each of which needs maintenance
and power supply. Software controllers, running on single hardware platform
would require less maintenance and power. In avionics there was a secondary
objective reached by this minimisation – reduction of mass and volume taken by
those controllers, which neither is without an impact on the costs and revenue.
Another purpose of the development was desire to remain competitive on the
market were customer orientation matters the most. This has lead to necessity
to provide the customer (the passenger) with entertainment and live or even
interactive information about the journey.

As the integration was introduced, suddenly these industries had to face
the same security threats as those faced by the IT industry. Unfortunately,
some of the security threats, could have repercussions in safety, which is the
main concern of the companies producing safety-critical systems. The concept

2 Background

of architectural and hardware integration, including all the security and safety
concerns associated with it, has been called Integrated Modular Avionics (IMA).

Safety and security issues are particularly important in avionics, because
their systems cannot be simply shut down in case of a major failure, and also
because their faulty operation may cause the most severe losses. That is why
the case of avionics has been chosen as the focus point – the need for secure
information flow is the highest in this industry.

1.1.1 Certification
In order for the systems to be regarded as safe or secure they need to undergo a
standardized certification process. In terms of computer security one of the most
widely used certification standards is the Common Criteria [9]. As a result of the
process the system is assigned with a grade representing the level of assurance.
In case of Common Criteria it is one of seven (1-7) Evaluation Assurance Levels
(EAL). The certification process consumes a lot of resources, and the system
in question must be methodically, semiformally or even formally designed and
tested in order to reach the desired assurance level.

There exist certain models and guidelines that facilitate creation of safe and
secure systems. The ARINC Report 811 [8] (briefly described in [27]) provides
general security guidance on development of aircraft information systems, indi-
cating how to work under the constrained environment of avionics and how to
match security measures to threats based on risk analysis. The report describes
security domains of the aircraft and its life-cycle with respect to security issues.
Moreover, it specifies a security nomenclature, and gives a general information
security process framework that can be used on top of security standards (such
as Common Criteria), and is specifically designed for avionics.

1.1.2 Integrated Modular Avionics
The idea behind IMA is also to support security of the systems on-board the
aircrafts, however, in this case their modularity is utilized. Before the integra-
tion happened the aircraft controllers were working as standalone systems. The
IMA concept tries to maintain that separation by introduction of partitions –
isolated processing and system (e.g. memory, I/O) resources being part of the
same hardware platform. The partitions can communicate with each other using
ports – directed channels which exist between the partitions that are supposed
to exchange information. Finally, the ports need to specify policies control-
ling information that can be passed through them, particularly when they cross
security domains. Those policies are enforced by secure gateways.

Thanks to partitions, applications/controllers that belong to different secu-
rity domains can share the resources with minimal interference (on each other).
Still, a strong assurance needs to be provided that all policies are satisfied and
that the subsystems are otherwise truly separated.

1.1.3 Multiple Independent Levels of Security
Multiple Independent Levels of Security (MILS) is a high-assurance architec-
tural approach to security problems. It is not a system architecture itself, how-
ever, it shows how to design, construct, integrate and evaluate secure systems,

Introduction 3

and thereby reduce assurance costs. It is a slightly newer idea, in compari-
son to IMA, introduced in [31]. A two level approach is advocated by MILS
that separates the problem of enforcing a security policy from secure sharing of
resources.

According to the MILS constitution, one must first devise logically decom-
posed components of which the system consists. These should be as simple as
possible, preferably performing just one function and behave as standalone sys-
tems – it is a "divide and conquer" approach. The components may be deemed
either as trusted or untrusted. All parts of trusted components, even the op-
erating system (OS), must display a certain level of assurance. Similarly to
the IMA concept, the components can only communicate with each other via
dedicated, unidirectional ports.

The next step happens at the resource sharing level. The components of
the security architecture should be mapped to resources. During this process a
special care should be taken to cluster components that share similar function-
ality or are physically collocated. The resources are shared securely, even when
trusted and untrusted components are mixed, thanks to partitioning – the same
kind of separation as in IMA.

The partitioning is governed by separation kernels – very small (few to tens
of thousands of lines of code) security kernels that constrain programs spa-
tially (memory), temporally (processor time) or cryptographically (filesystems
or communications). Separation kernels also provide inter-partition communi-
cation (IPC) channels, that allow partitions to communicate with each other.
Those channels are also guarded by secure gateways.

MILS facilitates certification by taking advantage of compositionality of the
architecture that it proposes. There are two main certification approaches for
MILS, as suggested in [20]. According to the Composed Assurance Package
(CAP) approach, only the dependent component (such as the secure gateway)
has to be evaluated in-depth, provided that the component that it depends on
(e.g. the separation kernel) has displayed relevant assurance separately. This
kind of evaluation can reach up to EAL 4. On the other hand, the Common
Criteria Development Board (CCDB) approach can provide assurance beyond
that level, however, it restricts the system under evaluation to purely hierarchi-
cal compositional architecture, so that there can only be application–platform
dependencies. Furthermore, the application has to be evaluated jointly with the
platform, which increases the costs of certification.

One of the operating systems based on the MILS concept that features a
separation kernel is PikeOS [5]. It is a real-time OS, that is certified according
to a number of standards and thus appropriate for safety-critical systems. It
is, among other applications, used by Airbus – a consortium producing large
variety of aircrafts.

1.1.4 Secure gateways

In [21], Müller et al. introduce a detailed specification and architecture of a
secure gateway suited for the avionics industry. There are several requirements
noted in this article that the secure gateway should meet. The most important is
that it should allow content-based flow control, that is examine the content of the

4 The use case scenario

messages, not only determine which partitions should be able to communicate
with each other.

The secure gateway described in [21] uses two partitions, which effectively
separates it into an outbound (egress) and an inbound (ingress) part. The out-
bound part guards against information leakage (ensures confidentiality), while
the inbound part is used to protect data integrity. Each of those parts consists of
several modules: net module, routing module (ingress only), viewer module and
border-crossing. The net module operates in the application layer and checks
the semantic integrity of the messages. The routing module decides to which
application should the message be routed. The viewer module contains filters
through which each message is iterated and then it is forwarded to the next
module only if it has passed all the filters. Finally, the border-crossing, which is
the lowest level module, uses the IPC channels of the separation kernel to send
the message to a border-crossing module of some other domain.

1.2 The use case scenario
Now that we are familiar with the background of the security issues and solutions
in avionics, I shall introduce the use case scenario that is the motivation of this
work. The previous section raised the subject of the secure gateways, which are
an intrinsic part of security architecture in both IMA and MILS approaches.
Parts of those gateways, such as filters, content-based policies and routers are
external to the well established and verified secure systems (like PikeOS), and
need to be additionally verified. These parts may consist of relatively small
pieces of code that could be verified using static program analysis.

Such scenario has been illustrated in [19] – an article by Müller et al., where a
problem of routing to the appropriate transport layer protocol decoder is raised.
In this article a demultiplexer module is responsible for making the right choice
based on the content of the inbound messages, and the code of that module is
provided. The article states that it should be possible to devise some policies
for the program and then using static analysis ensure that its implementation
is correct with respect to information flow security – that both TCP and UDP
packets are correctly, respectively forwarded to the TCP and UDP modules.
Figure 1.1 depicts that use case scenario in a similar way to how [19] does.

Müller et al. find that in order to automatically verify their program, with-
out changing its structure, the policies themselves would need to be content-
dependent. Otherwise, the loops that iterate through variables of disjunctive
policy nature need to be transformed into switch statements with excessive use
of downgrading. They propose how those policies should look like on example
of the Decentralized Label Model (DLM).

1.3 Information flow control
The choice of DLM for the problem of expressing and validating security policies
in the use case scenario was not accidental. In history of information flow control
there have been several major milestones.

The fundamentals were given by the specification of confidentiality lat-
tices incorporating both levels and domains of security introduced by Bell and

Introduction 5

Figure 1.1: The demultiplexer use case scenario

LaPadula in [13], further refined by Biba with model of integrity in [14]. It was
then used in Denning and Denning’s work [16] providing an approach for certifi-
cation of information flow security in programs. Their work was then formalized
into a type system and proved to be correct by Volpano et al. [32].

Unfortunately those approaches were too restrictive to be used in practice.
The main problem was lack of possibility to bypass the security policies (in a
controlled manner) in order for the program to actually do something useful.
This problem has been solved in the model proposed by Myers et al. [24] – the
Decentralized Label Model – originally considering only confidentiality, later
augmented with integrity in [25]. DLM offers means of declassifying (down-
grading confidentiality) and endorsing (downgrading integrity) data and implicit
information flows in a controlled manner. Furthermore, it introduces a notion
of principals, which can act as owners, readers and writers of some data. Those
principals may be a perfect representation of the security domains in avionics.
The security policies in DLM take form of labels, which consist of owners, as well
as readers and/or writers that each of them declares. DLM will be explained in
details later on in this work.

Another advantage of DLM is that it has already been implemented for
Java programs as Jif: Java + information flow [4]. Although it is C, not
Java, that is used as the programming language in avionics (due to numerous
challenges in assurance), Jif documentation provides a reference frame on which
the specification of a solution for C can be based. Thanks to the fact that both
Java and C are imperative languages, which principles are similar, much of the
Jif functionality can be directly translated for C.

Unfortunately, although DLM appears to be perfect for the task it still
has some limitations. As mentioned before, the DLM labels are not content-
dependent, which poses a problem in case some data or channels have a disjunc-
tive policy nature. A solution to this, for a simple language of concurrent pro-
cesses and set-based policies, has been proposed by Nielson et al. in [30]. This
article describes a way of specifying content-dependent policies and provides a
type system that can verify correctness of programs against those policies. This

6 Goals

approach is later refined in [29], featuring more DLM-like policies, and is the
basis of the type system presented in this work.

1.4 Goals
Based on the needs in the avionics industry and the aforementioned use case
scenario, as well as the shortcomings of DLM and the previous work in attempt
to overcome these, the goals of this thesis are:

1. Describe a syntax using which content-dependent policies can be specified
for C. The syntax should be as simple as possible to facilitate their creation
and understanding for the programmers that are going to use them. It
should be based on the syntax provided in [19].

2. Construct a type system capable of verifying programs written in a sub-
set of C. The subset should encompass simple variables, arrays, pointers,
structures, declarations, definitions, assignments, arithmetic and boolean
operations, as well as basic control statements: if conditionals and while
loops. The language should be augmented with policies and constructs
necessary to perform the verification.

3. Provide a verification tool that accepts as an input the code of programs
written in the defined language, and validates the information flow security
within them. In the output the tool should either indicate a success or
provide information useful in finding the problem with the code. The tool
shall be named C2if , which stands for C Content-based Information Flow.

4. Identify the challenges in the content-dependent information flow security
analysis and point the directions for the future development.

Chapter 2

Concepts of DLM and Jif

Jif is a well-established implementation of DLM for Java. It provides a syntax
and a compiler that together allow creating software where the information flow
security has the highest priority. It has originated from JFlow [23] (an early
implementation of DLM on a Java-like language), and has developed since –
now it also incorporates integrity labelling and many other features that facil-
itate secure programming and strengthen security. As C is also an imperative
language, and its features are mostly a subset of what Java provides, an oppor-
tunity emerges to re-use some of Jif components and reasoning.

In this chapter I will describe those components in details and analyse their
usefulness in relation to the use case scenario and the avionics domain in gen-
eral. Based on that and on their complexity, I will determine which of these
components are going to be implemented in the solution presented in this work.

Principals

The core of the security properties and analysis of Jif (and DLM) are principals
– abstract actors in the system which are owners of data and on behalf of which
programs are executed. Owners can declare authority to read or write their
data for other principals, which are therefore called readers and writers. Jif goes
even further and allows principals to delegate full authority to act for them, thus
constructing a principal hierarchy. In the avionics scenario, the principals can
represent different MILS components, or even ARINC 811 security domains,
depending on the choice of granularity. Nevertheless, they do not need to be
allowed to act for each other, as each component should maintain control over
its own information. Furthermore, the domains and the components are not
hierarchical with respect to security. That is why the concept of principals can
be certainly re-used, not including, however, the hierarchy.

Confidentiality and integrity labels

Jif provides syntax of labels that capture both confidentiality and integrity
properties of information flow. The above-mentioned principals are the first
class citizens (the only ones) of the labels. DLM defines those labels using the
principal hierarchy concept that I have already decided to reject, which means
that re-using labels will require their redefinition.

8 Concepts of DLM and Jif

Both confidentiality and integrity labels are crucial for avionics, as the in-
formation may flow in both directions between domains of different levels of
security. Moreover, these aspects of security are dual in their nature and they
display similar partial ordering properties. Hence, both data confidentiality and
integrity will be included in the analysis presented in this work.

Explicit and implicit flow

Just as in classic information flow security approaches, DLM separates informa-
tion flow into two classes – explicit and implicit. The explicit information flow
normally occurs while assigning to a variable or writing data to a channel, while
implicit flow occurs when the explicit flow depends on some condition, which
happens, amongst others, inside conditional statements and loops. The implicit
flow can be also defined as a flow that does not appear in all possible execution
paths.

For capturing and analysing security of explicit flows, DLM attaches labels to
all variables in the program. As for the implicit flows, it deduces a label for each
statement in the code, or in other words for the program counter (PC). That
label is a combination of the labels of variables on which the execution of that
statement depends. Those concepts are the very core to the C2if implementation
and can be re-used with little or no changes.

Methods

Information flow security analysis for methods is not trivial, as these may have
side-effects and multiple ways of termination (e.g. exceptions). Both those com-
plexities have been solved in Jif, by begin and end labels of methods respec-
tively. The begin label influences the program counter label inside the body of
the method, while the end label changes the program counter label after the
method call. As Java methods are very similar to C functions it should not
be difficult to re-use Jif solutions. However, due to the complexity of other
elements of C considered in this work, implementation of functions is left for
future work.

Label inference, default labels and polymorphism

Jif provides some features that ease the burden of security annotation of code
that is put on the programmer. The first feature, label inference, allows to omit
labels in variable declarations if these are unimportant, and then those labels
will be inferred by the Jif compiler to fit to other labels in the program. The
second – default labels – allows to omit labels in other places, such as begin labels
of methods, which are then assigned a default value by the compiler (in case of
begin labels – the most restrictive). Finally, polymorphism allows not writing
labels of method arguments and return values, which are then instantiated with
the labels at the call place.

Although these features are very useful they do not introduce better expres-
sive power to the language. They are, however, desired by the industry, as they
minimize changes to the code required to verify it. Hence, these features should
be implemented in the future.

Concepts of DLM and Jif 9

Arrays

In Jif arrays have two labels – for the array elements and for the variable that
points to the array itself. Arrays exist both in Java and in C in virtually the same
form, which is why incorporating that part of Jif in this work is undoubtedly
justified. Furthermore, some parts of analysis concerning arrays can be helpful
in analysing information flows related to pointers.

Exceptions

Exceptions change the normal execution paths of programs which is why these
have to be considered in information flow analysis. In Jif the problem of excep-
tions is solved by changing the PC label after any statement that can produce
an exception and augmenting the PC label inside exception handlers. C does
not have any concept of exceptions, but a program may be terminated at any
moment unexpectedly or using the exit() directive. The former case may be
very elusive because there are many reasons for which the program could stop
that are hard to analyse. The latter is easy to reason about, however, some
information flow that it may cause is not explicit – it may be used to create a
timing covert channel. Neither of the two cases is going to be analysed in-depth
in this work.

Dynamic and runtime labels and principals

Jif introduces labels as first class citizens of the language and allows evaluating
them in run-time. This is particularly useful when the system is heterogeneous
with respect to its principals, that is, there are types of principals which can
be represented by many individuals (actors) and each of them needs a separate
principal instance. In the use case scenario we do not need that feature, as the
set of principals is limited to a finite set of protocols. As for other cases, even
though principals could be heterogeneous (e.g. passengers), in a system where
their safety is the most important factor, also for certification, that fact could
be neglected and they could be aggregated into a single domain principal.

Downgrading

The most powerful and innovative features of DLM are declassification and en-
dorsement, which allow controlled information flow that is not restriction in
terms of confidentiality and integrity respectively. In Jif both variables (explicit
flow) and the PC (implicit flow) can be declassified/endorsed. Although those
features are actually the most important part of DLM they are not needed for
the demultiplexer module scenario. The reason is that the purpose of this mod-
ule is only to pass data that it receives correctly according to some policies.
Those policies establish the labels of the variables that carry the data and these
labels should not be changed in any place of the code of the demultiplexer.
However, downgrading may be useful in the code of the components that com-
municate via the module, and hence, in order to provide a versatile tool for
static analysis of information flow, it should be also implemented. Neverthe-
less, due to complexity introduced by the content-dependent policies and static
reasoning about values, this aspect of DLM is left out as the future work.

Chapter 3

Development process

Development of a type system capable of handling content-dependent policies
and complexities of the C language is not an easy task. There are many pitfalls
and if errors are made in the type system then it becomes useless for verifica-
tion of information flow security. Furthermore, the choice of technology is also
important. It not only influences the pace of the development process, but also
the potential and performance of the product. This chapter discusses both the
methodology of development and the technologies used for implementation.

3.1 Methodology
As mentioned before, the solution has been based on DLM and its implementa-
tion, Jif. In particular, labels and most of their semantics have been preserved.
This allowed their implementation in this solution to be benchmarked against
Jif in order to ensure correctness.

Furthermore, the development of the type system has been divided into two
major milestones, which is also reflected in the structure of this thesis. The first,
the non-referential C analysis, covers all parts of the desired C syntax except
for pointers and arrays. Although arrays may be static and do not have to store
addresses of other variables, as pointers do, pointers and arrays have so much in
common in C that it would be hard to separate them. This, and the complexity
associated with storing many values under one variable, is why arrays are not
part of the first milestone. The second milestone, the referential C analysis,
extends the first one with the above-mentioned arrays and pointers. Thanks
to this approach the development process became less challenging, because the
first milestone provided a strong foundation for introducing the second, which
is much more complicated and error prone. Another advantage is that the type
system, being gradually introduced, is easier to comprehend.

Finally, each milestone has been developed in smaller iterations, each intro-
ducing just a few functionalities. Whenever a functionality was theoretically
described, it was then implemented and thoroughly tested. The testing has not
only ensured correctness of the implementation, but on numerous occasions it
has revealed problems with the theory behind it.

12 Technologies used

3.2 Technologies used
The first choice that I had to make, as far as the technologies are concerned,
was the choice of an SMT solver. A solver of that kind is necessary to perform a
Hoare logic driven reasoning about possible states of the program and use this
information in verification of policies in a way that is similar to what is presented
in [29]. Programs contain arithmetic and boolean expressions that need to be
interpreted, which is why a SAT solver would not be enough. There are tens
of SMT solvers available and free to use. The three most versatile and well
known are Z3 [7], CVC4 [2] and Yices2 [6]. There are no significant differences
in what kind of problems any of those three SMT solvers can process. All three
are also able to accept input in the SMT-LIB 2.0 format [12]. Yices2, however,
provides an API only for C – a very low level language, and thus, unsuitable
for the task. As for the other two solvers, they provide well documented, native
APIs for high level languages such as Java (CVC4) and C# (Z3). They both
also perform very well, which has been proven in an international SMT solvers
competition [1]. Hence, the choice of the solver had to be determined by the
choice of the programming language.

As mentioned above, the two options for the programming language of the
implementation were Java and C#. Both are high level languages with little or
no difference in the performance, similar capabilities and testing possibilities.
The most recent, eight, version of Java, also supports lambda expressions that
are very useful in processing all sorts of collections, and which have been avail-
able in C# for a long time. Now, one of the very few differences is that C# has
slightly more of "syntactic sugar", which makes the development process easier
and more enjoyable. Thus, I have chosen C# – it has been a quite personal
choice in the end.

Of course, choice of the programming language was not without influence
on the choice of the Integrated Development Environment (IDE), and its imple-
mentation that provides the class library. For C# the obvious option was Visual
Studio with the implementation of the .Net Framework – an IDE developed by
Microsoft tailored for development of C# programs.

The last choice, as far as the technologies are concerned, was the parser gen-
erator. Such tool generates a parser given a formal description of the language
of the input and rules for creating an abstract syntax tree (AST). Since I only
had (a good) experience with ANTLR, it has been my first choice. Nevertheless,
I conducted a quick research in the field of parsers and found that the second
most recommended generator is GOLD [3]. It uses different grammar notation
and parsing algorithm than ANTLR. The notation in GOLD is BNF and the
algorithm is LALR, while for ANTLR it is EBNF and LL respectively. This
amounts to the fact that writing grammars in ANTLR is less error prone (non-
deterministic grammars are impossible) and it is easier to express repetitions
and optional occurrences, which confirmed my choice.

To summarize, here is the list of the technologies used in this work, with
their versions:

Z3 v4.4.0 – an SMT solver.

C# v5.0 – a high level programming language.

.NET Framework v4.5 – a software framework providing the class library.

ANTLR v4.3.0 – a parser generator.

Chapter 4

Non-referential C analysis

In this chapter I will introduce a type system for validation of information flow
security for programs written in a small subset of the C language. I will start
with specification of the language and provide its syntax with emphasis on where
the security policies are bound to the data structures. Then, I will introduce
a version and interpretation of the DLM labels that is used in those policies.
After that, I will present the concept of the content-dependent policies, in the
context of this work, their syntax and semantics. Next, I will informally describe
the idea behind verification in that language and finally propose a formal type
system, according to which the C2if validation tool is implemented.

4.1 Language specification
As mentioned in the introduction, the language considered in this first milestone
is going to be a small subset of C containing the following:

• Integer, decimal (float) and boolean variables

• Structures and structure initialization

• Declarations, definitions and assignments

• Arithmetic and boolean operations

• Conditional statements (if conditionals)

• Simple iteration statements (while loops)

The language, as it is defined, will serve as a proof of concept and will be
built upon in the subsequent milestone presented in the next chapter. Using
the aforementioned components the solution will be able to address a simplified
version of the previously defined use case scenario.

14 Language specification

4.1.1 Syntax
The following provides the syntax of this simple language:

t ::= int | float | bool

lt ::= t {policy}

stc ::= struct s {decls} {policy};
stci ::= struct s {decls} {policy} si | struct s {policy} si;
decls ::= decl | decls1 decls2

decl ::= lta va; | ltb vb; | stci;
decli ::= lta va=a; | ltb vb=b;

a ::= n | xa | a1 opa a2

b ::= true | false | !b | xb | b1 opb b2 | a1 opr a2 | e1 == e2

e ::= a | b
xa ::= si.xa | va
xb ::= si.xb | vb
xv ::= xa | xb
xs ::= si.xs | si
init ::= {inlst}
inlst ::= e | inlst1, inlst2 | init
stinit ::= stci=init;
assign ::= xb=b; | xa=a; | xst=xss

S ::= stc | decl | decli | stinit |
; | assign | if (b) {S} | S1 S2 |
if (b) {S1} else {S2} | while (b) {S} |
while (b)[ψ] {S}

The syntax contains an undefined rule policy which will be defined later
in section 4.3, as it requires that the DLM labels are introduced first. Apart
from that, there are a few other symbols that need to be clarified. The symbol n
stands for an integer or a floating point constant, xv and xs are slots (identifiers
of places in program’s memory), a means an arithmetic expression and b means
a boolean expression, while opa and opb are respective operators. There is a
limited type-checking that is provided with subscripts of slots and variables.

The slots are defined using a recursive rule over the accessors (dot separated
structure–component sequences) that are used to build the fully qualified name
of the slot. In this syntax, the final component of an xv slot is always a simple
type variable identifier, here denoted by v, while for xs it is always a structure
instance identifier – si.

For the purpose of this work, data structures having simple type (can also be
components of structures) will be referred to as variables. When denoted with
v their short (local if in structure) name is considered, while xv will refer to
their fully qualified name – with dot-separated parent structures if applicable.
An analogous rule applies to the structure instances.

Non-referential C analysis 15

According to this specification, the language gives raise to several types,
or in other words domains, of slots. The Var domain consists of variables,
while structure instances belong to the Str domain. Finally, these altogether
constitute the domain of all slots Slot = Var ∪ Str, which will be symbolized
by x (without subscripts).

The policies can be specified for variables, structures and their and instances.
The scope of the policies (the slots on which they are dependent and which they
influence) is limited by the point of attachment. In case of a variable, the
scope is that variable itself. As for a structure, it is all its components, and
subcomponents if the structure contains nested structures. The programmer
may attach the policy to both the structure and its components, so that he has
macro- and micro-control over the policies.

Declarations are split into pure ones and those with initialization. The struc-
tures are also split into pure declaration of the type and instantiation, where s
is the name of the structure and si is the name of the structure instance. Also
note that the programmer can attach the policy to both, the declaration of type
and instantiation, however, not when declaring and instantiating the structure
at the same time – there is no reason for splitting the policy definition in that
case.

The rule stinit refers to aggregate structure initialization as defined in the
C standard [10]. It is necessary to introduce structure initialization of this
kind from the information flow security analysis point of view, as explained in
section 5.3.2. It virtually allows grouping assignments together and initializing
a structure atomically without violating the content-dependent policies.

The rule for the while loop has a version where an additional parameter
ψ is specified. It is a loop invariant that the programmer may specify. It has
been introduced in order to avoid fixed-point analysis, which would be otherwise
necessary to reason about the state inside loops.

4.1.2 Example
Listing 4.1 presents an example program written in the language defined in this
chapter. This code snippet is interesting, as it shows a scenario where if the
policies were not used then declassification would be necessary in order to make
this simple program correct with respect to information flow security. Here
we have a structure x that has a policy depending on its value. Another two
variables y and z have static labels each corresponding to one of the x’s data
labels. The structure is initialised with some input in an initializer list that
also sets the determinant accordingly. The if conditionals determine whether
x.data should be assigned to y or z. Thanks to that, the data will be securely
assigned to y and the program will be successfully validated. Note that label
of the determinant is just unrestrictive enough to allow assignment in both
conditionals.

16 Language specification

1 int {{Alice->Bob}} y;
2 int {{Alice->Chuck}} z;
3
4 int {{Alice->Bob}} input;
5 struct s {
6 int {{Alice->Bob,Chuck}} determinant;
7 int data;
8 }{
9 (self.determinant == 1 => self.data={Alice->Bob});

10 (self.determinant == 2 => self.data={Alice->Chuck})
11 } x = {
12 1,
13 input
14 };
15 if(x.determinant == 1) {
16 y = x.data;
17 }
18 if(x.determinant == 2) {
19 z = x.data;
20 }

Listing 4.1: Example usage of policies in the simple language

Non-referential C analysis 17

4.2 DLM labels
As mentioned in the introduction, a DLM label consists of confidentiality and
integrity parts. Here, I will describe and re-define the labels following the spec-
ification from [22], however, not using the principal hierarchy.

Labels have the form {O1 → R1; ...;On → Rn;O1 ←W1; ...;On ←Wn}. Oi
is a set representing owners, however, in policy specification (for simplicity) it
can be only either a singleton (one owner), or a set of all principals (denoted *),
or an empty set (denoted _). Ri is a comma separated set of readers designated
by the owners, and Wi is the set of writers who the owners believe that might
have influenced the data. All three, owners, readers and writers are principals,
that is, entities that can perform some actions in the system. The labels are
partially ordered by the v relation, which is defined as follows:

L1 v L2 iff ∀p : readers(L1, p) ⊇ readers(L2, p)
∧ writers(L1, p) ⊆ writers(L2, p)

where p is a principal, while readers(L, p) and writers(L, p) are defined in the
following manner:

readers(O → R, p) =
{
p ∪R iff p ∈ O
* otherwise

readers(L1;L2, p) = readers(L1, p) ∩ readers(L1, p)

writers(O ←W,p) =
{
p ∪W iff p ∈ O
_ otherwise

writers(L1;L2, p) = writers(L1, p) ∪ writers(L1, p)

In other words, readers(L, p) is the set of readers designated by p in label
L with p itself included; which means all the readers that p allows to read the
data. If p is not in the label it allows reading for all principals by default.
The writers(L, p) is the set of writers designated by p in label L and p itself
included here as well; which means all the writers that p believes that may have
influenced the data. If p is not in the label it by default believes that no one
has influenced the data.

That definition of the DLM labels gives rise to top > and bottom ⊥ labels
of the label partial ordering:

> = {*->_; *<-*}
⊥ = {_->·; _<-·}

The top label means that all principals restrict the read operation to themselves,
and all principals believe that anyone could have influenced the data. The
bottom label indicates that no principal imposes any restriction for reading,
and no principal believes that the data have been influenced by anyone. The
dot symbol · expresses that it can be substituted with anything, and this follows
from the fact that no principal can be matched with the empty owner set _.

An example of labelling is presented in listing 4.2. Here, the part of label
with the right-arrow (->) concerns the confidentiality and the part with the

18 DLM labels

1 int {Alice->Bob; Bob<-_} x;
2 int {Alice->_; *<-*} y;

Listing 4.2: Example labeling

left-arrow (<-) concerns integrity. In the example, Bob is allowed to read the
variable x by Alice and Alice is also an implicit reader. Bob also believes that
no one (but him) has influenced the variable. As for y, Alice does not allow
anyone (but her) to read it, however, everyone believes that anyone might have
influenced the data.

Non-referential C analysis 19

4.3 Policies
As mentioned before, we would like to support the demultiplexer scenario, with-
out using downgrading, so that everything can be checked statically and better
security proof is provided. In order to do that, the DLM labels attached to slots
need to be dependent on their values, or values of some other slots in the code.

4.3.1 Policy syntax
Providing dependence of labels on values can be accomplished by introducing
policies that will dictate the labels of slots to which these are attached based
on some conditions. Such policies with their syntax and semantics have been
introduced in [19]. In this work, I am going to consider a version of policies
provided in that paper:

policyDef ::= policy name={policy}
policyUse ::= {policy}

policy ::= name | policy; policy | (condition=>policy) | result
condition ::= slot==value | condition && condition | condition || condition

result ::= result && result | slot=DLMLabel | DLMLabel

slot ::= self | slot.component

In this syntax, the policies are allowed to specify conditions on the slot, and
if these are met then some other policy is applied, which might actually be a
result that resolves to appropriate labelling (with a DLM label) of some slot. If
no condition is specified (only the result) then it is assumed to be equivalent
to true and the policy always holds. Note that the slot to which the policy
is applied restricts the scope of conditions and results to that slot, and its
components (if applicable).

There can be several results of a policy, for example, concerning different
slots. If no slot is specified then by default it is the slot to which the policy is
applied that is concerned (i.e. self).

Policies can be declared separately, named and then assigned to slots by
providing the policy name inside curly brackets as shown in the policyUse rule.
It is also possible to in-line the policy specification at the place where it is used.
More than one policy can be specified using semicolon as a separator.

An example of a simple policy specification is shown in listing 4.3.

1 int {{Alice->Bob; Bob<-_}} x;
2 int {(self == 2 => {Alice->_; *<-*})} y;

Listing 4.3: Example policy specification

Here, we have an unconditional policy for x that effectively is equivalent to
the simple DLM label described in section 4.2. As for y, it is governed by a
policy that assigns the specified label to it only if its value is equal to 2. In
other cases the label of y is ⊥.

20 Policies

4.3.2 Policy semantics
So far we have seen the syntax of the policies that will be used in code. However,
in order to make use of the policies in the type system, their semantics need to
be defined. The policies defined previously in the syntax result semantically in
a global policy defined as follows:

P ::= X : L
| φ⇒ P

| P1; P2

φ ::= x = n

| φ1 ∧ φ2

| φ1 ∨ φ2

where X is a set of slots initially containing exactly one slot, L is the previously
defined DLM label, φ is a condition, x is a slot, and n is a constant. The use
of a set of slots might seem excessive here, but it will be necessary for the type
system defined later on.

The translation from the policy syntax to the semantics is given by the
following set of translation functions:

TPdef
(policy name = {policy},P) = P[name 7→ λx.TP (policy,P, x)]

TSdef
(struct s{decls} {policy},P) = P[s 7→ λx.(TP (policy,P, x);Tdecl(decls,P, x))]
Tdef (type x {policy}, P,P) = P;TP (policy,P, x)

Tdef (struct s{decls} {policy} si, P,P) = P;TP (policy,P, si);Tdecl(decls,P, si)
Tdef (struct s{policy} si, P,P) = P;TP (policy,P, si);P[s](si)
Tdecl(type var {policy},P, x) = TP (policy,P, x.var)

Tdecl(struct s{decls} {policy} si,P, x) = TP (policy,P, x.si);Tdecl(decls,P, x.si)
Tdecl(struct s{policy} si,P, x) = TP (policy,P, x.si);P[s](x.si)

Tdecl(decls1 decls2,P, x) = Tdecl(decls1,P, x);Tdecl(decls2,P, x)
TP (name,P, x) = P[name](x)

TP (policy1; policy2,P, x) = TP (policy1, x);TP (policy2, x)
TP (condition=>policy,P, x) = TC(condition, x)⇒ TP (policy,P, x)

TP (result,P, x) = TR(result, x)
TC(condition1 || condition2, x) = TC(condition1, x) ∨ TC(condition2, x)
TC(condition1 && condition2, x) = TC(condition1, x) ∧ TC(condition2, x)

TC(slot==value, x) = TS(slot, x) = value

TR(result1 && result2, x) = TR(result1, x);TR(result2, x)
TR(slot=DLMLabel, x) = TS(slot, x) : DLMLabel

TS(slot.component, x) = TS(slot, x).component
TS(self, x) = x

Non-referential C analysis 21

where type is a type of a variable (irrelevant for the policy parsing) and P is a
dictionary of policy specifications.

The translation is performed in a compilation phase for each definition state-
ment in the code in the order of appearance. The two functions TPdef

and TSdef

return updated policy specification dictionaries. Lambda expressions are used
so that the self tokens defined in the policy are instantiated with concrete slots
at the place of use. The three Tdef operations return the new updated global
policies are used as an argument in parsing the definition statements that follow.
All other translation functions are called from the first five operations and their
results are used in updating the global policy.

For the semantic policies we define the Reff(P, σ, x, p) and Weff(P, σ, x, p)
functions that return the effective readers and writers respectively for slot x,
state σ and principal p, given policy P:

Reff(X : L, σ, x, p) =
{

readers(L, p) iff x ∈ X
* otherwise

Reff(φ⇒ P, σ, x, p) =
{
Reff(P, σ, x, p) iff σ |= φ

* otherwise

Reff(P1; P2, σ, x, p) = Reff(P1, σ, x, p) ∩Reff(P2, σ, x, p)

Weff(X : L, σ, x, p) =
{

writers(L, p) iff x ∈ X
_ otherwise

Weff(φ⇒ P, σ, x, p) =
{
Weff(P, σ, x, p) iff σ |= φ

_ otherwise

Weff(P1; P2, σ, x, p) = Weff(P1, σ, x, p) ∪Weff(P2, σ, x, p)

where σ |= φ holds whenever state σ satisfies the condition φ.
We can now define the following partial ordering of policies, which is to be

read as "policy P2 is at least as restrictive as policy P1":

P1 v P2 iff ∀σ,x,p :
(
Reff(P1, σ, x, p) ⊇ Reff(P2, σ, x, p) ∧
Weff(P1, σ, x, p) ⊆Weff(P2, σ, x, p)

)
The structure of these functions and the partial ordering rule is similar to

what has been presented for the DLM labels. The difference is that these con-
sider all slots of the program (the policy is global) and all possible states. In the
type system, the global policy will be modified into two versions to reflect the
information flow, and these two versions will be compared to determine whether
the flow is valid.

4.4 Validation of programs
In this section I will first provide informal rules for validation of programs writ-
ten in the language defined in this chapter. This description can be used by the
user of this language as a reference to understand how to write secure programs.
Then I will formalize the reasoning behind the verification into a type system.

22 Validation of programs

4.4.1 Informal description
All variables and structures – altogether slots – in the program have a policy
attached to it. If it is not specified then it is equal to the least restrictive label
⊥. In this description, the policies of slots will be denoted by underlining (e.g.
xv is the policy applying to variable xv).

Let us start from defining the context that is provided by the if conditionals
and while loops. These statements create blocks through which not all execution
paths are passing, and thus, if an assignment occurs inside those statements,
then some information is passed to the assigned slot about the slots that are
present in the conditions (the boolean expressions guarding both if and while
statements). In order to register that phenomenon, we will maintain a set of
slots that influence the current program statement (X), which will keep the
knowledge on what kind of information may be transferred on assignments in
those blocks. For both if and while statements the X will be all variables present
in the condition and the X of the enclosing block.

Another information that the context provided by the statement blocks
yields are the constraints on the actual values of the variables appearing in
those blocks. These constraints also result from the conditions and are use-
ful for determining which policy should apply. The constraints holding at any
given statement will be denoted by φpc, which will encompass conditions from
all enclosing blocks and results of assignments inside and outside them.

Now, given the knowledge about the context we can define the rule for the
assignment. An assignment of form xv = e can only be valid if xv is at least
as restrictive as e (i.e. e v xv), where e is an aggregation of the policies of
variables appearing in the e expression. Furthermore, xv must also be at least
as restrictive as pc (i.e. pc v xv) – the label of the program counter, which
results from joining policies of the slots in X indicating the implicit flow of
information.

It is also possible that xv is actually a field of some structure, or such fields
are present in e. Then, also the policies of the ancestor structures need to
be taken into consideration. Let us assume that xv encompasses the policies
attached to the variable xv and the policies governing the ancestor structures.
The same applies to all variables in e so that e is joining their policies. This
approach differs from DLM, where the logic of combining nested labels is more
complex.

Finally, the actual policies will be determined by the conditions attached to
them. The constraint environment φpc holding before the assignment statement
will determine which policies should be applied to the expression e, while ψpc
holding after the assignment will do the same for xv. We denote this kind of
selection of policies by writing the constraint environments in subscripts. The
full expression for validating the assignment will be then:

eφpc
t pcφpc

v xvψpc

Apart from simple assignment, we also have structure initialization and
structure assignment. These practically evaluate to multiple assignments ex-
ecuted atomically, which means that they share φpc and ψpc environments.

The last validated aspect of code are loop invariants, if specified by the
programmer. The provided invariant must be true before each execution of the
loop, and after it.

Non-referential C analysis 23

4.4.2 Type system
The formalization will closely follow the one given in [29]. In order to capture
the contextual information described in the previous section, we will resort to
symbolic execution with Hoare logic. The Hoare logic triples are incorporated
into the type system judgements and axioms as follows:

X ` {φ}S{φ′}

where X is a set of slots on which execution of the statement S depends (the
slots used in the enclosing if and while statement conditions), while φ and φ′

are the pre- and postconditions of the statement. The pre- and postconditions
are specified as logical formulae over the variables present in the program. The
type system is depicted in fig. 4.1.

Empty statements and declarations

The first rule regulates an empty statement ; which is similar in semantics to
a classical skip – the statement changes nothing.

The second and third rule concern declarations, which have no direct influ-
ence on the information flow and do nothing because the policies are constructed
in the compilation phase. As defined in section 4.1.1, decl can be declaration of
a variable or a structure instance, while stc is a structure type declaration.

Assignments

The responsibility of the simple assignment rule is triple. First, it needs to
ensure that if the assignment changes the policy that applies then the new
applying policy should be compared against the old. This is achieved with sub-
stitution (P[e/xv]〈A(xv)/xv〉) and augmentation (here (φ⇒ P)〈X ∪ A(e)/xv〉).
The substitution virtually selects the policies that apply to xv after the assign-
ment. The augmentation, on the other hand, selects and assembles policies of
the slots that influence xv by the assignment. Here, the φ used as the condition
for P in the augmentation serves the role of a selector of the policies that apply
before the assignment. Augmentation attaches these policies to xv so that the
two policies – substituted and augmented – are comparable on xv. And this
leads us to the second purpose of the assignment rule, which is to ensure that
the assignment results in a restriction of security. This is accomplished with
comparison of the two afore-mentioned policies. Finally, the rule needs to take
care of the change in the context that results from the assignment, which is
governed in the postcondition of the Hoare logic triple. There, a fresh slot xv′ is
instantiated and substitutes the old-valued xv in the right-hand side expression
of the assignment and the context φ.

Both substitution and augmentation in the assignment rule contain the ac-
cessor function A in their parameters. It retrieves all accessors used in the given
expression (or slot), which for simple variables is an identity. For slots being
components of structures it also returns all the ancestor structures:

A(e1 op e2) = A(e1) ∪ A(e2)
A(x) = Ax(x, ε)

Ax(v, pref) = {pref + v}

24 Validation of programs

X ` {φ}; {φ}
X ` {φ}decl{φ}
X ` {φ}stc{φ}

X ` {φ}xv = e; {φ′} if
{(φ⇒ P)〈X ∪ A(e)/xv〉 v P[e/xv]〈A(xv)/xv〉,
φ′ , ∃xv′ : xv = e[xv′/xv] ∧ φ[xv′/xv]

X ` {φ}stci = init{φ′}

if

c1, c2 . . . cn ∈ C(si)
cs1, cs2 . . . csm ∈ CS(si)
φ1 , c1 = e1 ∧ φ,
...
φ′ , cn = en ∧ φn−1

Prst , (φ⇒ P)〈∅/cs1〉 . . . 〈∅/csm〉,
Pleft , Prst〈X/si〉〈A(e1)/c1〉 . . . 〈A(en)/cn〉,
Pright , P[e1/c1]〈A(c1)/c1〉 . . . [en/cn]〈A(cn)/cn〉,
Pleft v Pright

X ` {φ}xst = xss{φ′}

if

c1, c2 . . . cn ∈ C(xst)
φ1 , ∃c′

1
: c1 = c1[xss/xst] ∧ φ[c′1/c1],

...
φ′ , ∃c′

n
: cn = cn[xss/xst] ∧ φn−1[c′n/cn]

Pleft , (φ⇒ P)〈X/xst〉〈A(c1[xss/xst])/c1〉 . . . 〈A(cn[xss/xst])/cn〉,
Pright , P[c1[xss/xst]/c1]〈A(c1)/c1〉 . . . [cn[xss/xst]/cn]〈A(cn)/cn〉,
Pleft v Pright

X ` {φ}S1{ψ} X ` {ψ}S1{φ′}
X ` {φ}S1 S2{φ′}

X ∪ A(b) ` {φ ∧ b}S1{φ′} X ∪ A(b) ` {φ ∧ ¬b}S2{φ′}
X ` {φ}if(b) {S1} else {S2}{φ′}

X ∪ A(b) ` {ι ∧ b}S{ι}
X ` {φ}while(b)[ψ] {S}{ι ∧ ¬b} if

{
φ⇒ ι,

ι , φ\dx(S) ∧ ψ

X ` {ψ}S{ψ′}
X ` {φ}S{φ′}

if (φ⇒ ψ) ∧ (ψ′ ⇒ φ′)

Figure 4.1: Type system for the non-referential language

Non-referential C analysis 25

Ax(si, pref) = {pref + si}
Ax(si.x, pref) = Ax(si, pref) ∪ Ax(x, pref + si.)

where + is a concatenation operator.
For example, A(s.c1− s2.c2) = {s, s.c1, s2, s2.c2}.
Thanks to this interpretation of A, and augmentation applied also after

substitution, the policies influencing ancestor structures are taken into account
whenever their components are used in xv and e (or b in case of control state-
ments). A different viable solution to include them could be flattening of policies
attached to structures, i.e. augmenting components with policies of their ances-
tors, already during the compilation step. Although it would result in the same
behaviour (as the global policy is static), such redundant information with every
component would negatively impact readability of the policies.

Let us formally define substitution and augmentation. The substitution
function changes the conditions of the policies to reflect the new state of the
system:

{X : L}[e/x] = {X : L}
(φ⇒ P)[e/x] = φ[e/x]⇒ P[e/x]
(P1; P2)[e/x] = P1[e/x]; P2[e/x]

where φ[e/x] simply replaces all occurrences of x in φ with expression e.
The augmentation function, given a set of slots X and a slot x, reflects that

x is augmented with labels of X:

{Y : L}〈X/x〉 =
{{Y ∪ {x} : L} if Y ∩X 6= ∅
{Y \ {x} : L} otherwise

(φ⇒ P)〈X/x〉 = φ⇒ P〈X/x〉
(P1; P2)〈X/x〉 = P1〈X/x〉; P2〈X/x〉

The first rule removes x from Y if it does not have any common elements
with the influencers set X. This is necessary, as the augmented policy of x
should not consider policies of slots that are in fact not influencing its new
value, even though that might be x itself. We will call this process policy
erasure. The most straightforward example displaying the need for this process
is a simple assignment, in which the right-hand side expression does not contain
the assigned slot, presented in listing 4.4.

1 int {(self == 1 => {A->B});(self == 2 => {A->_})} x = 2;
2 x = 1;

Listing 4.4: Example of a non-self-influencing assignment

In the second assignment, if x is not removed from the influencers, then the
augmented policy remains unchanged. The substituted policy simplifies then to
{A → B} (self is replaced with 1 and so only policy resulting from 1 == 1
applies). Then, for the state just before the second assignment where x == 2
is true, we have a violation of the assignment rule stating that the substituted

26 Validation of programs

policy must be at least as restrictive as the augmented policy. By induction the
same problem happens already in the first assignment, however, the second was
chosen to display it for transparency reasons.

One other subject to discuss concerning the assignment rule is usage of the
φ as the selector for augmentation. An alternative would be using φ′ instead,
which would cause selection of the policy that applies to x after assignment,
and thus allow unrestricted self-assignments (eg. x=x+1). It would be most con-
venient for iterations with loops, in case the policy of the incremented slot was
not trivial. Unfortunately that alternative introduces a leak which is depicted
in listing 4.5.

1 int {(self > 0 => {A->_})} x;
2 int {{A->_}} y;
3 ...
4 if(y > 0) {
5 x = y;
6 }
7 x = -x;

Listing 4.5: Example of leak if self-assignments are unrestricted

The comparison operators are not allowed in our specification of policies,
however, by using it here we do not lose generality and in the same time demon-
strate the scale of the problem. After the last self-assignment we get full infor-
mation about the content of y in an unrestricted variable x (it is unrestricted for
negative values), provided that before the if conditional the value of y is higher
than 0. Otherwise we obtain information that y is not positive. One can use
this trick twice with some additional checks to gain full knowledge of y. That is
why also the self-assignments must be restricted and it is φ that is used as the
selector of the policy for augmentation.

Atomic assignments – structure initializer lists

In the simple language presented in this chapter, interdependency of components
of structures is allowed, i.e. slots that influence other slots within the same
structure (not only themselves as is the case of variables). This unfortunately
introduces a problem whenever a slot that influences the labelling of some other
slot is changed. The problem is that in the type system we are only looking at
a single assignment, which may only perform a partial structure update. Such
assignment will be invalid if the new label of the influenced slot is less restrictive.
An example is shown in listing 4.6.

In the example we have an instance si of structure s where si.det deter-
mines the policy of si.c. The value of si.det before it is assigned is not known,
which means that for states where si.det == 1 is true the reader set of si.c for
Alice will be only Alice and Bob. However, after si.det = 2 it will be *, which
means that this assignment is illegal. But this is too restrictive, since it will
forbid even initialisation of structures with interdependent components, which
has been depicted in this example.

That is why structure initializers (stinit) have to be introduced. An initial-
izer statement makes an assignment to each component and subcomponent of

Non-referential C analysis 27

1 struct s {
2 int det;
3 int c;
4 }{
5 (self.det == 1 => self.c={Alice->Bob})
6 } si;
7 si.det = 2;
8 si.c = 3;

Listing 4.6: Example of partial structure update problem

some structure si (defined in stci). In order to retrieve all those components we
use the following function:

C(xv) = {xv}
C(xs) = C(xs.x1) ∪ C(xs.x2) ∪ · · · ∪ C(xs.xn)

if xs defines x1, x2, . . . xn

For example, for the si structure instance from listing 4.6 the application
of the C function would return {si.det, si.c}.

The expressions (e1, . . . , en) given by the programmer in the initializer list
(init) are matched with the components by the order of both those expressions
and the components’ definitions in the code. This matching is implicit in the
type system.

For initializers the policies must hold before them and after all assignments.
In order to obtain the left and right policies for the whole block, the effects of
all assignments are accumulated by performing augmentation and substitution
sequentially.

Unlike in the case of normal assignments, there is no preceding information
about the receiving slot. This means that it is not necessary to instantiate
fresh slots and substitute the precondition or the mid-conditions during the
accumulation process.

Furthermore, in the process of establishing the left-hand side policy, the
policies governing the initialized structure instance need to be reset. It is safe
to do so, because at the point before initialization there is yet no data in that
structure instance to be protected. It has to be done because not all slots are
assigned to – the structures are not, their components are – which means that
those policies will not be automatically reset by policy erasure.

1 struct s2 {
2 float c1;
3 };
4 struct s {
5 int det;
6 struct s2 c;
7 } {(self.det == 2 => self.c={A->C})} si = {1, {0.2}};

Listing 4.7: Example of structure initialization policy erasure problem

28 Validation of programs

Consider a simple example given in listing 4.7. If the policy is not reset first,
then the policies for comparison that we obtain are (braces around the sets of
slots omitted):

Pleft = (si.det = 2⇒ si.c : {A→ C})
Pright = (1 = 2⇒ si.c, si.c.c1 : {A→ C})

where the left-hand side policy is the actual policy of the example, unchanged,
because it is si.c.c1 that is considered to be assigned, not si.c. Clearly, the
left-hand side policy is more restrictive than the right-hand side one.

In order to get the structure instance slot with all its subcomponents, in-
cluding structure instances, a version of the C function us used:

CS(xv) = {xv}
CS(xs) = {xs} ∪ CS(xs.x1) ∪ CS(xs.x2) ∪ · · · ∪ CS(xs.xn)

if xs defines x1, x2, . . . xn

For example, for the si structure instance from listing 4.7 the application of
the CS function would return {si.det, si.c, si.c.c1}.

The solution involving structure initialization is good, however, quite inflex-
ible. I did consider some other solution providing more flexibility, but it is more
invasive changing the language syntax, and would cause problems for the exten-
sion provided in the next chapter. Nevertheless, I provide it here for whoever
might be interested.

The alternative introduces an atomic block, where a number of assignments
can be aggregated in order to update a structure without breaking the interde-
pendent policies. A type rule for such block of assignments is given in fig. 4.2.

X ` {φ}

atomic{

xv1 = e1;
...
xvn = en;

}

{φ′} if

φ1 , ∃xv′
1

: xv1 = e1[xv′1/xv1] ∧ φ[xv′1/xv1],
...
φ′ , ∃xv′

n
: xvn = en[xv′n/xvn] ∧ φn−1[xv′n/xvn]

Pleft , (φ⇒ P)〈X ∪ A(e1)/xv1〉 . . . 〈X ∪ A(en)/xvn〉,
Pright , P[e1/xv1]〈A(xv1)/xv1〉 . . . [en/xvn]〈A(xvn)/xvn〉,

Pleft v Pright,

 ⋃
1≤i≤n

{xvi}

 ∩
 ⋃

1≤i≤n
A(ei)

 = ∅,∣∣∣∣∣∣
⋃

1≤i≤n
{xvi}

∣∣∣∣∣∣ = n,

Figure 4.2: Axiom for block of atomic assignments

Compared to the structure initializer block, there are some additional steps
that are required to make this work without breaching security. Let us examine
example shown in listing 4.8.

Non-referential C analysis 29

1 struct s {
2 int det;
3 int c;
4 }{
5 (self.det == 1 => self.c={A->B});
6 (self.det == 2 => self.c={A->C})
7 } si;
8 int y = 1;
9 int {{A->C}} z;

10 atomic {
11 si.det = y;
12 y = 2;
13 si.c=z;
14 }

Listing 4.8: Example of sequential assignment accumulation problem

The example results in a global policy:

P = (si.det = 1⇒ si.c : {A→ B});
(si.det = 2⇒ si.c : {A→ C});
(z : {A→ C})

And let us apply substitutions (we omit augmentations that normally occur
after substitution since no labelling is attached to the structure itself):

P[y/si.det][2/y][z/si.c]
= (y = 1⇒ si.c : {A→ B});

(y = 2⇒ si.c : {A→ C});
(z : {A→ C})[2/y][z/si.c]

= (2 = 1⇒ si.c : {A→ B});
(2 = 2⇒ si.c : {A→ C});
(z : {A→ C})[z/si.c]

= (2 = 1⇒ si.c : {A→ B});
(2 = 2⇒ si.c : {A→ C});
(z : {A→ C})

The problem here is that the set of assignments is not really atomic, as it
is executed according to the C standard, and although si.det is assigned with
value 1, the type system would interpret it as if it was 2, because the variable y
is reassigned within the atomic block. The consequence would be that value of z
could be transferred to si.c violating the policy, and it would not be detected.
A solution is to require that the two sets, slots assigned in the atomic block, and
slots appearing on the right-hand side of the assignments, be disjoint. This is
exactly what is specified by the (

⋃
1≤i≤n{xvi})∩ (

⋃
1≤i≤nA(ei)) = ∅ condition.

Unfortunately it does not solve all the problems.

30 Validation of programs

1 struct s {
2 int det;
3 int c;
4 }{
5 (self.det == 1 => self.c={A->B});
6 (self.det == 2 => self.c={A->C})
7 } si;
8 int {{A->C}} z;
9 atomic {

10 si.det = 2;
11 si.det = 1;
12 si.c=z;
13 }

Listing 4.9: Example of multiple assignment problem

The example in listing 4.9 uses the same data structures with the same poli-
cies and the above-mentioned sets are disjoint, however, the problem remains,
as the policies are substituted as follows:

P[2/si.det][1/si.det][z/si.c]
= (2 = 1⇒ si.c : {A→ B});

(2 = 2⇒ si.c : {A→ C});
(z : {A→ C})[1/si.det][z/si.c]

= (2 = 1⇒ si.c : {A→ B});
(2 = 2⇒ si.c : {A→ C});
(z : {A→ C})[z/si.c]

= (2 = 1⇒ si.c : {A→ B});
(2 = 2⇒ si.c : {A→ C});
(z : {A→ C})

As we can see, the second update of the value of si.det is not accounted
for. In order to fix this, the atomic assignment axiom requires that each slot
is updated only once within the atomic block. This requirement is specified by
building a set of all assigned slots and checking that its cardinality is equal to
the number of assignments.

Structure assignment

Another type of bulk assignment happens when a structure is assigned to an-
other structure. That case is handled by the type system in the rule that follows
the one for structure initialization. The shape of this rule has only a few differ-
ences with respect to the structure initialization rule.

Here, the components of one structure instance need to be matched with
the counterparts in the other. In order to do that, a slot name substitution
(c[xss/xst]) is used, which replaces the name of the target structure with the
name of the source structure. Furthermore, similarly as for singular assign-
ments, the existential quantifier is used in order to relax any previous constraints
bounding the components of the target in the precondition. Unlike in the sin-
gular assignment axiom, the right-hand side of the expression does not need to

Non-referential C analysis 31

be substituted with the fresh slot since no target component is present there
(after the source-target substitution).

Composition and control statements

The judgement for composition (S1 S2) follows classical rules in Hoare logic,
and so does the judgement for the if conditional, with the difference that in X
the type system keeps track of the slots from b that influence execution of the
inner statements.

The judgement of the while loop differs from the standard Hoare logic inter-
pretation. The reason is to avoid fixed-point analysis that is otherwise necessary
in order to establish the strongest loop invariant. Instead, some weak invariant
is inferred using the weakening operation (symbolized with a backslash), and
the programmer is allowed to strengthen it with ψ that he may provide. The
dx(S) function simply extracts all slots that are redefined in S.

The weakening operation is defined as follows:

φ\W = ∃x′
1,...,x

′
n

: φ[x′1/x1] . . . [x′n/xn]

where x1, . . . , xn ∈ (C(w1) ∪ · · · ∪ C(wn)), where w1, . . . , wn ∈W .
As an example, if we have:

φ = ((s.c1 == 1) ∧ (s.c2 == 2) ∧ (s2.c1 == 0) ∧ (s2.c2 == 1))

and W = {s.c1, s2}, then φ\W would return:

∃s.c1′,s2.c1′,s2.c2′ : ((s.c1′ == 1) ∧ (s.c2 == 2) ∧ (s2.c1′ == 0) ∧ (s2.c2′ == 1))

The weakening operation guarantees that φ⇒ φ\dx(S).

The consequence rule

The last judgement corresponds to the consequence rule that allows to strengthen
preconditions and weaken postconditions. The type system can be refined to
remove that rule and directly employ its effects wherever it is necessary. Such
system is provided in fig. 4.3.

In the process of refinement, only the judgements for if conditionals and
while loops have changed – other rules were already syntax driven. For the
if statement it was enough to make a disjunction of the postconditions of its
branches in order to get a correct postcondition of the statement. As for the
while statement, the postcondition of the do-clause has been relaxed with respect
to its precondition.

Thanks to removal of the consequence rule, and to the technique in which
postconditions are constructed from preconditions the obtained type system is
fully syntax driven, where only assignments and the relationships between the
pre- and postconditions of loops need to be verified.

32 Validation of programs

X ` {φ}; {φ}
X ` {φ}decl{φ}
X ` {φ}stc{φ}

X ` {φ}xv = e; {φ′} if
{(φ⇒ P)〈X ∪ A(e)/xv〉 v P[e/xv]〈A(xv)/xv〉,
φ′ , ∃xv′ : xv = e[xv′/xv] ∧ φ[xv′/xv]

X ` {φ}stci = init{φ′}

if

c1, c2 . . . cn ∈ C(si)
cs1, cs2 . . . csm ∈ CS(si)
φ1 , c1 = e1 ∧ φ,
...
φ′ , cn = en ∧ φn−1

Prst , (φ⇒ P)〈∅/cs1〉 . . . 〈∅/csm〉,
Pleft , Prst〈X/si〉〈A(e1)/c1〉 . . . 〈A(en)/cn〉,
Pright , P[e1/c1]〈A(c1)/c1〉 . . . [en/cn]〈A(cn)/cn〉,
Pleft v Pright

X ` {φ}xst = xss{φ′}

if

c1, c2 . . . cn ∈ C(xst)
φ1 , ∃c′

1
: c1 = c1[xss/xst] ∧ φ[c′1/c1],

...
φ′ , ∃c′

n
: cn = cn[xss/xst] ∧ φn−1[c′n/cn]

Pleft , (φ⇒ P)〈X/xst〉〈A(c1[xss/xst])/c1〉 . . . 〈A(cn[xss/xst])/cn〉,
Pright , P[c1[xss/xst]/c1]〈A(c1〉/c1) . . . [cn[xss/xst]/cn]〈A(cn)/cn〉,
Pleft v Pright

X ` {φ}S1{ψ} X ` {ψ}S2{φ′}
X ` {φ}S1 S2{φ′}

X ∪ A(b) ` {φ ∧ b}S1{ψ} X ∪ A(b) ` {φ ∧ ¬b}S2{ψ′}
X ` {φ}if(b) {S1} else {S2}{ψ ∨ ψ′}

X ∪ A(b) ` {ι ∧ b}S{ι′}
X ` {φ}while(b)[ψ] {S}{ι ∧ ¬b} if

{(φ⇒ ι) ∧ (ι′ ⇒ ι),
ι , φ\dx(S) ∧ ψ

Figure 4.3: Syntax driven type system for the non-referential language

Chapter 5

Referential C analysis

In this chapter I will extend the language and the type system provided previ-
ously with arrays and pointers. Since I am building on previous description, I
will not repeat the parts that remain unchanged in this extension.

5.1 Language specification
The language considered in this chapter will contain all features specified in
section 4.1 as well as:

• Static and dynamic arrays

• Pointers to simple data types and non-cyclic structures

• Assignments of slot addresses to pointers

• malloc and sizeof operations

Using these components the solution will be able to support the use case
scenario (with abstraction of functions), as well as a more realistic version of
the previously defined example.

34 Language specification

5.1.1 Syntax
The following provides the syntax of this extension (unchanged rules omitted):

lts ::= lt | stc | struct s

ct ::= t | struct s

arrd ::= lts arr{policy}[n];
ptrd ::= lts ∗ {policy}ptr;
decl ::= lta xa; | ltb xb; | stci | arrd | ptrd
a ::= n | xa | a1 opa a2 | sizeof(ct)

xa ::= si.xa | va | ∗ptra | (∗ptr).va | suba
xb ::= si.xb | vb | ∗ptrb | (∗ptr).vb | subb
xp ::= si.xp | arr[a].xp | (∗ptr).xp | ptr

suba ::= arra[a] | arr[a].xa | ptra[a] | ptr[a].xa
subb ::= arrb[a] | arr[a].xb | ptrb[a] | ptr[a].xb

assign ::= xb=b; | xa=a; | xp=&x; | xp=malloc(a);

There are two new symbols which meaning needs to be explained – symbol
arr stands for an array name, while ptr is an identifier of a pointer. Apart from
that, there are two standard library functions of C: malloc and sizeof, as well
as dereference * and address & operators.

Both arrays and pointers have a type with a policy as their base type, and
also allow attaching a policy to themselves. This is necessary, as these are types
which basic values (like address) may also bear some information. Furthermore,
this allows specifying overlay or global policies on top of those that are defined
by the base types. In this aspect, the solution presented here differs from the
standard DLM, in which for arrays these policies are called labels of successful
array access and whenever an assignment to an array appears these labels are
on the influencing side against the label of the array elements (base type). Here,
such additional verification is not introduced and those policies are treated dif-
ferently (as convenience), because a C program may either successfully evaluate
a pointer or array access, or end – a covert channel which is not reasoned about
in this work.

Dereferences of pointers and array accesses are also different kinds of slots,
which is reflected by including them under the xa and xb rules . Moreover, these
can be arbitrarily nested, which results from recursive definition of structures.
However, note that although pointers or arrays of structures, which also contain
pointers or arrays are possible, immediate nesting (e.g. arrays of pointers) is not
supported.

Usage of pointers without the dereference operator, in order to access the
address referenced by the pointer is distilled in the xp rule, and it is used
in pointer assignments and allocation of memory with malloc. The use of
memory addresses, resulting from malloc calls, the address operator & and
pointer addresses is restricted only to assignments to the pointers themselves,
in order to simplify the model.

The definition of slots containing array accesses is aggregated separately for
clarity. The array subscript operator [] can be used both on arrays and pointers

Referential C analysis 35

(as in C). This, along with the malloc function, allows dynamic creation of
arrays with their size defined in runtime.

The previously defined slot domains are insufficient as this language also has
arrays and pointers. Arrays constitute the Arr domain, while pointers form the
Ptr domain. Because of the fact that arrays and pointers can reference both
simple types and structures, their domains are overlapping with both Var and
Str, and are altogether enclosed in Slot.

5.1.2 Example
Listing 5.1 presents an example program written in the language defined in this
chapter.

1 struct s {
2 int {{Alice->Bob,Chuck}} determinant;
3 int *data;
4 }{
5 (self.determinant == 1 => self.data={Alice->Bob});
6 (self.determinant == 2 => self.data={Alice->Chuck})
7 };
8 struct s input;
9

10 int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13 } [2];
14 int counter = 0;
15 while(counter < 2)[counter >= 0] {
16 if(input.determinant == counter + 1) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20 }

Listing 5.1: Example usage of policies in the extended language

This program is an augmentation of the one provided in Listing 4.1. It takes
advantage of the new constructs, arrays in particular. Here we do not initialize
the input – it is an example of how a program can be modelled. The actual
values present in it can be abstracted away and it should be valid for any input.
I will elaborate on this example later on in section 6.5.1.

36 Policies

5.2 Policies
In order to facilitate the addition of pointers and arrays in the language, the
syntax and semantics of the policies need to be extended. The definition of
labels, however, remains unchanged.

5.2.1 Policy syntax
The syntax change is very small, allowing to reference the implicit indexer of a
pointer or an array:

slot ::= self | slot.component | slot.index

The sole purpose of this change is to allow the programmer to make the
policy dependent on the index at which the data reside. An example of an
index-dependent policy specification is shown in listing 5.2.

1 int x{(self.index == 0 => {Alice->*});
2 (self.index == 1 => {Alice->_})} [2];
3 int{{*->*}} *{(self.index == 3 => {*->Alice});
4 (self.index == 4 => {*->Bob})} y;

Listing 5.2: Example policy specification

Here, we have a policy of array x that depends on the index that is used to
reference a value in this array. In this case, all possible values are governed by
the policy (boundary checks are not in the scope of this work).

As for pointer y, the values that it stores have their own policy ({{*→ *}}),
while it also depends on the index that is used to access the value in combination
with the pointer (assuming that y may point to a dynamic array).

5.2.2 Policy semantics
The policy semantics do not change by the extension, however there are some
additions to the set of translation functions:

Tdef (type{policyt} arr {policyarr}[n], P,P) = P;TP (policyt,P, arr);TP (policyarr,P, arr)
Tdef (type{policyt} ∗ {policyptr}ptr, P,P) = P;TP (policyt,P, ptr);TP (policyptr,P, ptr)
Tdef (struct s arr {policyarr}[n], P,P) = P;TP (policyarr,P, arr);P[s](arr)
Tdef (struct s{policyptr} ∗ ptr, P,P) = P;TP (policyptr,P, ptr);P[s](ptr)

Tdecl(type{policyt} arr {policyarr}[n],P, x) = TP (policyt,P, x.arr);TP (policyarr,P, x.arr)
Tdecl(type{policyt} ∗ {policyptr}ptr,P, x) = TP (policyt,P, x.ptr);TP (policyptr,P, x.ptr)
Tdecl(struct s arr {policyarr}[n],P, x) = TP (policyarr,P, x.arr);P[s](x.arr)
Tdecl(struct s ∗ {policyptr}ptr,P, x) = TP (policyptr,P, x.ptr);P[s](x.ptr)

TS(slot.index, x) = TS(slot, x).index

Referential C analysis 37

5.3 Validation of programs
In this section I will first provide informal rules for validation of programs writ-
ten in the language defined in this chapter, by extending and modifying the
description provided in section 4.4.1. Then, I will formalize the reasoning be-
hind the verification into a type system by augmenting the one provided in
section 4.4.2.

5.3.1 Informal description
We have already seen the notion of influencing slots (X), and the constraint
environments (φpc and ψpc). These remain the same, but note that the con-
straint environments cannot bind any volatile slots – arrays, pointers and slots
referenced by pointers. We will also need a set of influencing expressions E,
which will keep the conditions used in the enclosing block statements, preserv-
ing the value of the arithmetic expressions used in subscripts present in those
conditions. Then, the validation of simple assignments (xv = e) needs to take
into account the policies of arrays used in the influencing expressions as well as
in e. However, these policies shall be constrained by the subscripts used in E
and in e, which we will denote as ρE and ρe respectively. We will additionally
have a selector of the array policy for the slot to which we are assigning, which
we will denote ρxv.

Furthermore, if there are array subscripts used on the left-hand side of the
assignment, then they also influence how the data represented by xv is modi-
fied. Thus, we will need to ensure that sub(xv) v xv, where sub extracts the
expressions used in subscripts. Otherwise, we could learn something about the
value of a restrictive slot present in the left-hand side subscript when assigning
to a less restrictive slot, by just iterating over it afterwards and checking what
has changed. Thus the final rule for validating assignment is:

eφpc∧ρe
t pcφpc∧ρE

t sub(xv) v xvψpc∧ρxv

As for structure initialization and structure assignment, these again evaluate
to multiple assignments executed atomically. Likewise, validation of the while
loop invariants remains unchanged.

We also have pointer assignments that change the address referenced by
the pointers. Because a value of a slot that influences the policy of the slot
referenced by a pointer can change outside an assignment to that pointer, we
cannot rely on that value as a selector of the policy. That is why for pointer
assignments (xp = &x) we treat the top level structure containing x and all
subcomponents of that structure as volatile, and exclude reasoning about it
from all environment constraints. Furthermore, even after the assignment, x
remains volatile, as it is referenced by a pointer.

5.3.2 Type system
As mentioned in the informal description, some limitations had to be enforced
for the verification. First of all, fine grained reasoning about arrays, such as
tracking which indices may have what values, cannot be effectively used. There
are several reasons of that. One of them is that the core of the validation

38 Validation of programs

process – policy comparison – works on the slot basis, that is, augmentation
and substitution only change the slots. If values in different array indexes were
to be involved, then for each possible index a new slot and a policy would have
to be introduced. Consider, for example, if φ , s[1].c1 = 1 ∧ s[2].c1 = 2, and
we have a policy where the label of some s.c2 depends on s.c1. It is then
necessary to have policies instantiated for each possible index. This breaks the
previous model, in which policies were instantiated in a compilation step, while
here due to dynamic arrays it would not be possible. Furthermore, by the fact
that arrays can be used in structures, they can be arbitrarily nested. That
would cause explosion of policy sizes in non-trivial cases making the problem
intractable. That is why, although index-dependent policies are allowed, the
values of array elements are not maintained. This restriction does not change the
expressive power of the language, since any program with use of subscripts can
be rewritten to this syntax by introduction of auxiliary variables and conditions.
Furthermore, the content of arrays is described by the policies these are governed
by, which is their most interesting feature, unlike the actual values.

There is one more problem that is going to be avoided in this work – namely,
the reasoning about the slots that share memory they reference with other slots
– which results from introduction of pointers. If this simplification was not made
here, then an advanced extension to the Hoare logic called separation logic [28]
would have to be used in order to provide a safe over-approximation of the
state. Another solution could be performing a shape analysis, such as the one
introduced in [26, p. 104], and employing its results in the type system. Both
of those approaches are extremely complex constituting a large separate topic
of the program analysis science and therefore are out of the scope of this work.

The final version of the type system is available in figs. 5.1 to 5.3. It is
already syntax driven – it is built on the basis of the type system given in
fig. 4.3 that was devoid of the consequence rule. In comparison to the previous
system, there are two new environment variables: E and V .

E is a set of expressions that influence the execution at a given point. It is
used keep track of values used in array subscripts in order to allow fine-grained,
index-based reasoning – in case an array access is influencing the given execution
point and the policy of that array distinguishes the indexes.

V is a set of volatile slots, meaning slots which value may change due to some
assignment even if these are not used in that particular assignment. These are,
for example, pointers (dereference) and slots referenced by pointers. In this type
system, also arrays are deemed to be volatile. This prevents reasoning about
the value of their elements, which has been already justified.

I will, as previously, describe the type system rule by rule and define the new
and changed auxiliary operations. The details that have been already introduced
before and remain unchanged will be left out.

Assignments

The plain assignment rule has changed as the array subscripts usage has to be
interpreted and the volatile slots have to be excluded from the content reasoning.

One of the changes concerning those involves φ, which is used in the pol-
icy selection. A weakening operation is performed using the V set in order to
exclude the volatile slots. It is used on demand and does not influence the post-

Referential C analysis 39

X,E, V ` {φ}; {φ}
X,E, V ` {φ}decl{φ}
X,E, V ` {φ}stc{φ}
X,E, V ` {φ}xv = e; {φ′}

if

Pleft , ((SE(E ∪ {xv, e}, φ)\V)⇒ P)〈X ∪ A(e) ∪ AS(xv)/xv〉,
i1, i2, . . . , im ∈ IE(xv)
Pi , P[IE(xv)[i1]/i1] . . . [IE(xv)[im]/im]
Pright , Pi[e/xv]〈H(xv)/xv〉,
Pleft v Pright
φ′ , ∃xv′ : xv = e[xv′/xv] ∧ φ[xv′/xv]

Figure 5.1: Skip, declaration and simple assignment axioms

condition not to complicate it. As for array subscripts, the modifications that
are introduced to support them should never be included in the postcondition,
since it might then cause contradictions in the following assignments, as well as
escape the original scope (a conditional or loop).

An auxiliary operation SE is used in order to modify φ to take the array
subscripts used in expressions of E into account:

SE(E, φ) = φ ∧ Tbool(I(E))

The above function introduces two new operations that have to be clarified.
The I function takes a set of expressions, possibly containing array accesses,
and calculates a mapping from the accessed arrays to all subscript expressions
used on each of them:

I(E) = IE(E, [])
IE(e ∪ E′, ind) = IE(E′,merge(ind, Ie(e)))

IE(∅, ind) = ind

Ie(e1 op e2) = merge(Ie(e1), Ie(e2))
Ie(x) = Ix(x, ε)

Ix(v, pref) = ∅
Ix(si, pref) = ∅
Ix(∗ptr, pref) = ∅
Ix(arr[e], pref) = merge({pref + arr 7→ e}, Ie(e))
Ix(si.x, pref) = merge(Ix(si, pref), Ix(x, pref + si.))

For instance, given the set of expressions

E = {(2 + c[4]− a[3]), (3 ∗ a[a[2]] + c[1])}

40 Validation of programs

this operation would return the following mapping:

[c 7→ {1, 4}, a 7→ {3, 2, a[2]}]

The merge operation takes two maps and combines them keywise – for each
key present in either of the two maps the resulting map will contain that key
mapped to the union of the values from both maps referenced by that key:

merge(m1,m2) =
⊔

arr∈m1∪m2

[arr 7→ (m1[arr] ∪m2[arr])]

For example, if we take:

m1 = [a 7→ {a[4 ∗ x]}
b 7→ {3}]

m2 = [a 7→ {2 + c, 3}
c 7→ {3}]

we get the following mapping:

[a 7→ {a[4 ∗ x], 2 + c, 3}
b 7→ {3}
c 7→ {3}]

Then, the map ind that maps arrays to a set of subscripts needs to be
translated into a boolean predicate acceptable by the type system. As mentioned
before, each array and pointer has an implicit component called index, and this
is where the values used in subscripts will be registered. For each map entry
(i.e. for each array/pointer) an alternative of all possible assignments to the
index component is built – it is an over-approximation. Then a conjunction
of the resulting predicates is taken – each array access must have been using
one of the values from the disjunction. This translation is realized by the Tbool
operation:

Tbool(ind) =
∧

entr∈ind

(∨
i∈entrval

entrkey.index = i

)

For the map from the first example we would obtain the following expression:

(c.index = 4 ∨ c.index = 1) ∧ (a.index = 2 ∨ a.index = 3 ∨ a.index = a[2])

where the subscript of a[2] is actually redundant – values of arrays are not
maintained.

Finally, in the SE operation, the results of this function are conjuncted with
the original φ, thus, including the information from the postcondition. One
might be surprised why not only e but also xv is taken as an input to the SE
function. This is necessary, because only the policies of relevant indexes should
compared – in the expression for the right-hand side policy (elaborated later
on) the index components are substituted, so that if Tbool evaluated to true,
then policies for all indexes on the left-hand side would be compared against
the selected (by substitution) on the right-hand side.

Referential C analysis 41

Another difference with respect to the previous type system is a changed
definition of the A function, that also covers pointers and array accesses:

A(e1 op e2) = A(e1) ∪ A(e2)
A(x) = Ax(x, ε)

Ax(v, pref) = {pref + v}
Ax(si, pref) = {pref + si}
Ax(∗ptr, pref) = {pref + ptr}
Ax(arr[e], pref) = {pref + arr} ∪ A(e)
Ax(si.x, pref) = Ax(si, pref) ∪ Ax(x, pref + si.)

If the target slot contains array subscripts, then the expressions used in
those subscripts will influence how (under which index) the piece of memory
represented by that slot (without subscripts) will change. This means that
xv should be augmented with the policies of those expressions. The set of
expressions used in subscripts is retrieved using the following function:

AS(x) = ASx(x, ε)
ASx(v, pref) = ∅
ASx(si, pref) = ∅
ASx(∗ptr, pref) = ∅
ASx(arr[e], pref) = A(e)
ASx(si.x, pref) = ASx(si, pref) ∪ ASx(x, pref + si.)

The change in the definition of A also calls for defining another function (for
augmentation of the right policy) that ignores the subscripts, and only returns
all the parent structures (hierarchy) of the input slot:

H(x) = Hx(x, ε)
Hx(v, pref) = {pref + v}
Hx(si, pref) = {pref + si}
Hx(∗ptr, pref) = {pref + ptr}
Hx(arr[e], pref) = {pref + arr}
Hx(si.x, pref) = Hx(si, pref) ∪Hx(x, pref + si.)

Nevertheless, values of the subscripts used on the target slot also need to be
taken into account, which is done by taking all those subscripts and substituting
the relevant index policies in the right-hand side policy.

42 Validation of programs

A helper operation IE creates a mapping from the (fully qualified) arrays to
the expressions used in their subscripts:

IE(x) = IEx(x, ε)
IEx(v, pref) = ∅
IEx(si, pref) = ∅
IEx(∗ptr, pref) = ∅
IEx(arr[e], pref) = {pref + arr.index 7→ e}
IEx(si.x, pref) = IEx(si, pref) t IEx(x, pref + si.))

Memory allocation

Allocation of memory to a pointer using the malloc function can fail if, for
example, the requested amount of memory is not available. In such case the
pointer will be null. Hence, by using the malloc function one may reveal some
information about the slots used in the arithmetic expression passed as an argu-
ment to that function. Therefore, the memory allocation validation rule closely
resembles the rule for simple assignment. The difference is that here pointers
are involved, and as there is no reasoning about their value, the precondition
does not have to be modified in order to get the postcondition. Furthermore,
the memory allocation operation does not initialize the content of the pointer,
and for that reason substitution is not used for construction of the right-hand
side policy.

Pointer assignments and structure initializers

The logic behind a pointer assignment is to some extent similar to that of
structure assignment – it is perceived as a set of assignments of all individual
subcomponents, and their effects are aggregated in order to check that also the
policies of the subcomponents match. Aside from the novelties already intro-
duced in case of the simple assignment axiom, there is another helper function:

T H(v) = v

T H(∗ptr) = ptr

T H(arr[e]) = arr

T H(si.x) = si

This function retrieves the top level slot for the given slot. For example, for
si.c1.c2 it would return si. All components of that top level slot are taken
and made volatile for purpose of validating that assignment. It is necessary to
weaken-out all the determinants and compare virtually unconstrained policies in
that case, because the determinants can change, and with them the policy of the
referenced data, while the policy of the pointer will not change automatically.
An example is shown in listing 5.3.

Here, we have a structure instance x, where the policy of the second com-
ponent at the moment of the last assignment is {A→ B}. It would be valid if

Referential C analysis 43

X,E, V ` {φ}xp = malloc(a); {φ}

if

Pleft , ((SE(E ∪ {xp, a}, φ)\V)⇒ P)〈X ∪ A(a) ∪ AS(xp)/xp〉,
i1, i2, . . . , im ∈ IE(xp)
Pi , P[IE(xp)[i1]/i1] . . . [IE(xp)[im]/im]
Pright , Pi〈H(xp)/xp〉,
Pleft v Pright

X,E, V ` {φ}xp = &x; {φ}

if

c1, c2 . . . cn ∈ C(xp)
Pleft , ((SE(E ∪ {xp, x}, φ)\V ∪ C(T H(x)))⇒ P)
〈X ∪ AS(xp)/xp〉〈A(c1[x/xp])/c1〉 . . . 〈A(cn[x/xp])/cn〉,

i1, i2, . . . , im ∈ IE(xp)
Pi , P[IE(xp)[i1]/i1] . . . [IE(xp)[im]/im]
Pright , Pi[c1[x/xp]/c1]〈H(c1)/c1〉 . . . [cn[x/xp]/cn]〈H(cn)/cn〉,
Pleft v Pright

X,E, V ` {φ}stci = init{φ′}

if

c1, c2 . . . cn ∈ C(si) \ (Arr ∪Ptr)
cs1, cs2 . . . csm ∈ CS(si)
φ1 , c1 = e1 ∧ φ,
...
φ′ , cn = en ∧ φn−1

Prst , ((SE(E ∪ {e1, . . . , en}, φ)\V)⇒ P)〈∅/cs1〉 . . . 〈∅/csm〉,
Pleft , Prst〈X ∪ A(e1)/c1〉 . . . 〈X ∪ A(en)/cn〉,
Pright , P[e1/c1]〈H(c1)/c1〉 . . . [en/cn]〈H(cn)/cn〉,
Pleft v Pright

X,E, V ` {φ}xst = xss{φ′}

if

c1, c2 . . . cn ∈ C(xst)
φ1 , ∃c′

1
: c1 = c1[xss/xst] ∧ φ[c′1/c1],

...
φ′ , ∃c′

n
: cn = cn[xss/xst] ∧ φn−1[c′n/cn]

Pleft , ((SE(E ∪ {xst, xss}, φ)\V)⇒ P)
〈X ∪ AS(xst)/xst〉〈A(c1[xss/xst])/c1〉 . . . 〈A(cn[xss/xst])/cn〉,

i1, i2, . . . , im ∈ IE(xst)
Pi , P[IE(xst)[i1]/i1] . . . [IE(xst)[im]/im]
Pright , Pi[c1[xss/xst]/c1]〈H(c1)/c1〉 . . . [cn[xss/xst]/cn]〈H(cn)/cn〉,
Pleft v Pright

Figure 5.2: Complex assignment axioms

44 Validation of programs

1 struct sd {
2 int det;
3 int value;
4 } {(self.det == 1 => self.value={A->B});
5 (self.det == 2 => self.value={A->C})};
6 struct sd x = {1, 2};
7 int {{A->B}} *y;
8 y = &x.value;

Listing 5.3: Example of sub-component pointer assignment problem

it was a simple assignment. However, since we are extracting a pointer to that
component it cannot be valid. Imagine what would happen if we then change
both the determinant (det) and the value (e.g. using structure assignment) –
the value would be accessible by the pointer using an invalid (different) policy.

Another peculiarity of the pointer assignment is that it has no effect on
the precondition. This is because pointers are considered volatile anyway, so it
would be pointless to introduce equations binding them with some values.

As for the structure initializer, its previously-defined form has been updated
in the same way as the normal assignment axiom with one small change. Ini-
tialization of pointers and arrays belonging to the structure is not supported
– these should be skipped in the initializer list. Hence, the policy erasure for
all (even structural) subcomponents of the initialized structure instance is even
more useful here. It erases the policies of arrays and pointers to which there are
no assignments, and thus, there would be no augmentation on them otherwise.

Structure assignment

There are no surprises or additional constructs as far as the structure assignment
rule is concerned. It is upgraded to handle pointers and arrays in the same
manner as the rule for simple assignments.

Composition and control statements

The composition and control statement rules use an additional operation V that
retrieves all new volatile slots arising from a given statement:

V(;) = ∅
V(stc) = ∅
V(declx) = Vx(x, ε)

V(xv = e;) = ∅
V(xp = &x;) = {x}
V(stci = init;) = ∅
V(xst = xss;) = ∅

V(S1 S2) = V(S1) ∪ V(S2)
V(if(b) {S1} else {S2}) = V(S1) ∪ V(S2)
V(while(b)[ψ] {S}) = V(S)

Referential C analysis 45

X,E, V ` {φ}S1{ψ} X,E, V ∪ V(S1) ` {ψ}S2{φ′}
X,E, V ` {φ}S1 S2{φ′}

X ∪ A(b), E ∪ b′, V ` {φ′ ∧ b}S1{ψ} X ∪ A(b), E ∪ b′, V ` {φ′ ∧ ¬b}S2{ψ′}
X,E, V ` {φ}if(b) {S1} else {S2}{ψ ∨ ψ′}

if

x1, . . . , xn ∈ (S(b) \ C(V))
φ1 , ∃x′

1
x′1 = x1 ∧ φ, b1 , b[x′1/x1]

...
φ′ , ∃x′

n
x′n = xn ∧ φn−1, b

′ , bn−1[x′n/xn]
X ∪ A(b), E ∪ b′, V ∪ V(S) ` {ιn ∧ b}S{ι′}
X,E, V ` {φ}while(b)[ψ] {S}{ι ∧ ¬b}

if

(φ⇒ ι) ∧ (ι′ ⇒ ι),
ι , (φ\dx(S) ∧ ψ)
x1, . . . , xn ∈ (S(b) \ C(V ∪ V(S)))
ι1 , ∃x′

1
x′1 = x1 ∧ ι, b1 , b[x′1/x1]

...
ιn , ∃x′

n
x′n = xn ∧ ιn−1, b

′ , bn−1[x′n/xn]

Figure 5.3: Composition and control statement judgements

The effect of a pointer assignment is the slot on which the address operator
is used. It is necessary to include that slot in the volatile set, as mentioned
before, because once a pointer references some slot, its value can change in
some assignment that is not assigning to that slot.

In this auxiliary operation, declx stands for a declaration of some slot x.
The rule concerning it uses also another function – Vx – that given a slot will
return all volatiles that it declares:

Vx(v, pref) = ∅
Vx(ptr, pref) = {pref + ptr}
Vx(arr, pref) = {pref + arr}
Vx(si, pref) = Vx(x1, pref + si.) ∪ · · · ∪ Vx(xn, pref + si.)

if (pref + si) defines x1, x2, . . . xn

For example, given structure instance si defined like that:

1 struct sd {
2 int *p;
3 };
4 struct s {
5 struct sd *c1;
6 struct sd c2;
7 } si;

46 Validation of programs

the application of the Vx operation would return {si.c1, si.c2.p}.
The composition judgement rule in this type system now modifies the en-

vironment of the following statement in order to include the new volatile slots
from the preceding statement.

Likewise, a modification has been introduced in the control statement judge-
ments. As mentioned before, E is a set of boolean expressions used to determine
which index policies are influencing the given statement. Naturally, that set is
modified for the bodies of if conditionals and while loops in their judgements,
because it results from their conditions.

In case of both control statement rules, the b′, which is the modified condi-
tion, is included in E. b′ is obtained from b by creating aliases of the slots used
in array subscripts present in b (these slots are returned by the S operation),
and substituting occurrences of the original slots with those aliases. Thanks to
aliasing, values of the subscript expressions are guaranteed to remain unchanged
even if the original slots are assigned in the body of the control statement.

The S operation is defined as follows:

S(e1 op e2) = S(e1) ∪ S(e2)
S(x) = Sx(x)

Sx(si.x) = Sx(si) ∪ Sx(x)
Sx(arr[e]) = Ss(e)
Sx(x) = {}

Ss(e1 op e2) = Ss(e1) ∪ Ss(e2)
Ss(x) = Ssx(x, ε)

Ssx(si.x, pref) = Ssx(x, pref + si.)
Ssx(v, pref) = {pref + xi}
Ssx(x, pref) = {}

There is no reasoning about the values of volatile slots, and thus, alias-
ing them would have little sense. Therefore, all arrays and pointers used in
subscripts, as well as the content of their subscripts, are ignored in the Ssx op-
eration. For example, if we input a[x] + (∗p).c < b[a[z] + y ∗ (∗p).c] the result
would be {x, y}. Furthermore, all other volatiles – slots referenced by pointers
– are removed (with their subcomponents) from the results of the S operation
in the type system. As volatiles are not aliased, the weakening operation does
not have to be applied on the precondition before aliasing.

In the judgement for the while loop a modified ιn is used, while it is ι that is
the invariant of the loop. It should pose no problem since ιn is stronger than ι.

Finally, the volatiles resulting from the body of the loop are incorporated
into the environment under which this body will be validated.

5.3.3 Tracking values of static arrays
Although I have decided that the type system would not reason about values of
elements of any arrays, here I am going to give an idea of how it could be done
for the case of static arrays.

Referential C analysis 47

First of all, the elements of an array (arr[0], . . . , arr[n − 1], where n is the
size) should be treated as separate slots, and hence, duplicate the policy of the
top structure, where the array is defined. The policy of each such slot should
be modified with condition arr.index = i, where i is the index of each element.
Of course, if the arrays were nested in the structure, such nested iteration and
nested conditions would have to be made as well.

A more difficult problem is recording information about the array elements in
pre- and postconditions. Whenever there is an assignment involving arrays there
might be some non-constant arithmetic expression in the subscripts. Even if an
SMT solver able to reason about arrays and array logic was used, a problem with
simple assignment would still remain – what should be existentially quantified in
order to replace the old value? The only possibility is to perform that operation
on the whole array, thus losing the old information. Hence, only the information
from the enclosing block statement conditions or the last assignment to that
array would be retained.

Another solution to that problem could be performing a classic data flow
analysis with more accurate approximation for arrays and using information
from that step as an input to the type system. A similar approach has been
described in [17], where an interval analysis on the array subscripts is performed
and its results are used as an input to a reaching definitions analysis.

Chapter 6

Implementation

In this chapter I will present the C2if validation tool that implements the ex-
tended type system. First, I will focus on the overview of the architecture of
the application, and then I will provide the details of implementation. Finally,
I will conclude with several examples showing the output of the program for
some interesting input.

6.1 Requirements analysis
As stated in the introduction, the purpose of this work is not only to provide
theoretical foundations for content-dependent information flow analysis for C,
but also to engineer a tool, a program, that is capable of carrying out that
analysis and validate pieces of actual code. In this section I will provide the
functional and non-functional requirements of that tool.

6.1.1 Functional requirements
Console interface

The tool should provide a console interface, i.e. it should be capable of
reading from standard input and writing to standard output.

Augmented subset of C as input
The tool should accept code written in a subset of the C language, aug-
mented with possibility of declaration of policies and loop invariants. The
syntax of the acceptable code has been defined in sections 4.1.1 and 5.1.1.

Validation of the input
The tool should be able to process the input code and check whether there
are flows that violate the policies specified in it. It should also check that
the loop invariants provided in the code are correct – these invariants
facilitate the validation. The rules for validation have been provided both
informally and formally in sections 4.4 and 5.3.

Detailed failure reason description
In case the validation fails – there exists some flow that violates policies
or some loop invariant is incorrect – the tool should identify the offending

50 Architecture overview

statement, state the policies or predicates for which the check has failed
and provide further information on the circumstances under which the
validation rules are violated.

6.1.2 Non-functional requirements
Robustness

The application should always correctly finish and print relevant output
provided that the input code follows the syntax. Otherwise, the appli-
cation should provide information about where and what has caused the
problem.

Performance
The application should take minimal memory resources and time necessary
to process the input, validate it and provide feedback. In order to facilitate
that, the expressions provided to Z3 for verification should be as simple
as possible.

Clear design
The design of the application should comply with the best practices and
design patterns of object-oriented programming and should be easy to un-
derstand and maintain. Clear and concise code should be in general pre-
ferred over ultimate performance.

Extensibility
The application architecture should allow additions of new functionalities
with minimal effort. In particular, the part representing the syntax of the
C language should facilitate extending it.

User-friendly output
The output of the application, particularly in case of validation failure,
should be clear, concise and easy to understand.

6.2 Architecture overview
The core idea behind the architectural design of the application is delegation of
responsibility to the appropriate nodes of the abstract syntax tree (AST), which
is output from the parser. This means that most of the code (e.g. the type sys-
tem’s auxiliary functions) processing a kind of node is in the class representing
that kind. There are several benefits of taking this approach. First of all, as
the code is encapsulated, it is easier to navigate through it and find the relevant
pieces. Another advantage is that classes are organized into hierarchies using
interfaces, which means that extending becomes easier – it is enough to follow
interfaces and superclasses. Such way of tree processing also results in the fact
that the classes of the AST comprise most of the architecture. These classes are
presented in fig. 6.1.

The classes of the AST have been grouped into directories (being their
namespaces). The directory C2if has been named after the project. The dia-
gram shows the whole class hierarchy, and some (the most important) associa-
tions. By convention, the associations without the multiplicity specified are of

Implementation 51

Figure 6.1: Overview of the architecture

52 Helper classes

cardinality 1. Furthermore, if an association is unnamed then its name is the
name of the element that it points to (plural if necessary).

The AST architecture closely follows the syntax given in sections 4.1.1
and 5.1.1. All sequencing recursions from the syntax, or in other words re-
cursions allowing entities to aggregate themselves, have been architecturally
translated into the composite design pattern.

The expressions are collectively represented by IExpression. They are di-
vided into two types: arithmetic expressions (IArithmeticExpression) and boolean
expressions (IBooleanExpression), each residing in its own namespace. For both
of these, some operations, as well as operators related to them, are defined.

The abstract class Slot represents all kinds of slots – simple variables, struc-
ture instances, pointers and arrays. The Variable class has two subtypes: Arith-
meticVariable and BooleanVariable, each implementing different expression in-
terface. Classes Pointer and Array implement both interfaces, which is because
these may hold both arithmetic and boolean variables. They, and the Struc-
tureInstance also have their own policy, although none of them is considered a
type. The Type associated with the slot can be either a SimpleType (integers,
floats, booleans) or a Structure. For variables it is always a simple type, while
for structure instances it has to be a structure. There are also some placeholder
classes. These are instantiated by the parser, whenever some named entity is
encountered in the input code, and thereafter replaced with concrete instances
during the compilation process.

Every policy is an implementation of the IPolicy interface. The PolicyList is
just an aggregation of policies. There is a ConditionalPolicy class which references
a boolean expression as its condition and an instance of Result (which can be
a standalone policy as well). The result binds a slot with a Label. The label
can consist of many parts (LabelPart), each having an owner (an instance of
Principal). The confidentiality parts aggregate readers, while the integrity parts
consist of writers.

Regarding the statements, these are represented by the IStatement interface,
and their type hierarchy is relatively simple. All statements defined in the syntax
and verified in the type system in chapters 4 and 5 are present here as separate
classes. The only thing here that deserves explanation is the IInitializer interface
referenced by the StructureInitialization class. It is extended by IExpression and
implemented by InitializationExpression, which aggregates the initializers. This
reflects that lists of expressions, as well as nested initializers, may be part of an
initializer used in an aggregate initialization of a structure.

6.3 Helper classes
As already mentioned, not all implementation resides in the classes of the AST
– it would not be practical. Instead, a whole set of helper classes under the
Helper namespace has been introduced. These are depicted in fig. 6.2.

Let us start with C2ifContext – a class that is used throughout the whole
solution. It extends the Microsoft.Z3.Context class, which means that all opera-
tions creating Z3 expressions usually performed using this class can be executed
using C2ifContext. The extension introduces several additional domain specific
functionalities. This context holds information about the principals and slots

Implementation 53

Figure 6.2: Helper classes

54 Helper classes

used in the input program (direct-modification-protected properties Principal-
Domain and SlotDomain), the declared structures and policies (by their names
in DeclaredStructures and DeclaredPolicies respectively), and the global policy
that is obtained as the result of the compilation of the input program. The prin-
cipal and slot domain properties are dictionaries from either Principal or Slot to
integers informing about the corresponding bit in a Z3 bit vector. C2ifContext
provides methods for limited manipulation (addition only) of the domains, and
a method for retrieving a slot using its name.

Another important class here is the Z3Validator. It implements the compar-
ison of policies (as in P1 v P2) in the LessOrEquallyRestrictive method and the
verification of implication (whether one predicate is stronger than some other)
in the Implies method. The Instantiate method returns a Z3 boolean expression
that existentially quantifies all fresh slots in the input expression. It is used in
order to obtain Z3 expressions in the Implies method, as well as in the Condition-
alPolicy using which the global policy receives the precondition (policies cannot
contain fresh slots in their condition, so only the precondition is quantified).
The SetUpSolver method is simply a common code that has to be executed for
both validation methods. The OwnerConstant and the SlotConstant provide
names for the v and p defined in sections 4.2 and 4.3, over which the SMT
solver will validate the policies.

The formula provided to Z3 is negated, so that the validation succeeds if
Z3 responds that it is unsatisfiable, and fails otherwise. Thanks to this trick,
a model is obtained (it is only available for a satisfiable formula) indicating
what went wrong. The model is translated back to the domain of the AST
(method parseModel of the FailureReason class) into an instance of the Model
class, which becomes part of the failure reason explanation. The reason can
be either an unsatisfied implication, or a policy mismatch. Naturally, different
kind of information is provided in the two subclasses of the FailureReason. The
reason, together with the offending statement, status and the Z3 Solver instance
(for in-depth information), forms the validation result, which is returned from
the Z3Validator. Of course, the former two are present only if the status is
incorrect.

Another widely used helper class is Sets. Its purpose is to provide a common
implementation of translation between sets (list of booleans) and Z3 bit vectors,
as well as set operations on those bit vectors. Thus we have the BitVectorFrom-
Set and SetFromBitVector methods for translation in both directions. Likewise,
we have SubsetEq, ProperSubset, Eq, Union and Intersection implementing the
set operations ⊆, ⊂, =, ∪ and ∩ respectively.

The SubscriptDictionaryHelper class implements a range of auxiliary opera-
tions defined in section 5.3.2. Hence, the Merge method obviously implements
the merge operation, ArraySubscripts covers part of the I operation up to IE,
and the SubscriptsExpression overload that accepts a dictionary as an argument
realizes the Tbool operation. The other SubscriptsExpression method combines
them all together and makes a conjunction with the input precondition just as
the SE operation does.

Finally, the Uid class merely implements the functionality of generating
unique identifiers that are then appended to the slot names in order to ob-
tain fresh slots. These identifiers are incrementing natural numbers, so that the
names of the fresh slots do not become to long.

Implementation 55

6.4 Implementation details
Now that we have seen the overall design of the solution as well as all the helper
classes and methods necessary for understanding the validation process, I will
describe the details of the implementation of the type system, including where
in the AST classes and how are the auxiliary operations implemented. The base
of the description will be the interfaces and the Slot abstract class presented
in fig. 6.3 – all their implementations and subclasses simply implement them in
order to provide the validation functionality. Slot implements the IExpression
interface, and the inherited methods have not been repeated in Slot for brevity
and clarity.

All the presented interfaces contain a variation of the Compile method, which
is used in the compilation process. IExpression has an overload with an addi-
tional prefix argument, which is used for subcomponents of structure instances
(e.g. when compiling their policy). IPolicy has only one version of that method
containing the prefix argument (which is following the translation presented in
section 4.3.2), as the concrete policies always belong to some slot. Statements,
on the other hand, only need the compilation method without the prefix. As for
Slot, it has an additional function – CompileSubscripts, which is responsible for
compilation of array subscripts present in the particular usage of a slot that is
represented by its instance.

Another property that the expressions, slots and policies share is that they
declare methods for translating their instances into the Z3 domain. For ex-
pressions it is the ToExpr method. In case of slots, there are two static helper
methods ToBitVector and FromBitVector, which together can perform the trans-
lation both ways. The reverse translation is useful for decoding the model that
is output from Z3. As for policies, there are two separate methods for forward
translation: ReadersBv and WritersBv. Obviously, the former is for retrieving
a Z3 bit vector expression for readers and the latter does the same for writers.
Their implementations closely follow the definition of Reff and Weff , where the
case differentiation using iff is translated into ite (if-then-else) expressions of
Z3. The state is not passed as an argument in those, as it is implicit in Z3.

As mentioned before, all statements are represented by the IStatement in-
terface. Furthermore, as each axiom and judgement of the type system considers
some statement, their logic is realized by the implementations of that interface.
Most of it – the whole if part – is contained in the Validate method, where argu-
ments influencingSlots, influencingExpressions and volatileSlots stand for X, E
and V respectively. In addition to that, some auxiliary operations, such as AS
and IE are directly implemented in the body of Validate since it was easier to do
so using all other AST processing functions, rather than introducing new ones.
Regarding other operations that IStatement realizes, we have GetAssignedSlots
that implements dx, and GetVolatiles that performs the V function.

Let us now focus on the auxiliary operations defined for the type system in
previous chapters. The IExpression interface implements the weakening oper-
ation using the Weaken method that takes a dictionary as an argument. That
dictionary declares by its keys which slots should be weakened out and by the
values it provides the fresh slots for replacement. This means that unlike in the
definition of the weakening operation, the C operation for retrieving subcompo-
nents of the weakened slots must be executed before calling this method.

56 Implementation details

Figure 6.3: Interfaces and abstract classes

Implementation 57

The interface also implements the substitution operation with the Substitute
method. The S auxiliary function is encoded in GetSlotsInSubscripts. The
GetArraySubscripts method returns a mapping from arrays (of type Array for
static, and Pointer for dynamic arrays) to the list of expressions used in their
subscripts in the expression represented by IExpression instance – it corresponds
to the Ix and Ie operations. Apart from that, there are two other helper
methods which are used in other places. These are: GetUsedSlots that retrieves
all slots present in the expression; GetFreshSlots that returns all slots that are
fresh, or have been weakened out (which results in them being fresh).

The abstract class Slot declares a Name of the slot, its Type, an indicator of
whether it is fresh and a Subscripts dictionary. The dictionary holds a mapping
from arrays (may be many due to structure nesting) used in the dot-separated
accessor of the slot (which is also the name of that slot if the subscripts are
omitted) to the expressions used in the subscripts.

The Slot implements several auxiliary operations defined for the type sys-
tem. The GetAccessedSlots method, in combination with previously defined
GetUsedSlots, implements the A function, while GetHierarchyUsedSlots, also
with an input from GetUsedSlots, has the functionality of the H operation. The
GetTopHierarchySlot method realizes the T H operation, GetSlots is equivalent
to C and GetSlotsWithStructs implements CS. Finally, the Slot class defines the
GetVolatiles method which is responsible for performing the Vx function. There
is one more interesting method, namely CreateFreshSlot, which creates a copy
of the slot with the IsFresh field set to true.

The IPolicy interface defines the Name property that is used when declaring
named, and thus reusable, policies. As for the type-system-defined operations
that it implements we have augmentation (Augment) and substitution (Substi-
tute).

As we already raised the subject of policies, the labels, which are their results,
and the principals, which the labels are built of, are quite interesting as well.
They are presented in fig. 6.4.

All three, labels, their parts and principals provide methods for translation
into the Z3 domain. In case of the Label class, the methods ReadersExpr and
WritersExpr correspond to the readers and writers operations on labels defined
in section 4.2. These delegate some implementation to the same-named methods
of the ConfidentialityPart and IntegrityPart classes respectively. These, in turn,
use their internal methods (WritersBv and ReadersBv) to get the Z3 bit vectors
representing the appropriate set of principals. The Principal class has methods
for translation in both directions, which is (same as for slots) useful for decoding
the Z3 model. It also declares two commodity static methods – FullBv and
EmptyBv – that return Z3 bit vector for the top and the bottom principals
respectively. All forward translation methods have a common denominator in
the form of the ToBoolArray method that transforms a set of principals into a
bit vector encoding, which is later on used as an input to the BitVectorFromSet
method of the Sets helper class to obtain the final result.

58 Implementation details

Figure 6.4: The architecture of labels

Implementation 59

6.5 Benchmarks
In this section I will show several interesting examples of what the C2if validation
tool is capable of. I will start with the example provided in listing 5.1 and modify
it, invalidating the information flow in order to see what will be the output of
the tool. Next, I will discuss the use case scenario that is the motivation of this
work. Finally, I will present other capabilities and aspects of the verification
which are not apparent from the previous examples.

6.5.1 Verification of the extended language example
The listing 5.1 is repeated here for quick reference. The name of the determinant
has been shortened for brevity:

1 struct s {
2 int {{Alice->Bob,Chuck}} det;
3 int *data;
4 }{
5 (self.det == 1 => self.data={Alice->Bob});
6 (self.det == 2 => self.data={Alice->Chuck})
7 };
8 struct s input;
9

10 int out_chan{
11 (self.index == 0 => self={Alice->Bob});
12 (self.index == 1 => self={Alice->Chuck})
13 } [2];
14 int counter = 0;
15 while(counter < 2)[counter >= 0] {
16 if(input.det == counter + 1) {
17 out_chan[counter] = input.(*data);
18 }
19 counter = counter + 1;
20 }

When the unchanged code from the listing is provided as the input for the
tool, the output is the following:

1 Validation has been completed successfully. There are no illegal flows
↪→ in the program.

Let us now change the policy in line 12, so that it looks as follows:

1 (self.index == 1 => self={Alice->Bob})

This should invalidate the flow, as for input.det == 2 the label of input.data
is {Alice→ Chuck}, while now for the index equal to counter (which is equal
to 1), paired with input.det by the if conditional, the label of out_chan is
{Alice→ Bob}.

The output of the tool is presented in listing 6.1, where the policies have
been reformatted for better legibility. The first two lines identify the statement
which causes the problem. Line 5 gives the reason for which the validation
has failed, and the lines that follow provide details. Lines 8 and 9 are the
(modified) precondition, where line 9 informs about constraints imposed by
usage of subscripts. What follows is the rest of the augmented policy, the
LHS policy, while the RHS policy is the substituted one. For clarification, in

60 Benchmarks

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3
4 Reson:
5 LHS policy is more restrictive than RHS policy
6
7 LHS policy:
8 ((((((counter >= 0) && ((counter:5 == 0) && true)) && (counter < 2)) &&

↪→ (input.det == (counter + 1))) &&
9 (true && (false || (out_chan.index == counter)))) =>

10 input.det|out_chan={Alice->Bob,Chuck};
11 ((input.det == 2) => input.data|out_chan={Alice->Chuck});
12 ((input.det == 1) => input.data|out_chan={Alice->Bob});
13 ((out_chan.index == 1) => ={Alice->Bob});
14 ((out_chan.index == 0) => ={Alice->Bob}))
15
16 RHS policy:
17 input.det={Alice->Bob,Chuck};
18 ((input.det == 2) => input.data={Alice->Chuck});
19 ((input.det == 1) => input.data={Alice->Bob});
20 ((counter == 1) => out_chan={Alice->Bob});
21 ((counter == 0) => out_chan={Alice->Bob})
22
23 Model:
24 out_chan:{Alice} ->[input.det=2, out_chan.index=1, counter=1]

Listing 6.1: Output of the tool for flow validation failure

lines 13 and 14 we can see effects of policy erasure – labels assigned to no slot.
The most interesting information, however, comes at line 24, where we have the
model for which the policy comparison validation fails. First is the slot, followed
by the principal and then the state in the form of mapping from variables to
their values. This information allows us to pinpoint the problem in the policy
comparison. In line 11 we have that Alice designates Chuck for out_chan, while
in line 20 with the matching counter it is Bob that is designated.

Now, what if we modify the original example so that the counter is ini-
tialized with −1, instead of 0? Then we get a validation error presented in
listing 6.2, which indicates that the invariant is not met. Here, again the first
lines of the output identify the source of the problem. The most useful infor-
mation for identifying what is the problem, is provided by the two expressions
in lines 13 and 16, as well as the model, which this time does not specify any
particular slot nor principal. The expression from line 13 does not imply the
one from line 16, because the latter rules out the possibility of counter being
equal to −1 (counter:5 is a fresh variable).

One might wonder why do we need the invariant at all. What if we remove
it? Then we get another information flow validation error, this time stating the
following (full output not included for brevity):

1 Validation failed. Offending statement (line 17):
2 out_chan[counter] = input.data;
3 (...)
4 input.det|out_chan={Alice->Bob,Chuck};
5 (...)
6 Model:
7 out_chan:{Alice} ->[input.det=0, out_chan.index=-1, counter=-1]

Implementation 61

1 Validation failed. Offending statement (line 15):
2 while ((counter < 2))[(counter >= 0)] {
3 if ((input.det == (counter + 1))) {
4 out_chan[counter] = input.data;
5 }
6 counter = (counter + 1);
7 }
8
9 Reason:

10 Precondition does not match the postcondition
11
12 Expression:
13 ((counter == (0 - 1)) && true)
14
15 ...does not imply:
16 ((counter >= 0) && ((counter:5 == (0 - 1)) && true))
17
18 Model:
19 n/a:{n/a} ->[counter=-1]

Listing 6.2: Output of the tool for invariant validation failure

As we can see, the states for which the policies are compared include one
where counter is equal to−1. This is because as counter is assigned in the loop,
and no invariant is provided, the pre-existing information about the counter is
weakened out on entering the loop. The problem here again is the policy of
out_chan, which receives label {Alice → Bob,Chuck} in augmentation from
input.det, as this variable is present in the if condition.

6.5.2 Verification of the use case scenario
Listing 6.3 shows the code of the use case scenario, which is based on the code of
the Receiver Component in Enhanced DLM provided in [19]. The code has been
adapted to the policy syntax and limited language discussed in this work. The
adaptation process, among other things, excluded the configuration part, where
the handler was initialized, which is not necessary for the validation – enough
information is provided by the policies. Moreover, the function pointer has been
replaced by an integer pointer and the function call by an assignment. From
the information flow security point of view the code is equivalent, unfortunately
the magnitude of changes makes it a modelling case rather than automatic
verification.

The code performs a similar functionality and envisions similar validation
problems as the code from listing 5.1. The difference is that it concerns both
confidentiality and integrity, and re-uses policies declared by name. The verifi-
cation process for this code completes successfully.

An interesting part here is that we need the assignment to a local slot DeMux
in line 20, and then use that slot, instead of the handler array directly, in the if
conditional that follows. This is only because the type system does not reason
about the values of elements of arrays. If the handler array was to be used
directly in the condition, then such reasoning would be unavoidable.

It is also possible to model a reverse scenario – a multiplexer that receives
some data from multiple input channels and modulates them into one output

62 Benchmarks

1 policy GatewayHandler =
2 {(self.protocol==6 =>self.func={TCP->_;TCP<-_});
3 (self.protocol==11 =>self.func={UDP->_;UDP<-_})};
4 policy Gateway =
5 {(self.u.protocol==6 =>self={TCP->_;TCP<-_});
6 (self.u.protocol==11 =>self={UDP->_;UDP<-_})};
7 struct DeMuxType {
8 int protocol;
9 int* func;

10 };
11 struct DeMuxType handler {GatewayHandler}[3];
12 struct inputType {
13 struct info {
14 int protocol;
15 } u;
16 int buf[65535];
17 } {Gateway} INPUT;
18 int counter = 0;
19 while(counter < 3) {
20 struct DeMuxType {GatewayHandler} DeMux = handler[counter];
21 if(DeMux.protocol==INPUT.u.protocol) {
22 DeMux.func=INPUT.buf;
23 }
24 }

Listing 6.3: The use case scenario code

1 policy GatewayHandler =
2 {(self.u.protocol==6 =>self.buf={TCP->_;TCP<-_});
3 (self.u.protocol==11 =>self.buf={UDP->_;UDP<-_})};
4 policy Gateway =
5 {(self.protocol==6 =>self.dataBuf={TCP->_;TCP<-_});
6 (self.protocol==11 =>self.dataBuf={UDP->_;UDP<-_})};
7 struct MuxType {
8 struct info {
9 int protocol;

10 } u;
11 int buf[65535];
12 };
13 struct MuxType {GatewayHandler} handler;
14 struct inputType {
15 int protocol;
16 int dataBuf[65535];
17 } {Gateway};
18 struct inputType INPUT[3];
19 int counter = 0;
20 while(counter < 3) {
21 struct inputType {Gateway} in = INPUT[counter];
22 struct MuxType {GatewayHandler} Mux = {{in.protocol}};
23 Mux.buf = in.dataBuf;
24 handler = Mux;
25 }

Listing 6.4: The multiplexer – the reversed use case scenario code

Implementation 63

channel. A valid code for that scenario is presented in listing 6.4. The input
channels are modelled as an array, and the output channel handler function is
represented as a structure, same as the one being the input for the demultiplexer.

The most important part of this code is translation from the input data
structure to the output data structure. This translation needs to be done using
structure initialization list – atomically with creation of the structure. However,
what is interesting here is that in.dataBuf is not part of that initialization. It
cannot be as initializing arrays and pointers is not supported. However, it can be
assigned afterwards causing no invalid information flow, because Mux.buf has a
compatible policy, which does not change due to that assignment. Nevertheless,
we would not be able to change the value of the Mux.protocol that way, as this
change would have a side effect of changing the policy of the dependent slot,
which is Mux.buf. That is why atomic structure initialization is needed.

6.5.3 Other examples
Let us now examine some other examples of the C2if tool execution. We will
start with another example of structure initialization provided in listing 6.5,
where we have a simple structure with a determinant that decides about the
policy for the other component, and we try to incorrectly initialize an instance
of that structure. The output from the validation tool for that example is shown
in listing 6.6.

1 int x {(self.index == 0 => {A->B});(self.index == 1 => {A->C})}[2];
2 struct s {
3 int det;
4 int c;
5 }{
6 (self.det == 1 => self.c={A->B});
7 (self.det == 2 => self.c={A->C})
8 } si = {1, x[1]};

Listing 6.5: Example of wrong structure initialization

The offending statement presented in the output has all the components of
the structure and their uses in its policy concretely instantiated – it is a by-
product of the compilation process that also helps to reason about the policies.
The model indicates that the problem concerns the si.c variable, and indeed
for x.index == 1 it receives label {A→ C} in the LHS policy, while in the RHS
policy its label can only be {A→ B}. There would be no problem if x[0] was
used in the initialization instead of x[1].

The next example, presented in listing 6.7, shows how array subscripts influ-
ence policies concerned in assignments. There are two arrays: x with a detailed,
disjunctive policy, and y with merely a label. There are also two other variables
z and z2, where the policy of z is chosen to be no more restrictive than the one
of y. Then, in the if conditional we have a condition involving x at the specific
index of z. The program has some information flow problems that make the
assignments inside the conditional invalid.

The output of the validation tool is given in listing 6.8 (only the interesting
parts shown). It states that the problem arises already for the z=0 assignment.

64 Benchmarks

1 Validation failed. Offending statement (line 2):
2 struct s{
3 int si.det;
4 int si.c;
5 }
6 {((si.det == 2) => si.c={A->C}); ((si.det == 1) => si.c={A->B})} si = {
7 1, x[1]
8 };
9

10 Reason:
11 LHS policy is more restrictive than RHS policy
12
13 LHS policy:
14 ((true && (true && (false || (x.index == 1)))) =>
15 ((x.index == 1) => x|si.c={A->C});
16 ((x.index == 0) => x|si.c={A->B});
17 ((si.det == 2) => ={A->C});
18 ((si.det == 1) => ={A->B}))
19
20 RHS policy:
21 ((x.index == 1) => x={A->C});
22 ((x.index == 0) => x={A->B});
23 ((1 == 2) => si.c={A->C});
24 ((1 == 1) => si.c={A->B})
25
26 Model:
27 si.c:{A} ->[x.index=1]

Listing 6.6: Output for wrong structure initialization example

1 int x {(self.index == 0 => {A->B});(self.index == 1 => {A->B,C})}[2];
2 int y {{A->C}}[1];
3 int {{A->C}} z = 0;
4 int {{B->_}} z2 = 0;
5 if (x[z] == 1) {
6 z = 0;
7 y[z2] = x[1];
8 }

Listing 6.7: Example of array subscripts influence

Implementation 65

1 Validation failed. Offending statement (line 6):
2 z = 0;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7 LHS policy:
8 ((((((z2 == 0) && ((z == 0) && true)) && (z:7 == z)) && (x:9 == 1)) &&

↪→ (true && (false || (x.index == z:7)))) =>
9 ((x.index == 1) => x|z={A->B,C});

10 ((x.index == 0) => x|z={A->B});
11 (...)
12 RHS policy:
13 (...)
14 z={A->C};
15 (...)
16 Model:
17 z:{A} ->[z=0, x.index=0, z2=0]

Listing 6.8: Output for the array subscripts influence example

1 Validation failed. Offending statement (line 7):
2 y[z2] = x[1];
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7 LHS policy:
8 ((((z == 0) && ((((z2 == 0) && ((z:10 == 1) && true)) && (z:7 == z:10))

↪→ && (x:12 == 1))) &&
9 ((true && (false || (y.index == z2))) &&((false || (x.index == 1)) ||

↪→ (x.index == z:7)))) =>
10 ((x.index == 1) => x|y={A->B,C});
11 ((x.index == 0) => x|y={A->B});
12 ={A->C};
13 z|y={A->C};
14 z2|y={B->_})
15
16 RHS policy:
17 ((x.index == 1) => x={A->B,C});
18 ((x.index == 0) => x={A->B});
19 y={A->C};
20 z={A->C};
21 z2={B->_}
22
23 Model:
24 y:{B} ->[y.index=0, z=0, z2=0, x.index=1]

Listing 6.9: Output for the partially corrected array subscripts influence
example

66 Unit tests

Following the model and policies, this is due to the fact that the value of x under
index 0 influences z, and it does, as it is used in the condition. To fix that, let
us change the initial value of z to 1. Unfortunately, even after doing that the
tool complains, which is presented in listing 6.9.

The problem now involves assignment to y, which is influenced by z2 as the
LHS policy shows in line 14. It receives the label of z2, because z2 is used in
the subscript. In order to ultimately fix the example, the policy of y would
have to be modified to {A → C;B → _}. One last interesting remark about
this example is that the assignment z=0 in line 6 has no effect on the x[z]
used in the condition, which is also reflected in the output of the validation tool
(x.index == z : 7).

The last example that I would like to discuss concerns pointers and how
they make other variables become volatile. Let us look at the example provided
in listing 6.10. Here, we again have a structure with some determinant that
decides about the policy for the other component, and a pointer, which after
line 7 references the determinant. Then in the last line we have an assignment
which does not cause any information flow problems. Unfortunately it is not
successfully validated by the C2if tool, which is depicted in listing 6.11.

1 struct sd {
2 int det;
3 float c;
4 } {(self.det == 1 => self.c={A->B});(self.det == 2 => self.c={A->C})};
5 struct sd x = {1, 2};
6 int {{A->A}} *y;
7 y = &x.det;
8 int {{A->B}} z;
9 z = x.c;

Listing 6.10: Example of volatility of pointers

As we can see, the problem is that z is augmented with label {A → C}
(line 9). But why is the state given in the model possible? It is because x.det
has been weakened out in the precondition, which is visible in line 8. This
happened because x.det became volatile when its address was assigned to y in
line 7 of the example code. This is a shortcoming of the type system, in which
pointers and all slots they ever reference are not reasoned about, and both are
made volatile as an over-approximation.

6.6 Unit tests
A separate project called C2ifTest has been created to contain all unit tests
for the validation tool. The tests are further split into test classes which group
them thematically (i.e. which part of the system they do test). There are over
100 tests in the C2ifTest project altogether thoroughly testing every aspect of
the type system implementation.

The validation tool has been developed according to the test-driven devel-
opment technique – whenever a new functionality was added, a number of tests
were also added to the test project and the code of the validation tool was

Implementation 67

1 Validation failed. Offending statement (line 9):
2 z = x.c;
3
4 Reason:
5 LHS policy is more restrictive than RHS policy
6
7 LHS policy:
8 ((((x.c == 2) && ((x.det:5 == 1) && true)) && true) =>
9 ((x.det == 2) => x.c|z={A->C});

10 ((x.det == 1) => x.c|z={A->B});
11 y={A->A};
12 ={A->B})
13
14 RHS policy:
15 ((x.det == 2) => x.c={A->C});
16 ((x.det == 1) => x.c={A->B});
17 y={A->A};
18 z={A->B}
19
20 Model:
21 z:{A} ->[x.c=2, x.det=2]

Listing 6.11: Output for the volatility of pointers example

corrected until all tests were passed. The tests were the last verification step
confirming that the type system works. Some of them were actually useful in
identifying problems with the type system itself. Another purpose of the unit
tests was ensuring that whenever some new functionality is added it does not
break any other that had been implemented previously.

The unit tests are also a great source of examples on how the validation
tool works, what is an acceptable input and what are its capabilities. The most
interesting examples can be found in classes: IfWhileTest, StructuresTest and
PointerArrayTest.

Chapter 7

Conclusions

In this thesis I have suggested an augmentation for the syntax of a subset of the C
language that introduces content-dependent policies and constructs necessary to
provide analysis for them. I have built a type system, based on which programs
written in that language can be processed to determine whether the policies
specified in them are obeyed, that is, whether the information flow during their
execution will be secure. The kind of analysis presented in this work may be
useful not only in the avionics industry, but in all safety-critical systems, where
the information flow security plays a major role.

The other outcome of this thesis is the C2if verification tool that implements
the type system and meets all the requirements specified in section 6.1. The
benchmarks of the tool show that it can be useful in finding flaws in programs
that violate their policies. Its architecture is clear and provides straightforward
possibilities of extension for the future. The tool, along with the type system, is
a proof of concept that a secure content-based verification is attainable even for
complex imperative languages, such as C. It also shows, however, that the task
is challenging and it is hard to achieve a safe over-approximation in presence of
arrays and pointers.

The technologies selected for the implementation, in particular Z3, proved
to be appropriate for the task. Although the C# API of Z3 lacks a detailed doc-
umentation, the tutorials and manuals for the SMT-LIB interface were enough
to grasp the main principles and apply them in practice. Also the performance
of Z3 was above expectations – for most of the simple programs provided in
listings and used in unit tests the answers were delivered in milliseconds. As for
ANTLR, it was surprisingly easy to write rules for parsing the policies and the
C-like code, as well as embed the code for creating AST in them.

The chosen iterative, test-driven development method was invaluable in en-
suring correctness of the implementation. Moreover, on numerous occasions this
method helped to identify problems with the type system itself. For example,
no sooner than during the tests of implementation was it discovered that some
sort of atomic assignments, or initialization at least, is unavoidable for programs
to actually perform something useful.

70 Conclusions

Future work
Although the type system and the tool are fully operational, they are incomplete
in a way. There are some parts of the C language that are not included, and
many features that would be useful in the analysis and in terms of automation
are missing. Without them, the verification applications are limited to sim-
ple case study programs or to modelling, which is not enough for the avionics
industry or any other businesses concerned with safety-critical systems.

Functions
The most noticeable part of C that is not included in this work are functions.
These have been left out due to unexpected complexity of the type system,
resulting from possibility of nesting structures, also with arrays and pointers,
and changes in it and in the implementation that would be required otherwise.
Let me here explain what should be done in order to support the functions of
the C language.

A call of a function assigns actual arguments, used in that call, to the formal
arguments, specified in the function declaration and used in its body. Of course,
it should be possible to specify policies for the arguments in the signature of a
function, just as for any other slots. In order to verify the flow, the argument
assignments should be type-checked using appropriate assignment rules from
the type system presented in section 5.3.1. Thus, either function calls should
be split into several assignments for type checking, or the type system should
be rewritten, further extracting logic governing assignments into auxiliary op-
erations so that it could be reused for function calls.

The function declaration should include a begin policy, that would be as-
sumed as the initial program counter policy inside the body of the function.
This would ensure that there is no indirect information flow violation inside the
function, particularly concerning global variables. In order to simplify typing
for the local variable declaration, their policy should be automatically joined
using the augmentation operation with the begin policy (similarly to what is
done in Jif). To encapsulate verification of functions, the scope of the begin
policies should be limited to the formal arguments, or instead a begin label (an
unconditional policy) could be required.

Although Jif also introduces end labels, these will not be necessary for C,
since there are no exceptions in this language or any other ways in which a func-
tion may indirectly influence the program counter of the caller. The application
may of course crash, but it is a covert channel and poses a different kind of
problem, not discussed in this work.

Multiple return statements, possible in functions, redirect the information
flow in a way that only some execution paths will go through the part of the
code after the return statement if it is enclosed in a conditional or a loop. Thus,
the program counter for a statement that follows should be augmented with the
policies of program counters of all return statements that precede it. Note that
the end of a function is an implicit return statement if the function is void.

Functions can contain recursive calls, which usually require interprocedural
analysis to approximate values on which they operate. In order to avoid the
problem, the programmer should be required to provide pre- and postconditions.

Conclusions 71

Other parts of C
Some minor parts of the C language, such as other primitive data types and
control statements, should also be incorporated to allow verification of programs
without making changes in their code other than specification of policies. Inclu-
sion of primitive data types is straightforward and does not change the logic of
the type system, likewise, the control statements similar to if conditionals and
while loops. However, the goto-like statements are a bit more challenging.

The simplest cases of the goto-like statements are continue and break. These
should be treated in a similar way as multiple return statements, though their
influence should be limited to the control block to which they refer, as these
blocks enclose the execution paths on which they operate.

The goto statement itself, which unlike in Java is supported in C, changes the
paths of execution of the program in the least predictable way – it can actually
simulate both loops and functions. This means that, similarly to functions, the
goto labels would need begin policies, and following the solution for while loops,
also specification of an invariant would be necessary. In case of the latter, the
invariant would constitute the full precondition of the goto target statement
since there is no possibility to infer even part of the state without fixed-point
analysis (imagine goto calls in multiple places).

Downgrading
Downgrading for DLM has been described in details in [25]. It is the part of
DLM that could be introduced with the least effort, though the prerequisite of
doing so would be adding a way to express the principals on whose behalf the
code is executed (the authority), so that downgrading could be controlled. Just
as in DLM, it should be possible to not only downgrade results of expressions
(used in assignments), but also the indirect information flow, also known as
program counter downgrading.

The fact that, in contrast to labels, policies in the type system introduced
in this work contain conditions does not make downgrading more difficult than
it already is for assignments. The restriction of the part of the policy that can
be downgraded by an authority (a principal) can be done in the same way as in
DLM.

The last part of downgrading that could be useful from the perspective of the
industry are checked endorses, which have been introduced in Jif. These allow
specifying a boolean expression, an integrity check, for a variable endorsement.
The block of code that follows is only executed if the integrity check succeeds,
and the endorsed variable cannot be modified in that block. Although this sce-
nario seems to be a perfect opportunity to take advantage of information about
the values gained in the content-based analysis, it is not. The reason behind
this concept is to allow integrity checks with automatic endorsement on any
input data, and not to match some content-dependent policies. Checking those
expressions statically would defy the purpose for which they were introduced.

Policy inference
A feature that could be the selling point for Airbus and other companies in the
safety-critical systems industry is policy inference. This is because it increases

72 Conclusions

automation of verification in a way that only minimal modifications to the code
are needed. It is, in the same time, the most challenging feature to implement.

In DLM [24] labels are inferred by binding all label comparisons resulting
from the code into a label constraint system. However, in the simple scenario
without policy inference, discussed in this work, I take advantage of the fact
that policies governing statements are fixed and thus the statements are inde-
pendent. This allows checking their correctness one by one, which not only
facilitates understanding the output of the verification and pinpointing a po-
tential problem, but also enhances performance. If we entangle the constraints,
then these two benefits would be much harder to achieve. Furthermore, verifi-
cation could become infeasible for larger programs.

A solution could be pruning of the policies, for use in comparisons, to only
those parts that are absolutely necessary. The indicator, in deciding whether a
part is necessary or not, should be checking whether its removal would change
the result of policy comparison for any state. Pruning could be also applied
even if policy inference is not introduced to improve on performance and under-
standability of the current solution.

However, even if the policies are pruned to minimum, there are other issues.
The label parts of the inferred policies could be described in the same way as
they are now (with if-then-else expressions of Z3), but using existentially quan-
tified variables, so that any set of those variables that satisfies all the constraints
would be acceptable as solution. Unfortunately, the conditional parts introduce
a huge complexity. In order to allow inferring them, total functions returning
a boolean value would have to be introduced. Z3 and other SMT solvers do
support this kind of functions and are capable of devising them based on con-
straints. However, to allow any kind of condition they would have to be defined
over the whole state — all slots present in the code. This could make the analysis
intractable especially for larger programs, hence, I would recommend support-
ing only partial inference, that is, inference of simple unconditional policies —
labels.

Polymorphism
In terms of interference with the code, probably the second most desired feature
of verification is policy polymorphism. As mentioned in chapter 2 it allows
defining methods without specifying the return policy, nor the policies of the
arguments. The concept is quite simple, yet powerful, as polymorphic methods
can be used in different contexts with different policies.

In the content-dependent framework, the return policy can be derived from
the arguments by augmenting the return value with their labels. This approach
would work even if the arguments were structures and had incompatible types
with the return value, because by augmentation the policy of the return value
would "reference" the policies of the arguments.

Cryptography
To further facilitate integration of static information flow verification with ex-
isting software, one could introduce automatic declassification on encryption.
This idea was proposed in a DLM case-study by Askarov and Sabelfeld [11],

Conclusions 73

and assumed that the cryptographic function is perfect – no information about
the plaintext can be derived from the ciphertext.

Hicks et al. [18] demonstrated a solution on a simple functional language
and implemented it as an extension to Jif. The solution is to introduce a way
of delegating authority to the cipher module so that it can declassify the input
data on behalf of the principal that calls the encryption function. Yet better
solution could be a deeper integration with the cryptography libraries so that
this trust relationship would be automatic. The implementation of the encryp-
tion function should, of course, ensure that no information can be derived even
for low entropy input, which can be achieved using padding and nonces or salts.

External integration
The final step for automation of verification of safety-critical software could be
pushing the policy specification outside of the code.

In a MILS-based architecture this could be done by declaring the interfaces
of the components against which the software inside those components would
be validated. Of course, the input and output of the programs would also have
to be well-defined and annotated with policies, and possibly restricted to the
IPC channels only.

On the security gateway level, the policies of interconnecting components
should be checked and only communication that is a restriction should be al-
lowed. The gateway could examine the content of the messages to decide what
policy applies on both ends.

This way we would ensure that there are no illegal flows due to interface
incompatibility, which might happen if the components disagreed about the
policy.

Fixed-point analysis
The last point of future work worth of noting with respect to this thesis is taking
advantage of classic fixed-point analysis, e.g. interval analysis, and using it as
an input to the information flow security analysis. A similar approach has been
taken for improving performance of a SAT-based program verification in [15].

The most apparent benefit of this development would be avoiding the invari-
ants and the pre- and postconditions that have to be manually specified by the
programmer for loops and functions respectively. Secondly, the input provided
to the SMT solver would be simplified, as no existential quantifiers would be
necessary – these are only used to ignore part of the value reasoning and to
switch between states.

A disadvantage is that the fixed-point analysis might not be as precise as
the manually provided invariants and conditions. What is more, it might not
capture logical interdependencies between variables that are the basis for policy
matching.

Index of notation

⊥, 17
>, 17
_, 17
*, 17

�, 22

a, 14
A, 25, 41
Arr, 35
arr, 34
AS, 41

b, 14

C, 27
CS, 28

decl, 14
dx, 31

E, 37, 38
e, 14

H, 41

I, 39
IE , 42
init, 14

L, 17
L1 v L2, 17

merge, 40

n, 14

O → R, 17
O ←W , 17

p, 17

φ, 20, 23
φ′, 23
φ⇒ P, 20
φpc, 22
φ\W , 31
P, 20
P1 v P2, 21
P1; P2, 20
P〈X/x〉, 23, 25
P[e/x], 23, 25
ψ, 15
ψpc, 22
Ptr, 35
ptr, 34

readers, 17
Reff , 21

S, 14
S, 46
SE , 39
si, 14
σ, 21
Slot, 15, 35
stc, 14
stci, 14
Str, 15, 35

T , 20
Tbool, 40
T H, 42

V , 38
V, 45
v, 14
Var, 15, 35

writers, 17
Weff , 21

76 Index of notation

X, 20, 22, 23
X : L, 20
x, 15, 34

xp, 34
xs, 14
xv, 14

Index

abstract syntax tree, 12, 50
address operator, 34
aliasing, 46
ANTLR, 12
ARINC 811, 2
atomic assignment, 28
augmentation, 23, 25

begin label, 8

CAP certification, 3
CCDB certification, 3
C2if, 6
Common Criteria, 2
compilation, 21, 55

Decentralized Label Model, 5, 7
declassification, 5
demultiplexer, 4
dereference operator, 34
downgrading, 5, 9

end label, 8
endorsement, 5
Evaluation Assurance Level, 2

fresh slot, 23
fully qualified name, 14

global policy, 20

influencing expressions, 37, 38
influencing slots, 22, 23
Integrated Modular Avionics, 2
IPC channel, 3

Jif, 5, 7

label, 5, 7, 17
loop invariant, 15

memory allocation, 42

Multiple Independent Levels of
Security, 2

owner, 7, 17

partition, 2
PikeOS, 3
pointer assignment, 34, 42
policy, 4, 19
policy condition, 19
policy erasure, 25
policy inference, 8
policy result, 19
policy scope, 15, 19
polymorphism, 8
port, 2
principal, 7, 17
program counter label, 8

reader, 7, 17

secure gateway, 3
security domain, 2
security policy, 3
separation kernel, 3
simple assignment, 23
slot, 14, 34
SMT solver, 12
structure assignment, 30
structure initialization, 15, 26, 44
structure instance, 14
subscript, 34
substitution, 23, 25

variable, 14
volatile slot, 37, 38

weakening, 31
writer, 7, 17

Z3, 12

Bibliography

[1] 10th International Satisfiability Modulo Theories Competition, SMT-
COMP 2015. Summary. http://smtcomp.sourceforge.net/2015/
results-summary.shtml?v=1435577347.

[2] CVC4 SMT solver. http://cvc4.cs.nyu.edu/.

[3] GOLD Parsing System. http://www.goldparser.org/.

[4] Jif: Java + information flow. http://www.cs.cornell.edu/jif/.

[5] PikeOS Hypervisor. https://www.sysgo.com/products/
pikeos-rtos-and-virtualization-concept/.

[6] Yices 2 SMT Solver. http://yices.csl.sri.com/.

[7] Z3 Theorem Prover. https://github.com/Z3Prover/z3.

[8] Commercial Aircraft Information Security Concepts of Operation and Pro-
cess Framework, ARINC Report 811. Technical report, Airlines Electronic
Engineering Committee, 2005.

[9] Common Criteria for Information Technology Security Evaluation,
ISO/IEC 15408-1:2009. International Standards Organization and Inter-
national Electro-technical Commission, 2009.

[10] Programming Languages — C, ISO/IEC 9899:2011. International Stan-
dards Organization and International Electro-technical Commission, 2011.

[11] Asian Askarov and Andrei Sabelfeld. Security-typed languages for imple-
mentation of cryptographic protocols: A case study. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 3679 LNCS:197–221, 2005.

[12] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. Technical report, Department of Computer Science, The Uni-
versity of Iowa, 2010.

[13] D. Elliott Bell and Leonard J. LaPadula. Secure Computer Systems: A
Mathematical Model. Technical report, MITRE Corporation, 1973.

[14] Kenneth J. Biba. Integrity Considerations for Secure Computer Systems.
Proceedings of the 4th annual symposium on Computer architecture, 5:66,
1977.

http://smtcomp.sourceforge.net/2015/results-summary.shtml?v=1435577347
http://smtcomp.sourceforge.net/2015/results-summary.shtml?v=1435577347
http://cvc4.cs.nyu.edu/
http://www.goldparser.org/
http://www.cs.cornell.edu/jif/
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://yices.csl.sri.com/
https://github.com/Z3Prover/z3

80 BIBLIOGRAPHY

[15] Bruno Cuervo Parrino, Juan Pablo Galeotti, Diego Garbervetsky, and
Marcelo F. Frias. A dataflow analysis to improve SAT-based bounded pro-
gram verification. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 7041 LNCS:138–154, 2011.

[16] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Communications of the ACM, 20:504–513, 1977.

[17] Thomas Gross and Peter Steenkiste. Structured dataflow analysis for arrays
and its use in an optimizing compiler. Software: Practice and Experience,
155(June 1989):133–155, 1990.

[18] Boniface Hicks, David King, and Patrick Mcdaniel. Declassification with
Cryptographic Functions in a Security-Typed Language. Science, 2004.

[19] Kevin Müller, Ximeng Li, Flemming Nielson, Hanne Riis Nielson, and
Georg Sigl. Secure Information Flow Control in Safety-Critical Systems.
2014.

[20] Kevin Muller, Michael Paulitsch, Reinhard Schwarz, Sergey Tverdyshev,
and Holger Blasum. Mils-based information flow control in the avionic
domain: A case study on compositional architecture and verification.
AIAA/IEEE Digital Avionics Systems Conference - Proceedings, 2012.

[21] Kevin Muller, Michael Paulitsch, Sergey Tverdyshev, and Holger Blasum.
MILS-related information flow control in the avionic domain: A view on
security-enhancing software architectures. Proceedings of the International
Conference on Dependable Systems and Networks, 2012.

[22] Andrew C. Myers. Jif Reference Manual. http://www.cs.cornell.edu/
jif/doc/jif-3.3.0/manual.html.

[23] Andrew C. Myers. JFlow: Practical Mostly-Static Information Flow Con-
trol. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL ’99, pages 228–241, 1999.

[24] Andrew C. Myers and Barbara Liskov. A Decentralized Model for Infor-
mation Flow Control. (October), 1997.

[25] Andrew C. Myers and Barbara Liskov. Protecting privacy using the de-
centralized label model. ACM Transactions on Software Engineering and
Methodology, 9, 2000.

[26] Flemming Nielson, Hanne Nielson Riis, and Chris Hankin. Principles of
Program Analysis. Springer Science & Business Media, 1999.

[27] Michael L. Olive, Roy T. Oishi, and Stephen Arentz. Commercial aircraft
information security-an overview of ARINC report 811. AIAA/IEEE Dig-
ital Avionics Systems Conference - Proceedings, pages 1–12, 2006.

[28] John C. Reynolds. Separation logic: a logic for shared mutable data struc-
tures. Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science, 2002.

http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html

BIBLIOGRAPHY 81

[29] Hanne Riis Nielson and Flemming Nielson. Content-Dependent Informa-
tion Flow Control. (Draft), 2015.

[30] Hanne Riis Nielson, Flemming Nielson, and Ximeng Li. Disjunctive Infor-
mation Flow. 2014.

[31] John Rushby. Separation and Integration in MILS (The MILS Constitu-
tion). 2008.

[32] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(2-3):167 – 187,
1996.

	1 Introduction
	1.1 Background
	1.1.1 Certification
	1.1.2 Integrated Modular Avionics
	1.1.3 Multiple Independent Levels of Security
	1.1.4 Secure gateways

	1.2 The use case scenario
	1.3 Information flow control
	1.4 Goals

	2 Concepts of DLM and Jif
	3 Development process
	3.1 Methodology
	3.2 Technologies used

	4 Non-referential C analysis
	4.1 Language specification
	4.1.1 Syntax
	4.1.2 Example

	4.2 DLM labels
	4.3 Policies
	4.3.1 Policy syntax
	4.3.2 Policy semantics

	4.4 Validation of programs
	4.4.1 Informal description
	4.4.2 Type system

	5 Referential C analysis
	5.1 Language specification
	5.1.1 Syntax
	5.1.2 Example

	5.2 Policies
	5.2.1 Policy syntax
	5.2.2 Policy semantics

	5.3 Validation of programs
	5.3.1 Informal description
	5.3.2 Type system
	5.3.3 Tracking values of static arrays

	6 Implementation
	6.1 Requirements analysis
	6.1.1 Functional requirements
	6.1.2 Non-functional requirements

	6.2 Architecture overview
	6.3 Helper classes
	6.4 Implementation details
	6.5 Benchmarks
	6.5.1 Verification of the extended language example
	6.5.2 Verification of the use case scenario
	6.5.3 Other examples

	6.6 Unit tests

	7 Conclusions
	Index of notation
	Index

