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Summary
As the aviation industry integrates an expanding number of software components
in airplanes, it is becoming increasingly difficult to reason about the security of the
software. This thesis addresses aspects of this issue in the context of an abstract
model of avionics systems as a distributed system using synchronous communication
channels. The security of a system can then be related to the information flows and
whether these are allowed by a set of policies, thus, using well-established theory from
decentralised label model (DLM).

The security properties are verified using a combined type system and Hoare
logic, which certifies that the defined policies are not violated by the execution of the
distributed system as a whole.

In addition, the thesis describes a concrete implementation of parts of the type
system, including tests on a use case from the avionics industry. The testing reveals a
false positive, in which a secure system is erroneously declared non-secure. Therefore,
the type system needs further adjustments.
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CHAPTER 1
Introduction

Airplanes have an increasing number of sensors and units that interact and exchange
information [But07]. Some of the information flows between these units have different
security levels, such as airplane controls and personal information. To ensure a safe
flight it is therefore necessary to track which units can influence or read information
to guarantee the integrity and confidentiality level of the information flow.

The fault-tolerance mechanisms used to develop airplanes have mostly dealt with
hardware faults and general software bugs. Faults due to an intruder and malicious
code have therefore not been considered in the software for airplanes [DD12].

The U.S. Federal Aviation Administration (FAA) certifies if an airplane is safe
and operational also in terms of software. In a report by the U.S. Government
Accountability Office (GAO) they warn FAA that they need a better approach to
address cybersecurity [SL15; GAO15]. In recent news this is support by a security
researcher that found vulnerabilities in the inflight entertainment system, claiming
to be able to monitor traffic in the cockpit and even control the airplane [WIR15;
Hur15]. FAA claims no vulnerability, so whether the researcher is speaking the truth
(or perhaps exaggerating) is still an open question.

In the rest of the introduction we will see a case study concerning the avionics
industry, how their problems can be solved, and the scientific contributions of this
thesis.

1.1 Case study: Avionics industry
The aviation electronics (avionics) industry has developed safety-critical and reliable
hardware and software for decades. In classical avionics each function was put in
a separate avionics controller following a “federated architecture”, to ensure a high
independence and reliability of each controller. In the mid-1990s, growth in commu-
nication and signal interfaces led to the weight, volume and power consumption of all
the different controllers reaching airplane limits. Meanwhile, to keep maintaining all
the controllers, the number of spare parts also kept growing, thereby increasing the
ongoing cost of maintenance [But07].

The avionics industry therefore developed the Integrated Modular Avionics (IMA)
architecture, where software with different security domains is integrated on shared
commercial off-the-shelf components. This indeed lowered the weight, volume, power
consumption, and hardware maintenance costs. Central to IMA is the idea of an
operating system which can handle multiple applications separately (a separation
kernel), guaranteeing that altering or adding applications has minimal or no effect on
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Information type Confidentiality Integrity Availability
Aircraft control information Low High High
Airline operational information High Medium Medium
Airline administrative information High Medium Medium
Airline passenger information High High Medium

Table 1.1: Security level of different information types [A81105, Table 3-4].

the other applications. IMA thus moved module costs from the separate hardware
components to the development and certification of the separation kernel [But07].

The Multiple Independent Levels of Security (MILS) approach is a guideline on
how to design, construct, integrate and evaluate secure systems. This approach de-
composes components and locates the vulnerable parts, and suggests strict separation
and information flow control, hence achieving the IMA safety and security require-
ments.

Aeronautical Radio, Incorporated (ARINC) is a major manufacturer of communica-
tion solutions for the aviation industry, among others. Among their many standards
is ARINC report 811 [A81105], which provides security concepts for airborne networks.
The ARINC report 811 also prescribes the decomposition of a system into several do-
mains, with an actual example as shown in Figure 1.1 with four different domains,
Aircraft Control (AC), Airline Information Service (AIS), Passenger Information and
Entertainment Service (PIES), and Passenger-owned Devices (POD). These domains
are only a minimal subset, where e.g. the Aircraft Control Domain could be split up
into several domains, some for navigation and others for ground communication. AR-
INC report 811 also provides an “aircraft security process framework”, which more or
less is the Common Criteria (CC) [CC12a; CC12b; CC12c] in avionics terminology.

Although Figure 1.1 is a simplification, it still shows many of the different sys-
tems on an airplane which should be able to communicate across different security
domains. For example, some systems in the AC domain should not be influenced
by the passengers and yet there is a link between the PIES and AC through AIS.
ARINC report 811 also suggests integrity, confidentiality and availability levels for
different types of information, shown in Table 1.1. Aircraft control information could
typically be a sensor, e.g. a GPS, where everyone is allowed to know the location
(hence the confidentiality level is low), but on the other hand, no one must alter the
GPS sensor reports (hence the integrity level must be high). Finally, it is always
necessary to have the location (hence the availability level must also be high).

The primary example of a separation kernel used by the avionics industry is
PikeOS by SYSGO, which fulfils and implements IMA and the MILS architecture
[SYSGO]. The kernel is certified to the highest Safety Integrity Level, SIL 4.

The separate controllers of the federated architecture are therefore virtualised as
applications on top of PikeOS. All these application can be part of different security
domains, and the separation kernel then ensures that the information flow is secure
across these domains at run time. The separation kernel hence specifies some common
ground for defining policies, and either block or allow information flows.
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A Reference Architecture for the Networked 
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concepts, Figure 3 [1] illustrates a reference 
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consists of electronic devices that are brought on-
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This reference architecture, which was 
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Figure 3. Aircraft Network Domains and Interconnections among Domains 

 
Aircraft Information Security Process 
Framework 
Introduction 

As noted previously, aircraft architectures are 
moving from legacy federated systems with 
dedicated communication links to highly integrated 

systems with shared communication links. While 
these advancements offer opportunities for 
improvement in airline operations, they also 
increase the potential for attacks. Thus, aircraft 
information security plays an increasingly 
important role in protecting information assets.  

Figure 1.1: Security domains according to ARINC report 811 [A81105].

Depending on the complexity of the system, the many security checks and policy
lookups could take up much time and can therefore become a bottleneck in a real-
time setting. Such a bottleneck can quickly have fatal consequences, e.g. if the main
engine is not working properly and the separation kernel is spending time verifying
the information flow from the engine sensor. This scenario could be even worse if the
separation kernel is handling a queue of flows from non-operational applications such
as the entertainment system and the flow from the engine is waiting to be verified.

Implementing an application to the separation kernel then raises questions about
what to do if the information flow is not allowed by the policies. The execution
could simply stop, which could result in a system not working as intended. Another
approach is to keep a log of the illegal information flows for later investigation and
possibly adjustment of policies, and continue running the application with the leaked
information. In avionics, either approach could have fatal consequences.

1.2 Decentralised label model
The Decentralised Label Model (DLM) can be used to ensure confidentiality and in-
tegrity of data in a software system [ML97; ML00]. Inside the software system,
principals are authorities representing the different software components and users,
for whom information is owned, updated and affected by. Whenever there is an in-
formation flow from one set of variables to another there are corresponding integrity
labels and confidentiality labels.
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An integrity label is denoted {o← s̄} where o is the owner principal and s̄ is a set
of principals. A variable x can therefore be associated with such a label denoted as
an influencer policy {o← s̄} x, meaning that o is the owner of x, and o allows all the
principals in s̄ to influence x. The integrity label thus describes who can influence
the information. Example:

{o1 ← s1, s2} x;
{o1 ← s1, s3} y;
{o1 ← s1, s2, s3} z;
z := x+ y;

As x can be influenced by s1 and s2, and y can be influenced by s1 and s3, the value
of x+ y would altogether be influenced by s1, s2 and s3. The resulting label for the
value would then be {o1 ← s1, s2, s3}. The variable z may be influenced by s1, s2 and
s3 and the assignment z := x+ y does therefore follow the policies. As the labels use
the same owner for all variables, the owner is irrelevant to this example.

Similarly, a confidentiality label is denoted {o → s̄} where o is the owner, and s̄
is a set of principals. A variable x can be associated with a label denoted as a reader
policy {o → s̄} x, meaning that o is the owner of x, and o allows the principals s̄ to
read x. The confidentiality label therefore describes who can read the information.
Example:

{o1 → s1, s2} x;
{o1 → s1, s3} y;
{o1 → s1} z;
z := x+ y;

Here x may be read by s1 and s2, and y can be read by s1 and s3. The value of
x+ y must then only be readable by s1, in order not to violate the confidentiality of
x and y. As z only allows s1 as reader, the assignment z := x+ y follows the policies.
Again, as the owner is the same for all variables, it is irrelevant to this example.

Just these two examples demonstrates a duality between influencer policies and
reader policies. Integrity uses the union of the principals, while confidentiality uses
the intersection. Formalising one part therefore reveals the other by swapping the
operators. This is also one of realisations in [ML00]. Furthermore, the examples
clearly shows that there is an information flow from x and y to z.

As an aside, note that a DLM label can have multiple owners e.g. {{o1 →
s1, s2}; {o2 → s1, s3}} where the effective reader set of the label here gives the single-
ton {s1}, because that is the only principal the two owners agree on. Conversely an
effective influencer set can be established for influencer policies.

In the two examples, it was easy to deduce that the assignment obeyed the policies,
and static analysis of such a program could easily confirm this conclusion, thereby
guaranteeing that the system is secure according to its policies, before it is even
executed [VSI09].

DLM also provide a mechanism to endorse information (weakening its integrity)
and declassify information (weakening its confidentiality), allowing information flows
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not otherwise permitted by the policies. Example:

{o1 ← s1, s2} x;
{o1 ← s1} y;
{o1 ← s1} z;
endorse {o1 ← s1, s2} to {o1 ← s1} in
z := x+ y;

end;

Here the label {o1 ← s1, s2} is endorsed to {o1 ← s1}. This allows x to influence z
as they now have the same label. Conversely, a declassify statement exists allowing
more to read the information.

Useful as endorse and declassify may be, their use should be strongly discouraged,
as they weaken the security policies. If they are used, proper code review is therefore
needed to ensure that there are no unintentional information leakages.

1.3 Gateway
In the separation kernel from the avionics case, it is sometimes impossible to establish
the strict separation of resources suggested by MILS. An example is presented in
[Mül+12] where a gateway is used to connect multiple domains, as shown in Figure 1.2
where p1 wants to send information to c1 and p2 sends information to c2, but they both
have to use the same channel ch where m represents a multiplexer and d represents a
demultiplexer. In this system we want a guarantee that the information from p1 does
not flow to c2 and vice versa from p2 to c1.

p1

p2

m d

c1

c2

in1

in2

ch
out1

out2

Figure 1.2: Gateway [NNL15].

Let z be the variable containing the value the demultiplexer is receiving though
the channel ch. The upper part of the gateway says that z may only be influenced by
p1 and the lower part says that z only may be influenced by p2 yielding the following
two DLM policies

{d← p1,m, d} z (1.1)
{d← p2,m, d} z (1.2)

As the variable z will also be used to send the information to c1 and c2, the resulting
label for z will be {d← p1, p2,m, d} which does not suit c1 as the value can then be
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influenced by p2, and vice versa for c2. The two policies are therefore dependent on
the content they are handling.

Clearly m knows where the information comes from, and sends 1 or 2 to d along
with the information to indicate the origin. Then d can use this as a trigger to endorse
the proper label for z before it is sent to c1 or c2. This constellation though uses the
endorsement from DLM and time consuming code review have to be done.

1.4 Contributions
In avionics, the most critical parts are checked using formal methods and verifications
[DD12], for example using the Astrée static analyzer [Asta; Astb]. It is clear that
some of the integrity and confidentiality issues from the avionics case can be directly
solved using DLM, and the tools for static analysis can then be extended to verify
DLM polices. The run-time checks performed by the separation kernel can therefore
be minimised. This gives the overall system more available processing time, which
is useful in a real-time setting. In this particular case, more applications can then
be stacked in the separation kernel, leading to fewer controllers and lower power
consumption.

In the gateway example, regular DLM is insufficient to eliminate time consuming
(and possible erroneous) code review. In [NNL15] some of the features from DLM
are presented and extended with “content dependent policies”, which solves these
problems, though the resulting type system is complicated and could potentially have
some errors.

This thesis is mainly built upon the draft paper [NNd] where a more DLM-
comparable notion of policies are used. Furthermore, the type system is simpler
and thus more clear than [NNL15].

In [NNd], the first part only covers influencer policies, only listing ideas for the
reader policies. As we will see later, the policies and type system will be fully de-
scribed and proven here for both influencer and reader polices. Furthermore, the
implementation of the type system raises a question on how to compare policies, and
a neat result is derived on how to do this.

Overall this thesis therefore contributes to the correctness of the type system in
[NNd] and details how it works and how some of the implementation challenges can
be met.

1.5 Thesis overview
Chapter 2 contains the design of an abstract language for distributed systems which
amounts to an instrumented semantics that enables monitoring of information flows,
along with a rich language for defining security policies against which the information
flows can be verified. Taken together, this leads to a formal definition of when a system
is secure. In relation to the case study, the result can be used to model applications
in a separation kernel and verify overall system security at run-time.
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A type system is constructed in Chapter 3. Using the type system on a well
defined distributed system (including policies), the distributed system can be verified
for all executions of the system. In the end this leads to a correctness result ensuring
the type system is sound according to the instrumented semantics.

Chapter 4 shows some of the difficulties that comes with implementing the type
system. First, an analysis on how to simplify the comparison of the security policies.
Second, a syntax-directed type system in the form of the actual type checker, to be
proved sound according to the type system. Third, a short description of the software
developed for this thesis.

Chapter 5 presents the gateway scenario and another fictive but realistic scenario
from the avionics industry. Proper policies for the gateway scenario are described
and then verified using the developed type checker.

All this amounts to a discussion in Chapter 6 of other, similar tools for verifying
information flows, together with observations, further improvements, and extensions.

At last Chapter 7 presents the conclusion for this thesis.
Throughout the thesis, facts, lemmas and theorems are presented, with most

proven formally. These proofs are not relevant for reading this thesis but can help
in understanding some of the results. Most of the proofs have therefore been moved
to the appendix, leaving just an annotation like for this paragraph. Some facts have
not been proven, leaving only a proof idea. (proofs in Appendix A)
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CHAPTER 2
Distributed systems

This chapter contains the formal definition of a distributed system and how to specify
policies. This leads to a definition of when a system is secure according to its policies.

It begins by describing the syntax for distributed system and its statements along
with the instrumented semantics which records the information flow throughout the
system. Next, the syntax for the policies are formalised, enabling us to describe
allowed information flows in the system. From this a full system can be defined,
finally allowing us to verify that the system follows its policies, making it secure in
relation to information flow.

In terms of security a covert channel is an information flow can be detected by
observing the surroundings of a system, such as running time, power usage, noise and
electromagnetic radiation [DD77]. As it is difficult to reason about these flows they
will not be considered in this thesis.

2.1 Syntax
The system consists of a finite set of processes running in parallel

Sys ::= l1 : S1 ∥ · · · ∥ ln : Sn

Each process ℓ : S has a label ℓ and a top-level statement S. The label is an unique
identifier ℓ ∈ Lab = {l1, . . . , ln} to distinguish each process, and the statement defines
all the computational steps for the process.

A security principal is an authority that in the policies will be used to denote who
owns, who can influence and who can read the information. A system has a finite
set of security principals Pr, and each process is statically assigned to a security
principal in the mapping S : Lab → Pr. In addition, S is required to not be
surjective, meaning that there must be at least one security principal not mapping
to any process. This principal will be able to monitor all information flows in the
system, and for that reason is typically denoted NSA. Security principals are generally
denoted o, q, s ∈ Pr, and a set of security principals are denoted s̄ ⊆ Pr. An empty
s̄ is denoted ϵ.

Each process has its own set of variables Varℓ, emphasising the strict memory
separation between processes. The disjoint union of all the variables for the processes
is denoted Var =

⊎
l∈Lab Varl.

Processes communicate only via synchronous channels from the set Chan. These
channels are polyadic, meaning that in one synchronous action multiple variables
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can be transferred; the arity of a channel is the number of variables the channel can
transfer. An analogue to this is individual wires making up a full cable. Channels
are typically denoted ch ∈ Chan. The ith variable in a channel is denoted #i and all
channel variables are denoted Var# = {#1, . . . ,#m} where m is the maximal arity
of all the channels Chan.

All the variables in the system for both processes and channels are denoted
Var+ = Var ∪ Var#. Single variables are denoted x, y ∈ Var, variables or chan-
nel variables are denoted u, z ∈ Var+ and unspecified constants are denoted n. A set
of variables is denoted x̄ ⊆ Var and ū ⊆ Var+, where the empty set is denoted ϵ.

The set of states State = Var → Val denotes a mapping from process variables
in Var to corresponding values in Val (e.g. 1, 2, . . ., or just v for arbitrary values).
Including channel variables this is denoted State+ = Var+ → Val. A state is
denoted σ ∈ State or σ ∈ State+. The value for x in σ is then σ(x), and assigning x
to a new value v in σ is denoted σ[x 7→ v]. Multiple assignments are annotated using
the following shorthand notation

σ[(xi 7→ vi)i≤k] = σ[x1 7→ v1, x2 7→ v2, . . . , xk 7→ vk]

2.1.1 Statements S

The syntax for a statement S, arithmetic expressions a and boolean expressions b is:

S ::= skip | x := a | x :=† a | S1;S2 | if b then S1 else S2 fi
| while b do S od | ch!(a1, . . . , ak) | ch!†(a1, . . . , ak)
| ch?(x1, . . . , xk) | ((S1)⊕ (S2)) | ⌈x̄⌉S

a ::= n | x | a1 op a2

b ::= true | false | ¬b | b1 ∧ b2 | b1 ∨ b2 | a1 rel a2

This makes up a simple “while” language greatly inspired by [NNL15; NNd]. The
statement skip simply does nothing, x := a assigns a to the variable x, and S1;S2
is the sequential composition of statements S1 and S2. In the conditional statement
if b then S1 else S2 fi the condition b determines whether the execution continues on
S1 or S2. For loops while b do S od as long the condition b holds, S is executed. The
conditional and loop statement will be referred to as statements with tests.

Different from a simple “while” language is the inter-process communication which
is achieved using the input and output statement. The output statement ch!(a1, . . . , ak)
send the values a1, . . . , ak using the channel ch ∈ Chan (of arity k), and the input
statement ch?(x1, . . . , xk) receives values from the channel ch, storing them in the
variables x1, . . . , xk. For arity k = 1, the parentheses can be left out, e.g. ch!a and
ch?x.

The assignment and output statements also have a corresponding bypass version
denoted with †, which circumvents the policies. These statement is useful when the
programmer intentionally want to leak information, such that the confidentiality and
integrity of the information is preserved by other means than the software itself. As
we have seen for DLM that is typically denoted endorse for integrity and declassify
for confidentiality.
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The ((S1)⊕ (S2)) statement makes a non-deterministic choice between S1 and S2,
only executing one of the nested statements.

The statement ⌈x̄⌉S will in the semantics be used to keep track of implicit flows
from the variables x̄. This statement is therefore intended only to be used internally.

In arithmetic expressions, op is an arithmetic operator (e.g. +,−, . . .). In boolean
expressions, rel is a relational operator (e.g. =, <,≤, . . .). The boolean operators
¬,∧,∨ are defined the usual way, where the boolean constants true is denoted true
or tt and false is denoted false or ff. The set of all the free variables in an arithmetic
or a boolean expression are denoted ā and b̄ respectively.

For arithmetics and boolean expressions the semantics is given by JaKσ and JbKσ,
which given an expression a or b and a state σ ∈ State returns the value from Val or
a truth value true or false as appropriate. As an example let σ(x) = 4 and σ(y) = 5
then

Jx+ 1Kσ = JxKσ + J1Kσ = σ(x) + 1 = 4 + 1 = 5Jx < yKσ = JxKσ < JyKσ = σ(x) < σ(y) = 4 < 5 = true

The rest of the semantics is presented in the next section.

2.2 Instrumented semantics
The semantics for system and processes is defined by instrumented operational se-
mantics, describing how each individual transition makes up the whole computation.
In general, a transition relation in the operational semantics has the form

premises
configuration→ configuration︸ ︷︷ ︸

judgement

conditions

If there are no premises, the transition relation is called an axiom and the line is
omitted.

The idea of the semantics is to record the information flow for each computational
step (transition) in a system. Take e.g. the process l : y := x with the security
principal S(l) = s. Here there clearly are an information flow from the variable x
to the variable y. Recall that the security principals Pr are used in the policies to
denote who owns, who can influence and who can read information. All the security
principals must therefore monitor this flow to verify whether y is allowed to influenced
by x or if x is allowed to be read. In this example at least the security principal s
observes the assignment of the value of variable x to the variable y, a fact recorded
as the flow (x, s, y).

To capture this the semantics is split in two, with one part recording information
flows on the system level and the other recording information flows on the process
level. The system flows are information flows from one process variable to another,
possibly across different processes via a channel. The process level flows, or extended
flows, describe process-local flows from a local variable, or constant to a local variable
or channel variable.
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In the semantics for systems the configurations are denoted

⟨l1 : S1 ∥ · · · ∥ ln : Sn, σ⟩

which is a finite system of n parallel processes with statements Si, and with a state
σ ∈ State mapping all variables Var to their current values. The special case where
Si = skip for all i ≤ n is called the terminal configuration.

The fact that all process variables are disjoint ensures that any inter-process infor-
mation flow can only occur using channels. In other words, since a variable x always
belongs to exactly one process, its value σ(x) stays local to that process.

The judgement for a distributed system in the transition relation has the form

⟨l1 : S1 ∥ · · · ∥ ln : Sn, σ⟩
F==⇒

U,D
⟨l1 : S′1 ∥ · · · ∥ ln : S′n, σ′⟩

In the transition relation the process li : Si becomes li : S′i, and σ becomes σ′.
The transition records three sets F ⊆ Var × Pr ×Var, U ⊆ Var, D ⊆ Var. A

triple (x, s, y) ∈ F denotes a system flow, which records that there is a flow from the
variable x to y monitored by the security principal s. A variable x ∈ U records that
the variable x is used in the transition relation. A variable y ∈ D records at that the
variable y is defined in the transition relation.

As an example, take the system

l1 : y := x; ch!y ∥ l2 : ch?z

where the processes share a security principal S(l1) = S(l2) = s. The system flows
are {(x, s, y), (x,NSA, y)} and {(y, s, z), (y,NSA, z)} where it can be seen that the
special principal NSA also monitors the flow. Looking only at the first execution the
variable x is used, and y is defined. The other execution where l1 sends y to l2 over
ch to z, the variable y is used and z is defined. The fact that U only records all used
variables, and D only records all (re)defined variables are formalised in Section 2.2.3.

The functions fst(F ) and trd(F ) denotes the first and third element of the flows

fst(x̄× s̄× ȳ) = x̄ trd(x̄× s̄× ȳ) = ȳ

Here fst(F ) ⊆ U , but not necessarily that fst(F ) = U . This is seen in the case where
a test is passed, e.g. for this particular instance

l : if x > 3 then S1 else S2 fi (2.1)

then x ̸∈ fst(F ) but x is clearly used in the condition and therefore x ∈ U , yielding
fst(F ) ̸= U . Of course there is an implicit flow from x to Si, but this will first be
recorded in the next transition relation. Implicit flows are covered more carefully in
Section 2.2.2. Furthermore it is the case that trd(F ) ⊆ D, and again not necessarily
that trd(F ) = D. This is seen in assignments of constants

l : x := 3 (2.2)

where x ̸∈ trd(F ) but x is defined and therefore x ∈ D.
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Let e ∈ Var+
⋄ = Var+ ∪ {⋄} denote an extended variable, and E ⊆ Var+

⋄ ×Pr×
Var+

⋄ denote a set of extended flows. It can record the same flows as system flows,
but also from variables to channel variables and vice versa. The special element ⋄
will be used to ensure non-empty flows. If a variable is modified by constants then
we must record that change and say that ⋄ ∈ fst(E) (the variable is influenced in the
process). Furthermore if a variable is used in a test it does not directly effect any
values, but to record that the variable is read by the process we say that ⋄ ∈ trd(E).

The judgement for a process in a transition relation has the form

⊢ℓ ⟨S;σ⟩ E−→
α
⟨S′;σ′⟩

Here S and S′ denotes the statements for the process ℓ, together with the states
σ′, σ ∈ State, and the action α has the form

α ::= τ | ch!(v1, . . . , vk) | ch?(v1, . . . , vk)

The action α is given by the statement: If S is an output statement, the action
is ch!(v1, . . . , vk), and similarly for input statements. Otherwise α is τ , denoting no
inter-process communication.

The semantics ensures that flows inside the process from constants and variables
to variables and channel variables are captured. The following process contains an
example of each:

l : x := y; x := 4; ch!4; ch!x; ch?y; while x > 4 do skip od; while true do skip od;

Let S(l) = s, the extended flows are then (y, s, x), (⋄, s, x), (⋄, s,#1), (x, s,#1),
(#1, s, y), (x, s, ⋄), (⋄, s, ⋄) plus the corresponding NSA flows.

From the extended flows E, the set of used variables can be extracted as fst(E)∩
Var, and likewise the set of defined variables as trd(E) ∩Var. The system flows for
the local process are E ∩ (Var×Pr×Var).

2.2.1 Instrumented semantics for systems
The instrumented semantics for systems are shown in Rule Collection 2.1, which
includes two transition relations. The first transition relation [sysτ

is] contains the one
transition of process li with the action τ . The system flows F , used U and defined D
variables are then filtered from the extended flows Ei, by using the approach described
just before, removing all the flows, used and defined variables containing ⋄.

The second transition relation [sysch
is ] contains transitions for two distinct pro-

cesses li and lj , where process li sends variables to lj using a k-ary channel ch. The
extended flows for process li and lj would then be

Ei ⊇ {(e1,S(li),#1), . . . , (e1,S(li),#k)}
Ej ⊇ {(#1,S(lj), x1), . . . , (#k,S(lj), xk)}

If s = S(li) = S(lj), the pairwise combined flows of Ei and Ej

{(e1, s, x1), . . . , (ek, s, xk)}
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would tell that there is an information flow from the variables in process li to the
variables in process lj , observed by security principal s. The flows for this transition
relation therefore uses the following combiner function, yielding the desired pairwise
set:

E1 ∥E2 =
{

(e, s, x)
∣∣∣∣ (∃i : (e, s,#i) ∈ E1 ∧ (#i, s, x) ∈ E2)

∨ ((e, s, x) ∈ E2 ∧ e ∈ Var)

}
(2.3)

The combined flow E1 ∥E2 could still contain ⋄, in the cases when a constant is sent
instead of the value of a variable e.g. ch!4, and the appropriate intersection is used to
remove invalid system flows in the transition relation. The other part of the combiner
function ensures that all previously flows from process lj is preserved.

[sysτ
is]

⊢li ⟨Si;σ⟩
Ei−→
τ
⟨S′i;σ′⟩

⟨l1 : S1 ∥ · · · ∥ li : Si ∥ · · · ∥ ln : Sn, σ⟩
F==⇒

U,D

⟨l1 : S1 ∥ · · · ∥ li : S′i ∥ · · · ∥ ln : Sn, σ
′⟩

where F = Ei ∩ (Var×Pr×Var)
U = fst(Ei) ∩Var
D = trd(Ei) ∩Var

[sysch
is ]

⊢li ⟨Si;σ⟩
Ei−−−−−−−−→

ch!(v1,...,vk)
⟨S′i;σ′⟩ ⊢lj ⟨Sj ;σ′⟩ Ej−−−−−−−−→

ch?(v1,...,vk)
⟨S′j ;σ′′⟩

⟨l1 : S1 ∥ · · · ∥ li : Si ∥ · · · ∥ lj : Sj ∥ · · · ∥ ln : Sn, σ⟩
F==⇒

U,D

⟨l1 : S1 ∥ · · · ∥ li : S′i ∥ · · · ∥ lj : S′j ∥ · · · ∥ ln : Sn, σ
′′⟩

where F = Ei ∥Ej ∩ (Var×Pr×Var)
U = fst(Ei ∥Ej) ∩Var
D = trd(Ei ∥Ej) ∩Var

and i ̸= j

Rule Collection 2.1: Instrumented semantics for systems.

2.2.2 Instrumented semantics for processes
The instrumented semantics for processes is given in Rule Collection 2.2. The sets
of flows are denoted using a simplified notation (juxtapositioning), such that {x} is
simply x, {⋄} is simply ⋄, and ā∪{⋄} is denoted ā⋄. As a reminder, ā denotes the set
of free variables in the arithmetic expression a and b̄ denotes the set of free variables
in the boolean expression b.

For all statements the information flow is observed by all security principals, unless
the statement is one that bypasses the security restrictions. In statements with the
bypass operation (†), the information flow should be observed by all security principals
except the principal for the current process ℓ, i.e. Pr \ S(ℓ), or simply Pr\ℓ. The



2.2 Instrumented semantics 15

general form of the extended flows for the statements are therefore

e×Pr× e′ e×Pr\ℓ × e′

In [assis], [ass†is], [outis], [out†is], [inis] there are explicit flows, where it is clear
that the information is transferred from one variable to another. Furthermore there
can also be implicit flows, where there indirectly is a data flow. Example:

x := 0; if b then x := 1 else skip fi (2.4)

Depending on whether b is true or false, x becomes 1 or 0 respectively, and the value
of x is therefore dependent on variable b, i.e. an implicit flow. The transitions rules
for test statements ([if tt

is], [ifff
is], [looptt

is]) gives rise to implicit flows into their inner
statements. These flows are handled using the special statement ⌈x̄⌉S, where x̄ is
the set of implicit flow source variables. The rule [loopff

is] does therefore not use ⌈x̄⌉S
statement as the execution does not continue in the inner statement of the loop.

The implicit flows are appended to the extended flows in the following way

⌈x̄⌉E = {(y, s, e′) | ∃(e, s, e′) ∈ E : y ∈ x̄e} (2.5)

where it is seen that flows from E are preserved, and flows from variables in x̄ are
added. The extended flows for the assignment inside the conditional branch in (2.4)
will therefore be b̄ ⋄ ×Pr× x.

As a reminder to ensure non-empty flows, ⋄ is added to first component of an
extended flow when constants are used. In test statements ⋄ is added as a third
component to reflect that variables are used. When there are no free variables in the
test the first component of the extended flows also includes ⋄ (e.g. if the test only
contains compositions of true and false).

2.2.3 Properties of the defined and used variables
The defined variables D in a system judgement only contains the variables that are
(re)defined. All other variables x ∈ Var \D stays the same in the transition relation.
More formally this is specified as

Fact 2.1. Assume ⟨l1 : S1 ∥ · · · ∥ ln : Sn, σ⟩
F==⇒

U,D
⟨l1 : S′1 ∥ · · · ∥ ln : S′n, σ′⟩, then

σ(x) = σ′(x) for all x ∈ Var \D.

Proof idea. By induction on the instrumented semantic, using similar results for pro-
cesses.

The used variables U in a system judgement only contains the variables that are
used. All other variables x ∈ Var \ U are therefore not in any statement of Si and
can hence not effect any variable, e.g. x does not influence the variables in D. This
is formalised using the same system twice with two different states σa and σb where
only the used variables are equivalent in the states. The conclusion is then that all
the defined and used variables U ∪D are equivalent in σ′a and σ′b. More formally
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[skipis] ⊢ℓ ⟨skip;σ⟩ E−→
τ
⟨skip;σ⟩ if E = ⋄ ×Pr× ⋄

[assis] ⊢ℓ ⟨x := a;σ⟩ E−→
τ
⟨skip;σ[x 7→ JaKσ]⟩ if E = ā ⋄ ×Pr× x

[ass
†
is

] ⊢ℓ ⟨x :=† a;σ⟩ E−→
τ
⟨skip;σ[x 7→ JaKσ]⟩ if E = ā ⋄ ×Pr\ℓ × x

[comp1
is]

⊢ℓ ⟨S1;σ⟩ E−→
α
⟨S′1;σ′⟩

⊢ℓ ⟨S1;S2;σ⟩ E−→
α
⟨S′1;S2;σ′⟩

if S′1 ̸= skip [comp2
is]
⊢ℓ ⟨S1;σ⟩ E−→

α
⟨skip;σ′⟩

⊢ℓ ⟨S1;S2;σ⟩ E−→
α
⟨S2;σ′⟩

[if tt
is] ⊢ℓ ⟨if b then S1 else S2 fi;σ⟩ E−→

τ
⟨⌈b̄⌉S1;σ⟩ if JbKσ = true

and E = b̄ ⋄ ×Pr× ⋄

[ifff
is] ⊢ℓ ⟨if b then S1 else S2 fi;σ⟩ E−→

τ
⟨⌈b̄⌉S2;σ⟩ if JbKσ = false

and E = b̄ ⋄ ×Pr× ⋄

[looptt
is] ⊢ℓ ⟨while b do S od;σ⟩ E−→

τ
⟨⌈b̄⌉S; while b do S od;σ⟩ if JbKσ = true

and E = b̄ ⋄ ×Pr× ⋄

[looptt
is] ⊢ℓ ⟨while b do S od;σ⟩ E−→

τ
⟨skip;σ⟩ if JbKσ = false

and E = b̄ ⋄ ×Pr× ⋄

[outis] ⊢ℓ ⟨ch!(a1, . . . , ak);σ⟩ E−−−−−−−−→
ch!(v1,...,vk)

⟨skip;σ⟩ if ∀i ≤ k : vi = JaiKσ
and E =

∪
i≤k

āi ⋄ ×Pr×#i

[out
†
is

] ⊢ℓ ⟨ch!†(a1, . . . , ak);σ⟩ E−−−−−−−−→
ch!(v1,...,vk)

⟨skip;σ⟩ if ∀i ≤ k : vi = JaiKσ
and E =

∪
i≤k

āi ⋄ ×Pr\ℓ ×#i

[inis] ⊢ℓ ⟨ch?(x1, . . . , xk);σ⟩ E−−−−−−−−→
ch?(v1,...,vk)

⟨skip;σ[(xi 7→ vi)i≤k]⟩
if E =

∪
i≤k

#i ×Pr× xi

[chois]
⊢ℓ ⟨Si;σ⟩

E−→
α
⟨S′i;σ′⟩

⊢ℓ ⟨((S1)⊕ (S2));σ⟩ E−→
α
⟨S′i;σ′⟩

for i = 1, 2

[impl1
is]

⊢ℓ ⟨S;σ⟩ E−→
α
⟨S′;σ′⟩

⊢ℓ ⟨⌈x̄⌉S;σ⟩ ⌈x̄⌉E−−−→
α
⟨⌈x̄⌉S′;σ′⟩

if S′ ̸= skip [impl2
is]

⊢ℓ ⟨S;σ⟩ E−→
α
⟨skip;σ′⟩

⊢ℓ ⟨⌈x̄⌉S;σ⟩ ⌈x̄⌉E−−−→
α
⟨skip;σ′⟩

Rule Collection 2.2: Instrumented semantics for processes.
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Fact 2.2. Assume ⟨l1 : S1 ∥ · · · ∥ ln : Sn, σa⟩
F==⇒

U,D
⟨l1 : S′1 ∥ · · · ∥ ln : S′n, σ′a⟩ and

σa(x) = σb(x) for all x ∈ U . Then there exist σ′b such that

⟨l1 : S1 ∥ · · · ∥ ln : Sn, σb⟩
F==⇒

U,D
⟨l1 : S′1 ∥ · · · ∥ ln : S′n, σ′b⟩

and furthermore σ′a(y) = σ′b(y) for all y ∈ U ∪D.

Proof idea. By induction on the instrumented semantic, using similar results for pro-
cesses and Fact 2.1.

2.3 Policies
Policies are used to describe the security restrictions for a system. They therefore
includes information about who owns the information and who is allowed to influence
or read it.

2.3.1 Syntax
The syntax for the policies P ∈ Pol is

P ::= {ū : ō← s̄} | {ū : ō→ s̄} | (φ⇒ P ) | P 1 • P 2

φ ::= true | false | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

| a+
1 rel a+

2 | (∃ū : (φ))
a+ ::= n | x | # | a+

1 op a+
2

Here ū ⊆ Var+ is a set of variables or channel variables, and ō, s̄ ⊆ Pr is sets of secu-
rity principals. The policy {ū : ō← s̄} is an influencer policy, specifying the variables,
owners and influencers. The owners, specified as ō, allows the security principals s̄
to influence the values of the variables in ū. In the policy {x, y : s1 ← s1, s2}, the
principal s1 is the owner of the variables x and y, and s1 allows s1 and s2 to influence
the value of x and y. The influencer policies therefore concerns the integrity of the
information.

The policy {ū : ō→ s̄} is a reader policy, which specifies variables, owners and
readers. The owners ō allows the security principals s̄ to read the values of the
variables in ū. In the policy {x, y : s1 → s1, s2}, the principal s1 is the owner of x, y
and specifies that only s1 and s2 can read the value of x and y. The reader policies
therefore concerns the confidentiality of the information.

If the sets ū, ō and s̄ from influencer and reader policies are empty these are
denoted with ϵ, e.g. if ō allows that no one may read the variables x̄ this is denoted
{x̄ : ō→ ϵ}. Conversely, ⋆ can be used in ū, ō and s̄ to describe the full set. For the
variables or channel variables ⋆ = Var+, and for security principals ⋆ = Pr. For the
variables local to a process ℓ the full set is denoted ⋆ℓ = Varℓ, and for all channel
variables likewise ⋆# = Var#. The policy {x̄ : ō→ ⋆} therefore denotes that ō allows
all security principals to read the variables in x̄.
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The policy (φ⇒ P ) is a conditional policy and only if the predicate φ holds, P is
imposed. Just as b̄ denotes the free variables in a boolean expression, φ̄ denotes the
free variables in a predicate. The operators rel and op are the same as in boolean
and arithmetic expressions. The predicate φ is an extension of the boolean predicate
where the arithmetic expressions are replaced with an extended arithmetic expressions
a+ which also includes channel variables # ∈ Var#. Moreover it is extended with
the existential quantifier (∃ū : (φ)) denoting that there exists values for the variables
ū = u1,.., un such that φ holds. The variables ū are therefore bound to φ, and are
thus no longer part of the free variables of φ. Substituting the variable x in φ with
an arithmetic expression a is denoted φ[a/x]. All the free occurrences of the variable
x in φ is then replaced with the arithmetic expression a.

At last the policy P 1 • P 2 is the combination of policy P 1 and P 2, and expresses
that both policies should be considered.

Satisfaction of predicates

In a state σ ∈ State+ the satisfaction of φ is denoted σ |= φ (σ models φ). All the
free variables of φ is looked up in σ, and the condition can then be evaluated. If σ(x)
is not defined and x ∈ φ̄ then σ ̸|= φ.

This leads to the following fact, that new mappings in σ, reflect substitutions in
φ and vice versa.

Fact 2.3. σ[x 7→ JaKσ] |= φ iff σ |= φ[a/x]. (informal proof in Appendix A.1)

2.3.2 Variables and owners
The free variables for policies fv(P ) are defined as

fv({ū : ō← s̄}) = ū

fv({ū : ō→ s̄}) = ū

fv((φ⇒ P )) = φ̄ ∪ fv(P )
fv(P 1 • P 2) = fv(P 1) ∪ fv(P 2)

The influencer variables iv(P ) are all the variables that are used in influencer policies
in P and defined as

iv({ū : ō← s̄}) = ū

iv({ū : ō→ s̄}) = ϵ

iv((φ⇒ P )) = iv(P )
iv(P 1 • P 2) = iv(P 1) ∪ iv(P 2)
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and likewise the reader variables rv(P ) for the reader policies

rv({ū : ō← s̄}) = ϵ

rv({ū : ō→ s̄}) = ū

rv((φ⇒ P )) = rv(P )
rv(P 1 • P 2) = rv(P 1) ∪ rv(P 2)

Furthermore the influencer owners io(P, y) are the owners from influencer policies for
the variable y and defined as

io({ū : ō← s̄}, y) =

{
ō if y ∈ ū
ϵ otherwise

io({ū : ō→ s̄}, y) = ϵ

io((φ⇒ P ) , y) = io(P, y)
io(P 1 • P 2, y) = io(P 1, y) ∪ io(P 2, y)

and likewise for reader owners ro(P, y)

ro({ū : ō← s̄}, y) = ϵ

ro({ū : ō→ s̄}, y) =

{
ō if y ∈ ū
ϵ otherwise

ro((φ⇒ P ) , y) = ro(P, y)
ro(P 1 • P 2, y) = ro(P 1, y) ∪ ro(P 2, y)

All these definitions are used in Section 2.3.7 to describe proper policies for the system.

2.3.3 Influencers and readers
For a policy P and a state σ ∈ State+ the set Infl (P, σ, q, y) denotes the set of security
principals who can influence the variable y ∈ Var+, where q ∈ Pr is an owner for
y. Likewise the set Read (P, σ, q, y) the set of security principals who can read the
variable y where q is owns y. These sets are denoted respectively as the influencer set
and the reader set or shortly as influencers and readers. The influencer set is defined
as

Infl ({ū : ō← s̄}, σ, q, y) =

{
s̄ if y ∈ ū ∧ q ∈ ō
ϵ otherwise

(2.6)

Infl ({ū : ō→ s̄}, σ, q, y) = ϵ (2.7)

Infl ((φ⇒ P ) , σ, q, y) =

{
Infl (P, σ, q, y) if σ |= φ

ϵ otherwise
(2.8)

Infl
(
P 1 • P 2, σ, q, y

)
= Infl

(
P 1, σ, q, y

)
∪ Infl

(
P 2, σ, q, y

)
(2.9)
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Similar is the definition for the reader set, which is the dual of the influencer set.
Here intersection is used instead of union and the full set of security principals Pr
instead of ϵ

Read ({ū : ō← s̄}, σ, q, y) = Pr (2.10)

Read ({ū : ō→ s̄}, σ, q, y) =

{
s̄ if y ∈ ū ∧ q ∈ ō
Pr otherwise

(2.11)

Read ((φ⇒ P ) , σ, q, y) =

{
Read (P, σ, q, y) if σ |= φ

Pr otherwise
(2.12)

Read
(
P 1 • P 2, σ, q, y

)
= Read

(
P 1, σ, q, y

)
∩ Read

(
P 2, σ, q, y

)
(2.13)

Consider the following influencer policies

P = {s1 : s1, s2 ← y} • {s1 : s1, s3 ← y}

The influencers for the variable y according to s1 is

Infl (P, σ, s1, y) = {s1, s2} ∪ {s1, s3} = {s1, s2, s3}

Despite that the first policy only allows s1 and s2 to influence y s3 is also allowed as
an influencer. It is therefore only necessary to an influencer in one influencer policy
to count as an influencer for the whole policy. Consider the following reader policies

P = {s1 : s1, s2 → y} • {s1 : s1, s3 → y}

The readers for the variable y according to s1 is then

Read (P, σ, s1, y) = {s1, s2} ∩ {s1, s3} = {s1}

Conversely all reader policies in a policy must agree on who may read the information
and are thereby considered a reader.

It can here be seen that the influencers and readers represents some of the same
ideas from DLM as shown in Section 1.2, and that they are dual of each others.

2.3.4 Preorder
For the influencer and reader sets we can now define the ordering ⊑ between two
policies

P 1 ⊑ P 2 iff ∀σ, q, y : Infl
(
P 1, σ, q, y

)
⊆ Infl

(
P 2, σ, q, y

)
∧

∀σ, q, y : Read
(
P 1, σ, q, y

)
⊇ Read

(
P 2, σ, q, y

) (2.14)

Fact 2.4. The ordering ⊑ is a preorder, because it is reflexive and transitive.
(proven by looking at influencers and readers in Appendix A.2)

A partial order is a preorder which is also antisymmetric. This is not the case
for the preorder ⊑. Having P 1 = {ϵ : ō← s̄} and P 2 = {ū : ϵ← s̄}, it holds that
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P 1 ⊑ P 2 and P 2 ⊑ P 1, but the policies are different e.g. P 1 ̸= P 2. ⊑ is therefore not
antisymmetric.

For the preorder an equivalence relation ≡ is established instead

P 1 ≡ P 2 iff P 1 ⊑ P 2 ∧ P 2 ⊑ P 1 (2.15)

By using the example from before, the policies P 1 = {ϵ : ō← s̄} and P 2 = {ū : ϵ← s̄},
are equivalent i.e. P 1 ≡ P 2, because the influencer sets are the same for both policies,
and the reader set are the same for both policies.

2.3.5 Bottom and top policy
The bottom element of Pol is denoted {⊥} and has the property that {⊥} ⊑ P for all
P ∈ Pol. The top element of Pol is denoted {⊤} and has the property that P ⊑ {⊤}
for all P ∈ Pol.

Due to (2.14) the policy {⊥} should represent a policy where no one is allowed
as influencers and all security principals are allowed as readers. Consider therefore
following

{ϵ : ϵ← ϵ} • {⋆ : ⋆→ ⋆} ⊑ P (2.16)

On the left-hand side the influencers are always ϵ and the readers are ⋆; the order is
therefore true for all policies P , and the left-hand side is equivalent to {⊥}. In fact
using the equivalence relation it can be seen that there are multiple ways of denoting
the bottom element. Let ϵ ⊆ ū ⊆ ⋆, ϵ ⊆ ō ⊆ ⋆, ϵ ⊆ s̄ ⊆ ⋆ then

{⊥} ≡ {ϵ : ō← s̄} ≡ {ϵ : ō→ s̄} (2.17)
≡ {ū : ϵ← s̄} ≡ {ū : ϵ→ s̄} (2.18)
≡ {ū : ō← ϵ} (2.19)
≡ {⋆ : ⋆→ ⋆} (2.20)

At last it is seen that {⊥} ̸≡ {ū : ō→ ϵ} if ū, ō ̸= ϵ, which makes sense looking
at the reader policy for {⊤} defined below. The last inequality together with all the
equivalences are proven in Appendix A.3, by looking at the influencer set Infl (P, σ, q, y)
and reader set Read (P, σ, q, y) for all possible values for σ, q and y.

Conversely, for {⊤}, all security principals should be allowed to influence and no
security principal should be allowed to read. Consider therefore following

P ⊑ {⋆ : ⋆← ⋆} • {⋆ : ⋆→ ϵ} (2.21)

On the right-hand side the influencers are ⋆ and the readers are ϵ, which makes the
right-hand side equivalent to {⊤}. There is no other way of writing the top element
because non of the elements in (2.21) can be changed and still have the same property
for all P .

From here on {⊥} will simply be denoted {} and {⊤} will explicitly be denoted
{⋆ : ⋆← ⋆} • {⋆ : ⋆→ ϵ}.
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2.3.6 Bounded join-semilattice
Definition 2.1. Let L be a set with a partial ordering ⪯, and ⊔ be an upper bound
operator with respect to ⪯; i.e. having l1, l2 ∈ L then l1 ⪯ l1 ⊔ l2 and l2 ⪯ l1 ⊔ l2. If
for all l1, l2 ∈ L there exists a least upper bound l3 ∈ L such that l1 ⊔ l2 ⪯ l3, then
(L,⊔,⪯) is a join-semilattice. A join-semilattice is called bounded if it contains an
identity element ⊥ ∈ L, i.e. the least element, such that l ⊔ ⊥ = l for all l ∈ L.
Fact 2.5. (Pol, •,⊑≡) is a bounded join-semilattice.

Proof. The ordering ⊑ is a preorder, and using ≡ as the equivalence relation for ⊑
(denoted ⊑≡) yields a partial ordering, because it then is reflexive, transitive and
antisymmetric. The operator • is an upper bound operator on Pol seen by the
following

P 1 ⊑ P 1 • P 2 P 2 ⊑ P 1 • P 2 (2.22)
verified by the influencer and reader sets for i ∈ 1, 2, and all σ, q and y:

Infl
(
P i, σ, q, y

)
⊆ Infl

(
P 1, σ, q, y

)
∪ Infl

(
P 2, σ, q, y

)
Read

(
P i, σ, q, y

)
⊇ Read

(
P 1, σ, q, y

)
∩ Read

(
P 2, σ, q, y

)
Furthermore if P 1 ⊑ P 3 and P 2 ⊑ P 3 then it follows for all σ, q and y that

Infl
(
P 1, σ, q, y

)
⊆ Infl

(
P 3, σ, q, y

)
∧ Infl

(
P 2, σ, q, y

)
⊆ Infl

(
P 3, σ, q, y

)
⇔ Infl

(
P 1, σ, q, y

)
∪ Infl

(
P 2, σ, q, y

)
⊆ Infl

(
P 3, σ, q, y

)
Read

(
P 1, σ, q, y

)
⊇ Read

(
P 3, σ, q, y

)
∧ Read

(
P 2, σ, q, y

)
⊇ Read

(
P 3, σ, q, y

)
⇔ Read

(
P 1, σ, q, y

)
∩ Read

(
P 2, σ, q, y

)
⊇ Read

(
P 3, σ, q, y

)
which gives that

P1 • P2 ⊑ P3 iff P1 ⊑ P3 ∧ P2 ⊑ P3 (2.23)
verifying that • is a least upper bound operator, and that (Pol, •,⊑≡) is a join-
semilattice.

By definition of the • operator the policies are closed ∀P 1, P 2 ∈ Pol : P 1 • P 2 ∈
Pol. Furthermore for • the policies are idempotent, commutative and associative:

P • P ≡ P (2.24)
P 1 • P 2 ≡ P 2 • P 1 (2.25)

(P 1 • P 2) • P 3 ≡ P 1 • (P 2 • P 3) (2.26)
Appendix A.4 shows these equivalences, exploiting that the influencer and reader
sets uses basic set operations ∪ and ∩, which also are idempotent, commutative and
associative.

The policy {} is the bottom element of Pol and the top element is {⋆ : ⋆← ⋆} •
{⋆ : ⋆→ ϵ}. We therefore have that

{} • P ≡ P (2.27)
{⋆ : ⋆← ⋆} • {⋆ : ⋆→ ϵ} • P ≡ {⋆ : ⋆← ⋆} • {⋆ : ⋆→ ϵ} (2.28)

making the join-semilattice bounded.
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Equivalences

Influencer and reader policies underly some distributive laws, as seen in the following
equivalences:

{ū1ū2 : ō← s̄} ≡ {ū1 : ō← s̄} • {ū2 : ō← s̄} (2.29)
{ū1ū2 : ō→ s̄} ≡ {ū1 : ō→ s̄} • {ū2 : ō→ s̄} (2.30)
{ū : ō1ō2 ← s̄} ≡ {ū : ō1 ← s̄} • {ū : ō2 ← s̄} (2.31)
{ū : ō1ō2 → s̄} ≡ {ū : ō1 → s̄} • {ū : ō2 → s̄} (2.32)
{ū : ō← s̄1s̄2} ≡ {ū : ō← s̄1} • {ū : ō← s̄2} (2.33)

The missing distribution law for reader policies does not hold {ū : ō→ s̄1s̄2} ̸≡
{ū : ō→ s̄1} • {ū : ō→ s̄2}. This is seen in the reader set where there for one y ∈ ū,
q ∈ ō and all s1, s2

Read ({ū : ō→ s̄1s̄2}, σ, q, y) = s̄1s̄2

Read ({ū : ō→ s̄1} • {ū : ō→ s̄2}, σ, q, y)
= Read ({ū : ō→ s̄1}, σ, q, y) ∩ Read ({ū : ō→ s̄2}, σ, q, y)
= s̄1 ∩ s̄2

Indeed s̄1s̄2 ⊇ s̄1 ∩ s̄2 but s̄1 ∩ s̄2 ̸⊇ s̄1s̄2 for all s1, s2, this equivalence does not hold.
For conditional policies there are the following equivalencies(

φ⇒ P 1 • P 2)
≡

(
φ⇒ P 1)

•
(
φ⇒ P 2)

(2.34)
(φ1 ∧ φ2⇒ P ) ≡ (φ1⇒ (φ2⇒ P )) (2.35)

(φ⇒{}) ≡ {} (2.36)
(true⇒ P ) ≡ P (2.37)
(false⇒ P ) ≡ {} (2.38)

Correctness of all the equivalences are shown in Appendix A.5.

2.3.7 Localised policies and system policies
All the policies for a distributed system Sys = l1 : S1 ∥ · · · ∥ ln : Sn which contains
m channels is denoted

PSys = Pl1 • · · · • Pln • Pch1 • · · · • Pchm

where Pℓ is a process policy for the process with label ℓ and Pch is a channel policy
for the channel named ch. All the process policies in the system are denoted

P• = Pl1 • · · · • Pln

All the process policies Pℓ and channel policies Pch must be localised.

Definition 2.2. A process policy Pℓ is localised if
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• fv(Pℓ) ⊆ Varℓ,

• (∀u ∈ iv(Pℓ) : (S(ℓ) ∈ io(Pℓ, u))), and

• (∀u ∈ rv(Pℓ) : (S(ℓ) ∈ ro(Pℓ, u))).

First, the process policies may only contain variables from their own domain, such
that Pℓ only contains variables from Varℓ. For the system l1 : x := 4 ∥ l2 : y := 2
where S(li) = si for i ∈ 1, 2 the policy (y > 4⇒{x : s1 ← s1}) is not localised to l1
because it uses the variable y which belongs to l2.

Intuitively it makes sense that the process owns its own variables, here formalised
in the requirement that it must be explicitly defined. For all variables in the process
policy Pℓ which are used in influencer policies, i.e. iv(Pℓ), the security domain for the
process S(ℓ) must be in the influencer owners for that variable, i.e. S(ℓ) ∈ io(Pℓ, u).
Similar rules apply to the reader policies in the process policy, before they can be
considered localised.

Definition 2.3. A channel policy Pch is localised if fv(Pch) ⊆ Var#.

A channel has no security principal like the processes and a localised channel
policy must therefore only contain channel variables.

2.4 Fully defined system
To summarise, a fully defined system is the tuple (Sys,S,NSA, PSys) where Sys is a
system of processes

Sys = l1 : S1 ∥ · · · ∥ ln : Sn

which have m channels of arity (at most) k. The security principals

S(ℓ) ∈ Pr

should be defined for all ℓ ∈ Lab = {l1, . . . , ln}, with a special security principal

NSA ̸= S(ℓ)

for all ℓ, making S non-surjective.
With these definitions, the following sets can be derived:

Lab = {l1, . . . , ln}

Var =
⊎

l∈Lab

Varl

Var# = {#1, · · · ,#k}
Var+ = Var ∪Var#

Pr = {S(l1)} ∪ · · · ∪ {S(ln)} ∪ NSA = ⋆
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Finally, the system must specify the policies for all processes and channels

PSys = Pl1 • · · · • Pln • Pch1 • · · · • Pchm (2.39)

where all the process policies and channel policies must be localised. If there are no
policies defined for the channel, process or system it amounts to {}.

2.5 Security predicates
Given all processes policies for a system P• = Pl1 • · · · •Pln

the security predicate for
systems takes the form

secP•(σ;U,F,D;σ′) =
∀(u, s, u′) ∈ F : Infl (P•, σ, s, u) ⊆ Infl (P•, σ′, s, u′)∧

Read (P•, σ, s, u) ⊇ Read (P•, σ′, s, u′)
∀s : ∀u ∈ Var \D : Infl (P•, σ, s, u) ⊆ Infl (P•, σ′, s, u)∧

Read (P•, σ, s, u) ⊇ Read (P•, σ′, s, u)

A secure system is considered secure if none of the policies are violated in the single
transition relation. Here σ and σ′ represents the states before and after the flow
F takes place, and U and D are the used and defined variables in the state. The
system flow F records the information flow from one set of variables ū to another
set of variables ū′ by a set of observers s̄. The security predicate for systems ensures
that there are more or the same influencers for the variables in ū′ than ū, to ensure
integrity. Conversely, there should be less or the same readers for the variables in ū′

than ū, to ensure confidentiality.
The other part of the security predicate for systems ensures that all previously

existing variables preserve their integrity and confidentiality during the transition
from one state to another. The description of the security predicate leads to the
following definition of a secure system.

Definition 2.4. The transition relation ⟨l1 : S1 ∥ · · · ln : Sn, σ⟩
F==⇒

U,D
⟨l1 : S′1 ∥ · · · ∥

ln : S′n, σ′⟩ is secure if secP•(σ;U,F,D;σ′) holds.

A similar result can be shown for processes. Given two policies P , P ′ ∈ Pol, two
states σ, σ′ ∈ State+ and an extended flow E ∈ Var+

⋄ × Pr × Var+
⋄ , the security

predicate for processes is defined by

sec(P, σ;E;σ′, P ′) =
∀(u, s, u′) ∈ E ∩ (Var+ ×Pr×Var+) : Infl (P, σ, s, u) ⊆ Infl (P ′, σ′, s, u′)∧

Read (P, σ, s, u) ⊇ Read (P ′, σ′, s, u′)
∀s : ∀u ∈ Var \ trd(E) : Infl (P, σ, s, u) ⊆ Infl (P ′, σ′, s, u)∧

Read (P, σ, s, u) ⊇ Read (P ′, σ′, s, u)
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The two parts are similar to the security predicate for systems. The extended flows
are filtered such that they only describes flows from variables and channel variables.
The policy P then describes the policy which should be enforced before the flow and
P ′ is the policy that should be enforced after the flow. The other part of the security
predicate for processes ensures that all the previously existing variables preserve their
integrity and confidentiality, just as in the security predicate for systems.

Definition 2.5. The transition relation ⊢ℓ ⟨S;σ⟩ E−→
α
⟨S′;σ′⟩ is secure if

• α = τ and sec(Pℓ, σ;E;σ′, Pℓ) holds, or

• α = ch!(v1, . . . , vk) and sec(Pℓ, σ;E;σ′[(#i 7→ vi)i≤k], Pℓ • Pch) holds, or

• α = ch?(v1, . . . , vk) then sec(Pℓ • Pch, σ[(#i 7→ vi)i≤k];E;σ′, Pℓ) holds.

It is now seen for the output statement that the policy Pℓ is enforced before the
flow, and the policy Pℓ • Pch is enforced after the flow, such that the integrity and
confidentiality is preserved in the information flow from the variables to the channel
variables, and vice versa for the input statement.

The fully defined system enables runtime verification of whether the system and
process is secure, using the two security predicates secP•(σ;U,F,D;σ′) and sec(P, σ;
E;σ′, P ′). Implementing such a system then raises questions about what to do if
the security predicates do not hold. The execution could simply stop, which could
result in a system not working as intended. Another approach is to log the wrong
information flow and continue the running the system with the leaked information.
A further investigation can then be done and thereby make adjustment of policies
or the program. Chapter 3 describes a type system where all possible flows for the
system can be examined before run time. On the basis of that result, a distributed
system can then be declared secure according to its policies.

2.6 Examples

2.6.1 Assignments
Consider the fully defined system (Sys,S,NSA, PSys) where

Sys = l : x := 4; y := x (2.40)
and S(l) = s. Given the policy

PSys = P• = Pl = {xy : s← s} (2.41)
where s allows x and y to be influenced by s. Because S(l) = s, there is no problem.

All the flows in the system can now be determined. Using [assis] and [comp2
is] we

have

⊢ℓ ⟨x := 4;σ⟩ 4̄⋄×Pr×x−−−−−−→
τ

⟨skip;σ[x 7→ J4Kσ]⟩

⟨l : x := 4; y := x, σ⟩ ϵ===⇒
ϵ,{x}

⟨l : y := x, σ[x 7→ J4Kσ]⟩ (2.42)



2.6 Examples 27

Let σ′ = σ[x 7→ J4Kσ]. Using [assis] and [comp1
is], we have

⊢ℓ ⟨y := x;σ′⟩ x̄⋄×Pr×y−−−−−−→
τ

⟨skip;σ′[y 7→ JxKσ′]⟩
⟨l : y := x, σ′⟩ x×Pr×y=====⇒

{x},{y}
⟨l : skip, σ′[y 7→ JxKσ′]⟩ (2.43)

Let σ′′ = σ′[y 7→ JxKσ′]. The only system flows are therefore (x × Pr × y). The
security predicate gives

sec{xy:s←s}(σ; ϵ, ϵ, {x};σ′)
= ∀s′ ∈ {s,NSA} : ∀u ∈ Var \ {x} :

Infl ({xy : s← s}, σ, s′, u) ⊆ Infl ({xy : s← s}, σ′, s′, u)∧
Read ({xy : s← s}, σ, s′, u) ⊇ Read ({xy : s← s}, σ′, s′, u)

Since the system flow in the first execution is ϵ, the first part of the security predicate
is left out. The rest of the predicate is true as the only difference is σ and σ′ which
does not change the influencers and readers for this simple policy. For the other
execution

sec{xy:s←s}(σ′; {x}, x×Pr× y, {y};σ′′)
= ∀(x, s′, y) ∈ F :

Infl ({xy : s← s}, σ′, s′, x) ⊆ Infl ({xy : s← s}, σ′′, s′, y)
Read ({xy : s← s}, σ′, s′, x) ⊆ Read ({xy : s← s}, σ′′, s′, y)
∀s′ ∈ {s,NSA} : ∀u ∈ Var \ {y} :

Infl ({xy : s← s}, σ′, s′, u) ⊆ Infl ({xy : s← s}, σ′′, s′, u)∧
Read ({xy : s← s}, σ′, s′, u) ⊇ Read ({xy : s← s}, σ′′, s′, u)

The first part is true as x and y have the same policy. The second part is also true
using same augmenting as before. All the system flows are hence secure according to
the policy in (2.41) as expected.

Next, consider another policy

PSys = Pl = {x : s← s} • (x > 5⇒{y : s← s}) (2.44)

Here x may be influenced by s but y may only be influenced by s if x > 5. The first
statement in (2.40) truly ensures that x = 4 thereby making x > 5 false. The flow
from x to y is therefore illegal and the system is not secure according to this policy.
Again this can be seen in the security predicate

sec{x:s←s}•(x>5⇒{y:s←s})(σ; ϵ, ϵ, {x};σ′)
= ∀s′ ∈ {s,NSA} : ∀u ∈ Var \ {x} :

Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ, s′, u)
⊆ Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ′, s′, u)

Read ({x : s← s} • (x > 5⇒{y : s← s}) , σ, s′, u)
⊇ Read ({x : s← s} • (x > 5⇒{y : s← s}) , σ′, s′, u)
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Just as before the first part of the security predicate is left out. The relation can be
false when u = y and s′ = s which for influencers gives

Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ, s, y) ⊆
Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ′, s, y)
= ϵ ∪ Infl ((x > 5⇒{y : s← s}) , σ, s, y) ⊆ ϵInfl ((x > 5⇒{y : s← s}) , σ′, s, y)

=

{
s if σ |= x > 5
ϵ otherwise

⊆

{
s if σ′ |= x > 5
ϵ otherwise

=

{
s if σ |= x > 5
ϵ otherwise

⊆ ϵ

We have not specified the value for σ(x) and we therefore have that σ ̸|= x > 5.
This also makes sense as y may not be influenced unless x is explicitly defined in the
system. Hence the security predicate does not hold.

For completeness let us look at the security predicate for the second execution.

sec{x:s←s}•(x>5⇒{y:s←s})(σ′; {x}, x×Pr× y, {y};σ′′)
= ∀(x, s′, y) ∈ F :

Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ′, s′, x)
⊆ Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ′′, s′, y)

Read ({x : s← s} • (x > 5⇒{y : s← s}) , σ′, s′, x)
⊆ Read ({x : s← s} • (x > 5⇒{y : s← s}) , σ′′, s′, y)

∀s′ ∈ {s,NSA} : ∀u ∈ Var \ {y} :
Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ′, s′, u)
⊆ Infl ({x : s← s} • (x > 5⇒{y : s← s}) , σ′′, s′, u)∧

Read ({x : s← s} • (x > 5⇒{y : s← s}) , σ′, s′, u)
⊇ Read ({x : s← s} • (x > 5⇒{y : s← s}) , σ′′, s′, u)

For the first part the influencers for x is clearly s on the left-hand side. On the right-
hand side y becomes ϵ as σ′′ ̸|= x > 5 because σ′′(x) = 4. The security predicate does
not hold for this execution either.

The distributed system (Sys,S,NSA, PSys) is therefore not secure according to
the system policies in (2.44).

2.6.2 Variable influenced by itself
Take the following system

l : x := x− 4 S(l) = s P• = Pl = {x : s2 ← s2} Pr = {s, s2,NSA}

where s ̸= s2. The policy says that x is owned by s2 and may only be influenced by s2.
Intuitively this system should not be secure, because clearly x is influenced by S(l) = s
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in the assignment. But the policy is not localised, and the system is not defined
properly. Looking at the flows gives (x×Pr× x) = {(x, s, x), (x, s2, x), (x,NSA, x)}.

⊢l ⟨x := x− 4;σ⟩ x⋄×Pr×x−−−−−−→
τ

⟨skip;σ[x 7→ Jx− 4Kσ]⟩

⟨l : x := x− 4, σ⟩ x×Pr×x=====⇒
{x},{x}

⟨l : skip, σ[x 7→ Jx− 4Kσ]⟩

Now let σ′ = σ[x 7→ Jx− 4Kσ] and let Var = {x}. The security predicate concerning
integrity for the system is then

secP•(σ; {x}, (x×Pr× x), {x};σ′)
= ∀(u, s, u′) ∈ (x×Pr× x) : Infl (P•, σ, s, u) ⊆ Infl (P•, σ′, s, u′)

∀s : ∀u ∈ Var \ {x} : Infl (P•, σ, s, u) ⊆ Infl (P•, σ′, s, u)

making the first part is true. The second part

Infl ({x : s2 ← s2}, σ, s, x) ⊆ Infl ({x : s2 ← s2}, σ′, s, x) = ϵ ⊆ ϵ
Infl ({x : s2 ← s2}, σ, s2, x) ⊆ Infl ({x : s2 ← s2}, σ′, s2, x) = s2 ⊆ s2

Infl ({x : s2 ← s2}, σ,NSA, x) ⊆ Infl ({x : s2 ← s2}, σ′,NSA, x) = ϵ ⊆ ϵ

is also true as there are no variables u ∈ Var \ {x} = ϵ.
The system is therefore secure but the policies are not defined properly.

2.6.3 Multiple uses of same channel
When having multiple processes it is allowed to use the same channel such that

l1 : ch!x ∥ l2 : ch?y ∥ l3 : ch?z

This systems will though never reach the terminal configuration, as one of the pro-
cesses will wait for receiving input, but never receive anything. This is of course also
allowed the other way around with multiple senders and one receiver

l1 : ch!x ∥ l2 : ch!y ∥ l3 : ch?z

2.6.4 Bypass
Consider the following system:

l1 : x :=† y; ch!x ∥ l2 : ch?u; v :=† u (2.45)

which contains three executions, first one bypass assignment, then one channel trans-
fer (input and output statement), and last a bypass assignment. It is assumed that
Pr = {s1, s2, s3} and S(li) = si for i = 1, 2, leaving s3 as the special principal. The
flows can be determined using the instrumented semantics for systems and processes.
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It is assumed that σ(y) is defined. In the first execution using σ1 = σ[x 7→ JyKσ] the
semantics gives

⊢l1 ⟨x :=† y;σ⟩ {y,⋄}×{s2,s3}×{x}−−−−−−−−−−−−→
τ

⟨skip;σ[x 7→ JyKσ]⟩

⊢l1 ⟨x :=† y; ch!x;σ⟩ {y,⋄}×{s2,s3}×{x}−−−−−−−−−−−−→
τ

⟨ch!x;σ1⟩

⟨l1 : x :=† y; ch!x ∥ l2 : ch?u; v :=† u, σ⟩ {y}×{s2,s3}×{x}===========⇒
{y},{x}

⟨l1 : ch!x ∥ l2 : ch?u; v :=† u, σ1⟩

In the second execution let n = JxKσ1 and σ2 = σ1[u 7→ n], which yields

⊢l1 ⟨ch!x;σ1⟩
{x}×{s1,s2,s3}×{#1}−−−−−−−−−−−−−−→

ch!n
⟨skip;σ1⟩

⊢l2 ⟨ch?u;σ1⟩
{#1}×{s1,s2,s3}×{u}−−−−−−−−−−−−−−→

ch?n
⟨skip;σ1[u 7→ n]⟩

⊢l2 ⟨ch?u; v :=† u;σ1⟩
{#1}×{s1,s2,s3}×{u}−−−−−−−−−−−−−−→

ch?n
⟨v :=† u;σ2⟩

⟨l1 : ch!x ∥ l2 : ch?u; v :=† u, σ1⟩
{x}×{s1,s2,s3}×{u}=============⇒

{x},{u}
⟨l1 : skip ∥ l2 : v :=† u, σ2⟩

In the last and third execution let σ3 = σ2[v 7→ JuKσ2], which gives:

⊢l2 ⟨l2 : v :=† u;σ2⟩
{u,⋄}×{s1,s3}×{v}−−−−−−−−−−−−→

τ
⟨skip;σ2[v 7→ JuKσ2]⟩

⟨l1 : skip ∥ l2 : v :=† u, σ2⟩
{u}×{s1,s3}×{v}===========⇒

{u},{v}
⟨l1 : skip ∥ l2 : skip, σ3⟩

In Table 2.1 the overall flows for the system is expanded for each of the security
principal.

Assume we have a policy such that nobody may influence x. Because of the
bypass this is ok for s1 as there will not be observed any flow to x. The process only
bypasses the policies for its own security principal, and s2 will therefore observe this
flow. Hence with such a policy the system will not be secure.

Execution s1 s2 s3

1 (y, s2, x) (y, s3, x)
2 (x, s1, u) (x, s2, u) (x, s3, u)
3 (u, s1, v) (u, s3, v)

Table 2.1: System flows for (2.45) distributed on security domains.



CHAPTER 3
Type system

This chapter describes an inference system, combining a type system and a Hoare logic.
The system can statically check if a fully defined system complies its policies before
actually running the system. The programmer can therefore modify the policies
and system until the type system yields a secure system. For the type system, a
correctness result is then presented, mapping each execution from the type system to
a legal execution in the instrumented semantics, according to the specified policies.

The type system springs from a classical Hoare logic, where the essential is the
Hoare triple

{ϕ}S{ϕ′}

where ϕ is the precondition, ϕ′ is the postcondition (collectively known as assertions),
with both formulated using predicate logic. A triple {ϕ}S{ϕ′} specifies that if the
precondition ϕ holds in the initial state, and if the execution of the statement S
terminates, then the postcondition ϕ′ will hold in the state at which S halts [NN07].

The provability of the Hoare triple is denoted

env ⊢ {ϕ}S{ϕ′}

where env is the type environments. A typing rule has the general form

premises
env ⊢ {ϕ}S{ϕ′}︸ ︷︷ ︸
typing judgement

side conditions

When there are no premises, the typing rule is called an axiom and the line is omitted.
The type environments are used in the side conditions and the premises containing
declarations, labels, etc.

The system is assumed to be fully defined, as described in Section 2.4. A typing
judgement for distributed systems takes the form

⊢ {ϕ1& · · ·&ϕn} l1 : S1 ∥ · · · ∥ ln : Sn (3.1)

where ϕi are the precondition for process li in the form of a predicate only containing
variables from Varli

. There is only one typing rule for a system

[systs] ϵ ⊢l1 {ϕ1}S1{true} · · · ϵ ⊢ln {ϕn}Sn{true}
⊢ {ϕ1& · · ·&ϕn} l1 : S1 ∥ · · · ∥ ln : Sn (3.2)
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All the individual processes should therefore end with true as their postcondition. For
this reason, the typing judgement for systems does not have any postcondition, since
this would be on the form of {true & · · · & true}.

From (3.2) it is seen that the typing judgement for processes takes the form

ȳ ⊢ℓ {ϕ}S{ϕ′} (3.3)

where {ϕ}S{ϕ′} is a classical Hoare triple. The label ℓ denotes the process in question
and ȳ the set of variables that indirectly influences the statement S through implicit
flows. The label ℓ and set of variables ȳ are therefore type environments, for the
judgement.

All typing rules and axioms for processes are specified in Rule Collection 3.1 and
will be explained in more details in Section 3.4. First the notation for the assertions,
side conditions and substitutions are described.

3.1 Assertions
The predicate logic for preconditions and postconditions is restricted to

ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| a+
1 rel a+

2 | (∃ū : (ϕ))

making it syntactically equivalent to the policy conditions φ from Section 2.3.1. The
assertions can therefore be used as conditions for policies e.g. (ϕ⇒ P ).

3.2 Substitutions in policies
Let a be an arithmetic operation and z a variable or channel variable, then P [a/z] is
defined as

{ū : ō← s̄}[a/z] = {ū : ō← s̄}
{ū : ō→ s̄}[a/z] = {ū : ō→ s̄}

(φ⇒ P )[a/z] = (φ[a/z]⇒ P [a/z])
(P 1 • P 2)[a/z] = P 1[a/z] • P 2[a/z]

This substitution therefore only has an effect in the conditions for the policies, and
the notion of φ[a/z] is already covered in Section 2.3.1, meaning that all occurrences
of z in φ are replaced with a.

To determine the influencers and readers recall from (2.8) and (2.12) that σ |= φ
should hold for conditional policies. A substitution of the variables in the policies
P [a/z] can therefore be reflected in a change to the state σ.

Fact 3.1. Infl (P [a/x] , σ, q, z) = Infl (P, σ[x 7→ JaKσ], q, z)
(proven by structural induction on P in Appendix A.6)
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[skipts] ȳ ⊢ℓ {ϕ}skip{ϕ′} if (ϕ⇒ ϕ′)

[assts] ȳ ⊢ℓ {ϕ}x := a{ϕ′} if (ϕ⇒ ϕ′[a/x]) ∧ (ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ[a/x]

[ass
†
ts

] ȳ ⊢ℓ {ϕ}x :=† a{ϕ′} if (ϕ⇒ ϕ′[a/x]) ∧
(ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}

[combts]
ȳ ⊢ℓ {ϕ}S1{ϕ′′} ȳ ⊢ℓ {ϕ′′}S2{ϕ′}

ȳ ⊢ℓ {ϕ}S1;S2{ϕ′}

[ifts]
ȳb̄ ⊢ℓ {ϕ ∧ b}S1{ϕ′} ȳb̄ ⊢ℓ {ϕ ∧ ¬b}S2{ϕ′}

ȳ ⊢ℓ {ϕ}if b then S1 else S2 fi{ϕ′}

[loopts]
ȳb̄ ⊢ℓ {ϕ ∧ b}S{ϕ}

ȳ ⊢ℓ {ϕ}while b do S od{ϕ ∧ ¬b}

[outts] ȳ ⊢ℓ {ϕ}ch!(a1, . . . , ak){ϕ′} if (ϕ⇒ ϕ′) ∧
(ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑ Pch[ai/#i]i≤k • {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}

[out
†
ts

] ȳ ⊢ℓ {ϕ}ch!†(a1, . . . , ak){ϕ′} if (ϕ⇒ ϕ′) ∧
(ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑ Pch[ai/#i]i≤k • {⋆# : S(ℓ)← ⋆} • {⋆# : S(ℓ)→ ϵ}

• {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}

[ints] ȳ ⊢ℓ {ϕ}ch?(x1, . . . , xk){ϕ′} if (((∃x1, . . . , xk : (ϕ)))⇒ ϕ′) ∧
(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) • Pch⟨#i/xi⟩i≤k ⊑ Pℓ[#i/xi]i≤k • {⋆# : ⋆← ⋆}

• {⋆# : ⋆→ ϵ}

[chots]
ȳ ⊢ℓ {ϕ}S1{ϕ′} ȳ ⊢ℓ {ϕ}S2{ϕ′}

ȳ ⊢ℓ {ϕ}((S1)⊕ (S2)){ϕ′}

[implts]
ȳx̄ ⊢ℓ {ϕ}S{ϕ′}
ȳ ⊢ℓ {ϕ}⌈x̄⌉S{ϕ′}

[consts]
ȳ ⊢ℓ {ψ}S{ψ′}
ȳ ⊢ℓ {ϕ}S{ϕ′}

if (ϕ⇒ ψ) ∧ (ψ′ ⇒ ϕ′)

Rule Collection 3.1: Type system for processes.
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Fact 3.2. Read (P [a/x] , σ, q, z) = Read (P, σ[x 7→ JaKσ], q, z)
(proven by structural induction on P in Appendix A.6)

The other substitution rule uses a set of variables or channel variables ȳ, and a
variable or channel variable z, and are defined by

{ū : ō← s̄}⟨ȳ/z⟩ =

{
{ūz : ō← s̄} if ū ∩ ȳ ̸= ϵ

{ū : ō← s̄} otherwise

{ū : ō→ s̄}⟨ȳ/z⟩ =

{
{ūz : ō→ s̄} if ū ∩ ȳ ̸= ϵ

{ū : ō→ s̄} otherwise
(φ⇒ P ) ⟨ȳ/z⟩ = (φ⇒ P ⟨ȳ/z⟩)

(P 1 • P 2)⟨ȳ/z⟩ = P 1⟨ȳ/z⟩ • P 2⟨ȳ/z⟩

The substitution has an effect on the owners, influencer and readers of the variable
z in the policies. For P ⟨ȳ/z⟩ we can say that z is extended with policies for ȳ in P .
This results in the following facts, where the influencers are simply the influencers of
all policies concerning ȳ ∪ {z}, and the readers are the intersection of all the readers
for the variables ȳ ∪ {z}.

Fact 3.3. Infl (P ⟨ȳ/x⟩, σ, q, z) =

{∪
u∈xȳ Infl (P, σ, q, u) if x = z

Infl (P, σ, q, z) otherwise
(proven by structural induction on P in Appendix A.7)

Fact 3.4. Read (P ⟨ȳ/x⟩, σ, q, z) =

{∩
u∈xȳ Read (P, σ, q, u) if x = z

Read (P, σ, q, z) otherwise
(proven by structural induction on P in Appendix A.7)

At last, a shorthand notation is used for making multiple substitutions at once

Pch[ai/ui]i≤k = (· · ((Pch[a1/u1])[a2/u2]) · · · )[ak/uk]
Pch⟨x̄i/ui⟩i≤k = (· · ((Pch⟨x̄1/u1⟩)⟨x̄2/u2⟩) · · · )⟨x̄k/uk⟩

which is used in [outts] and [ints].

3.3 Side conditions
The side conditions in the type system are an extension of the assertions

c ::= true | false | ¬c | c1 ∧ c2 | c1 ∨ c2

| a+
1 rel a+

2 | (∃ū : (c)) | c1 ⇒ c2 | P 1 ⊑ P 2

Different from the assertions is the implication c1 ⇒ c2, defined the usual way (short-
hand for ¬c1 ∨ c2). Intuitively it means that c1 is stronger than c2.
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The side conditions are also extended with the preorder ⊑ as defined in (2.14),
determining whether or not P 1 ⊑ P 2. It is difficult to determine P 1 ⊑ P 2 due to
the complexity of the policies and the fact that the influencers and readers must be
determined for all inputs. The result would therefore not be simply true or false but
interdependent on the policy conditions, variables, channel variables, and security
principals for the two policies. In Section 4.2 it is fully covered how to determine
these interdependencies.

3.4 Type system for processes
Most of the rules in the type system look similar to a standard type system [NN07],
and most of the axioms have extended side conditions which ensures that the infor-
mation flow is secure. Each rule will be described here.

The [skipts] rule is

ȳ ⊢ℓ {ϕ}skip{ϕ′} if (ϕ⇒ ϕ′)

It is clear that skip does nothing and always terminates, thus if the postcondition
ϕ holds in the initial state before skip is executed, and ϕ′ is constructed such that
ϕ⇒ ϕ′, then ϕ′ will hold in the state where skip halts.

The [assts] rule is

ȳ ⊢ℓ {ϕ}x := a{ϕ′} if (ϕ⇒ ϕ′[a/x])︸ ︷︷ ︸
(1)

∧
(a)︷ ︸︸ ︷

(ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑
(b)︷ ︸︸ ︷

Pℓ[a/x]︸ ︷︷ ︸
(2)

Part (1) is similar to the skip statement, but because the assignment updates the
value for x, these changes needs to reflect the postcondition ϕ′. If ϕ holds, and if the
execution of a := x terminates (which it always does), and ϕ′ is constructed in such
a way that ϕ⇒ ϕ′[a/x], then ϕ′ will hold in the state where x := a halts.

Looking back at the security predicate for processes sec(P, σ;E;σ′, P ′), the policies
P should apply in the state σ before the flow, and the policy P ′ should apply to the
system in the state σ′ after the flow. In the type system there is no direct record of
the state of the system, which is instead reflected in the postcondition. The changes
made by x := a are thus made directly in policies such that they reflect the changes
between σ and σ′. Part (2) of the side condition for [assts] therefore concerns the
policies. There needs to be a relation between the policies in the state before and
after the assignment x := a, such that the policies concerning x are not violated by
the update of x. The relation is two modified versions of the local policy Pℓ, described
here.

(a) Considerer (ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ. In the assignment x := a there is an infor-
mation flow from the free variables inside a (denoted ā) to x. The local policy
should therefore ensure that all the policies concerning the variables ā are trans-
ferred to x (i.e. extending x with the policies for ȳ in Pℓ). Now the original
policy Pℓ should allow more or the same influencers for integrity, and fewer or
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the same readers for confidentiality than (ϕ⇒ Pℓ⟨āȳ/x⟩). The variables implic-
itly affecting the statement ȳ are also included here, all yielding Pℓ⟨āȳ/x⟩.
ϕ is the precondition holding before the execution of the assignment. The
condition could therefore contain information regarding x, and the policy is
therefore bound to this.

(b) Considerer Pℓ ⊑ Pℓ[a/x]. The local policy Pℓ could contain conditional policies
where the condition φ contains x, i.e. x ∈ φ̄. In the statement x := a it is
clear that x = a, and all the occurrences of x can therefore be replaced by a.
For symmetry one could argue that this part also should be bound by ϕ′, but
that is not necessary, because the first part (1) ensures that the postcondition
is implied by the precondition.

We now have (ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ and Pℓ ⊑ Pℓ[a/x] which combined gives (2). The
side condition in [assts] ensures that when x := a terminates no policies are violated
due to the update of x by a.

The [ass†ts] rule is similar to [assts], only with a change in (2) of the side conditions

(ϕ⇒ ϕ′[a/x])︸ ︷︷ ︸
(1)

∧
(a)︷ ︸︸ ︷

(ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑
(b)︷ ︸︸ ︷

Pℓ[a/x] •
(c)︷ ︸︸ ︷

{x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}︸ ︷︷ ︸
(2)

(c) In the bypass assignment statement, the policies regarding x should be ignored.
To model this, the policy {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ} is added. Looking
at the right-hand side of the relation the influencers would then be ⋆ and the
readers ϵ for the variable x from the process ℓ. The influencers for x would then
yield · ⊆ ⋆ and readers · ⊇ ϵ which is always true.

The [combts] rule is simply applying the relevant typing rules for each of the
statements S1 and S2.

ȳ ⊢ℓ {ϕ}S1{ϕ′′} ȳ ⊢ℓ {ϕ′′}S2{ϕ′}
ȳ ⊢ℓ {ϕ}S1;S2{ϕ′}

If ϕ holds before the execution of S1;S2 then if the execution terminates, then ϕ′

holds in the final state. Furthermore if S1 terminates the postcondition ϕ′′ for S1
holds, and serves as precondition for S2. If S2 terminates then ϕ′ holds in the final
state for the execution of S1;S2.

The [ifts] typing rule for conditional branching if b then S1 else S2 fi is

ȳb̄ ⊢ℓ {ϕ ∧ b}S1{ϕ′} ȳb̄ ⊢ℓ {ϕ ∧ ¬b}S2{ϕ′}
ȳ ⊢ℓ {ϕ}if b then S1 else S2 fi{ϕ′}

Saying that when if b then S1 else S2 fi is executed in a state where ϕ holds and that
if b then S1 else S2 fi terminates then ϕ′ will hold in the final state. From this the
precondition is further strengthened for the two branches. If S1 is executed in a state
where ϕ ∧ b holds and S1 terminates, then ϕ′ will hold in the final state. Likewise
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for S2 with the precondition ϕ ∧ ¬b. Furthermore the implicit flows from the free
variables in b are added to each of the branches.

The [loopts] rule for iteration while b do S od is

ȳb̄ ⊢ℓ {ϕ ∧ b}S{ϕ}
ȳ ⊢ℓ {ϕ}while b do S od{ϕ ∧ ¬b}

which is similar to [ifts]. Here the precondition for S is also strengthened to ϕ ∧ b.
It is furthermore seen that the precondition and postcondition ϕ is the same on both
sides, making ϕ an invariant. This invariant is further discussed in Section 4.4. In
[loopts] it is furthermore straight forward to see that if the iteration terminates then
¬b will be true after the termination, thus gives the postcondition ϕ ∧ ¬b. Here the
implicit flows from the free variables in b are also added to the typing rule for S.

For the [outts] rule, the side conditions are

(ϕ⇒ ϕ′)︸ ︷︷ ︸
(1)

∧
(a)︷ ︸︸ ︷

(ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑
(b)︷ ︸︸ ︷

Pch[ai/#i]i≤k •
(d)︷ ︸︸ ︷

{⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}︸ ︷︷ ︸
(2)

In part (1) of the side condition, the output is equivalent to [skipts], as the output
statement should do nothing.

For a process ℓ with a channel output ch!(a1, . . . , ak) the type system needs a
relation between the local policy Pℓ and the policy for the channel Pch. The process
may only transfer information to the channel variables if the channel policy allows
more or the same influencers for integrity, and conversely fewer or the same readers
for confidentiality as expressed previously for (2) in [assts]. The features for the side
conditions are then

(a) For the statement ch!(a1, . . . , ak) there is an information flow from the variables
āi to #i (for all i ≤ k), where āi denotes the free variables in ai. The local
policy Pℓ should therefore ensure that all policies concerning the variables āi is
applied to #i for all i ≤ k. Similar to (a) for [assts], the precondition is added
for this policy.

(b) Each channel variable #i used as a condition in Pch should be related to the
arithmetic expression ai (again for all i ≤ k), and thereby evaluated.

When such a relation is established it is only necessary to look at the policies with
channel variables, since all the relevant policies have been transferred to the channel
variables (which was done in (a)). One last feature is therefore needed

(d) The local policy Pℓ also contains policies for variables not used in any of the
transferred expressions āi. These should not have any effect in this relation, and
top local policy {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ} is therefore appended to Pch. The
relation will therefore ensure (2) in relation to influencers and readers.
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If the precondition ϕ holds before the execution of ch!(a1, . . . , ak), and if the execution
terminates and the side conditions hold (i.e. no illegal information flows) then the
postcondition ϕ′ will hold in the final state.

The side condition for the [out†ts] rule is a combination of [ass†ts] and [outts].
Similar to the [outts] is (1), (a), (b) and (d).

(1)︷ ︸︸ ︷
(ϕ⇒ ϕ′) ∧

︷ ︸︸ ︷
(ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k)︸ ︷︷ ︸

(a)

⊑

(2)︷ ︸︸ ︷
Pch[ai/#i]i≤k︸ ︷︷ ︸

(b)

• {⋆# : S(ℓ)← ⋆} • {⋆# : S(ℓ)→ ϵ}︸ ︷︷ ︸
(c)

• {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}︸ ︷︷ ︸
(d)

and from [ass†ts] is

(c) In the bypass output, the policies regarding ⋆# should be ignored. To model
this, {⋆# : S(ℓ)← ⋆} • {⋆# : S(ℓ)→ ϵ} is added on the right-hand side of the
relation such that in the relation of the two sides the influencers and readers
for the channels variables for the security domain S(ℓ) does not have any effect
on the result.

The side conditions the [ints] rule is similar to [assts] and a reverse version of
[outts]

(1)︷ ︸︸ ︷
(((∃x1, . . . , xk : (ϕ)))⇒ ϕ′) ∧

(2)︷ ︸︸ ︷
(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) • Pch⟨#i/xi⟩i≤k︸ ︷︷ ︸

(a)

⊑ Pℓ[#i/xi]i≤k︸ ︷︷ ︸
(b)

• {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}︸ ︷︷ ︸
(d)

Part (1) is relative to the state after the execution of the statement, where there
exists x1, . . . , xk such that ϕ holds, which implies ϕ′.

Part (2) of the side conditions follows a structure similar to [outts]. The channel
may only transfer the information to the process if the process policy allows more
or the same influencers for integrity, and conversely fewer or the same readers for
confidentiality, on the variables x1, . . . , xk used for input.

(a) For the statement ch?(x1, . . . , xk) there is an information flow from the variable
#i to xi (for all i ≤ k). The channel policy Pch is therefore modified to reflect
the updates made for the incoming values. Furthermore the implicit variables
ȳ are ensured for all the variables x1, . . . , xk in the local policy Pℓ, and the
precondition ϕ is also made a condition for the policy, as in [assts].

(b) The conditions from the left-hand side of the relation should be matched to the
conditions on the right-hand side. The variables used are therefore replaced
with channel variables.
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(d) All the policies regarding channel variables are transferred to local variables for
the processes by the last part of (a). This part is therefore like (d) from [outts].

The typing rule [chots] is

ȳ ⊢ℓ {ϕ}S1{ϕ′} ȳ ⊢ℓ {ϕ}S2{ϕ′}
ȳ ⊢ℓ {ϕ}((S1)⊕ (S2)){ϕ′}

The rule is similar to [ifts] where the precondition ϕ is equivalent to both typing of
S1 and S2, but here the postconditions should be equivalent too.

The typing rule [implts] is

ȳx̄ ⊢ℓ {ϕ}S{ϕ′}
ȳ ⊢ℓ {ϕ}⌈x̄⌉S{ϕ′}

which is straight forward, where the flows from the variables in x̄ are transferred.
The last rule [consts] is the rule of consequence

ȳ ⊢ℓ {ψ}S{ψ′}
ȳ ⊢ℓ {ϕ}S{ϕ′}

if (ϕ⇒ ψ) ∧ (ψ′ ⇒ ϕ′)

which is used to pre-strengthen the precondition and post-weakening the postcondi-
tion in the type system. This rule can of course be implemented in all the other rules,
but having this as a separate rule simplifies the the correctness proof.

3.5 Correctness result
Most papers on information flows shows a non-interference result, in which variables of
high confidentiality and integrity do not interfere with variables of low confidentiality
[Bou09; BH07]. In program analysis and especially for type system the correctness
is shown by subject reduction. Here one reduction in the instrumented semantics
together with the relevant instance in the type system yields a new instance in the
type system.

The correctness of the type system is therefore shown by a classical subject reduc-
tion, where the reduction should be secure according to the security predicates we
previously established in Definitions 2.4 and 2.5.

The correctness result for processes therefore amounts to the following lemma
which contributes to the soundness of the type system.

Lemma 3.1. Assume ȳ ⊢ℓ {ϕ}S{ϕ′}, σ |= ϕ and ⊢ℓ ⟨S;σ⟩ E−→
α
⟨S′;σ′⟩. Then there

exists ψ such that ȳ ⊢ℓ {ψ}S′{ϕ′} and σ′ |= ψ, and furthermore

• if α = τ then sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ),

• if α = ch!(v1, . . . , vk) then sec(Pℓ, σ; ⌈ȳ⌉E;σ′[(#i 7→ vi)i≤k], Pℓ • Pch), and
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• if α = ch?(v1, . . . , vk) then sec(Pℓ • Pch, σ[(#i 7→ vi)i≤k]; ⌈ȳ⌉E;σ′, Pℓ).
(proven by induction on the inference of ȳ ⊢ℓ {ϕ}S{ψ} in Appendix A.8)

Similarly, by using Definition 2.4 for secure systems, the correctness for the dis-
tributed systems then amounts to the following theorem.

Theorem 3.1. Assume ⊢ {ϕ1& · · ·&ϕn} l1 : S1 ∥ · · · ∥ ln : Sn and σ |= ϕ1 ∧ · · · ∧ ϕn

and ⟨l1 : S1 ∥ · · · ln : Sn, σ⟩
F==⇒

U,D
⟨l1 : S′1 ∥ · · · ∥ ln : S′n, σ′⟩. Then there exist

ψ1, . . . , ψn such that ⊢ {ψ1& · · ·&ψn} l1 : S′1 ∥ · · · ∥ ln : S′n and σ′ |= ψ1 ∧ · · · ∧ ψn

and secP•(σ;U,F,D;σ′). (proven
by the induction on the inference system and using Lemma 3.1 in Appendix A.9)

These correctness results now finally show that with a fully defined system (Sys,S,
NSA, PSys) and if ⊢ {ϕ1& · · ·&ϕn} l1 : S1 ∥ · · · ∥ ln : Sn holds, then (Sys,S,NSA, PSys)
is secure.

3.6 Simple assignment example
Consider again (Sys,S,NSA, PSys) from Section 2.6.1 where

l : x := 4; y := x (2.40)

and S(l) = s. First consider the policy

PSys = Pl = {xy : s← s} (2.41)

Using the type system then yields

ϵ ⊢l {ϕ}x := 4{ϕ′′} if c1 ϵ ⊢l {ϕ′′}y := x{ϕ′} if c2

ϵ ⊢l {ϕ}x := 4; y := x{ϕ′}
ϵ ⊢l {ϕ}x := 4; y := x{tt} ϕ′ ⇒ tt

⊢ {ϕ} l : x := 4; y := x

where

c1 = (ϕ⇒ ϕ′′[4/x]) ∧
(
ϕ⇒ Pℓ⟨4̄ϵ̄/x⟩

)
⊑ Pℓ[4/x]

= (ϕ⇒ ϕ′′[4/x]) ∧ (ϕ⇒ Pℓ) ⊑ Pℓ[4/x]
c2 = (ϕ′′ ⇒ ϕ′[x/y]) ∧ (ϕ′′⇒ Pℓ⟨x̄ϵ̄/y⟩) ⊑ Pℓ[x/y]

= (ϕ′′ ⇒ ϕ′[x/y]) ∧ (ϕ′′⇒ Pℓ⟨x/y⟩) ⊑ Pℓ[x/y]

Let ϕ = tt, ϕ′′ = x = 4 and ϕ′ = x = 4∧ y = x and see that all the postconditions
hold if the side conditions c1 and c2 holds and if the statement terminates. For this
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policy the side conditions are

c1 = (tt⇒ (x = 4)[4/x]) ∧ (tt⇒{xy : s← s}) ⊑ {xy : s← s}[4/x]
= tt⇒ 4 = 4 ∧ {xy : s← s} ⊑ {xy : s← s}
= tt

c2 = (x = 4⇒ x = 4 ∧ x = x) ∧ (x = 4⇒{xy : s← s}⟨x̄/y⟩) ⊑ {xy : s← s}[x/y]
= (x = 4⇒{xy : s← s}⟨x̄/y⟩) ⊑ {xy : s← s}[x/y]
= (x = 4⇒{xy : s← s}) ⊑ {xy : s← s}

This last condition is also true as the restriction x = 4 leaves less influencers on the
left-hand side.

Next consider the other policy

PSys = Pl = {x : s← s} • (x > 5⇒{y : s← s}) (2.44)

which yields the same inference tree as before. The side conditions can now be verified

c1 =(tt⇒ (x = 4)[4/x]) ∧ (tt⇒{x : s← s} • (x > 5⇒{y : s← s}))
⊑ {x : s← s} • (x > 5⇒{y : s← s})[4/x]

= (tt⇒{x : s← s} • (x > 5⇒{y : s← s}))
⊑ {x : s← s} • (x > 5⇒{y : s← s})[4/x]

= (tt⇒{x : s← s} • (x > 5⇒{y : s← s}))
⊑ {x : s← s} • (4 > 5⇒{y : s← s})

={x : s← s} • (x > 5⇒{y : s← s}) ⊑ {x : s← s} • {y : s← s}
=tt

c2 =(x = 4⇒ (x = 4 ∧ y = x)[x/y]) ∧ (x = 4⇒ Pℓ⟨x/y⟩) ⊑ Pℓ[x/y]
= (x = 4⇒ ({x : s← s} • (x > 5⇒{y : s← s}))⟨x/y⟩)
⊑ ({x : s← s} • (x > 5⇒{y : s← s}))[x/y]

= (x = 4⇒ ({xy : s← s} • (x > 5⇒{y : s← s})))︸ ︷︷ ︸
Pleft

⊑ ({x : s← s} • (x > 5⇒{y : s← s}))︸ ︷︷ ︸
Pright

For all σ, q, and u it therefore must hold that

Infl (Pleft, σ, q, u) ⊆ Infl (Pright, σ, q, u)
∧ Read (Pleft, σ, q, u) ⊇ Read (Pright, σ, q, u)

(3.4)

In a particular case look at the influencers for an instance where q = s, u = y and a
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σ such that σ |= x = 4

Infl (Pleft, σ, s, y) ⊆ Infl (Pright, σ, s, y)

=

{
s if σ |= (x = 4) ∨ (x = 4 ∧ x > 5)
ϵ otherwise

⊆

{
s if σ |= x > 5
ϵ otherwise

= s ⊆ ϵ

Because of this instance (3.4) does not hold for all σ, the side condition c2 is not
true. All this therefore makes the system insecure according to (2.44) matching the
result found by looking at the instrumented semantics and the security predicate in
Section 2.6.1.



CHAPTER 4
Implementation

Implementing the type system requires ideas on how to determine the postconditions
ϕ′ and how to determine the preorder P ⊑ P ′ in the side conditions. The policies can
be complex, contain many embedded conditions, sequences and so on, and the relation
between to policies can therefore be difficult to establish, because the influencer and
reader sets should hold for all σ ∈ State+, q ∈ Pr and y ∈ Var+. The first section
hence introduces a notion of basic policies, which is used in Section 4.2 to determine
the preorder. The rest of the chapter is about how to implement the type system and
how to verify the distributed system.

Most of the strategies presented in this chapter covers how to do implement the
type system for influencer and reader policies, but in the concrete implementation
developed for this thesis only influencer policies are considered. Section 4.5 briefly
covers the prototype developed throughout this thesis.

4.1 Basic policies and implication normal form
A basic policy B, is denoted as a conditional policy with an influencer policy or
a reader policy. The influencer policy has exactly one variable, one owner and one
influencer. The reader policy has exactly one variable, one owner and a set of readers.

B ::= (φ⇒{u : o← s}) | (φ⇒{u : o→ s̄})

Therefore u ̸= ϵ, o ̸= ϵ, s ̸= ϵ. The reader variables s̄ can be everything from ϵ to ⋆
as usual.

A policy is in implication normal form (INF) if it only contains a sequence of basic
policies:

B1 • · · · •Bm (4.1)

for all cases m ≥ 0, where if m = 0 the INF is simply {}.
Take the policy {ūi : ōj ← s̄k}, which has a set of variables or channels ūi of size

i, a set of owners ōj of size j, and a set of influencers s̄k of size k. By using the
distributive laws for influencer policies (2.29), (2.31) and (2.33) and an equivalence
for conditional policies (2.37) we get

{ūi : ōj ← s̄k} ≡ {u1 : o1 ← s1} • . . . • {ui : oj ← sk}
≡ (true⇒{u1 : o1 ← s1}) • . . . • (true⇒{ui : oj ← sk})
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and sees that the policy has an equivalent policy in INF.
To establish an algorithm to find the INF of a policy, Algorithm 4.1 to 4.3 are

used. Algorithm 4.1 defines a recursive function dist(P ) which uses the distribution
laws to distribute integrity and reader policies for any P . Furthermore all sub-policies
in dist(P ) which are confidentiality or influencer policies equivalent to {} are reduced
to {}. Algorithm 4.2 defines cln(P ) which cleans the policies such that all policies
equivalent to {} are removed. Lastly, Algorithm 4.3 defines cnd(P ) which distributes
conditions on sequences and collects conditions on succeeding conditional policies. All
the algorithms use the equivalences from Section 2.3.6 and each rule is accounted for.

Fact 4.1. The function inf(P ) = cnd(cln(dist(P ))) converts any policy P into INF
and P ≡ inf(P ).

(informally proven by the structure of P for each function in Appendix A.10)

dist(P ) = {} if P ≡ {} from (2.17) to (2.20)
dist({u : o← s}) = {u : o← s}
dist({ū : ō← ss̄′}) = dist({ū : ō← s}) • dist({ū : ō← s̄′}) using (2.33)
dist({ū : oō′ ← s}) = dist({ū : o← s}) • dist({ū : ō′ ← s}) using (2.31)
dist({uū′ : o← s}) = dist({u : o← s}) • dist({ū′ : o← s}) using (2.29)
dist({u : o→ s̄}) = {u : o→ s̄}
dist({ū : oō′ → s̄}) = dist({ū : o→ s̄}) • dist({ū : ō′ → s̄}) using (2.32)
dist({uū′ : o→ s̄}) = dist({u : o→ s̄}) • dist({ū′ : o→ s̄}) using (2.30)
dist((φ⇒ P )) = (φ⇒ dist(P ))
dist(P1 • P2) = dist(P1) • dist(P2)

Algorithm 4.1: Recursive function dist(P ), distributing all confidentiality and in-
fluencer policies.

4.1.1 Sorted implication normal form
A policy is in sorted implication normal form (SINF) when all the basic influencer
policies come first and are followed by all the basic reader policies.

B1 • · · · •Bn︸ ︷︷ ︸
basic influencer policy

•Bn+1 • · · · •Bm︸ ︷︷ ︸
basic reader policy

(4.2)

The policies B1, . . . , Bn therefore have the form (φ⇒{u : o← s}) and Bn+1, . . . , Bm

have the form (φ⇒{u : o→ s̄}). The function sinf(P ) denotes the conversion of
any policy P into SINF, and can be constructed using inf(P ) and the fact that • is
communicative (2.25).
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cln(P ) = {} if P ≡ {} from (2.17) to (2.20)
cln({ū : ō← s̄}) = {ū : ō← s̄}
cln({ū : ō→ s̄}) = {ū : ō→ s̄}

cln((φ′⇒ P ′)) =

 {} if φ′ = false using (2.38)
{} if cln(P ′) = {} using (2.36)
(φ′⇒ cln(P ′)) otherwise

cln(P1 • P2) =


{} if cln(P1) = {} ∧

cln(P2) = {} using (2.27)
cln(P1) if cln(P2) = {} using (2.27)
cln(P2) if cln(P1) = {} using (2.27)
cln(P1) • cln(P2) otherwise

Algorithm 4.2: Recursive function cln(P ), cleaning up all empty policies from P ,
except if all policies are empty.

cnd(P ) = {} if P ≡ {} from (2.17) to (2.20)
cnd({ū : ō← s̄}) = (true⇒{ū : ō← s̄}) using (2.37)
cnd({ū : ō→ s̄}) = (true⇒{ū : ō→ s̄}) using (2.37)

cnd((φ′⇒ P ′)) =


(φ′⇒ P ′) if P ′ = {ū : ō← s̄}
(φ′⇒ P ′) if P ′ = {ū : ō→ s̄}
cnd((φ′ ∧ φ′′⇒ P ′′)) if P ′ = (φ′′⇒ P ′′) using (2.35)
cnd((φ′⇒ P1)) •

cnd((φ′⇒ P2)) otherwise using (2.34)

cnd(P1 • P2) = cnd(P1) • cnd(P2)

Algorithm 4.3: Recursive function cnd(P ), distributing conditions on sequences
and collecting conditions on succeeding conditional policies.

Fact 4.2. If B is a basic influencer policy of the form (φ⇒{u : o← s}), then

B ⊑ B1 • · · · •Bn •Bn+1 • · · · •Bm iff B ⊑ B1 • · · · •Bn (4.3)

else if B is a basic reader policy with the form (φ⇒{u : o→ s̄}) then

B ⊑ B1 • · · · •Bn •Bn+1 • · · · •Bm iff B ⊑ Bn+1 • · · · •Bm (4.4)

where Bn is the last basic influencer policy and Bn+1 is the first basic reader policy.
(proven by looking at the influencers and readers in Appendix A.11)

4.1.2 Properties of basic policies
The basic influencer policies have a special property which is the reverse of one of the
features of the join-semilattice in (2.23).
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Fact 4.3. (φ⇒{u : o← s}) ⊑ P1 • P2 if and only if (φ⇒{u : o← s}) ⊑ P1 ∨
(φ⇒{u : o← s}) ⊑ P2

(proven by looking at the influencers and readers in Appendix A.12)

Unfortunately, a similar result does not hold for basic reader policies, if either
conjunction or disjunction is used.

Fact 4.4. (φ⇒{u : o→ s̄}) ̸⊑ P1 • P2 if and only if (φ⇒{u : o→ s̄}) ⊑ P1 ∧
(φ⇒{u : o→ s̄}) ⊑ P2

(proven by looking at the influencers and readers in Appendix A.13)

Fact 4.5. (φ⇒{u : o→ s̄}) ̸⊑ P1 • P2 if and only if (φ⇒{u : o→ s̄}) ⊑ P1 ∨
(φ⇒{u : o→ s̄}) ⊑ P2

(proven by looking at the influencers and readers in Appendix A.13)

4.2 Preorder
The preorder ⊑ is used in the side conditions for the type system. Recall the definition
of the preorder

P ⊑ P ′ iff ∀σ, q, y : Infl (P, σ, q, y) ⊆ Infl (P ′, σ, q, y)∧
∀σ, q, y : Read (P, σ, q, y) ⊇ Read (P ′, σ, q, y)

(2.14)

It can be difficult to explore all σ ∈ State+, q ∈ Pr and y ∈ Var+ manually, because
policies can be complicated and the state space is large as all variables can have all
values. To figure out if P ⊑ P ′, the policies can first be converted into SINF

P ≡ sinf(P ) = B1 • · · · •Bn •Bn+1 • · · · •Bm

P ′ ≡ sinf(P ′) = B′1 • · · · •B′n′ •B′n′+1 • · · · •B′m′

Where Bn, B
′
n′ is the last basic influencer policy and Bn+1, B

′
n′+1 is the first basic

reader policy. Furthermore, it is assumed that m > 0. It therefore comes down to
determining

B1 • · · · •Bn •Bn+1 • · · · •Bm ⊑ B′1 • · · · •B′n′ •B′n′+1 • · · · •B′m′ (4.5)

Using that (Pol, •,⊑≡) is a join-semilattice (see Section 2.3.6) then

P1 • P2 ⊑ P3 iff P1 ⊑ P3 ∧ P2 ⊑ P3 (2.23)

The left-hand side of (4.5) can therefore be expanded to two predicates recursively
until there is one policy on the left. A similar approach can be taken on the right-
hand side with Fact 4.3, though only with the basic influencer policies. Together with
(4.3) and (4.4) the ordering can be restated as

B1 • · · · •Bn •Bn+1 • · · · •Bm ⊑ B′1 • · · · •B′n′ •B′n′+1 • · · · •B′m′

iff

 ∧
1≤i≤n

∨
1≤j≤n′

Bi ⊑ B′j

 ∧
 ∧

n+1≤i≤m

Bi ⊑ B′n′+1 • · · · •B′m′

 (4.6)

The analysis then amounts to determining the relations of the basic policies.
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Fact 4.6. (φ⇒{u : o← s}) ⊑ (φ′⇒{u′ : o′ ← s′}) if ϕ⇒ (ϕ′∧u = u′∧o = o′∧s =
s′) is a tautology.

Proof. First we look at the influencers for all σ, q, and y:

Infl ((φ⇒{u : o← s}) , σ, q, y) ⊆ Infl ((φ′⇒{u′ : o′ ← s′}) , σ, q, y)

=

{
s if φ |= σ ∧ q = o ∧ y = u

ϵ otherwise
⊆

{
s′ if φ′ |= σ ∧ q = o′ ∧ y = u′

ϵ otherwise

Take a single σ, and look at the following four cases.

Case σ ̸|= ϕ ∧ σ ̸|= ϕ′. The influencers are ϵ on both sides, such that ϵ ⊆ ϵ. This case
is always true for all q, and y.

Case σ ̸|= ϕ ∧ σ |= ϕ′. The influencers on the left-hand side is always ϵ such that
ϵ ⊆ ·. This case is always true for all q, and y.

Case σ |= ϕ ∧ σ ̸|= ϕ′. The influencers on the right-hand side are always ϵ. For this
case to be true, there should for all q, y hold that q ̸= o or all y ̸= u. Taking
q = o and y = y this would not be true, and the case is therefore always false.

Case σ |= ϕ ∧ σ |= ϕ′. This case have two subcases. Firstly, if q = o ∧ y = u and
q = o′ ∧ y = u′ then s ⊆ s′, which is only true if s = s′. Secondly, if q ̸= o or
y ̸= u then the left-hand side will become ϵ such that ϵ ⊆ · which is always true.
The whole case is therefore true if u = u′ ∧ o = o′ ∧ s = s′ for all q and y.

For all σ we therefore have

(σ ̸|= ϕ ∧ σ ̸|= ϕ′) ∨ (σ ̸|= ϕ ∧ σ |= ϕ′) ∨ (σ |= ϕ ∧ σ |= ϕ′ ∧ u = u′ ∧ o = o′ ∧ s = s′)

= (σ |= ¬ϕ ∧ σ |= ¬ϕ′) ∨ (σ |= ¬ϕ ∧ σ |= ϕ′) ∨
(σ |= ϕ ∧ σ |= ϕ′ ∧ u = u′ ∧ o = o′ ∧ s = s′)

leaving out σ |= ϕ ∧ σ ̸|= ϕ′ because this case is false. Looking at all σ in σ |= ϕ′′

means that ϕ′′ should be a tautology. The predicate can therefore be further reduced
to the desired result

= (¬ϕ ∧ ¬ϕ′) ∨ (¬ϕ ∧ ϕ′) ∨ (ϕ ∧ ϕ′ ∧ u = u′ ∧ o = o′ ∧ s = s′)
= ϕ⇒ (ϕ′ ∧ u = u′ ∧ o = o′ ∧ s = s′)

The other part is to verify the reader set for all σ, q, and y

Read ((φ⇒{u : o← s}) , σ, q, y) ⊆ Read ((φ′⇒{u′ : o′ ← s′}) , σ, q, y)
= Pr ⊇ Pr = true

which finalises the proof.
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Simplifying the part with the basic reader policy is not covered in this thesis,
partly because of the result in Fact 4.4, and that this relation now covers quantities
with intersections because of the sets s̄ and s̄′. Furthermore s̄ can also be empty
leaving some special cases.

Conjecture 4.1. (φ⇒{u : o→ s̄}) ⊑ (φ′1⇒{u′1 : o′1 → s̄′1}) •
· · · • (φ′n⇒{u′n : o′n → s̄′n}) can be simplified.

Proof idea. Making a similar cases analysis like in Fact 4.6.

The implication normal can be just {} (when m = 0), which leads six cases, the
proofs of which are not covered here.

Conjecture 4.2.

{} ⊑ {} if true is a tautology
{} ⊑ (φ′⇒{u′ : o′ ← s′}) if true is a tautology
{} ⊑ (φ′⇒{u′ : o′ → s̄′}) if true is a tautology

(φ⇒{u : o← s}) ⊑ {} if ¬ϕ is a tautology
(φ⇒{u : o→ s̄}) ⊑ {} if ¬ϕ is a tautology

Proof idea. Simply by looking at the influencer and reader set, and similar cases
analysis like in Fact 4.6.

Because of the sorted implication normal form, the two last cases with a mixed
basic influencer policy and basic reader policy are not used.

Fact 4.7. (φ⇒{u : o← s}) ⊑ (φ′⇒{u′ : o′ → s̄′}) if ϕ is unsatisfiable.
(proven by looking at the influencers and readers in Appendix A.14)

Fact 4.8. (φ⇒{u : o→ s̄}) ⊑ (φ′⇒{u′ : o′ ← s′}) if ϕ is unsatisfiable or s̄ = ⋆.
(proven by looking at the influencers and readers in Appendix A.15)

4.2.1 Simple assignment example
Let us continue with the example from Section 3.6. When we used the policy

PSys = Pl = {x : s← s} • (x > 5⇒{y : s← s}) (2.44)

the system was not secure. With that policy the type system amounted to verify the
following side condition

Pleft︷ ︸︸ ︷
(x = 4⇒ ({xy : s← s} • (x > 5⇒{y : s← s}))) ⊑

({x : s← s} • (x > 5⇒{y : s← s}))︸ ︷︷ ︸
Pright
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Converting each side to INF gives

inf(Pleft) = (x = 4⇒{x : s← s})
• (x = 4⇒{y : s← s})
• (x = 4 ∧ x > 5⇒{y : s← s})

inf(Pright) = (tt⇒{x : s← s})
• (x > 5⇒{y : s← s})

and because it only contains influencer policies it is also in SINF. This leaves six
comparisons

(x = 4⇒{x : s← s}) ⊑ (tt⇒{x : s← s})
= (x = 4)⇒ ((tt) ∧ (x = x) ∧ (s = s) ∧ (s = s)) = tt using x = 4 ⇒ tt

(x = 4⇒{x : s← s}) ⊑ (x > 5⇒{y : s← s})
= (x = 4)⇒ ((x > 5) ∧ (x = y) ∧ (s = s) ∧ (s = s)) = ff using x ̸= y

(x = 4⇒{y : s← s}) ⊑ (tt⇒{x : s← s})
= (x = 4)⇒ ((tt) ∧ (y = x) ∧ (s = s) ∧ (s = s)) = ff using y ̸= x

(x = 4⇒{y : s← s}) ⊑ (x > 5⇒{y : s← s})
= (x = 4)⇒ ((x > 5) ∧ (y = y) ∧ (s = s) ∧ (s = s)) = ff using x = 4 ̸⇒ x > 5

(x = 4 ∧ x > 5⇒{y : s← s}) ⊑ (tt⇒{x : s← s})
= (x = 4 ∧ x > 5)⇒ ((tt) ∧ (y = x) ∧ (s = s) ∧ (s = s)) = tt using ff ⇒ ff

(x = 4 ∧ x > 5⇒{y : s← s}) ⊑ (x > 5⇒{y : s← s})
= (x = 4 ∧ x > 5)⇒ ((x > 5) ∧ (y = y) ∧ (s = s) ∧ (s = s)) = ff using ff ̸⇒ x > 5

leaving the result (tt ∨ ff) ∧ (ff ∨ ff) ∧ (tt ∨ ff) = ff. The side condition therefore does
not hold, making the system with this policy insecure, equivalent to the result in
Section 3.6.

4.3 Loop invariants
Recall [loopts] from the type system

ȳb̄ ⊢ℓ {ϕ ∧ b}S{ϕ}
ȳ ⊢ℓ {ϕ}while b do S od{ϕ ∧ ¬b}

where ϕ is an invariant (as it must hold before and after each iteration of the loop).
Invariants are not easy to generate as they require deep understanding of the state-
ments in S. Generating invariants are therefore not considered in this thesis. To ease
the implementation, the invariants are introduced in the semantics for loops such
that

while b do S od = while b do {ι}S od
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where ι is an invariant, syntactical equivalent to a boolean expression b. This gives
the programmer the ability to specify an invariant ι for the iteration statement. With
this change [loopts] then becomes

[loopts]
ȳb̄ ⊢ℓ {ϕ ∧ b}S{ϕ}

ȳ ⊢ℓ {ϕ}while b do {ι}S od{ϕ ∧ ¬b} (4.7)

4.4 Type checker
The implementation of the type system leads to a type checker. The type system does
not aid in determining the postconditions ϕ′. Furthermore the rule of consequence
[consts] can be applied at any statement S, and it is therefore not deterministic when
to use this rule. To cope with this, the rule of consequence is incorporated into the
relevant rules which then gives a syntax-directed type system.

Algorithm 4.4 defines the function chk(ȳ, ℓ, ϕ, S) for each statement S, which leads
to the following soundness property for processes.

Lemma 4.1. If chk(ȳ, ℓ, ϕ, S) = (ϕ′, c) and c is a tautology then ȳ ⊢ℓ {ϕ}S{ϕ′}.

Proof. The proof is done by induction on the structure of S. All the axioms in the
type system yields a base case and the induction hypothesis gives the desired result
for the other inferences rules in the type system.

Case chk(ȳ, ℓ, ϕ, skip) = (ϕ, true). It is clear that true is always a tautology. The
side conditions for [skipts] are then ϕ ⇒ ϕ which is also true, and therefore
ȳ ⊢ℓ {ϕ}S{ϕ}.

Case chk(ȳ, ℓ, ϕ, x := a) = (ϕ′, c). Let ϕ′ = (∃x′ : ((ϕ[x′/x]) ∧ (x = a[x′/x]))) and
c = (ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ[a/x]. The side conditions for [assts] then amount to

(ϕ⇒ (∃x′ : ((ϕ[x′/x]) ∧ (x = a[x′/x])))[a/x]) ∧ c
= (ϕ⇒ (∃x′ : (ϕ[x′/x] ∧ a = a[x′/x]))) ∧ c using x ̸∈ fv(ϕ[x′/x])∪fv(a[x′/x])
= (ϕ⇒ ϕ) ∧ c using x′ = x

If c is a tautology then ȳ ⊢ℓ {ϕ}x := a{ϕ′}.

Case chk(ȳ, ℓ, ϕ, x :=† a) = (ϕ′, c). Let ϕ′ be the same as for chk(ȳ, ℓ, ϕ, x := a), and
c = (ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}. The side con-
ditions for [ass†ts] then amount to c as they did for chk(ȳ, ℓ, ϕ, x := a). If c is a
tautology then ȳ ⊢ℓ {ϕ}x :=† a{ϕ′}.

Case chk(ȳ, ℓ, ϕ, S1;S2) = (ϕ′, c1 ∧ c2). Let (ϕ′′, c1) = chk(ȳ, ℓ, ϕ, S1) and (ϕ′, c2) =
chk(ȳ, ℓ, ϕ′′, S2). Assuming c1∧ c2 is a tautology, the induction hypothesis gives
ȳ ⊢ℓ {ϕ}S1{ϕ′′} and ȳ ⊢ℓ {ϕ′′}S2{ϕ′} which is the premise [combts], and we
have that ȳ ⊢ℓ {ϕ}S1;S2{ϕ′}.
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Case chk(ȳ, ℓ, ϕ, if b then S1 else S2 fi) = (ϕ1 ∨ ϕ2, c1 ∧ c2). Let (ϕ1, c1) = chk(ȳb̄, ℓ,
ϕ ∧ b, S1) and (ϕ2, c2) = chk(ȳb̄, ℓ, ϕ ∧ ¬b, S2). Assuming c1 ∧ c2 is a tautology,
the induction hypothesis gives ȳb̄ ⊢ℓ {ϕ ∧ b}S1{ϕ1} and ȳb̄ ⊢ℓ {ϕ ∧ ¬b}S2{ϕ2}.
Let ϕ′ = ϕ1 ∨ ϕ2, and see that ϕ1 ⇒ ϕ′ and ϕ2 ⇒ ϕ′ is a tautology. Using
[consts] we can now get the premises for [ifts]

ȳb̄ ⊢ℓ {ϕ ∧ b}S1{ϕ1}
ȳb̄ ⊢ℓ {ϕ ∧ b}S1{ϕ′}

if ϕ1 ⇒ ϕ′
ȳb̄ ⊢ℓ {ϕ ∧ ¬b}S2{ϕ2}
ȳb̄ ⊢ℓ {ϕ ∧ ¬b}S2{ϕ′}

if ϕ2 ⇒ ϕ′

ȳ ⊢ℓ {ϕ}if b then S1 else S2 fi{ϕ′}

which finalises this case.

Case chk(ȳ, ℓ, ϕ,while b do {ι}S od) = (ι ∧ ¬b, c ∧ (ϕ′ ⇒ ι) ∧ (ϕ⇒ ι)). Let (ϕ′, c) =
chk(ȳb̄, ℓ, ι ∧ b, S). Assuming c is a tautology, the induction hypothesis gives
ȳ ⊢ℓ {ι ∧ b}S{ϕ′}. Using [consts] we can now get the premises for [loopts]

ȳb̄ ⊢ℓ {ι ∧ b}S{ϕ′}
ȳb̄ ⊢ℓ {ι ∧ b}S{ι}

if (ϕ′ ⇒ ι)

ȳ ⊢ℓ {ι}while b do {ι}S od{ι ∧ ¬b}
ȳ ⊢ℓ {ϕ}while b do {ι}S od{ι ∧ ¬b}

if (ϕ⇒ ι)

Assuming that ϕ ⇒ ι and ϕ′ ⇒ ι are also tautologies, the case is done and we
have that ȳ ⊢ℓ {ϕ}while b do {ι}S od{ι ∧ ¬b}.

Case chk(ȳ, ℓ, ϕ, ch!(a1, . . . , ak)) = (ϕ, c). Let c = (ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑ Pch[ai/#i]i≤k

•{⋆ℓ : ⋆← ⋆}•{⋆ℓ : ⋆→ ϵ}. The side conditions for [outts] are then (ϕ⇒ ϕ)∧c.
If c is a tautology then the side conditions hold and ȳ ⊢ℓ {ϕ}ch!(a1, . . . , ak){ϕ}.

Case chk(ȳ, ℓ, ϕ, ch!†(a1, . . . , ak)) = (ϕ, c). Let c = (ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑ [ai/#i]i≤k•
{⋆# : S(ℓ)← ⋆} • {⋆# : S(ℓ)→ ϵ} • {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}. The side condi-
tions for [out†ts] are then (ϕ⇒ ϕ)∧c. If c is a tautology then the side conditions
hold and ȳ ⊢ℓ {ϕ}ch!†(a1, . . . , ak){ϕ}.

Case chk(ȳ, ℓ, ϕ, ch?(x1, . . . , xk)) = (ϕ′, c). Let ϕ′ = (∃x′1, . . . , x′k : (ϕ[x′i/xi]i≤k)) and
c = (ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k)•Pch⟨#i/xi⟩i≤k ⊑ Pℓ[#i/xi]i≤k•{⋆# : ⋆← ⋆}•{⋆# : ⋆→ ϵ}.
The side conditions for [ints] are then

((∃x1, . . . , xk : (ϕ))⇒ (∃x′1, . . . , x′k : (ϕ[x′i/xi]i≤k))) ∧ c
= c using x′i = xi for all i

If c is a tautology then ȳ ⊢ℓ {ϕ}ch?(x1, . . . , xk){ϕ′}.

Case chk(ȳ, ℓ, ϕ, ((S1)⊕ (S2))) = (ϕ1 ∨ ϕ2, c1 ∧ c2). Let (ϕ1, c1) = chk(ȳ, ℓ, ϕ, S1) and
(ϕ2, c2) = chk(ȳ, ℓ, ϕ, S2). Assuming c1∧c2 is a tautology, the induction hypoth-
esis gives that ȳ ⊢ℓ {ϕ}S1{ϕ1} and ȳ ⊢ℓ {ϕ}S2{ϕ2}. Let ϕ′ = ϕ1 ∨ ϕ2 and see
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that ϕ1 ⇒ ϕ′ and ϕ2 ⇒ ϕ′ is a tautology. Using [consts] we can now get the
premises for [chots]

ȳ ⊢ℓ {ϕ}S1{ϕ1}
ȳ ⊢ℓ {ϕ}S1{ϕ′}

if ϕ1 ⇒ ϕ′
ȳ ⊢ℓ {ϕ}S2{ϕ2}
ȳ ⊢ℓ {ϕ}S2{ϕ′}

if ϕ2 ⇒ ϕ′

ȳ ⊢ℓ {ϕ}((S1)⊕ (S2)){ϕ′}

which finalises this case.

Case chk(ȳ, ℓ, ϕ, ⌈x̄⌉S) = (ϕ, c). Let (ϕ′, c) = chk(ȳx̄, ℓ, ϕ, S). Assuming c is a tautol-
ogy, the induction hypothesis gives ȳx̄ ⊢ℓ {ϕ}S{ϕ′} which are the premises for
[implts] and we have that ȳ ⊢ℓ {ϕ}⌈x̄⌉S{ϕ′}.

A similar soundness property can be found for systems.

Theorem 4.1. If chk(ϵ, li, ϕi, Si) = (ϕ′i, ci) for all i ≤ n and (c1 ∧ . . . ∧ cn) is a
tautology then ⊢ {ϕ1& · · ·&ϕn} l1 : S1 ∥ · · · ∥ ln : Sn.

(proven using directly by using Lemma 4.1 Appendix A.16)

Let Φ(ℓ) = ϕ be a function mapping each label ℓ in a distributed system Sys
to its initial precondition. Recall a fully defined system (Sys,S,NSA, PSys) and the
function for verifying it is then

verify(Sys,S,NSA, PSys,Φ) = c1 ∧ · · · ∧ ci ∧ · · · ∧ cn where
(ϕ′i, ci) = chk(ϵ, li,Φ(li), Si) for each label li in Sys

If the result of verify(Sys,S,NSA, PSys,Φ) is a tautology, the distributed system Sys
is secure according to the policies PSys and the initial preconditions Φ. Otherwise it
is not secure and there is an illegal information flow.

When a predicate is satisfiable it is true under at least one configuration, and
therefore a tautology if the negated predicate is unsatisfiable. Using the verifier
function c = verify(Sys,S,NSA, PSys,Φ) where c should be a tautology and thus it is
to figure out if ¬c is unsatisfiable. As we have seen in some of the previous examples
such a side condition can look like

c = (x = 3)⇒ (x > 2 ∧ (∃y : (y < x))) (4.8)

and a regular SAT solver can hence not be used, because this is not a regular boolean
predicate. Instead a STM solver is needed to determine if ¬c is unsatisfiable, as it
can determine relations on structures such as integers.

Together with the soundness of the type checker is also the completeness result
(in sense of Cook). The proof is not shown here, as it can be difficult to establish.

Conjecture 4.3. If ȳ ⊢ℓ {ϕ}S{ϕ′} then there exists ϕ′′ and c such that chk(ȳ, ℓ, ϕ, S) =
(ϕ, c), and ϕ′′ ⇒ ϕ′ and |= c.

Proof idea. Proof by induction on the inference system, in relation to the restrictions
of ϕ and c.
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chk(ȳ, ℓ, ϕ, skip) = (ϕ, true)

chk(ȳ, ℓ, ϕ, x := a) = (ϕ′, c)
where ϕ′ = (∃x′ : ((ϕ[x′/x]) ∧ (x = a[x′/x])))

c = (ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ[a/x]

chk(ȳ, ℓ, ϕ, x :=† a) = (ϕ′, c)
where ϕ′ = (∃x′ : ((ϕ[x′/x]) ∧ (x = a[x′/x])))

c = (ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}

chk(ȳ, ℓ, ϕ, S1;S2) = (ϕ′, c1 ∧ c2)
where (ϕ′′, c1) = chk(ȳ, ℓ, ϕ, S1)

(ϕ′, c2) = chk(ȳ, ℓ, ϕ′′, S2)

chk(ȳ, ℓ, ϕ, if b then S1 else S2 fi) = (ϕ1 ∨ ϕ2, c1 ∧ c2)
where (ϕ1, c1) = chk(ȳb̄, ℓ, ϕ ∧ b, S1)

(ϕ2, c2) = chk(ȳb̄, ℓ, ϕ ∧ ¬b, S2)

chk(ȳ, ℓ, ϕ,while b do {ι}S od) = (ι ∧ ¬b, c ∧ (ϕ′ ⇒ ι) ∧ (ϕ⇒ ι))
where (ϕ′, c) = chk(ȳb̄, ℓ, ι ∧ b, S)

chk(ȳ, ℓ, ϕ, ch!(a1, . . . , ak)) = (ϕ, c)
where c = (ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑ Pch[ai/#i]i≤k • {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}

chk(ȳ, ℓ, ϕ, ch!†(a1, . . . , ak)) = (ϕ, c)
where c = (ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑ [ai/#i]i≤k • {⋆# : S(ℓ)← ⋆}

• {⋆# : S(ℓ)→ ϵ} • {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}

chk(ȳ, ℓ, ϕ, ch?(x1, . . . , xk)) = (ϕ′, c)
where ϕ′ = (∃x′1, . . . , x′k : (ϕ[x′i/xi]i≤k))

c = (ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) • Pch⟨#i/xi⟩i≤k ⊑ Pℓ[#i/xi]i≤k

• {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}

chk(ȳ, ℓ, ϕ, ((S1)⊕ (S2))) = (ϕ1 ∨ ϕ2, c1 ∧ c2)
where (ϕ1, c1) = chk(ȳ, ℓ, ϕ, S1)

(ϕ2, c2) = chk(ȳ, ℓ, ϕ, S2)

chk(ȳ, ℓ, ϕ, ⌈x̄⌉S) = (ϕ′, c)
where (ϕ′, c) = chk(ȳx̄, ℓ, ϕ, S)

Algorithm 4.4: Recursive function chk(ȳ, ℓ, ϕ, S) for type checking.
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4.5 Concrete implementation
All the algorithms and auxiliary functions such as substitutions use matching on the
structure, and a functional programming language is a good choice for the concrete im-
plementation. The functional programming language Standard ML (SML) [Mil+97]
which is compiled and executed with the Standard ML of New Jersey compiler [SM-
L/NJ] has therefore been used.

An actual lexer or parser for the presented language has not been developed, and
S, a, b, P , ϕ, a+, and c are therefore datatypes used to build up an abstract syntax
tree. This is only a proof-of-concept implementation and only influencer policies are
considered, which fits well with the poorly defined Conjecture 4.1 for simplifying the
part with the basic reader policies in the preorder. With this restriction the final
algorithms for deciding the preorder P ⊑ P ′ are defined in Algorithm 4.5.

Z3 is a STM solver supporting arithmetic expressions and quantifiers [Z3]. This
solver is therefore used to verify if the result c = verify(Sys,S,NSA, PSys,Φ) is a
tautology and thereby whether ¬c is unsatisfiable. Verifying c from (4.8) in Z3 is
written as

1 (declare-const x Int)
2 (assert (not
3 (implies (= x 3) (and (> x 2) (exists ((y Int)) (< y x))))
4 ))
5 (check-sat)

which gives the result unsat for unsatisfied.
As seen in Algorithm 4.5 the preorder P ⊑ P ′ is simplified to only contain the

assertions ϕ, variable equalities u = u′ and equality of security principals o = o′ and
s = s′. In implemented syntax for the side conditions c therefore gives

c ::= true | false | ¬c | c1 ∧ c2 | c1 ∨ c2

| a+
1 rel a+

2 | (∃ū : (c)) | c1 ⇒ c2 | s1 = s2

only changing P 1 ⊑ P 2 to equality of security predicates s1 = s2 as this is the only
extra predicates needed for the simplification.

A more through description of the development of the type checker and how to
use it can be found in Appendix B.
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order(B1 • . . . •Bn, B
′
1 • . . . •B′n′) =

 ∧
1≤i≤n

∨
1≤j≤n′

order(Bi, B
′
j)


order((φ⇒{u : o← s}) , (φ′⇒{u′ : o′ ← s′})) = ϕ⇒ (ϕ′ ∧ u = u′ ∧ o = o′ ∧ s = s′)
order({}, {}) = true
order({}, (φ′⇒{u′ : o′ ← s′})) = true
order((φ⇒{u : o← s}) , {}) = ¬ϕ
order(P, P ′) = order(inf(P ), inf(P ′))

Algorithm 4.5: Function order(P, P ′) for deciding the preorder P ⊑ P ′. In all cases
B and B′ are basic influencer policies.
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CHAPTER 5
Avionics scenarios

sing the implementation, it is now possible to type check non-trivial systems which
spring from the avionics industry. The first scenario is the gateway presented previ-
ously.

The other scenario is of great relevance to the avionics industry and constructed
with help from PhD student Ximeng Li from DTU Compute. The scenario is fictive
and yet realistic according to some of the security problems in the airplanes. This is
a much more complex example than the gateway and have therefore not been type
checked, but yet it reveals a more plausible case from the industry and the description
of the system is therefore included motivating further usage of the type checker.

5.1 Gateway
Recall the gateway example from Section 1.3 which are shown again in Figure 5.1.
Here there are two producers p1 and p2 sending data to the multiplexer m using the
channels in1 and in2. The multiplexer m then send it to the demultiplexer d using
only ch. Then d demultiplex the data and send it the the consumers c1 and c2, while
respecting that the data from p1 only reach c1 and respectively for c2.

The code for all the processes are:

Sys = p1 : while true do {true}in1!1 od
∥ p2 : while true do {true}in2!2 od
∥ m : while true do {true}((in1?x1; ch!(1, x1))⊕ (in2?x2; ch!(2, x2))) od
∥ d : while true do {true}ch?(y, z); if y = 1 then out1!z else out2!z fi od
∥ c1 : while true do {true}out1?w1 od
∥ c2 : while true do {true}out2?w2 od

It is noted that each process has its own set of variables Varℓ.

p1

p2

m d

c1

c2

in1

in2

ch
out1

out2

Figure 5.1: Gateway [NNL15].
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As the processes p1 and c1 will communicate with each other, it makes sense that
they belong to the same security principal, and vice versa for p2 and c2. The security
principals for all the processes are then

S(p1) = s1 S(p2) = s2 S(m) = m S(d) = d S(c1) = s1 S(c2) = s2

where our special security principal is NSA ∈ Pr as usual.
We are now ready to define all the policies for the system. The two producers do

not contain any variables and thus have a simple policy.

Pp1 = {}
Pp2 = {}

The incoming values from p1 may only be influenced by s1 and conversely for p2.

Pm = {x1 : m, s1 ← s1}
• {x2 : m, s2 ← s2}

As y is the determining value for the destination in the demultiplexer, this must only
be influenced by m. We now use the conditional policies to have two different policies
for z.

Pd = {y : m, d← m}
• (y = 1⇒{z : m, d, s1 ← m, d, s1})
• (y = 2⇒{z : m, d, s2 ← m, d, s2})

The final process policy is for the consumers, that ensure that w1 only is influenced
by s1, m and d, and likewise for w2 which can be influenced by s2, m and d.

Pc1 = {w1 : m, d, s1 ← m, d, s1}
Pc2 = {w2 : m, d, s2 ← m, d, s2}

The channel policies are defined in a similar fashion where in1 and in2 respectively
are influenced by s1 and s2.

Pin1 = {⋆# : m, s1 ← s1}
Pin2 = {⋆# : m, s2 ← s2}

The main channel have two different policies for the second channel variable which
depends on the value for the first channel variable, and the conditional policies are
thus used again.

Pch = {#1 : m, d← m}
• (#1 = 1⇒{#2 : m, d, s1 ← s1})
• (#1 = 2⇒{#2 : m, d, s2 ← s2})
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At last is the policies for the output channel, which are equivalent to the policies for
w1 and w2.

Pout1 = {⋆# : m, d, s1 ← m, d, s1}
Pout2 = {⋆# : m, d, s2 ← m, d, s2}

It is seen that all the policies are localised, and the full system policy amounts to

PSys = Pp1 • Pp2 • Pm • Pd • Pc1 • Pc2 • Pin1 • Pin2 • Pch • Pout1 • Pout2

which results in a fully defined system (Sys,S,NSA, PSys).

5.1.1 Type checking the gateway
Let Φ(ℓ) = true for all processes ℓ in Sys. By using the implemented type checker
the systems is not considered secure

verify(Sys,S,NSA, PSys,Φ) ̸= Tautology (5.1)

A further investigation reveals that it is the process d which are not secure.

chk(ϵ, p1, true, Sp1) = (cp1 , ϕ
′
p1

) where cp1 = Tautology
chk(ϵ, p2, true, Sp2) = (cp2 , ϕ

′
p2

) where cp2 = Tautology
chk(ϵ,m, true, Sm) = (cm, ϕ

′
m) where cm = Tautology

chk(ϵ, d, true, Sd) = (cd, ϕ
′
d) where cd ̸= Tautology

chk(ϵ, c1, true, Sc1) = (cc1 , ϕ
′
c1

) where cc1 = Tautology
chk(ϵ, c2, true, Sc2) = (cc2 , ϕ

′
c2

) where cc2 = Tautology

The first execution in d is ch?(y, z) where the type checker makes the following
caparison of policies

(
true ∧ true⇒ {y : m, d← m} • (y = 1⇒{z : m, d, s1 ← m, d, s1})

• (y = 2⇒{z : m, d, s2 ← m, d, s2})

)
• {#1, y : m, d← m}
• (#1 = 1⇒{#2, z : m, d, s1 ← s1})
• (#1 = 2⇒{#2, z : m, d, s2 ← s2})
⊑
{y : m, d← m}
• (#1 = 1⇒{z : m, d, s1 ← m, d, s1})
• (#1 = 2⇒{z : m, d, s2 ← m, d, s2})
• {#1,#2 : s1, s2,m, d,NSA← s1, s2,m, d,NSA}

This comparison fails because of the policies concerning z. Some policies on the
left-hand side have conditions including y and on the right-hand side the conditions
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includes only #1. Using Algorithm 4.5 gives among others the following basic policy
relation

(y = 1⇒{z : s1 ← s1}) ⊑ (#1 = 1⇒{z : s1 ← s1})
= (y = 1)⇒ ((#1 = 1) ∧ (z = z) ∧ (s1 = s1) ∧ (s1 = s1))
= y = 1⇒ #1 = 1

Intuitively this is true as y is assigned in the first channel variable but the type system
have no notion that these two variables are equivalent. It therefore seems to be a
false positive.

Recall the policy part of the side condition for [ints]

(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k)︸ ︷︷ ︸
(a)1

•Pch⟨#i/xi⟩i≤k︸ ︷︷ ︸
(a)2

⊑ Pℓ[#i/xi]i≤k︸ ︷︷ ︸
(b)

• {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}︸ ︷︷ ︸
(d)

If ℓ = d and ϕ = true ∧ true we see that this is indeed is the policy the type checker
also found. Here the variables used in conditions for the conditional policies in (a)1
are from Varℓ, and conditions in (a)2 are from Var#, and conditions in (b) are from
Var#. If there are conditional policies in Pℓ and Pch the problem we have encountered
will thus be there again.

The solution of this false positive is then to modify the underlying type system,
where all the conditions should be substituted to either process variables or channel
variables, where the former is exemplified here

(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k)︸ ︷︷ ︸
(a)1

• (Pch⟨#i/xi⟩i≤k)[xi/#i]i≤k︸ ︷︷ ︸
(a’)2

⊑ Pℓ︸︷︷︸
(b’)

• {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}︸ ︷︷ ︸
(d)

A quick-fix in the concrete implementation reveals that this indeed works and that
d becomes secure. Left is though to proof Lemma 3.1 with this change, which is not
easy and have thus not revealed any profitable results. It is therefore still an open
question whether the suggested change actually follows Lemma 3.1, or if something
other have to be done.

5.2 Electronic flight bag
When the airplane is on ground, map and charts for the current flight is loaded into
an electronic flight bag which is then positioned in the AIS domain. Obviously these
maps are used for navigation in the cockpit (AC domain) but they are also used by
the passengers in the entertainment system (PIES domain) to show the location of
the flight.

The actual position is measured using satellite-based systems (e.g. GPS) and
ground-based systems (e.g. long range radio navigation). The input from these sensors
is in the AC domain which is the most restrictive domain.

The information flow for the maps and position information is sketched in Fig-
ure 5.2. Here there are processes in all of the five security domains, with their corre-
sponding channels. Obviously the positioning and map information should be view-
able for both the passenger and the pilot, but the passenger should not be allowed
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Aircraft Control Airline Information Service Passenger Information and
Entertainment Service Passenger-owned Devices

Ground

cp
Cockpit system

cd
Cockpit display

pos
Positioning sensors

efb
Electronic flight bag

cab
Cabin system

ent
Entertainment system

pd
Passenger display

ph
Passenger handle

gr
Ground map database

cdisp

cloc
cmap

cabloc eloc

emap
req

pdisp

load

Figure 5.2: Involved processes in the distribution of location and map data.

to influence what is on the pilots screen. The challenge is therefore to annotate the
different data sources with strong policies and still ensure that the passenger can not
influence the cockpit display.

The processes gr, ph and pos are simple producers which sends map data, passen-
ger requests, and the position of the flight respectively. The processes cd and ph are
displays (consumers), only showing whatever they receive from their channels. The
cockpit system cp continuously request the position from the sensors, and either com-
bine it with the map and sent it to the cockpit display cd, or only sends the position
to the cabin system cab. The electronic flight back efb either sends the map to the
cockpit system or the entertainment system ent. The cabin system simply forwards
all positioning information to the entertainment system. At last the entertainment
system gets requests from the passenger handle ph, and relatively to the request either
shows the combined map and position information or something else like a movie.
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CHAPTER 6
Discussion

During the design and implementation different observations, errors and opportunities
for improvements were found. This chapter illuminates and discusses these findings,
together with alternative methods and possible extensions for different parts.

6.1 Predicates
There are multiple predicates used in the design with the following syntactic categories

b ∈ BExp boolean expressions
ι ∈ Invar invariants
φ ∈ PolCond policy conditions
ϕ ∈ Asser assertions (preconditions and postconditions)
c ∈ Cond side conditions

and the following syntax

a ::= n | x | a1 op a2

a+ ::= n | x | # | a+
1 op a+

2

b ::= true | false | ¬b | b1 ∧ b2 | b1 ∨ b2

| a1 rel a2

ι ::= b

φ ::= true | false | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

| a+
1 rel a+

2 | (∃ū : (φ))
ϕ ::= true | false | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| a+
1 rel a+

2 | (∃ū : (ϕ))
c ::= true | false | ¬c | c1 ∧ c2 | c1 ∨ c2

| a+
1 rel a+

2 | (∃ū : (c)) | c1 ⇒ c2 | P 1 ⊑ P 2

It can be seen that BExp = Invar and PolCond = Asser, i.e. they respectively
express the same language. Furthermore,

BExp ⊂ PolCond ⊂ Cond (6.1)
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illustrating that there is an increased complexity in the predicates going from boolean
expressions to side conditions. This emphasises that boolean expressions and invari-
ants can be used in assertions, and that assertions can be used as policy conditions.
Furthermore, if we want to increase the complexity of the assertion language ϕ, we
must likewise increase it for policy conditions φ.

6.2 Blowup in policy predicates
Using Algorithm 4.5 on large policies results in a huge predicate due to the distribution
of the predicates and the comparison of the basic policies. Let |P | denote the number
of policies inside P . Take a policy P = (ϕ⇒{x̄k : ōn ← s̄m}), where the size of x̄k

is k, ōn is n and s̄m is m, and |P | = 1. Then |inf(P )| = k × n×m, which gives that
inf(P ) contains knm basic influencer policies.

Assume P ′ is a slightly modified version of P , like some of the orderings P ⊑ P ′

from the side conditions in the type system, then |inf(P )| ≈ |inf(P ′)|. Recalling (4.6),
the comparison of the basic policies then gives

B1 • · · · •Bknm ⊑ B′1 • · · · •B′knm′ =
∧

1≤i≤knm

∨
1≤j≤knm′

Bi ⊑ B′j (6.2)

which amounts to ∼ (knm)2 comparisons for this single example. The simplification
of B ⊑ B′ from Fact 4.6 amounts to the predicate

ϕ⇒ (ϕ′ ∧ u = u′ ∧ o = o′ ∧ s = s′︸ ︷︷ ︸
Q

)

where Q can be determined right away because it just contains single variables and
security predicates. Therefore, the final analysis amounts to ∼ (knm)2 predicates of
the type ϕ ⇒ ϕ′ ∧Q when type checking with the policy (ϕ⇒{x̄k : ōn ← s̄m}). All
these small predicates can be verified in parallel before taking the proper disjunction
and conjunction of the individual results building up (6.2). Thus, the overall running
time to verify a large system can be minimised drastically.

6.3 Tracing insecure systems
Let (Sys,S,NSA, PSys) and Φ be defined such that c = verify(Sys,S,NSA, PSys,Φ)
is not a tautology, meaning the system is not secure.

To get a more useful result the programmer needs some more feedback and a
trace can be established to find the reason that c is not a tautology. Recall that
c = c1 ∧ · · · ∧ ci ∧ · · · ∧ cn, and a tautological c therefore implies for each process that
ci is a tautology. Conversely, if c is not a tautology, neither is ci for one or more
processes.

All the side conditions for the statements are present in ci = ci1 ∧ . . .. Assume
ci is not a tautology; then at least one of the side conditions for the statement cij
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is not a tautology. This side condition is violated either by an inconsistency in the
invariants from a loop statement or by a comparison of two policies.

Assume there is a problem with comparison of the policies as we first saw in the
simple assignment example in Section 4.2.1. The problem could be further traced
back to the origin, which leads to

(x = 4⇒{y : s← s}) ̸⊑ (x > 5⇒{y : s← s}) (6.3)

From here a further study reveals that x is assigned to 4 and y is influenced by x
which is not allowed by the original policy (x > 5⇒{y : s← s}).

When the programmer encounters an insecure system it is therefore possible to
get an idea of why the distributed system is not secure and uses this to change the
policies, invariants or the statements such that the system becomes secure. The
trace functionality is cumbersome to implement, however, because each step in the
algorithms should be annotated such that a backtrace can be established. Hence,
backtraces are not considered in the concrete implementation, which only reveals the
two resulting policies used in the policy comparison.

6.4 Implicit flow in nondeterministic choice
Take the system

Sys = ℓ : x := 0; ((x := 2; y := 1)⊕ (skip)); ch!x (6.4)

where S(ℓ) = s and

Pℓ = {x : ⋆← ⋆} • {y : s← s} Pch = {#1 : ⋆← ⋆} (6.5)

Looking at the first branch statement in the choice operator, a change in x is accom-
panied by a change in y. When x leaves the process its value can then be used to
determine whether y was changed, thus entangling knowledge of y with knowledge of
x. Hence, it looks like there is a flow from y to x. Take Φ(ℓ) = true and by using the
concrete implementation verify(Sys,S,NSA, Pℓ • Pch,Φ) gives a tautology. The type
system does therefore not cover such a flow, which could possibly be described as a
covert channel.

A similar problem is also found in conditional branching

ℓ : x := 0; if b then x := 2; y := 1 else skip fi; ch!x

where there again is an entangling knowledge of y with knowledge of x. Whether
these two examples can give any practical problems is left as an open question.

6.5 Cryptography
The policies enforce that all channels only can be read and influenced by those who
are specified in the policies. Consider therefore an unprotected channel where every-
one can influence and read the information, and we still want a secure transfer of
information from one security principal to another.
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First we introduced a public key infrastructure such that each security principals
s ∈ Pr has a private key ks

priv and a public key ks
pub. A variable x encrypted with k

is denoted enc(k, x). Conversely decrypting a variable y with k is denoted dec(k, y).
Consider now a distributed system where the security principals s1 want to send

x to s2 using an unprotected channel and still want to ensure the confidentiality and
integrity of the information. To guarantee confidentiality of x the message s1 encrypts
the information x′ = enc(ks2

pub, x) such that only s2 can decrypt the information. For
integrity, s1 can create a signature on x′ (e.g. a hash function denoted H(x′)) and
encrypt this with its private key y′ = enc(ks1

priv,H(x′)), and sent it along with x′.
The security principal s2 now receives (x′, y′) and can calculate

x′′ := dec(ks2
priv, x

′) y′′ := dec(ks1
pub, y

′)

If H(x′) = y′′ then x′′ = x and nobody could have influenced or read the secret
information on the transferrer except s1 and s2 (assuming H is a collision-free hash
function and the keys are large enough).

All this concludes that s2 must be allowed to read x in the first place. Furthermore,
x′′ must be allowed to be influenced by x. Thus, the variable x′′ needs to get the
same readers and influencers as x have for s1. Based on this, additional notation is
required to ensure this before the actual assignment.

When H(x′) ̸= y′′ someone has either tampered with x′ or the signature y′, and
the integrity of x is not preserved. The message can therefore be discarded because
x′′ ̸= x, and the assignment should not be allowed. Considering that s1 and s2 use an
unprotected channel, handling information loss is therefore considered good practices
when implementing such a system.

Adding cryptography could therefore simplify some parts of a distributed system
due to the less restrictive channels. However, it does increase the complexity of the
processes as they must handle data loss, encryption, and decryption. Furthermore,
having a public key infrastructure also requires some setup as all public keys must
be available for all processes. Further investigation is needed to verify if the above
scheme is secure, and further examples are needed to determine to what extent adding
cryptography helps making a system more secure.

6.6 Asynchronous communication
From the instrumented semantics for systems, it is clear that this thesis only covers
synchronous communication. Asynchronous communication requires some sort of
buffer to store the information, here termed a buffer channel. Using syntax inspired
by KLAIM [DFP98], the statement out(a)@ch puts the value of a on the buffer
channel ch and continues execution, while the statement in(x)@ch gets a value from
the buffer channel ch and stores it in x.

Consider now the following two systems

Sync = l1 : chA!3; chB?x ∥ l2 : chB !8; chA?y
Async = l1 : out(3)@chA; in(x)@chB ∥ l2 : out(8)@chB ; in(y)@chA
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First, it is seen that Sync will never terminate because l1 waits for someone to receive
the message on chA. The Async system will clearly terminate because of the channel
buffers.

No structure for the buffer is proposed and there are therefore no guarantee of the
ordering of the buffer. Consider the following

Async2 = l1 : out(4)@ch; out(8)@ch ∥= l2 : in(x)@ch (6.6)

Here there will be no guarantee whether the value for x will be 4 or 8.
Looking back at the avionics case it could be useful to reason about the security

using asynchronous communication, as this could be used by some transport protocols
such as UDP, where there likewise are no guarantee for the ordering of the data.
Some security considerations have been made in [HNN09] for a distributed system
concerning using asynchronous communication.

6.7 Greatest lower bound operator
In Section 2.3.6 it was shown that • was a least upper bound operator according to
the defined preorder ⊑. Consider now an extension of the policies

P ::= ... | P 1 ◦ P 2

with the influencers and readers are defined as the reverse of •.

Infl
(
P 1 ◦ P 2, σ, q, y

)
= Infl

(
P 1, σ, q, y

)
∩ Infl

(
P 2, σ, q, y

)
(6.7)

Read
(
P 1 ◦ P 2, σ, q, y

)
= Read

(
P 1, σ, q, y

)
∪ Read

(
P 2, σ, q, y

)
(6.8)

The operator is then dual of • and therefore a lower bound on the policies.

Conjecture 6.1. The operator ◦ is a greatest lower bound operator on Pol.

Proof idea. Using same reasoning where • was shown to be a least upper bound in
Fact 2.5.

Consider influencers and readers for the policies similar to those presented in the
end of Section 2.3.3

Infl ({s1 : s1, s2 ← y} ◦ {s1 : s1, s3 ← y}, σ, s1, y) = {s1, s2} ∩ {s1, s3} = {s1}
Read ({s1 : s1, s2 → y} ◦ {s1 : s1, s3 → y}, σ, s1, y) = {s1, s2} ∪ {s1, s3} = {s1, s2, s3}

Only the security principals who are in all influencer policies are allowed as influencers.
Conversely, a security principal need only be allowed by one policy to be allowed as
a reader.

Looking at the readers for a single variable, its confidentiality level decreases as
more readers are allowed to read the information. In some sense the information gets
declassified. Conversely, for the influencers for a variable, its integrity level decreases
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Alice Bob Charlie

Stewardess

Cabin crew

Auto pilot Pilot

Airplane control

Passenger

Figure 6.1: A principal hierarchy for avionics.

as we say that less principals may influence the information. The result using the
operator is therefore an endorsement of the two policies.

Adding this operator to the policies therefore gives the programmer even more
complex ways of specifying policies. Though it seems unclear if there are any advan-
tages, as it gets more complex to verify if the policies have their intended meaning
according to relevant specifications and regulations.

6.8 Principal hierarchy
DLM principals are used to denote programs, users, and groups in a principal hierar-
chy [ML97] like the one presented in Figure 6.1. Here the user Alice can act for the
group stewardess and passenger, where the the stewardess also can act for the cabin
crew. Bob is a pilot, and can therefore act for the passenger, cabin crew and pilot
group where the latter can act for the program airplane control.

In this thesis the security principals have no connections. Multiple processes can
use the same security principal to group processes together, but we can not assign a
process to multiple security principals.

To take advantage of a principal hierarchy, some more notation is needed, such that
a user can make a procedure call to another program (e.g. Bob can call the airplane
control program). The program can then check if the caller have the appropriate
authority to run the program (e.g. that Bob can act for the pilot group).

6.9 Related languages protecting information flow
Some existing programming languages provides information flow control similar to
what is presented in this thesis.

The main example is Jif [Jif] which was proposed with DLM in [ML00]. Jif is an
extension to the Java programming language enabling the programmer to initialise
variables with DLM labels as we have seen in Section 1.2. The Jif compiler then stat-
ically checks that the integrity and confidentiality of the information holds according
to the specified labels, thereby producing a secure executable Java program. The
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policies {ū : ō← s̄}, {ū : ō→ s̄}, P1 •P2 and P1 ◦P2 from this thesis can be specified
directly in Jif.

A slightly different approach is used in Jeeves, presented in [YYS12]. The au-
thors consider the GPS system, which until 2000 provided different precision levels
depending on the context (military or civilian). They show policies which are similar
to the conditional policies (φ⇒ P ) from this thesis. Their main implementation is
in Python, using Z3 as a STM solver [Yan]. As they only do runtime checks of the
policies they have a delay of the evaluation for the runtime execution.

Lastly, [Mül+14] presents Cif which is a verifier for the C language. The paper
uses an extended version of DLM with policies very similar to those presented in this
thesis, with influencer and reader policies and conditional policies. The C program is
first checked with Cif and then translated into a regular C program for compiling and
execution of the secure program. The authors also relate their work to the avionics
scenario and security gateway described in Sections 1.3 and 5.1.
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CHAPTER 7
Conclusion

This thesis shows that it is possible to build a tool to verify security policies for
systems similar to those used in the avionics industry. The abstract model have
the same properties as the current system running on airplanes where information
flows can be checked for each execution. Furthermore, it has also been made possible
to type check a system against its policies such that any execution path leads to a
secure system (according to our definition of a secure system). Thus, the systems in
airplanes can be made more secure than they are today.

The definition of the policies leads to a neat join-semilattice (Pol, •,⊑≡). Further
examinations reveal that all the policies can be unified and described using the same
basic policy through the implication normal form. The comparison of basic influencer
policies leads to a simple result, while leaving a simplification of basic reader policies
for future work.

In spite of all their careful separation, the avionics industry reveals a case where
they still have multiple security domains using the same resource. This case represents
a gateway connecting multiple domains using a single channel. This can not be
efficiently solved with standard policies from DLM and an extension is described.
Here the policies can depend on their content such that information securely can
reach its destination over the shared channel.

The type checking of this gateway, though, reveals a false positive, in which a
secure system is erroneously declared non-secure. Suggestions are made on how to
modify the type system but is left unresolved.

Further analogies between DLM and the described policies have been illuminated
in form of the the greatest lower bound operator and the principal hierarchy. The
discussion also covers how non-secure systems can be traced back to the core problem
of why it is non-secure. At last opportunities and problems by adding cryptography
and asynchronous communication to the syntax was coverd.
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APPENDIX A
Proofs

This appendix contains all the proofs which are not directly relevant to have in the
main thesis.

A.1 Fact 2.3
Assume σ[x 7→ JaKσ] |= φ, then in the evaluation of the satisfaction the variable x
will be looked up in σ. If x ̸∈ ā then all occurrences of the variable x can the be
substituted directly into φ by φ[a/x] and the value of x in σ is therefore not needed,
thus gives σ |= φ[a/x]. If x ∈ ā, the evaluation of JaKσ will be related to an old value
of x denoted x′. Likewise after the substitution φ could contain x which should be
related to x′, which is available by looking up x in σ i.e. σ(x).

For the other side, a similar deduction can be used when assuming σ |= φ[a/x] to
get σ[x 7→ JaKσ] |= φ.

A.2 Fact 2.4
The ordering ⊑ is reflexive because for all P , σ, q, and y it holds that P ⊑ P

(Infl (P, σ, q, y) ⊆ Infl (P, σ, q, y)) ∧ (Read (P, σ, q, y) ⊇ Read (P, σ, q, y))
= (Infl (P, σ, q, y) = Infl (P, σ, q, y)) ∧ (Read (P, σ, q, y) = Read (P, σ, q, y))
= true

The ordering ⊑ is transitive because if P 1 ⊑ P 2 and P 2 ⊑ P 3 then P 1 ⊑ P 3. For all
σ, q, and y the influencers are

Infl
(
P 1, σ, q, y

)
⊆ Infl

(
P 2, σ, q, y

)
⊆ Infl

(
P 3, σ, q, y

)
⇒ Infl

(
P 1, σ, q, y

)
⊆ Infl

(
P 3, σ, q, y

)
Similar for readers this also holds

Read
(
P 1, σ, q, y

)
⊇ Read

(
P 2, σ, q, y

)
⊇ Read

(
P 3, σ, q, y

)
⇒ Read

(
P 1, σ, q, y

)
⊇ Read

(
P 3, σ, q, y

)
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A.3 Bottom elements
For all the equivalences (2.17) to (2.20) the influencers must be ϵ and the readers
must be ⋆ for values of σ, q and y, which they are using the definition of influencers
and readers directly

Infl ({ϵ : ō← s̄}, σ, q, y) = ϵ Read ({ϵ : ō← s̄}, σ, q, y) = ⋆ (A.1)
Infl ({ϵ : ō→ s̄}, σ, q, y) = ϵ Read ({ϵ : ō→ s̄}, σ, q, y) = ⋆ (A.2)
Infl ({ū : ϵ← s̄}, σ, q, y) = ϵ Read ({ū : ϵ← s̄}, σ, q, y) = ⋆ (A.3)
Infl ({ū : ϵ→ s̄}, σ, q, y) = ϵ Read ({ū : ϵ→ s̄}, σ, q, y) = ⋆ (A.4)
Infl ({ū : ō← ϵ}, σ, q, y) = ϵ Read ({ū : ō← ϵ}, σ, q, y) = ⋆ (A.5)
Infl ({⋆ : ⋆→ ⋆}, σ, q, y) = ϵ Read ({⋆ : ⋆→ ⋆}, σ, q, y) = ⋆ (A.6)

It is here assumed that ū, s̄, and ō can be any set from ϵ to ⋆.
For the inequality {} ̸≡ {ū : ō→ ϵ}, there exist one q ∈ ō, and y ∈ ū, such that

Infl ({ū : ō→ ϵ}, σ, q, y) = ϵ Read ({ū : ō→ ϵ}, σ, q, y) = ϵ (A.7)

The influencer set is ϵ as required, but the reader sets not ⋆.

A.4 Semilattice
Using the definition of the influencer set and reader set, it can easily be seen that for
all σ, q and y that • on Pol is idempotent (from (2.24))

Infl (P • P, σ, q, y) = Infl (P, σ, q, y) ∪ Infl (P, σ, q, y) = Infl (P, σ, q, y)
Read (P • P, σ, q, y) = Read (P, σ, q, y) ∩ Read (P, σ, q, y) = Read (P, σ, q, y)

commutative (from (2.25))

Infl
(
P 1 • P 2, σ, q, y

)
= Infl

(
P 1, σ, q, y

)
∪ Infl

(
P 2, σ, q, y

)
= Infl

(
P 2, σ, q, y

)
∪ Infl

(
P 1, σ, q, y

)
= Infl

(
P 2 • P 1, σ, q, y

)
Read

(
P 1 • P 2, σ, q, y

)
= Read

(
P 1, σ, q, y

)
∩ Read

(
P 2, σ, q, y

)
= Read

(
P 2, σ, q, y

)
∩ Read

(
P 1, σ, q, y

)
= Read

(
P 2 • P 1, σ, q, y

)
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and associative (from (2.26))

Infl
(
(P 1 • P 2) • P 3, σ, q, y

)
= (Infl

(
P 1, σ, q, y

)
∪ Infl

(
P 2, σ, q, y

)
) ∪ Infl

(
P 3, σ, q, y

)
= Infl

(
P 1, σ, q, y

)
∪ Infl

(
P 2, σ, q, y

)
∪ Infl

(
P 3, σ, q, y

)
= Infl

(
P 1, σ, q, y

)
∪

(
Infl

(
P 2, σ, q, y

)
∪ Infl

(
P 3, σ, q, y

))
= Infl

(
P 1 • (P 2 • P 3), σ, q, y

)
Read

(
(P 1 • P 2) • P 3, σ, q, y

)
= (Read

(
P 1, σ, q, y

)
∩ Read

(
P 2, σ, q, y

)
) ∩ Read

(
P 3, σ, q, y

)
= Read

(
P 1, σ, q, y

)
∩ Read

(
P 2, σ, q, y

)
∩ Read

(
P 3, σ, q, y

)
= Read

(
P 1, σ, q, y

)
∩

(
Read

(
P 2, σ, q, y

)
∩ Read

(
P 3, σ, q, y

))
= Read

(
P 1 • (P 2 • P 3), σ, q, y

)

A.5 Equivalences

A.5.1 Distribution laws
For all ū1, ū2, ō, s̄, σ, q and y the influencers are the same on both sides of the
{ū1ū2 : ō← s̄} ≡ {ū1 : ō← s̄} • {ū2 : ō← s̄}

Infl ({ū1ū2 : ō← s̄}, σ, q, y)

=

{
s̄ if y ∈ ū1 ∪ ū2 ∧ q ∈ ō
ϵ otherwise

=

{
s̄ if y ∈ ū1 ∧ q ∈ ō
ϵ otherwise

∪

{
s̄ if y ∈ ū2 ∧ q ∈ ō
ϵ otherwise

= Infl ({ū1 : ō← s̄}, σ, q, y) ∪ Infl ({ū2 : ō← s̄}, σ, q, y)
= Infl ({ū1 : ō← s̄} • {ū1 : ō← s̄}, σ, q, y)

and for readers

Read ({ū1ū2 : ō← s̄}, σ, q, y)
= Pr
= Pr ∩Pr
= Read ({ū1 : ō← s̄}, σ, q, y) ∩ Read ({ū2 : ō← s̄}, σ, q, y)
= Read ({ū1 : ō← s̄} • {ū1 : ō← s̄}, σ, q, y)

For all ū1, ū2, ō, s̄, σ, q and y the influencers are the same on both sides of
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{ū1ū2 : ō→ s̄} ≡ {ū1 : ō→ s̄} • {ū2 : ō→ s̄}

Infl ({ū1ū2 : ō→ s̄}, σ, q, y)
= ϵ

= ϵ ∪ ϵ
= Infl ({ū1 : ō→ s̄}, σ, q, y) ∪ Infl ({ū2 : ō→ s̄}, σ, q, y)
= Infl ({ū1 : ō→ s̄} • {ū2 : ō→ s̄}, σ, q, y)

and for readers

Read ({ū1ū2 : ō→ s̄}, σ, q, y)

=

{
s̄ if y ∈ ū1 ∪ ū2 ∧ q ∈ ō
Pr otherwise

=


s̄ if y ∈ ū1 ∧ y ∈ ū2 ∧ q ∈ ō
s̄ if y ∈ ū1 ∧ y ̸∈ ū2 ∧ q ∈ ō
s̄ if y ̸∈ ū1 ∧ y ∈ ū2 ∧ q ∈ ō
Pr otherwise

=

{
s̄ if y ∈ ū1 ∧ q ∈ ō
Pr otherwise

∩
{
s̄ if y ∈ ū2 ∧ q ∈ ō
Pr otherwise

= Read ({ū1 : ō→ s̄}, σ, q, y) ∩ Read ({ū2 : ō→ s̄}, σ, q, y)
= Read ({ū1 : ō→ s̄} • {ū2 : ō→ s̄}, σ, q, y)

For all ū, ō1, ō2, s̄, σ, q and y the influencers are the same on both sides of
{ū : ō1ō2 ← s̄} ≡ {ū : ō1 ← s̄} • {ū : ō2 ← s̄}

Infl ({ū : ō1ō2 ← s̄}, σ, q, y)

=

{
s̄ if y ∈ ū ∧ q ∈ ō1 ∪ ō2

ϵ otherwise

=

{
s̄ if y ∈ ū ∧ q ∈ ō1

ϵ otherwise
∪

{
s̄ if y ∈ ū ∧ q ∈ ō2

ϵ otherwise
= Infl ({ū : ō1 ← s̄}, σ, q, y) ∪ Infl ({ū : ō2 ← s̄}, σ, q, y)
= Infl ({ū : ō1 ← s̄} • {ū : ō2 ← s̄}, σ, q, y)

and readders

Read ({ū : ō1ō2 ← s̄}, σ, q, y)
= Pr
= Pr ∩Pr
= Read ({ū : ō1 ← s̄}, σ, q, y) ∩ Read ({ū : ō2 ← s̄}, σ, q, y)
= Read ({ū : ō1 ← s̄} • {ū : ō2 ← s̄}, σ, q, y)
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For all ū, ō1, ō2, s̄, σ, q and y the influencers are the same on both sides of
{ū : ō1ō2 ← s̄} ≡ {ū : ō1 ← s̄} • {ū : ō2 ← s̄}

Infl ({ū : ō1ō2 → s̄}, σ, q, y)
= ϵ

= ϵ ∪ ϵ
= Infl ({ū : ō1 → s̄}, σ, q, y) ∪ Infl ({ū : ō2 → s̄}, σ, q, y)
= Infl ({ū : ō1 → s̄} • {ū : ō2 → s̄}, σ, q, y)

and for readers

Read ({ū : ō1ō2 → s̄}, σ, q, y)

=

{
s̄ if y ∈ ū ∧ q ∈ ō1 ∪ ō2

Pr otherwise

=


s̄ if y ∈ ū ∧ q ∈ ō1 ∧ q ∈ ō2

s̄ if y ∈ ū ∧ q ∈ ō1 ∧ q ̸∈ ō2

s̄ if y ∈ ū ∧ q ̸∈ ō1 ∧ q ∈ ō2

Pr otherwise

=

{
s̄ if y ∈ ū ∧ q ∈ ō1

Pr otherwise
∩

{
s̄ if y ∈ ū ∧ q ∈ ō2

Pr otherwise
= Read ({ū : ō1 → s̄}, σ, q, y) ∩ Read ({ū : ō2 → s̄}, σ, q, y)
= Read ({ū : ō1 → s̄} • {ū : ō2 → s̄}, σ, q, y)

For all ū, ō, s̄1, s̄2, σ, q and y the influencers are the same on both sides of
{ū : ō← s̄1s̄2} ≡ {ū : ō← s̄1} • {ū : ō← s̄2}

Infl ({ū : ō← s̄1s̄2}, σ, q, y)

=

{
s̄1 ∪ s̄2 if y ∈ ū ∧ q ∈ ō
ϵ otherwise

=

{
s̄1 if y ∈ ū ∧ q ∈ ō
ϵ otherwise

∪
{
s̄2 if y ∈ ū ∧ q ∈ ō
ϵ otherwise

= Infl ({ū : ō← s̄1}, σ, q, y) ∪ Infl ({ū : ō← s̄2}, σ, q, y)
= Infl ({ū : ō← s̄1} • {ū : ō← s̄2}, σ, q, y)

and for readers

Read ({ū : ō← s̄1s̄2}, σ, q, y)
= Pr
= Pr ∩Pr
= Read ({ū : ō← s̄1}, σ, q, y) ∩ Read ({ū : ō← s̄2}, σ, q, y)
= Read ({ū : ō← s̄1} • {ū : ō← s̄2}, σ, q, y)
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A.5.2 Conditional policies

For all φ, P 1, P 2, σ, q and y the influencers are the same on both sides of
(
φ⇒ P 1 • P 2)

≡(
φ⇒ P 1)

•
(
φ⇒ P 2)

Infl
((
φ⇒ P 1 • P 2)

, σ, q, y
)

=

{
Infl

(
P 1 • P 2, σ, q, y

)
if σ |= φ

ϵ otherwise

=

{
Infl

(
P 1, σ, q, y

)
∪ Infl

(
P 2, σ, q, y

)
if σ |= φ

ϵ otherwise

=

{
Infl

(
P 1, σ, q, y

)
if σ |= φ

ϵ otherwise
∪

{
Infl

(
P 2, σ, q, y

)
if σ |= φ

ϵ otherwise
= Infl

((
φ⇒ P 1)

, σ, q, y
)
∪ Infl

((
φ⇒ P 2)

, σ, q, y
)

= Infl
((
φ⇒ P 1)

•
(
φ⇒ P 2)

, σ, q, y
)

and for readers

Read
((
φ⇒ P 1 • P 2)

, σ, q, y
)

=

{
Read

(
P 1 • P 2, σ, q, y

)
if σ |= φ

Pr otherwise

=

{
Read

(
P 1, σ, q, y

)
∩ Read

(
P 2, σ, q, y

)
if σ |= φ

Pr otherwise

=

{
Read

(
P 1, σ, q, y

)
if σ |= φ

Pr otherwise
∩

{
Read

(
P 2, σ, q, y

)
if σ |= φ

Pr otherwise
= Read

((
φ⇒ P 1)

, σ, q, y
)
∩ Read

((
φ⇒ P 2)

, σ, q, y
)

= Read
((
φ⇒ P 1)

•
(
φ⇒ P 2)

, σ, q, y
)

For all φ1, φ2, P , σ, q and y the influencers are the same on both sides (φ1 ∧ φ2⇒ P ) ≡
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(φ1⇒ (φ2⇒ P ))

Infl ((φ1 ∧ φ2⇒ P ) , σ, q, y)

=

{
Infl (P, σ, q, y) if σ |= (φ1 ∧ φ2)
ϵ otherwise

=

{
Infl (P, σ, q, y) if σ |= φ1 ∧ σ |= φ2

ϵ otherwise

=


{

Infl (P, σ, q, y) if σ |= φ2

ϵ otherwise
if σ |= φ1

ϵ otherwise

=

{
Infl ((φ2⇒ P ) , σ, q, y) if σ |= φ1

ϵ otherwise
= Infl ((φ1⇒ (φ2⇒ P )) , σ, q, y)

and for readers

Read ((φ1 ∧ φ2⇒ P ) , σ, q, y)

=

{
Read (P, σ, q, y) if σ |= (φ1 ∧ φ2)
Pr otherwise

=

{
Read (P, σ, q, y) if σ |= φ1 ∧ σ |= φ2

Pr otherwise

=


{

Read (P, σ, q, y) if σ |= φ2

Pr otherwise
if σ |= φ1

Pr otherwise

=

{
Read ((φ2⇒ P ) , σ, q, y) if σ |= φ1

Pr otherwise
= Read ((φ1⇒ (φ2⇒ P )) , σ, q, y)

For all φ, σ, q and y the influencers are the same on both sides of (φ⇒{}) ≡ {}

Infl ((φ⇒{}) , σ, q, y)

=

{
Infl ({}, σ, q, y) if σ |= φ

ϵ otherwise

=

{
ϵ if σ |= φ

ϵ otherwise
= ϵ

= Infl ({}, σ, q, y)
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and for readers
Read ((φ⇒{}) , σ, q, y)

=

{
Read ({}, σ, q, y) if σ |= φ

Pr otherwise

=

{
Pr if σ |= φ

Pr otherwise
= Pr
= Read ({}, σ, q, y)

For all P , σ, q and y the influencers are the same on both sides of (true⇒ P ) ≡ P

Infl ((true⇒ P ) , σ, q, y)

=

{
Infl (P, σ, q, y) if σ |= true
ϵ otherwise

= Infl (P, σ, q, y)

and for readers
Read ((true⇒ P ) , σ, q, y)

=

{
Read (P, σ, q, y) if σ |= true
Pr otherwise

= Read (P, σ, q, y)

For all P , σ, q and y the influencers are the same on both sides of (false⇒ P ) ≡ {}

Infl ((false⇒ P ) , σ, q, y)

=

{
Infl (P, σ, q, y) if σ |= false
ϵ otherwise

= Infl ({}, σ, q, y)

and for readers
Read ((false⇒ P ) , σ, q, y)

=

{
Read (P, σ, q, y) if σ |= false
Pr otherwise

= Read ({}, σ, q, y)

A.6 Fact 3.2 and Fact 3.1
The proof is done by structural induction on P . There are recursion in conditional
policy (φ⇒ P ) and sequential policies P 1•P 2. First all the base cases are established.
Then the induction step is taken, and the recursion is proven.
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Case P = {x̄ : ō← s̄}[a/x]. The influencers hold

Infl ({x̄ : ō← s̄}[a/x] , σ, q, z)
= Infl ({x̄ : ō← s̄}, σ, q, z)

=

{
s̄ if y ∈ x̄ ∧ q ∈ ō
ϵ otherwise

= Infl ({x̄ : ō← s̄}, σ[x 7→ JaKσ], q, z)

and the readers hold

Read ({x̄ : ō← s̄}[a/x] , σ, q, z)
= Read ({x̄ : ō← s̄}, σ, q, z)
= Pr
= Read ({x̄ : ō← s̄}, σ[x 7→ JaKσ], q, z)

Case P = {x̄ : ō→ s̄}[a/x]. The influencers hold

Infl ({x̄ : ō→ s̄}[a/x] , σ, q, z)
= Infl ({x̄ : ō→ s̄}, σ, q, z)
= ϵ

= Infl ({x̄ : ō→ s̄}, σ[x 7→ JaKσ], q, z)

and the readers hold

Read ({x̄ : ō→ s̄}[a/x] , σ, q, z)
= Read ({x̄ : ō→ s̄}, σ, q, z)

=

{
s̄ if y ∈ x̄ ∧ q ∈ ō
Pr otherwise

= Read ({x̄ : ō→ s̄}, σ[x 7→ JaKσ], q, z)

Case P = ((φ⇒{x̄ : ō← s̄}))[a/x] or P = ((φ⇒{x̄ : ō→ s̄}))[a/x]. The influ-
encers hold

Infl ((φ⇒ P ′)[a/x] , σ, q, z)
= Infl ((φ[a/x]⇒ P ′[a/x]) , σ, q, z)

=

{
Infl (P ′[a/x] , σ, q, z) if σ |= φ[a/x]
ϵ otherwise

=

{
Infl (P ′, σ[x 7→ JaKσ], q, z) if σ |= φ[a/x]
ϵ otherwise

=

{
Infl (P ′, σ[x 7→ JaKσ], q, z) if σ[x 7→ JaKσ] |= φ

ϵ otherwise
using Fact 2.3

= Infl ((φ⇒ P ′) , σ[x 7→ JaKσ], q, z)
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and the readers hold

Read ((φ⇒ P ′)[a/x] , σ, q, z)
= Read ((φ[a/x]⇒ P ′[a/x]) , σ, q, z)

=

{
Read (P ′[a/x] , σ, q, z) if σ |= φ[a/x]
Pr otherwise

=

{
Read (P ′, σ[x 7→ JaKσ], q, z) if σ |= φ[a/x]
Pr otherwise

=

{
Read (P ′, σ[x 7→ JaKσ], q, z) if σ[x 7→ JaKσ] |= φ

Pr otherwise
using Fact 2.3

= Read ((φ⇒ P ′) , σ[x 7→ JaKσ], q, z)

The induction steps can begin, and it is now assumed that

Infl ((φ⇒ P )[a/x] , σ, q, z) = Infl ((φ⇒ P ) , σ[x 7→ JaKσ], q, z)
Read ((φ⇒ P )[a/x] , σ, q, z) = Read ((φ⇒ P ) , σ[x 7→ JaKσ], q, z)

Induction step: P = ((φ⇒ (φ′⇒ P ′)))[a/x]. The influencers hold

Infl ((φ⇒ (φ′⇒ P ′))[a/x] , σ, q, z)
= Infl ((φ ∧ φ′⇒ P ′)[a/x] , σ, q, z)
= Infl ((φ ∧ φ′⇒ P ′) , σ[x 7→ JaKσ], q, u)
= Infl ((φ⇒ (φ′⇒ P ′)) , σ[x 7→ JaKσ], q, u)

and the readers hold

Read ((φ⇒ (φ′⇒ P ′))[a/x] , σ, q, z)
= Read ((φ ∧ φ′⇒ P ′)[a/x] , σ, q, z)
= Read ((φ ∧ φ′⇒ P ′) , σ[x 7→ JaKσ], q, u)
= Read ((φ⇒ (φ′⇒ P ′)) , σ[x 7→ JaKσ], q, u)

Induction step: P = (
(
φ⇒ P 1 • P 2)

)[a/x]. The influencers hold

Infl
((
φ⇒ P 1 • P 2)

[a/x] , σ, q, z
)

= Infl
(
(
(
φ⇒ P 1)

•
(
φ⇒ P 2)

)[a/x] , σ, q, z
)

= Infl
((
φ⇒ P 1)

[a/x] •
(
φ⇒ P 2)

[a/x] , σ, q, z
)

= Infl
((
φ⇒ P 1)

[a/x] , σ, q, z
)
∩ Infl

((
φ⇒ P 2)

[a/x] , σ, q, z
)

= Infl
((
φ⇒ P 1)

, σ[x 7→ JaKσ], q, z
)
∩ Infl

((
φ⇒ P 2)

, σ[x 7→ JaKσ], q, z
)

= Infl
((
φ⇒ P 1)

•
(
φ⇒ P 2)

, σ[x 7→ JaKσ], q, z
)

= Infl
((
φ⇒ P 1 • P 2)

, σ[x 7→ JaKσ], q, z
)
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and the readers hold

Read
((
φ⇒ P 1 • P 2)

[a/x] , σ, q, z
)

= Read
(
(
(
φ⇒ P 1)

•
(
φ⇒ P 2)

)[a/x] , σ, q, z
)

= Read
((
φ⇒ P 1)

[a/x] •
(
φ⇒ P 2)

[a/x] , σ, q, z
)

= Read
((
φ⇒ P 1)

[a/x] , σ, q, z
)
∩ Read

((
φ⇒ P 2)

[a/x] , σ, q, z
)

= Read
((
φ⇒ P 1)

, σ[x 7→ JaKσ], q, z
)
∩ Read

((
φ⇒ P 2)

, σ[x 7→ JaKσ], q, z
)

= Read
((
φ⇒ P 1)

•
(
φ⇒ P 2)

, σ[x 7→ JaKσ], q, z
)

= Read
((
φ⇒ P 1 • P 2)

, σ[x 7→ JaKσ], q, z
)

Base case: P = (P 1 •P 2)[a/x] Using all combinations for P 1 and P 2 from the cases
above the base case can be established for sequential policies using this template.
First the influencers hold

Infl
(
(P 1 • P 2)[a/x] , σ, q, z

)
= Infl

(
P 1[a/x] • P 2[a/x] , σ, q, z

)
= Infl

(
P 1[a/x] , σ, q, z

)
∪ Infl

(
P 2[a/x] , σ, q, z

)
= Infl

(
P 1, σ[x 7→ JaKσ], q, z

)
∪ Infl

(
P 2, σ[x 7→ JaKσ], q, z

)
= Infl

(
P 1 • P 2, σ[x 7→ JaKσ], q, z

)
and the readers hold

Read
(
(P 1 • P 2)[a/x] , σ, q, z

)
= Read

(
P 1[a/x] • P 2[a/x] , σ, q, z

)
= Read

(
P 1[a/x] , σ, q, z

)
∩ Read

(
P 2[a/x] , σ, q, z

)
= Read

(
P 1, σ[x 7→ JaKσ], q, z

)
∩ Read

(
P 2, σ[x 7→ JaKσ], q, z

)
= Read

(
P 1 • P 2, σ[x 7→ JaKσ], q, z

)
The last induction step can begin, and it is now assumed that

Read
(
(P 1 • P 2)[a/x] , σ, q, z

)
= Read

(
P 1 • P 2, σ[x 7→ JaKσ], q, z

)
Induction step: P = (P 1 • P 2 • P 3)[a/x]. First for influencers it holds

Infl
(
(P 1 • P 2 • P 3)[a/x] , σ, q, z

)
= Infl

(
((P 1 • P 2) • P 3)[a/x] , σ, q, z

)
= Infl

(
(P 1 • P 2)[a/x] • P 3[a/x] , σ, q, z

)
= Infl

(
(P 1 • P 2)[a/x] , σ, q, z

)
∪ Infl

(
P 3[a/x] , σ, q, z

)
= Infl

(
P 1 • P 2, σ[x 7→ JaKσ], q, z

)
∪ Infl

(
P 3, σ[x 7→ JaKσ], q, z

)
= Infl

(
(P 1 • P 2) • P 3, σ[x 7→ JaKσ], q, z

)
= Infl

(
(P 1 • P 2 • P 3), σ[x 7→ JaKσ], q, z

)
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and for readers

Read
(
(P 1 • P 2 • P 3)[a/x] , σ, q, z

)
= Read

(
((P 1 • P 2) • P 3)[a/x] , σ, q, z

)
= Read

(
(P 1 • P 2)[a/x] • P 3[a/x] , σ, q, z

)
= Read

(
(P 1 • P 2)[a/x] , σ, q, z

)
∩ Read

(
P 3[a/x] , σ, q, z

)
= Read

(
P 1 • P 2, σ[x 7→ JaKσ], q, z

)
∩ Read

(
P 3, σ[x 7→ JaKσ], q, z

)
= Read

(
(P 1 • P 2) • P 3, σ[x 7→ JaKσ], q, z

)
= Read

(
(P 1 • P 2 • P 3), σ[x 7→ JaKσ], q, z

)
Which finalises the proof.

A.7 Fact 3.4 and Fact 3.3
Similar to the proof for Fact 3.1 and Fact 3.2. It is done by induction on P .

First note the following

∪
z∈ȳ

Infl ({x̄ : ō← s̄}, σ, q, z) =

{
s̄ if q ∈ ō ∧ (ȳ ∩ x̄ ̸= ϵ)
ϵ otherwise

(A.8)

∩
z∈ȳ

Read ({x̄ : ō→ s̄}, σ, q, z) =

{
s̄ if q ∈ ō ∧ (ȳ ∩ x̄ ̸= ϵ)
Pr otherwise

(A.9)

If at least one element z ∈ ȳ is also in x̄, then due to the union/intersections the
influencers/readers are s̄ (if q ∈ ō). If q ∈ ō, then the only way to get ϵ/Pr is if
z̄ ∩ x̄ = ϵ.

Shown here is only the proof for the readers, but the proof for influencers follows
the same structure.

Base case: {x̄ : ō→ s̄}⟨ȳ/x⟩ and x ̸= z.

Read ({x̄ : ō→ s̄}⟨ȳ/x⟩, σ, q, z)

=

{
Read ({x̄x : ō→ s̄}, σ, q, z) if x̄ ∩ ȳ ̸= ϵ

Read ({x̄ : ō→ s̄}, σ, q, z) otherwise

=


s̄ if x̄ ∩ ȳ ̸= ϵ ∧ z ∈ x̄x ∧ q ∈ ō
Pr if x̄ ∩ ȳ ̸= ϵ

s̄ if x̄ ∩ ȳ = ϵ ∧ z ∈ x̄ ∧ q ∈ ō
Pr if x̄ ∩ ȳ = ϵ

=

{
s̄ if z ∈ x̄ ∧ q ∈ ō
Pr otherwise

using x ̸= z

= Read ({x̄ : ō→ s̄}, σ, q, z)
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Base case: {x̄ : ō→ s̄}⟨ȳ/x⟩ and x = z

Read ({x̄ : ō→ s̄}⟨ȳ/x⟩, σ, q, z)
= Read ({x̄ : ō→ s̄}⟨ȳ/x⟩, σ, q, x)

=

{
Read ({x̄x : ō→ s̄}, σ, q, x) if x̄ ∩ ȳ ̸= ϵ

Read ({x̄ : ō→ s̄}, σ, q, x) otherwise

This yields two cases. First case: x̄ ∩ ȳ ̸= ϵ. The readers of the left-hand is then

Read ({x̄x : ō→ s̄}, σ, q, x)
= Read ({x̄ : ō→ s̄}, σ, q, x) ∩ Read ({x : ō→ s̄}, σ, q, x)

=

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise

∩

{
s̄ if x ∈ x ∧ q ∈ ō
Pr otherwise

=

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise

∩
{
s̄ if q ∈ ō
Pr otherwise

Because x̄ ∩ ȳ ̸= ϵ then the readers of the right-hand side is

∩
u∈xȳ

Read ({x̄ : ō→ s̄}, σ, q, u)

= Read ({x̄ : ō→ s̄}, σ, q, x) ∩
∩
v∈ȳ

Read ({x̄ : ō→ s̄}, σ, q, v)

=

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise

∩

{
s̄ if q ∈ ō ∧ (x̄ ∩ ȳ ̸= ϵ)
Pr otherwise

=

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise

∩
{
s̄ if q ∈ ō
Pr otherwise

Which is equal to the left-hand side.

Second case: x̄ ∩ ȳ = ϵ. Again the value of the left-hand side gives:

Read ({x̄ : ō→ s̄}, σ, q, x) =

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise
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Because x̄ ∩ ȳ = ϵ and s̄ ⊆ Pr = s̄ the readers of the right-hand side is

∩
u∈xȳ

Read ({x̄ : ō→ s̄}, σ, q, u)

= Read ({x̄ : ō→ s̄}, σ, q, x) ∩
∩
v∈ȳ

Read ({x̄ : ō→ s̄}, σ, q, v)

=

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise

∩

{
s̄ if q ∈ ō ∧ (x̄ ∩ ȳ ̸= ϵ)
Pr otherwise

=

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise

∩Pr

=

{
s̄ if x ∈ x̄ ∧ q ∈ ō
Pr otherwise

Which is equal to the left-hand side.
Base case: {x̄ : ō← s̄}⟨ȳ/x⟩ and x ̸= z. The readers on both sides are equal.

Read ({x̄ : ō← s̄}⟨ȳ/x⟩, σ, q, z)

=

{
Read ({x̄x : ō← s̄}, σ, q, z) if x̄ ∩ ȳ ̸= ϵ

Read ({x̄ : ō← s̄}, σ, q, z) otherwise
= Pr
= Read ({x̄ : ō← s̄}, σ, q, z)

Base case: {x̄ : ō← s̄}⟨ȳ/x⟩ and x = z. The readers on both sides are equal.

Read ({x̄ : ō← s̄}⟨ȳ/x⟩, σ, q, z)

=

{
Read ({x̄x : ō← s̄}, σ, q, z) if x̄ ∩ ȳ ̸= ϵ

Read ({x̄ : ō← s̄}, σ, q, z) otherwise
= Pr

=
∩

u∈xȳ

Pr

=
∩

u∈xȳ

Read ({x̄ : ō← s̄}, σ, q, u)

Base case: (φ⇒{x̄ : ō← s̄}) ⟨ȳ/x⟩ or (φ⇒{x̄ : ō→ s̄}) ⟨ȳ/x⟩ and x ̸= z. The
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readers on both sides are equal.

Read ((φ⇒ P ′) ⟨ȳ/x⟩, σ, q, z)
= Read ((φ⇒ P ′⟨ȳ/x⟩) , σ, q, z)

=

{
Read (P ′⟨ȳ/x⟩, σ, q, z) if σ |= φ

Pr otherwise

=

{
Read (P ′, σ, q, z) if σ |= φ

Pr otherwise
= Read ((φ⇒ P ′) , σ, q, z)

Base case: (φ⇒{x̄ : ō← s̄}) or (φ⇒{x̄ : ō→ s̄}) and x = z. The readers on
both sides are equal.

Read ((φ⇒ P ′) ⟨ȳ/x⟩, σ, q, x)
= Read ((φ⇒ P ′⟨ȳ/x⟩) , σ, q, x)

=

{
Read (P ′⟨ȳ/x⟩, σ, q, x) if σ |= φ

Pr otherwise

=

{∩
u∈xȳ Read (P ′, σ, q, u) if σ |= φ

Pr otherwise

=

{∩
u∈xȳ Read (P ′, σ, q, u) if σ |= φ∩
u∈xȳ Pr otherwise

=
∩

u∈xȳ

{
Read (P ′, σ, q, u) if σ |= φ

Pr otherwise

=
∩

u∈xȳ

Read ((φ⇒ P ′) , σ, q, u)

Induction hypothesis. All the base cases holds. It is now assumed that

Read ((φ⇒ P ) ⟨ȳ/x⟩, σ, q, z) =

{
Read ((φ⇒ P ) , σ, q, z) if x ̸= z∩

u∈xȳ Read ((φ⇒ P ) , σ, q, u) otherwise

Which yields two induction steps.
Induction step: (φ⇒ (φ′⇒ P ′)) ⟨ȳ/x⟩. The readers on both sides are equal.

Read ((φ⇒ (φ′⇒ P ′)) ⟨a/x⟩, σ, q, z)
= Read ((φ ∧ φ′⇒ P ′) ⟨a/x⟩, σ, q, z)

=

{
Read ((φ ∧ φ′⇒ P ′) , σ, q, z) if x ̸= z∩

u∈xȳ Read ((φ ∧ φ′⇒ P ′) , σ, q, u) otherwise

=

{
Read ((φ⇒ (φ′⇒ P ′)) , σ, q, z) if x ̸= z∩

u∈xȳ Read ((φ⇒ (φ′⇒ P ′)) , σ, q, u) otherwise
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Induction step:
(
φ⇒ P 1 • P 2)

. The readers on both sides are equal.

Read
((
φ⇒ P 1 • P 2)

⟨a/x⟩, σ, q, z
)

= Read
(
(
(
φ⇒ P 1)

•
(
φ⇒ P 2)

)⟨a/x⟩, σ, q, z
)

= Read
((
φ⇒ P 1)

⟨a/x⟩ •
(
φ⇒ P 2)

⟨a/x⟩, σ, q, z
)

= Read
((
φ⇒ P 1)

⟨a/x⟩, σ, q, z
)
∩ Read

((
φ⇒ P 2)

⟨a/x⟩, σ, q, z
)

=

{
Read

((
φ⇒ P 1)

, σ, q, z
)∩

u∈xȳ Read
((
φ⇒ P 1)

, σ, q, u
) ∩{

Read
((
φ⇒ P 2)

, σ, q, z
)

if x ̸= z∩
u∈xȳ Read

((
φ⇒ P 2)

, σ, q, u
)

otherwise

=

{
Read

((
φ⇒ P 1)

, σ, q, z
)
∩ Read

((
φ⇒ P 2)

, σ, q, z
)

if x ̸= z∩
u∈xȳ Read

((
φ⇒ P 1)

, σ, q, u
)
∩

∩
u∈xȳ Read

((
φ⇒ P 2)

, σ, q, u
)

otherwise

=

{
Read

((
φ⇒ P 1)

, σ, q, z
)
∩ Read

((
φ⇒ P 2)

, σ, q, z
)

if x ̸= z∩
u∈xȳ Read

((
φ⇒ P 1)

, σ, q, u
)
∩ Read

((
φ⇒ P 2)

, σ, q, u
)

otherwise

=

{
Read

((
φ⇒ P 1)

•
(
φ⇒ P 2)

, σ, q, z
)

if x ̸= z∩
u∈xȳ Read

((
φ⇒ P 1)

•
(
φ⇒ P 2)

, σ, q, u
)

otherwise

=

{
Read

((
φ⇒ P 1 • P 2)

, σ, q, z
)

if x ̸= z∩
u∈xȳ Read

((
φ⇒ P 1 • P 2)

, σ, q, u
)

otherwise

Base case: (P 1 • P 2)⟨ȳ/x⟩. Using all combinations of base cases for P 1 and P 2,
the following template can be used to prove this last base case

Read
(
(P 1 • P 2)⟨ȳ/x⟩, σ, q, z

)
= Read

(
P 1⟨ȳ/x⟩ • P 2⟨ȳ/x⟩, σ, q, z

)
= Read

(
P 1⟨ȳ/x⟩, σ, q, z

)
∩ Read

(
P 2⟨ȳ/x⟩, σ, q, z

)
=

{
Read

(
P 1, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 1, σ, q, u

)
otherwise

∩

{
Read

(
P 2, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 2, σ, q, u

)
otherwise

=

{
Read

(
P 1, σ, q, z

)
∩ Read

(
P 2, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 1, σ, q, u

)
∩ Read

(
P 2, σ, q, u

)
otherwise

=

{
Read

(
P 1 • P 2, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 1 • P 2, σ, q, u

)
otherwise

Induction hypothesis. It is now assumed that the following holds

Read
(
(P 1 • P 2)⟨ȳ/x⟩, σ, q, z

) {
Read

(
P 1 • P 2, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 1 • P 2, σ, q, u

)
otherwise

(A.10)
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Induction step: ((P 1 • P 2) • P 3)⟨ȳ/x⟩. The readers on both sides are equal.

Read
(
(P 1 • P 2 • P 3)⟨a/x⟩, σ, q, z

)
= Read

(
((P 1 • P 2) • P 3)⟨a/x⟩, σ, q, z

)
= Read

(
(P 1 • P 2)⟨a/x⟩ • P 3⟨a/x⟩, σ, q, z

)
= Read

(
(P 1 • P 2)⟨a/x⟩, σ, q, z

)
∩ Read

(
P 3⟨a/x⟩, σ, q, z

)
=

{
Read

(
P 1 • P 2, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 1 • P 2, σ, q, u

)
otherwise

∩

{
Read

(
P 3, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 3, σ, q, u

)
otherwise

=

{
Read

(
P 1 • P 2, σ, q, z

)
∩ Read

(
P 3, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 1 • P 2, σ, q, u

)
∩ Read

(
P 3, σ, q, u

)
otherwise

=

{
Read

(
P 1 • P 2 • P 3, σ, q, z

)
if x ̸= z∩

u∈xȳ Read
(
P 1 • P 2 • P 3, σ, q, u

)
otherwise

which finalises the proof.

A.8 Lemma 3.1
The proof is by induction on the inference of ȳ ⊢ℓ {ϕ}S{ψ}. Each case for S is
therefore individually proven.

Let E = x̄ × Pr × z̄ then the extension with the implicit flows from the set of
variables ȳ is

⌈ȳ⌉E = x̄×Pr× z̄ ∪ ȳ ×Pr× z̄ = x̄ȳ ×Pr× z̄ (A.11)

A.8.1 Case [skipts]
Assume ȳ ⊢ℓ {ϕ}skip{ϕ′}. The type system gives that ϕ⇒ ϕ′. From the lemma it is
assumed that

σ |= ϕ (A.12)

⊢ℓ ⟨skip;σ⟩ E−→
α
⟨S′;σ′⟩ (A.13)

The instrumented semantics for the skip statement gives

E = ⋄ ×Pr× ⋄
α = τ

S′ = skip
σ′ = σ

Then ψ needs to exists such that ȳ ⊢ℓ {ψ}S′{ϕ′}. Using ψ = ϕ′ then ȳ ⊢ℓ {ψ}skip{ϕ′}
because ψ ⇒ ϕ′.
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Because σ |= ϕ and σ = σ′ then σ′ |= ϕ. Because ϕ ⇒ ϕ′ then σ′ |= ϕ′. Because
ψ = ϕ′ then σ′ |= ψ, also required by the lemma.

Because α = τ then sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) needs to hold. Looking at the relevant
extended flows used in the first part of the security predicate gives

E− = ⌈ȳ⌉E ∩ (Var+ ×Pr×Var+) = ⌈ȳ⌉(⋄ ×Pr× ⋄) ∩ (Var+ ×Pr×Var+) = ∅

due to the lack of variables in the third part of the extended flow. This part there-
fore holds. Next the variables used in the other part of the security predicate are
determined

ū = Var \ trd(⌈ȳ⌉E) = Var \ trd(⌈ȳ⌉(⋄ ×Pr× ⋄)) = Var \ {⋄} = Var

By considering all s ∈ Pr and u ∈ ū, it is then clear that

Infl (Pℓ, σ, s, u) ⊆ Infl (Pℓ, σ
′, s, u)

Read (Pℓ, σ, s, u) ⊇ Read (Pℓ, σ
′, s, u)

because σ = σ′. The security predicate sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) therefore holds, final-
ising the case.

A.8.2 Case [assts]
Assume ȳ ⊢ℓ {ϕ}x := a{ϕ′}. In the type system the following two side conditions
must hold

ϕ⇒ ϕ′[a/x] (A.14)
(ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ Pℓ[a/x] (A.15)

and from the lemma, it is assumed that

σ |= ϕ (A.16)

⊢ℓ ⟨x := y;σ⟩ E−→
α
⟨S′;σ′⟩ (A.17)

The instrumented semantics for assignments gives

E = ā ⋄ ×Pr× x (A.18)
α = τ (A.19)
S′ = skip (A.20)
σ′ = σ[x 7→ JaKσ] (A.21)

Then ψ needs to exists such that ȳ ⊢ℓ {ψ}S′{ϕ′}. Taking ψ = ϕ′, then ȳ ⊢ℓ

{ψ}skip{ϕ′} holds because ψ ⇒ ϕ′. Using that (A.14) holds, then σ |= ϕ ⇒ σ |=
ϕ′[a/x], and by using Fact 2.3

σ |= ϕ′[a/x] = σ |= ψ[a/x]
= σ[x 7→ JaKσ] |= ψ

= σ′ |= ψ
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which is also required. Because α is τ , then sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) needs to hold.
First we determine the extended flows used
E− = ⌈ȳ⌉E ∩ (Var+ ×Pr×Var+) = (⌈ȳ⌉ā ⋄ ×Pr× x) ∩ (Var+ ×Pr×Var+)

= āȳ ×Pr× x

Consider (u, s, x) ∈ E−, the influencer set is then

Infl (Pℓ, σ, s, u) ⊆
∪

u∈xāȳ

Infl (Pℓ, σ, s, u) using u ∈ āȳ

= Infl (Pℓ⟨āȳ/x⟩, σ, s, x) using Fact 3.3
= Infl ((ϕ⇒ Pℓ⟨āȳ/x⟩) , σ, s, x) using σ |= ϕ

⊆ Infl (Pℓ[a/x] , σ, s, x) using (A.15)
= Infl (Pℓ, σ[x |= JaKσ], s, x) using Fact 3.1
= Infl (Pℓ, σ

′, s, x) using (A.21)
and the reader set is

Read (Pℓ, σ, s, u) ⊇
∩

u∈xāȳ

Read (Pℓ, σ, s, u) using u ∈ āȳ

= Read (Pℓ⟨āȳ/x⟩, σ, s, x) using Fact 3.4
= Read ((ϕ⇒ Pℓ⟨āȳ/x⟩) , σ, s, x) using σ |= ϕ

⊇ Read (Pℓ[a/x] , σ, s, x) using (A.15)
= Read (Pℓ, σ[x 7→ JaKσ], s, x) using Fact 3.2
= Read (Pℓ, σ

′, s, x) using (A.21)
Next the variables used in the other part of the security predicate are determined

ū = Var \ trd(⌈ȳ⌉E) = Var \ trd(⌈ȳ⌉(ā ⋄ ×Pr× x)) = Var \ {x}

By considering all u ∈ ū, it is noted that u ̸= x. The influencer set is then found for
all s ∈ Pr

Infl (Pℓ, σ, s, u) = Infl (P ⟨ȳ/x⟩, σ, s, u) using Fact 3.3 and u ̸= x

= Infl ((ϕ⇒ P ⟨ȳ/x⟩) , σ, s, u) using σ |= ϕ

⊆ Infl (Pℓ[a/x] , σ, s, u) using (A.15)
= Infl (Pℓ, σ[x |= JaKσ], s, u) using Fact 3.1
= Infl (Pℓ, σ

′, s, u) using (A.21)
and for the reader set

Read (Pℓ, σ, s, u) = Read (P ⟨ȳ/x⟩, σ, s, u) using Fact 3.4 and u ̸= x

= Read ((ϕ⇒ P ⟨ȳ/x⟩) , σ, s, u) using σ |= ϕ

⊇ Read (Pℓ[a/x] , σ, s, u) using (A.15)
= Read (Pℓ, σ[x 7→ JaKσ], s, u) using Fact 3.2
= Read (Pℓ, σ

′, s, u) using (A.21)
The two parts in sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) therefore holds, which finalises the case.
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A.8.3 Case [ass†ts]
Assume ȳ ⊢ℓ {ϕ}x :=† a{ϕ′}. In the type system the following two side conditions
must hold

ϕ⇒ ϕ′[a/x] (A.22)
(ϕ⇒ Pℓ⟨āȳ/x⟩) ⊑ (Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}) (A.23)

and from the lemma, it is assumed that

σ |= ϕ (A.24)

⊢ℓ ⟨x := y;σ⟩ E−→
α
⟨S′;σ′⟩ (A.25)

The instrumented semantics for bypass assignments gives

E = ā ⋄ ×Pr\ℓ × x (A.26)
α = τ (A.27)
S′ = skip (A.28)
σ′ = σ[x 7→ JaKσ] (A.29)

Then ψ needs to exists such that ȳ ⊢ℓ {ψ}S′{ϕ′}. Taking ψ = ϕ′, then ȳ ⊢ℓ

{ψ}skip{ϕ′} holds because ψ ⇒ ϕ′. Using that (A.14) holds, then σ |= ϕ ⇒ σ |=
ϕ′[a/x], and by using Fact 2.3

σ |= ϕ′[a/x] = σ |= ψ[a/x]
= σ[x 7→ JaKσ] |= ψ

= σ′ |= ψ

which is also required. Because α is τ , then sec(Pℓ, σ; ⌈̄⌉E;σ′, Pℓ) needs to hold. First
we determine the extended flows used

E− ≜ ⌈ȳ⌉E ∩ (Var+ ×Pr×Var+) = āȳ ×Pr \ S(ℓ)× x

Consider (u, s, x) ∈ E−, and realise that s ̸= S(ℓ). The influencer set is then

Infl (Pℓ, σ, s, u)

⊆
∪

u∈xāȳ

Infl (Pℓ, σ, s, u) using u ∈ āȳ

= Infl (Pℓ⟨āȳ/x⟩, σ, s, x) using Fact 3.4
= Infl ((ϕ⇒ Pℓ⟨āȳ/x⟩) , σ, s, x) using σ |= ϕ

⊆ Infl ((Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}), σ, s, x) using (A.23)
= Infl (Pℓ[a/x] , σ, s, x) ∪ ϵ ∪ ϵ using s ̸= S(ℓ)
= Infl (Pℓ[a/x] , σ, s, x)
= Infl (Pℓ, σ[x |= JaKσ], s, x) using Fact 3.2
= Infl (Pℓ, σ

′, s, x) using (A.29)
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and the reader set is

Read (Pℓ, σ, s, u)

⊇
∩

u∈xāȳ

Read (Pℓ, σ, s, u) using u ∈ āȳ

= Read (Pℓ⟨āȳ/x⟩, σ, s, x) using Fact 3.4
= Read ((ϕ⇒ Pℓ⟨āȳ/x⟩) , σ, s, x) using σ |= ϕ

⊇ Read ((Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}), σ, s, x) using (A.23)
= Read (Pℓ[a/x] , σ, s, x) ∩Pr ∩Pr using s ̸= S(ℓ)
= Read (Pℓ[a/x] , σ, s, x)
= Read (Pℓ, σ[x 7→ JaKσ], s, x) using Fact 3.2
= Read (Pℓ, σ

′, s, x) using (A.29)

Next the variables used in the other part of the security predicate are determined

ū = Var \ trd(⌈ȳ⌉E) = Var \ trd(⌈ȳ⌉(ā ⋄ ×Pr\ℓ × x)) = Var \ {x}

By considering u ∈ ū, it is noted that u ̸= x. The influencer set is then found

Infl (Pℓ, σ, s, u)
= Infl (P ⟨ȳ/x⟩, σ, s, u) using Fact 3.3
= Infl ((ϕ⇒ P ⟨ȳ/x⟩) , σ, s, u) using σ |= ϕ

⊆ Infl ((Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}), σ, s, u) using (A.23)
= Infl (Pℓ[a/x] , σ, s, u) ∪ ϵ ∪ ϵ using u ̸= x

= Infl (Pℓ[a/x] , σ, s, u)
= Infl (Pℓ, σ[x 7→ JaKσ], s, u) using Fact 3.1
= Infl (Pℓ, σ

′, s, u) using (A.29)

and for the reader set

Read (Pℓ, σ, s, u)
= Read (P ⟨ȳ/x⟩, σ, s, u) using Fact 3.4
= Read ((ϕ⇒ P ⟨ȳ/x⟩) , σ, s, u) using σ |= ϕ

⊇ Read ((Pℓ[a/x] • {x : S(ℓ)← ⋆} • {x : S(ℓ)→ ϵ}), σ, s, u) using (A.23)
= Read (Pℓ[a/x] , σ, s, u) ∩Pr ∩Pr using u ̸= x

= Read (Pℓ[a/x] , σ, s, u)
= Read (Pℓ, σ[x |= JaKσ], s, u) using Fact 3.2
= Read (Pℓ, σ

′, s, u) using (A.29)

The two parts in sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) therefore holds, which finalises the case.
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A.8.4 Case [combts]
Assume ȳ ⊢ℓ {ϕ}S1;S2{ϕ′}. From the type system the following two holds

ȳ ⊢ℓ {ϕ}S1{ϕ′′} ȳ ⊢ℓ {ϕ′′}S2{ϕ′}

and from the lemma it is assumed that

σ |= ϕ

⊢ℓ ⟨S1;S2;σ⟩ E−→
α
⟨S′;σ′⟩

From the instrumented semantic there are two cases for sequential composition. If
S1 ̸= skip then S′ = S′1;S2 and the premises for the rule then yields the assumption

⊢ℓ ⟨S1;σ⟩ E−→
α
⟨S′1;σ′⟩

thereby defining E,α and σ′. The induction hypothesis gives that there exists ψ
such that ȳ ⊢ℓ {ψ}S′1{ϕ′′}, σ′ |= ψ and sec(P, σ; ⌈ȳ⌉E;σ′, P ′), where P and P ′ are
dependent on α. All this then gives ȳ ⊢ℓ {ψ}S′1;S2{ϕ′}, which completes the first
case.

If S1 = skip then S′ = S2 and the premises for the rule gives

⊢ℓ ⟨S1;σ⟩ E−→
α
⟨skip;σ′⟩

The induction hypothesis gives that there exists ψ such that ȳ ⊢ℓ {ψ}skip{ϕ′′} and
that σ′ |= ψ and therefore sec(P, σ; ⌈ȳ⌉E;σ′, P ′), where P and P ′ are dependent on
α. The previous ȳ ⊢ℓ {ψ}skip{ϕ′′} gives that ψ ⇒ ϕ′′ and therefore ȳ ⊢ℓ {ϕ′′}S2{ϕ′}
can be written as ȳ ⊢ℓ {ψ}S2{ϕ′}, completing the case.

A.8.5 Case [ifts]
Assume ȳ ⊢ℓ {ϕ}if b then S1 else S2 fi{ϕ′}. From the type system the following two
holds

ȳb̄ ⊢ℓ {ϕ ∧ b}S1{ϕ′} ȳb̄ ⊢ℓ {ϕ ∧ ¬b}S2{ϕ′}

and from the lemma it is assumed that

σ |= ϕ

⊢ℓ ⟨if b then S1 else S2 fi;σ⟩ E−→
τ
⟨S′;σ′⟩

From the instrumented semantic there are two cases for conditional branching. IfJbKσ = true then the semantics gives

E = b̄ ⋄ ×Pr× ⋄ (A.30)
α = τ (A.31)
S′ = ⌈b̄⌉S1 (A.32)
σ′ = σ (A.33)
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Set ψ = ϕ ∧ b and it follows that

ȳb̄ ⊢ℓ {ψ}S1{ϕ′}
ȳ ⊢ℓ {ψ}⌈b̄⌉S1{ϕ′}

as required by the lemma. Because σ |= ϕ, ψ = ϕ∧ b, JbKσ = true, σ |= ψ, and σ′ = σ
then σ′ |= ψ. Because α = τ , then sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) needs to hold. First the
extended flows are determined

E− = ⌈ȳ⌉E ∩ (Var+ ×Pr×Var+) = ⌈ȳ⌉(b̄ ⋄ ×Pr× ⋄) ∩ (Var+ ×Pr×Var+) = ∅
(A.34)

and clearly the first part of the security predicate holds, because there are no flows.
The variables used in the other part of the security predicate are determined

ū = Var \ trd(⌈ȳ⌉E) = Var \ trd(⌈ȳ⌉(b̄ ⋄ ×Pr× ⋄)) = Var (A.35)

Consider all s ∈ Pr and u ∈ ū, and it is then clear that

Infl (Pℓ, σ, s, u) ⊆ Infl (Pℓ, σ
′, s, u)

Read (Pℓ, σ, s, u) ⊇ Read (Pℓ, σ
′, s, u)

because σ = σ′, and sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) therefore holds.
Similar can be done for the case where JbKσ = false. The semantics gives

E = b̄ ⋄ ×Pr× ⋄ (A.36)
α = τ (A.37)
S′ = ⌈b̄⌉S2 (A.38)
σ′ = σ (A.39)

Set ψ = ϕ ∧ ¬b and it follows that

ȳb̄ ⊢ℓ {ψ}S2{ϕ′}
ȳ ⊢ℓ {ψ}⌈b̄⌉S2{ϕ′}

as required by the lemma. Because σ |= ϕ, ψ = ϕ ∧ ¬b, JbKσ = false, σ |= ψ, and
σ′ = σ then σ′ |= ψ. Because α = τ , then sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) needs to hold, which
it does because E− and ū are the same as in the first subcase, thereby completing
the whole case.

A.8.6 Case [loopts]
Assume ȳ ⊢ℓ {ϕ}while b do S od{ϕ ∧ ¬b}. In the type system the following premises
holds

ȳb̄ ⊢ℓ {ϕ ∧ b}S{ϕ}



96 A Proofs

and from the lemma, it is assumed that

σ |= ϕ

⊢ℓ ⟨while b do S od;σ⟩ E−→
τ
⟨S′;σ′⟩

The instrumented semantics for iteration has two axioms. In the first subcase, whereJbKσ = true, the semantics gives

E = b̄ ⋄ ×Pr× ⋄
α = τ

S′ = ⌈b̄⌉S; while b do S od
σ′ = σ

Then there needs to exist a ψ such that ȳ ⊢ℓ {ψ}S′{ϕ ∧ ¬b}. Let ψ = ϕ ∧ b, then it
would be accomplished with

ȳb̄ ⊢ℓ {ψ}S{ϕ}
ȳ ⊢ℓ {ψ}⌈b̄⌉S{ϕ} ȳ ⊢ℓ {ϕ}while b do S od{ϕ ∧ ¬b}

ȳb̄ ⊢ℓ {ψ}⌈b̄⌉S; while b do S od{ϕ ∧ ¬b}

as required. Clearly σ′ |= ψ, because σ |= ϕ, σ = σ′, ψ = ϕ ∧ b and JbKσ = true.
The security predicate holds sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ), following same structure as from
(A.34) and (A.35).

In the second subcase, where JbKσ = false, the semantics give the same E,α, σ
and with

S′ = skip
Then there needs to exists ψ such that ȳ ⊢ℓ {ψ}S′{ϕ ∧ ¬b}. Take ψ = ϕ ∧ ¬b; then
it is clear that

ȳ ⊢ℓ {ψ}skip{ϕ ∧ ¬b}

because ψ ⇒ ϕ ∧ ¬b. Furthermore σ′ |= ψ, because σ |= ϕ, σ = σ′, ψ = ϕ ∧ ¬b andJbKσ = false, and the security predicate sec(Pℓ, σ; ⌈ȳ⌉E;σ′, Pℓ) follows from (A.34)
and (A.35).

A.8.7 Case [outts]
Assume ȳ ⊢ℓ {ϕ}ch!(a1, . . . , ak){ϕ′}. From the type system the following two holds

ϕ⇒ ϕ′ (A.40)
(ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) ⊑ Pch[ai/#i]i≤k • {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ} (A.41)

and from the lemma, it is assumed that

σ |= ϕ

⊢ℓ ⟨ch!(a1, . . . , ak);σ⟩ E−→
α
⟨S′;σ′⟩
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The semantics for the channel send statement then gives

E =
∪
i≤k

āi ⋄ ×Pr×#i

α = ch!(v1, . . . , vk)
S′ = skip
σ′ = σ

Then ψ needs to exist such that ȳ ⊢ℓ {ψ}S′{ϕ′}. Using ψ = ϕ then

ȳ ⊢ℓ {ψ}skip{ϕ′}

holds, because ψ ⇒ ϕ′. Clearly σ′ |= ψ because σ |= ϕ, σ′ = σ and ψ = ϕ.
Because α is ch!(v1, . . . , vk), then

sec(Pℓ, σ; ⌈ȳ⌉E;σ′[(#i 7→ vi)i≤k], Pℓ • Pch)

needs to hold.
Firstly the extended flows are determined

E− = ⌈ȳ⌉E ∩ (Var+ ×Pr×Var+)

=

⌈ȳ⌉∪
i≤k

āi ⋄ ×Pr×#i

 ∩ (Var+ ×Pr×Var+)

= ȳā1 . . . āk ×Pr×#1 . . .#k

Now consider (u, s,#j) ∈ E−, then the influencer set is

Infl (Pℓ, σ, s, u)

⊆
∪

u′∈#j āj ȳ

Infl (Pℓ, σ, s, u
′) using u ∈ āj ȳ

= Infl (Pℓ⟨āj ȳ/#j⟩, σ, s,#j) using Fact 3.3
= Infl ((Pℓ⟨āj ȳ/#j⟩)⟨āj′ ȳ/#j′⟩, σ, s,#j) using Fact 3.3, j′ ̸= j... for all j′ ̸= j

= Infl (Pℓ⟨āiȳ/#i⟩i≤k, σ, s,#j)
= Infl ((ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) , σ, s,#j) using σ |= ϕ

⊆ Infl
(
Pch[ai/#i]i≤k • {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}, σ, s,#j

)
using (A.41)

= Infl
(
Pch[ai/#i]i≤k , σ, s,#j

)
∪ ϵ ∪ ϵ using #j ̸∈ ⋆ℓ

= Infl
(
Pch[ai/#i]i≤k , σ, s,#j

)
= Infl

(
Pch[vi/#i]i≤k , σ, s,#j

)
using vi = JaiKσ

= Infl (Pch, σ[(#i 7→ vi)i≤k], s,#j) using Fact 3.1
= Infl (Pch, σ

′[(#i 7→ vi)i≤k], s,#j) using σ′ = σ

= Infl (Pℓ • Pch, σ
′[(#i 7→ vi)i≤k], s,#j) since #j ̸∈ Varℓ
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and the reader set is

Read (Pℓ, σ, s, u)

⊇
∩

u′∈#j āj ȳ

Read (Pℓ, σ, s, u
′) using u ∈ āj ȳ

= Read (Pℓ⟨āj ȳ/#j⟩, σ, s,#j) using Fact 3.4
= Read ((Pℓ⟨āj ȳ/#j⟩)⟨āj′ ȳ/#j′⟩, σ, s,#j) using Fact 3.4, j′ ̸= j... for all j′ ̸= j

= Read (Pℓ⟨āiȳ/#i⟩i≤k, σ, s,#j)
= Read ((ϕ⇒ Pℓ⟨āiȳ/#i⟩i≤k) , σ, s,#j) using σ |= ϕ

⊇ Read
(
Pch[ai/#i]i≤k • {⋆ℓ : ⋆← ⋆} • {⋆ℓ : ⋆→ ϵ}, σ, s,#j

)
using (A.41)

= Read
(
Pch[ai/#i]i≤k , σ, s,#j

)
∩Pr ∩Pr using #j ̸∈ ⋆ℓ

= Read
(
Pch[ai/#i]i≤k , σ, s,#j

)
= Read

(
Pch[vi/#i]i≤k , σ, s,#j

)
using vi = JaiKσ

= Read (Pch, σ[(#i 7→ vi)i≤k], s,#j) using Fact 3.2
= Read (Pch, σ

′[(#i 7→ vi)i≤k], s,#j) using σ′ = σ

= Read (Pℓ • Pch, σ
′[(#i 7→ vi)i≤k], s,#j) since #j ̸∈ Varℓ

as required.
Next the variables used in the other part of the security predicate are determined

ū = Var \ trd(⌈ȳ⌉E)

= Var \ trd(⌈ȳ⌉
∪
i≤k

āi ⋄ ×Pr×#i)

= Var \
∪
i≤k

#i

= Var

Next consider all s ∈ Pr and u ∈ ū, and notice that u ̸= #j for all j ≤ k. The
influencer and reader set can be determined

Infl (Pℓ, σ, s, u)
= Infl (Pℓ, σ[(#i 7→ vi)i≤k], s, u) using #j ̸∈ fv(Pℓ) for all j ≤ k
= Infl (Pℓ, σ

′[(#i 7→ vi)i≤k], s, u) using σ′ = σ

= Infl (Pℓ • Pch, σ
′[(#i 7→ vi)i≤k], s, u) using u ̸∈ fv(Pch)

Read (Pℓ, σ, s, u)
= Read (Pℓ, σ[(#i 7→ vi)i≤k], s, u) using #j ̸∈ fv(Pℓ) for all j ≤ k
= Read (Pℓ, σ

′[(#i 7→ vi)i≤k], s, u) using σ′ = σ

= Read (Pℓ • Pch, σ
′[(#i 7→ vi)i≤k], s, u) using u ̸∈ fv(Pch)
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which also holds as required. The security predicate sec(Pℓ, σ; ⌈ȳ⌉E;σ′[(#i 7→ vi)i≤k], Pℓ•
Pch) therefore holds, concluding the case.

A.8.8 Case [out†ts]
The proof for this case follows as the same pattern as for [outts] and [ass†ts], and is
thus omitted.

A.8.9 Case [ints]
Assume ȳ ⊢ℓ {ϕ}ch?(x1, . . . , xk){ϕ′}. From the type system the following two holds

((∃x1, . . . , xk.ϕ)⇒ ϕ′) (A.42)
(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) • Pch⟨#i/xi⟩i≤k ⊑ Pℓ[#i/xi]i≤k • {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}

(A.43)

and from the lemma, it is assumed that

σ |= ϕ

⊢ℓ ⟨ch?(x1, . . . , xk);σ⟩ E−→
α
⟨S′;σ′⟩

The semantics for the channel receive statement then gives

E =
∪
i≤k

#i ×Pr× xi

α = ch?(v1, . . . , vk)
S′ = skip
σ′ = σ[(xi 7→ vi)i≤k]

Then ψ needs to exist such that ȳ ⊢ℓ {ψ}S′{ϕ′}. Using ψ = (∃x1, . . . , xk.ϕ) then

ȳ ⊢ℓ {ψ}skip{ϕ′}

holds, because ψ ⇒ ϕ′. Furthermore σ |= ϕ implies σ[(xi 7→ vi)i≤k] |= ∃x1, . . . , xk.ϕ
(xi is then fixed in σ, and therefore there exists values for xi in the satisfaction
relation) and therefore σ′ |= ψ.

Because α is ch?(v1, . . . , vk), then

sec(Pℓ • Pch, σ[(#i 7→ vi)i≤k]; ⌈ȳ⌉E;σ′, Pℓ)

needs to hold. Firstly the extended flows are determined

E− = ⌈ȳ⌉E ∩ (Var+ ×Pr×Var+)

=

⌈ȳ⌉∪
i≤k

#i ×Pr× xi

 ∩ (Var+ ×Pr×Var+)

= ȳ#1 . . .#k ×Pr× x1 . . . xk
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Now consider all (u, s, xj) ∈ E−, and σ+ = σ[(#i 7→ vi)i≤k] for simplified notation.
It is seen that σ+ |= ϕ because σ |= ϕ, so having more fixed variables in σ+ the
satisfaction relation would still hold. The influencer set is then

Infl
(
Pℓ • Pch, σ

+, s, u
)

⊆
∪

u′∈xj ȳ#j

Infl
(
Pℓ • Pch, σ

+, s, u′
)

using u ∈ ȳ#j

= Infl
(
(Pℓ • Pch)⟨ȳ#j/xj⟩, σ+, s, xj

)
using Fact 3.3

= Infl
(
((Pℓ • Pch)⟨ȳ#j/xj⟩)⟨ȳ#j′/xj′⟩, σ+, s, xj

)
using Fact 3.3, j′ ̸= j... for all j′ ̸= j

= Infl
(
(Pℓ • Pch)⟨ȳ#i/xi⟩i≤k, σ

+, s, xj

)
= Infl

(
Pℓ⟨ȳ/xi⟩i≤k • Pch⟨#i/xi⟩i≤k, σ

+, s, xj

)
using ∀y ∈ ȳ : y ̸∈ fv(Pch) ∧

∀i ≤ k : #i ̸∈ fv(Pℓ)
= Infl

(
(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) • Pch⟨#i/xi⟩i≤k, σ

+, s, xj

)
using σ+ |= ϕ

⊆ Infl
(
Pℓ[#i/xi]i≤k • {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}, σ+, s, xj

)
using (A.43)

= Infl
(
Pℓ[#i/xi]i≤k , σ

+, s, xj

)
∪ ϵ ∪ ϵ using xj ̸∈ ⋆#

= Infl
(
Pℓ[#i/xi]i≤k , σ

+, s, xj

)
= Infl

(
Pℓ, σ

+[(xi 7→ vi)i≤k], s, xj

)
using Fact 3.1

= Infl (Pℓ, σ[(xi 7→ vi)i≤k], s, xj) using #j ̸∈ fv(Pℓ)

and likewise the reader set is then

Read
(
Pℓ • Pch, σ

+, s, u
)

⊇
∩

u′∈xj ȳ#j

Read
(
Pℓ • Pch, σ

+, s, u′
)

using u ∈ ȳ#j

= Read
(
(Pℓ • Pch)⟨ȳ#j/xj⟩, σ+, s, xj

)
using Fact 3.4

= Read
(
((Pℓ • Pch)⟨ȳ#j/xj⟩)⟨ȳ#j′/xj′⟩, σ+, s, xj

)
using Fact 3.4, j′ ̸= j... for all j′ ̸= j

= Read
(
(Pℓ • Pch)⟨ȳ#i/xi⟩i≤k, σ

+, s, xj

)
= Read

(
Pℓ⟨ȳ/xi⟩i≤k • Pch⟨#i/xi⟩i≤k, σ

+, s, xj

)
using ∀y ∈ ȳ : y ̸∈ fv(Pch) ∧

∀i ≤ k : #i ̸∈ fv(Pℓ)
= Read

(
(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) • Pch⟨#i/xi⟩i≤k, σ

+, s, xj

)
using σ+ |= ϕ

⊇ Read
(
Pℓ[#i/xi]i≤k • {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}, σ+, s, xj

)
using (A.43)

= Read
(
Pℓ[#i/xi]i≤k , σ

+, s, xj

)
∩ ϵ ∩ ϵ using xj ̸∈ ⋆#

= Read
(
Pℓ[#i/xi]i≤k , σ

+, s, xj

)
= Read

(
Pℓ, σ

+[(xi 7→ vi)i≤k], s, xj

)
using Fact 3.2

= Read (Pℓ, σ[(xi 7→ vi)i≤k], s, xj) using #j ̸∈ fv(Pℓ)
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as required.
Next the variables used in the other part of the security predicate are determined

ū = Var \ trd(⌈ȳ⌉E)

= Var \ trd(⌈ȳ⌉
∪
i≤k

#i ×Pr× xi)

= Var \
∪
i≤k

xi

Next consider all s ∈ Pr and u ∈ ū, and notice that u ̸= xj for all j ≤ k. The
influencer and reader sets can be determined

Infl
(
Pℓ • Pch, σ

+, s, u
)

= Infl
(
Pℓ, σ

+, s, u
)

using u ̸∈ fv(Pch) for all j ≤ k
= Infl

(
Pℓ⟨ȳ/xi⟩i≤k, σ

+, s, u
)

using Fact 3.3 and u ̸= xj

= Infl
(
(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) , σ+, s, u

)
using σ+ |= ϕ

⊆ Infl
(
(ϕ⇒ Pℓ⟨ȳ/xi⟩i≤k) • Pch⟨#i/xi⟩i≤k, σ

+, s, u
)

⊆ Infl
(
Pℓ[#i/xi]i≤k • {⋆# : ⋆← ⋆} • {⋆# : ⋆→ ϵ}, σ+, s, u

)
using (A.43)

= Infl
(
Pℓ[#i/xi]i≤k , σ

+, s, u
)
∪ ϵ ∪ ϵ using u ̸∈ ⋆#

= Infl
(
Pℓ, σ

+[(xi 7→ vi)i≤k], s, u
)

using σ+(#i) = vi for all i ≤ k
= Infl (Pℓ, σ[(xi 7→ vi)i≤k], s, u) using u ̸∈ ⋆#

which also holds as required. The security predicate sec(Pℓ, σ; ⌈ȳ⌉E;σ′[(#i 7→ vi)i≤k], Pℓ•
Pch) therefore holds, concluding the case.

A.8.10 Case [chots]
Assume ȳ ⊢ℓ {ϕ}((S1)⊕ (S)){ϕ′}. From the type system the following two holds

ȳ ⊢ℓ {ϕ}S1{ϕ′} ȳ ⊢ℓ {ϕ}S2{ϕ′}

and from the lemma it is assumed that

σ |= ϕ

⊢ℓ ⟨((S1)⊕ (S2));σ⟩ E−→
α
⟨S′;σ′⟩

From the instrumented semantic there are two cases for nondeterministic choice. Non-
deterministic then it gives S′ = S′1;S2 and the premises for the rule then gives the
assumption

⊢ℓ ⟨S1;σ⟩ E−→
α
⟨S′1;σ′⟩
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thereby defining E,α and σ′. The induction hypothesis gives that there exists ψ
such that ȳ ⊢ℓ {ψ}S′1{ϕ′′}, σ′ |= ψ and sec(P, σ; ⌈ȳ⌉E;σ′, P ′), where P and P ′ are
depended on α. All this then gives ȳ ⊢ℓ {ψ}S′1;S2{ϕ′}, which completes the first
case.

If S1 = skip then S′ = S2 and the premises for the rule gives

⊢ℓ ⟨S1;σ⟩ E−→
α
⟨skip;σ′⟩

The induction hypothesis gives that there exists ψ such that ȳ ⊢ℓ {ψ}skip{ϕ′′} and
that σ′ |= ψ and therefore sec(P, σ; ⌈ȳ⌉E;σ′, P ′), where P and P ′ are depended on α.
From previous ȳ ⊢ℓ {ψ}skip{ϕ′′} gives that ψ ⇒ ϕ′′ and therefore ȳ ⊢ℓ {ϕ′′}S2{ϕ′}
can be written as ȳ ⊢ℓ {ψ}S2{ϕ′} completing the case.

A.8.11 Case [implts]
Assume ȳ ⊢ℓ {ϕ}⌈x̄⌉S{ϕ′}. In the type system the following premises holds for
ȳ ⊢ℓ {ϕ}⌈x̄⌉S{ϕ′}

ȳx̄ ⊢ℓ {ϕ}S{ϕ′}

and from the lemma, it is assumed that

σ |= ϕ

⊢ℓ ⟨⌈x̄⌉S;σ⟩ E−→
α
⟨S′;σ′⟩

The instrumented semantics for this statement have two matching rules. Assuming
that S′ = ⌈x̄⌉S′′ and S′′ ̸= skip then the premise for the semantic rule is

⊢ℓ ⟨S;σ⟩ E′

−→
α
⟨S′′;σ′⟩

which determines α, σ′ and E = ⌈x̄⌉E′. The induction hypothesis then gives that
there exists ψ such that ȳx̄ ⊢ℓ {ψ}S′′{ϕ′} and that σ′ |= ψ and therefore sec(P, σ;
⌈ȳx̄⌉E;σ′, P ′), where P and P ′ are dependent on α. It can now be seen that

ȳx̄ ⊢ℓ {ψ}S′′{ϕ′}
ȳ ⊢ℓ {ψ}⌈x̄⌉S′′{ϕ′}

and thereby that ȳ ⊢ℓ {ψ}S′{ϕ′} because S′ = ⌈x̄⌉S′′. Still σ′ |= ψ, and the security
predicate becomes sec(P, σ; ⌈ȳ⌉(⌈x̄⌉E);σ′, P ′) which holds looking at the influencers
and readers as with previous cases.

A.8.12 Case [consts]
The proof is straight forward as in [skipts] and are thus omitted.
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A.9 Theorem 3.1
The instrumented semantics for systems have two rules and the proof therefore have
two cases

A.9.1 Case [sysτis]
From the theorem it is assumed that

⟨l1 : S1 ∥ · · · ∥ li : Si ∥ · · · ∥ ln : Sn, σ⟩
F==⇒

U,D

⟨l1 : S1 ∥ · · · ∥ li : S′i ∥ · · · ∥ ln : Sn, σ
′⟩

(A.44)

⊢ {ϕ1& · · ·&ϕi& · · ·&ϕn} l1 : S1 ∥ · · · ∥ li : Si ∥ · · · ∥ ln : Sn (A.45)
σ |= ϕ1 ∧ · · · ∧ ϕi ∧ · · · ∧ ϕn (A.46)

The rule [sysτ
is] gives

⊢li ⟨Si;σ⟩
Ei−→
τ
⟨S′i;σ′⟩ (A.47)

and hence F = Ei ∩ (Var ×Pr ×Var), U = fst(Ei) ∩Var, and D = trd(Ei) ∩Var.
The assumption in (A.45) gives

ϵ ⊢li {ϕi}Si{true} (A.48)

and from (A.46) we have σ |= ϕi, which together with (A.47) and (A.48) gives the
assumptions for Lemma 3.1. The lemma gives that there exists ψi such that ϵ ⊢li

{ψi}S′i{true} and σ′ |= ψi and

sec(Pli , σ;Ei;σ′, Pli) (A.49)

Now let ψj = ϕj and S′j = Sj for all j ̸= i, and there now exists ψ1, . . . , ψi, . . . , ψn

such that

⊢ {ψ1& · · ·&ψi& · · ·&ψn} l1 : S′1 ∥ · · · ∥ li : S′i ∥ · · · ∥ ln : S′n

as required by the theorem. Furthermore because σ(x) = σ′(x) when x ̸∈ Varli then
σ′ |= ψ1 ∧ · · · ∧ ψi ∧ · · · ∧ ψn, which is also required.

For the last part we need to prove the security predicate secP•(σ;U,F,D;σ′). By
using (2.6) and (2.11) it is noted that Infl (Pℓ, σ, s, u) = ϵ and Read (Pℓ, σ, s, u) = Pr
if u ̸∈ Varℓ, and therefore

Infl (P•, σ, s, u) = Infl (Pℓ, σ, s, u) if u ∈ Varℓ (A.50)
Read (P•, σ, s, u) = Read (Pℓ, σ, s, u) if u ∈ Varℓ (A.51)
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Take now (u, s, u′) ∈ F , and see that we have that u, u′ ∈ Varli . The first property
of the security predicate for systems holds for influencers and readers

Infl (P•, σ, s, u) = Infl (Pli , σ, s, u) using (A.50)
⊇ Infl (Pli , σ

′, s, u′) using (A.49)
= Infl (P•, σ′, s, u′) using (A.50)

Read (P•, σ, s, u) = Read (Pli , σ, s, u) using (A.51)
⊇ Read (Pli , σ

′, s, u′) using (A.49)
= Read (P•, σ′, s, u′) using (A.51)

For the other part of the security predicate take all s and u ∈ Var \ D. There are
now two cases, take first where u ∈ Varli then

Infl (P•, σ, s, u) = Infl (Pli , σ, s, u) using (A.50)
⊇ Infl (Pli , σ

′, s, u) using (A.49)
= Infl (P•, σ′, s, u) using (A.50)

Read (P•, σ, s, u) = Read (Pli , σ, s, u) using (A.51)
⊇ Read (Pli , σ

′, s, u) using (A.49)
= Read (P•, σ′, s, u) using (A.51)

Secondly, if u ̸∈ Varli the same result holds, following (A.50) and (A.51) because
that σ(x) = σ′(x) when x ̸∈ Varli .

A.9.2 Case [syschis ]
From the theorem it is assumed that

⟨l1 : S1 ∥ · · · ∥ li : Si ∥ · · · ∥ li : Sj ∥ · · · ∥ ln : Sn, σ⟩
F==⇒

U,D

⟨l1 : S1 ∥ · · · ∥ li : S′i ∥ · · · ∥ li : S′j ∥ · · · ∥ ln : Sn, σ
′′⟩

(A.52)

⊢ {ϕ1& · · ·&ϕi& · · ·&ϕj& · · ·&ϕn} l1 : S1 ∥ · · · ∥ li : Si ∥ · · · ∥ lj : Sj ∥ · · · ∥ ln : Sn

(A.53)
σ |= ϕ1 ∧ · · · ∧ ϕi ∧ · · · ∧ ϕj ∧ · · · ∧ ϕn (A.54)

The rule [sysch
is ] gives

⊢li ⟨Si;σ⟩
Ei−−−−−−−−→

ch!(v1,...,vk)
⟨S′i;σ′⟩ (A.55)

⊢lj ⟨Sj ;σ′⟩ Ej−−−−−−−−→
ch?(v1,...,vk)

⟨S′j ;σ′′⟩ (A.56)

and hence F = Ei ∥Ej ∩ (Var×Pr×Var), U = fst(Ei ∥Ej)∩Var, and D = trd(Ei ∥
Ej) ∩Var, where i ̸= j.
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The assumption in (A.53) gives

ϵ ⊢li {ϕi}Si{true} (A.57)
ϵ ⊢lj {ϕj}Sj{true} (A.58)

and from (A.54) we have σ |= ϕi which together with (A.55) and (A.57) gives the
assumptions for Lemma 3.1. The lemma gives that there exists ψi such that ϵ ⊢li

{ψi}S′i{true} and σ′ |= ψi and

sec(Pli , σ;Ei;σ′[(#k′ 7→ vk′)k′≤k], Pli • Pch) (A.59)

Furthermore σ |= ϕj and because i ̸= j then σ′ |= ϕj because li only changes its
own values. The lemma therefore also gives that there exists ψi such that ϵ ⊢lj

{ψj}S′j{true} and σ′′ |= ψj and

sec(Plj • Pch, σ
′[(#k′ 7→ vk′)k′≤k];Ej ;σ′′, Plj ) (A.60)

Now let ψℓ = ϕℓ and S′ℓ = Sℓ for all ℓ ̸= i, j, and there now exists ψ1, . . . , ψi, . . .,
ψj , . . . , ψn such that

⊢ {ψ1& · · ·&ψi& · · ·&ψj& · · ·&ψn} l1 : S′1 ∥ · · · ∥ li : S′i ∥ · · · ∥ lj : S′j ∥ · · · ∥ ln : S′n

as required by the theorem. Furthermore because σ(x) = σ′(x) when x ̸∈ Varli and
σ′(x) = σ′′(x) when x ̸∈ Varlj then σ′′ |= ψ1 ∧ · · · ∧ ψi ∧ · · · ∧ ψj ∧ · · · ∧ ψn, which
also is required.

For the second part we need to prove the security predicate secP•(σ;U,F,D;σ′′).
The flows F contains the combination of (u, s,#m) ∈ Ei and (#m, s, u

′) ∈ Ej , con-
siderer therefore such (u, s, u′) ∈ F , and then we have

Infl (P•, σ, s, u)
= Infl (Pli , σ, s, u) using (A.50)
⊆ Infl (Pli • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s,#m) using (A.59)
= Infl

(
Plj • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s,#m

)
using #m ̸∈ Var

⊆ Infl
(
Plj , σ

′′, s, u′
)

using (A.60)
= Infl (P•, σ′′, s, u′) using (A.50)

and the same goes for the readers

Read (P•, σ, s, u)
= Read (Pli , σ, s, u) using (A.51)
⊇ Read (Pli • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s,#m) using (A.59)
= Read

(
Plj • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s,#m

)
using #m ̸∈ Var

⊇ Read
(
Plj , σ

′′, s, u′
)

using (A.60)
= Read (P•, σ′′, s, u′) using (A.51)
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Furthermore consider the rest of the flows (u, s, u′) ∈ F , which original is from the
flows (u, s, u′) ∈ Ej (from the other part of the combiner function (2.3)), we have

Infl (P•, σ, s, u)
= Infl

(
Plj , σ, s, u

)
using (A.50)

= Infl
(
Plj , σ

′, s, u
)

using u ̸∈ Varli

= Infl
(
Plj • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s, u
)

using #m ̸∈ Var, u ∈ Varlj

⊆ Infl
(
Plj , σ

′′, s, u′
)

using (A.60)
= Infl (P•, σ′′, s, u′) using (A.50)

and likewise for readers

Read (P•, σ, s, u)
= Read

(
Plj , σ, s, u

)
using (A.51)

= Read
(
Plj , σ

′, s, u
)

using u ̸∈ Varli

= Read
(
Plj • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s, u
)

using #m ̸∈ Var, u ∈ Varlj

⊇ Read
(
Plj , σ

′′, s, u′
)

using (A.60)
= Read (P•, σ′′, s, u′) using (A.51)

For the other part of the security predicate take now all s and u ∈ Var\D. There
are now two cases, take first where u ∈ Varlj , which is similar as before

Infl (P•, σ, s, u)
= Infl

(
Plj , σ, s, u

)
using (A.50)

= Infl
(
Plj , σ

′, s, u
)

using u ̸∈ Varli

= Infl
(
Plj • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s, u
)

using #m ̸∈ Var, u ∈ Varlj

⊆ Infl
(
Plj , σ

′′, s, u
)

using (A.60)
= Infl (P•, σ′′, s, u) using (A.50)

and for the readers

Read (P•, σ, s, u)
= Read

(
Plj , σ, s, u

)
using (A.51)

= Read
(
Plj , σ

′, s, u
)

using u ̸∈ Varli

= Read
(
Plj • Pch, σ

′[(#k′ 7→ vk′)k′≤k], s, u
)

using #m ̸∈ Var, u ∈ Varlj

⊇ Read
(
Plj , σ

′′, s, u
)

using (A.60)
= Read (P•, σ′′, s, u) using (A.51)
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The last case is where u ∈ Varℓ and ℓ ̸= lj and gives

Infl (P•, σ, s, u)
= Infl (Pℓ, σ, s, u) using (A.50)
= Infl (Pℓ, σ

′′, s, u) using u ∈ Varℓ

= Infl (P•, σ′′, s, u) using (A.50)
Read (P•, σ, s, u)

= Read (Pℓ, σ, s, u) using (A.51)
= Read (Pℓ, σ

′′, s, u) using u ∈ Varℓ

= Read (P•, σ′′, s, u) using (A.51)

which all finalises the proof.

A.10 Fact 4.1
By looking at the resulting form of the different functions the result can be obtained.
Using dist(P ) gives the form P β

P β ::= {} | {u : o← s} | {u : o→ s̄} |
(
φ⇒ P β

)
| P β

1 • P
β
2

Using cln(P ) gives the form P γ

P γ ::= {} | P δ

P δ ::= {ū : ō← s̄} | {ū : ō→ s̄} |
(
φ⇒ P δ

)
| P δ • P δ

Using cnd(P ) gives the form P ζ

P ζ ::= {} | (φ⇒{ū : ō← s̄}) | (φ⇒{ū : ō→ s̄}) | P ζ
1 • P

ζ
2

Now consider P β = dist(P ). Using cln(P β) gives the form P γ′

P γ′ ::= {} | P δ′

P δ′ ::= {u : o← s} | {u : o→ s̄} |
(
φ⇒ P δ′

)
| P δ′

• P δ′

Using cnd(P γ′) gives the form P γ′′

P γ′′ ::= {} | P ζ′

P ζ′′ ::= (φ⇒{u : o← s}) | (φ⇒{u : o→ s̄}) | P ζ′′

1 • P ζ′′

2

It is now seen that P ζ′′ is syntactic equivalent to INF.
All the modifications done by dist(P ), cln(P ), cnd(P ) is accounted for in the their

respective definitions in Algorithm 4.1 to 4.3. We can therefore state that P ≡ inf(P ),
finalising the proof.
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A.11 Fact 4.2
For B = (φ⇒{u : o← s}), the influencers and readers are

Infl (B, σ, q, y) ⊆ Infl (B1 • · · · •Bn •Bn+1 • · · · •Bm, σ, q, y)
⇔ Infl (B, σ, q, y) ⊆ Infl (B1, σ, q, y) ∪ · · · ∪ Infl (Bm, σ, q, y)
⇔ Infl (B, σ, q, y) ⊆ Infl (B1, σ, q, y) ∪ · · · ∪ Infl (Bn, σ, q, y) ∪ ϵ ∪ · · · ∪ ϵ
⇔ Infl (B, σ, q, y) ⊆ Infl (B1, σ, q, y) ∪ · · · ∪ Infl (Bn, σ, q, y)

Read (B, σ, q, y) ⊇ Read (B1 • · · · •Bn •Bn+1 • · · · •Bm, σ, q, y)
⇔ Pr ⊇ Read (B1 • · · · •Bn •Bn+1 • · · · •Bm, σ, q, y)
⇔ true
⇔ Pr ⊇ Read (B1 • · · · •Bn, σ, q, y)
⇔ Read (B, σ, q, y) ⊇ Read (B1 • · · · •Bn, σ, q, y)

Similar for B = (φ⇒{u : o→ s̄}) the influencers and readers are

Infl (B, σ, q, y) ⊆ Infl (B1 • · · · •Bn •Bn+1 • · · · •Bm, σ, q, y)
⇔ ϵ ⊆ Infl (B1 • · · · •Bn •Bn+1 • · · · •Bm, σ, q, y)
⇔ true
⇔ ϵ ⊆ Infl (Bn+1 • · · · •Bm, σ, q, y)
⇔ Infl (B, σ, q, y) ⊆ Infl (Bn+1 • · · · •Bm, σ, q, y)

Read (B, σ, q, y) ⊇ Read (B1 • · · · •Bn •Bn+1 • · · · •Bm, σ, q, y)
⇔ Read (B, σ, q, y) ⊇ Read (B1, σ, q, y) ∩ · · · ∩ Read (Bm, σ, q, y)
⇔ Read (B, σ, q, y) ⊇ Pr ∩ · · · ∩Pr ∩ Read (Bn+1, σ, q, y) ∩ · · · ∩ Read (Bm, σ, q, y)
⇔ Read (B, σ, q, y) ⊇ Read (Bn+1, σ, q, y) ∩ · · · ∩ Read (Bm, σ, q, y)

A.12 Fact 4.3
Let BI = (φ⇒{u : o← s}). The influencers for BI ⊑ P1 • P2 for all σ, q and y is
then

Infl
(
BI , σ, q, y

)
⊆ Infl (P1 • P2, σ, q, y)

⇔ Infl
(
BI , σ, q, y

)
⊆ Infl (P1, σ, q, y) ∪ Infl (P2, σ, q, y)

⇔ Infl
(
BI , σ, q, y

)
⊆ Infl (P1, σ, q, y) ∨ Infl

(
BI , σ, q, y

)
⊆ Infl (P2, σ, q, y)

and likewise for the readers

Read
(
BI , σ, q, y

)
⊇ Read (P1 • P2, σ, q, y)

⇔ Pr ⊇ Read (P1 • P2, σ, q, y)
⇔ true
⇔ Pr ⊇ Read (P1, σ, q, y) ∨Pr ⊇ Read (P2, σ, q, y)
⇔ Read

(
BI , σ, q, y

)
⊇ Read (P1, σ, q, y) ∨ Read

(
BI , σ, q, y

)
⊇ Read (P2, σ, q, y)
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s̄1

s̄

s̄2
s̄1

s̄

s̄2

Figure A.1: In the left Venn diagram s̄ ⊇ s̄1∩ s̄2 but s̄ ̸⊇ s̄i for i ∈ 1, 2. In the right
Venn diagram s̄ ⊇ s̄i for i ∈ 1, 2 which makes s̄ ⊇ s̄1 ∩ s̄2.

Which is the same as finding the influencers and readers for BI ⊑ P1 ∨BI ⊑ P2.

A.13 Fact 4.4 and 4.5

Proof by counterexample. Let BR = (φ⇒{u : o→ s̄}). For readers it does not hold,
here shown by counterexample. Let Pi = (φ⇒{u : o→ s̄i}) for i ∈ 1, 2, where s̄ ̸= s̄i

but not necessarily disjoint (e.g. s̄ = {s, s3} and s̄i = {si, s3}).

Read
(
BR, σ, q, y

)
⊇ Read (P1 • P2, σ, q, y)

⇔ Read
(
BR, σ, q, y

)
⊇ Read (P1, σ, q, y) ∩ Read (P2, σ, q, y)

⇔
{
s̄ ⊇ s̄1 ∩ s̄2 if σ |= φ ∧ o = q ∧ u = y

Pr ⊇ Pr ∩Pr otherwise

⇐

{
s̄ ⊇ s̄1 ∧ s̄ ⊇ s̄2 if σ |= φ ∧ o = q ∧ u = y

Pr ⊇ Pr ∧Pr ⊇ Pr otherwise

In the last equation “⇒” does not hold, also illustrated in Figure A.1. If a disjunction
was used in the false statement, a similar proof would show the same e.g. s̄ ⊇ s̄1∩s̄2 ̸⇒
s̄ ⊇ s̄1 ∨ s̄ ⊇ s̄2, but “⇐” would hold.
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A.14 Fact 4.7
The influencer and reader set is

Infl ((φ⇒{u : o← s}) , σ, q, y) ⊆ Infl ((φ′⇒{u′ : o′ → s̄′}) , σ, q, y)
= Infl ((φ⇒{u : o← s}) , σ, q, y) ⊆ ϵ

Read ((φ⇒{u : o← s}) , σ, q, y) ⊇ Read ((φ′⇒{u′ : o′ → s̄′}) , σ, q, y)
= Pr ⊇ Read ((φ′⇒{u′ : o′ → s̄′}) , σ, q, y)
= true

If φ is satisfiable then there exists a σ, q, y such that σ |= φ, q = o and y = u such
that the influencers becomes s, thereby making {s} ⊆ ϵ false. If φ is unsatisfiable
then the case becomes true.

A.15 Fact 4.8
The influencer and reader set is

Infl ((φ⇒{u : o→ s̄}) , σ, q, y) ⊆ Infl ((φ′⇒{u′ : o′ ← s′}) , σ, q, y)
= ϵ ⊆ Infl ((φ′⇒{u′ : o′ ← s′}) , σ, q, y)
= true

Read ((φ⇒{u : o→ s̄}) , σ, q, y) ⊇ Read ((φ′⇒{u′ : o′ ← s′}) , σ, q, y)
= Read ((φ⇒{u : o→ s̄}) , σ, q, y) ⊇ Pr

If φ is satisfiable and s̄ ⊊ Pr (e.g. s̄ ̸= ⋆) then there exists a σ, q, y such that σ |= φ,
q = o and y = u such that the readers becomes s̄, thereby making s̄ ⊇ Pr = false. If
φ is unsatisfiable or s̄ = ⋆ = Pr then the whole case becomes true.

A.16 Theorem 4.1
Assume chk(ϵ, li, ϕi, Si) = (ϕ′i, ci) for all i ≤ n and that ci is a tautology for all i ≤ n.
Then (c1 ∧ . . . ∧ cn) will be a tautology too. We then have have ϵ ⊢li {ϕi}S{ϕ′i} for
all i ≤ n from Lemma 4.1. Using the rule of consequence, for all i ≤ n we have

ϵ ⊢li {ϕi}S{ϕ′i}
ϵ ⊢li {ϕi}S{true}

ϕ′i ⇒ true

Because ϕ′i ⇒ true is always true, the premises for [systs] are satisfied and we have
that ⊢ {ϕ1& · · ·&ϕn} l1 : S1 ∥ · · · ∥ ln : Sn as required.



APPENDIX B
Type checker manual

This appendix describes a brief overview of the code and how to use the developed
type checker to verify a system. The actual code should be available with this thesis.

B.1 Requirements
The following software is required to run and get a result from the type checker:

• Standard ML of New Jersey (SML/NJ) compiler

• Z3 solver (or for small examples use http://rise4fun.com/z3)

• SML Testing library https://github.com/kvalle/sml-testing.git (optional)

B.2 Overview
example_X.sml Some small examples (unit test for the type checker) and some larger

examples. Most generates a file example_X.z3 with the resulting Z3 predicate.

inf.sml Implication normal form inf(P ) together with its auxiliary functions cnd(P ),
cln(P ), dist(P ).

preorder.sml Preorder function order(P, P ′).

Set.sml Helper functions simulating sets using lists.

substitutions.sml Substitutions used on policies P and conditions ϕ such as P [a/z]
and P ⟨ȳ/z⟩.

syntax.sml Datatypes for S, a, b, P , ϕ, a+, and c, including converter functions e.g.
from ϕ to c and c to Z3 notation. Furthermore, it contains functions for pretty
printing all the data types and getting free variables for different data types.

tests.sml Unit tests, for printing, substitutions, preorder and type checker. The
SML Testing library should be loaded into sml-testing/.

typechecker.sml The functions for the type checker chk(ȳ, ℓ, ϕ, S) and for a fully
defined system verify(Sys,S,NSA, PSys,Φ).

http://rise4fun.com/z3
https://github.com/kvalle/sml-testing.git
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The type checker does not contain any sanity check in terms of variable separation and
if policies are truly localised. It is therefore assumed that the programmer consider
these when writing examples.

B.3 Usage
Let (Sys,S,NSA, PSys) be defined as

Sys = l1 : x := 4; y := x ∥ l2 : w := 4; z := w

Pl1 = {x, y : s← s}
Pl2 = {w : s← s} • (w > 5⇒{z : s← s})

where S(li) = s for i ∈ 1, 2 and PSys = Pl1 • Pl2 . Let Φ(li) = true for i ∈ 1, 2.
The result of verify(Sys,S,NSA, PSys,Φ) can be found by the following code

1 use "typechecker.sml";
2 val Sys = [
3 ("l1", Seq(Assign("x", Int(4)), Assign("y", Var("x")))),
4 ("l2", Seq(Assign("w", Int(4)), Assign("z", Var("w"))))
5 ];
6 val SecurityDomains = [
7 (["l1", "l2"], "s")
8 ];
9 val NSA = "NSA";

10 val P_Sys = [
11 ("l1", Pol(["x", "y"], ["s"], ["s"])),
12 ("l2", SeqPol( Pol(["w"], ["s"], ["s"]),
13 CondPol(phiGt(a_Var "w", a_Int 5),
14 Pol(["z"], ["s"], ["s"]
15 ))))
16 ];
17 val initPhi = [
18 ("l1", phiTrue),
19 ("l2", phiTrue)
20 ];
21

22 val result = verify(Sys,
23 SecurityDomains,
24 NSA,
25 P_Sys,
26 initPhi
27 );
28

29 map print (map toZ3tautology result);
30 (* Result
31 l1: unsat
32 l2: sat
33 ---------
34 Sys: sat
35 *)

The output is Z3 code for verifying if each of the processes is satisfiable or not. l1 is
unsatisfiable thereby meaning this process is secure. l2 is satisfiable and is not secure.
The overall result for verify(Sys,S,NSA, PSys,Φ) is therefore not secure.



APPENDIX C
Thesis formalities

This appendix contains the original project plan, the final project plan, and a brief
auto-evaluation of the project process as required in the program specifications from
DTU for writing a master thesis (http://sdb.dtu.dk).

C.1 Original project plan
The aviation electronic (avionics) industry has developed safety critical and reliable
hardware and software for many years. In classical avionics each function was put
in separate avionics controller following the “federated architecture”, to keep a high
independent reliability. In a combination of more data communication and growth
in signal interfaces the weight, volume and power consumption of all the different
controllers hit the boundaries of the airplane in the mid 1990s. Meanwhile to keep
maintaining all the controllers, the catalog for spare parts for the controllers kept
increasing, and thereby cost more in the ongoing maintenance [But07].

The avionics industry therefore developed Integrated Modular Avionics (IMA),
where software with different security domains is integrated on commercial off-the-
shelf components. This indeed lowered the weight, volume, power consumption, and
hardware maintenance cost. The idea of IMA is to have an operating system which can
handle multiple applications separately (a separation kernel), and if one application
is altered or a new applications is added, this should have minimal or no effect on
the other applications. With IMA the cost for the avionics modules was therefore
moved from the separate hardware components to the development and certification
of the separation kernel and insurance that the separate applications is kept separate
[But07].

The Multiple Independent Levels of Security (MILS) approach gives a guideline
on how to design, construct, integrate and evaluate secure systems. This approach
decomposes components and locates the vulnerable parts, and suggest strict separa-
tion and information flow control [Rus08]. The MILS approach is therefore guidelines
on how to achieve the safe and secure separation mechanisms from the IMA require-
ments.

Aeronautical Radio, Incorporated (ARINC) is a major company producing commu-
nication solutions to the aviation industry, among others. They have a huge number
of standards, and within one is the ARINC report 811 [A81105], which provides se-
curity concepts for airborne networks. This report tells the story again with the
decomposition of a system into several domains. Here they provide an actual exam-
ple as shown in Figure C.1 with four different domains, Aircraft Control Domain,

http://sdb.dtu.dk
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  1B3-6 

A Reference Architecture for the Networked 
Aircraft 

Finally, with respect to airline operational 
concepts, Figure 3 [1] illustrates a reference 
architecture for considering both on-aircraft 
networks and off-aircraft links to ground networks. 
As shown, the reference architecture identifies three 
broad aircraft domains. The “closed” domain 
consists of functions that are used to control the 
aircraft. The “private” domain consists of functions 

necessary to operate the aircraft and to inform and 
entertain the passengers. And, the “public” domain 
consists of electronic devices that are brought on-
board an aircraft by passengers.  

This reference architecture, which was 
developed initially as part of ARINC Specification 
664 Part 5 [3] and extended in ARINC Report 811 
[1], provides a means for contemplating and 
organizing the approach to the problem of aircraft 
information security. 
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Figure 3. Aircraft Network Domains and Interconnections among Domains 

 
Aircraft Information Security Process 
Framework 
Introduction 

As noted previously, aircraft architectures are 
moving from legacy federated systems with 
dedicated communication links to highly integrated 

systems with shared communication links. While 
these advancements offer opportunities for 
improvement in airline operations, they also 
increase the potential for attacks. Thus, aircraft 
information security plays an increasingly 
important role in protecting information assets.  

Figure C.1: Security domains according to ARINC report 811 [A81105].

Airline Information Service Domain, Passenger Information and Entertainment Ser-
vice, and Passenger-owned Devices. These domains is only a minimal subset, where
e.g. the Aircraft Control Domain could be split up into several domains, some for nav-
igation and others for ground communication. The ARINC report 811 also provides
a “aircraft security process framework”, which more or less is the Common Criteria
(CC) [CC12a; CC12b; CC12c] in avionics terminology.

There has been put a lot of effort into develop and certify a separation kernel, one
main example is the PikeOS by SYSGO, which is used in the avionics industry, and
fulfils and implements IMA and the MILS standard [SYSGO]. The applications from
the previous separation is then stacked as virtual machine on top of a separation kernel.
All these application can be part of different security domains, and the separation
kernel then ensures that the information flow is correct across these domains at run
time. The separation kernel therefore specifies some common ground for defining
policies, and either block or allow data flows. Depended on the complexity of the
system all these checks and lookup in policies could take up much time, and can
therefore become a bottleneck in a real time setting.

[Mül+12] presents and discuss the software architecture of an abstraction for a
security gateway, which looks at the flow from two different domains. This security
gateway is further developed in [NNL15], where the Decentralised Label Model (DLM)
[ML97; ML00] is used. When using this model, static analysis can be used on the
software, to ensure that confidentiality and integrity is preserved in the information
flow. The run-time checks can therefore be minimised.

Internet of Things is a vision that all embedded electronics, sensors, and software
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will be connected and exchange information, to achieve better products with inter-
connected services across multiple domains, machines, etc. With the strict separation
and time consuming security checks the aviation industry will not be ready for this
future vision.

Previously the codebase has been developed as separate instances, and the same
code for some common procedures is therefore copied across all applications (e.g. this
could be a sorting procedure). This is not a modern way of programming and the
overall codebase will strictly increase if the same procedures is used across many appli-
cations with different security restrictions. Having a label model like DLM ensuring
secure information flow, functions can have polymorphic labels which is relative to
the context of the caller, and thereby remove duplicated code.

C.1.1 Contributions
Due to the duality between integrity and confidentiality in DLM the policies in
[NNL15] can be simplified to only contain integrity. The policies in [NNL15] also
contains a value range for variables which gives the content-based information flow.
This project will take the underlying basics of [NNL15] and remove the confidentiality
part. Furthermore, the article is not considering the programmer, and this project
will therefore specify the syntax for policies and how they will interact.

Constructs such as “acts for” and “endorse” from DLM not shown in [NNL15] will
also be introduced to see if this gives a more expressiveness language. Furthermore
the language in [NNL15] is only a limited set compared to C which is commonly used
in avionics. This project will therefore look at the complexity issues of adding arrays
and still have to deal with distinct policies and preserve confidentiality and integrity.

Lastly the analysis should be formally proven, to ensure that it actually provides a
secure information flow. This could be further emphasised with a prototype, showing
some not-so-trivial examples.

C.1.2 Bibliography
[A81105] Airlines Electronic Engineering Committee. ARINC report 811: Commer-

cial Aircraft Information Security Concepts of Operation and Process
Framework. Aeronautical Radio, INC., 2005 (cited on pages 113, 114).

[But07] Henning Butz. “The Airbus Approach to Open Integrated Modular Avion-
ics (IMA): Technology, Methods, Processes and Future Road Map”. In:
Workshop on Aircraft System Technologies (2007) (cited on page 113).

[CC12a] Common Criteria. Common Criteria for Information Technology Secu-
rity Evaluation Part 1: Introduction and general model. 2012 (cited on
page 114).

[CC12b] Common Criteria. Common Criteria for Information Technology Secu-
rity Evaluation Part 2: Security functional components. 2012 (cited on
page 114).



116 C Thesis formalities

[CC12c] Common Criteria. Common Criteria for Information Technology Secu-
rity Evaluation Part 3: Security assurance components. 2012 (cited on
page 114).

[ML00] Andrew C. Myers and Barbara Liskov. “Protecting privacy using the
decentralized label model”. In: ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 9.4 (2000), pages 410–442 (cited on
page 114).

[ML97] Andrew C. Myers and Barbara Liskov. “A Decentralized Model for In-
formation Flow Control”. In: Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP) (1997) (cited on page 114).

[Mül+12] Kevin Müller et al. “MILS-related information flow control in the avionic
domain: A view on security-enhancing software architectures”. In: Pro-
ceedings of the International Conference on Dependable Systems and
Networks (2012) (cited on page 114).

[NNL15] Hanne R. Nielson, Flemming Nielson, and Ximeng Li. “Disjunctive Infor-
mation Flow”. In: DTU Compute (2015) (cited on pages 114, 115).

[Rus08] John Rushby. “Separation and Integration in MILS (The MILS Consti-
tution)”. In: February (2008) (cited on page 113).

[SYSGO] SYSGO. SYSGO – Embedding innocations. url: http://www.sysgo.
com/ (visited on January 28, 2015) (cited on page 114).

C.2 Final project plan
The final project plan is a revision of the original project plan, which is rewritten and
extended into Chapter 1.

C.3 Auto-evaluation
This project started with a literature study about the aviation industry and DLM.
From this most of terminology was settled in the rest of the project, and most of the
case study was settled.

From previous work done in [NNL15] it was clear that DLM had some short-
comings and needed to be extended with the conditional policies. Furthermore, I
unsuccessful tried to map DLM work [ML00] to the new work in [NNL15]. The work
done for this part was therefore discarded.

After the first third of the project period the draft paper [NNd] was presented to
me, and the project took a turnover. The idea was now to verify the many of the
facts, lemmas and proofs in [NNd] and to implement the type system also presented
there.

The goal for the project was clear and a more regular day began. Thus, I used a
much time understanding the type system and its correctness result. Furthermore, I
wrote the case about the electronic flight bag with help from PhD student Ximeng Li

http://www.sysgo.com/
http://www.sysgo.com/
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from DTU Compute. This was good for the project to have another semi realistic
case.

Along the way I took many notes, which have been really helpful in the end phase
where all the smaller parts are merged together to form this thesis.

The overall project process has therefore been a mix of experimental and analytic
approach.
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