
Product Veri�cation and

Validation during Software

Development

Andreas Slott Jensenius

Kongens Lyngby 2015



Technical University of Denmark

Department of Applied Mathematics and Computer Science

Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk



Abstract

The software development process of an organization can play a vital role for the
success of the organization. Choosing a methodology or choosing not to use a
methodology, can be a critical choice. An important reason for using a software
development methodology in the �rst place is to be able to deliver products on
time and budget. However, some methodologies does not include answers to
the two questions "Are we building the product right?" and "Are we building
the right product?", which is known as veri�cation and validation respectively.
Instead this is left up to developers to obtain these goals with no clear guide-
line or structure. Other methodologies focus on other areas, which might be
veri�cation and validation related, but they are then restrictive in their use and
not widely applicable. The nature of software products is that they are used
everywhere, and this large variance is also re�ected in the large variance when
it comes to di�erent projects and teams. Many di�erent methodologies exists -
most with either niche uses, or too general to provide meaningful contributions
to all three aspects of development - being on time and budget, veri�cation, and
validation.

This project aims to develop a methodology that encompasses both getting the
product built on time and budget, but also focus on the questions of veri�cation
and validation, while being adaptable to a large range of projects and teams.

To accomplish this goal, state of the art methodologies was investigated and
taken apart to understand their individual practices, what areas they are chal-
lenged in, and where they excel. Scrum was chosen as the basis of the framework,
both for it's wide usage in the industry but also for being �exible and light on
restrictive, inter-dependent practices.



ii

The understanding from this literature study is then used to develop a frame-
work for software development, that allow it's users to extent the core of the
framework using elements in a provided toolbox to suit the needs of each indi-
vidual team and project. The practices within both the core and toolbox of the
framework are all aimed to deliver software products of su�cient quality, built
to provide value to the customer, and on time and budget.

The developed framework is tested using a real project provided by IT Minds.
The results of this test has been mostly positive, with some suggestions and
improvements suggested both by the author, the project owner, and a project
lead from IT Minds. The major selling points of the framework are it's in-
formation gathering process, which allows developers to really understand their
customer, and the adaptability to many di�erent projects- and team types which
the toolbox provides.



Preface

This thesis was prepared at DTU Compute in ful�lment of the requirements for
acquiring an M.Sc. in Engineering under the study line of Information Technol-
ogy.

The thesis deals with di�erent methodologies for software development, and the
development of a new methodology which aims to deliver software products on
time and budget, which provides value to the customer, and are built of su�cient
quality.

The thesis consists of this report and source code for the developed test cases
and code, which was made using the new methodology created in this report.

Lyngby, 03-July-2015

Andreas Slott Jensenius



iv



Acknowledgements

I would like to sincerely thank my supervisor at the Technical University of
Denmark, Christian W. Probst, for his help, guidance and advice throughout
the project.

I would also like to extend my gratitude to the three persons who have helped
me testing the product of my project and providing me with invaluable feedback.
Kristian W. Larsen, partner at IT Minds, helped me set up the project and get
in contact with the right persons. Magnus Mortensen, owner of Loppeportalen,
have been the customer during my testing and provided me with feedback on
my work. And a �nal thank you goes to Mathias Harboe, project lead at IT
Minds Copenhagen, who has spent his valuable time evaluating and discussing
my work and providing me with suggestions.

Finally, I would also extend a special thank you to Christine Thue Poulsen
for her support and patience during the project and the long weekends spent
working instead of being with her.



vi



Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Reasons for study . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Project plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 literature study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Analysis 5
2.1 The software life cycle . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Early evolution of software engineering . . . . . . . . . . . . . . . 7
2.3 Main points of failure . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Literature study and review . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Waterfall . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Agile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Extreme Programming . . . . . . . . . . . . . . . . . . . . 13
2.4.4 V-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Scrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.6 Kanban . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.7 Agile Modelling . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.8 Spiral Model . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.9 Selection of methodologies . . . . . . . . . . . . . . . . . . 28

2.5 The chosen methodologies . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Strengths and challenges . . . . . . . . . . . . . . . . . . . 28



viii CONTENTS

2.5.2 Team and project properties . . . . . . . . . . . . . . . . 38
2.5.3 Tools and practices . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Design 45
3.1 Selecting a starting point . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Strengthening the core . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Guarding against the common points of failure . . . . . . 47
3.2.2 Improving the scores . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 The �nal core . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Pick-and-Choose toolbox . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Extending the toolbox . . . . . . . . . . . . . . . . . . . . 52
3.3.2 The toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 The methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 My Contributions . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Using the methodology . . . . . . . . . . . . . . . . . . . 57

3.5 Transitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Implementation 61
4.1 Case analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Testing the framework . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 The interview . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Case feedback and discussion . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Feedback from the customer . . . . . . . . . . . . . . . . . 71
4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 External evaluation of framework . . . . . . . . . . . . . . . . . . 76
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusion 79
5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Project plans 83

B Items created during interview 85

C Code examples 87

Bibliography 91



Chapter 1

Introduction

The software development process of an organization can play a vital role for the
success of the organization. Choosing a methodology, or choosing not to use a
methodology, can be a critical choice. An important reason for using a software
development methodology in the �rst place is to be able to deliver products on
time and budget. However, some methodologies does not include answers to
the two questions "Are we building the product right?" and "Are we building
the right product?", which is known as veri�cation and validation respectively.
Instead this is left up to developers to obtain these goals with no clear guide-
line or structure. Other methodologies focus on other areas, which might be
veri�cation and validation related, but they are then restrictive in their use and
not widely applicable. The nature of software products is that they are used
everywhere, and this large variance is also re�ected in the large variance when
it comes to di�erent projects and teams. Many di�erent methodologies exists -
most with either niche uses, or too general to provide meaningful contributions
to all three aspects of development - being on time and budget, veri�cation, and
validation.

This project aims to develop a methodology that encompasses both getting the
product built on time and budget, but also focus on the questions of veri�cation
and validation, while being adaptable to a large range of projects and teams.

First, an investigation of current methodologies will be conducted as a literature



2 Introduction

study. This literature study will uncover in which areas each methodology
excels at, and in what areas they are challenged. Building from that, a new
methodology will be created which is suited for accomplishing both the aspects
of being on time and budget, satisfying veri�cation and validation, and being
adaptable to di�erent projects and teams.

Once the new development process is created, it is tested in cooperation with
IT Minds, Copenhagen. The test is conducted on a real life project, in which a
solution is developed. The process is then evaluated by a project lead from IT
Minds and the customer who owns the project.

1.1 Problem statement

To investigate methodologies and practices for software development, their strengths
and challenges, and how to combine these in a way that is adaptable to di�erent
project and team types. The aim of this new framework for software devel-
opment is to produce software on time and budget, while focusing on a high
amount of veri�cation and validation.

1.2 Reasons for study

IT projects fail more often than they should [10], both when it comes to actual
project termination, but also in regards to being on time and budget, and when
it comes to delivering a functioning system, which delivers value to it's users.
This project aims to identify issues that are a common cause for these problems,
especially when it comes to veri�cation and validation of the �nal product. The
nature of IT projects are that they are so di�erent in size, scope and type, that
an adaptable approach is needed when it comes to development methodologies
and practices, since no size �ts all. An adaptable approach should aim to deliver
a product which are built correctly (veri�cation) and are build to deliver the
requested value to it's users (validation), while staying within time and budget
constrains. No such adaptable methodology is widely known, so it is the aim of
this project to present such a methodology.



1.3 Structure of the thesis 3

1.3 Structure of the thesis

The overall structure of this thesis is:

Introduction chapter
This chapter contains many of the formal elements, such as problem state-
ment and the project plan.

Analysis chapter
This chapter contains the literature study. First general software engi-
neering is studied, and an important list of common failures for software
projects are listed. Afterwards multiple methodologies are studied and
reviewed. A subset of the methodologies are selected and analysed for
strengths, weaknesses, tools and practices. Project and team properties
are presented and how the selected methodologies handles each of these
properties are analysed.

Design chapter
In this chapter the framework is designed. First the core of the framework
is designed by extending an existing methodology, and improving it based
on the common reasons for failure in software project. Then a toolbox is
created for the framework, so that the core can be augmented to counter
di�erent project or team properties, such as Large Team, og Small Budget.
Finally a way to transition to the framework from an existing methodology
is presented.

Implementation chapter
This chapter starts out with the case description and an analysis about
the properties of the case. Then follows a description of the testing and
the results of the testing of the framework. Finally, feedback about the
process in action is given and discussed, and the framework is evaluated
by an industry professional.

Conclusion chapter
In the last chapter the limitations of the project is stated along with
interesting topic for further research related to this project. Lastly we
have the conclusion of this MS.c. project.

Each chapter has a small introduction, explaining what the chapter contains,
and a conclusion section which summarizes the main points of the chapter.



4 Introduction

1.4 Project plan

The project plan and the revised project plan, re�ecting the actual work, is
found in Appendix A. The project began the 10th of February, which in the
project plan became week 1.

The analysis and literature study took a little more time than anticipated, but
the design phase was quicker. The main divergence from the plan came when
interaction with the customer was needed. Due to the fact that the customer
had limited time to spend on this project, the implementation work and chapter
deviate from the original plan as well.

At week 12 the meeting with the customer was supposed to happen according
to the plan. All work that could be done before that meeting was done and only
the introduction chapter was missing. Since the customer did not have time till
half way into week 14, the introduction chapter was created and no work was
done in week 13 and the start of week 14. The project was handed in one week
earlier than planned due to timing constraints.

1.5 literature study

The literature study for this project is found in chapter 2, section 2.4. The
sources are research papers published in journals and websites. The websites
are chosen for either their reputable author or their publisher. References to
the relevant sources are given in the beginning of each section.

A lot of data is used from the annual State of Agile survey [33] throughout this
work, as it gives a reasonable representation of the industry right now, such as
barriers to agile, methodology adoption rates, and common issues.



Chapter 2

Analysis

In this chapter I will present the �ndings of my literature study. First I will
give a brief introduction to the Software Life Cycle and specify which activities
within the life cycle I have chosen to focus on, and why. Then I will take a look
at the evolution of Software Engineering since the saying goes "you can't know
where you're going until you know where you've been", and list some of the main
points of failure in software projects.

Once the basics are established, I will examine some methodologies of varying
application area and size, and from them select which to focus on and why.
Having selected a few of them, I will discuss their strengths and challenges,
compare them against each other, establish under what properties they perform
best and worst, and �nally present an overview of their tools.

2.1 The software life cycle

The System Development Life Cycle (SDLC) is actual in itself a methodology, as
it describes a set of activities to be completed to develop software, but I will here
look at it as a description of major activities that most modern methodologies
incorporate. It should be noted that some methodologies, such as the Spiral



6 Analysis

Model, has a slightly di�erent take on these. However, to facilitate a proper
comparison I have �tted many of the following methodologies into the basic
steps presented in this section, and made sure that the activities in this section
are broad enough to encompass the activities from di�erent methodologies. As
such, the step called Planning & analysis will encompass both the planning
of Scrum, the requirements analysis of Waterfall and analysis, identi�cation and
planning phases of the Spiral Model. This results in fewer activities than most
other representations of a SDLC. This section is based on the work of Kellner [22]
and Boehm [9], and work found on the US Department of Justice [25].

The SDLC then have the following 4 major activities; Planning & Analysis,
Design, Implementation & Testing, and Maintenance. The activities and their
order is outlined in Figure 2.1.

Figure 2.1: The four major activities in the de�ned System Development Life
Cycle

Planning and analysis have been grouped since these activities are both per-
formed before any development is started, and only deals with the system in
a very abstract manner. Some methodologies focus heavily on analysis, while
other excel at planning, but in both cases the activity is performed for the same
reason; to give the developer (and sometime project owner) a better under-
standing of the task at hand, and the resources needed to successfully complete
it.

The Design activity contains both design on an architectural level and more
low-level design such as class interaction and implementation.

Implementation and testing have been grouped because they are closely linked,
and both pertain to the actual development of the product. Some methodologies
have these clearly separated, while other have them interleaved. Because of this,



2.2 Early evolution of software engineering 7

I have chosen to group them, since splitting the activities in methodologies where
they are interleaved would distort the function of it, whereas grouping them does
nothing to the methodologies where they are separate.

Maintenance includes �xing bugs after release, or making other small improve-
ments or tweaks after �nal release. In the case of a brand new feature being
added post-release, this report considers that as further software development,
and thus taking another round in the SDLC.

This report will emphasize the Planning & Analysis, Design and Implementa-
tion & Testing activities. The reason for this is that these activities are those
performed during the development of software, which is the focus of this report.
However, maintenance cannot be disregarded completely since this activity is
very important for software which place a high value on reliability, and some
methodologies support maintenance very well, which should not be ignored.

2.2 Early evolution of software engineering

As mentioned in the introduction to this chapter, taking a look back to the
very beginning of software engineering and it's early evolution can bring some
insights into why software engineering is moving in the direction it is, as well
as giving some pointers as to what one should be aware of when choosing a
methodology. This section is based mainly on the article by Estublier et al [15],
and secondarily on the webpage by Ambler [2].

In the beginning when software was starting to be created on an industrial
scale, it was natural to look at the established engineering disciplines to �nd an
appropriate work�ow. When looking at production lines, pharmaceutical devel-
opment, and large scale construction, it was clear that �rst the product had to
be analysed and understood, then carefully planned, before �nally production
started. This lead to the waterfall as the de facto software development method-
ology. However, as the software industry matured, some issues were raised. The
technology was moving at such a rapid speed that practitioners often faced the
following, as quoted from Estublier et al [15]:

• Novelty ("I never did that before")

• Uncertainty ("I do not know how it works")

• Instability ("it is buggy")

• Requirements evolution ("I want this new feature")



8 Analysis

This led software engineering to have some quite di�erent characteristic than
traditional engineering. I here quote the characteristics presented in Estublier et
al [15], which di�erentiates the software engineering development process from
traditional engineering processes, since the authors presents it quite nicely:

Usual work�ow systems assume that:

• A process is a partial order of steps to be executed in order; completion of
the last step means the process goal is reached.

• Processes are a fully repeatable sequence of steps.

• The product, goal of the process, is considered �nished at the end of the
process and, therefore, keeping its versions is usually not a concern.

• Most often, work�ow systems use a unique copy of the data, stored in a
global store, and either forbid concurrency or leave concurrence unman-
aged.

In contrast in software engineering:

• The goal is never reached and actions are undertaken in apparently a non-
deterministic way

• Concurrent processes are hardly deterministic; each execution is signi�-
cantly di�erent.

• The product, goal of the process, is never �nished; keeping intermediate
versions of the product is a critical issue.

• Many copies of the product under way are continuously and concurrently
modi�ed.

It can be seen that the waterfall process tried to emulate the traditional en-
gineering disciplines, even though the �eld of software engineering is not quite
appropriate for this methodology. therefore it is important to �nd an appropri-
ate methodology, and much work has already been done in this �eld. However,
the traditional waterfall-like methodologies still has many practitioners since the
jump from waterfall-like to more agile methodologies like Extreme Programming
(XP) is quite large, so another approach to this might be needed. Furthermore,
we see that the activities outlined in the waterfall model often are used in mod-
ern methodologies, so the waterfall model is an important stepping stone in
understanding these methodologies.



2.3 Main points of failure 9

2.3 Main points of failure

Before moving on to the methodologies, I will list the most common causes for
failure in software projects. This gives us some important notes to take into
consideration when comparing methodologies, and especially when designing a
modi�ed methodology in the next chapter. This section is based on the articles
by Charette [10] and Frese et al [18] and surveys done for the State of Agile [33].

I list the points of failure grouped in three categories, External issues, Internal &
Validation issues, and Veri�cation issues. This grouping is done to easily grasp
which of these we can act upon with a proper methodology. The Veri�cation
Issues relates to troubles in understanding the customer and his needs, while
Internal & Validation issues deal with dynamics within the team and how the
develop.

A External issues

(1) Outside pressure (Commercial, rivals, �rst-to-market, organizational)

(2) Lack of support from executives and/or organization

B Internal & Validation issues

(1) Insu�cient risk management

(2) Poor status reporting

(3) Use of immature or unsupported technologies

(4) Team not able to handle the complexity of the project

(5) Bad development practices

(6) Poor resource management and estimates

C Veri�cation issues

(1) Lack of customer involvement

(2) Unspoken, unknown or unrealistic project goals and requirements

(3) Poor, or lack of communication between all parties, including devel-
opers, project managers and customers

Especially the Veri�cation and Internal & Validation issues can be countered
(at least partially) by some methodologies, especially the agile methodologies.
For this reason these will be a focus of some of the following sections in this and
future chapters. The External issues are a bit harder for a methodology to act
upon. These points will serve as a guideline when analysing methodologies, in
order to keep these common causes of failure in mind.



10 Analysis

2.4 Literature study and review

In this section I will present a variety of methodologies, the State of the Art,
and give a brief run-down of how they operate. I will reason why I have chosen
these methodologies, and in subsection 2.4.9 I will select a subset of these for
deeper analysis. This section is based on multiple articles and webpages from
reputable authors, which I will list in the appropriate subsections for ease of the
reader.

2.4.1 Waterfall

As discussed earlier, Waterfall is the traditional software development methodol-
ogy. I have chosen to address this methodology since, as described in section 2.2,
it is the basis of many other methodologies, it is still widely used, and the activ-
ities it de�nes provides a good understanding of software engineering in general.
This subsection is based mainly on the article by Petersen et al [28] and the
thesis by Jacob [21], and secondarily on lectures given at The Technical Uni-
versity of Denmark in the courses, 02291 System Integration, 02161 Software
Engineering 1, and 02162 Software Engineering 2. The waterfall model consist
of �ve consecutive phases always done in the same order. According to the up-
dated Waterfall model, it is possible to go backwards in the process, but then
the artefacts produced would have to be updated and go through formal review
again. The phases are; Requirements Engineering (or Requirement Analysis),
Design, Implementation, Testing (or Veri�cation & Validation), and Mainte-
nance. For the reasons given in section 2.1 maintenance will not be discussed.
The waterfall model emphasises Big Design Up Front, giving the reason that
it is much cheaper to �x an issue early in the process, during requirements or
design than during implementation or even veri�cation. The modi�ed waterfall
model can be seen in Figure 2.2 with the blue arrows indicating the normal �ow
of development, and the red arrows indicating backtracking.

Requirements engineering The �rst phase of the Waterfall model is Re-
quirements engineering. In this phase the customer's needs are identi�ed, un-
derstood and documented, usually on a higher abstraction level �rst. This step
is vital for the waterfall model, since all following phases will be built upon the
work done here, so any mistakes or issues not found here can become very expen-
sive to �x later in development. The customer requirements are then analysed,
and further speci�ed so that they can be used later on in design. It is important
to check whether all requirements are aligned with what the customer expects,



2.4 Literature study and review 11

Figure 2.2: The modi�ed waterfall model which allows for backtracking

and that their success criteria is clearly de�ned and veri�able. The main arte-
fact of this phase is the Requirement Speci�cation, which is the formal result of
the work, and is the input for the next phase.

Design The following phase is Design, which take the Requirement Speci�ca-
tion as input. The phase includes both system design, component design and
non-functional design. The architecture of the system is de�ned on di�erent
abstraction levels, so the programmers will know exactly what to do once the
coding starts. The main artefact of this phase is the Design Description. In this
phase it is especially important to verify and document that the architecture
ful�ls the requirements, if there are any deviations in scope or resource manage-
ment, and that the documentation is su�ciently speci�ed so that programmers
can make it.

Implementation The phase of actually writing software is Implementation.
It takes as input the Design Description, and the programmers will start coding
as to the speci�cations given therein. Once coding is complete, a �nished sys-
tem should have been produced, which satis�es the customer needs as given by
the Requirements Speci�cation, and the architectural and non-functional design
given by the Design Description.



12 Analysis

Testing Once the implementation team has �nished and they hand over the
system, testing and veri�cation is done by the testers. Di�erent levels of testing
can be done, including unit testing (testing the speci�c modules), system testing
(testing the overall system) and acceptance testing (to see if the system satis�es
the customer). These three test types can be seen as �rst testing that implemen-
tation was done correctly (unit testing), then that the design was good (system
testing) and �nally that the requirements were met (acceptance testing).

2.4.2 Agile

An agile process di�ers on some important points from the traditional waterfall
process, so a brief introduction to Agile development is provided. You can
hardly talk about agile development without mentioning the Agile Manifesto,
and it's Twelve Principles, here quoted from The Agile Manifesto [5]:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more.

The Agile Manifesto can seem a bit simplistic and abstract, so to give a more
concrete and accurate representation of agile development and it's values, I
quote the agile principles from The Agile Manifesto [5] which put it eloquently:

[AP1] Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

[AP2] Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

[AP3] Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.



2.4 Literature study and review 13

[AP4] Business people and developers must work together daily throughout the
project.

[AP5] Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

[AP6] The most e�cient and e�ective method of conveying information to and
within a development team is face-to-face conversation.

[AP7] Working software is the primary measure of progress.

[AP8] Agile processes promote sustainable development. The sponsors, develop-
ers, and users should be able to maintain a constant pace inde�nitely.

[AP9] Continuous attention to technical excellence and good design enhances
agility.

[AP10] Simplicity - the art of maximizing the amount of work not done - is es-
sential.

[AP11] The best architectures, requirements, and designs emerge from self-organizing
teams.

[AP12] At regular intervals, the team re�ects on how to become more e�ective,
then tunes and adjusts its behavior accordingly.

Many of the following methodologies are based on the agile principles, and thus
knowing these core values are important.

2.4.3 Extreme Programming

Among the agile processes, the most often discussed is Extreme Programming.
As [AP7] states, code is the measure of progress on any given project, which
aligns very well with the very code-centric approach of Extreme Programming.
Many small releases are incremented out, and each time a working system is
delivered. XP is such named since it aims to take the agile principles "to the
extreme", and as such will be a focus among the chosen agile methodologies. It
was spearheaded by Kent Beck during the Chrysler Comprehensive Compensa-
tion (C3) project, and has evolved into a complete suite for software develop-
ment. This subsection is based mainly on the webpages by Don Wells [35, 34],
one of the main developers on the C3 project, the Extreme Programming �ag-
ship, and the book by Beck and Andres [4]. Secondarily this is based on the
thesis by Jacob [21] and the web articles by Fowler [16, 17]. A basic overview
of the overall XP process can be seen in Figure 2.3.



14 Analysis

Figure 2.3: The basic XP process. Image source: blogs.msdn.com/b/jmeier/
archive/2014/06/06/extreme-programming-xp-at-a-glance-
visual.aspx, 18/03/15

Planning One of the underlying assumptions of XP is that an on-site cus-
tomer will be present, which is made clear by [AP4] and [AP6], and already
from the start of the project this is evident. XP practices planning on multiple
distinct levels. First, the customer will write User Stories, which are written in
the customers terminology. They are not limited to the user interface, or any
particular part of the system for that matter, and make up the requirements of
the system, in the form of a story about a �ctional user wanting to do something
in the system. These User Stories are based solely on the customers needs, as
per [AP1], and thus do not de�ne any technology or implementation. In accor-
dance with [AP10], User Stories should contain just enough detail to be able
to make a low risk (low comparatively to the risk of the story) estimate of how
long it would take to implement, and nothing more.
When the project starts up, a Release Plan is created, roughly sketching out
which User Stories to develop in each iteration. Each iteration should give the
customer a system providing acceptable business value, so User Stories should
be planned accordingly. This is also important given [AP7].
Once the project is under way, each iteration will start-o� with a Iteration Plan-
ning meeting, between the developers and the customer. During this meeting
the customer select which User Stories from the Release Plan should be included
in the iteration.Then the customer, with the help of the developers, create ac-
ceptance tests for each User Story, so that their completion is well-understood
and testable. Each chosen User Story is then translated from the customer's
business language into a more technical language the developer can work with.
These meetings highlight [AP4] and [AP6]. Once this is done, the developers
sign up for programming tasks associated with each user story, and then make
a �ne-grained estimate of how long it will take to implement.
The �nal part of planning in XP is the Daily Stand Up Meeting which is held



2.4 Literature study and review 15

at the start of each day among the developers. In this meeting, problems and
solutions are communicated among the developers, and three main questions
are answered by each team member; "what was accomplished yesterday? What
will be attempted today? What problems are causing delays?". Detailed techni-
cal solutions are not discussed during the daily stand up, but are rather done
among the involved parties afterwards, to minimize wasted time.

Design One of the most common points of criticism in XP, is that the method-
ology lacks proper design. XP relies on Evolutionary Design, where the design
emerges over time, which seems very much akin to "cowboy-coding" or "code-
and-�x", which often leads to either failed or challenged projects according to
Ambler [2]. However, as Martin Fowler points outs [16], this misunderstanding
happens because some important practices of XP is not taken into considera-
tion. The reason given by opponents of XP why Evolutionary Design does not
work, is because of the exponential software change curve. This curve tells that
the longer a project is in development, the more expensive it becomes to make
changes. As mentioned in section 2.2 and section 2.3, the whole point of moving
from Waterfall to Agile was to be able to adapt to change, and thus the core of
XP exists to �atten the change curve, and later part to exploit that �attening.
Martin Fowler talks about the enabling practices which makes Evolutionary
Design, indeed most of XP, work. He postulates that the criticism stems from
the fact that people tried Evolutionary Design, without also doing the enabling
practices, thus not �attening the change curve before exploiting it.
First of, XP advocates Simple Design, as per [AP10]. This is supported by
Refactoring, as Don Wells puts it "Refactor mercilessly to keep the design sim-
ple as you go and to avoid needless clutter and complexity. Keep your code clean
and concise so it is easier to understand, modify, and extend. Make sure every-
thing is expressed once and only once. In the end it takes less time to produce a
system that is well groomed." - [35]. But this alone is not enough to �atten the
change curve. To accomplish this, XP relies on possibly it's two most important
practices, Test Driven Development and Continuous Integration. Test Driven
Development (TDD) ensures that changes made late in the project does not
negatively a�ect the already developed features, since the entire automated test
suite is run, and Continuous Integration ensures that con�icts are discovered
early by keeping all developers in sync with each other. Continuous Integration
as a practice has become a standard used in most projects, thanks to tools such
as git and svn.
Once the change curve has been �atten and Evolutionary Design is possible, we
can delve deeper into how XP uses design. Class, Responsibilities and Collabo-
ration Cards, or CRC Cards are used by the development team to model how
di�erent classes within the system interacts. They contain the name of the class,
what responsibilities it has to, and how it collaborates with other classes within



16 Analysis

the system. As with all else in XP, simplicity is advised when using CRC Cards
as well, so only �ll out the card completely if it is necessary. While �lling out
the CRC Cards, the system is simulated by treating the cards as objects, and
moving them around to simulate messages being sent. Going through how the
system works step-by-step as a team will uncover potential problems or weak-
nesses, and solutions can be quickly simulated right away, saving time.
When the overall functions of the system, or whatever part of the system was
modelled using CRC Cards, is understood the team moves on to �nd a good
implementation. Prototypes, or "spikes", are used to learn more of which design
will and will not work. These are the code equivalent of a sketch, and are ex-
pected to be thrown away once the developers learn what they need from them.
They are used mainly for architectural purposes, or for very complex parts of
the system. And even if a certain Prototype is agreed to be the way to go, it
can still be changed later if it would make the system more clear or concise.
Finally, to allow developers to easily talk about the design, a Metaphor for the
system is created. The Metaphor should be simple and easily understood with-
out any expert knowledge. The Metaphor has two main functions: First, it helps
explain the system to new developers or stakeholders without the need for huge
amount of documentation, and secondly it provides a clear naming convention
for classes and methods. Using a clear naming convention allows developers to
easily understand parts of the system they have never seen before by a glance,
and less time is wasted �guring out what a good, descriptive name would be.
However, a good Metaphor might be di�cult to come up with until the team
gains a better understanding of the project, and as such it does not need to be
created in the beginning of the project.

Implementation As mentioned above, some of the most important practices
of XP are Test Driven Development, Continuous Integration, and Refactoring.
Bringing testing to the forefront is what TDD is all about, and never writing
any code unless a test fails. So to implement a feature, the developer would
�rst have to implement an automated unit test that tests for that functionality.
Then the test is run and should fail. Then enough code is written in order
to make the tests pass, and nothing more. This process continuous until the
entire system has been developed. An important thing to note here, is that all
unit tests should be run each time anything new is done, thus making sure that
nothing breaks elsewhere in the system once a new feature is being developed.
If a bug is found, �rst write a test that shows the bug, so that it will never
emerge again, and then �x it. This is the very core of XP, and is the greatest
contributor to quality code and on time and budget XP projects. To make sure
that the test suite and code base is up to date among all developers, so that
con�icts are found and resolved as early in the process as possible and to facil-
itate code re-use , XP uses Continuous Integration. Developers should commit



2.4 Literature study and review 17

and integrate their work every few hours if their work allows it (all tests passes,
some part of functionality is complete), or at the very least once a day. Doing it
this way prevents large amount of time spent near the end of the project when
everyone's work has to be merged and integrated together.
Something else which is considered important to XP, is Collective Ownership, in
the sense that all team members "owns" the entire code base, and there is not a
certain part of the system only a single developer understand. This eliminates
the risk that if a developer leaves, some part of the code can not be maintained
or further developed. It also means that each developer is allowed to change,
�x, improve or refactor any piece of code. It seems non-trivial to have the en-
tire team be responsible for the entire system, and not having a dedicated lead
programmer or architect to keep the vision of the system. But as complexity
rises in a system, it will quickly become too much for a single person to have a
good vision of the system, especially given the rapid change which might occur.
This is why the responsibility is spread among the entire team, and all parts are
understood by multiple developers, which also removes the bottle-neck that an
architect often becomes in a rapid changing environment. How XP achieves Col-
lective Ownership is by Code Review, Moving People Around, and Code Review
taken to the extreme, Pair Programming, where code is being reviewed contin-
uously. All non-trivial code should be written in pairs on a single computer.
The idea is that two people working in a pair will add as much functionality
to the system as they would apart during a day, but the code will be of higher
quality, thus saving time in the long run. It is a social skill, and mastering it will
take a considerable amount of time for most. It's important to note that Pair
Programming should not become a teacher-student relationship, but rather two
equals working together, even if one of the developers are considerably more ex-
perience. The second part of achieving Collective Ownership is to Move People
Around, which simply furthers everyone's understanding of the system, since
no one person keeps working on the same part(s). Collective Ownership also
provides the bene�t of �exible workload balance, since no developer becomes
a bottleneck. Finally, all code should be written in accordance with both the
Metaphor, and some agreed upon Coding Standard. The Coding Standard, is
very important, since it allows developers to understand the code at a glance,
and essentially just read the code as if it was plain text.

Team care As per [AP8], XP puts a high value on the welfare of the project's
team members, both developers, managers, and customers. To avoid burnout,
stress, and other human issues, XP promotes a 40-Hour Work Week. Of course
overtime might occur once in a while, but two weeks in a row with overtime is
considered a serious problem that needs to be addressed. Team Empowerment is
also important in XP, as given in [AP5]. An engaged and motivated developer
takes pride in what he does, and produce better results. By extension, teams



18 Analysis

also should be Self-organizing in accordance with [AP11]. Every member of
the team should be co-located and the workspace should be open to further
communication, since this is vital to a team practising XP.

2.4.4 V-model

The V-model (Vee-Model, V-Shaped Model) is in many ways an extension of
the traditional Waterfall model. It follows the same basic steps as the waterfall
model, but on each stage of development, testing is also considered. Further-
more, the testing phase at the end of the project is more elaborate. Since the
V-model produces the same amount of documentation as the waterfall process,
but has more focus on validation and veri�cation, it makes it suitable for more
formal environments such as the pharmaceutical industry, where certi�cations
are needed by o�cial bodies. It is also the recommended methodology in the
international standard IEC 61508, titled Functional Safety of Electrical/Elec-
tronic/Programmable Electronic Safety-related Systems, and for these reasons it
has been included. The V-model is shown in Figure 2.4, where the blue arrows
indicate the development �ow, red arrows indicates backtracking through the
feedback loop as with the Waterfall model, and the black arrows shows when
test plans are created and executed. This subsection is based on the article by
Deuter [13] and the webpages by Coley Consulting [12].

Figure 2.4: The V-model. Blue arrows indicate the development �ow, red
arrows indicates backtracking, and the black arrows shows when
test plans are created and executed

The V-model starts with creating the Requirement Speci�cation, just like the
waterfall model, where all requirements of the customer are recorded, analysed
and documented. Once these have been understood by the involved developers
and the customers agree on the requirements put forth, the �rst deviation from
the waterfall model appears. Alongside the Requirements Speci�cation, the test



2.4 Literature study and review 19

plan for the acceptance tests are also developed. All details can not be �lled
out yet, but much of the initial work is done now, while the requirements are
fresh in memory, so that testers may bene�t later in the project. These tests
may also be checked during other stages of development (design for example),
to see what has been developed so far still passes the tests outlined in previous
stages.

Once both the speci�cation and test plans are done, the V-model moves on to
the design phase, which is divided in two separate phase, for the sake of making
test plans. First the overall architecture is designed along with the per waterfall
model appropriate documentation, and the plans for integration testing. Then
the design is further speci�ed on a more modular level, and the overall structure
of the unit tests are planned as well.

In the implementation phase all coding is done using the documents produced
earlier, just like the waterfall model. No new test plans are created, but as this
phase moves along, the �nishing touches can be put unto the test plans from
previous iterations, so that they are in a more ready state once the appropriate
phase arrives.

What the waterfall simply labels as "testing", the V-model has split into three
distinct phases which handles veri�cation and validation of the system. First
functionality is tested by the unit tests, then all parts are put together, and their
integration is tested, and �nally the (hopefully) �nished product is run through
acceptance testing, to verify that it indeed satis�es the customer's requirements.

From this description it is clear that this is a step-up from the traditional wa-
terfall model with it's added focus on testing in the forms of veri�cation and
validation. However, the remaining problems in the waterfall model is also
present here such as; it does not respond well to change, it is expensive to back-
track if bugs, issues or missing functionality are found, and a general lack of
customer involvement once the requirements phase is done. But this method-
ology is still worth mentioning for it's rigid process which makes it attractive
for formal environments with a focus on documentation such as the medicinal
industries.

2.4.5 Scrum

Scrum is not a development methodology per se, but rather a management
methodology, and is often combined with "generic agile" practices since it sup-
ports these very well. It is also by far the most used agile methodology according
to the surveys done by the annual State of Agile survey [33]. Figure 2.5 shows



20 Analysis

the basic activities and how they relate to each other in the �ow of a single
iteration, or sprint in the Scrum terminology. This process is repeated for each
sprint until the project runs out of time, or all features has been implemented.
Since the list of features is prioritized by the customer and the result of each
sprint is a potentially shippable product, running out of time is not as huge a
problem for Scrum projects as it is for traditional projects. This subsection is
based on the work of Rising et al [30] and Paasivaara et al [27], as wells as the
webpage by The Scrum Alliance [31] and Wells [34], combined with my own
personal experience working in two Scrum teams in di�erent organizations.

Figure 2.5: The process of a Scrum project. Image source: galleryhip.com/
scrum-methodology.html, 18/03/15.

The Scrum process is quite simple. The only thing that can be puzzling is the
terminology which might not be readily understandable. For this reason I will
present a description of the main actors and artefacts to give an understanding
of the basic terminology, and then explain the �ow of the process by presenting
the main events.

Actors In the development team there are two important roles beside the
developers, the Product Owner and the Scrum Master. The Product Owner is
essentially the customer, or the one who represents the customer. The job of
the Product Owner is to ensure that tasks are well understood, and that the
sprints are �lled with the most important features �rst. The Scrum Master is a
developer, but with some extra responsibility. He acts like a coach and ensures
that the team follows the values of Scrum. Other tasks include to help the team
perform at their highest potential, dealing with issues or impediments within the
team, working and handling communication with the Product Owner. He can
be referred to as the "Process Owner", since he essentially controls the Scrum
process, but not the team itself.



2.4 Literature study and review 21

Artefacts The Product Backlog is created by the Product Owner and Scrum
Master at the start of a Scrum project. They also maintain it, since it can be
updated after each sprint if new requirements appear. It is a prioritized list
of User Stories with associated tasks, and the priority can be based on risk
or value. An interesting approach to prioritization presented by The Scrum
Alliance [31], is that instead of selecting the most important features, since this
can be hard if the customer thinks all the features are important, then select
the least important feature, and move up from there. It is important to note
that it is not a goal of the Product Backlog to be complete before the project
starts, since everyone learns more of the product as development continues, and
thus more tasks will be added during development. The Sprint Backlog is, like
the Product Backlog, a prioritized list of tasks. Those tasks are selected in
the beginning of a sprint, and the team commits to completing them during
the sprint. Within the sprint, the team does not need to follow any speci�c
order on the list, as they have committed to completing all the tasks within the
sprint. Changes to the Sprint Backlog during the sprint should be avoided, since
that runs the risk of the team not completing what they are committed to do.
Finally we have the Burndown Chart, which is maintained by the Scrum Master.
The Burndown Chart shows the progress the team has been doing compared to
remaining and estimated work. It is updated continuously, and is a e�ective
visual tool to show outside stakeholders.

Events A project is started by creating the initial Product Backlog which is a
one-time event. Then at the beginning of each sprint a Sprint Planning Meeting
is held, usually with the entire team, including developers, Product Owner and
ScrumMaster. The team, without the Product Owner, decides how much can be
done within the coming sprint. The Product Owner describes the di�erent tasks
in the Product Backlog so that developers get a better understanding of the task
and are able to estimate the time needed. In the beginning of each day of a
sprint, the Daily Scrum is held for all team members. Three main questions are
answered by each person attending; "What did you do yesterday?", "What will
you do today?" and "Are there any impediments in your way?". These meetings
need to be kept short, and potentially long discussion about technical issues are
done only by the involved parties after the meeting. The Scrum Master will help
deal with impediments, either directly or will put the a�ected team member in
contact with someone who can. The importance of the two �rst questions is
that it shows the commitment of each developer to each other, and not to some
far-o� non-present customer, making it more pressing to uphold. Each sprint
is concluded with a Review of the product, where the state of the product is
evaluated. The overall goal of each sprint is a product of su�cient quality, so
that it could be considered �nished. This overall goal, along with the backlog
items the team committed to complete, are reviewed. This meeting is the only



22 Analysis

meeting where outside stakeholders, such as upper management, customers and
developers from other projects, are often invited so that the progress of the team
can be shown. Usually following the Review, is the sprint Retrospective, where
the process itself is evaluated by the team. A simple approach to this is to have
everyone write their personal answer to the three questions "What should we
start doing?", "What should we stop doing?" and "What should we continue to
do?". Then these answers can be grouped together by topic, and the team can
select the most important of these topics to improve upon.

It is evident that a main theme of Scrum is commitment, something that agile
processes are often criticized for lacking. In State of Agile [33] two important
concerns about agile processes are "Lack of management control" and "Lack
of Predictability", which 53% of respondents said. These could roughly be
categorized as lack of commitment, or at least something a commitment heavy
approach might help solve. It is also for this reason that Scrum is quickly
becoming one of the main players in agile development.

2.4.6 Kanban

Another management methodology, Kanban, is inspired by Toyota Production
System and Lean manufacturing. In software engineering it is used mainly as
a component of other methodologies such as ScrumBan, but is still among the
more popular agile practices according to the State of Agile survey [33]. A short
mention of it will be presented here based on the work of Polk [29], Hiranabe [20]
and personal experience in a large development team using Kanban.

Figure 2.6: Kanban board with tasks in di�erent stages

Figure 2.6 shows an example of a Kanban board used in software development.
Tasks are placed in the To Do queue, once created, and developers then move
these tasks to Doing once work has started. In this example a Needs Review
/ Testing queue has been added as well, where all tasks undergoes testing or
review. When a developer has time he should take a look at the review queue
and take the �rst item in the queue and review it. It is then moved if it is



2.4 Literature study and review 23

approved, otherwise it goes back into To Do with a note of what still needs to
be done. This additional queue were used were the author worked, but this
could di�er from organisation to organisation. Finally a task is moved to Done
once it has been approved. This approach emphasises just-in-time completion of
tasks, while maintaining balance in the di�erent activities and not overloading
speci�c personal with tasks. It works as a visual aid to track the progress of the
team, and helps by providing at-a-glance overview.

2.4.7 Agile Modelling

Another common point of criticism that most Agile methodologies faces is that
they lack documentation, which 24% of respondents mentioned as a concern
about adopting an agile process in State of Agile [33]. However, Agile Modelling
propose a way for modelling, and documentation in general, to be agile and
thereby easier to integrate into the agile methodologies, thus countering the
criticism. It is not a methodology by itself, but a useful component. This
subsection is based on the work of Ambler [1] and Wells [34].

The main premises of Agile Modelling is that it should follower the same core
principles as agile development of code. For example, Agile Modelling says
to deliver documentation and models that are "Just Barely Good Enough"
"Just-In-Time", which is consistent with [AP10]. "Just-In-Time" means that
documentation should not be made until it is actually needed, as to avoid having
to re-write the documentation because of requirement or design changes. "Just
Barely Good Enough" is easily misunderstood as something of low quality, since
it is only barely good enough, but the important thing to remember is that if
it is good enough, then it adds no extra value for the customer, to put more
work into it. This brings us to another point, that documentation should be
produced because it provides value to the customer, not documentation for
documentation's sake. Therefore each diagram, or other piece of documentation,
should be treated as a User Story, and the customer can then choose if the
documentation has a high enough priority to be included.

The target audience of documentation is also very important in Agile Modelling.
Mostly in agile project, documentation is produced to non-developers since all
developers are using more e�cient ways to understand the system, such as face-
to-face communication, and collective ownership. For this reason, what should
be documented and how it should be documented needs careful consideration,
so that the documentation provides real value to the customer. For example
in XP, the philosophy is to write clean, easy-to-understand source code, since
that is the only thing is always in sync. While this might be true, if the target
audience is management or the end users then clean source code is not a good



24 Analysis

�t. If documentation is created without the explicit wish of the customer, the
value it provides to the team should also be carefully evaluated, and lots of
e�ort should not be put into these models, as developers often gains more value
from the process of creating the model, than the model itself actually provides,
which CRC cards from XP is a good example of.

Agile Modelling propose to use "Multiple Models", so that practitioners do
not get stucked using only UML for instance. Ambler argues that while UML
is a good foundation, it is simply not able to model all scenarios, and thus
practitioners needs to use multiple models, and multiple ways to model. An
agile twist on this that Ambler gives, is that often the best tool for the job is
the simplest. No need to draw a huge UML diagram, if what you want to show
can be modelled with a sketch on a whiteboard. Wells goes as far as saying
"Having a model printed out with straight lines and square corners in a specially
labelled binder does not mean you have a good design, it just means you have a
well documented one. I have found that a huge UML document is an excellent
way to hide a complex design.".1

2.4.8 Spiral Model

The Spiral Model developed by Barry Boehm was one of the earlier method-
ologies to move away from the traditional Waterfall methodology and into a
more iterative approach, but is not part of the agile framework. It is less code-
centric than most agile approaches, and thus seems closer to what traditionalists
would use. This subsection is based on the work of Boehm on his original Spiral
Model [7, 6] and the re�nements made later [8]. This methodology is described
as a risk driven process model generator, since it let risk analysis choose what
speci�c process to choose at any given iteration, or cycle as it is called in the
Spiral Model, and for any important choice during development. This Subsec-
tion will focus on the main points of the Spiral Model, which are present in all
processes generated by it, and not on the process generation itself.

Figure 2.7 shows Boehms original diagram of the the Spiral Model, where the
system is incrementally being designed and build, while the associated risks are
being reduced. At each cycle, the project is evaluated so that cost, schedule and
other estimates can become more and more precise and realistic the further along
the project is. The two main features of the Spiral Model is it's Anchor Point
Milestones which ensures that development team, management and customer
only commits to feasible and acceptable solutions for all parties, and it's six
Invariants. I will start by presenting the Invariants.

1Don Wells, 21-03-2015, http://www.agile-process.org/model.html



2.4 Literature study and review 25

Figure 2.7: The Spiral Model by Boehm [8]. Each full cycle in the spiral is an
iteration.

Invariant 1 The �rst invariant of the Spiral Model, is "Concurrent Deter-
mination of Key Artifacts (Ops Concept, Requirements, Plans, Design, Code)"
Boehm [8]. This invariant ensures that the project is not committed to key
artefacts, such as those listed by Boehm, too early since that would run the risk
of causing incompatibility or infeasibility later in the project. If the team has
already decided to use component A, then they have to choose component B
later on for it to work with A. Finally the team will have to settle on C as the
last component for it work with A and B, even though C is not an acceptable
choice compared to D. This will then either result in a lot of re-work or a system
that does not satis�es the stakeholders. Instead these decision should have been
done concurrently, so that it would have been discovered that A would lead to
B and lead to C, which would result in something unacceptable.
The example given by Boehm [8] which shows the lack of Invariant 1, is of
a large database system. The customers said they want less than 1 second
response time on the system, and without looking at other consequences the
development team accepted that. The results was then that after two thousand
pages of requirements, it was discovered that such an architecture would cost
$100 million to create, whereas a 4 second response time architecture would take
only $30 million to make. After doing a prototype with the slow response time
and testing it with users, it showed that 90% of the time a 4 second response



26 Analysis

time was good enough.

Invariant 2 Invariant 2 are to some degree the same as Invariant 1, "Each
Cycle Does Objectives, Constraints, Alternatives, Risks, Review, Commitment
to Proceed" Boehm [8]. The di�erence here is that this invariant deals with
stakeholder participation and not directly key system artefacts. It ensures that
the team considers key stakeholders objectives and constraints, evaluate suitable
alternatives to constraints with clearly de�ned risks, and that key stakeholders
review these critical objectives and constraints and their alternatives.
Boehm gives the example [8] of committing to a Windows-only component,
even though large parts of the user base consisted of Mac and UNIX users.
This happened because key stakeholders, in this case someone from the UNIX
community, was not involved with the process, and caused a lot of rework to
change the core component to be multi-platform compatible.

Invariant 3 The third invariant "Level of E�ort Driven by Risk Considera-
tions" Boehm [8]. This invariant is achieved by risk consideration, so that an
activity does not take too much or too little e�ort. This invariant, along with
Invariant 4, is very important to the core of the process model generator of the
Spiral Model, since they ensures that the Spiral Model adapts properly to dif-
ferent projects. For example, a safety-critical project involving a nuclear plant
requires a lot of testing, but a �rst-to-market sensitive project should focus less
on testing and more on speed. This prioritization is done by the risk analysis.

Invariant 4 As can be seen, Invariant 4 looks very much like Invariant 3 "De-
gree of Detail Driven by Risk Considerations" Boehm [8]. The di�erence here is
that this invariant concerns the artefacts of the system, and their level of detail,
and as such can be seen as the product counterpart of Invariant 3. An example
given by Boehm is that a complete, highly speci�ed requirements speci�cation is
not a good idea for a graphical user interface. The risk of specifying the interface
too early and locking it into a contract have a high probability of resulting in a
bad and awkward user interface, since not all is known of the system and how
the interface would pan out. On the other hand, it is a low risk not specifying
the interface until much later, since �exible GUI tools are widespread. Thus
Invariant 4 ensures that each artefact has the right amount of detail put into
them, according to what poses the smallest risk.

Invariant 5 The �fth invariant is simply "Use of Anchor Point Milestones:
LCO, LCA, IOC". The milestones will be explained further down this subsec-



2.4 Literature study and review 27

tion, but in short; LCO represent commitment to architecting, LCA represents
commitment to the full software development life cycle, and IOC represent com-
mitment to operations of the system. This allows for incremental commitment
so both customer and developer can withdraw early without great losses.

Invariant 6 The �nal invariant is "Emphasis on System and Life Cycle Ac-
tivities and Artifacts" Boehm [8]. This invariant ensures that the project scope
does not focus too heavily on code, but considers the entire business process
that the system should support / improve. This ensures that the project has a
system-level business case which shows that the system actually does ful�ll the
objectives of the customer, before resources are committed to the project.

LCO Anchor Point Milestone The �rst milestone that a project will reach
is the Life Cycle Objectives milestone. In this milestone the key stakeholders,
including the development team, review the operational concept description,
prototyping results, requirements description, architecture description, and life
cycle plan. To sum these up, a feasibility rationale is made answering the ques-
tion "If I build this product using the speci�ed architecture and processes, will
it support the operational concept, realize the prototyping results, satisfy the re-
quirements, and �nish within the budgets and schedules in the plan?" Boehm [8].
If the answer to the feasibility rationale is 'no' then the development team needs
to rework the current work so far, or abandon the project. Once the LCO mile-
stone has been passed, it means at least one architecture is viable from a business
point of view. Boehm [8] compares the LCO to getting engaged, you have agreed
that this might work out and it is currently looking good.

LCA Anchor Point Milestone Life Cycle Architecture is the second mile-
stone. It reviews the same artefacts, but in much greater detail, and answers the
updated feasibility rationale and if it succeeds all parties are now committed. In
addition all signi�cant risks must have been dealt with, either by �nding an ac-
ceptable alternative, or by having a risk-management plan. Boehm [8] compares
the LCA to getting married. Signi�cant commitment is done on both sides and
you are very sure this will work out in the long run. As with getting married, if
you pass the LCA too hastily, the development team and stakeholders is likely
to drift apart, and the project will die.

IOC Anchor Point Milestone The �nal milestone is the Initial Operational
Capability, and it focuses a lot on preparation of the launch, including software,
site and user preparations. It is also the point in time where the users will �rst



28 Analysis

see a functioning system, and thus needs to be well prepared, as to not alienate
the user base. If the preparation is deemed su�cient the milestone is passed
and the system will be launched. Boehm [8] compares the IOC to getting your
�rst child. Breaking apart now is (ideally) out of the question, and both sides
are heavily committed to making it a success.

In conclusion of the Spiral Model, it's high emphasis on risk analysis and man-
agement and the feedback loop when it comes to planning and expectations of
all involved parties, shows that this model is ideal for project with a considerable
amount of risks, which is typically for safety-critical and large projects.

2.4.9 Selection of methodologies

In section 2.5 a subset of the reviewed State of the Art methodologies will be
analysed, and this subset will be selected here. First of all, Agile Modelling and
Kanban is excluded as is also hinted at in their respective subsection, since they
are considered tools in the context of this thesis. The V-model is excluded since
it is e�ectively just a slightly modi�ed Waterfall model, with a higher focus on
testing. The Waterfall model is included for it's instructiveness and it's clear
overview of phases, Scrum is included for it's widespread use, XP is included
since it is the most agile methodology showing a lot of promise, and �nally the
Spiral model is included since it represents a model highly suitable for large,
high-risk projects, and that is an area where the agile approaches are considered
lacking according to research done by Barlow et al [3].

2.5 The chosen methodologies

The chosen methodologies will be analysed for their strengths and in what areas
they are challenged. Where each methodology is best applied and the tools used
will be identi�ed and their application analysed.

2.5.1 Strengths and challenges

The tables in this section are structured as follows; First the strengths and
challenges of Planning and Analysis activities are listed, followed by Design,
Implementation and General. The following subsections are based on the same
sources as those listed for their respective methodologies in section 2.4.



2.5 The chosen methodologies 29

2.5.1.1 Waterfall

From subsection 2.4.1, it is clear that the Waterfall model has some serious
drawbacks, but also some strengths, and these will be elaborated here.

Strengths First of all, the Waterfall model is an old model, which means
that there are a lot of knowledge and written experience concerning it. It's
gated and very rigid structure forces developers to be disciplined, since there
is not much room in the model for deviations. The very planning-centric focus
of the Waterfall model allows the developers to catch some problems early in
the process, such as uncovering possible design problems during requirements
or identifying implementation pitfalls during design, and then counteract these
problems. And �nally from a manager and customer viewpoint, the Waterfall
model provides the excellent strength that it provides clearly de�ned project
length and cost.

Challenges Documentation of di�erent kind is an important aspect of the
Waterfall model, but also one of it's greatest weaknesses. Documentation of
this kind ranges from comments, to diagrams, to formal documents, and they
all have some things in common. They are static meaning that if code or larger
parts of the system is changed, all of this documentation has to be checked that it
is still up-to-date, and if not updated. This is an expensive operation, and often
does not result in something that produces direct value to the customer. In line
with this, some of the produced documentation might never be looked at again
after it has been approved, and thus truly has been a wasted e�ort. The planning
dependency of Waterfall results in poor handling of unforeseen problems, and
such problems are likely to appear since it is unlikely that all requirements are
known in the beginning. Furthermore requirements might change after initial
planning phase is done, again resulting in unforeseen problems. When these
problems then appear and gets addressed, the project is likely behind schedule,
and thus has to gain time. Since testing is the last phase of Waterfall, this is
usually what is cut if the project falls behind schedule and development is not
extended.

Conclusion Table 2.1 shows the summation of the challenges and strengths
of the Waterfall model during the di�erent activities in development. Note
that the challenges outnumber the strengths, and that the importance of some
it's strengths is a bit questionable. It is evident that the Waterfall model is
very vulnerable to any kind of change during development and, as described in
section 2.2, change is very much a constant factor in software development.



30 Analysis

Challenges Strengths

Not likely that all requirements are known in the
beginning and requirements might change after
initial planning phase is done.

Unforeseen problems are poorly handled.

Some documentation is produced but might
never be used.

Clearly de�ned project
length and cost.

Design problems can be dis-
covered early and counter-
acted.

Implementation challenges
can be discovered early and
counteracted.

Testing is done after all analysis and design, so
problems a�ecting these phases is very expensive
to rework.

Delays earlier in the process will hurt testing
since this is the last phase of the project.

Stakeholders can be concerned of progress since
nothing product-related can be shown.

Since implementation is
gated behind other phases,
the chance that each feature
is clearly de�ned is high.

Best applied on well understood and non-
changing project, which is rare.

Documentation is static and gets outdated.

Documentation is expensive to produce, and of-
ten produce no direct value for the customer.

Extensive documentations.

Forces discipline through an
experienced, gated and rigid
development scheme.

Table 2.1: The challenges and strengths of the Waterfall model



2.5 The chosen methodologies 31

2.5.1.2 Extreme Programming

Subsection 2.4.3 outlines how XP works, but also brings up both some points of
critique and some of it's strengths, which will be elaborated here. Most of the
points discussed here will be present in other agile approaches as well, but are
usually more pronounced in XP, whether good or bad.

Strengths The three absolute main strengths of XP is that it produces higher
quality code, completes projects faster and the �nished product is often time
more suited for the business due to high customer involvement. Closely after
that is how adaptable XP is to changing requirements, and it's built-in protec-
tion against feature creep due to Test Driven Development. All of these is some
very powerful strengths, and are the main reason XP is held in such high re-
gard by it's practitioners. Some of the supporting strengths of XP also includes
Collective Ownership, Daily face-to-face communication, self-documenting code,
Continuous Integration and Refactoring. Maintenance is also supported quite
nicely in XP, since automated test suites ensures that changes post-development
do not break functionality somewhere in the system.

Challenges The main source of challenges XP faces as a methodology is from
misuse, either using it in a scenario in which it is not suited, or usage by people
with poor understanding of it. I will start with applying XP in inappropri-
ate scenarios. Many organizations are not used to the very agile approach of
XP, and this con�ict can cause problems and severe slowdowns. XP prescribes
face-to-face communication across the team, which is an issue in large teams as
Barlow et al shows in Figure 2.8 due to the exponentially increasing amount of
social interactions needed in a team, where each member communicates with
each other member. Another problem that relates to applying XP to the wrong
scenario, is when it comes to documentation. Some customers might expect and
/ or require a certain amount of documentation, either as "proof" that the devel-
opment team knows what it is doing, or to ful�l some industry standards, such
as those for safety or pharmaceutical use. There indeed exists ways to counter-
act this in agile projects, but these will be considered in subsection 2.5.3.
Lets now take a look at challenges that arise from not having a proper under-
standing of XP. Only partially implementing XP can cause severe problems,
since multiple parts are required for optimal use, as Fowler [16] describes with
the change curve. Scope creep can occur if the development team is not disci-
plined when dealing with the customer, since it is easy for the customer to keep
requesting more features. The evolutionary design of XP can degenerate into
"code and �x", if automated testing, refactoring and continuous integration are
not applied properly. To avoid these points, an XP project requires experienced



32 Analysis

programmers and XPers. Relying on Test Driven Development and automated
testing can also lead to disaster if performed blindly by an inexperienced devel-
oper, since the strength that these provide are only a false sense of security if
not handled correctly.
The only challenge that cannot be avoided by having a proper understanding
of XP and only applying it to appropriate projects is related to documentation.
Having no documentation to show what code or modules are used for can make
it di�cult to re-use parts of a project in another project. While not directly a
problem for a single project, this is still something to keep in mind.

Figure 2.8: The exponentially increasing complexity of a communication net-
work [3]

Conclusion The strong focus on code is evident in Table 2.2 which summa-
rizes the challenges and strengths of Extreme Programming. The challenges of
XP are almost exclusively based on misuse from not understanding it, or ap-
plying it to inappropriate scenarios. Solving these issues by making XP more
suitable for it's bad cases and improving or removing the areas that is the cause
of misuse will be important going forward.



2.5 The chosen methodologies 33

Challenges Strengths

Lack of up-front planning can con�ict
with the rest of the organization.

Daily stand-up is only really useful on
small to medium teams, and with com-
mitted team members.

Customer might require a certain amount
of documentation.

The daily stand-up meeting focuses
on being short and e�cient, while
still communicating problems, so-
lutions, and promote team focus
throughout the team.

Evolutionary design can lead to "code
and �x".

Can cause problems in large teams, due
to communication concerns.

Lack of documentation can make it di�-
cult to re-use code across projects.

Collective ownership of code pre-
vents bottlenecks.

Daily face-to-face communication
promotes shared knowledge of code
base.

Code is self-documenting, and thus
is always up-to-date compared to
comments and other documenta-
tion.

Continuous Integration, TDD and
refactoring to ensure quality.

Somewhat prevents feature creep.

Only partially implementing XP can
cause severe problems, since multiple
parts are required optimal use.

Requires experienced (senior) program-
mers / XPers to prevent falling into pit-
falls.

Scope creep if lacking discipline and cus-
tomer keeps requesting more features.

Requires on-site customer.

Requires large amounts of trust between
all involved.

High customer involvement leads to
good domain knowledge and thus
solution suited for the customer and
business.

Able to use knowledge from previ-
ous iteration to improve upon cur-
rent iteration.

Is very adaptable. Have no problem
with changing requirements.

Produces higher quality code.

Completes projects faster.

Table 2.2: The challenges and strengths of the Extreme Programming



34 Analysis

2.5.1.3 Scrum

As mentioned in subsection 2.4.5, Scrum is often combined with some kind of
generic agile development method but this will not be covered here. Instead this
section will focus entirely on the management aspects of Scrum so that these
might be highlighted.

Strengths While Scrum is a management methodology, it is still very much
an agile approach. It uses short sprints with a review and retrospective in the
end to improve the process for the next sprint. These two meetings are great for
showing progress to stakeholders, which is important according to section 2.3.
Other agile principles that Scrum uses to great e�ect is high customer involve-
ment ensuring that solutions are business-appropriate, and the standup meeting,
called dailt Scrum, which helps focuses the team and show their commitment.
Scrum is also very adaptable to new and changing requirements, which further
bene�ts from the customer involvement. Also of great importance for Scrum is
that projects have a higher chance to �nish on time and budget, and developers
are usually more engaged and satis�ed with their job, thus performing better.

Challenges As with XP, there is a chance that more items are continuously
being added to the product backlog. This is especially a problem if more time
and/or resources are not given to the project, so this balance needs to be con-
trolled. Scrum is often best with small, committed teams, and large teams are
often considered problematic. This can be counteracted a bit by some changes
(such as Scrum of Scrums) but I will not delve further into this. For a Scrum
team to work optimally, it requires mutual trust between Product Owner, man-
agement and the development team, that the Product Owner is knowledgeable,
and Scrum Master is good at keeping the process running smoothly.

Conclusion The location of the challenges and strengths of Scrum in Table 2.3
quite clearly re�ect that this is not a development methodology like XP or
Waterfall, but a management methodology. The widespread use of Scrum can
be attributed to the power of it's strengths versus it's challenges, and the ease
of implementing it and transitioning to it.



2.5 The chosen methodologies 35

Challenges Strengths

Chance of scope creep, since the Prod-
uct Owner can keep adding more items
to the backlog unless controlled.

Daily Scrum is only really useful on
small to medium teams, and with com-
mitted team members.

The daily Scrum meeting focuses on
being short and e�cient, while still
communicating problems and solu-
tions. Also promotes team focus
throughout the team.

Adds visibility to stakeholders of de-
velopment progress.

Requires a good Scrum master to keep
the process running smoothly without
taking too much time away from devel-
opment.

Requires mutual trust between Prod-
uct Owner, management and the de-
velopment team.

Works best when team members are
committed to the project, and not
splitting their attention across multi-
ple tasks in other projects.

Requires knowledgeable Product
Owner on-site.

High customer involvement leads to
good domain knowledge and thus so-
lution suited for the customer and his
business.

Able to use knowledge from previous
iteration to improve upon current iter-
ation, through sprint review and retro-
spective.

Is very adaptable. Have no problem
with changing requirements.

Projects �nish on time and budget.

Improved employee engagement and
job satisfaction.

Table 2.3: The challenges and strengths of Scrum



36 Analysis

2.5.1.4 Spiral

The Spiral Model relies heavily on risk analysis as described in subsection 2.4.8.
This makes it a rather expensive methodology to follow, which might be suited
for some few projects, but the process of risk analysis is often overkill.

Strengths The strengths of the Spiral Model is mainly based around it's
Invariants and Anchor Point Milestones. The milestones ensures that the project
has reached a certain goal before moving too far, and the invariants makes sure
that the project stays on course, and the appropriate tools and methods are
applied.

Challenges At a glance, the challenges of the Spiral Model seems sparse com-
pared to the other methodologies. While some of the other methodologies have
some surmountable challenges, those of the Spiral Model is severe and stems
from the core of the methodology. Expert knowledge of risk analysis in software
projects is needed, and most likely also expert knowledge in the business and
technologies used for proper risk assessments. This will inevitability results in
a higher �nal cost for the project [19]. While the Spiral Model adapts to the
project using Invariant 3 & 4, risk analysis would still be overkill for a lot of
smaller and / or low-risk projects.

Conclusion At �rst glance on Table 2.4 , the Spiral Model looks promising.
But the additional cost associated with risk analysis is too often not worth it.
However for some projects, namely those that often is considered troublesome
for agile approaches, the risk analysis provides a clear advantage.



2.5 The chosen methodologies 37

Challenges Strengths

Cost, Schedule and other estimates be-
come more and more precise and real-
istic the more cycles have been done.

Invariant 6: Looks beyond software,
to a more system-level business case,
which might reveal other problem ar-
eas.

Have a clearly de�ned milestone
(LCO) to determine when the project
is speci�ed and well understood
enough that design can start.

Have a clearly de�ned milestone
(LCA) to determine when the project
is completely speci�ed and under-
stood, and all risks are found and man-
aged, so that actual implementation
may begin.

Software is produced early and incre-
mentally.

Have a clearly de�ned milestone (IOC)
to determine when to show-o� progress
to customers.

Contains many pitfalls that invalidates
the Spiral model and turn it into a
"Hazardous Spiral Look-Alike" which
is likely to fail.

Can be very costly due to the amount
of risk analysis involved.

Requires knowledgeable and experi-
enced risk analysts.

Even though it adapts to the project,
the risk analysis is overkill for smaller
or low-risk projects.

Invariant 1: Concurrently determine
a compatible and feasible combination
of artefacts and requirements to avoid
premature commitment.

Invariant 2: Avoids commitment of re-
sources in any phase to unacceptable
or overly risky plans, designs or imple-
mentations caused by lack of key stake-
holder participation.

Invariant 3 & 4: Level of e�ort driven
by risk considerations.

Invariant 5: Allows for incremental
commitment so both customer and de-
veloper can withdraw early without
great losses.

Table 2.4: The challenges and strengths of Spiral



38 Analysis

2.5.1.5 Comparing to the main points of failure

How these four methodologies hold up against the most common points of failure
presented in section 2.3 will now be discussed. XP and, to a lesser extend, Scrum
can have trouble with A(1) and A(2), since many businesses is more traditionally
structured. However, both of them focus on counteracting B(4), C(1), C(2) and
C(3). Scrum also put emphasis on B(2) and B(6), making it a very strong
candidate against the main points of failure. XP, on the other hand, goes a long
way to improve B(5).

Waterfall have trouble with B(2), C(1),C(2) and C(3). If any unexpected change
occur Waterfall can easily have trouble with B(6), and the lack of implemen-
tation focus can result in troubles with B(5). The Spiral Model excels at B(1)
for obvious reasons, and it's milestones and invariants does good work on B(2),
B(3), B(4), C(1), C(2), C(3). The Spiral Model again looks like a very promis-
ing methodology were most issues are handled with no obvious downside, but
the main problem of the Spiral Model is still the cost associated with risk man-
agement.

2.5.2 Team and project properties

In this section I will present easily identi�able properties of both project and
team, and how each methodology relates to those. Each methodology assigns
each property a degree of applicability, between 1 (do not use) and 5 (highly
recommended to use). This is done so that a new pick-and-chose framework,
which can be optimized for a concrete project, and a solid core, can be designed
in the following chapter. The properties are grouped in two categories; project
types (safety critical, time to market, etc.) and team types (size, experience,
etc.) - and the reason for the score in each property are identi�ed. As mentioned,
the properties are selected because they are easily identi�able, so that the right
choices can be made without loss of time. The following subsections are based on
the same sources as those listed for their respective methodologies in section 2.4.
If these scores should be used for choosing a methodology, they would need to
be weighted and then the methodology maximizing the scores should be chosen
(given that the required knowledge / experience is present) and not considered
without the descriptions, since that could lead to misunderstandings (see the
note on XP and stable requirements for instance).



2.5 The chosen methodologies 39

2.5.2.1 Team properties

Table 2.5 shows the degree of applicability or bene�t for each team property
which is considered. What each property means, and any notes on regarding
the property and a methodology, is explained in the following paragraphs.

Waterfall XP Scrum Spiral

Experienced 4 5 4 5

Inexperienced 3 1 2 1

Tiny (1-3) 2 4 1 1

Small (4-8) 2 5 5 1

Medium (9-14) 4 5 5 4

Large (15+) 5 3 4 5

Table 2.5: The bene�t or degree of applicability for each methodology and
team property

Experience This point covers both experience and inexperience in develop-
ing and other expertise, such as Risk Analysis for Spiral or the single Scrum
Master for Scrum. Even though Waterfall certainly bene�ts from having spe-
cialists perform the di�erent activities (requirement engineering, architecting,
etc.), these are not as vital as having experience in XP for an XP project, where
evolutionary design and TDD can lead to disaster if not handled carefully.

Size The given team sizes are not set in stone, but merely an indication. Scrum
as a management methodology does not make much sense to use in a tiny team,
since management is not as necessary with such as small team. For Spiral, you
need at the very least one risk analyst and preferable more, and thus a team
need a certain size to be viable. XP is often said to be only viable for small to
medium sized teams, which was true in the beginning, but according to Beck
& Andres [4] it has been proven to work in large teams, but smaller team sizes
are still preferred. The concept of "Scrum of Scrums" helps with using Scrum
in large teams.



40 Analysis

2.5.2.2 Project properties

Table 2.6 shows the degree of applicability or bene�t for each project property
which is considered. What each property means, and any notes on regarding
the property and a methodology, is explained in the following paragraphs.

Waterfall XP Scrum Spiral

Documentation required 4 3 3 5

Testing required 1 5 3 4

Time-to-market 1 5 5 3

On-site customer 1 5 5 2

No on-site customer 5 1 3 5

Stable requirements 5 2 4 4

Unstable Requirements 1 5 4 3

High risk 2 2 2 5

Low risk 5 5 5 1

Maintenance requried 2 5 3 2

Small budget 2 4 4 1

Table 2.6: The bene�t or degree of applicability for each methodology and
project property

Documentation required This point covers compliance to a standard, and
the more general case of documentation as proof that the team knows what it
is doing, which is a point that can be required by the customer. The reason XP
and Scrum does not receive a lower degree of applicability is thanks to Agile
Modelling, which would treat these documents as any other work item. They
still receive a lower score than Waterfall and Spiral since these have some tried
and tested document structures embedded. Due to the risk analysis aspect of
Spiral, it should produce higher quality documentation.

Testing required This point is important for safety-critical projects, such
as the nuclear plant example from Spiral. Scrum achieves it's score by being
iterative and allowing customers to test the system. This is of course not as
structured and formal as automated testing in XP, which is why XP achieves



2.5 The chosen methodologies 41

the highest. Spiral achieves it's rank by prioritizing testing in such as project,
and by carefully analysing the risks to know where to focus it's e�orts. Waterfall
does include testing, but does so in the end of the process, and delays early might
result in reduction of the testing phase, and is otherwise not known for solid
testing.

Time-to-market In some businesses quick development is key, and this point
covers this. Both Scrum and XP focuses on short iterations and providing a
viable product after each iteration. This makes them ideal for projects where
speed is of the essence, since a product could be developed very quickly, and then
if more time was available development could continue. If the customer then
abruptly decides that it is time to �nish the product, the system is always in a
deployable state and ready to go. Spiral will adapt to the speed requirement,
but the risk analysis and milestones will still make it less than ideal. The very
rigid is structure of Waterfall makes it appeal very little to this kind of project.

On-site customer This point covers both on-site customer and knowledge-
able customer representative. XP is very dependent on the on-site customer.
Scrum also needs either an on-site customer or knowledgeable customer repre-
sentative for functioning optimally. However, with external software developers
the role Product Owner is often �lled by the external party. This is not ideal,
but in practice has been found to work, as long as the Product Owner under-
stands the customer, the business and the market well enough. This can be
gained by having ongoing communication with the actual customer. Waterfall
mainly uses the customer up-front when doing requirements, while spiral have a
bit more ongoing communication with the customer due to it's milestones. Nei-
ther is really hurt by not having an on-site customer, and they do not bene�t
very much from it either.

Requirements Waterfall is very ill-suited for unstable requirements, and ben-
e�ts greatly from stable requirements. While XP do not really bene�t from
stable requirements, it is important to note that the low score re�ects just that,
it does not gain anything. It should not be understood as a project with stable
requirements should never do XP. Scrum is easily applicable on projects with
unstable requirements but it's more structured nature compared to XP's "or-
derly chaos" makes it a bit less capable than XP. Scrum does in fact gain some
bene�t from having stable requirements since the Product Owner then has less
work to do. Spiral handles requirements better than Waterfall but worse than
Scrum and XP, since it does rely on it's milestones but it's iterative nature helps
improving it compared to Waterfall.



42 Analysis

Risk This point covers not just the risk of rewriting code and documents
when requirements change, but also more high level risks as those presented
with the Spiral model, such as committing to an inappropriate component or
architecture. The only really suitable methodology for high risk projects are
the Spiral model. The other methodologies would need something to negate the
risk, such as high experience in market or platform, to make sure that a high
risk project would be feasible undertaken. On the other hand, low risk projects
are very much suited for Waterfall, XP and Scrum, but should Spiral due to it's
risk driven nature.

Maintenance This point is rather general since it covers both the quality of
the code base (the chance that an unknown bug lurks deep within), how easily
the system can be changed by an outsider, and how easy it is for outsiders to
understand the actual implementation. Agile is empirically shown [33, 2] to
produce code of higher quality, having automated testing with a large coverage,
and having self-documenting code. These are all very strong points for main-
tainability since automated testing ensures that no part of the system is broken
by doing changes elsewhere. Furthermore, the code should be easily readable by
itself and the system metaphor, instead of having to compare possibly complex
code with huge documents and diagrams.
Scrum, being an agile approach, should produce code of high quality, but it does
not mandate any of the extra practices of XP. This does not mean that they
could not be done within the Scrum framework, but their are not mandatory
by default.
Waterfall and Spiral produces documentation which could help with understand-
ing the system before making any changes, but this is by no means an guarantee
since the documentation might be as complex to go through as the code base,
and changing requirements might render some of the documentation outdated
or straight up wrong.

Small budget None of the methodologies can be considered ideal for small
budget projects. The focus on short iterations providing working, deployable
software, makes XP and Scrum better, but they both require expertise that
probably is not cheap to acquire. The documentation heavy Waterfall model
contains a lot of work which does not directly provide value to the customer
The expensive risk analysis of Spiral makes it very much unsuitable for small
budget projects.



2.6 Conclusion 43

2.5.3 Tools and practices

This section will give an overview of the tools and practices which will be con-
sidered as the building blocks of the pick-and-choose framework presented in
the next chapter. I will �rst present the tools and practices from the four main
methodologies in Table 2.7, and then brie�y touch upon other tools.

Waterfall XP Scrum Spiral

Use case User Stories User Stories Invariant 1-6

Requirements Speci�cation Acceptance test Acceptance test LCA milestone

Design Description CRC cards Goal commitment LCO milestone

Modelling frameworks TDD Sprint Review IOC milestone

Automated testing Retrospective Risk analysis

Continuous integration Daily Scrum

Pair Programming

Code Review

Collective Ownership

Daily standup

Self-documenting code

Metaphor

Simple Design

Table 2.7: The tools, concepts and practices, ordered by their originating
methodologies

Even though modelling frameworks such as the UML is not exclusive to Wa-
terfall, it is more frequently used there than in the other methodologies. User
stories and Acceptance tests appear both in XP and Scrum, since both method-
ologies apply it.

Except the tools listed in Table 2.7, there is also Kanban and Agile Modelling.
These are both applicable on iterative methodologies, and helps some of the
troubles these might face such as, lack of understanding from organisation and
executives, documentation, and gives a nice and easy to use visual guide.

2.6 Conclusion

Many software development methodologies have been developed over the years,
and some of them have been presented in this chapter, along with the overall
software life cycle. A subset of these methodologies have been further analysed



44 Analysis

for their strengths and where they are challenged. A list of common causes for
failures in software development has been identi�ed and presented, and how the
subset of methodologies hold up against the list has been analysed. The tools
and practices used by the chosen methodologies have also been listed, making it
easier to design a new framework using these as components. Finally, some gen-
eral team and project properties are identi�ed, and how each methodology work
with them is analysed. This section has all the information needed to proceed
in the next chapter to design a adaptive framework for software development,
where a solid core is provided along with a toolbox with components that can
enhance the core when certain properties are present in the team or project.



Chapter 3

Design

In this chapter I will design a framework for software development. The frame-
work will have a solid core which consist of a proven methodology, with some
components added to strengthening the methodology where appropriate. Along
with the core of the framework I will supply a toolbox of additional components,
categorized in packages, which will allow the team to adapt the core to their
speci�c needs, be it customer or team dependent. The framework will also con-
tain ways to transition to the framework, which is also applicable for other agile
methodologies. As mention in subsection 2.4.3, it has become common prac-
tice to use systems for Continuous Integration, such as svn or git, so applying
Continuous Integration is taken for granted during this chapter, as most people
already do this, whether they know it or not.

3.1 Selecting a starting point

Selecting the core for the framework is obviously important, and the decision
is based on several factors presented in chapter 2. I have chosen Scrum as the
core for the framework, and the reasoning will be presented in the following.

First of all, Scrum is already widely used and accepted (55% of the respondents
of the State of Agile survey [33]) making it a familiar sight to many. It does not



46 Design

prescribe any engineering practices, focusing solely on the management-side of
software development. This makes Scrum easily extendible without causing con-
�icts with established rules or norms when it comes to development. Scrum also
handles many of the most common causes for failure in software development
identi�ed in section 2.3 , replicated here.

A External issues

(1) Outside pressure (Commercial, rivals, �rst-to-market, organizational)

(2) Lack of support from executives and/or organization

B Internal & Validation issues

(1) Insu�cient risk management

(2) Poor status reporting

(3) Use of immature or unsupported technologies

(4) Team not able to handle the complexity of the project

(5) Bad development practices

(6) Poor resource management and estimates

C Veri�cation issues

(1) Lack of customer involvement

(2) Unspoken, unknown or unrealistic project goals and requirements

(3) Poor, or lack of communication between all parties, including devel-
opers, project managers and customers

The issues which Scrum takes care of are B(2), B(4), B(6), C(1), C(2) and
C(3), leaving us to focus on the remaining �ve issues. A(1) and A(2) deals
with external issues, and while these can be mitigated to some degree, the
focus will be on the other three. In subsection 2.5.2 it is clear that Scrum
is generally a strong choice for most properties, making it an ideal starting
point, where practices from other methodologies might be applied to improve
it against properties where it does not scores among the top. Finally, Scrum
does not have any inherent weaknesses, as seen in Table 2.3, besides the team
lacking experience. Granting experience in Scrum is outside the scope of this
framework, but industry experience and / or becoming a certi�ed Scrum Master
will go a long way.



3.2 Strengthening the core 47

3.2 Strengthening the core

In this section I will focus on improving the core of the framework, so that the
core in itself provides some solid advantages during all development activities.
Some weak points are pointed out in section 3.1 which are important to improve
upon, but other areas that could be improved will be identi�ed here as well.
Only if an activity or method provides signi�cant advantage and is generally
applicable will it be added to the core, otherwise it will be an optional component
that can be added from the toolbox.

3.2.1 Guarding against the common points of failure

From the list of common issues in software development in section 2.3, the
following points are not su�ciently handled by Scrum; A(1), A(2), B(1), B(3),
B(5).

As mentioned before, A(1) and A(2) deal with external factors, and are not
easily countered by a development methodology. However, the commitment
focus of Scrum �ts neatly into a more traditional company structure, which
should help a bit. A practice that is well known by most managers and exec-
utives, and not expensive for a development team to implement, is Kanban as
described in subsection 2.4.6. It is an established lean practice which have been
around for decades and thus should appeal managers and executives, signalling
that the team is working in a lean and e�cient way. It also gives these two
stakeholders the option of easily keeping tabs on the project without interfering
with development, again something that might be needed in a more traditional
control-and-command company structure. Furthermore, Kanban will prove to
be a good way of transitioning to an agile approach, as will be described in
section 3.5.

B(1) and B(3), while de�nitely important, are best handled by components in
the toolbox since these are often not relevant on smaller projects or project
types which the team is experienced in completing, and is expensive to guard
against.

While B(4) is somewhat helped by Scrum's management structure of dividing
work items into small tasks, and the additional focus provided by the small,
time-boxed sprints, this is de�nitely a point that could still be improved, while
also improving B(5). A key practice in reducing complexity and improving
code in XP is Test Driven Development. Applying TDD to the core of the
framework might seem to go against the previously stated "... and is generally



48 Design

applicable". Simple projects or projects with a focus on time-to-market do
not seem to be suitable targets for the additional work of TDD. However, XP
practitioners argue that in the long run TDD actually is a net gain in time
spent, since developers will spend less time on backtracking, changing, and
debugging code. And even for simple projects, there will be parts of the system
which are more complex, critical and / or risky. These parts would then be
developed using TDD, while the rest could be developed without if the project
was simple enough. So, the core will include TDD, but not mandate TDD
throughout the system. Instead, the most complex, critical and / or risky
components of the code should be developed with TDD. As the complexity
of a project increases, the amount of components developed with TDD should
increase as well. To further strengthen both B(4) and B(5), collective ownership
and discussion of code is also encouraged, along with coding standards to make
the code easily readable. Collective ownership can be accomplished by Moving
People Around [35] and by simply discussing di�erent technical solutions during
or after the Daily Scrum.

Speci�cally improving B(5) will be done by implementing some practices from
XP. Do note that the entire XP methodology is not part of the core, and Fowler
states [16] that using evolutionary design without �attening the change curve,
which is done by implementing a large majority of the XP practices, is risky
and not recommended. The core contains TDD, which goes a long way, but
something more is needed to guide design. Using CRC Cards to understand
how the system should work, and documenting it with diagrams, seems a good
solution, that makes it possible to understand and design complex systems, and
avoiding unsupported evolutionary design. For this we draw upon some core
principles of Agile Modelling, "Depict Models Simply", "Use the Simplest Tools"
og "Discard Temporary Models". DMS states that you should only model the
necessary parts of the system for what you are trying to tell with the diagram.
Do not model the engine if all you want to tell is that the car can move forward.
UST advocates that there is no reason to use a complex UML designer if what
you want to model can easily be made on a whiteboard as a sketch. DTM tells
that developers should not be afraid to model just so that they can learn to
understand the system, and then throw away the model afterwards. In other
words, do not spend hours on perfecting a huge diagram just so that you can
understand the component and then never look at it again. Rather make a quick
temporary model, learn what you need from it, and then discard it.

3.2.2 Improving the scores

Taking a look at the scores of Scrum from Table 2.5 and Table 2.6 reveals the
following properties with a score below 4, which I will look to improve as part



3.2 Strengthening the core 49

of the core:

• Inexperience. For scrum this mainly focuses on Scrum Master and, as
stated previously, this is outside the scope of the framework.

• Tiny. For a team of 2 or 3 it might be too time consuming to spend
large amounts of time discussing code, and for a "team" of 1 it is even
impossible. This might result in a system of lesser quality containing more
bugs. For these reasons TDD is even more important for tiny teams with
1-3 members, and applying TDD should improve this score.

• Documentation required. This will be improved by applying agile
modelling.

• Testing required. This will be improved by using TDD.

• No on-site customer. More on this below.

• High risk. This will be somewhat improved by TDD, but the real gain
will come from the toolbox, so that it is only applied when deemed neces-
sary.

• Maintenance required. Implementing TDD and easily readable code
will bring this up to par with Extreme Programming.

The big risk of using Scrum, and Extreme Programming for that matter, is if
the customer can not be on-site to support the development e�orts. While it
will de�nitely be preferable if the customer can be on-site, an alternative is now
presented in the form a speci�c interview process. This interview will take the
form of a process of gathering information and reviewing it with the customer to
gain enough knowledge to act as product owner, and is presented in Table 3.1.
While a customer interview in the beginning of the Scrum process is not unusual,
this is a more structured and extended version.



50 Design

1) Create CRC cards in collaboration with the customer. These should not be
created to necessarily simulate code, but rather to give an understanding
of the objects of the system form the customer's point of view, and how
they interact.

2) Have the customer show you some of the key interactions of the system
using the CRC cards.

3) Create User stories with the customer as normally in Scrum.

4) Review the user stories by replaying the story using the CRC cards to
make sure that it is correctly recorded.

5) Optional. If a story is especially complex or important to the customer,
consider creating a use case.

6) Create acceptance tests for each story, to make sure that the success cri-
teria of a user story aligns with the customer's wishes.

7) Review the acceptance tests in combination with the user stories.

Table 3.1: The process for interviewing a customer to gain enough valuable
insight to act as a product owner

3.2.3 The �nal core

Given this information the core will work as illustrated in Figure 3.1, which
is an extension of Scrum. First an interview is held with the customer as is
normal in Scrum, but this is extended with activities to further imprint the
knowledge of the customer on the Product Owner. During this interview, the
CRC cards are created with the customer using his business terminology �rst.
Then these are used to illustrate key interactions in the system, and these stories
are recorded. If they are complex or especially important, a use case is created as
well. Acceptance tests are created for each story to determine when the task can
be considered complete. This is all then reviewed with the customer to detect
if any misunderstandings have happened, or some inconsistency is present.



3.3 Pick-and-Choose toolbox 51

Figure 3.1: The core of the framework which is built upon Scrum

The user stories and their acceptance tests created during the interview will
form the Product Backlog. During Sprint Planning, the most important of
these items are included in the Sprint Backlog. Each workday then starts o�
with the Daily Scrum, where today's commitments are announced along with
progress from yesterdays commitments. Problems are brought up as well, but
their solution is discussed among the relevant developers afterwards. This along
with changing tasks promotes collective ownership. When a task has been given,
the developer will talk to the Product Owner to understand the task properly,
and an architect is possibly consulted and design is discussed with some simply,
agile models. When coding starts, some agreed upon standards are followed
when using Test Driven Development. As the day progresses, the Kanban board
is updated so that the entire team, managements and other stakeholders have
easy access to the status of the project.

3.3 Pick-and-Choose toolbox

In this section, the toolbox will be presented. It will contain a mapping from
easily identi�able properties to possible ways to enhance the core in regards to
the speci�c property. The toolbox could easily be extended by simply adding
another such mapping if a practitioner of the framework found an unidenti�ed
issue and it's solution. It is not expected that this toolbox will cover every
possible property or solution, but it will enhance the core when it comes to the
properties where the core is performing below expectation. Furthermore, this



52 Design

section will present guidelines on how other properties and their solutions could
be found, documented and added to the toolbox. The following properties have
been chosen as the focus of the current iteration of the toolbox; Documentation
required, Testing required, High-risk, Small budget, Tiny team, and Large team.

3.3.1 Extending the toolbox

When extending the toolbox, the �rst step is to identify which property is
causing problems. These properties should be as simple and easily identi�able
as possible, so that a team working on a new project can see right away if this
property is present in their project. Other property categories could be added,
such as organization or market. Whenever possible, break down the property
into smaller, more speci�c pieces to allow for more customization when it comes
to the solution and having a highly targeted solution.

The next step is �nding a solution. Where the solution �ts into the core needs
to be pointed out so that it can be correctly applied. If the solution has any
synergies these should be mentioned as well, such as TDD, Merciless Refactoring
and Continuously Integration makes evolutionary design a possibility [16]. If the
proposed solution has any opposition it should be mentioned as well, such as the
example with Risk Analysis as a solution does not go well with the properties
Small Budget and Time-to-Market. Even if a solution is not discovered along
with the property, it should still be added so that a solution might be found in
the future, and other team can be aware of the problem.

In Table 3.2 a form is proposed to represent elements in the toolbox.

Property name

Property description

Solution description

Solution synergies

Solution opposition

Placement in the core

Table 3.2: The form to be �lled out, so that a property-solution pair can be
added to the toolbox



3.3 Pick-and-Choose toolbox 53

3.3.2 The toolbox

Using the form in Table 3.2, the focus properties that are part of the initial
toolbox will be presented on the following pages. Each of the tables Table 3.3
through Table 3.8 represent a toolbox element for a speci�c property.

In the case where the solutions of two properties con�ict with each other, such
as 'Small budget' and 'Large team', the developers will have to weight the con-
�icting properties against each other to determine which of them is the most
important. This would then result in the solution of the most important prop-
erty to be used.

Property name High risk

Property description High risk projects are those that contain mul-
tiple components the team is not experienced
with developing. A team specializing in creat-
ing banking systems would not consider a new
banking project as high risk, but other teams
might.

Solution description Apply both LCO, LCA, IOC and the Invariants
of Spiral. These are the corner stones of the
Spiral model, which is specialized for high risk.

Solution synergies Milestones will also help with the Documenta-
tion required property.

Solution opposition The additional work required by risk analysis for
milestones and invariants makes this unsuitable
for the Small Budget and Time-to-Market prop-
erties.

Placement in core model LCO after the Product Backlog has been cre-
ated, but before �rst sprint. LCA will be cre-
ated iteratively before each sprint as part of the
sprint planning. IOC during the Retrospective

Table 3.3: The toolbox element describing the property High risk, and it's
solution.



54 Design

Property name Documentation required

Property description Documentation might be required by a customer
or the organization, either as part of some stan-
dard compliance, or as a proof that the develop-
ment team is on the right track.

Solution description Create models e�ciently and just in time, as per
Agile Modeling. For non-diagram documenta-
tion use the milestones of Spiral, LCO, LCA,
and IOC.

Solution synergies Milestones will also help with the High risk prop-
erty.

Solution opposition Creating additional documentation will slow
down the process and thus will not work well
with Time-to-Market and Small Budget proper-
ties.

Placement in core model Modeling before coding. LCO after the Prod-
uct Backlog has been created, but before �rst
sprint. LCA will be created iteratively before
each sprint as part of the sprint planning. IOC
during Retrospective demo.

Table 3.4: The toolbox element describing the property Documentation re-
quired, and it's solution.

Property name Testing required

Property description An additional focus might be placed on testing
for very critical systems, or systems with very
little fault tolerance.

Solution description Do full TDD. Use both Pair Programming and
Code Review to ensure that as many mistakes
as possible are found. Apply to both the code
AND the test suite.

Solution synergies None

Solution opposition Using both Pair Programming and Code Review,
along with full TDD, will slow down the process
and thus will not work well with Time-to-Market
and Small Budget properties.

Placement in core model During coding in the work day loop.

Table 3.5: The toolbox element describing the property Testing required, and
it's solution.



3.3 Pick-and-Choose toolbox 55

Property name Small budget

Property description When the project is running on a tight budget,
there is no room for mistakes, so getting it right
the �rst time is important.

Solution description Make sure the initial interview is very thorough,
and if possible have multiple customer represen-
tives review the result of the interview. Be very
critical when to apply TDD, skipping as much
as possible while still making sure the important
parts are done.

Solution synergies If requirements are known to be very stable, us-
ing this approach might also be bene�cial, since
getting it right the �rst time is plausible.

Solution opposition Spending additional time on the initial interview
might not be worth it if requirements are unsta-
ble.

Placement in core model The initial interview and in the work day loop
during development.

Table 3.6: The toolbox element describing the property Small budget, and it's
solution.



56 Design

Property name Tiny team

Property description When a team have 1-3 members.

Solution description Having very few (or no) team members might
make it hard, or impossible, to discuss the sys-
tem, speci�c issues and review code. To com-
bat this, TDD should be applied throughout the
project, as well as an added focus on the inter-
view, to ensure quality and avoiding costly re-
work. Furthermore there needs to be some role
overlap due to the limited team size.

Solution synergies None

Solution opposition While these practices could be applied in most
cases, unstable requirements often make this
added focus wasted.

Placement in core model Throughout the model, especially during the
work day loop.

Table 3.7: The toolbox element describing the property Tiny team, and it's
solution.

Property name Large team

Property description When the team working on the project is of 15
or more. A team might even bene�t from this
when at sizes of around 10-12.

Solution description Apply Scrum of Scrums as described by Mike
Cohen from Scrum Alliance [11].

Solution synergies If a project could be divided into several fairly
de-coupled subproject, it could provide addi-
tional bene�t to split the team and apply Scrum
of Scrum as well.

Solution opposition Additional management should only be applied
when needed, otherwise it just creates an addi-
tional layer of meetings.

Placement in core model After the daily Scrum meeting, a Scrum of
Scrum meeting would be inserted. This might
not have to be held daily, but 2-3 times a week
is su�cient.

Table 3.8: The toolbox element describing the property Large team, and it's
solution.



3.4 The methodology 57

3.4 The methodology

3.4.1 My Contributions

The developed methodology contains many existing practices, and a new prac-
tices inspired by an existing one. The new practice is the way CRC Cards are
used during the initial customer interview. Normally, CRC cards are used by the
developers to design the system, with each card representing an object [35]. The
idea of using the cards to design the system is retained, but in this methodology
it is used partly as a design guideline, but mostly as a way for the developers
and Product Owner to gain a thorough understanding of the customer's vision
of the system, before development starts. The reason for using this practices is
to help answer the validation question of "Are we building the right product?".

How the rest of the practices have been combined is another contribution. What
these practices does for their native methodologies have been analysed and this
knowledge has been used to select how to strengthen Scrum to make it more
capable of producing products which su�cient answers to the questions of Val-
idation and Veri�cation.

This methodology is based on Scrum with practices from many di�erent method-
ologies, and as such some similarities are present. What makes this process
distinct from other processes is it very intentional focus on both Validation, Ver-
i�cation and delivering on time and budget. This is achieved by cherry-picking
practices from many methodologies, making sure they can function together, and
presenting a framework for their use. Another problem that this methodology
aims to solve is that many methodologies are not applicable in some circum-
stances. To �x this, the framework of the developed methodology contains a
toolbox, such that each time it is used, it can be adapted to that speci�c project.

3.4.2 Using the methodology

To use this methodology, one must �rst determine the properties of the team
and project, using the elements in the toolbox. Once this has been decided, any
con�icts between the solution of these properties should be resolved to determine
which of the con�icting properties are the most important. Now the framework
will start to diverge depending on which elements of the toolbox are used, but
generally the customer interview is held �rst. Here the customer's vision of
the project and it's interactions are described using CRC cards. High-level
user stories are then created, and the most complex or important user stories



58 Design

are created as a use case as well. Finally, for each user story an acceptance
test is created, de�ning the success criteria of each story. Then every item is
reviewed by attendants of the meeting, and the Product Owner makes sure that
his understanding of the system is aligned with that of the customer. The user
stories, use cases, and acceptance tests form the product backlog as known from
Scrum.

Then the �rst sprint starts and, as every other sprint, a sprint planning meeting
is held. During the meeting, elements of the product backlog are selected for the
upcoming sprint, and these are further de�ned by the developers so that they
are ready to be developed. During the sprint, di�erent practices are applied,
again depending on which elements from the toolbox are used. Generally, each
day starts with the daily scrum, followed by any clari�cation that the developer
might need from the Product Owner. The Product Owner should have excellent
understanding of the system due to the initial interview. Then development of
the story starts, using mainly Test Driven Development. Agile Modelling might
be applied if the story is non-trivial, have a lot of interactions, or is especially
important. A Kanban board is used to track the progress of each story, beginning
at 'To do' and moving to 'Doing'. Once a story is completed it could be move
to an optional queue called 'Testing' or 'Needs review', otherwise it is moved
directly 'Done'. Remember to use a system such as svn or git for Continuous
Integration, and be sure to synchronise often. Finally it is important that some
agreed upon coding standards are used by the entire team, so that any developer
will be able to easily understand the code written by any other developer. This
will help with the last important practices, Collective Ownership, along with
making sure that developers continuously work within di�erent areas of the
system.

For a visual representation, the reader is referred to Figure 3.1. For the elements
of the toolbox, the reader is referred to the tables in subsection 3.3.2.

3.5 Transitioning

As mentioned in section 2.2, transitioning from traditional development method-
ologies to an agile methodology such as this can feel like a big jump and be met
with resistance. This is also con�rmed by State of Agile [33], where respon-
dents cited "Inability to change organization culture" and "General resistance
to change", as the two main barriers to adopting an agile approach. A solu-
tion to this is presented by Sahota [32], in which Kanban is used to ease the
transition; "The gateway drug theory states that softer drugs (Kanban) can lead
to harder drugs (Scrum, XP) · · · With Kanban, there are documented cases



3.5 Transitioning 59

of teams spontaneously collaborating, learning, and noticing/solving problems.
This has been my experience as well and would con�rm the hypothesis of Kanban
as a Trojan horse (containing Agile on the inside)." - Sahota [32]. This section
aim to help with transitioning to this methodology, or any agile methodology
in general, and is based mainly on the work of Sahota [32].

According to Sahota, it is important to identify the culture of the company
�rst. If the culture seems ripe for agile, the methodology can be gradually
implemented without much issue. The real issue is if company has a control
culture, which is at odds with many core agile values. To work around this, it
is important to not try a radical, over-night overhaul of the culture, but instead
focus on doing it very incrementally by "· · · identify practices that support the
dominant culture of the company or group rather than to try and change it." -
Sahota [32]. This is where Kanban comes in. Kanban is a very control focused
process, which would align with a traditional control-and-command company
structure. Interestingly enough, Kanban is also by many considered an agile
practice, which seems at odds with it's control focus. So by following both
advices of Sahota, using kanban as a trojan horse and supporting the dominant
culture, a slow transformation to agile can begin, even in a hostile environment.

The next step would be to show agile solutions to existing problems, and here
Sahota refers to Elssamadisy's Agile Adoption Patterns: A Roadmap to Organi-
zational Success [14]. The approach chosen here is that of pain-driven adoption.
This approach aims to identify problems on di�erent levels, such as business
(features are not used) or process (lack of noticeable progress), and then pro-
vide a set of agile practices which could help solving the problem. A good
example of this is given by Sahota:

Problem:
Hardening phase is needed at the end of the release

cycle.

Applicable Practices:
Automated developer tests, continuous integration,

functional tests, done state, and release often.

So by �rst introducing the use of Kanban, making the organization comfortable
with it, and then by �nding the issues and presenting solutions to them, can agile
slowly be introduced into an otherwise resistant company using a traditional
control-and-command structure. Sahota suggests that the solutions should be
presented as out-of-the-box components that can be used, instead of parts of an
agile framework, since this could make the management worried that they are
loosing control of the process.

An additional bene�t of having Kanban as a part of the core of this framework,



60 Design

is that it is a familiar sight, which both team, management and executives
recognize from the transitioning phase. The solutions suggested during the
pain-driven adoption should, if possible, correspond to the practices presented
in the core or the toolbox, for the same reason.

3.6 Conclusion

In this chapter a framework for software development has been designed. Scrum
was chosen as the core of the framework. Using the knowledge gained from the
literature study in chapter 2, additional practices was added to Scrum, forming
the foundation of the framework. These practices were chosen for their general
applicability. Then a method to extend the framework was presented, in the
form of components in a toolbox. A few of these components were created to
�x problems speci�c to some projects or teams, but often coming with enough
drawbacks to warrant their exclusion form the core. Finally, a process to ease
the transition into the framework, or any other agile methodology in general,
is presented. It uses Kanban followed by pain-driven adoption to smoothen the
transition from a traditional command-and-control company structure.



Chapter 4

Implementation

In this chapter I will �rst give a high level description and analysis of the case, in
which the developed methodology has been tested. I will then go on to describe
how the testing proceeded to allow for easy reproduction, what the focus was
and what limitation is present in this test case. In the same section, the results
of the test are also presented. Following that, I will present the feedback from
the customer, along with a discussion of the feedback and testing process. The
methodology will also be discussed, after having tried it in action, so that it
may be improved in the future. Finally a project lead and manager of IT Minds
has been asked to evaluate the methodology and provide some feedback, which
is presented and analysed in section 4.4.

4.1 Case analysis

For testing the methodology designed in chapter 3, a test case is needed. For
optimal testing it should be a case of reasonable size and complexity but due
to the nature of this project, being a one man team with limited time for de-
velopment, this could not be achieved. Instead, the case would be of a smaller
size and because the the owner of the case, referred to as the customer, had
limited time only a subset of the case would be treated in-depth according to



62 Implementation

the methodology. The chosen case was provided by IT Minds, a development
and consulting company based in Aarhus and Copenhagen with more than 100
employees, which provided development for the customer.

4.1.1 Description

The case is about developing an online service to help administrate fairs and
markets, but also provide services to multiple layers of customers. First o�,
it should allow organizers of fairs to easily have other people book stalls and
other accessories. Accessories could be chairs or tables, and is owned by the
organizer who rents it out. Stall owners use an interactive map of the fair
to book stall areas, which updates according to current bookings. Everything
related to bookings of stall areas and accessories are handled automatically by
the website, including payment, such that an organizer only needs to provide a
map for the fair and pricing details of the di�erent areas and accessories. Since
this service aims to ease the administrations of fairs, it is paramount that it is
easy to use.

Part of the service is also advertisement through social media, to attract both
stall owners and fair guests. Furthermore, fair guests should be able to search
for fairs �tting certain criteria such as geographical location, types, stalls, or
date.

4.1.2 Analysis

As described in subsection 4.1.1, there are multiple users of this service, each
of them dependent on each other. All of these users needs some kind of value
to want to use the service since it is a multisided platform[26]. This makes
it an interesting case to work on, since there are many important points that
each needs to provide value for a customer. The developed methodology is
intended to help developers provide value to their customers so in that aspect
this is a �tting case. The author is not �uent in front-end development, and
for this reason the parts of the case relating to front-end development, such as
the interactive map and easy to use interface has not been considered, only the
back-end system.



4.2 Testing the framework 63

The properties of the case, in regards to the methodology, are the following;

• Small budget

• Tiny team

Since this is a start-up project, the amount of funds available will be limited.
According to the toolbox element in Table 3.6, an added focus should be placed
on the interview to improve the chances that the developers get it right the
�rst time. The other part of the solution is to be critical on when to use Test
Driven Development, as resources will be sparse and a large test coverage on
trivial parts of the system might not be the best way to spend these resources.
The second property of the case relates to the team. The team consists of one
person and is thus unable to discuss any issues with other team members. To
combat this, the toolbox element in Table 3.7 suggests to use thorough Test
Driven Development to make sure that the system is as solid and robust as
possible. This is of course at odds with the advice of conservative Test Driven
Development usage from the Small budget property. In a case such as this, the
two properties will have to be weighted against each other to determine the level
of Test Driven Development that should be used. In this case the Tiny team
property was found to be the most dominant due to the nature of the service,
being a multisided platform. Alienating just one of the user groups due to bad
design pose a serious risk to the service, and the quality theoretically provided
by Test Driven Development thus takes precedence. Tiny team also advises
added focus on the interview which aligns with Small budget. So in this case,
the choice is to extent the core with an extended interview including use cases,
and full Test Driven Development.

The customer and author did not know each other before this project. The
customer had, however, had dealings with IT Minds before.

4.2 Testing the framework

Since the customer only had limited time to spare, the focus has been on testing
the interview part and how the results from this have translated into Test Driven
Development. What was developed was then judged by the customer in how it
holds up to his wishes and expectations. For the same reason, and since this
MSc project is focused on the theoretical work, only a few features have been
through the entire process. The features were selected by the customer as the
most critical for the service. Other parts of the service have been handled in



64 Implementation

the interview and will still be presented but they are incomplete. The reader
is reminded that the development part of the testing is solely back-end and no
User Interface was created.

4.2.1 The interview

The meeting with the customer was at the Copenhagen o�ce of IT Minds, since
a lot of space was needed to play out the key interactions of the system. The
customer was asked to explain his idea, and while doing that, the entities that
were mentioned were noted down on CRC cards. These entities could be viewed
as objects as well, but since everything was done in the customers business ter-
minology the word 'object' was not used. Once the initial explanation was done,
the CRC cards were updated with collaborators, and �nally with responsibili-
ties where it was appropriate. During this part of the interview, the customer
was asked both some practical questions and some critical questions about the
system. These helped shape the understanding of the system, and often led to
changes in the CRC layout, and possibly giving new perspectives or ideas to the
customer, who with the help of the CRC cards could see the issues raised.

This part of the interview resulted in the cards laid out according roughly to
their interaction with each other as shown in Figure 4.1. This session laid
the foundation of the rest of the interview, and was frequently referred to and
updated as the interview continued. Having a representation of the system at
hand that was easily changeable and understandable by both developer and
customer was a huge boon.



4.2 Testing the framework 65

Figure 4.1: The result of the CRC session of the interview.



66 Implementation

Once the CRC session was complete, the interview moved on to User Stories.
These took the form of simple sentences and were prioritized in order of impor-
tance by the customer from 1 to 6, with 1 as the most important.

• As an organizer I would like to

� create a fair. (Priority 1)

� avoid the trouble of administrating a fair. (Priority 2)

� o�er accessories for rent to stall bookers. (Priority 3)

� advertise my fair and stall areas to potential stall bookers. (Priority
4)

� advertise my fair to potential fair guests. (Priority 5)

• As a stall booker I would like to

� have an overview of stall area placements and price. (Priority 2)

� have precise control of the placement of my stall. (Priority 3)

� be able to rent accessories. (Priority 3)

� advertise my stall to potential fair guests. (Priority 5)

• As a fair guest I would like to

� have an overview of upcoming fairs. (Priority 6)

After the User Stories, time was running short and it was decided only to go
forward with a single User Story which was the most important - creating a
fair. Since this was a critical part of the system, and the development team was
tiny, a Use Case was drawn roughly following the UML standard. Getting all
the details just right according to the UML was not worth the time, and would
also have resulted in the customer waiting for a long time, thus the principles
of Agile Modelling were applied. A digital version of the use case is presented
in Figure 4.2 which is a replica of the original use case found in Appendix B.
As it is seen in the use case, two more features were actually part of the use
case as described by the customer, namely login and pro�le creation. This could
have been split into separate use cases, but the number of interactions was low
enough, that it played little role.

To create a fair you need to be logged in and have a pro�le. A pro�le consist of
a private part, containing the information the system needs for billing and such,
and a public part which is shown to stall bookers and fair guests. A pro�le is
created along with the user on the website. When an organizer is creating a
fair the system is silently creating a template based on that fair which contain



4.2 Testing the framework 67

Figure 4.2: Use case containing fair creation and it's requirements, logging in
and creating a pro�le



68 Implementation

all information except the date. The same organizer can then repeat the fair
on any number of other dates based on the template just by providing the new
dates. This process happens when the original fair is �rst created. However,
an organizer can also make a copy of an existing fair by getting the needed
information from the template.

Once the use case was created the acceptance tests were made, de�ning the
success criteria of the use case. Most of the acceptance tests were front-end
and UX based. Outlining the success criteria helped getting some additional
details about the system documented, such as what a page for a fair should
contain, and how a pro�le was created. Looking at the use case, one could think
that it was two separate actions to create �rst the private and then the public
pro�le, but the acceptance test clari�ed that it actually should be combined into
a single creation page. A cleaned up version of the acceptance tests can be seen
in Figure 4.3, while the original can be found in Appendix B.

Figure 4.3: Notes from the acceptance test session of the interview



4.2 Testing the framework 69

Once the acceptance test session was completed, every artefact created was
reviewed by the customer. Furthermore, the developer explained how he un-
derstood the information in each artefact to ensure that everything was aligned
with the customer's vision of the system. The main vehicle of the review was
the CRC cards. The workings of the system was replayed by the developer,
which referenced the other artefacts when relevant.

The interview took between 1.5 and 2 hours in total. Some time was spent
talking about the process and methodology which would not have been relevant,
had this not been a test. It would have been optimal if the customer had 1 to
2 hours more, since it would have allowed for most, if not all, of the system to
go through the entire process.

After the interview, the class diagram shown in Figure 4.4 was created based
mainly on the CRC session. This diagram is not meant as a representation of the
actual developed system, as it represents the system seen from the customer's
perspective. This provides some very solid guidelines for developing the actual
system, since the idea behind the system is clearly de�ned in a way a developer
understands, and yet no speci�c implementation details are enforced.



70 Implementation

Figure 4.4: The result of the CRC session turned into a diagram for develop-
ment purposes.

4.2.2 Development

The system was developed using Test Driven Development. As mentioned ear-
lier, only the parts of the system that went through the entire interview process
were developed, which of course resulted in an un�nished system. The develop-
ment itself was straight forward and was based on the diagram in Figure 4.4. It
provided an easy overview of how the di�erent components �t together, and the
tests were made on this basis. As mentioned earlier, the diagram in Figure 4.4
represents the system from the customer's point of view, and is thus not a de-
sign for the software system, but rather a guideline. The actual implementation
di�ers slightly from those given in the diagram, but the overall interactions and
structure remains the same. Most of the practices that the core of the framework
prescribes, such as Daily Scrum and collective ownership, are not very suitable



4.3 Case feedback and discussion 71

for one-man teams and thus was not used.

The test suite is divided into three subgroups; tests for login, tests for pro�le
creation, and tests for fair creation. The tests are developed using the NUnit
Test Adapter for Visual Studio 2012/2013. Since only the parts of the system
which have been through the entire interview process have been developed, there
is no current way to run the code. Rather, the tests should be run to show the
functionality. The idea is to have one test �le for each component, and each �le
then contains a collection of test cases, called a TestFixture in NUnit. These
TestFixtures then have several test cases which are named using the following
convention: action_input. A small example of a two test cases and the resulting
code can be found in Appendix C.

4.3 Case feedback and discussion

This section will present the feedback from the customer which was obtained
after the work was completed. The section will also contain an evaluation of
the methodology after having tried it in action, and a discussion of the feedback
from the customer.

4.3.1 Feedback from the customer

After development was completed the customer was asked to provide feedback
on the interview process, and evaluate if the developed test cases represented
the system he had in mind. The following questions were asked:

1. Did you feel that the developer received su�cient information to under-
stand the concept and develop the product through the interview process?

2. Did you feel that your project was in good hands following the interview?

3. Did you feel the time was well spent on the interview?

4. Would you consider using the interview process again in another project?

5. How would you compare the interview process to the start up of other
projects in your experience?

6. Did you feel that the CRC session provided

(a) high-level insight into the system for the developer?



72 Implementation

(b) high-level insight into the project for you as the project owner?

7. General feedback and suggestions?

Question 1 This question was asked to determine if there were some areas
of the project that were left untouched by the interview. The customer felt the
interview in the end got around the project. He felt the CRC session gave a
good, if a bit rough, overview of the system. It was good getting into the details
of fair creation during the use case and acceptance test portion of the interview.

Question 2 This question was asked to determine if the customer trusted
that the developer were well equipped to handle the project after the interview,
since trust is an important factor. The customer felt that especially the CRC
session provided him with a lot of trust in the developer. Some speci�c details
were not covered by the CRC session, such as dates.

Question 3 This question was asked to determine if the interview had re-
dundant elements. The customer felt that since the project was understood
by the developer the time was well spent. After the developed test cases had
been explained the customer noted that some front-end related subjects were
not fully managed, which resulted in some slight misunderstandings between
the developer and the customer.

Question 4 This question was asked to determine how the customer's overall
experience with the interview process had been. The customer was very positive
towards using the interview process again in another project. Having it proceed
in a very structured way very useful. It felt very suited for a product owner,
and for small development teams in a start-up companies.

Question 5 This question was asked to compare the interview process with
the early phases of other projects that the customer have had. The customer
said it would be "a huge advantage" and "obviously a better idea" to use this
interview process for the start up phase of development, compared to earlier
experiences. He also mentioned that the process was good for teams where new
people were coming in during development, since there was a lot of artefacts
that newcomers could use to get an idea of the overall project. The lack of such
artefacts have, in the customer's experience, resulted in wasted time when new
developers came to the project. Formally in Scrum and XP the only artefacts



4.3 Case feedback and discussion 73

created during initial planning is user stories, but these additional artefacts
seems to be a good compromise between only user stories and Big Design Up
Front of waterfall.

Question 6a This question was asked to to gather feedback speci�cally on the
CRC session, since this part is a new contribution. The customer felt that the
CRC session was a good tool to make the project more tangible, and provided
a good means of communication between the developer and customer.

Question 6b Same as 6a, but speci�cally if the session provided any value
for the customer. The customer felt that this process provided project owners
with a critical and practical view of their system, which helped reveal certain
details early on, instead of them being discovered during development.

Question 7 The customer liked that notes were taken and artefacts were
created, saying "making things more tangible are very important". He felt
that the customer did not need too many details of the hows and whys of the
interview process itself. A suggestion was made that a short follow-up meeting
was held a few days later to review the artefacts, and the developer should then
pitch the idea back to the customer to show his understanding. This would also
be an opportune time for any follow-up questions that might have arisen.

Test Cases The test cases for 'create fair' and 'login' were judged to be com-
pleted by the customer without any misunderstandings. The test cases for the
'create pro�le' had some misunderstandings mainly based around the front-end.
The test cases showed signs that a user for the website was created separately
from the pro�le, but that was not the intend of the customer. Since it is only or-
ganizers who have a user on the website, there is no reason to split the organizer
pro�le from the website user, and they are thus supposed to be combined.

4.3.2 Discussion

As mentioned earlier, the author found that the development practices, except
for Test Driven Development, was not very useful or even applicable for a one
man team. This points to a con�ict in the assumption that the core should be
applicable to any project and team. Thus a rede�nition of the core might be
needed, allowing elements of the core to be removed when certain properties are



74 Implementation

present. In that case the items in the toolbox should be given an additional �eld
which describes what elements in the core that should be removed. Allowing
the core to be modi�ed would open up for adding Code Review as a practice
of the core. This was originally excluded since it heavily con�icts with the
Tiny Team property. According to Wells [35], the practice of Pair Programming
increase code quality immensely, but it is a hard and di�cult skill to master.
However, code review is a lot more simple to learn, and as mentioned earlier,
pair programming can be seen as a form of continuously code review, so adding
the practice of Code Review to the core should improve code quality and thus
helps with the veri�cation aspects of development. Another improvement to the
core when it comes to the Tiny Team property is to take the Daily Scrum and
make it relevant for 1 man teams. This is very much a corner case and thus
will not be discussed, although it could be interesting to investigate further.
Another option instead of allowing core elements to be removed would be to
have multiple versions of the core, depending on team size. It would also solve
the problem of having practices not suited for tiny team in the core.

The feedback from the questions brought forth some good points to discuss as
well. Overall, the CRC session received positive feedback. It resulted in the
customer trusting the developer, and was a handy tool during the interview
to make the project more tangible and improved communication by providing
common grounds between developer and customer. The CRC session was mostly
focused on back-end, mainly as a result of time constraints in the thesis. It
would be good to have some tools akin to the CRC session but for front-end
uses, especially in a project like this. Something like wireframes, as described
by Klein [23], could be useful since their role is also to make a front-end design
more tangible and go through a rapid prototyping process, just as the CRC
session does for back-end. The class diagram which was constructed based on
the layout and interaction of the CRC cards also proved very useful in simplifying
implementation, so adding this as a recommendation in the core also seems like
a good choice. The interview process as a whole was also fairly well received.
As the CRC session, the rest of the interview could be improved by adding more
front-end focused tools and processes. The artefacts were well received as well,
so the core should de�nitely de�ne some guidelines on artefacts to help developer
conduct the interview in a structured way, instead of the spontaneously usage
that was the case in this interview. Finally, going through multiple loops of the
interview process was suggested. This seems well aligned with Scrum, and could
either be something done a few days after the initial interview, or something
being done continuously, for example after each sprint.

The author had a brief email conversation with a consultant from the Software
Improvement Group about their experiences when it comes to software quality
from di�erent methodologies and practices. The Software Improvement Group
is an international company that specializes in analysing and improving existing



4.3 Case feedback and discussion 75

software solutions. Here is an excerpt of the correspondence, written by Mark
Hissink Muller of SIG:

"You ask very interesting and good questions...! Please note that you
could probably set up a research programme with 3-5 PhD students
based on these. I believe you are shaping a MSc project?

Good software is typically delivered by small teams that know what
they are doing and have some Agile-like methodology, e.g. SCRUM
and put all kinds of good engineering practices in place. Measuring
(product) quality and acting iteratively on this during the process is
more important than the methodology itself. Which criteria are you
considering to compare and evaluate process/methodology success?
We've seen many teams that work according to e.g. CMMi level 5,
but still deliver poor product quality."

This raises two very good points. The �rst is taking an iterative approach to
both the product and the process itself. Evaluate your product and process
continuously and from that make improvements as necessary. Scrum already
has this in the form of the Retrospective and Review held after each sprint.
However, there are no clear guidelines on how to act on these, or even how to
evaluate both product and process in a structured manner. The second point is
what criteria is used for evaluating a methodology, which ties into the �rst point.
An example given in the excerpt is the Capability Maturity Model Integration,
CMMI [24], which appraises the process itself. This a process oriented approach
and, as stated in the excerpt, it does not guarantee that the product is not of
low quality. Instead the aim here will be to evaluate the process based on it's
ability to produce software:

• Of su�cient quality (su�cient in regards to it's application area. Qual-
ity as in maintainability, extendability, robustness, UX, performance, low
amounts of bugs, depending on it's area of application)

• On time and budget

• That produces real value for the customer.

Having a module of the framework that deals with ways to evaluate a product
according to these criteria would be very useful. As mentioned in the excerpt,
it is important that this process happens continuously throughout the lifespan
of the project, so improvements can be made before the product is released.
It would also be helpful if this evaluation process could be used to compare



76 Implementation

methodologies with each other, but the experience using any given methodology
would also have to be taken into consideration. Note that according to the
excerpt this is a large area of research, thus it is out of the scope of this project
to truly go into depth with it.

4.4 External evaluation of framework

A project lead and manager of IT Minds has been asked to evaluate the method-
ology and provide some feedback, which is presented and analysed in this section.
This was done to get some real life perspective on the developed methodology
and see how it holds up to the requirements of real life development. Like the
author suggested, the project lead suggested that some guidelines on artefacts
were included. He also suggested that some guidelines were presented when it
came to some of the more loosely de�ned practices like Coding Standards. Both
how to de�ne and manage these, and how to introduce them to developers.

New elements were also suggested for the toolbox based on experience of the
project lead. The Indecisive Customer element was suggested, which would
represent the case where the customer does not have a clear vision of his project,
a common case in start-up companies. The solution would be to go through
multiple loops of the interview process, preferably with di�erent combinations
of managers, leads, developers, and customer representatives if possible. The
project lead also suggested re�nements of the existing element for the High
risk property, which in his view had a misleading name. In it's current state
it refers to a team taking on a project which they are not experienced with or
lacking competence within the given �eld or technology. But high risk could also
refer to software security, like a payment system, or software robustness, like
a public transportation system. To handle this issue, the High Risk property
will be renamed to Project Type Inexperience and the two properties Robustness
Required and Security Required, shown in Table 4.1 and Table 4.2 respectively,
will be added to the toolbox.



4.4 External evaluation of framework 77

Property name Robustness required

Property description A project might have certain robustness re-
quirements such as high up-time and re-
liance, and an upper limit on response
times.

Solution description Apply thorough TDD and code review.
Also use the principles of Spiral Invariant
1, to ensure that the requirements are re-
alistic.

Solution synergies Works well with Testing required since
both solutions focuses on TDD and code
review.

Solution opposition The principles of Invariant 1 requires addi-
tional work, and thus it does not work well
with the Small budget property.

Placement in the core TDD and code review during development,
and Invariant 1 during the interview and
early stages of development.

Table 4.1: The toolbox element for the property 'Robustness required'

Property name Security required

Property description When the system are to handle sensitive
information.

Solution description Use proven security libraries instead of de-
veloping everything from the grounds up.
Heavy use of code reviews and systems
testing to �nd vulnerabilities. Find appro-
priate coding standards for high-security
projects.

Solution synergies Works well with Testing required since
both aim to eliminate issues and as such
there is some tools overlap.

Solution opposition The Small budget property does not work
well with a project doing extensive systems
testing, since this is often a manual process
and thus time consuming.

Placement in the core During development.

Table 4.2: The toolbox element for the property 'Security required'



78 Implementation

Overall, the project lead thought that the methodology looked promising, and
he was especially interested in the modular and adaptable approach, which he
thought was something that could be highly useful. He felt that a standardized
yet adaptable approach to development is much needed. This is especially true
for consulting and development companies, due to the large variance in project
types that they undertake.

4.5 Conclusion

The result of the testing and feedback gathered is that the methodology is well
received. However, more testing is de�nitely required before anything truly can
be said. The lack of time the customer was available to the author resulted in
a smaller than intended test.

Feedback from the customer and the project lead from IT Minds have resulted
in quite a few improvements and re�nements for the framework of the method-
ology. While not all of these have been implemented, su�cient information is
discussed and presented such that further work could be done to implement
these improvements. It was also con�rmed that there is a need for an adaptable
development process, and a more clear and structured way to gather informa-
tion and acquire understanding of the project. This methodology aims to ful�l
both of these needs.

The CRC session of the interview was key in ensuring the success of the interview
and allowing the developer to obtain the necessary understanding of the system.
This could possibly be considered as a stand-alone practice which could be
applied regardless of overall methodology. Combining it with wireframes, or
some other front-end related design tool, could be an interesting and useful
extension to it.

A separate project could be started to create an evaluation module. This mod-
ule would allow for the methodology, or any other methodology, to gauge it's
capabilities to produce software of su�cient quality on time and budget. Acting
on this information is key to developing and delivering software.



Chapter 5

Conclusion

In conclusion of this thesis, this chapter presents the limitations of the projects,
what kind of future work could be done relating to this, and �nally the main
conclusion.

5.1 Limitations

A few areas which could be considered relevant for this thesis was outside it's
scope. Firstly, It was not part of the developed methodology to teach it's users
how to properly use Scrum. Having a proper understanding of Scrum and it's
practices is very important to both this methodology and Scrum itself. It was
however a topic which is su�ciently covered in other literature and this thesis
instead focused on it's own contributions. Secondly, an evaluation module for
the methodology used to evaluate the produced software was brie�y discussed
in section 4.3, but that is already a large area of research in and of itself, and
was thus also outside the scope of this project. The third scope limitation was
that the customer had very limited time to spare for the project, and thus the
implementation and testing phase of this thesis was limited that way.
Having the developed methodology tested more thoroughly would have been
very bene�cial. Optimally, this would have to be done with a larger team
working on a larger and more complex case, given a realistic amount of time



80 Conclusion

according to the project. This would much better simulate the methodology's
usage in a real world scenario, and thus provide valuable feedback and possibly
further improvements. As it stands, a lot of valuable feedback was already
received, but having access to more is always preferably.
A limitation of the developed methodology that was found during testing was
that parts of the core was not suited for one person teams. This led to the
conclusion that the core should be modi�able by the toolbox, and not static as
was �rst proposed.

5.2 Future work

The focus of future studies related to this thesis, or the general topic of an
adaptable development framework, would have to include the proposed evalua-
tion module, so that product quality can be continuously measured and actions
can be taken during development to improve lacking areas. It should also include
more focus on testing the ideas of the framework, using a larger sample size of
di�erent projects to provide more empirical data and improvements from the
people of the industry. The suggestions and general views discussed in chapter 4
should be implemented and tested.

5.3 Conclusion

Decreasing cost overrun and increasing quality, while ensuring the software com-
pletes the job it is meant for and thus provides value to it's owners, are essential
in IT projects. A new methodology has been designed during this project,
combining many existing practices into a framework which can adapt to many
project and team types. The existing practices have been studied in their native
methodology, and how they contribute has been analysed. From this study, the
methodology was designed with a core containing practices that were applica-
ble in most circumstances. A toolbox was also developed for the framework,
which contains the practices needed to specialize the core to di�erent project
and team types. All of these practices have been chosen for their contribution
to validation, veri�cation and deliver products on time and budget.

The framework was tested using a real life case provided by the development
and consultancy �rm IT Minds. Feedback was gathered from the owner of the
case, and from a project lead from IT Minds. The feedback was mostly posi-
tive and contained valuable re�nements to the developed methodology. These



5.3 Conclusion 81

results point towards the notion that an adaptable framework for software devel-
opment could be both viable and wanted. The CRC interview session which was
developed during this project could easily be adopted by other methodologies,
and should prove a valuable tool for software companies using Scrum without a
product owner from their customer.

I believe that these �ndings are very relevant for software development teams.
A standardized approach to development provide teams with the tools and prac-
tices they need to succeed, but since each project is di�erent this approach needs
to be adaptable. This is accomplished in this project and while more thorough
testing would have been nice, the feedback received so far has been good and
the developed methodology looks promising. Further studies should focus on
testing the toolbox using realistic cases, and develop a way to evaluate a product
during it's development so that correcting action can be taken when necessary.

Many methodologies focus mostly on some aspect of development, such as Scrum
mostly focusing on delivering on time and budget. The developed methodology
builds upon Scrum, so it should still deliver products on time and budget. This
methodology also attempts to deliver on product quality and creating customer
value, which answers the questions from the introduction; "Are we building the
product right?" and "Are we building the right product?".



82 Conclusion



Appendix A

Project plans

Week 1 Project planning. Literature study generally on Software Engineering and
development.

Week 2 Literature study on selected methodologies.

Week 3 Literature study on selected methodologies, practices and tool.

Week 4 Analysis: Intro, review section, and pros / cons.

Week 5 Analysis: Focus areas and common grounds.

Week 6 Analysis: Tools.

Week 7 General re�nement of analysis chapter.

Week 8 Design: Work on general idea of framework.

Week 9 Design: Work on general idea of framework. Start work on framework.

Week 10 Design: Work on framework.

Week 11 General re�nement of design chapter.

Week 12 Meeting with customer.

Week 13 Work on case. Document work as an ongoing process.

Week 14 Work on case. Document work as an ongoing process.

Week 15 Work on case. Document work as an ongoing process.

Week 16 Evaluate work.

Week 17 General re�nement of implementation chapter.

Week 18 Discussion section.

Week 19 Discussion section.

Week 20 Introduction and conclusions.

Week 21 Read through thesis and re�ne.

Week 22 Read through thesis and re�ne. Hand in.

Table A.1: How the project was planned to proceed, week by week.



84 Project plans

Week 1 Project planning. Literature study generally on Software Engineering and
development.

Week 2 Literature study on selected methodologies.

Week 3 Literature study on selected methodologies, practices and tool.

Week 4 Literature study & Analysis: Introductory sections.

Week 5 Literature study & Analysis: Literature and review study section.

Week 6 Literature study & Analysis: Literature and review study section.

Week 7 Analysis: Strengths and challenges section.

Week 8 Analysis: Properties and tools section.

Week 9 Design: Work on general idea of framework. Start work on core section.

Week 10 Design: Strengthening the core, toolbox and transitioning sections.

Week 11 General re�nement of design and analysis chapter.

Week 12 Awaiting customer. Introduction chapter.

Week 13 Awaiting customer.

Week 14 Awaiting customer. Customer interview. Create artefacts of interview.

Week 15 Work on case.

Week 16 Evaluate the process with IT Minds. Start work on implementation chapter.

Week 17 Case analysis, result and test sections.

Week 18 Interview with customer and feedback.

Week 19 Discussion sections and conclusion chapter. Read through thesis and re�ne.

Week 20 Read through thesis and re�ne.

Week 21 Final re�nements of introduction and conclusion. Hand in.

Week 22

Table A.2: What was actually done in each week.



Appendix B

Items created during

interview

Use case

Figure B.1: The original use case made during the interview



86 Items created during interview

Acceptance tests and notes

Figure B.2: The original acceptance test and additional notes made during
the interview



Appendix C

Code examples

Some test cases

[Test]
public void CreateMarket_NotLoggedIn()
{

Assert.IsTrue(site.MarketList.Count == 0);
Assert.IsTrue(profile.MarketList.Count == 0);

site.LogOut(username);
site.CreateMarket(username, marketName, date1,

locationData, stallMap, text, slideShow, new
List<Stall>(), new List<Accessories>());

Assert.IsTrue(site.MarketList.Count == 0);
Assert.IsTrue(profile.MarketList.Count == 0);

}

[Test]
public void CreateMarket_FromTemplate()
{

int stallnumber = 42, price = 1750;



88 Code examples

site.CreateMarket(username, marketName, date1,
locationData, stallMap, text, slideShow, new
List<Stall>() { new Stall(stallnumber, price) },
new List<Accessories>());

MarketTemplate templateOfAnotherMarket =
site.UserToMarketTemplate[username][0];

site.CreateMarket(username, date2,
templateOfAnotherMarket);

Assert.IsTrue(site.MarketList.Count == 2);
Assert.IsTrue(profile.MarketList.Count == 2);
Assert.IsTrue(site.UserToMarketTemplate[username].Count

== 1);

Assert.IsTrue(profile.MarketList[0].OrganizerPublicName
== profile.MarketList[1].OrganizerPublicName);

Assert.IsTrue(profile.MarketList[0].OrganizerPublicEmail
== profile.MarketList[1].OrganizerPublicEmail);

Assert.IsTrue(profile.MarketList[0].OrganizerPublicPhone
== profile.MarketList[1].OrganizerPublicPhone);

Assert.IsTrue(profile.MarketList[0].TemplateSource ==
profile.MarketList[1].TemplateSource);

Assert.IsTrue(profile.MarketList[0].Date == date1);
Assert.IsTrue(profile.MarketList[1].Date == date2);
Assert.IsTrue(date1 != date2); //tests for a mistake

in the test case
}

The corresponding developed code

internal void CreateMarket(string username, string date,
MarketTemplate marketTemplate)

{
if (!IsLoggedIn(username))
return;
User user = null;

foreach (User u in UserList)
{

if (u.Username == username)
user = u;



89

}
if (user == null)
return;

Market m = new Market(user, date, marketTemplate);
MarketList.Add(m);
user.Profile.MarketList.Add(m);

}



90 Code examples



Bibliography

[1] Scott Ambler. Agile software development. http://www.agilemodeling.
com/. 2014, Accessed: 11-03-2015.

[2] Scott Ambler. Answering the "where is the proof that agile methods work?"
question. http://agilemodeling.com/essays/proof.htm. 2014, Ac-
cessed: 11-03-2015.

[3] Jordan B. Barlow, Mark Je�rey Keith, and David W. Wilson. Overview
and guidance on agile development in large organizations. Communications
of the Association for Information Systems, 29(29):25, 2011.

[4] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2005.

[5] Kent Beck, Martin Fowler, Ward Cunningham, and Alistair Cockburn et al.
The agile manifesto and it's twelve principles. http://agilemanifesto.
org/. 2001, Accessed: 13-03-2015.

[6] B. W. Boehm. A spiral model of software development and enhancement.
SIGSOFT Software Engineering Notes, 11(4):22�42, 1986.

[7] B. W. Boehm. A spiral model of software development and enhancement.
IEEE Computer Society, 21(5):61�72, 1988.

[8] B. W. Boehm. Spiral development: Experience, principles, and re�nements.
Carnegie Mellon University, Software Engineering Institute, 2000.

[9] B.W. Boehm. Verifying and validating software requirements and design
speci�cations. Software, IEEE, 1(1):75�88, Jan 1984.

http://www.agilemodeling.com/
http://www.agilemodeling.com/
http://agilemodeling.com/essays/proof.htm
http://agilemanifesto.org/
http://agilemanifesto.org/


92 BIBLIOGRAPHY

[10] Robert N. Charette. Why software fails. http://spectrum.ieee.org/
computing/software/why-software-fails. 2005, Accessed: 11-03-
2015.

[11] Mike Cohen. Advice on conducting the scrum of scrums meet-
ing. https://www.scrumalliance.org/community/articles/2007/
may/advice-on-conducting-the-scrum-of-scrums-meeting. 2007,
Accessed: 17-04-2015.

[12] Coley Consulting. From waterfall to v-model. http://www.
coleyconsulting.co.uk/from-waterfall-to-v-model.htm. 2015, Ac-
cessed: 18-03-2015.

[13] Andreas Deuter. Slicing the v-model - reduced e�ort, higher �exibility.
2013 IEEE 8th International Conference On Global Software Engineering
(ICGSE 2013), pages 1�10, 2013.

[14] Amr Elssamadisy. Agile Adoption Patterns: A Roadmap to Organizational
Success. Addison-Wesley Professional, 1 edition, 2008.

[15] J. Estublier and S. Garcia. Concurrent engineering support in software engi-
neering. Automated Software Engineering, 2006. ASE '06. 21st IEEE/ACM
International Conference on, pages 209�220, Sept 2006.

[16] Martin Fowler. Is design dead? http://martinfowler.com/articles/
designDead.html. 2004, Accessed: 16-03-2015.

[17] Martin Fowler. Using an agile software process with o�shore devel-
opment. http://www.martinfowler.com/articles/agileOffshore.
html. 2006, Accessed: 29-03-2015.

[18] Robert Frese and Vicki Sauter. Improving your odds for software project
success. IEEE Engineering Management Review, 42(4):125�131, 2014.

[19] D. Hillson. The cost of managing risk. Project Manager Today, 19(5):30,
2007.

[20] Kenji Hiranabe. Kanban applied to software development. http://www.
infoq.com/articles/hiranabe-lean-agile-kanban. 2008, Accessed:
11-03-2015.

[21] Jennifer Dorette Jacob. Comparing agile xp and waterfall software devel-
opment processes in two start-up companies, chalmers university of tech-
nology, 2011.

[22] Gottfried Kellner. Software engineering. 11th CERN School of Computing,
1989.

http://spectrum.ieee.org/computing/software/why-software-fails
http://spectrum.ieee.org/computing/software/why-software-fails
https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
https://www.scrumalliance.org/community/articles/2007/may/advice-on-conducting-the-scrum-of-scrums-meeting
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://www.coleyconsulting.co.uk/from-waterfall-to-v-model.htm
http://martinfowler.com/articles/designDead.html
http://martinfowler.com/articles/designDead.html
http://www.martinfowler.com/articles/agileOffshore.html
http://www.martinfowler.com/articles/agileOffshore.html
http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://www.infoq.com/articles/hiranabe-lean-agile-kanban


BIBLIOGRAPHY 93

[23] Laura Klein. UX for Lean Startups. O`Reilly Media inc, 2013.

[24] CMMI Institute of Carnegie Mellon University. Cmmi institute. http:
//cmmiinstitute.com/. 2015, Accessed: 14-06-2015.

[25] US Department of Justice. System development life cycle guidance doc-
ument. http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.
htm. 2003, Accessed: 09-03-2015.

[26] Alexander Osterwalder and Yves Pigneur. Business Model Generation.
Addison-Wesley, 2010.

[27] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Using scrum
in a globally distributed project: A case study. Software Process Improve-
ment and Practice, Softw. Process Improv. Pract, 13(6):527�544, 2008.

[28] Kai Petersen, Claes Wohlin, Dejan Baca, Kai Petersen, and Dejan Baca.
The waterfall model in large-scale development. Lecture Notes in Business
Information Processing, 32 LNBIP:386�400, 2009.

[29] Ryan Polk. Agile and kanban in coordination. Proceedings - 2011 Agile
Conference, Agile 2011, Proc. - Agile Conf., Agile, pages 263�268, 2011.

[30] L. Rising and NS Jano�. The scrum software development process for small
teams. IEEE SOFTWARE, 17(4):26�+, 2000.

[31] Ken Rubin, Mike Cohn, Pete Deemer, Steve Denning, and Michele Sliger.
Using scrum. https://www.scrumalliance.org/. 2015, Accessed: 11-
03-2015.

[32] Michael Sahota. An Agile Adoption and Transformation Survival Guide.
InfoQ, 2012.

[33] VersionOne. State of agile. http://www.versionone.com/pdf/
2013-state-of-agile-survey.pdf. 2013, Accessed: 21-03-2015.

[34] Don Wells. Agile software development. http://www.agile-process.
org/. 2009, Accessed: 11-03-2015.

[35] Don Wells. Extreme programming. http://www.extremeprogramming.
org/. 2013, Accessed: 11-03-2015.

http://cmmiinstitute.com/
http://cmmiinstitute.com/
http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm
http://www.justice.gov/archive/jmd/irm/lifecycle/ch1.htm
https://www.scrumalliance.org/
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.agile-process.org/
http://www.agile-process.org/
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Reasons for study
	1.3 Structure of the thesis
	1.4 Project plan
	1.5 literature study

	2 Analysis
	2.1 The software life cycle
	2.2 Early evolution of software engineering
	2.3 Main points of failure
	2.4 Literature study and review
	2.4.1 Waterfall
	2.4.2 Agile
	2.4.3 Extreme Programming
	2.4.4 V-model
	2.4.5 Scrum
	2.4.6 Kanban
	2.4.7 Agile Modelling
	2.4.8 Spiral Model
	2.4.9 Selection of methodologies

	2.5 The chosen methodologies
	2.5.1 Strengths and challenges
	2.5.2 Team and project properties
	2.5.3 Tools and practices

	2.6 Conclusion

	3 Design
	3.1 Selecting a starting point
	3.2 Strengthening the core
	3.2.1 Guarding against the common points of failure
	3.2.2 Improving the scores
	3.2.3 The final core

	3.3 Pick-and-Choose toolbox
	3.3.1 Extending the toolbox
	3.3.2 The toolbox

	3.4 The methodology
	3.4.1 My Contributions
	3.4.2 Using the methodology

	3.5 Transitioning
	3.6 Conclusion

	4 Implementation
	4.1 Case analysis
	4.1.1 Description
	4.1.2 Analysis

	4.2 Testing the framework
	4.2.1 The interview
	4.2.2 Development

	4.3 Case feedback and discussion
	4.3.1 Feedback from the customer
	4.3.2 Discussion

	4.4 External evaluation of framework
	4.5 Conclusion

	5 Conclusion
	5.1 Limitations
	5.2 Future work
	5.3 Conclusion

	A Project plans
	B Items created during interview
	C Code examples
	Bibliography

