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Summary (English)

The Traveling Thief Problem (TTP) � a composition of the Traveling Sales-
man (TSP) and Knapsack (KP) Problems � has been recently proposed as a
benchmark problem to feature a speci�c type of complexity � called interdepen-
dence of component problems � which it is claimed is typically missing from the
benchmark problems used to demonstrate the performance of metaheuristics;
particularly nature-inspired heuristics.

In this thesis is presented some relevant background on the TSP and KP, and
a more careful literature study of the TTP. The study gives an impression of
what strategies are expected to deal well with the interdependence, and which
ones are not. Particularly, it is conjectured that heuristics that ignore the
interdependence, and focus on solving the component problems in isolation, will
fare poorly. However, this has not been demonstrated convincingly.

The well known, nature-inspired metaheuristic Ant Colony Optimization (ACO)
is adapted as an algorithm for TTP. This adaption is documented and the the-
sis concludes with a computational study of the implemented algorithm. Said
brie�y, the idea is to base the algorithm around the naive approach, which solves
the component problems in isolation in some nondeterministic way, yielding a
solution for the TTP, and repeats this process. When this isolation is broken,
the sequence of component-solutions are, conceptually, "chained" together, the
construction of each being guided slightly by the previous solution to the other
component problem. As the implementation is consistent with this description,
the "chain" can be safely broken by reinstating the isolation, yielding a func-
tional algorithm, and the two can be compared. This will facilitate a comparison
that is well suited to concluding that isolating the component solvers sacri�ces
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easily realizable performance gains.

For this approach to work, it is necessary that at least one of the subproblems
can be solved very e�ciently. However, no method exists in the literature which
deals speci�cally with the TSP as a component of the TTP, and those that exist
for the KP are not good enough. Thus the existing algorithms Simple Heuristic
and Density-Based Heuristic are taken, by subtle adjustments, to realize a much
greater potential than previously demonstrated.

Because the TTP arose to answer a call for better benchmark problems, an
excellent suite of such problems exists from [PBW+14]. For the nine problems
studied here, the results achieved are far better than previous results, and I
think that it is safe to conclude that mine is the best published algorithm. But
there is yet very little competition.



Summary (Danish)

The Traveling Thief Problem (TTP) � en komposition af The Traveling Sales-
man Problem (TSP) og Knapsack Problem (KP) � er for nyligt foreslået som et
nyt basisproblem der præsterer en bestemt type af kompleksitet � kaldet ind-
byrdes afhængighed af komponent problemer � der påstås typisk at mangle i
de basisproblemer der benyttes til at demonstrere metaheuristikkers evne til at
præstere. Det er især de naturinspirerede heuristikker der henvises til.

Denne afhandling præsenterer relevant baggrundsviden om TSP og KP, samt en
mere omhyggelig litteraturanalyse af TTP. Analysen giver et indtryk af hvilke
strategier der bedst håndterer den indbyrdes afhængighed. Mere konkret påstås
det, at heuristikker der ignorerer den indbyrdes afhængighed for at fokusere på
isoleret at løse komponentproblemerne vil klare sig dårligt. Dette er dog ikke
demonstreret overbevisende.

Den velkendte, naturinspirerede metaheuristik, Ant Colony Optmization (ACO),
vil blive tilpasset som algoritme til TTP. Denne tilpasning dokumenteres, og
afhandlingen konkluderes, med en analyse af den praktiske præstation af den
implementerede algoritme. Kort sagt er ideen at basere algoritmen omkring den
naive tilgang hvor komponentproblemerne løses isoleret på en ikke-deterministisk
måde der leverer en løsning til TTP, og derefter gentages. Når isolationen derpå
brydes, vil sekvensen af løsninger til komponentproblemerne konceptuelt "kæ-
des"sammen, således at deres konstruktionen ledes af den sidst sete løsning
til det andet komponentproblem. Da implementationen stemmer overens med
denne beskrivelse, kan "kæden"sikkert brydes ved at genindføre isolationen, for
derved at opnå en tilsvarende algoritme således at der er to der kan sammenlig-
nes eksperimentelt. Sådan en sammenligning egner sig til at konkludere, at den
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isolerende løsning går glip af en let realiserbar præstationsforbedring.

For at denne tilgang kan virke, er det nødvendigt at mindst ét af underproble-
merne kan løses meget e�ektivt. Der �ndes dog ingen metode i litteraturen der
gør dette speci�kt for TSP i rollen som komponent i TTP; og de der �ndes for
KP er ikke tilstrækkeligt gode. Derfor tages de eksisterende algoritmer � Simp-
le Heuristic og Density-Based Heuristic � til et højere præstationspotentiale,
gennem subtile justeringer.

Fordi TTP opstod for at besvare en efterspørgsel på bedre basisproblemer, �ndes
en fremragende suite af sådanne problemer fra [PBW+14]. For de ni problemer
undersøgt i afhandlingen, er det opnåede resultat langt bedre end de forudgåen-
de, og jeg tror at det er sikkert at konkludere at min er den bedste publiserede
algoritme. Dog er der endnu kun få konkurrenter.



Preface

This thesis was prepared at DTU Compute in ful�lment of the requirements for
acquiring an M.Sc. in Engineering.

The thesis deals with understanding and solving the newly proposted Traveling
Thief Problem. The aim is to provide the �rst serious attempt of an algorithm
that solves large instances of the TTP as a whole.

Lyngby, 26-June-2015

Rasmus Birkedal
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Chapter 1

Introduction

This text documents a particular approach to solving the Traveling Thief Prob-
lem (TTP).

The TTP was presented for the �rst time in [BMB13], in 2013. It is a compos-
ite problem that composes two older and more familiar optimization problems,
the Traveling Salesman Problem (TSP) and Knapsack Problem (KP). In the
remainder of this text, these two will be called the component or sub-problems
to emphasize their role as part of the TTP. Two models, TTP1 and TTP2, were
proposed in [BMB13]. Only the �rst is considered here, following the trend of
[PBW+14] and [BMPW14].

The term "Traveling Salesman Problem" is taken from nineteenth-century writ-
ings concerned with the logistic challenges of actual salesmen. These needed to
tour a set of cities as e�ciently as possible. As a mathematical problem, the
solution is the shortest tour which visits all cities from a given set exactly once.

This general formulation of the TSP has turned out to abstract many speci�c
problems. Since solving problems e�ciently often means taking advantage of
speci�c characteristics, less general variants of the TSP are often considered. A
TSP can be symmetric, meaning that all distances are independent of direction.
It can be metric, meaning that any distance between a pair of distinct cities
is symmetric, greater than zero, and obeys the triangle inequality. Even more
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strictly, an Euclidean TSP requires that the distance is the Euclidian distance1,
meaning that it is calculated by use of the Pythagorean theorem. The TSP
instances considered in this text are Euclidean and therefore symmetric.

The knapsack problem provides a container � the knapsack � of limited capacity,
and a set of items � each associated with a weight and a pro�t � and asks for
a subset of the items that will �t in the knapsack, maximizing the sum of the
pro�ts of the packed items. Among variants of the KP, the unbounded KP
permits inclusion of any number of copies of each item, as long as the knapsack
capacity is not exceeded, while the bounded KP limits the number of copies to
some �nite amount (that is permitted to vary among the items). As a special
case of the bounded KP variant, the 0-1 knapsack problem sets the limit to one
for all items. It is the 0-1 knapsack problem that constitutes the KP component
of the TTP, and so, when nothing else is stated, the term KP is used in the
following to refer to the 0-1 knapsack problem.

The TTP combines these two problems. It involves a set of items distributed
among a set of cities. In this context it is a thief, not salesman, who must visit
each city exactly once. The thief is equipped with a knapsack, which is packed
during the tour. As the amount of free space in the knapsack decreases, so does
the speed of the thief. The value which must be maximized is the total item
pro�t minus the total travel cost. The cost is the time required to complete the
tour multiplied by a constant called the rent rate.

Each of the two component problems are NP-hard. Thus it is believed that
no polynomial-time algorithm exists for them. However, due to the ubiqui-
tousness of the problems, they have been the subject of much study, and many
polynomial-time heuristic algorithms, which do not guarantee optimal solutions,
exist. Some of these are presented in Chapter 2, while Chapter 3 presents algo-
rithms for solving the TTP itself.

A major goal of this project is to use heuristic algorithms for the TSP and
KP as subroutines, and combine them into an overall, composite algorithm for
the TTP. To help the subroutines better deal with the interdependence of the
component problems, they are put into a generic algorithmic framework based
on Ant Colony Optimization (ACO), which is a nature inspired metaheuristic.
ACO can be applied to construction algorithms, which build solutions by itera-
tively and irrevocably adding components to an initially empty solution. In the
case of the TSP, for example, a construction algorithm typically builds a tour
by adding one city at a time. At each step, the choice of component is ran-
domized, with extra weight given to components that are better according to

1Note that Euclidian TSP benchmarks are often restricted to two dimensions. As are the
benchmark problems used in this thesis.



3

some heuristic, and to components with more pheromone. It is the pheromone
concept which gives rise to the name of ACO. Real ants leave behind a trail of
pheromones that serve to guide other ants. To model this inspiration, after a
number of solutions have been constructed, some of them are chosen as being
better than the rest, and the components that are a part of the chosen solutions
are marked by an additional level of pheromone, while other components have
their level decreased. This process of decreasing the level of pheromone is called
evaporation. A more thorough introduction to ACO is given in Chapter 2.

Alternatives to ACO in this role will not be explored. The choice was made
because of the versatility of ACO � it has been shown to perform well on a wide
range of problems [DS10]. Additionally, the introductory paper, [DMC96], as
well as future papers [SH00][BHS97], demonstrate the proposed ACO algorithms
by application to the TSP, thus giving relevant context to the case at hand.

The design of the composite algorithm is documented in Chapter 4, while its
implementation is presented in Chapter 5

As explained in [BMB13], the TTP is a benchmark problem intended to address
concerns presented in [Mic12] that there is a gap between theory and practice in
the �eld of metaheuristics for combinatorial optimization problems. In [BMB13]
it is claimed that the de�nition of complexity is a main di�erence between the
benchmark problems used in theoretical work, and the real-world-problems to
which the results are intended to be applied in practice. For the benchmark
problems, it is claimed, there is a tendency to equate complexity with size �
e.g. number of cities for the TSP � while real world problems usually include
additional sources of complexity, such as the interdependence of component
problems, as intentionally featured by the TTP.

Consequently, a solver for the TTP which �rst solves the component problems
to optimality in isolation, and subsequently combines the results into one for
the TTP, is not guaranteed to yield an optimal solution [BMB13]. To see this,
consider the TTP-instance where all items have small pro�ts and large weights,
so that any optimal solution involves picking none of the items. For the ordinary
KP, if any item �ts in the knapsack, the optimal solution contains at least one
item. The isolated KP solver then produces a non-empty knapsack, the inclusion
of which into the solution for the TTP-instance precipitates suboptimality. Less
pathological examples are provided in [BMB13] and [PBW+14]. Further, some
of the benchmark problems for the TTP that are used later, appear to be solved
best by leaving plenty of extra space in the knapsack.

These considerations apply to exact solvers, but the TTP was introduced specif-
ically to challenge heuristic solvers, and it is not as easy to reject naive applica-
tion of heuristic algorithms to the component problems. In fact, such approaches
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have been tried with modest success in [PBW+14] and [BMPW14], albeit with
primary focus on achieving an increased understanding of the nature of the
TTP, and with little focus on actually �nding good solutions. The algorithm,
CoSolver, was introduced in [BMPW14], and provides, to an extent, a contrast,
by allowing "separate modules/algorithms" to "communicate with each other",
as opposed to the other algorithms which do not make use of such communica-
tion.

So for the TTP there exist di�erent kinds of heuristic solvers which feature
di�erent levels of communication, and there appears to be an expectation that
such communication is necessary. As new algorithms are developed, it would
be interesting to see how well this expectation is met. To facilitate this, an-
other algorithm is introduced in Chapter 4, which takes care to feature none
of this communication, while o�ering signi�cantly better performance than any
previous such algorithms for the TTP.

The comparison is based on a computational study that is documented in Chap-
ter 6, and it is discussed in Chapter 7. The study makes use of nine benchmark
problems, chosen from the set of 9720 presented in [PBW+14].

Finally, Chapter 8 concludes the thesis.



Chapter 2

Background - Component
Problems

This chapter presents background for the two component problems � the trav-
eling salesman problem (TSP) and the knapsack problem (KP). The composite
problem, the traveling thief problem (TTP), is dealt with in the next chapter.
The TTP is a "young" problem � the introducing paper, [BMB13], is from 2013
� and I have found only three papers (the two others being [PBW+14] and
[BMPW14]) that deal with it speci�cally, so the background given in this thesis
aims to cover the current state of the art for the TTP. For the two component
problems, however, too much material exists for this to be possible, so I present
primarily procedures and heuristics that are used in the following chapters.

All three problems are combinatorial optimization problems. Thus a number of
feasible solutions generally exist, not all of which are optimal. For example, a
solution to the TSP is any tour. As long as all cities are visited exactly once, the
tour is a solution, although not necessarily optimal. These solutions can then be
compared based on a �tness or objective value, which de�nes the optimum, but
also orders feasible, suboptimal solutions. Algorithms presented in this chapter
are optimization algorithms; they repeatedly construct new solutions based on
some currently best solution, which is replaced whenever an improvement is
found.
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The decision variants of the considered problems are NP-complete1, so determin-
ing whether the achieved result is optimal is, in general, a super-polynomial-time
operation (unless P = NP). Thus, faster algorithms must contend with being
unable to know whether an achieved solution is optimal or not2.

Conceptually, some of the algorithms are search procedures that search the space
of solutions for an optimum. In this case the search may be unable to advance
from a suboptimal solution, because any reachable solution is worse than the
current one. However, since all reachable solutions are worse, this is in practice
often taken as an indication that the reached solution is good. In any case, if the
search cannot advance, the solution is called a local optimum, with the actual
optimum being called the global optimum. Note that the global optimum is
always a local optimum.

2.1 The KP - A Shallow Introduction

An instance of the KP comprises the following.

a) A knapsack of capacity W .

b) A set, M , of m items.

c) To each item, Ii ∈ M , is associated a pair, (wi, pi), being the weight and
pro�t of the item.

A solution, P , is a subset ofM subject to the constraint that the sum of weights
of items in P is at most W , such that the sum of the pro�ts of those items
is maximized. In other words, P is a solution i� c(P ) = true as given by
equation 2.1 and it's total pro�t, c(P ), given by equation 2.2, is at least as great
as the total pro�t, p(Q), of any Q ⊆M such that c(Q) = true.

c(P ) =
∑
Ii∈P

wi ≤W (2.1)

1In all three cases, the decision variant asks something like "does a solution exist which is
at least so good?".

2There are optimization algorithms which guarantee an optimal solution. As an example,
branch and bound, an algorithm design paradigm, can be used to solve TSPs and KPs exactly.
It does this in super-polynomial time however.
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p(P ) =
∑
Ii∈P

pi (2.2)

The KP is unusual among NP-hard problems, because there exists a pseudo-
polynomial algorithm for it � the well known dynamic programming algorithm.
The benchmark problems that are solved in later chapters lower bound W by
m
11
3 � i.e. W is linear in m � so, assuming that the running time of the dynamic

programming algorithm is O(mW ), the running time in the present context is
at least a quadratic function of m.

However, recall from the discussion in chapter 1 that guaranteed optimality
of component problem solutions does not transfer into the composite problem.
For this reason, the dynamic programming algorithm is discarded in favor of
heuristic approaches, which do not guarantee optimality of solutions, but are
faster. Three such heuristics are presented in the following three sections.

2.1.1 Greedy Heuristic

There is a simple yet e�ective greedy approximation scheme for the KP. Each
item, Ii, is assigned a score, si = pi

wi
, and the knapsack is �lled repeatedly

with the highest scoring, available item, until no item �ts. Algorithm 1 below
gives an approach where the items are sorted prior to beginning the process of
adding them to the knapsack. This makes the for-loop in line 5 a simple, linear
traversal of the m items, and the worst-case, asymptotic running time is due to
the sorting: O(m logm).

While this pseudocode assumes the ordinary 0-1 knapsack problem, a similar
formulation can be made for the bounded and unbounded KP variants. For
the unbounded KP, this greedy approach is a 1

2 -approximation � it guarantees a
total pro�t that is at least half as good as the total pro�t of an optimal solution.
But for the bounded KP, there is no such guarantee. To see this, consider the
following 0-1 knapsack problem instance.

• I1: w1 = 1, p1 = 2

• I2: w2 = 100, p2 = 100

• W = 100

3The knapsack capacity, W , of benchmark TTP-instances from [PBW+14] is mC
11

, C ∈
{1, 2, . . . , 10} if all item weights are equal to 1. Otherwise it is greater.
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Algorithm 1 Greedy KP Heuristic

Input: A KP-instance Output: A solution, P

1: for all Ii ∈M do
2: si = pi

wi

3: I[] := array of all Ii ∈M , sorted in descending order of si
4: P := ∅
5: WP := 0
6: for all Ii ∈ I[] do
7: if WP + wi ≤W then
8: Add Ii to P
9: WP := WP + wi
10: return P

The �rst item, I1, has the best score, so the greedy algorithm will pack it �rst,
leaving room for no other items. Thus, the algorithm produces P = {I1}, with
total pro�t 2. But the best solution is P = {I2}, with total pro�t 100, which is
better by a factor of p2p1 . AsW = w2 = p2 increases to in�nity, so does the factor
by which this example is solved worse by the greedy heuristic than any optimal
solver. It follows that no non-trivial guarantee can be given for application of
the greedy heuristic to the bounded KP.

This worst-case behavior is rare, and the greedy heuristic sees use even in appli-
cation to bounded KPs. Particularly, it provided foundation for the algorithms
SH and DH, which will be introduced later.

2.1.2 Random Local Search

Random Local Search (RLS) is an algorithm that belongs to the class of genetic
algorithms � a sub-class of the nature inspired metaheuristics. Thus RLS can
be applied in many contexts with varied success. In fact, for solving the KP,
RLS is likely a poor choice4, while it is much better at solving the subsuming
KP-sub-problem of the TTP, as we shall see later. Since it is useful in this latter
case, it is convenient to introduce RLS as an algorithm for the ordinary 0-1 KP.

For genetic algorithms in general, solutions are often represented as a string of
bits. This can be easily done for the KP. The most straight forward way is
to have the i'th bit represent inclusion of the i'th item in the solution, with

4A more general version of RLS � which uses a population of size greater than one, and
applies crossover � I do not claim to be a poor choice.
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1 meaning that it is included and 0 meaning that it is not. For example, for
m = 5, the string [1, 0, 1, 0, 0] represents the solution P = {I1, I3}.

RLS repeatedly mutates some initial solution by �ipping one, uniformly at ran-
dom chosen bit. After each �ip, the solution is evaluated by use of a �tness
function, and the �ip is undone, unless the evaluation indicates improvement.
Equation 2.3 gives the �tness function for the KP, and Algorithm 2 gives a
detailed description of application of RLS to the KP.

f(P ) =

{
p(P ) if c(P )

0 otherwise
(2.3)

Algorithm 2 Random Local Search (RLS)

Input: A KP-instance with m items and knapsack capacity W Output: A
string of m bits that represents the solution

1: P is initialized to a bit-string of length m that contains only zeros
2: while Terminal condition is not met do
3: P ∗ := P
4: r is chosen uniformly at random from {1, 2, . . . ,m}
5: the r'th bit of P ∗ is �ipped
6: if f(P ∗) ≥ f(P ) then
7: P := P ∗

8: return P

There is no general way of knowing how many iterations of RLS should be
used � hence the vague condition of the while-loop in line 2. In practice, the
rate of improvement per iteration declines the longer the algorithm works on a
particular solution; so the algorithm can simply be stopped after a given number
of consecutive iterations without improvement.

Regarding application to the KP, algorithm 2 adds items to the solution at
random, with no preference for good items, and never removes any item, since
that always results in a decrease to the �tness of the solution (assuming P does
not exceed the knapsack capacity, which is guaranteed if W > 0). Eventu-
ally, enough items will have been added that there is room for no more in the
knapsack, and no future iteration will add an item to the solution. Since the
algorithm is incapable of removing items, it is stuck, and all future iterations
are no-ops. In this case we say that a local optimum has been reached, whether
or not an actual optimal solution to the KP-instance was found. If this was the
case however, we further say the the local optimum is a global optimum.
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2.1.3 (1+1) EA

The algorithm (1+1) EA is di�erent from RLS only in the way the solution is
mutated. A single mutation iterates over every bit in the solution, �ipping each
independently with probability 1

m .

Algorithm 3 (1+1) EA

Input: A KP-instance with m items and knapsack capacity W Output: A
string of m bits that represents the solution

1: P is initialized to a bit-string of length m that contains only zeros
2: while Stopping criteria is not met do
3: P ∗ := P
4: for all i ∈ {1, 2, . . . ,m} do
5: the i'th bit of P ∗ is �ipped with probability 1

m

6: if f(P ∗) ≥ f(P ) then
7: P := P ∗

8: return P

Since every bit is potentially �ipped in a single mutation, a single mutation can
yield any solution, regardless of what P is mutated. So for (1+1) EA there
are no local optima that are not global. Despite the superiority to RLS in this
regard, (1+1) EA su�ers the drawback that a mutation involves producing m
random numbers, while RLS only needs one such. A compromise that I have
found to be e�ective in practice (in application to the TTP), is to use RLS to
quickly �nd a local optimum, and then alternate between RLS and (1+1) EA
afterward.

2.2 The TSP - A Shallow Introduction

This section introduces the Euclidean traveling salesman problem as well as a
selection of optimization algorithms for it.

A problem instance is traditionally given as a set, N , of n cities along with
coordinates � a pair of integers � for each. The distance from city i to city j
is then calculated using the Pythagorean theorem � this makes it possible to
avoid storing a distance for every pair of cities; e.g. in an n by n matrix. Since
a distance calculated in this way may be a real number � e.g. if the catheti
are of length 1, the hypotenuse is of length

√
2 � some �nite level of precision

must be agreed upon, so that researchers can accurately compare results. For
this reason benchmark problems often de�ne the distance to be rounded to an
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integer. For example, the distance is rounded down in "symmetric traveling
salesman problem" instances from the widely used set of benchmark problems
TSPLIB [Rei95]. Confusingly, the benchmark problem instances of the TTP
presented in [PBW+14] round the distance up, despite basing the instances on
ones from TSPLIB.

The solution to a TSP-instance is a tour of all n cities for which the total
distance is minimal, i.e. such that no tour has shorter length. A tour is an
undirected Hamiltonian cycle, i.e. a cyclic path of n edges which visits each
city exactly once. A path is a sequence of edges. But a set of edges known to
constitute a path that does not visit any city twice can represent only that path
and that of opposite direction. Since a TSP-tour has no direction, it can be
represented unambiguously by a set of edges. Note that this does not apply to
a TTP-tour, for which a reversal of direction may signi�cantly impact the tour
quality and overall solution �tness.

Alternatively, a tour can be represented as a permutation of the numbers from
1 to n, implying an edge between cities that are consecutive in the permutation,
and an edge from the �rst to the last city of the permutation. Thus, a tour of an
eight-city instance that traverses the cities in order of index can be represented
as 1 2 3 4 5 6 7 8 .

2.2.1 2-opt

2-opts [Cro58], 3-opts [Lin65], and 4-opts [LK73] are used as subroutines in
algorithms that solve the TSP. Generally, a k-opt is a move that replaces k
edges of a tour, i.e. k edges are deleted, disconnecting the tour, and a disjoint
set of k edges are added such that the result is a valid tour. Of course, there is
only an improvement if the sum of the distances of the deleted edges is greater
than that of the added edges.

The 2-opt is often presented as a method for resolving the problem of two
crossing edges. Figure 2.1 gives an example application of a 2-opt that does
this.

When using the array representation, a 2-opt is applied by reversing the order
of the cities between the two edges. For example, the 2-opt applied in �gure 2.1
changes this tour: 1 2 6 5 4 3 7 8 to this tour:

1 2 3 4 5 6 7 8 . Note that for any cycle there are two choices
for "the cities between two edges". This other choice results, for the same 2-
opt, in the tour 8 7 6 5 4 3 2 1 . Although it does not apply in
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1 2 3 4

5678

Figure 2.1: The circles are cities of a TSP-instance. A tour is given by the
solid edges, and the two crossing, dashed edges, {2, 6} and {3, 7}.
A 2-opt that deletes the dashed edges, must introduce the dotted
edges, {2, 3} and {6, 7}. If, for example, the edges {2, 7} and {3, 6}
were introduced instead, the result would not be a tour, as there
would be two disconnected components.

this speci�c case, one of the alternatives typically involves reversing the order
of fewer cities than the other, and an implementation of the 2-opt should take
advantage of this to save computation time, as explained in [ABCC99].

Regarding the choice of k, it must be in the interval {2, 3, . . . , n}, as deleting
only one edge leaves only one feasible choice for the edge to be added � the same
edge as the one that was deleted � and, because there are n edges in the tour,
it does not make sense to delete more than n edges. However, in practice, k
is usually chosen to be small, as computational complexity rises sharply with k
[LK73].

Algorithm 4 A structure for TSP optimization algorithms

1: Generate initial tour T as a random permutation of the numbers [1, . . . , n]
2: while Stopping criteria is not met do
3: Apply k-opt to T , yielding T ′

4: if T ′ is shorter than T then T := T ′

5: return T

2.2.2 The Lin-Kernighan Heuristic

The Lin-Kernighan Heuristic (LK) [LK73] for the TSP is a local-search pro-
cedure which uses the structure of algorithm 4. It remained the best choice
for producing approximate solutions to the TSP in the following two decades
[ACR03].

Algorithm 5, which gives pseudocode for a simple implementation of LK, del-
egates the bulk of the work to procedure 7, which searches for a k-opt, and, if
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successful, applies that k-opt.

Algorithm 5 Lin-Kernighan

1: Generate initial tour T as a random permutation of the numbers [1, . . . , n]
2: C := N . C is the set of cities that have yet to be processed
3: while C 6= ∅ do
4: t1 ∈ C
5: C := C/{t1}
6: call procedure 7 with input: T , t1
7: if the procedure was successful then C := N

8: return T

The cornerstone of LK is a heuristic procedure which searches for a k-opt as
a sequential exchange, i.e. a sequence of k exchanges. A single exchange is
illustrated in �gure 2.2, and a version of it is detailed by procedure 6. Because
it is edges that are exchanged, tours are represented by sets of edges in the
following.

Procedure 6 Exchange

Input: A tour, T , and distinct cities t1, t2, and t3, such that t1 and t2 are
connected by an edge in T

1: Of the two cities connected to t3 by an edge in T , t4 is chosen as the city
that will be reached �rst when traversing the tour in the direction [t1, t2, ..]
(see �gure 2.2).

2: The edge from t1 to t2 is called x1.
3: The edge from t2 to t3 is called y1.
4: The edge from t3 to t4 is called x2.
5: The edge from t4 to t1 is called y2.
6: x1 is removed from T
7: y1 is added to T .

Note that once T , t1, t2, and t3 � the input to procedure 6 � have been chosen,
there is only one choice for each of t4, x1, x2, y1, and y2. This is used in line 6
of procedure 7.

After an exchange is performed, the tour is invalid, so some other operation
must follow. There are two options.

1. The tour is closed. To do this, add y2 to the tour, and remove x2 from
the tour. After this, the tour has e�ectively been subject to a k-opt if
procedure 6 was applied k − 1 times before being closed with this option.
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t4 t3

t1t2 x1

x2

y1

y2

Figure 2.2: The circles are cities and the dashed lines represent the part of
the tour which is not shown. The edges x1 and x2 are part of the
tour. A single exchange is of x1 with y1, i.e., x1 is removed from
T and y1 is added.

2. Choose t′3, set t
′
2 = t4 and t

′
1 = t1, and apply another exchange with input

T, t′1, t
′
2, t
′
3.

After each exchange, option two is always chosen, but only after evaluating
how good the k-opt resulting from choosing option one would be. The best
observed k is saved, and when the search eventually ends, the algorithm applies
the corresponding k-opt. The criteria for ending the search involves the so called
gain, gi. Speci�cally, to the i'th exchange is associated gi = |xi1| − |yi1| � where
xi1 is the edge removed and yi1 is the edge added � which is a value that quanti�es
the improvement achieved by applying that exchange. The continuance of the
search is contingent on the gain criterion, which fails immediately before the
i'th exchange i� the total gain, Gi =

∑i
j=1 gj , is negative. With this Gi, the

best k-opt found during the search is the one for which G∗k = Gk−1 + |xi2| − |yi2|
is maximized.

The value G∗ is the improvement found, i.e. it is the amount by which the
improved tour, T ∗, is shorter than the original one. Thus, for any improving k-
opt, G∗, which is a sum of a sequence of numbers, is positive. Lin and Kernighan
derive the gain criterion from this observation. The derivation uses the following
result: " if the sum of a sequence of numbers is positive, then there exists a
cyclic permutation of the sequence such that every partial sum is positive", which
is proven in [LK73]. So if some sequence of exchanges yields a k-opt with
positive G∗, there is a "rotation" of the sequence that a search will �nd without
encountering a negative Gi for i < k. In practice, any such rotation is achieved
by starting the search at an appropriate t1.

This is the reason that the original Lin-Kernighan algorithm stops only after
every choice of starting point fails consecutively � i.e., after n searches in a row
with di�erent t1 fail to improve T . This is re�ected in algorithm 5 by maintaining
a candidate-set, C, which holds all cities that have yet to be processed as input to
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Procedure 7 Sequential Exchange

Input: A tour, T , and a city, t1 Output: Success i� T was improved

1: for both choices of t2 do
2: G := 0 . The gain
3: G∗ := 0 . The best improvement so far
4: while true do
5: choose a city t3
6: update variables t4, x1, x2, y1, y2 to re�ect t2 and t3
7: G := G− |x1|+ |y1|
8: if G < 0 then break the while-loop

9: perform exchange using procedure 6 with input: T , t1, t2, t3
10: G∗′ := G− |x2|+ |y2| . Improvement achieved by closing T now
11: if G∗′ > G∗ then
12: G∗ := G∗′

13: T ∗ := (T ∪ {y2})/{x2}
14: t2 := t4
15: if G∗ > 0 then
16: T := T ∗

17: return Success
18: else
19: Undo all changes made to T in the while loop

20: return Failure

procedure 7. The set holds initially all cities, and each time one is used as input
to the procedure, it is removed from C. Whenever the procedure successfully
improves the tour, C is set to once again contain all cities.

In [ABCC99] it is noted that this approach is too time consuming for larger
instances. It is suggested that, after a successful sequential exchange, only a
subset of the cities involved in the exchanges should be added to C. This trades
o� result quality in favor of faster algorithm running time.

After algorithm 5 stops, there is still a possibility of �nding an even better tour,
by restarting the algorithm with a new, random permutation for T . This con-
cludes the description of the basics of the search procedure, but a few essential
tweaks have yet to be explained.
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Backtracking

The search procedure described thus far is very narrow, in the sense that few
alternatives are tried before the search is abandoned altogether, and a new
search is started with a di�erent initial t1. The original paper details a search
that branches by backtracking. Some backtracking is already incorporated in
the search as it is described thus far. The �rst line of procedure 7 essentially
requires the procedure to be repeated for the other choice of t2 (but with the
same choice of t1) if the �rst one does not lead to an improvement. In general,
backtracking occurs when the gain criterion fails and no improvement has been
found. When this happens, some ti is chosen to be replaced with an alternative,
while retaining choices for tj , j < i, and the search continues from the new ti.
Generally, if there are multiple ti's that can be replaced, the one with the highest
i is chosen �rst. The following is a complete list of backtracking as described in
[LK73].

• In the �rst exchange, both choices of t2 are tried. Procedure 7 above
already re�ects this type of backtracking.

• In the �rst and second exchange, �ve choices per exchange are tried for
t3. The remaining exchanges do not backtrack on t3. Thus the level of
backtracking on t3 can be given as a sequence [5, 5, 1, 1, . . . ], or just (5, 5),
indicating a level of backtracking of 5 for the �rst two exchanges, and a
level of one for the remaining ones. In [ACR03], 8 alternatives for (5, 5)
are tested computationally. The results show that (5, 5) has very good,
overall performance, but they choose (4, 3, 3, 2) for their implementation,
because of slightly better performance in tests with long execution time.

• In the �rst exchange, both choices for t4 are tried. Recall that proce-
dure 6 de�nes t4 unambiguously. But there is one other choice � the other
neighbor of t3 � which can be tried. However, using this alternative t4
dramatically complicates the next two exchanges, where the choice of t3
must be limited in a rather involved way. Furthermore, this choice pre-
cludes closing the tour with k = 2, and possibly with k = 3. The speci�cs
are explained in [LK73] and [ABCC99]. Lin and Kernighan admit that
this type of backtracking is relatively complicated to implement, but insist
that the performance improvement is worth the e�ort. In my experience
the improvement is relatively small, especially when fast execution time is
important.
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Non-overlap of Added and Removed Edges

Regardless of the level of backtracking, the description in [LK73] constrains the
choice of t3 by requiring every x2 to not have been among the edges that were
added in the current branch of the search, i.e., xi2 6∈ {y1

1 , y
2
1 , . . . , y

i
1}. Similarly,

no y1 that was previously deleted should be added, i.e., yi1 6∈ {x1
1, x

2
1, . . . , x

i
1}.

Choice of t3

The choice of t3 de�nes the edges x2 and y1. Even if the tour is closed after
the exchange for which t3 is chosen, x2 will be removed from T . Thus, t3
is chosen to maximize the di�erence in length of x2 and y1, viz. |x2| − |y1|.
The algorithm described in the original paper chooses t3 from a precomputed
set of the �ve nearest neighbors of t2, such that the di�erence is maximized.
Alternative approaches exist. For example, the LKH implementation [Hel00]
by Helsgaun quali�es edges not by their length, but by a measure, dubbed α-
nearness, of proximity to a particularly calculated minimum spanning tree.

Choice of Starting Tour

In [ACR03], alternatives to using a random permutation as starting tour are
studied. The tested starting tours, in order of performance, worst to best,
are: Random, Nearest Neighbor, Christo�des, Greedy, Quick-Bor·vka, and HK-
Christo�des. Thus the random permutation provides the worst starting tour,
and HK-Christo�des, the best. I do not explain how to produce these tours, but
make a few comments.

• The HK-Christo�des tour is slow to calculate. Compared to the second
best, Quick-Bor·vka, it is shown to be slower by a factor of 800 on a
100,000 city instance.

• The results indicate that the random starting tour is the fastest to produce,
while the nearest neighbor tour is the second fastest, and Quick-Bor·vka
just a little slower.

• The improvement of using a better starting tour is great when the algo-
rithm is stopped quickly, but in long runs, the performance gap shrinks,
and the random starting tour is not much worse than the others. I imagine
that this is because random tours tend to be longer than the other ones,



18 Background - Component Problems

which, in a sense, get a head start. But the value of the head start is
in�ated, as worse tours are more rapidly improved by the LK algorithm.

• If the method for producing the start tour can produce only very few
unique tours, it potentially weakens repeated application of the LK algo-
rithm, becuase it is deterministic � the same result is produced if the same
start tour is used.

• Interestingly, the two best starting tours are calculated by use of minimum
spanning trees. Thus, the heuristic that it is good to guide the LK toward
minimum spanning trees exists in some form in both of [ACR03] and
[Hel00].

Nonsequential Exchanges

While every sequential exchange is a k-opt, the other direction does not hold.
For example, the so called double bridge move constitutes a 4-opt which is
unattainable through a sequential exchange.

Figure 2.3: With the dashed lines indicating paths (not necessarily single
edges), the 4-opt called a double bridge move, changes the tour
on the left to the tour on the right

The original LK suggests appending to the end of the main search � algorithm 5
� another search, for which the aim is to �nd an improving double bridge move.
Further work has generalized this, naming the double bridge one of many pos-
sible kicks, and it is suggested that, instead of restarting the algorithm from a
new starting tour, applying a kick to a locally optimal tour, even if the result
is worse, may allow LK to continue and reach a better local optimum; i.e., the
kicked tour e�ectively provides the initial tour of the next application of LK.
In [ACR03], these ideas are condensed, and the resulting heuristic is dubbed
Chained Lin-Kernighan.
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Crossover

A crossover-operator takes at least two distinct, parent solutions, and returns
one or more child solutions by combining the parents. Genetic crossover in
biological reproduction provides inspiration. If applied to tours � solutions to
the TSP � a crossover-operator provides, conceptually, another way to kick
tours. An example of successful application of crossover to the TSP is given in
[WHH09] and [WHH10], which respectively introduce Partition Crossover and
Generalized Partition Crossover.

The subject of crossover escapes the scope of this thesis. I mention it as a
more recent development of the idea of chaining together applications of the LK
algorithm. Additionally, I believe that crossover constitutes a prime candidate
among procedures that might be successful in solving the TTP as a whole.

2.2.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a nature-inspired metaheuristic. Thus it is
not designed speci�cally to solve the TSP, though its performance has histori-
cally been illustrated through application to the TSP [DMC96][BHS97][SH00].
The aim of this section is an introduction that establishes terminology and pro-
vides a foundation solid enough that later adjustments can be justi�ed. To this
end, the introduction here is to application of ACO to the TSP. A general and
more thorough description and overview of ACO is provided in [DS10]. For the
TSP, the main framework is the following.

Algorithm 8 ACO for the TSP

Input: A TSP-instance

1: while Stopping criteria is not met do
2: for Every ant in the population do
3: Construct a tour using procedure 9
4: Optionally, apply local optimization, e.g. LK, to the constructed tour

5: Update pheromones with procedure 10 followed by procedure 11

6: return The best seen tour

The tour construction is based on ordinary random walk. That is, some city
is designated as the starting point, and the next city to visit is chosen from
the yet unvisited ones at random, until all cities are visited. However, unlike
ordinary random walk, the next city is not chosen uniformly at random. Rather,
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a probability distribution is created at every step of the walk. The probability,
p, of choosing a particular edge, e, depends on η, a heuristic value which for
the TSP is usually η(e) = 1

|e| , and τe, which is the amount of pheromone on e.

If at a given step the set of feasible edges is E, the equation below gives the
probability of choosing the edge e.

p(e, E) =
ταe · η(e)β∑

e′∈E τ
α
e′ · η(e′)β

(2.4)

In the above, α and β are parameters of the algorithm the ratio of which de�ne
the ratio of in�uence of the heuristic and pheromone information on the prob-
ability distribution. When β is high compared to α the heuristic information
becomes more in�uential than the pheromone information, and vice versa. Fur-
thermore, each of the two parameters have an important e�ect independently
of the other, as a higher value helps contrast the distribution. For example,
by increasing β, the degree by which short edges are deemed better than long
edges is increased. At the extreme, when β = 0, only pheromone levels in�uence
the distribution, and when β → ∞, only edges, e, with |e| → 0, are associated
to nonzero probabilities. In [DMC96] it is concluded that, for the TSP, good
choices are α ∈ {0.5, 1} and β ∈ {1, 2, 5}.

The tour construction is summarized below.

Procedure 9 Ant-Tour Construction
Input: A TSP-instance Output: A tour, T , as a sequence of cities

1: C := N . Initially, C is the set of all cities
2: c ∈ C
3: C := C/{c}
4: T := [c] . The tour is initially a sequence of one city
5: while C 6= ∅ do
6: E = {(c, c′) | c′ ∈ C} . The set of edges from c to any city in C
7: e = (c, c′), e ∈ E, is chosen with probability p(e, E), given by equa-

tion 2.4
8: c := c′

9: C := C/{c}
10: T := concatenate(T, [c]) . The new c is concatenated to the end of T

11: return T

The pheromone-update comprises evaporation followed by deposition of addi-
tional pheromone on edges that are part of the best tours. Evaporation involves
the algorithm-parameter ρ ∈ (0, 1], the evaporation rate, and is given below.
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Procedure 10 Pheromone Evaporation

Input: A TSP-instance where N is the set of cities

1: for all e ∈ N ×N do
2: τe := (1− ρ) · τe

This simulates the evaporation that would occur in realitiy, and helps avoid a
stalemate, where the accumulated mass of pheromone of previous iterations is
too great for further additions to be signi�cant. As another measure to avoid
stalemate situations, Max-Min Ant System [SH00], enforces upper and lower
bounds, τmax and τmin, for the amount of pheromone on individial edges. The
upper and lower bounds are not re�ected by the pseudocode given here, but
they are a part of the implementation presented in the next chapter.

With |T | =
∑
e∈T |e| being the length of T , the below procedure details how

pheromone is deposited on a set, S, of tours.

Procedure 11 Pheromone Deposition

Input: A set, S, of tours T ⊆ N ×N of a single TSP-instance

1: for all T ∈ S do
2: for all e ∈ T do
3: τe := τe + 1

|T |

While the solution proposed in the introducing paper, [DMC96], deposits pheromone
on every tour, later papers, [BHS97][SH00], suggest an elitist strategy, in which
deposits are made on only few tours, typically the iteration or global best.
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Chapter 3

Background - The Traveling
Thief Problem

Speci�cally, an instance of the TTP comprises the following.

• A set, N = {0, 1, .., n− 1}, of n cities.

• For every pair of cities, i and j, a distance di,j = dj,i is de�ned.

• m items, Ii ∈M, i ∈ {0, 1, ..,m− 1}.

• Every item, Ii, has a weight wi, a pro�t pi, and it is associated with
exactly one city, ci ∈ {1, .., n − 1}, which is its location. Note that there
are no items located at the �rst city, i.e. ci 6= 0 for all i.

• The capacity, W , of the knapsack, which is the maximum weight the thief
can carry.

• The renting rate, R, which is the cost for the thief of spending one unit of
time.

• The maximum speed, vmax, and minimum speed, vmin, of the thief. In all
cases addressed in the remainder of this paper, it is assumed that vmax = 1
and vmin = 0.1.
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Some values are not explicitly a part of the TTP, but can be derived from the
de�nition of the objective value which is given at the end of this section. One
such is the speed, v(w), of the thief as a function of the currently carried weight,
w.

v(w) = vmax − νw , ν =
vmax − vmin

W
(3.1)

Another is the time, t(d,w), it takes the thief to travel the distance d while
carrying the weight, w.

t(d,w) =
d

v(w)
(3.2)

A solution to an instance of the TTP comprises a tour, Π, and a packing plan,
P . In the context of the TTP, it is practical to use the array representation of
the tour; so it is a permutation of the cities, i.e. Π = π0π1 . . . πn−1, πi ∈ N , and
πi 6= πj for i 6= j. Note that it is required that the tour starts at the �rst city,
i.e. π0 = 0. Also, notation will be abused by writing πn for π0.

The packing plan, P , has the same de�nition as the solution to the ordinary
KP. It is called a packing plan, to emphasize the fact that, given a tour, there
is an ordering imposed on the items of P � the order in which they are picked
up by the thief. This is not a complete ordering, as the items of P located at
city i, for some i, are picked up simultaneously. It will be useful to be able to
conveniently extract the weight of these items, so the function, wP (i), is de�ned
as the weight of the items located at city i which are in the packing plan, P .

To every solution is associated an objective value, Z(Π, P ). To de�ne Z, we
�rst de�ne the so called cumulate weight, Wπi , which is the total weight of all
items in the packing plan, P , which are available at the �rst i + 1 cities of the
tour, viz. π0π1 . . . πi.

Wπi =

i∑
k=0

wP (πk) (3.3)

In the expression for Z(Π, P ) below, a binary variable, yi ∈ {0, 1}, is used to
indicate whether item Ii is packed, viz. yi = 1 ⇔ Ii ∈ P . Note that the
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constraint from the ordinary KP, that the capacity of the knapsack must not be
exceeded, equation 2.1, still applies.

Z(Π, P ) =

m−1∑
i=0

yipi −R
n−1∑
k=0

dΠk,Πk+1

v(Wπk)
(3.4)

In words the �rst term is the sum of pro�ts of all items in the packing plan; and
the negative term is the sum over all n edges, of the cost of traveling for the
duration of time it takes to cross that edge with the total weight the thief has
accumulated throughout the part of the tour which comes before that edge.

3.1 An Explanatory Example

This section presents a simple, example TTP-instance, and an informal discus-
sion of how it can be solved. It will become apparent that some of the intuition
and rules of thumb that apply to the component problems, do not apply to the
TTP. Furthermore, this section presents intuition that is speci�c to the TTP;
i.e., that does not apply to the TSP or KP.

The example is given by �gure 3.1, which presents the item distribution of the
TTP-instance with knapsack capacity W = 9 and rent rate R = 1. By insertion

of these parameters in equation 3.1, the speed of the thief is 1 − 0.9·Wπk

9 =

1− Wπk

10 , where Wπk is the current knapsack weight.

Notice that the TSP and KP components are trivially solved. There is only one
feasible TSP-tour, and all items �t in the knapsack. Nevertheless, solving this
TTP-instance is not trivial.

First, let us use a shortest tour, Π = [0, 1, 2, 3], and an empty packing plan,
P = {}, and calculate the objective value.

Z([0, 1, 2, 3], {}) = 0− 4 · 2

1− 0
10

= −8

Since no items are picked up, the objective value is the negative of the time, 8,
it takes to traverse the tour, times the rent rate, R = 1. If the item I1 is picked
up, the objective value increases:
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3 2

10 I1 = (3,5)

I2 = (4,7)I3 = (2,4)

2

22

2

Figure 3.1: The four circles are cities with the initial city labeled by a 0. Edges
are labeled by their length, and the three items appear adjacent
to the city in which they are located. The weight and pro�t of the
items are given in that order in parenthesis, i.e. Ii = (wi, pi).

Z([0, 1, 2, 3], {I1}) = 5− 2

1− 0
10

− 3 · 2

1− 3
10

= 5− 2− 3 · 2.857 = −5.57

Since this item is picked up in the beginning of the tour, it is intuitively a good
idea to try to reverse the tour, as the thief will then need to carry the weight
for a shorter distance. As mentioned earlier, this reversal has no e�ect in the
context of the ordinary TSP. For the example here however, reversal makes a
di�erence:

Z([0, 3, 2, 1], {I1}) = 5− 3 · 2− 2.857 = −3.857

In this case, the change of tour improves the objective value, despite the length
of the tour remaining unchanged. From this point, adding I3 further improves
the objective value:

Z([0, 3, 2, 1], {I1, I3}) = 5 + 4− 2− 2.5− 2.5− 4 = −2

The alternative, I2, is equally good:

Z([0, 3, 2, 1], {I1, I2}) = 5 + 7− 2− 2− 3.33− 6.67 = −2
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But adding both, which uses the optimal solution for the KP component, is not
a good idea:

Z([0, 3, 2, 1], {I1, I2, I3}) = 5 + 7 + 4− 2− 2.5− 5− 20 = −13.5

Notice that in this case it takes 20 time units to traverse the last edge, four
times as many as the previous edge, despite the knapsack weight increasing
only by a factor 1.5 between those two edges. In contrast, if the same amount
of weight was added while the knapsack was empty, traversing the last edge
would take only 2

1− 3
10

= 2.857 time units to traverse. So in general, the impact

to the objective value of adding I1 depends on what other items were added.
Conversely, the impact of adding the other items depends on whether or not I1
is going to be added in a later stage. Speci�cally, adding to P �rst I3 and then
I2 yields in both cases an improvement to the objective value:

Z([0, 3, 2, 1], {I2}) = 7− 4− 4

1− 4
10

= −3.67

Z([0, 3, 2, 1], {I2, I3}) = 7 + 4− 2− 2.5− 10 = −3.5

But then adding I1 results in a reduction of Z. Notice that this is actually the
order in which the greedy heuristic algorithm for the KP would add the items,
as I1 has the poorest score, s1 = 5

3 . The reason that it is bad to pick up I1 at
this point is that, although the knapsack has room for I1, the thief has added
too much weight in the early part of the tour. Stated more constructively: when
deciding to pick up items in the early parts of the tour, it should be factored
in that adding much weight so early, impairs the ability of adding items in the
later part of the tour. This can be done by penalizing the score of items that
appear early in the tour, and that is exactly what will be done later, when the
greedy heuristic algorithm for the KP is extended to the TTP.

As a �nal remark, despite the initial intuition that it is best to reverse the
tour, so that the relatively heavy I1 can be picked up near the end, the optimal
solution is actually to omit I1 entirely, and go back to the original Π = [0, 1, 2, 3].
Then the objective value is:

Z([0, 1, 2, 3], {I2, I3}) = 7 + 4− 2− 2− 3.33− 5 = −1.33
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Even though there were only two possibilities for Π, and an informed choice was
initially made, the choice turned out to be wrong. So even in this relatively
simple example, the attempt to separate the components by �rst choosing a
tour and then creating the packing plan for that tour, failed to produce the
optimal solution. This goes to show the strength of the interdependency of the
component problems of the TTP.

Note also that if the length of the edge (0, 3) were doubled, then all of the
above discussion remains valid, except that this last "turn of events" no longer
applies. With this change, Z([0, 1, 2, 3], {I2, I3}) = −6.33 is not optimal, but
Z([0, 3, 2, 1], {I1, I3}) = Z([0, 3, 2, 1], {I1, I2}) = −4 is.

3.2 Calculation of the Objective Value

In [BMPW14] an upper-bound ofO(nm) is given for the time it takes to calculate
the objective value of equation 3.4. The �rst sum clearly requires at most O(m)
operations. The second sum is over n cities, but each uses a unique WΠk , which
is calculated as the sum of at most m items, hence the O(nm). However, with
some e�ort, an upper-bound of only O(n+m) for calculating the objective value
can be achieved.

Notice that Wπk has the recursion formula given below.

Wπk =

{
Wπk−1

+ wP (πk) if k > 0

0 if k = 0
(3.5)

Then, in every term of the second sum in equation 3.4, the value Wπk is calcu-
lated by adding the previous value, Wπk−1

, to the extra weight, wP (πk), of the
items in the current city, k. This added weight is the sum of at most m items.
But because each item is located at a unique k, it can be added only once, so
the amortized number of item-additions over the entire tour is at most O(m).
In other words, the second sum is over n terms, each of which require an average
of O(mn ) additions to calculate. So there are the O(m) item-additions and the
n additions from adding together the terms of the sum. This yields the claimed,
total upper-bound � for both sums � of O(n + m). This can be simpli�ed to
O(m) in the context of the benchmark problems that are introduced later, as
these enforce m ≥ n− 1.
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3.3 Algorithms for the TTP

The TTP was studied in [PBW+14] and [BMPW14], where a host of algorithms
were applied to proposed benchmark sets of TTP-instances.

In [PBW+14], three algorithms are presented and compared. Each takes as
input a solution to the TSP-component � a tour, Π � and solves only the KP-
component by producing a packing plan, P , that maximizes Z(Π, P ). The �rst
presented algorithm is simple heuristic (SH), which extends the greedy heuristic
for the ordinary KP given by algorithm 1. The details are given in the next
section. The other algorithms are RLS and (1+1) EA, already introduced in
algorithm 2 and algorithm 3 for the KP. In the present context, these latter two
are applied with the only modi�cation being to the �tness function, formerly
equation 2.3. In the context of the TTP, the function c(P ), equation 2.1, is
unchanged, and the �tness function is given below.

f(P ) =

{
Z(Π, P ) if c(P )

−∞ otherwise
(3.6)

The test-results of the paper indicate that RLS and EA perform much better
than SH, but that they are much slower; so much so that SH actually outper-
formed both for very large instances in the time limited tests.

In the second paper, [BMPW14], the algorithms density-based heuristic (DH)
and CoSolver are introduced, and they are compared using another set of
TTP-instances. These instances are limited to at most 36 cities for the TSP-
component, and 150 items for the KP-component; whereas the instances intro-
duced in [PBW+14] are based on TSPLIB, and may thus contain up to 85900
cities (in the case of the pla85900 TSP-instance) and nearly ten times as many
items. While DH is similar to SH, CoSolver is designed to deal with the inter-
connection of the component problems, and as expected it is shown to produce
much better solutions than DH. However, CoSolver, as it is described, solves
to optimality the sub-problems, and so it is a super-polynomial time algorithm.
Thus it is likely too slow to be used feasibly on the much larger benchmark
problems of [PBW+14].
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De�ning SH and DH

Both of SH and DH were studied only in a context where they are given the
shortest possible tour, Π, as input. This Π was pre-calculated with the Chained
Lin-Kernighan algorithm introduced in [ACR03]. Thus, like the greedy heuristic
for the ordinary KP, SH and DH produce P , a subset of ofM , such that a �tness
function, f(P ), is maximized. However, as discussed in section 3.1, the TTP
severely complicates calculating meaningful score values for the items.

So, accordingly, SH and DH di�er from the greedy heuristic for the KP in how
the item-scores are calculated. Both SH and DH use the same score, si, which
is based on a crude estimate, ti, of the time it takes to complete the tour after
Ii is picked up. The value ti can only be an estimate, because, while the length,
di, of the path that the thief must traverse to complete the tour is known, the
thief's speed depends on what other items are picked up, and this information
can of course not be known by an algorithm tasked with deciding what items
to pick up.

The estimate, ti, then, is the time it takes a thief carrying only Ii to travel the
remaining tour distance di, from the city ci, which has tour index Π(ci).

di =

n−1∑
k=Π(ci)

dπk,πk+1

ti = t(di, wi) =
di

vmax − νwi
(3.7)

The score, si, is given below.

si = pi −Rti (3.8)

Notice the similarity to the objective value. Like it, si is a pro�t from item(s),
and a travel-cost. As the time, ti, only depends on the weight of the item in
question, it may seem that the heuristic intuition from section 3.1, that the
score should take other items into account, has no in�uence on si. However, si
does penalized items that appear early in the tour, because di is larger for these
items.

Once all items have been assigned a score, they are sorted in descending order
of si, and processed one at a time in this order. As the items are processed, they
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are added to the packing plan if they �t, and an additional requirement, ri, is
satis�ed. Thus, apart from this additional requirement, the only change from
the greedy heuristic is the item scores. Algorithm 12 summarizes the process,
which is di�erent for SH and DH only by virtue of the form of the requirement
ri.

Algorithm 12 SH and DH

1: DC := 0 . The distance to the end of the tour
2: for i = n− 1, n− 2, . . . , 1 do
3: DC := DC + dπi,πi+1

4: for all Ij ∈ P available at πi do
5: tj := t(DC , wj)
6: sj := pj −Rtj
7: I[] := array of all Ii ∈M , sorted in descending order of si
8: P := ∅
9: WP := 0
10: for i = 0, 1, . . . ,m do
11: Ij := I[i]
12: if WP + wj ≤W and ri then . ri is an implementation dependent

requirement
13: add Ij to P
14: WP := WP + wj

15: return P

For DH, ri is true i� Z(Π, P ∪ Ii) > Z(Π, P ), i.e., Ii is added to P only if
the addition improves the objective value. This makes the for-loop in line 10
of algorithm 12 become the dominating constituent of the running time. The
asymptotic running time of DH is then O(m(n+m)), since the objective value
can be calculated in time O(n + m), and it must be calculated m times in the
worst case, where all items �t in the knapsack. Note that due to the tighter
upper-bound on calculation of the objective value, the presented running time
for DH is correspondingly tighter than the upper-bound of O(nm2) given in
[BMPW14].

For SH, ri is true i� ui > 0, where ui is the so called �tness value1 given by
equation 3.9.

ui = pi −R(ti − t′i) (3.9)

1The �tness value of an item should not be confused with the �tness value of a solution. I
call ui a �tness value because it is called so in [PBW+14] which introduces SH.
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ti = t(di, wi)

t′i = t(di, 0)

In words the �tness value of Ii is its pro�t, pi, minus the cost of spending time
equal to the di�erence between the durations of traversing the tour with no
items in the knapsack and, when just Ii is picked up.

The intuition for using ui is that it expresses the gain in objective value of
adding Ii to the empty packing plan. Thus, adding an item with ui ≤ 0 to any
packing plan, can result in no increase in objective value. A proof is given in
[PBW+14].

The SH described in [PBW+14] additionally checks before termination if the
packing plan produced is no better than the empty packing plan, returning the
empty plan in that case. This condition would be met, for example, if SH were
to solve the TTP-instance given by �gure 3.1, since all items would be packed,
yielding an objective value less than Z(Π, {}) = −8. The condition is not met
in any of the experiments performed later.

Once again, a tighter upper-bound than the O(nm) from [BMPW14] can be
given. The O(nm) is from the �nal, single calculation of the objective value
that determines if the produced packing plan is an improvement over the empty
packing plan. So, like in the regular, greedy heuristic for the TSP, the for-loop
in line 10 takes linear time, the most time consuming operation is the sorting,
and so the running time of SH can be upper-bounded by O(m logm).

The Item Scores of SH and DH

Here an indication is given about the shortcomings of the score, si. Figure 3.2
shows three graphs, each of which correspond to a particular solution-pair of
tour and packing plan for the TTP-instance u280_5_5usw. The y-axis value of
the graphs indicate what the knapsack weight is at each city in the tour. For
the three solutions, the same, shortest tour is used. Only the packing plan is
di�erent.
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Figure 3.2: For the TTP-instance u280_5_5usw, the graphs are of the knap-
sack weight on the y-axis and the cities π0π1 . . . πn−1 on the x-axis
for three solutions; all of which use the same tour, but di�erent
packing plans. The solution of the orange graph (which, of the
three, achieves the greatest, �nal knapsack weight) uses the pack-
ing plan produced by DH, that of the yellow graph uses the plan of
GDH, and the green graph is for the solution with the best known
packing plan for the tour (which achieves the least, �nal knapsack
weight of the three).

The objective value achieved by the solution which uses the packing plan pro-
duced by DH, Z(Π, PDH) = 43, 630.42, is signi�cantly less than the optimal one
for the same tour, Z(Π, Popt) = 104, 365.73. The graphs in the �gure shows that
the packing plan produced by DH includes no items from the �rst 100 cities,
which is in stark contrast to the best plan. It seems reasonable to conclude, that
the score, si, does not accurately re�ect the quality of items in this instance. In
the next chapter, it is shown how to calculate a better score in constant time.
The resulting algorithm is called generalized DH (GDH).

To give an indication of how accurate we can expect the scores to get, the
comparison here includes GDH. The objective value achieved Z(Π, PGDH) =
103, 141.76, is much closer to that of the optimal packing plan for this tour.



34 Background - The Traveling Thief Problem



Chapter 4

Design of a Complete
Solver for the TTP

This chapter proposes a solution-procedure for the TTP which is based on
MMAS for the TSP. It involves two subroutines which are described individ-
ually. First, an overview is given in the next section.

4.1 Overview

The idea is to apply ACO as it would be to the TSP, but after a tour, Π, is
constructed, a packing plan, P is produced by a procedure similar to SH and
DH, resulting in a solution for the TTP. Since the components that are chosen
by the ants are edges, pheromone is not used to guide the construction of the
packing plan. Thus, with this solution, the TSP is solved in isolation, i.e., with
no regard as to what tours are inclined to yield good solutions to the TSP.

This algorithm is summarized below, when the choice for procedure 11 is made
in line 7. In this case, the algorithm is called ACOtsp, to indicate that the
pheromone values re�ect the quality of the solution in a TSP context. The
alternative choice � for procedure 14 in line 7 � causes pheromone values to re�ect
component quality in the TTP context, i.e. pheromone values are highest for
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edges that tend to be a part of tours that are well suited to yielding a high TTP
objective value. The corresponding algorithm is accordingly dubbed ACOttp.

Algorithm 13 ACO for the TTP

Input: A TTP-instance

1: while Stopping criteria is not met do
2: for Every ant in the population do
3: Construct a tour, Π, using procedure 9
4: Apply LK to Π using algorithm 5
5: Create a packing plan, P , for Π

6: Evaporate pheromones with procedure 10
7: Deposit pheromones as normal with procedure 11, or by using the TTP-

speci�c procedure 14

8: return The best seen pair (Π, P ), i.e., such that Z(Π, P ) is maximized

Thus, ACOttp involves pheromone deposition that is based on the objective
value, Z(Π, P ), of the TTP solution, instead of the tour length. In this case,
the pheromone trail should converge toward tours that tend to yield better
packing plans. This constitutes communication between procedures that deal
with the respective component problems.

In specifying procedure 14, which is given below, there is a di�culty in line 3.
Recall that the corresponding line in procedure 11 was τe := τe + 1

|T | , where

|T |, the tour length, conveniently was guaranteed to be positive, nonzero, and
typically small enough that pheromone can be deposited on the same edge,
e, many times, without causing τe to increase beyond 1. This last point is
important, because MMAS, [SH00], uses this 1 as the enforced upper-bound for
τe.

Line 3 in procedure 14 re�ects an attempt to meet these requirements, with the
values UB(I) and LB(I) for the TTP-instance I given below.

• UB(I) = [W · piwi −n] such that pi
wi

is the greatest among the Ii ∈M . This
yields an upper-bound for Z which is very coarse.

• LB(I) is equal to min(−Z(Π, P ), 0), for the solution, (Π, P ), with least
Z(Π, P ) of all those observed during execution of algorithm 13. In other
words, LB(I) is zero, unless the worst encountered solution has negative
Z, in which case LB(I) takes on this value.
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Procedure 14 TTP Pheromone Deposition

Input: A set, S, of pairs (Π, P ) that are feasible solutions for the TTP-instance
I

1: for all (Π, P ) ∈ S do
2: for all e ∈ Π do
3: τe := τe + LB(I)+Z(Π,P )

UB(I)

If using the pheromones in this way is to work, clearly it is important that the
procedure which produces the packing plan in line 5 of algorithm 13 produces
the plans quickly and with consistent quality. It is not necessary that the pro-
duced plan, P , is optimal, or even good, as long as the objective value, Z(Π, P )
is a good indicator of how good Π is compared to other tours. Then, when the
algorithm ends, the plan can optionally be improved further. Of course, pro-
ducing an optimal P ensures that Z(Π, P ) is an exact indicator of the quality
of Π in the TTP context, but this P takes too long to calculate.

Of the algorithms considered so far, none are good enough. RLS and EA (1+1)
are too slow (except perhaps on very small instances), and SH and DH are
too inconsistent. A better method is thus required, and it is introduced in the
following section.

To further intensify the selection strategy, the elitist pheromone update scheme
is adopted. After every iteration, pheromone is deposited on only two tours �
the best tour of the iteration, and the best global tour. In continuation of the
above, what constitutes a best tour is determined by its length if the algorithm
is ACOtsp, and by the TTP objective value if the algorithm is ACOttp.

Unfortunately, while the tours constructed by the ants in ACOttp are guided by
pheromones toward good TTP tours, the subsequent local optimization is tuned
only to create short tours. Thus, some of the edges which are good from a TTP
point of view, may be deleted by LK because they are not consistent with short
tours. Nevertheless, some of the "communication" will likely leak through.

4.2 An Improved Packing Heuristic for The Trav-

eling Thief Problem

This section introduces a new algorithm, generalized density-based heuristic
(GDH). Because GDH is just a generalization of DH, algorithm 12 roughly



38 Design of a Complete Solver for the TTP

gives the pseudocode. The di�erences are the condition, ri in line 12, and the
score-calculation in lines 5 and 6.

The new score-function is based on the �tness value, ui, given by equation 3.9.
Recall that ui is the exact gain in objective value of adding Ii to the empty
packing plan. The score derived for GDH in the following, is an estimate of the
gain in objective value of adding Ii to an approximation of the optimal packing
plan.

Recall from the discussion in Section 3.1 that it is important that the score takes
into account the weight of the other items in the knapsack. To help explain the
extent to which scores take account, I identify two issues such that the �rst
is dealt with to some degree by the scores of SH, DH, and CoSolver, and the
second is globally ignored. They are given below.

a) When Ii is picked up, the knapsack usually already contains some weight,
which is greater the closer to the end of the tour Ii is picked up.

b) After Ii is picked up, the speed of the thief will continue to decrease as
more items are added and the knapsack weight increases. So when Ii
is added to the packing plan at some tour index πj = ci, this causes
some additional amount of time, ∆tj , to be used to traverse the next
edge (πj , πj+1), and, similarly, some additional amount of time, ∆tj+1, to
traverse the edge after that (πj+1, πj+2). Of course ∆tj is not necessarily
equal to ∆tj+1 because the two edges are not necessarily of equal length.
But even if they are, the two numbers may be di�erent. Speci�cally, if
the edges are of equal length, ∆tj+1 is greater if extra weight is added at
πj+1, and otherwise, ∆tj = ∆tj+1. More generally, if the packing plan
already contains one or more items to be picked up at πj+1, then the time

per distance increases:
∆tj

|(πj ,πj+1)| <
∆tj+1

|(πj+1,πj+2)| . So, from adding Ii, the

consequent amount of extra time per distance is a growing function of the
total distance traveled by the thief. Nevertheless, the scores used by SH,
DH, and CoSolver incorporate the estimate of the total extra time which
assumes that there is no growth:

∆tj
|(πj ,πj+1)|di, where di is the remaining

tour distance.

The algorithm CoSolver deals with a) in a way that is used in the design of
GDH. CoSolver uses as scores so called "relaxed pro�ts", p̄i, which is essentially
a modi�cation of ui that takes into account a packing plan, Pprev, produced in
a previous application of CoSolver.

p̄i = pi −R(t̄i − t̄i′) (4.1)



4.2 An Improved Packing Heuristic for The Traveling Thief Problem 39

where

t̄i = t(di, Wπj−1
+ wi) , ci = πj

t̄i
′

= t(di, Wπj−1
) , ci = πj

In the above Wπj−1
is the cumulate weight of the city that, in the tour, comes

before the one where Ii is located. This cumulate weight is with respect to
Pprev. As usual, di is the remaining tour distance.

The meaning of t̄i is the time necessary to complete the tour from the city where
Ii is picked up, but without picking up any more items after Ii. The meaning
of t̄i

′
is similar, except that Ii is not picked up.

Comparing to ui, the only di�erence is the addition in two places ofWπj−1 . But
if Pprev = ∅, then Wπj−1

= 0 and p̄i = ui for all i.

So ui is just p̄i for one particular choice of Pprev. Note that in calculation of p̄i,
the information needed from Pprev is the weight of the knapsack at each city.
Figure 4.1 gives an example of this for a good packing plan.

Figure 4.1: The graph of y = Wπx for a particular tour of fnl4461 and a good
packing plan for the TTP-instance fnl4461_5_5usw. Thus, the
knapsack weight is given on the y-axis, and the tour-indexes are
given on the x-axis
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Let us say that the graph presents the function y(x) and that the corresponding
packing plan is the Pprev used to calculate p̄i. Then Wπj−1

= y(j − 1). This
illustrates how the p̄i score deals with the issue a) above. Correspondingly, the
issue b) has to do with the function y(x) in the interval j ≤ x < n. The value p̄i
assumes that y(x) = y(j−1) for all x ≥ j. However, as can be seen in the �gure,
this assumption far from holds. In the following is described a score which takes
into account the steady increase of the knapsack weight.

By modi�cation to p̄i, this can be achieved by replacing t̄i and t̄i
′
with Ti(wi)

and Ti(0) respectively, using the following de�nition of Ti(w), which assumes as
usual that ci = πj

1.

Ti(w) =

n−1∑
k=j

dπk,πk+1

vmax − ν · (Wπj + w)
(4.2)

The problem with the resulting score function,

pi −R(Ti(wi)− Ti(0)),

is that it requires up to O(n) additions to calculate.

The next step is to approximate Ti(w) in constant time. For GDH, this is done
by approximating the running weight � for example, as expressed by the function
y(x) in �gure 4.1 above � by a quadratic function in the distance traveled by the
thief, i.e., y(x) = k · x2, for some appropriate k. So the city-weights which were
previously obtained empirically from a packing plan, Pprev, are now calculated
as a function of the tour.

Figure 4.2, which gives the equivalent of �gure 4.1 for additional TTP-instances,
indicates that di�erent instances call for di�erent such functions; i.e. di�erent
polynomials approximate the various graphs best. Despite the di�erences, the
function y(x) = k · x2 appears to be a reasonable approximation if one choice
must cover all instances. A discussion of what function is actually best, and
whether it is possible to choose between alternatives during algorithm execution,
will be left to future work.

If D is the total distance of the tour, and Wopt is the �nal knapsack weight,

1For Ti(w), the running weight used is Wπj , the one for the current city, while the value

used to calculate t̄i and t̄i
′ is for the previous tour city. The change has little practical impact,

but greatly simpli�es further calculations.
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a280_1_1bsc a280_5_5usw a280_10_10unc

fnl4461_1_1bsc fnl4461_5_5usw fnl4461_10_10unc

pla33810_1_1bsc pla33810_5_5usw pla33810_10_10unc

Figure 4.2: These graphs give the weight of the knapsack on the y-axis, and
the tour-index on the x-axis, similarly to the graph of �gure 4.1

equation 4.3 gives the approximation.

Wπj ≈Wopt
(D − di)2

D2
(4.3)

This approximation is more naturally expressed as a function, W (d′i), d
′
i ∈ Z,

of the distance, d′i = D − di, of the part of the tour leading to Ii.

W (x) = Wopt
x2

D2
(4.4)

By using W (x) to approximate Wπj , Ti(w) can be estimated as a sum over
every unit of distance left of the tour after picking up Ii. This estimate, TZ

i (w),
extrapolates the sequence of edges into an integer sequence.

Ti(w) ≈ TZ
i (w) =

D∑
x=d′i

1

vmax − ν · (W (x) + w)
(4.5)
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The expression for TZ
i (w) is an estimate of Ti(w), because it re�ects a gradual

decrease in speed during travel between each pair of cities in the tour, while the
speed is actually constant in these intervals.

The last step is to estimate TZ
i (x) by expressing it as an integral, by extrapo-

lating from the integers to the real numbers.

TR
i (w) =

D∫
d′i

1

vmax − ν · (Wopt
x2

D2 + w)
dx

=
D

√
ν
√
Wopt

√
vmax − νw[

arctanh

(
x
√
ν
√
Wopt

D
√
vmax − νw

)]x=D

x=d′i

(4.6)

The expression has the convenient form

TR
i (w) =

C1

C2

[
arctanh

(
x

C1C2

)]x=D

x=d′i

(4.7)

where C1 and C2 are constant once a tour has been �xed, and a Wopt has been
chosen.

C1 =
D

√
ν
√
Wopt

C2 =
√
vmax − νw

Finally, the score used in GDH is given by below.

sGDHi = pi −R(TR
i (wi)− TR

i (0)) (4.8)

As noted earlier, apart from using this new score-function, GDH shares with DH
and SH the pseudocode given by algorithm 12, but has a unique requirement
in line 12. The value ri is set to be the conjunction of the values of ri for DH
and SH, albeit with a di�erent �tness value. The �tness value used is sGDHi
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calculated with a reduced value for Wopt; the present implementation uses the
value 0.8 ·Wopt.

The value Wopt is a parameter of the algorithm, and choosing it well is di�cult.

The derivation of si suggests that the best choice for Wopt is the total knapsack
weight of the best known packing plan. While the two values are typically
strongly correlated, they are not necessarily equal.

Nevertheless, using repeated application of GDH to produce better choices for
Wopt is useful. In the following IGDH(x) (Iterative-GDH) denotes the algorithm
that applies x iterations of GDH, updatingWopt after each iteration to take into
account the packing plan created in the previous iteration.

4.3 A Faster GDH

It is possible to greatly reduce the computation time of GDH. This comes at a
cost to the objective value of the resulting packing plan; but the cost is usually
very low, and sometimes there is actually an improvement compared to GDH.
The intuition is that, since all the items to be considered are ordered by their
score, i.e. how good they are, there is no need to check for all items (in O(n+m)
time for each) whether it is advantageous to add them, but only to �nd the
turning point and add all items before it.

So, ideally, all items before the i'th, for some initially unknown i, must be added,
and the remaining ones must not be added.

Although there is not necessarily any such absolute turning point, the intuition
holds. The fast version of GDH which uses this approach will be called hybrid
heuristic (HH) (and IHH(x) for the iterative version), since it uses at most
O(
√
m) objective value calculations where DH uses at most O(m) and SH uses

O(1).

Speci�cally, HH adds the items from the sorted list in chunks of
√
m items,

checking for each chunk � rather than for each item � whether the addition
results in an improved objective value. When the turning point is reached � a
chunk is added, decreasing the objective value � that chunk is removed. Then
all items from the removed chunk and the next one are processed normally; i.e.
they are added individually, the objective value is calculated each time, and the
item is then removed again � before moving on to the next � unless there was
an improvement.



44 Design of a Complete Solver for the TTP

Thus there are a total of at most 3 ·
√
m objective value calculations, and the

running time of HH is upper-bounded by O(
√
m(n+m)); an improvement over

the O(m(n+m)) of GDH.

The obvious drawback is that the objective value takes linear time to calculate,
while the G used in LK for the TSP takes only constant time. Before d issue, it

4.4 Design of Visualization software

As a part of this project, a graphical user interface (GUI) based visualization
software has been produced. The purpose is to enable rapid and dynamic vi-
sualization of solutions for the TSP, KP, and TTP, to facilitate analysis and
documentation in this thesis. Figure 4.3 gives a typical view of the GUI.

Figure 4.3: The GUI of the visualization program

The following are features of the program.
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•
Solver View Multiple algorithms (solvers) can
run in parallel. In-GUI selection of parameters
such as start-tour, number of iterations, and max-
umum run-time is possible. There are progress
indicators for duration and number of iterations.
Execution can be canceled. Solvers can be re-
named. They can also be duplicated and deleted.

•

Tour View Tooltips allow querying coordinates,
city-index, and tour-index of cities. Multiple
tours can be displayed simultaneously. The user
can click and drag to pan, use the scroll wheel to
zoom
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•

Graph View Two choices for x-axis are avail-
able, and there are eight choices for y-axis values,
for a total of 16 graphs. Pan and zoom is possi-
ble. Multiple solvers can be displayed in the same
view. Solvers can be individually hidden and re-
added inde�nitely.

•

Open From File A TTP-instance �le can be
speci�ed by its path and opened. Multiple in-
stances can be open simultaneously in separate
panes.



Chapter 5

Implementation

This chapter deals with implementing the designs of the previous chapter. Focus
is on presenting challenges and issues that have come up, as there is no neat,
overarching structure for the entire implementation.

5.1 Framework and Objective Function

Available from http://cs.adelaide.edu.au/~ec/research/combinatorial.

php is a java implementation of RLS, EA and a framework for loading TTP-
instance �les, representing them in memory, and calculating the objective value
for this representation. The designs presented in the previous chapter are imple-
mented in java around this framework. A great advantage of using this frame-
work is that it provides con�dence that good results cannot be explained by
incorrectly calculated objective value, or incorrect interpretation of benchmark
problems.

The framework uses the Pythagorean theorem to calculate distances, and never
saves these in memory. Particularly the square-root is expensive to calculate
and the distances must be frequently fetched by algorithms such as LK. So,
intuitively, some time can be saved at the cost of memory by saving these

http://cs.adelaide.edu.au/~ec/research/combinatorial.php
http://cs.adelaide.edu.au/~ec/research/combinatorial.php
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distances in an n × n matrix. Since all instances are of symmetric TSPs, less

than n2

2 distances actually need to be stored. Nevertheless, I ran out of memory
for some of the larger instances, so I do this only for su�ciently small n.

Importantly, java's virtual machine checks for out-of-bounds errors at every
array-look-up. This is great for debugging, but there is a small, constant time-
cost associated to every look-up. The cost is great enough that the matrix
representation of distances o�ers no improvement to algorithm running-time.
However, it is possible to disable the out-of-bounds-check by using a class called
Unsafe. Using this class � which is rather roundabout, as it is made to be used
by developers of the java language � I managed to achieve an improvement in
algorithm running time by storing distances in memory.

5.2 Lin-Kernighan Algorithm for the TSP

The implementation of LK implemented here is optimized for fast, single runs,
i.e. where LK is stopped after a starting tour cannot be further optimized, rather
than repeating with new starting tours. The original paper [LK73] suggests (in
section 2.C titled "Reduction") using statistical analysis of what edges occur
frequently in several such repetitions. Accordingly, this has not been imple-
mented as suggested. Additionally, this is essentially what ACO achieves with
the pheromone updates, so implementing it would likely be redundant in this
context. This bars direct implementation as suggested in section 2.D of [LK73]
of a closing "Nonsequential Exchange", such as the double bridge move, because
the statistical analysis must be used to simplify the search for the double bridge
move, by ruling out deletion of the most frequent edges.

For the same reasons, using kicks, as suggested in [ACR03], to chain together
consecutive calls to LK, is not featured by the implemented version. However,
the discussion on alternative starting tours to the random permutation is rele-
vant, as the tour provided in the ACO context is similar in nature to the Nearest
Neighbor starting tour.

5.3 ACO Algorithm for the TSP

For ACO to work, it seems that pheromones must be stored in memory for every
edge. As mentioned in Section 5.1, there not be enough memory available for this
to be possible. However, because of the design choice to deposit pheromone only
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for very few, best tours, the majority of edges will have the minimum possible
amount of pheromone. Thus a hash table can be used to store the pheromone
values. With care, removing entries that are evaporated to the minimum, it
seems that the amount of memory required to hold the pheromones can be kept
within a constant factor of n.

A related issue arises from the need to create, at each of n steps in the tour
construction phase, a probability distribution over n − i edges when choosing
the i'th component. When i is low, most edges are associated with a very low
probability. In fact, this issue is also closely related to one of the Lin-Kernighan
algorithm, which at any given time limits itself to considering only the nearest
�ve neighbors, i.e., the shortest �ve candidate edges. Using this inspiration, the
probability distribution is created over the log n shortest, outgoing edges minus
those that enter cities that are already visited. If this set is small, i.e. most
of the nearest neighbors are already visited, this typically means that n − i is
very small, and so the probability distribution is over all feasible candidates in
this case. In addition to inclining search additionally toward short tours, this
adjustment signi�cantly reduces running-time.

5.4 GDH and HH for the KP component of the

TTP

Due to the similarity of SH and DH, these were implemented �rst. In the case of
SH, this has allowed for proof of concept, as the algorithm is deterministic, and
[PBW+14] provides results for public benchmark problems. Curiously, I was
unable to exactly reproduce the results, despite trying every variation I could
think of. The variation that is � as far as I can tell � as de�ned in [PBW+14],
is the one that produces results that provide the closest match; which is close
enough that I �nd reasonable the conclusion that the cause of the discrepancy
is some minor implementation detail.

5.5 Visualization Software

In addition to facilitating incorporation of some basic GUI elements like buttons,
text, and tables, the new JavaFX has been particularly useful for its LineChart
� extending the XYChart � class, which is used to display the graphs and to
visualize the tour. These take a list of two-dimensional data-points in a class
called a Series, which is displayed by drawing a line from point to point. For
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the tour view there was a complication, as the XYChart sorts data-points by x-
coordinate prior to drawing the graph-line, thus breaking the order of the cities.
To get around this, I had to override the LayoutPlotChildren class, to disable
the sorting. Conveniently, this was also a natural place to add the tooltips for
the cities. I used the Tooltip class for this.

The XYChart's of JavaFX do not o�er native support for "Google-maps"-style
pan and zoom. I implemented this by using mouse-input-listeners � which all
JavaFX elements do support � to trigger appropriate axis-range modi�cation.

A downside of XYChart is that it is not intended to be used with quite as much
data as necessary in this application. Thus, whenever a new Series was added
to a chart, the program would freeze for a few seconds (or hours for very big
series with many data-points), as all JavaFX must run on the main thread. To
alleviate this I did the following two things:

a) In the case of the graphs, a sequence of three or more consecutive data-
points on a line can be equivalently represented by the �rst and last of
the sequence. Identifying and removing this redundancy due to linear-
ity made a big di�erence. Further, as it does not make use of JavaFX,
this identi�cation-process can be moved out to a daemon thread, allowing
process-indicators and cancel buttons.

b) When the user requests a solution to be displayed, it is processed only by
views that are open, i.e., not all 17 possible graphs are created, but only
those corresponding to the up to three open charts.
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Experiments

In this chapter, the implementations are exposed to a number of tests. There
is a set of nine benchmark problems used for all the tests. Details for these are
given in the next section. The following three sections presents three sets of
experiments that compare the three di�erent types of algorithms presented in
this thesis:

a) Algorithms that solve the KP component of the TSP

b) Algorithms that solve the TSP

c) Algorithms that solve the TTP

6.1 The Experimental Setup

The setup uses the nine TTP-instances from the benchmark-set described in
[PBW+14], which have the names given below.

a280-1-1bsc a280-5-5usw a280-10-10unc
fnl4461-1-1bsc fnl4461-5-5usw fnl4461-10-10unc

pla33810-1-1bsc pla33810-5-5usw pla33810-10-10unc
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They are based on the TSPLIB, TSP-instances a280, fnl4461, and pla33810
which have 280, 4461, and 33810 cities respectively. The TTP-instance names,
e.g. a280-1-1bsc, all include two numbers, the �rst of which is the number
of items per city, and the second of which is the capacity category value, C,
specifying the capacity of the knapsack as C

11 times the sum of all item weights.
So a280-1-1bsc has one item per city and C = 1.

The last three letters of the instance name specify its knapsack type. There are
three possibilities: uncorrelated (unc), uncorrelated with similar weights (usw),
and bounded strongly correlated (bsc). Uncorrelated KP instances are usually
the easiest to solve, while the strongly correlated ones tend to be very hard.

All experiments are performed on one core of an Intel i5-3570K CPU.

6.2 Computational Study of the Packing Plan Al-

gorithms

This section presents experiments which measure the performance of DH, IGDH,
and IHH.

Since these algorithms only process the KP part of the TTP, the experiments
use just one tour per TSP-instance. This, too, is the approach used to test SH,
RLS, and EA in [PBW+14]. In fact, the tours � which were produced using
the Chained-Lin-Kernighan algorithm from [ACR03] � used in that paper were
made public1, and so the experiments documented here use the same tours,
and the results can be compared to those from the paper (which they are in
table 6.4).

Table 6.1 and 6.2 present data on the experiments. They were stopped after 20
iterations with no improvement, or ten minutes, whichever came �rst.

1The tours are included with the java implementation of RLS and EA available from
http://cs.adelaide.edu.au/~ec/research/combinatorial.php

http://cs.adelaide.edu.au/~ec/research/combinatorial.php
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TTP-instance #iters time total time per iter resulting Z
a280-1-1bsc 27 93 0.21 15, 773.77
a280-5-5usw 26 144 2.37 104, 226.32
a280-10-10unc 26 261 7.37 411, 549.42
fnl4461-1-1bsc 55 4, 417 80.31 247, 782.75
fnl4461-5-5usw 26 20, 756 798.31 1, 478, 144.43
fnl4461-10-10unc 32 88, 345 2, 760.78 6, 259, 156.83
pla33810-1-1bsc 79 295, 057 3, 734.90 1, 708, 313.14
pla33810-5-5usw 8 663, 665 82, 958.13 1.46965× 107

pla33810-10-10unc 2 640, 351 320, 175.50 5.676597× 107

Table 6.1: Experimental results for IGDH(x). The �rst column gives the TTP-
instance on which the experiment is performed. The second gives
x, i.e. the number of calls to the algorithm. The third column
gives the duration in milliseconds of the experiment. The fourth
column is the average duration of one call to the algorithm. For
the experiments of duration less than three seconds, this average
was calculated for a separate experiment with greater x. The �nal
column gives the resulting objective value

TTP-instance #iters time total time per iter resulting Z
a280-1-1bsc 27 80 0.15 15,773.77
a280-5-5usw 25 101 0.84 104,202.52
a280-10-10unc 33 144 2.17 411,459.29
fnl4461-1-1bsc 48 236 3.06 247,750.05
fnl4461-5-5usw 35 2,239 57.17 1,478,086.99
fnl4461-10-10unc 35 5,819 166.26 6,246,448.19
pla33810-1-1bsc 26 1,182 46.96 1708719.81
pla33810-5-5usw 29 55,599 1,917.21 1.46742× 107

pla33810-10-10unc 42 252,832 6,019.81 5.665097× 107

Table 6.2: Experimental results for IHH(x)

The reason that some of the experiments took longer than ten minutes is that
the algorithms were not stopped mid-iteration.

To help compare the objective values obtained by the various algorithms, I adopt
the scheme of [ACR03] to express the result as a percentage de�cit of the best
result. In that paper the results were tours for the TSP. An equally elegant
calculation of the percentage de�cit of a solution of a TTP-instance is probably
not possible. The method used in the following requires calculating a best and
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worst objective value for each of the nine instances. Then the experimental
results can be given by the percentage de�cit from this best value in the following
way.

100 · (best− result)
best− worst

.

These best and worst values are presented in table 6.3.

TTP-instance best seen Z empty packing plan Z
a280-1-1bsc 16156.397 −14658.93
a280-5-5usw 104365.731 −189965.1
a280-10-10unc 411714.790 −544888.89
fnl4461-1-1bsc 256910.094 −259989.8
fnl4461-5-5usw 1478962.570 −3205302.82
fnl4461-10-10unc 6261433.187 −9051359.18
pla33810-1-1bsc 1727869.528 −1987561.74
pla33810-5-5usw 1.4704801579× 107 −2.186317914× 107

pla33810-10-10unc 5.6808627336× 107 −6.227693452× 107

Table 6.3: Best and worst values for the nine instances

The worst values in the right-most column are the objective values achieved by
using the empty packing plan.

The best values are produced by �rst building an initial packing plan using
IHH, and subsequently further optimizing it using RLS and EA. I have aimed
at producing best values which at least appear to be locally optimal, i.e., where
relatively many applications of RLS and/or EA �nd no improvement.

One instance � pla33810-1-1bsc � was too "hard" for this to be possible in
reasonable time using the method described. The best value listed in table 6.3
for it is the result of an optimization process presented in �gure 6.1. IHH
produces the initial packing plan with Z = 1, 708, 719.81 in about one second,
and after the second stage � where an iteration includes 100 RLS applications
and 0-5 EA applications � the result is 1, 727, 869.53. This second stage of the
process took over 8 hours, yet the result is clearly not optimal, since the rate of
improvement per iteration did not greatly slow down.
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Figure 6.1: This graph presents the progress of an optimization process for
pla33810-1-1bsc which took over 8 hours. The objective value is
given on the y-axis, and the number of iterations on the x-axis

In a similar attempt at obtaining a best value for pla33810-5-5usw presented in
�gure 6.2, a local optimum, which was 1.89×10−7% worse than the best known
result, was not escaped despite nearly 60,000 applications of EA.

Figure 6.2: The progress of the same optimization process applied to pla33810-
5-5usw. The process took 5 hours, and it resulted in Z =
1.470480155× 107.

These two examples also serve to indicate that the problem di�culty is heavily
in�uenced by other factors than instance size. The second instance has �ve
times as many items as the �rst, yet the second appears to admit a near optimal
solution much more readily than the �rst.

So the worst and best values are not necessarily the minimal and maximal
values achievable. But all the experimental results �t in the range, and the
corresponding percent-de�cits are given in table 6.4. With these values, 0 is
best and 100 is worst.

In the table I have included the results for SH, RLS, and EA from [BMPW14].
The results for the nondeterministic RLS and EA are averages over 30 trials,
each of which was stopped after ten minutes or 100,000 consecutive iterations
with no improvement.
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Additionally, I have included some results from my implementation of DH.

SH DH RLS EA IGDH IHH

a280-1-1bsc 13.0818 - 5.7631 1.5072 1.2417 1.2417

a280-5-5usw 36.3928 20.6331 0.0006 0.0006 0.0474 0.0555

a280-10-10unc 24.2848 - 0.0000 0.0004 0.0173 0.0267

fnl4461-1-1bsc 16.9287 16.6953 10.7635 4.7778 1.6512 1.6576

fnl4461-5-5usw 31.0149 17.0515 0.0084 0.0553 0.0175 0.0187

fnl4461-10-10unc 23.3733 3.4203 0.2241 8.5935 0.0149 0.0979

pla33810-1-1bsc 18.9917 17.4395 3.1539 7.3687 0.5264 0.5154

pla33810-5-5usw 41.1326 19.6068 53.2629 67.9612 0.0047 0.0657

pla33810-10-10unc 30.6967 3.9120 87.2424 92.6544 0.0324 0.1290

Table 6.4: This table gives the percent de�cit of the best seen objective values;
lower is better. The results for SH, RLS, and EA are taken from
[PBW+14]; while the results for DH, IGDH, and IHH are the results
of original experiments detailed in this section. The best results are
highlighted in bold.

6.3 Computational Study of ACO and LK for the

TSP

This section demonstrates with a few experiments the performance of the ACO
and LK implementations for the TSP.2.

mean std
LK 2613 0
ACO 2613 0

Table 6.5: Tour length after 1 second of solving the benchmark TSP a280. The
results are averaged over 10 trials � all of which found the optimum
of 2613.

2These tests are consistent with the choice of rounding all distances up to the nearest
integer. For this reason, the optimal tour lengths di�er slightly from those which apply to the
TSPLIB instances of the same name
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mean std
LK 187 200 58.076
ACO 187 038 66.572

Table 6.6: Tour length after 10 minutes of solving the benchmark TSP fnl4461.
The results are averaged over 5 trials. The optimum is 185707.

6.4 Computational Study ACO for the TTP

This section presents results from application of the composite algorithms ACOtsp
and ACOttp. Due to the nondeterministism of ACO, each result is the mean of
�ve trials, and the sample standard deviation (std) is supplied.

In the two tables below � one for each of the algorithms � a �nal column gives
the percentage std per mean. This is useful to quickly compare the experiments
by how spread out the results are. To conclude this section, the results of the
two tables are condensed in table 6.9, which compares the two algorithms.

mean std std
mean

· 100%
a280-1-1bsc 16896.74583009378 679.05111593977 4.0188%
a280-5-5usw 107046.08308917252 2779.97768282294 2.5970%
a280-10-10unc 425523.1502678897 3571.4695704274 0.8393%
fnl4461-1-1bsc 223901.3412126741 5376.1549418388 2.4011%
fnl4461-5-5usw 1560736.5967671007 7965.9859607386 0.5104%
fnl4461-10-10unc 6355652.977072473 87412.773809482 1.3754%

Table 6.7: This table gives the results of the experiments for ACOtsp. Algo-
rithm execution was stopped after 10 minutes. The mean is the
average over �ve separate such executions.

mean std std
mean

· 100%
a280-1-1bsc 17684.645617329500 186.27158482922 1.0533%
a280-5-5usw 110255.43862388225 56.07233574242 0.0509%
a280-10-10unc 429082.458074452 6.981533989 0.0016%
fnl4461-1-1bsc 232906.6316696956 689.992173397 0.2963%
fnl4461-5-5usw 1572362.4543070450 1774.5933783021 0.1129%
fnl4461-10-10unc 6400666.984278966 1959.480393837 0.0306%

Table 6.8: This table gives the results of the experiments for ACOttp. Algo-
rithm execution was stopped after 10 minutes. The mean is the
average over �ve separate such executions.

With these results, it is clear from comparison to table 6.3 that, with the ex-
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ception of fnl4461-1-1bsc, these composite algorithms handily outperform the
previously presented algorithms, which only had one tour to work with.(

1− ACOtsp
ACOttp

)
· 100%

(
1− max(RLS,EA)

ACOttp

)
· 100%

a280-1-1bsc 4.4553% 11.2679%
a280-5-5usw 2.9108% 5.3433%
a280-10-10unc 0.8295% 4.0476%
fnl4461-1-1bsc 3.8665% 0.5437%
fnl4461-5-5usw 0.7394% 5.9651%
fnl4461-10-10unc 0.7032% 2.7115%

Table 6.9: The center column of this table relates the results of the two previ-
ous tables by giving the percent de�cit of the ACOtsp result mean
from that of ACOttp. In a similar fashion, the rightmost column
relates the best previously published result to ACOttp. Note that
these percent de�cits use the value 0 as the "worst" value, as op-
posed to the previous section where the worst value was the objec-
tive value for the empty knapsack.

In addition to the summarizing results presented by the tables, I add that only
for the instance fnl4461-10-10unc did ACOtsp produce any solution with objec-
tive value greater than at least one of the �ve produced by ACOttp. In fact, the
two best solutions of the total 10 produced for this instance, were produced by
ACOtsp.
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Discussion

The results of the previous chapter are discussed here.

7.1 IGDH and IHH

The results presented in table 6.4 show that, like SH and DH, the new IGDH
and IHH algorithms cannot compete with the random climbers, RLS and EA,
when enough time is given relative to the instance di�culty. However, while
DH outperforms RLS and EA on only the two largest instances, IGDH and IHH
have the best results on six of the nine instances. Furthermore, in the three
cases where IGDH or IHH do not produce the best result, the results they do
produce are well within 1% of the best.

In fact, the worst result achieved by any of the two is only 1.6576% worse than
the best known result, while all the other algorithms have at least one result
that is at least 20% worse than the best.

These experiments indicate that the performance of IGDH and IHH is much
more stable than that of the other algorithms. This makes it suitable for use in
the composite algorithm discussed in the next section. The stable performance
is crucial in this context, because incorrectly deeming one solution better than
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another, will propagate to future solutions through the pheromone deposition,
which is a self-perpetuating mechanism.

Furthermore, the improvement of algorithm running time from IGDH to IHH
is an enabling factor. Consider fnl4461-10-10unc, where IHH is faster by 2.5
seconds per iteration. An iteration of ACOtsp or ACOttp takes about 3.4 seconds
on this instance, and it calls IHH(3), i.e. there are three iterations, so 7.5 seconds
are saved, cutting algorithm running time by a factor 7.5

3.4+7.5 = 0.69.

Even when much time is available, IHH is likely the better choice, as the small
performance gap quickly can be closed by local search algorithms like RLS or
EA.

This was the technique used to produce the upper-bounds for the nine instances
in the previous section. Producing these revealed one case � pla33810-1-1bsc �
where an acceptable result was not reached even after eight hours. The results
in general indicate that the instances with the su�x "_1_1bsc" � one item per
city, C = 1, bounded, strongly correlated � are much harder to solve. This is as
expected from the bsc item types, but it has not here been tried to separate the
bsc tag from the two other parameters, so it cannot be concluded that it is the
cause.

As a �nal remark, notice that SH provided the previously best known results for
pla33810-5-5unc and pla33810-10-10unc, which are 41% and 31% worse than the
best solution (for the same tour) presented in this thesis1. These new results
thus give better context for reasoning about the relative performance of the
other algorithms. For example, it is now clear that for these instances, RLS and
EA (1+1) do not even surpass the half-way mark in their climb from the empty
packing plan toward the optimal one; whereas it could be previously said that

RLS comes within
(

1− 53.26%
100%−41.13%

)
· 100% = 9.52% of the best known result.

7.2 The ACO-based TTP Algorithm

Table 6.8 presents results for ACOttp that are consistently better than the re-
sults for ACOtsp. Additionally, the standard deviation is much higher for the
ACOtsp results. This is consistent with the expectation that ACOtsp is capable
of happening upon a short tour that lends itself well to being part of a solution
to the TTP, but is equally likely to converge toward a tour that is short, but
lends itself poorly. On the other hand, ACOttp is designed speci�cally to favor

1The results for DH are better, but they have not yet been published
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those edges which in previous iterations were part of tours that in turn were
part of the best TTP solutions. Thus, it is not suprising that the experimental
results were relatively more consistent for this algorithm.

Let us examine more closely the two instances fnl4461-1-1bsc and fnl4461-5-
5usw. In both cases ACOttp was better, but in the former case the di�erence was
3.87%, and in the latter it was 0.74%. Apparently, the degree by which ACOttp
outperforms ACOtsp, varies by the instance. The experiments presented in the
previous chapter do not preclude the existence of instances for which this degree
of "outperformance" takes a dip into the negative.

But there is no need for such preclusion. Instead the varying performance should
be taken as an indication of the strength of the interconnection of the component
problems. In that case, the instance a280-1-1bsc should be the most strongly
interconnected of the six. While the experiments have not been thorough that
I dare make this claim, this seems like the most intuitive conclusion. For that
instance, there are very few items, and they are all very heavy and of very
similar weight. So the packing plan is nearly dictated by the tour, as there is
little other choice than to pack those items near the end of the tour. For this
reason, the objective value will be devastated by choosing a tour � which may
be short � but which is a poor TTP-tour for placing longer edges close to the
end of the tour. It is exactly this kind of situation which ACOttp is capable of
actively avoiding.

At the other end of this spectrum are fnl4461-10-10unc and a280-10-10unc.
These have high item density, and the item weights vary greatly. This gives the
packing plan construction algorithm great freedom to adapt to a poor tour. The
results in �gure 6.9 seem to agree with these observations.

In addition to these points which can be made by comparing the two algorithms,
they are unique in the context provided by the literature, as no other published
(to my knowledge) algorithm which solves both component problems is applied
to any benchmark problem of comparable size. This makes it di�cult to reason
about the overall performance of the algorithms, but makes them all the more
useful, as future work is now provided the means to do this.
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Chapter 8

Conclusion

This thesis has presented background on the Traveling Thief Problem (TTP)
and its component problems, the Traveling Salesman Problem (TSP) and the
Knapsack Problem (KP). Based on this, procedures and algorithms from the
literature has been selected, adapted, and combined into an overall algorithm.
It solves the TTP through an iterative procedure in each step of which the
component problems are solved separately, but with respect to the context in
which the solution is used.

Speci�cally, the iterative procedure is founded around an Ant Colony Optimiza-
tion framework, where the pheromone level of edges re�ects the quality of the
TTP solution, rather than the TSP solution. The KP component is solved by
an algorithm, IHH, based on the simple greedy heuristic for the ordinary KP
which assigns to each item a score equal to its value divided by its weight.
The TTP-speci�c version uses a score which is derived in the thesis, and which
outperforms scores previously suggested.

Between the overall algorithm and IHH, new best results are found for the nine
benchmark problems considered, with a signi�cant gap to the previous best.
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