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Abstract

We have studied the Re-Pair compression algorithm to determine whether it
can be improved. We have implemented a basic prototype program, and from
that created and tested several alternate versions, all with the purpose of im-
proving some part of the algorithm. We have achieved good results and our
best version has approximately cut the original running time in half, while los-
ing almost nothing in compression e�ectiveness, and even lowering memory use
signi�cantly.
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Preface

This thesis was prepared at DTU Compute in ful�lment of the requirements for
acquiring a M.Sc. in Computer Science and Engineering.

The thesis deals with improvements to the Re-Pair compression algorithm.

The thesis consists of a number of chapters describing the di�erent version of
the Re-Pair algorithm that we have developed.

Lyngby, 19-June-2015

Philip B. Ørum, s092932
Nicolai C. Christensen, s092956
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Chapter 1

Introduction

As the amount of digital information handled in the modern world increases,
so does the need for good compression algorithms. In this report we document
our work on further developing the Re-Pair compression algorithm described
by Larsson and Mo�at in [1]. Their version of the algorithm is very focused
on keeping the memory requirements during execution as low as possible. We
take a closer look at their algorithm, and because memory is so readily available
nowadays, we aim to trade memory consumption for faster compression time
without loosing compression e�ectiveness.

Our work consists of implementing a working prototype of the algorithm, and
then branching out from that basic implementation to create several di�erent
versions of Re-Pair. We look into what trade-o�s can be made between speed,
memory use, and compression e�ectiveness, but our focus is primarily on im-
proving the running time of the algorithm. The focus of each individual version
is explained in their relative sections. We have implemented decompression of
�les as described in [1], and use this for testing the correctness of our compres-
sion, but in this project we are mainly interested in studying ways of improving
the compression part of Re-Pair.



2 Introduction

The diagram below shows the various program versions we have made, with
dashed outlines indicating branches that were never fully implemented, due to
showing poor results in early testing.



Chapter 2

External libraries

2.1 Google dense hash

To improve program speed we switched from the basic STL hash table imple-
mentation to the dense hash table, which is part of the Google Sparse Hash
project described at [2]. We used the benchmark on the site [3] to verify that
the dense hash table would be an improvement.

2.2 Boost library project

Boost is a collection of libraries for C++ development, which is slowly being
integrated into the C++ collection of standard libraries.

We use Boost to gain access to their Chrono library, which we need to measure
the execution time of our code down to nanosecond precision. More information
about Boost can be found on their homepage at [4].
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Chapter 3

Theory

In this chapter we introduce some of the most important concepts which are
used in the project.

3.1 The Re-Pair compression algorithm

In the following we explain the Re-Pair algorithm as it is described by Larsson
and Mo�at in [1].

The idea behind the Re-Pair algorithm is to recursively replace pairs of symbols
with single symbols in a text, thus shortening the length of the original text.
The approach is to replace the most frequently occurring pairs �rst, and for
each pair add a dictionary entry mapping the new symbol to the replaced pair.

There are four main data structures used by the Re-Pair algorithm, which can
be seen in �gure 3.1. The �rst is the sequence array, which is an array structure
where each entry consists of a symbol value and two pointers. The symbol values
are either the original symbols from the input text, new symbols introduced by
replacing a pair, or empty symbols. The pointers are used to create doubly
linked lists between sequences of identical pairs, which are needed to �nd the
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Figure 3.1: Re-Pair data structures used during phrase derivation. This image
is taken from [1].

next instance in constant time when the pair is selected for replacement. They
are also used to point from empty symbol records to records that are still in use
so as to avoid going sequentially through empty records, in order to �nd the
symbols next to the pair currently being replaced.

The second data structure is the active pairs table. This is a hash table from a
pair of symbols to a pair record, which is a collection of information about that
speci�c pair. Only pairs occurring with a frequency greater than or equal to 2
in the text are considered active. A pair record holds the exact number of times
the pair occurs in the text, a pointer to the �rst occurrence of the pair in the
sequence array, as well as two pointers to other pair records. These pointers are
used in the third data structure, the priority queue.

The priority queue is an array of size d
√
ne where each entry contains a doubly

linked list of pairs with frequencies of i + 2. The last entry also contains pairs
with frequencies greater than

√
n, and these appear in no particular order.

The fourth structure is the phrase table. It is used to store the mapping from
new symbols to the pairs they have replaced, and does so with minimal memory
use. The term phrase refers to the symbols introduced by the Re-Pair algorithm
to replace each pair, since each of those symbols corresponds to a sequence of
two or more symbols from the original input. The details of the phrase table
will be explained in chapter 4.
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The Re-Pair algorithm starts with an initialization phase where the number of
active pairs in the input is counted. A �ag is used to indicate that a pair is
seen once, and if the pair is encountered again a pair record is created. Going
through the text again is needed to set the pointers linking instances of pairs
together in the sequence array, as well as insert pairs into the priority queue
based on their frequency. This is because the index of the �rst occurrence of a
pair is not tracked, and thus it cannot be linked to the rest of the sequence in
a single pass.

Compression now begins in what is called the phrase derivation phase. First the
pair with the greatest frequency is found by searching through the last list of the
priority queue. All occurrences of this pair are replaced in the sequence array,
and the pair that now has the greatest frequency is located. This continues
until the list at the last index of the priority queue is empty. Then the priority
queue is walked from the second last index down to the �rst, compressing all
pairs along the way.

When a pair is selected for replacement we choose a unique new symbol A,
which will replace every instance of the pair in the text. The corresponding
pair record is used to determine the �rst occurrence of the pair in the sequence
array. From the index of the �rst occurrence, the symbols surrounding it, called
the pair's context, are determined. If the pair to be replaced is ab, and it has a
symbol x on its left and a y on its right then its context is xaby. The �rst thing
that happens now is that the counts of the surrounding pairs are decremented,
as they will soon be removed. In the case of our example this is the pairs xa and
by. The records of these pairs in the priority queue are updated if necessary, and
if the count of a pair falls below 2 its record is deleted. Now the pair in question
is replaced by the new symbol A. The context becomes xA_y, and the entry
mapping A to ab is added to the phrase table. Finally the new pairs xA and Ay
are handled. Based on whether or not a pair has been seen before either a pair
tracker is created, a pair record is created, or the count is incremented, and the
new pair is threaded together with the existing occurrences by setting pointers
between it and the previous occurrence. Then the next-pointer of the original
ab pair is followed to �nd the next instance, and the process starts over. All of
the operations done to replace a single instance of a pair can be accomplished
in constant time.

Note that the frequency of any pair introduced during replacement cannot ex-
ceed the frequency of the pair being replaced, since any new pair contains the
unique symbol just introduced. Thus no pairs are missed when the priority
queue is walked from the last list to the �rst.
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Once all pairs with frequency 2 or greater have been replaced, the symbols in
the resulting �nal sequence are entropy encoded to further reduce the amount
of space they will take up when written to a �le. Finally the encoded sequence,
a translation of the applied entropy codes, and a dictionary based on the phrase
table are all written to disk.

3.2 Canonical Hu�man encoding

The entropy encoding we use in Re-Pair is Canonical Hu�man encoding which
is an improved variant of standard Hu�man encoding. It is optimized for low
memory use during encoding as well as a compact way of storing the codes in a
dictionary structure (see [5] pages 30-51).

Hu�man codes are pre�x-free bit codes, meaning that no Hu�man code is a
pre�x of any other. They are used to encode a sequence of symbols using the
lowest possible average number of bits per symbol. This is accomplished by
encoding the symbols based on the frequency of use in whatever context we are
looking at, with frequent symbols getting the shortest codes. The classic way of
creating a Hu�man code for a group of symbols results in optimal code lengths
but with fairly random code values. Canonical Hu�man encoding utilizes the
fact that optimal code lengths can be found using a Hu�man tree as for standard
Hu�man codes, but then assigns the actual values of the codes based on a scheme
with sequential code values.

The algorithm for �nding optimal Hu�man codes is based on the idea that the
codes follow a tree-like structure, where each layer of the tree represents an
additional bit in the codes. If each 0 or 1 in a code is interpreted as moving to
the left or right child from a node, then a code can be seen as a unique path
from the root to a leaf. To reduce average code length it is desired to have codes
for frequent symbols as high up in the tree as possible, while the infrequent ones
can have codes deeper in the tree structure.

Many such tree structures are possible, so to �nd an optimal distribution of
codes the algorithm makes an assumption about what the optimal tree will
look like. The assumption is that two of the most frequent (or tied for most
frequent) symbols will appear as children of the same node at the bottom of the
tree. These symbols share a path from the root down to their parent, and this
makes the parent node a meta-symbol in the tree with the combined frequency
of both its children. By combining the two least frequent symbols we reduce the
total number of symbols by one, and we can continue to do this until we have
only one symbol left, even without any prior knowledge of the tree structure.
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If every node knows of the two children that were combined to form it, then we
can reverse the process and unfold all symbols again to regain the original tree-
like structure. However we can add some information when unfolding to end up
with an actual tree instead of an implicit one. When the single meta-symbol
that was created is unfolded, it adds a 0 and a 1 to the codes of its left and
right children respectively (or vice versa). When those two nodes are unfolded
they do the same to their children, and so on until we only have leaf nodes left.
Each of these leaf nodes will contain a Hu�man code of optimal length, but with
a random value depending on the order in which we selected the nodes to be
combined.

Canonical Hu�man codes are generated from the same basic idea but we are
only interested in the length of each code when unfolding, not the code values.
Due to not needing as much information about the nodes in the implicit tree, it
can be collapsed and unfolded using fewer resources.

This is accomplished by setting up a min-heap structure which is sorted based
on the frequency of each symbol. The heap is collapsed two symbols at a time,
shrinking until only one meta-symbol representing the total frequency of all the
others is left. When unfolding the symbols again, we count how far removed the
leaves are from the root of the tree to get the code lengths for all of the original
symbols.

Having determined the code lengths for all symbols we now distribute codes by
picking a starting value for those of the same length and then add one for each
additional code. For example if there are 3 codes of length 4, and the starting
value is 2, then the three codes will become 0010, 0011, and 0100.

We start by assigning the longest codes �rst, beginning at 0 and incrementing
the value until all codes of maximum length are assigned. Then to �nd the
starting value of the second longest code we look at the starting value of the
previous length, as well as how many codes of that length were assigned. If
the starting values of code lengths are stored in an array called �rstCode, and
the number of codes of each length are stored in an array nrOfCodes, then the
formula for assigning code lengths looks like this:

�rstCode[l] = (�rstCode[l + 1] + nrOfCodes[l + 1])/2

This is done to keep the codes pre�x free. By not overlapping with any of the
values of the previous code length, we make sure that codes are distinguishable.
This process is repeated until values for all code lengths are assigned.
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This method provides a compact way of storing codes, as you only need to know
the starting value and the number of codes of a speci�c length to tie them to
the original symbols, provided that the symbols occur in a predetermined order.

Because the codes are pre�x-free they are easy to distinguish from one another.
When reading a stream of codes we can consume one bit at a time and add
it to a bu�er, then for every bit read we check whether the code in the bu�er
corresponds to a symbol. When there is a match we empty the bu�er, interpret
it as that symbol, and continue by reading the next bit.

3.3 Gamma codes

Gamma codes are a compact way of encoding positive integers as strings of
bits (see [6]). Similar to Hu�man codes they are pre�x-free, so it is possible to
know where one code ends and the next begins without needing a separator.
Gamma codes can encode any integer greater than 0, but the system can easily
be extended to cover the number 0 as well. This is done by adding 1 to the
input before the code is computed, then subtracting it again after decoding. The
length of a gamma code is 2 blog2 nc+ 1 where n is the number to be encoded.

Gamma codes make use of another encoding called unary codes, which is a very
simple kind of pre�x-free code. The unary code for a number n consists of n 1's
followed by a single 0 to indicate the end of each code. Alternatively the 1's can
be switched for 0's and the 0's for 1's. The gamma code for a number m consists
of two parts: the unary code for the number U = N + 1 where N = blog2(m)c,
followed by the binary form of the number B = m − 2N . A code can be read
by counting the number of 1's in the unary part, and then reading that many
additional bits to get the binary number. The original number m can then be
found as m = 2N +B.

The advantage of gamma codes when compared to Hu�man coding and similar
schemes is that gamma codes require no knowledge of the probabilities of the
input numbers. This makes them useful for encoding numbers that are only
known during runtime, like the various kinds of metadata required to decode
an encoded �le. This includes things like the number of elements to read or the
length of binary codes.
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Re-Pair basic version
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4.1 Design

4.1.1 The Re-Pair algorithm

The design of our basic implementation of Re-pair is based on the description of
the algorithm in [1], but with some di�erences. Since our focus is on speeding up
the running time, we have made some initial changes to parts of the algorithm
which make it faster at the cost of using more memory.

The biggest of these changes is to active pairs and to the way new pairs become
threaded together in the sequence array. The version of Re-Pair described in [1]
uses only four words of memory for each active pair: two linking pointers for
the priority queue, a frequency counter, and an index into the sequence array
of the �rst occurrence of the pair. It also uses only a single bit to keep track of
whether a pair has been seen once.

Because no information is stored about the �rst occurrence of a pair, when a
second instance is discovered, the location of the �rst is unknown and the two
cannot be linked with threading pointers. Additionally, since only one index
is available for tracking occurrences of pairs, it requires extra work to link new
instances of a pair to those that already exist. If the index of the last occurrence
is known, we can thread any new occurrence to the sequence in constant time,
but we need to know the index of the �rst occurrence at the time the pair is
selected for replacement in the priority queue. To achieve both using only one
index we can do two passes over a sequence in order to set all threading pointers
and have the index point to the �rst occurrence of a pair. In the �rst pass the
index in the pair record is used to track the most recent occurrence of the pair
we have seen, starting from the second (as we have no information about the
�rst). This means that we can link all but the �rst occurrence together during
the �rst pass. A second pass is needed to update the index in the pair record
to point to the �rst instance, as well as set threading pointers from it to the
second instance.

To avoid doing two passes over the sequence of an active pair we use extra
memory to store additional information about the location of pairs. Firstly,
we store the index of the last instance of a pair as well as the �rst in the
corresponding pair record. This way we can instantly locate the last pair when
a new instance is discovered, and threading pointers can be set immediately.
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Secondly, we also store the index of a pair the �rst time it is seen. If the pair is
seen a second time we can create an actual active pair record and use the index
to thread the two instances together. To populate the priority queue, we iterate
over the active pairs structure after all pairs in the sequence array have been
counted, and insert them based on their frequency in the text.

Another change compared to the original Re-Pair algorithm is that we use an
additional word of memory on symbol records in the sequence array to store
the index of the symbol. This index is needed to determine where we are in the
sequence when following pointers. We are aware that there are other ways of ac-
complishing this, but seeing as the program is just a prototype implementation,
we have chosen this solution for convenience.

The original Re-Pair algorithm requires a lot of memory, and with the changes
we have made to improve running time our version uses even more. To be able
to compress �les of all sizes, [1] uses a solution of dividing a �le into blocks of a
predetermined size that they are sure can �t into memory. The blocks are read
and compressed sequentially, and the results are all written to the same �le. We
use the same solution. Since compression e�ectiveness goes down when using
smaller block sizes due to pairs being separated into multiple �les, we want to
use as large a block size as possible. From looking at memory consumption
during execution we have settled on a block size of 10 MB (on an 8 GB ram
machine). For reference the largest block size mentioned in the original paper
is 4 MB.

When outputting the results of compression we do so to two separate �les, one
with the compressed sequence array and one containing the normal and Hu�man
dictionaries. These �les can easily be combined to one with only a small memory
overhead in the last part of the algorithm, but we have kept them separate for
convenience.

4.1.1.1 Phrase table

The phrase table is the data structure that stores the translation of the non-
terminals (phrases) created during phrase derivation. [1] mentions that their
version uses two words of memory per phrase but does not elaborate further, so
this version is of our own design.

Each time a pair replacement starts, two words of sequential memory are al-
located to store the left and right elements of the pair to be replaced. These
chunks of memory together make up the phrase table. A pointer to the start of
that memory is then used as the new symbol which is inserted in the sequence
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array instead of the pair. If this symbol is used in new pairs, then those pairs
now contain a pointer to the relevant part of the phrase table. At the end of
phrase derivation, the sequence array will contain one or more pointers that can
be used to access the top level of the phrase table, which in turn points to the
next level, and so on until all branches have ended in terminals.

Since a new phrase is only created when pair replacement is about to occur,
at least one pointer to a new pair must be inserted in the sequence array. The
only way a pointer in the sequence array is ever removed is if it becomes part
of another phrase, in which case the pointer to the old phrase is stored as one
of the elements in the new phrase, and a pointer to the new phrase is stored in
the sequence array. In this way, we can be certain that we can still access all
elements in the phrase table at the end of phrase derivation, and that no phrase
is ever lost.

4.1.2 Dictionary encoding

To be able to decompress a compressed �le later, we need to store a dictionary
along with the compressed text that can tell us the meaning of any of the new
symbols introduced by Re-Pair. Since the phrase table created during phrase
derivation uses local memory addresses, it must be formatted di�erently before
it can be stored. Furthermore, the dictionary can take up a lot of space even
compared to the text itself, especially when the input is separated into blocks
that each need their own dictionaries, so it is important to store it in an e�cient
manner.

[1] suggests several di�erent methods for compressing the phrase table, the most
straightforward of which is called literal pair enumeration. This method starts
by splitting the phrase table into so-called generations, which are de�ned as
follows:

• The 0th generation is the alphabet of the original input. We also refer to
the symbols of the alphabet as terminals.

• The �rst generation is the set of phrases that are pairs of terminal symbols.

• Each further generation g is the set of phrases s such that a phrase p
belongs to s if and only if the highest generation among p's constituents
is g − 1.
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If we start by sorting the terminals, we can write the �rst generation as pairs
of indices into the sorted sequence of terminals. We can then sort those pairs
by their left elements and add them to the end of the sequence. For example,
if the set of terminals is {a, b, c} and the �rst generation consists of the phrases
(b, a) and (a, c), the sequence would look like this:

a, b, c, (0,2), (1,0)

Each generation in turn can be changed to pairs of indices into the above se-
quence (which we shall call ordinal numbers), then sorted and added to the
sequence itself.

In the sequence described above, the left elements of the phrases in each gen-
eration will be a sequence of non-decreasing numbers. This means that rather
than storing each of those numbers, we can store the �rst number followed by
the di�erences between each pair of numbers. These di�erences will be much
smaller than the actual ordinal numbers (mostly 1's and 0's), which means that
the corresponding gamma codes will take up less space. Unfortunately, the same
is not true for the right elements, so these are stored as binary representations
of the ordinal numbers instead.

The �nished sequence after all generations have been added looks like this:

[terminals] [generation 1] [generation 2] ...

where each individual generation looks like this:

[left elements] [right elements]

In practice it also requires some metadata to be able to decode the dictionary
again. We need to know the number of terminals, the number of generations
and the number of pairs in each generation to know how much of the �le to
read. We also need to know the size of the binary numbers encoding the right
elements for each generation. The resulting structure looks like this:

[# of terminals] [terminals] [# of generations] [generation 1] [generation 2] ...

while each individual generation looks like this:

[# of pairs] [size of right elements] [left element codes] [right element codes]

Since we do not know the numbers in the metadata before runtime, they are
encoded as gamma codes.
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Most of the dictionary is gamma codes, which can easily be read without know-
ing their length in advance as long as we know how many numbers to read.
Binary codes are similarly easy to read since their lengths are stored along with
the numbers. If we add pairs to a sequence as they are decoded, then it is easy
to translate an index into this sequence to a string by recursively looking up the
left and right substring until we arrive at a sequence of terminals.

4.1.3 The Hu�man dictionary

Canonical Hu�man codes are the entropy codes we use for the zero-order entropy
encoding after phrase derivation is complete. We use them based on the fact
that Hu�man codes are mentioned as a possibility in [1], and that the canonical
version is even more compact and uses less memory during construction (see [5]
and section 3.2).

When Hu�man codes have been generated we need to create and save a dictio-
nary that can translate from codes back into ordinal numbers. We utilize the
sequential nature of the canonical Hu�man code values to make this dictionary
compact. We also use gamma codes to write all numbers, as they can be easily
separated when read sequentially.

The �rst thing we need in this dictionary is a header telling us how many things
to read. This header is the value of the longest Hu�man code written as a
gamma code. Then for each code length, from 1 and up, we write a header
consisting of the number of codes and the �rst value of codes of that length.
This is followed by any indices that have a code of that particular length. If
there is a non-zero amount of codes of a certain length, we can use the header
to generate the actual code values as we read in the indices. The �rst index has
the code corresponding to the �rst value in the header, the next index has a
code corresponding to the value in the header plus one, and so on.

4.1.4 Decompression

As previously mentioned we are mostly interested in the compression part of
Re-Pair, but we will nevertheless brie�y discuss how compressed �les can be
decompressed.

To decompress a previously compressed sequence, we start by converting it from
Hu�man codes to a sequence of indices into the Re-Pair dictionary using the
Hu�man dictionary. The encoded Re-Pair dictionary itself is sorted as described
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previously, so to reconstruct it we can just add each phrase to a sequence as we
decode them. Since the indices used both here and in the compressed sequence
start from the terminals, we can subtract the number of terminals to get the
index into this sequence. What is left is to decompress the compressed sequence
using the new dictionary sequence and the sorted terminals. [1] presents several
di�erent ways of doing this.

The most memory e�cient way is to go through the compressed sequence se-
quentially, then for each index do an inorder traversal of the tree of phrases at
that index in the dictionary, adding terminal symbols to the output as we en-
counter them. A faster but less memory e�cient way to do it is to �rst expand
all phrases in the dictionary, making a hash table from index to string of the
complete phrases. We then write out these strings directly as the compressed
sequence is decoded. It is also possible to use a hybrid of these two methods,
keeping some common phrases in memory while discarding others.

4.2 Implementation

In this section we describe the implementation of parts of our program that are
not already described in detail in [1].

4.2.1 Hash tables

One of the most important structures that we use is the hash table. It is essential
to several parts of the program, most importantly for containing the active pairs.
There are many strategies for implementing a hash table, and the way it is done
can have a huge impact on the size of the table and the speed at which it can
perform operations. We have not had the time to make our own hash table, but
we have chosen to use a custom implementation, the Google dense hash table,
which is optimized for speed. A problem with it is that it does not allow pairs as
keys into the table. Since we need to use a pair of symbols as key we have created
a hash table of hash tables using the left symbol of a pair as a key to the outer
table and the right symbol as a key to the inner table. In the documentation
for Google dense hash they report that their implementation uses 78 % more
memory than the data stored, so the e�ect is a signi�cant increase in memory
consumption. We accept this trade-o�, since our primary focus is on improving
the execution speed of the program.
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4.2.2 Output strategy

When writing the compressed sequence array to a �le after each block, we must
include information to enable us to correctly parse it again for decompression.
Since it is not possible to write individual bits to a �le we also have to design a
scheme for writing the Hu�man codes for the sequence. Our solution is to write
and read information in �les in chunks of 32 bits each. The �rst bit in every
chunk is an indicator, usually with the value 0, telling us whether we are done
with a block. As the bits of all Hu�man codes are not likely to �t exactly in an
even number of chunks, we have to pad the last chunk with 0's when we write
it. After the last chunk with actual information, we write a separator chunk
with the indicator bit set to 1, notifying us that we have reached the end of
the block. The last part of this chunk also tells us how many padding bits were
used in the second last chunk, allowing us to discard them.

4.2.3 Dictionary encoding

When the phrase derivation phase is over, the dictionary is in the form of a
number of pairs that reference each other's memory addresses, some of which
are referenced in the sequence array. They need to be sorted by generation, then
changed to contain indices into the sequence of terminals and pairs described in
the design section.

The �rst step is to create a set of terminals and a hash table with the address
of a pair as key and the generation as value. This is done by recursively going
through all the pairs in the phrase table. The only way to access the phrase
table at this point is through the addresses inserted as non-terminals in the
sequence array. Each of these points to the head of a tree of pairs which may
or may not overlap with the other trees.

We need to go through each of the non-terminals in the sequence array and
handle the tree it connects to. For each constituent of a pair in that tree, if
it is a terminal its generation is set to 0 and it is added to the terminal set.
Otherwise, if it is not already in the hash table, its generation is calculated as
one plus the highest generation among its constituents, and stored in the hash
table. In pseudocode it looks like this:
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The next step is to separate the pairs into generations. For each generation,
we create a dynamic array of pointers into the phrase table. This allows us to
look at and sort each generation without a�ecting the phrase table itself. For
each key/value pair in the generation hash table, the pointer that is the key is
added to the array corresponding to the value. After that the phrase table can
be accessed through the generation arrays, so the pointers in the phrase table
itself can be replaced by ordinal numbers as described in the design section.

4.2.4 Phrase table

The phrases in the phrase table are implemented as dynamically allocated arrays
of two symbols, and the pointers that are stored in the sequence array point to
the �rst of these symbols. The pointers need to be stored in the sequence array
which normally holds symbols, so they are cast to be the same data type as the
symbols. Whenever they are accessed, they must �rst be cast back to pointers.
This introduces the problem of telling terminals and non-terminals apart, since
they are now the same data type.
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There is no way of controlling what memory is allocated for the phrases, so we
are forced to make the assumption that the value of an address is never less than
or equal to the greatest possible terminal, which is 255. Were this not the case,
it would be impossible to know when to stop when looking through the phrase
table. In our experience this is not an issue on a standard operating system,
but it does impose some restrictions on the system that runs the algorithm.

4.2.5 Canonical Hu�man encoding

In this section we describe the interesting parts of our implementation of Hu�-
man encoding.

4.2.5.1 Determining code lengths

The structure we use to determine code lengths, called the codeLengths array,
is implemented as an array of twice the size of the alphabet of the compressed
sequence array. The second half of the array initially contains the frequency of
each symbol, while the �rst half is a min-heap of indices to the corresponding
symbol frequencies. The min-heap in stored in level-order in the array, where
the root is located at index 0 and children of a node at index i can be found
at indices 2i + 1 (left child) and 2i + 2 (right child). With this setup it is
easy to manipulate the heap by moving around indices to symbols as they are
repositioned on the heap.

Recall that we have to collapse the implicit Hu�man tree two symbols at a time,
and then unfold the tree to gain information about the code lengths.
To extract the two lowest frequency symbols we �rst pop the root element,
then move the last element of the heap to the top, sift it down to restore heap
order, and pop the new root. To sift an element down the heap we swap it with
the smallest of its children until it only has children with greater values, or it
reaches the bottom of the heap. As the heap is a binary tree, the time required
to restore heap order is bounded by 2 log c, as two comparisons are needed at
each level.

The two symbols that were extracted are combined into one, their combined
frequency is inserted into the array at the index of the removed last symbol, and
a pointer to this frequency is inserted into the heap structure. The frequencies
of the two symbols that were collapsed are changed to indices to the frequency
of the new symbol, their parent.
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When all symbols are collapsed and only the root is left at index 0 of the array,
its frequency is replaced by 0. The value at index 1 will be a pointer to the
root, and it is replaced by the value at that index plus 1 to indicate that it is
one layer from the root in the implicit Hu�man tree. Going down through the
array and updating all values with their distance from the root will assign the
code lengths to the original symbols.

4.2.5.2 Storing Hu�man codes

When the code lengths have been determined we generate the codes using the
formula described in section 3.2. To use the codes later we set up two hash
table structures. The �rst translates from symbol values into corresponding
canonical Hu�man codes. This structure is used to easily encode the sequence
array. Going through the array, looking at each symbol in turn, we can in
constant time look up its Hu�man code and write it to a �le.
The second structure we need is a hash table of hash tables with code lengths as
keys for the outer table, code values as keys for the inner table, and symbols as
values for the inner table. We need this when writing the Hu�man dictionary
to a �le later. As mentioned earlier, each code length is represented in this
dictionary by a header containing the number of symbols with codes of that
length, the �rst value of a speci�c length of code, and the values for ordinal
numbers in the normal dictionary. As the codes are written by length and
value, we have to be able to look up symbol values in order to �nd their indices
in constant time.
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4.3 Time and memory analysis

In this section we analyse the asymptotic running time and memory require-
ments of the various parts of the Re-Pair algorithm individually and as a whole.
For that purpose we introduce the following quantities:

n: The number of symbols in the input sequence

m: The number of symbols in the sequence after phrase derivation

k: The cardinality of the input alphabet

k′: The cardinality of the alphabet after phrase derivation

h: The maximum length of a Hu�man code

In addition to stating the upper bounds of these values, we try to give a sense
of their actual sizes based on our experimental results. n and k are known in
advance, but the rest can only be determined during or after phrase derivation.

This implementation of the Re-Pair algorithm accepts up to 255 di�erent char-
acters corresponding to any 8-bit ASCII variation without the �rst character
(null). Because of that, the upper bound of k is 255.
The size m of the sequence array after phrase derivation is determined by how
well the compression works. Each new phrase reduces the size of the sequence
array, so the better the compression, the smaller m is. The upper bound of m
is n since the sequence array cannot grow in size, but in practice it is only a
fraction of n.
k′ is the total number of unique symbols after phrase derivation, including those
that are no longer present in the sequence array. It is equal to k plus the num-
ber of phrases created during phrase derivation. In terms of size k′ is at most
n/2 + k, since at most n/2 phrases can be created before no more symbols are
left in the sequence array. Note that it must always hold that m+2k′ ≤ n since
each phrase created reduces m by at least 2 while adding 1 to k′. In practice k′

is much smaller than both m and n.
The length of the longest Hu�man code h depends on the number c of unique
symbols in m. Hu�man codes are assigned based on an implicit binary tree,
so the length of the longest Hu�man code is somewhere between log2(c) and c
depending on how balanced the tree is.
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Figure 4.1: Overview

Time complexity Memory usage
Initialization O(n) 6n+ 14k2 + d

√
ne

Phrase derivation O(n) 9n+ 5k2 + 9k′2 + d
√
ne

Generating Hu�man codes O(m logm) 16m+ 2k′ + 3h+m · h4
Encoding the compressed sequence O(mh) 14m+ 2k′ + 2h+m · h4
Encoding the dictionary O(m+ k′ log k′) 10m+ 6k′ + 2h
Outputting the dictionary O(k′ log k′) 4m+ 6k′ + 2h
Outputting the Hu�man dictionary O(m log k′) 4m+ 6k′ + 2h

Overall O(n) 9n+ 5k2 + 9k′2 + d
√
ne

Using these quantities, we can analyse the time complexity and memory usage
of the di�erent phases of Re-Pair in detail. An overview of this is presented
in �gure 4.1. In the following sections we will analyse each part of Re-Pair in
turn. The �rst two parts (initialization and phrase derivation) are based on the
analysis done by [1].

4.3.1 Initialization

4.3.1.1 Time complexity

In the initialization phase each character in the input �le is read and added to
the sequence array. At the same time new pairs are marked as seen in the active
pairs table, and pair records are created and updated for pairs that have already
been seen. Handling a single pair takes constant time regardless of whether it
has been seen before, so handling all pairs takes O(n) time.

Each pair record is then added to the front of the linked list corresponding to
their frequency in the priority queue. To add a pair record to a list involves
setting three pointers, so it takes constant time. At most one pair record can
be created for every two symbols in the input, so the number of pair records to
add cannot be greater than n/2. The time required to add all pair records to
the priority queue is therefore O(n). This means that the total time complexity
of the initialization phase is O(n).
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4.3.1.2 Memory usage

Initialization requires memory for four things: the sequence array, the active
pairs hash table, the priority queue array and the pair records.

The sequence array is an array of pointers to symbol records. Each symbol
record requires four words of memory: one for the symbol, two for threading
pointers and one for the index, which we need to know when following threading
pointers later. In total that is 4n words of memory for all symbol records. The
array itself contains one pointer per record, but since it is dynamic it may
allocate up to twice as much memory as the size of the data in it, so it requires
up to 2n words of memory. In total the memory required by the sequence array
is at most 6n words.

The active pairs table is a hash table of hash tables. In total, it contains a pair
tracker for each potential pair that has been seen. A pair tracker consists of a
boolean, a pointer to a pair record and an index, which adds up to 2.25 words
of memory. The highest possible amount of pairs at this point is k2, so the total
memory required is at most 2.25 · k2 · 2 · 2 = 9k2 words.

A pair record consists of �ve words: two for pointers that link the records in the
priority queue, one for the frequency, one for �rst index and one for last index.
As with the trackers, the number of pair records is bounded by the number
of possible pairs, which is k2. The maximum space requirement for the pair
records is then 5k2 words.

The priority queue is an array of pointers to pair records, which then form linked
lists. Its size is �xed at

√
n, so it requires

√
n words of memory.

The total memory requirement of Re-Pair during the initialization phase is 6n+
14k2 +

√
n words of memory.

4.3.2 Phrase derivation

4.3.2.1 Time complexity

The phrase derivation phase consists of two parts: replacing the pairs in the high
frequency list and replacing the pairs in the remaining low frequency lists. In
addition to that, the sequence array is compacted at regular intervals to reduce
the memory requirements of the program.
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We want to start by replacing the most frequent pair, but since the high fre-
quency list is unordered we must �rst �nd the pair. We do this by looking
through the list while keeping track of the highest frequency pair we have seen.
For a pair to be in the high frequency list it must have a frequency of at least√
n. If there were more than

√
n such pairs then more than n total pair replace-

ments would occur. That is not possible since each pair replacement reduces
the size of the sequence array by one, so in total there can be no more than

√
n

high frequency pairs. Since there are
√
n pairs that take O(

√
n) time to �nd,

the total time spent on extracting pairs from the high frequency list is O(n).
We have yet to look at what is done with those pairs, but �rst we will consider
the low frequency lists.

The pairs with frequencies lower than
√
n are already distributed across the

remaining lists based on their frequency, so �nding the pair with the highest
frequency takes constant time. We need to handle those pairs one at a time
anyway, so this does not add to the time complexity. Sometimes we will look in
a list only to �nd that it is empty, but since there are only

√
n lists, this adds

at most O(
√
n) time.

The total time spent on extracting pairs from the priority queue is O(n), but we
still need to replace the pairs we extract in the sequence array. Replacing a single
instance of a pair takes constant time since it involves a �xed number of constant
time operations. As already mentioned, at most n single pair replacements can
occur in total since each reduces the size of the sequence array by one, so the
total time spent on replacing pairs from both the high and low frequency lists
is O(n). Thus the total time spent on phrase derivation is O(n).

4.3.2.2 Memory usage

Most of the memory used in the initialization phase is still in use during the
phrase derivation phase. Initially the sequence array takes up at most 6n words
of memory, the active pairs table at most 9k2 words, the priority queue d

√
ne

words and the pair records 5k2 words.

The maximum amount of new pairs that are seen during this phase is k′2, one
for each possible combination of symbols, so the active pairs table will at most
require 2.25 · k′2 · 2 · 2 = 9k′2 words. In total it requires at most 9k′2 words of
memory.

A number of additional pair records are also created, but this is o�set by re-
moving empty symbol records from the sequence array as described in detail
by [1] (page 4-5). By compacting the sequence array at regular intervals, they
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show that it is possible to free enough memory that only n additional words
are required for the pair records created during phrase derivation. The impor-
tant di�erence is that our pair records require an additional word of memory.
Compacting the sequence array more often would increase the running time,
so instead we require an additional word of memory per pair created. Since at
most two pair records can be created for each two pair replacements at most
n pair records are created during phrase derivation, so we require at most 2n
additional words. In total the pair records require at most 2n + 5k2 words of
memory.

In addition to the above, each entry in the phrase table requires 2 words of
memory. However each time a new entry is created, the corresponding pair
record is no longer needed. Pair records take up 5 words, so in total 3 words of
memory is freed whenever a new entry is added.

In total the memory required during phase derivation is 9n +
√
n + 9k'2 + 5k2

words.

4.3.3 Generating Hu�man codes

4.3.3.1 Time complexity

We need to generate Hu�man codes for each di�erent symbol left in the sequence
array after the phrase derivation phase is done. To do this we determine how
many unique symbols are left, and with what frequency they occur in the �nal
sequence. It takes O(m) time to go through the sequence and check all symbols,
using a hash table to store the frequencies. This hash table will later store the
Hu�man codes as well, and to reference it we call it the fromSymbol table,
because it has symbol values as keys.

It takes an additional O(m) time to insert the frequencies of all the symbols
into the last half of the special codeLengths array, which is used as a min-heap
to derive the length of the Hu�man codes.

The min-heap is created in the �rst half of the codeLengths array, and we ini-
tialize it by inserting symbol frequencies one at a time at the root and then
sifting them down as far as they need to go. As explained earlier, the min-heap
behaves as a binary tree and has the property that items can be inserted, and
heap order restored, in O(log n) time, where n is the number of elements in
the heap. Since we have at most m symbols, it takes O(m logm) time to fully
construct it.
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We use the min-heap to collapse the implicit Hu�man tree, spending a total of
O(m logm) time to get to a single meta-symbol as the root of the heap.

To expand the Hu�man tree we indicate the root as level 0, and then walk the
codeLengths array from left to right, setting the level of each node based on the
level of its parent. Since the array has 2m entries this takes O(m) time.

With the code lengths determined we move on to constructing the actual codes.
An array that holds the number of codes of each length, the numl array, is
created based on the longest code we have seen, and it is populated by going
through all the codes and counting the number of occurrences of each, which
takes O(m) time.

We then create the �rstCodes and nextCodes arrays, both of size h and each
containing the values of the �rst code of each length. The nextCodes array is
used to update the values of codes as they are assigned to symbols, while the
�rstCodes array is needed to save the codes to the dictionary �le. Both of these
arrays take O(h) time to initialize.

Since we use a hash table that for each symbol holds the corresponding code in
a string, we need time proportional to the length of the codes to write them bit
for bit, when we move from an integer representation to a string representation.
While assigning the codes we also create a hash table of hash tables where the
keys to the outer table are code lengths, the keys to the inner table are code val-
ues, and the values of the inner table are symbol values. This hu�manToSymbol

hash table is needed later when we have to write the symbols in the order of
assigned code values. Every time we assign a code to a symbol it only takes an
extra constant time operation to add it to the hu�manToSymbol table as well.
Thus, assigning codes to all symbols in the hash table takes O(mh) time.

As h is a very small number, the total time to assign codes to the symbols in
the �nal sequence is O(m logm).

4.3.3.2 Memory usage

The phrase table is needed later and still takes up 2k′ words of memory. The
sequence array also remains the same with 6m words used.

The fromSymbol hash table uses a total of 4m words, assuming it has a pointer
to the string containing the code. In reality we have the string stored directly
in the table, but seeing as the base size of a string is implementation speci�c
we have no way of knowing exactly how much memory it uses. In practise
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the memory used is very low, and as the change would be trivial to the way
the program works we assume a pointer is used in this analysis. The codes
themselves are bounded by h, and since each bit is stored in a char they take
up a total of m · h4 words of memory.

The codeLengths array used to determine the length of codes uses 2m words
of memory, and the three arrays of length h (�rstCodes, nextCodes, and numl)
take up a total of 3h words.

Finally the hu�manToSymbol hash table, which is needed later, takes up 4m
words of memory.

Generating the Hu�man codes takes up a total of 2k′+16m+3h+m · h4 words
of memory.

4.3.4 Encoding the compressed sequence

4.3.4.1 Time complexity

To write the encoded sequence to a �le we go through the sequence array, and
for each symbol there look up its Hu�man code in the fromSymbol hash table.
We then add the code to a small bu�er, bit by bit, and when the bu�er is full we
write it to a �le. Since all codes have to be written this takes a total of O(mh)
time.

4.3.4.2 Memory usage

The sequence array still uses 6m words.

The fromSymbol hash table used to look up codes still takes up 4m+m · h4 words
of memory.

Since we continuously add the codes of symbols to a small bu�er of 1 word
and write the contents of that bu�er to �le when it is full, we have a negligible
constant memory overhead here.

The phrase table is needed later and takes up 2k′ words.

The �rstCodes and numl arrays are also needed later and each take up h words
of memory.
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Finally the hu�manToSymbol table, which is needed later, uses 4m words.

In total the program uses 14m+2k′+2h+m · h4 words of memory while writing
the encoded sequence to �le.

4.3.5 Encoding the dictionary

4.3.5.1 Time complexity

The �rst part of encoding the dictionary is recording the terminals and creating
the symbol to generation hash table and the generation arrays structure. To do
this, we �rst look through the remaining sequence array. Each time we encounter
a non-terminal, we recursively go through the part of the phrase table it points
to, recording the generation of each pair. For each pair we can use the symbol
to generation table to check whether we have seen it before, so we only need
to handle each pair once. Looking through the sequence array takes m time.
There are at most k′ pairs, so handling all of them takes O(k′) time. The total
time for this is O(m+ k′).

We then iterate over the symbol to generation table and add a pointer to each
phrase table entry to the generation array for its generation. Again there are at
most k′ entries, so it takes O(k′) time. We also sort the terminals, which takes
O(k log k) time.

The second part is to go through each generation array, and for each entry
replacing the pointers in the phrase table with the ordinal numbers of the pairs
they point to, then sorting the array by the left elements. To �nd the ordinal
number of a pair, we look up the generation in the symbol to generation table,
then use a binary search in the corresponding generation array to �nd its entry.
We then add its index to the size of the terminal array and the sizes of any lower
generations to produce the ordinal number. The best upper bound we can give
on the size of a generation is the number of pairs, in the case where all pairs
are in the same generation, so each binary search takes O(log k′). We perform
two of those for each pair, which takes O(k′ log k′) time. We also sort each
generation, but since we sort at most k′ elements in total, this takes O(k′ log k′)
time as well. In total we spend O(k′ log k′) time switching to ordinal numbers.

The total time spent on encoding the dictionary is O(m+ k′ log k′).
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4.3.5.2 Memory usage

We still use 6m words for the sequence array, 2k′ words for the phrase table, h
words for the �rstCodes array, h words for the numl array and 4m words for
the hu�manToSymbol hash table.

The symbol to generation hash table contains at most k′ entries, so it requires
at most 2k′ words of memory.

The generation arrays structure is an array of dynamic arrays of pointers. The
number of generations is known when the generation arrays structure is created,
so we can �x the size of the outer array, but the inner arrays must be dynamic.
The total amount of pointers across all generations is at most k′, but since
dynamic arrays may require twice the size of their contents, the generation
arrays structure requires 2k′ words of memory in total.

The total memory used during dictionary encoding is 10m+ 6k′ + 2h words.

4.3.6 Outputting the dictionary

4.3.6.1 Time complexity

The dictionary is encoded as a combination of gamma codes and binary codes.
The gamma code corresponding to a number x is 2 blog2 xc+1 bits long, so the
time required to �nd it is the time required to set each of those bits to the right
value, which is O(log x). The binary representation of a number x also takes
O(log x) time to �nd, since that is the number of bits. Outputting each code
similarly takes O(log x) time.

We �rst write the number of terminals as a gamma code in O(log k) time, then
write each terminal as a gamma code, which takes O(k log k) time in total.

Next we write the number of generations in at most O(log k′) time, since there
cannot be more than k′ generations. We then need to write each of the gener-
ations in turn. Each generation consists of a header with the number of pairs,
followed by the gamma codes for the left elements and the binary codes for the
right elements.
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In total we write at most k′ headers, which takes O(k′ log k′) time. Similarly,
there are at most k′ pairs in total, so we write at most k′ left elements and
at most k′ right elements. Each of these are at most k′ since they are indices
into a sequence of length k′, so �nding and writing all of them can be done in
O(k′ log k′) time.

The total time required to output the dictionary is O(k′ log k′).

4.3.6.2 Memory usage

We still use 2k′ words for the phrase table, 2k′ words for the generation arrays,
2k′ words for the symbol to generation table, h words for the �rstCodes array,
h words for the numl array and 4m words for the hu�manToSymbol hash table.
No new data structures are added.

4.3.7 Outputting the Hu�man dictionary

4.3.7.1 Time complexity

Finally we have to output the dictionary from Hu�man codes to ordinal num-
bers. Most of the information in this dictionary is written in gamma codes, as
they can be distinguished without using separator symbols.

We �rst write a header for the entire dictionary, which is the length of the
longest Hu�man code, encoded as a gamma code. This takes O(log h) time.

For each length of code we write a header containing both the number of codes
and the value of the �rst code of that length. These values are stored in the
numl and �rstCodes arrays respectively, and can be looked up in constant time.

In the worst case all m Hu�man codes have the same length, which results in a
gamma code of size logm. Because we have no better bound, the length of each
gamma code we have to write in the headers must be O(logm). Generating and
writing the number of codes of each length takes a total of O(h logm) time.

The worst case for �rst values happens when all but one symbol have codes of
length h, and the code of the remaining symbol has length h− 1, in which case
the value of the �rst code for that length will be around m/2. Using this bound
generating all gamma codes for �rst code values takes a total of O(h logm) time.
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Finally, we have to output the ordinal numbers. Finding the index of a symbol is
done using logarithmic search in the appropriate generation, and as generations
can be up to k′ in length this takes O(m log k′) for all symbols. If every one
of the k′ phrases created is in its own generation, then the maximum index
we can be required to write is k′. Generating gamma codes for the indices of
the possibly m di�erent symbols will take O(m log k′) time. Seeing as m is
signi�cantly larger than h, generating the Hu�man dictionary takes O(m log k′)
time in total.

4.3.7.2 Memory usage

We are still working with the �rstCodes array and numl array, both of which
use h words of memory.

When running through the Hu�man codes, we need to associate them with the
symbols they represent to be able to look up the appropriate indices in the
normal dictionary. For this lookup we use the hu�manToSymbol hash table,
which takes up 4m words.

We use a number of structures to actually �nd the indices of symbols. The
symbol to generation hash table is needed to determine generations, and the
phrase table and generation array are both needed to look up the actual index
of a symbol. Each of these three structures uses 2k′ words of memory.

In total we need 4m+6k′+2h words of memory when creating and outputting
the Hu�man dictionary.
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4.4 Results

All tests are performed on 50 MB �les of the following �ve di�erent types of
data from the Pizza & Chili Corpus (see [7]):

Sources: This �le is formed by C/Java source code.

Proteins: This �le is a sequence of newline-separated protein sequences.

DNA: This �le is a sequence of newline-separated gene DNA sequences.

English: This �le is a concatenation of English text �les.

XML: This �le is an XML that provides bibliographic information on major
computer science journals and proceedings.

We use 50 MB �les as they are big enough to give interesting results, yet small
enough that we can complete tests of all versions in a reasonable time.

In an e�ort to eliminate random �uctuations in running time, all test results
are based on an average of 10 consecutive runs of the program. The tests were
performed on a machine with 8 GB DDR3 RAM and an Intel Core i7-4710MQ
CPU running at 2.50GHz with no other major applications open. The test
environment is the same for all the di�erent versions of our program.

As expected the results vary based on the input text, but overall we achieve a
signi�cant speed-up compared to the original Re-Pair implementation. Figure
4.2 shows the running times for the 5 di�erent �les, and we can see that the
total running time for any type of data is between 106.6 and 126.0 seconds
for 50 MB �les. In comparison, one of the results presented in [1] states that
they compressed the 20 MB �le WSJ20 in 135.7 seconds. The WSJ20 is an
assortment of English text extracted from the Wall Street Journal, and should
be closest in content to our �le english.50MB. We are running our program on
a more powerful CPU, so our results are not directly comparable to those in [1].
For this reason discussion of results of the various versions we have implemented
will compared to our basic version.

Looking closer at �gure 4.2, we see that the majority of the time used by Re-Pair
is spent in the phrase derivation phase. Each �le uses a similar amount of time
on initialization, but vary in time used on post phrase derivation processing.
The time needed for post processing is increased when compression has been
ine�ective, as this results in a longer sequence array. This is demonstrated by



34 Re-Pair basic version

Figure 4.2: Time spent on di�erent parts of the algorithm.

the compression ratios seen in �gure 4.3 which are inversely proportional to post
processing times.

We have not had the time to do any statistical analysis on the actual data in
the �les, so we cannot provide a detailed explanation for what exactly in�uences
how much the sequence array can be compressed in the individual �les, or why
there is such a large di�erence in the obtained compression ratios. It seems to
depend on how the symbols are distributed in the text, which determines how
pairs are formed.

As mentioned earlier, the memory required by the program limits the size of
blocks we can read and compress on the hardware available. Our test suite
measures the amount of memory used by the major data structures during
execution to give us an estimate of the actual memory needed for a certain block
size. The amount of memory used by the individual structures was discussed in
section 4.3.

The average maximum memory consumption across the 5 �les is measured by
us to be 359.0 MB, yet in practise the required memory is much more than
what our test suite suggests. We expect to see a slight amount of extra memory
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Figure 4.3: Compression e�ectiveness of the basic Re-Pair version.

in use, as we cannot account for all of the overhead of the program, but by
monitoring the actual memory use in the OS's Task Manager during program
execution we see memory use spike to more than double the theoretical number.
As mentioned earlier we attribute these spikes to the Google dense hash table
implementation and the way it aggressively acquires memory. We base this
assumption on two things. First, the hash table comparison performed by [3]
suggests the same problem. Second, the spikes occur when we reach the end of
the phrase derivation phase, at which time an large amount of new pairs are
created, and thus added to the active pairs hash table. In �gure 4.4 we see
the percentage of pairs replaced, relative to the total amount, for the 4 lowest
frequencies.
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Figure 4.4: Percent of pairs replaced by frequency.
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The basic version has a minimalist approach to storing the dictionary, with each
entry in the phrase table requiring only 2 words of memory. The point of this
version is to test whether replacing the phrase table with a hash table would
result in any signi�cant improvement in terms of running time.

5.1 Implementation

With the change from phrase table to dictionary comes a number of changes to
the design. The symbols created during phrase derivation are no longer memory
addresses, but can simply be given a unique name, which then acts as the key
for the hash table. This makes it somewhat simpler to check if something is
a terminal, since we have complete control over what names the non-terminals
get.

We still need to split the phrases into generations after phrase derivation, but
rather than sorting them then, it makes sense to tag each pair with its generation
during phrase derivation. This can be done in constant time by checking which
of the two constituents are terminals: if both are terminals the generation is 0,
otherwise it is one plus the highest generation among the constituents. After
phrase derivation it is easy to create the generation arrays by sorting the phrases
according to their generation tags.

5.2 Results

Running times for this version compared to the basic version can be seen in �gure
5.1. The results show that using a hash table does not result in any signi�cant
change to the total running time. The reason for this is that the additional
time required to interpret the phrase table in the basic version is negligible
compared to the running time of the entire program. The introduction of the
hash table does however increase the amount of memory used by a signi�cant
amount. Considering the extra memory required compared to the basic version,
the switch from phrase table to hash table would not seem to be worthwhile.
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Figure 5.1: Running times on all �les for basic and alternative dictionary
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When inserting pair records into the priority queue lists, our basic version uses
a LIFO strategy for each frequency. It was mentioned in [1] that the way
you insert into the lists matters very little, so we chose the approach that was
simplest to implement. The e�ect is that our program is biased towards creating
new symbols from non-terminals, instead of the terminals. This leads to more
non-terminals far removed from the terminals which in turn means that we will
have a greater number of generations than is strictly necessary. Due to the way
we store our dictionary, a large number of generations means a larger number
of headers which take up slightly more space.

Reducing the size of the dictionary can lead to improvements in compression
e�ectiveness, so by using a FIFO strategy in the priority queue lists instead we
hope to reduce the number of generations created and thus the overall size of
our dictionary.

We use an extra pointer for each record in the priority queue, such that one
points to the �rst pair record in a list, and the other points to the last record.
This increases the memory used by

√
n.

6.1 Results

The improvement to the compression ratio is minimal in most cases as can
be seen in �gure 6.1. There is a slight improvement to most �les except en-
glish.50MB which shows a promising 12.2 % increase in compression ratio. As
expected the number of generations has gone down, although signi�cantly more
than we imagined. The table below shows the average number of generations in
a block.

Basic version FIFO priority queue
dna 888.8 18

english 7396.4 28
proteins 1383.8 26.2
sources 826.6 28.8
xml 38.6 20.2

The reason that english.50MB sees the greatest improvement in this version is
both due to the fact that it has the largest reduction in number of generations,
but also because it has the biggest number of phrases in its phrase table. The
number of phrases in english.50MB is 482990, 16.5 % more than the second
largest which is proteins.50MB with 403268. Generations give an increase in size
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Figure 6.1: Compression e�ectiveness of FIFO priority queue vs. basic version.

because of more headers and the fact that the �rst number in each generation is
written as the gamma code of an actual number, and not as a di�erence between
two numbers. The number of phrases increases the size of the gamma code that
has to be written at the beginning of a generation, and makes having a large
number of generations much worse.

Some �les are compressed slightly faster and some slower, so on average there
is no change to running times in this version.
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The original Re-Pair algorithm uses a priority queue that is
√
n long and holds

all of the most frequent pairs in a single doubly linked list, and we need to search
through that list for each high frequency pair we want to replace.

This version of our program is designed to save time by having a longer priority
queue of size n. This way we will not have to search for high frequency pairs,
and might trade the additional memory needed to store the expanded priority
queue for an improvement in running time.

Memory use for the priority queue has gone from
√
n to n.

Running time for Re-Pair remainsO(n) as we can still replace at most n symbols,
and the size of the priority queue is bounded by n.

7.1 Results

The results vary based on the type of data being compressed, as can be seen in
�gure 7.1. Three of the �les show a minor decrease in running time, while the
other two use slightly longer time in this version. The running times seem to be
connected to the amount of high frequency pairs that are present in the original
input text, as seen in the table below.

Avg. nr. of pairs
dna.50MB 249.8

english.50MB 227.8
proteins.50MB 13.6
sources.50MB 160
dblp.xml.50MB 246

The three �les that bene�t from the extension of the priority queue are those that
have the greatest number of high frequency pairs. This is because the searches
performed to �nd pairs to replace in the basic version will take a longer time on
average compared to the �les with fewer high frequency pairs. Additionally, the
time spent on pairs with high frequency will be altogether higher as there are
more of them, leading to more searches performed. For the �les that spend little
time searching for pairs in the basic version, we now waste time going through
the much larger priority queue.

The bene�t of this version is data dependant, and it does not provide huge
speed improvements to the �les that are positively a�ected. It also has a large
increase in memory use, even though it remains linear in the size of the input.
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Figure 7.1: Running times of extended priority queue vs. basic version.

A potential improvement is to set the size of the priority queue to the greatest
frequency among pairs of the input text. Since the average maximum frequency
of pairs in a text is far below n, there is no need for the priority queue to be
initialized to the size of n. It seems unlikely however, that this would have a
signi�cant impact on the running time.
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The original Re-Pair algorithm continues to replace pairs until no pair occurs
more than once in the �nal sequence, resulting in the sequence array being
as compact as possible. In testing we have seen that a very large number of
pairs occur with very low frequency, and since each pair replaced at this level
shortens the sequence by only a few characters it should be possible to improve
the running time, without losing too much compression e�ectiveness, by not
replacing them. In the table below you can see the percentage of pairs replaced
in the last few steps down the priority queue:

freq. 2 freq. 3 freq. 4
dna.50MB 48.3% 15.5% 7.9%

english.50MB 72.8% 7.5% 5.5%
proteins.50MB 52.9% 16.1% 7.9%
sources.50MB 45.5% 14.6% 9.2%
dblp.xml.50MB 41.3% 15.0% 8.8%

It makes sense to stop the algorithm after a full list of pairs with a particular
frequency has been compressed, as this is what Re-Pair originally does. We call
the last frequency handled before phrase derivation is stopped the cuto� point
of the algorithm.

There are no asymptotic changes to running time or memory use by stopping
the algorithm earlier, but in practice we expect meaningful changes.

8.1 Results

Our tests have shown that stopping the algorithm before the original cuto�
point at a frequency of 2 not only reduces the running time, but improves the
compression ratio that we achieve. Pairs with low frequency in the �nal sequence
yield a small improvement to the size of the compacted text if compressed, yet
new entries add a greater amount of information to the dictionary �le created.
By leaving pairs with frequencies of more than 2 in the �nal sequence we save
enough space in the dictionary to o�set the extra characters left in the text,
resulting in a more e�cient and e�ective algorithm.

In �gure 8.1 we see an improvement to the compression ratio for the english.50MB
�le by having a cuto� point of around 6, versus the original of 2.
In addition, �gure 8.2 shows a reduction in running time at the same cuto�
points, going from 126.0 seconds to 101.5 at a cuto� of 6. This is almost a 20%
improvement, which is along the lines of what we expected to see. In general
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Figure 8.1: Compression ratios for cuto� values 2-15 on english.50MB

the speed increase is between 10 % and 20 %, with sources.50MB bene�ting the
least from an earlier cuto�.

We can improve the speed of the algorithm by setting an arbitrary cuto� as early
as we want, but that has little meaning unless we need to get below a certain
threshold. Since stopping the algorithm prematurely improves the compression
ratio in addition to the running time, we choose to denote the cuto� point with
the best compression ratio as the optimal cuto� point.

The optimal cuto� point varies based on the type of data being compressed.
Common for all the test �les is that the time required to compress the input
data is greatly reduced, and the compression ratio increased, by not trying to
replace the pairs with frequencies below 4. This is explained by the explosion
in the number of pairs and generations created when the last few lists in the
priority queue are handled.

The data show two di�erent trends regarding the optimal cuto�. The �rst type
of behaviour is seen in the �les english.50MB, dblp.xml.50MB, and sources.50MB
and, as demonstrated in �gure 8.1, exhibits a clear peak in compression ratio
around a certain cuto� point. The �les dna.50MB and proteins.50MB behave
quite di�erently, as seen in �gure 8.3, by �attening out as the cuto� increases
beyond 5-6.
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Figure 8.2: Running times for various cuto� points for english.50MB

As mentioned earlier we have not had the time to perform an analysis on the
actual data in the �les, and as such we cannot explain exactly what causes this
di�erent behaviour.

It is interesting to look at the optimal cuto� points that can be achieved for
each �le, but in practice we will not know these in advance. In addition to the
optimal points we also look at a �xed cuto� point based on the average for all
�les. As two of the �les do not show explicit maxima we �nd the last point with
an increase in compression ratio of more than 1 %, and denote that to be the
optimal cuto� point. The cuto� points look like this:

Optimal cuto�
dna 6

english 6
proteins 4
sources 4
xml 5

average 5
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Figure 8.3: Compression e�ectiveness for various cuto� points for pro-
teins.50MB

As can be seen the points do no vary by much and the graph in �gure 8.4 also
shows that the variance in compression ratio is minimal. This suggests that it
is a viable strategy to select a �xed cuto� point when compressing �les with
unknown data.

The increase in compression ratio we see when stopping phrase derivation ear-
lier is highly dependant on the di�erence between the size of a symbol in the
compressed sequence array (speci�cally its entropy code), and an entry in the
dictionary being saved to a �le. It is possible that with an alternative dictionary
compression strategy we would see a completely di�erent behaviour from our
cuto� version.
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Figure 8.4: Compression e�ectiveness for optimal cuto� vs �xed cuto�.
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Early testing of the cuto� version revealed that the optimal cuto� is not the same
for di�erent types of data. Since we are forced to use block sizes smaller than the
size of �les we are testing on, we wanted to design an algorithm for automatically
detecting the optimal cuto� point. This should lead to an improvement in
running time and compression e�ectiveness on large �les even when using the
algorithm on unknown types of data.

The �rst version we designed is simply called automatic cuto�, and it is supposed
to determine the cuto� value based on compression of the �rst block. One
challenge of determining this based on a single block is that it must be decided
during phrase derivation and before we have built the full dictionary. The reason
is that the compression ratio is calculated by directly measuring the number of
bytes we write to the resulting �les. Since we can only measure this once Re-
Pair has �nished, it only gives us information about the actual cuto� we elected
to stop at, and nothing about other potential cuto� points. Thus we have
to estimate the number of bytes the resulting �les will take up before phrase
derivation is complete. This gives us very limited information regarding the
size of the dictionary, and especially the number of generations created. Since
the number of generations in�uences the total amount of space used for headers
in the dictionary, not knowing the amount of generations makes it di�cult to
predict how much space a dictionary entry will take up compared to a symbol
in the �nal sequence.

In preliminary testing we discovered that the information available during phrase
derivation is not enough to give any meaningful predictions as to a good cuto�
point. The only information that we have is the cardinality of the input alpha-
bet, the remaining symbols in the sequence array, and the number of entries in
the phrase table. We cannot determine the number of generations or the size of
the Hu�man codes precisely.

The second automatic version is called iterative cuto�. The idea behind it is
to determine the cuto� by changing it from block to block and monitoring the
compression ratio to narrow in on the optimal cuto� point. By doing this we
have access to the actual compression ratio after each block and will not have to
estimate anything. In testing this idea we learned that there is too much noise in
the compression ratios of each block for this to work. The di�erence in the text
of each block in a �le is great enough to give compression ratios that are very
di�erent from what we obtain by compressing the entire �le. These variations
are comparable in size to the di�erences we see when changing the cuto� points,
meaning that it is impossible to distinguish them from one another.
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In addition to the problems already described, the result from comparing a �xed
cuto� point with the optimal one for each �le means that there is little gain in
trying to automatically determine optimal cuto�s. For this reason, as well as
those described above, these two versions were never fully implemented.
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Another variation to Re-Pair which is brie�y mentioned in [1] is the possibility
of merging each pair of adjacent symbols to form a new sequence of larger
terminals, which are used as the input to the Re-Pair algorithm. This would
have a negative e�ect on the compression ratio since each pair now corresponds
to four of the original terminal symbols, and since only phrases that start or
end after an even number of input symbols are preserved. On the other hand,
having half the amount of symbols would reduce the running time of phrase
derivation, which as we have seen is the main bottleneck in terms of running
time, as well as signi�cantly reducing the amount of memory required.

10.1 Design

The most straightforward way of merging symbols is to store an additional
dictionary containing the di�erent combinations of symbols. As the input is
read the symbol pairs can be combined and added to the dictionary before
being added to the sequence array. Re-Pair can then proceed as usual, and the
dictionary can be used to get the original symbols back when the compressed
�le is decoded. The problem with this approach is that it requires an additional
dictionary to be stored along with the compressed �le. Even using an e�cient
encoding, this would further reduce the compression ratio.

Another way to solve this problem is to use a pairing function to combine the
input symbols as they are read, which would eliminate the need for the additional
dictionary. Instead of reading one symbol, we read two symbols at a time and
combine them before inserting the result into the sequence array. This makes
the initialization process slightly slower (though only by a constant factor),
but phrase derivation and post processing is una�ected since the new symbols
are treated the same way the original terminals would have been. Since the
algorithm uses a signi�cant amount of memory as is, we consider this method
to be superior.
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10.1.1 Pairing function

The function used to combine the input symbols must satisfy a few requirements.
Firstly it must be bijective, meaning any pair of input symbols correspond to
a unique output and vice versa. Secondly it must be easily reversible, such as
to not add unnecessarily to the time required to decode a compressed �le. One
such function is the Cantor pairing function, which is described in [8].

Cantor(n1, n2) =
(n1 + n2) ∗ (n1 + n2 + 1)

2
+ n2

The reverse function for input n is de�ned by

n2 = n− t

n1 = w − n2

where

w =

⌊√
8n+ 1− 1

2

⌋
t =

w2 + w

2

10.1.2 Distinguishing terminals

The cantor merge strategy places some increased restrictions on the memory
addresses allocated for the phrase table. The maximum value of one of the
original terminals is 255, so a post-cantor terminal has a maximum value of
(255+255)∗(255+255+1)

2 + 255 = 130560. This means that for the program to still
be able to tell the di�erence between these terminals and the non-terminals, all
phrases must have addresses larger than 130560. For this reason, it also becomes
di�cult to merge more than two symbols. The way to do that would be to pair
two numbers multiple times, but the resulting number becomes so large that it
becomes impossible to tell terminals from non-terminals.

10.2 Implementation

Implementing merging in the basic version of Re-Pair is fairly straightforward.
During the initialization phase, instead of adding each new symbol we read to
the sequence array, we instead read two symbols at a time and combine them
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with the cantor function, then add the result. The only complication is that
there might be an odd number of symbols in the input, which would leave the
last symbol without a partner. We cannot simply leave it since it would be
impossible to tell whether it was an original symbol or a Cantor value. A way
to solve this is to combine the last symbol with 0. In ASCII 0 corresponds to
the null character which is reserved for indicating the end of a �le, so it will
never be part of the input alphabet. That means that if we reverse a pairing
and �nd that the second character is 0 we know that tat pair only corresponds
to the �rst character.

10.3 Results

As expected we see signi�cant improvements to both running time and memory
requirements across all �les. The total running time is approximately halved
across all �les. This makes sense since phrase derivation, which is the primary
bottleneck, now works on a sequence array that is half the size.

The memory requirements are not quite halved, which must be a result of the
size of some data structures not being directly tied to the input size. The size
of the active pairs table and the number of pair records depend on the number
of di�erent pairs rather than the frequency of those pairs, and so the amount
of memory required for those structures is not just a function of the input size.
The merge version also has a lot more terminals (up to k2), which results in a
lot more pair trackers being created compared to the basic version.

Some �les also have a reduced compression ratio, though for the proteins and
dna �les it remains approximately the same. This is most likely tied to the low
amount of terminals in those �les, but without a more thorough analysis it is
hard to say more than that.
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Figure 10.1: Running times of merge version vs. basic version.

Figure 10.2: Memory required by merge version vs. basic version.
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Figure 10.3: Compression e�ectiveness of merge version vs. basic version.
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10.4 Multi-merge

Given the success of the merge version described here, it seems logical to move
on to merging more than two symbols at a time. This, however, comes with
its own set of problems. The natural way to merge three or more symbols
is to use the cantor pairing function to repeatedly merge symbols two at a
time until only one symbol remains. However, the numbers produced by the
cantor function grow exponentially, which means that passing the function its
own output as input multiple times results in very large terminals. This is
problematic in multiple ways. Firstly, it becomes an issue that terminals and
non-terminals are impossible to tell apart if the non-terminals (which are really
memory addresses) are not guaranteed to be larger than the terminals. Secondly,
depending on the system the code runs on, it may be that the new terminals no
longer �t inside one word. This could cause a dramatic increase in the amount
of memory required by the entire program.

Both of these issues seem solvable assuming that there is a better way to combine
input symbols, but doing so is beyond the scope of this project.
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This version is a combination of the changes implemented in the merge and
cuto� versions. Merging symbols during initialization changes very little about
how the phrase derivation phase works, so we would expect to see the same kind
of improvements when changing the cuto� as with the basic version.

11.1 Results

As can be seen in �gure 11.1, the combined merge and cuto� version is signi�-
cantly faster than the version without merge, cutting the running time almost
in half for all cuto� frequencies. As with the merge version, this is because the
time required for phrase derivation, which is the primary bottleneck, is directly
dependent on the size of the input.

The cost of this is that the compression ratio is slightly lowered compared to
the version without merge. A comparison of compression ratios for di�erent
cuto� values can be seen in �gure 11.2 and 11.3. It is worth noting that even
for the �les that lose the most in terms of compression ratio, the right choice
of cuto� gives us almost the same compression ratio as the original Re-Pair,
while the running time is less than half of the original. In this sense, choosing
the right cuto� helps mitigate the downside of merging symbols while boosting
speed further.

Compared to the merge version without cuto�, there is some improvement in
terms of running time, but compared to the speedup from merging symbols it
is relatively minor. More signi�cant is the improvement in compression ratio by
about 8%, which as mentioned helps mitigate the reduction incurred by merging.
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Figure 11.1: Running times for cuto� and merge cuto� on english.50MB

Figure 11.2: Compression e�ectiveness for cuto� and merge cuto� on en-
glish.50MB
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Figure 11.3: Compression e�ectiveness for cuto� and merge cuto� on pro-
teins.50MB
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Figure 12.1: Compression e�ectiveness for all versions

12.1 Compression e�ectiveness

The best result in terms of compression is generally achieved by the cuto�
version. In the case of the english �le the FIFO queue version achieves a better
result, but it has no e�ect on the other input types. The faster merge-based
versions have a slightly lower compression ratio, but are quite close, especially
the combined merge and cuto� version. Figure 12.1 shows the compression ratio
achieved by the di�erent versions.

12.2 Running times

Comparing the average running times demonstrates the advantage of the merge-
based versions, especially the combined merge and cuto� version, which is about
twice as fast as the basic Re-Pair. While the cuto� versions without merge
achieve a slightly better compression, they are signi�cantly slower than the
combined version. Figure 12.2 shows the running time of each version compared
to the basic version.
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Figure 12.2: Running times for all versions

12.3 Memory use

The memory requirements are again best for the merge-based versions, which
average about 200 MB using a 10 MB block size. This is a signi�cant im-
provement over most of the other versions, which use 300 - 400 MB using the
same block size. Memory is also the downfall of the alternate dictionary, which
gives little to no speed increase at the cost of using up to three times as much
as the merge-based versions. Figure 12.3 shows a comparison of the memory
requirements using a block size of 10 MB.

12.4 Discussion

The improvements to running time and memory use of the merge with cuto�
version seem signi�cant enough to more than o�set the slight reduction in com-
pression ratio for most purposes. For some types of input it is on par with the
cuto� version in terms of compression, and only for the sources and english �les
does the compression ratio fall below that of basic repair.
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Figure 12.3: Memory usage for all versions

If time and memory are of no concern then cuto� without merge gives the
best compression ratio, outperforming both basic repair and the merge versions
across the board, but it requires almost as much memory as basic Re-Pair and
o�ers only a moderate increase in running time.

Inserting new pairs at the back of priority queue lists is clearly very important
for the number of generations in the dictionary, and given how the dictionary
is compressed it can have a not insigni�cant impact on the size of the com-
pressed dictionary. This is in contrast to the statement by [1] that "the order
in which pairs should be scheduled for replacement [...] appears to be of minor
importance"1, but that may be a result of encoding the dictionary in a di�erent
way.

1[1] page 3
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Conclusion

We have implemented several versions of our prototype program of the Re-Pair
algorithm, and seen improvements in running time, memory use, and compres-
sion e�ectiveness.

In testing whether there was any di�erence between using a FIFO method in the
priority queue lists compared to a LIFO ordering, we saw that it has a major
impact on the number of generations of phrases that the algorithm creates.
Depending on the data, lowering the number of generations can greatly improve
the compression ratio that can be achieved due to the overhead involved in
storing each generation.

An important result is seen in the version which merges symbols together two
and two before doing phrase derivation. For a comparable block size this halves
the size of the sequence array during compression, leading to several improve-
ments of the algorithm compared to other versions. It nearly halves the running
time, showing the greatest reduction of any version we have tested, and as a
bonus it also signi�cantly reduces the memory use. The downside is that is puts
harsher requirements on the formation of pairs, which can lead to fewer pair
replacements and thus a somewhat worse compression e�ectiveness.

We learned from our cuto� version, that the amount of pairs which occur 2-3
times is signi�cantly higher than the amount of pairs with greater frequencies.
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More importantly they take up very little disk space in the compressed �le
relative to the dictionary entries created when they are compressed. The number
of pairs that we can avoid replacing by having an earlier cuto� reduces the
running time by a moderate amount, but since dictionary entries take up so
much space compared to Hu�man codes for symbols, we see an increase in
compression ratio by stopping the program prematurely. In terms of improving
compression e�ectiveness the cuto� version shows the best results.

The best result we have seen in regards to running time is from the combination
of the merge and cuto� versions. This version bene�ts from the reduction in
running time of both the other versions, and the improvement to compression
in cuto� applied to merge means that it achieves compression ratios close to the
basic version.

13.1 Future work

There are many more things to examine in regards to the Re-Pair algorithm,
and in this section we mention some that we �nd particularly interesting.

It would be interesting to look into creating a version that uses more than one
thread to compress blocks concurrently, taking advantage of the fact that we
divide �les into multiple blocks. Blocks do not share any data other than the
�les they read from and are output to, so it should be relatively simple to imple-
ment without introducing a lot of race conditions. As we showed earlier, most
of Re-Pair is spent on phrase derivation, so this is where we want to save time.
Even if you choose to do initialization and outputting sequentially to keep the
order of the �le, you should be able to save a lot of time. The biggest concern of
making a multi-threaded version is increasing the already substantial memory
requirements of Re-Pair. The available hardware will dictate the possible block
size that can be used, but to minimize this problem a multi-threaded implemen-
tation would likely be based on some variant of the merge version, as it uses the
least amount of memory.

The reduction in number of generations when using a FIFO approach in the
priority queue lists had a greater impact on the �le with the greatest number
of phrases and generations. These numbers are not only based on the data in
the �le, but also on how much of the �le is read at once, i.e. the block size. It
could be interesting to test the e�ects of that version on more data and various
block sizes.
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We did not have the chance to implement a version that merges more than
two symbols, but the promising results of merging suggests that it would be
interesting to rewrite the program to overcome the problems we found and test
multi-merge. This would involve �nding a way to di�erentiate terminal symbols
from the phrases created during compression.

The dictionary for the compressed �le takes up a lot of space, and the only
reason cuto� has a positive e�ect on compression is the poor relation between
symbols and dictionary entries. It would be interesting to �nd a more elegant
dictionary scheme that would reduce the overall size after compression, and
thus improve the ratio to the original �le. It would also be interesting to look
at how much of the success of the cuto� versions can be attributed to how the
dictionary is stored. The reason cuto� can improve the compression ratio is
that entries in the dictionary take up more space than low frequency pairs, so
a di�erent method of storing the dictionary might change that. In particular
it would be interesting to examine the performance of cuto� together with the
chiastic slide method described by [1] (page 7 - 8).
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