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Summary (English)

This thesis considers binary search trees with respect to the performance of
searches. In order to study the strong data structures are the competitive anal-
ysis applied.
The working-set, dynamic finger and sequential access property are introduced
with respect to this analysis.

Two binary search trees are considered. Splay trees are proved to have all of the
properties mentioned above, and they are conjectured to have the even stronger
unified property.

Tango trees are proved to be O(log logn)-competitive, but this thesis shows that
it does not compete well against the upper bounds of the optimal offline binary
search tree.

Finally, red-black, splay, and tango trees are experimentally compared. The
results show that red-black trees are the best of the three types of trees if
searches are on random chosen keys. However, splay trees are found to be the
best if searches are close in time or key space. In none of the experiments was
the tango tree found to be any better than the others.
The experimental results justify the conjecture that splay trees have the unified
property.
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Summary (Danish)

Denne afhandling undersøger binary search trees og deres ydeevne ved søgning.
For at analysere stærke datastrukturer er competitive analysis benyttet og med
hensyn til analysen introduceres working-set-, dynamic finger- og sequential ac-
cess property.

Afhandlingen fokuserer på to binary search trees. Splay tree er bevist at have
alle ovenstående nævnte egenskaber og formodes at have den endnu stærkere
unified property.

Tango tree er bevisligt O(log log n)-competitive. Men som denne afhandling
viser, klarer den sig ikke vel mod de øvre grænser for det optimale offline binary
search tree.

Endelig sammenligner afhandlingen splay-, tango- og red-black- trees eksperi-
mentelt. Resultatet underbygger at red-black trees er den bedste af datastruktu-
rerne, hvis søgningerne benytter tilfældigt valgte keys. Splay trees har derimod
den bedste ydeevne, hvis søgninger er tætte i key space, eller hvis søgninger på
samme key er tætte i tid. Undersøgelsen fandt ingen tilfælde, hvor tango trees
var bedre end de øvrige search trees.
De eksperimentale resultater underbygger formodningen om, at splay trees har
unified property.
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Preface

This thesis represents the end of my effort for acquiring an M.Sc. in Engineering
at DTU.
The preparation of this thesis is motivated by the interest of finding tight bounds
for online search algorithms for binary search trees. And as the study has shown,
we are close: Splay trees are conjectured to be dynamically optimal and strong
bounds are known.

I am glad that this thesis can contribute to the research with an experimental
comparison of tango, splay and red-black tree. The thesis does also introduce mi-
nor theorems with respect to tango trees performance against the upper bounds
of the optimal offline binary search tree.

Lyngby, 19-June-2015

Theis F. Hinz
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Chapter 1

Introduction

Binary search trees are a category of data structures which have several benefits.
Most interesting is its support of search operations, by using the property that
data is stored in symmetric order by their key. An often asked question is how
fast a search can be done.

The worst-case running time depends on the depth of the tree. Red-black trees,
as well as others, are able to search in worst-case O(log n) time by minimizing
the depth of tree, where n is the number of nodes in the tree.
This is the best running time we can get for binary search trees in the worst-case
scenario as there always will be nodes of log n depth. But in other scenarios can
better results be found. To study efficient binary search tree’s further, there
will be needed a stronger methods to analyze them.

This thesis will use the competitive analysis to investigate online searches [KMRS88].
There will be considered several searches which is executed on the data struc-
ture. An access sequence, X = {x1, x2, ..., xm}, is the collection of these searches
sorted by the time they are executed. It is not possible to chose the algorithm
to use on the sequence beforehand as the algorithms is online.

A good binary search tree will be efficient for any given sequence. The analysis
therefore consist of investigating how they competes against the offline data
structure which is optimal for searching on the sequence. Let OPT (X) be the
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running time of the optimal offline binary search trees for a access sequence X.
A binary search tree is then c-competitive if its running time is within a c factor
of OPT (X) for any X. By using this analysis must a data structure perform
well for any cases - also those which is not the worst-case scenario.

This leads to the following very strong property introduced by Tarjan et. al. in
1985 [ST85]:

Definition 1.1 (Dynamic Optimality Property) A binary search
tree, D, is dynamically optimal if it for any X executes the access sequence in
worst case O(OPT (X)).

The property is equivalent to being O(1)-competitive. It means in other words
that its execution time for any given sequence is a constant factor from the best
possible binary search tree that can be expected to exist. It is however an open
question if such a data structure exists.

OPT (X) depends of the access sequence X and the initial tree, T0. Some
states of the T0 are better for some access sequences than others. Yet we know
algorithms that can transform any binary tree of n nodes into any other tree
in O(n) time[CW82]. So by assuming m = Ω(n) can T0 be ignored in the
asymptotic analyses of data structures.

This report will look into what we know about an optimal offline binary search
tree. There will in chapter 2 and chapter 3, be outlined the upper and lower
bounds of OPT (X). Afterwards, there will be examined two binary search trees
in relation to this analysis.
Finally these binary search trees are compared by experimental results in section
6 in order to find out what tree are best in certain cases.

1.0.1 The Model

There will initially define the binary search tree model which there will be used
throughout the thesis.
All nodes have a key which can be searched for. Nodes have an pointer to its
left and right child (if existing). A pointer to its parent can as well be stored, if
existing.
The nodes may store addition data, but they are not allowed to contain pointers
to other data structures.

Searches will in the model always start by having a pointer at the root. It is



3

then allowed to use the following operations:

• Move the pointer to the left child.

• Move the pointer to the right child.

• Move the pointer to the parent.

This thesis focuses on dynamic tree’s. The model hence allow modifications
(such as rotations) however they may only be conducted on the node at the
pointer. A search succeed when the pointer is at the node with the key-value
we searched for.

Variables and Assumptions

Throughout this thesis, n will denote the number of nodes in the binary search
tree which there will be analyzed.
The access sequence of size m which is executed on the binary search tree is
denoted as X = {x1, x2, ... , xm}. It is assumed, without loss of generality, that
m = Ω(n).

We denote OPT (X) to be the optimal running time of the execution of X.

To simplify the analysis, we will assume that the considered binary search trees
of size n have the keys {1, 2, .., n}, however other can be used.
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Chapter 2

Upper Bound

This chapter will consider a set of upper bounds of the optimal offline binary
search tree. They each consider access sequences of specific characteristics for
which binary search trees can perform better than the general worst-case running
time of O(log n).
The upper bounds can also be properties for those data structures which obtain
the results of the bounds.

It is the goal to find bounds as close to optimal as possible, with the ideal of
θ(OPT (X)). In order to proof the tightness one approach may be to proof a
factor between an upper and lower bound (see chapter 2.1).

Some of the bounds is generalization of another. An overview can be seen in
figure 2.1.

The first considered upper bounds use distance in key space between the current
and previous accessed node [Iac01].

Theorem 2.1 (Dynamic finger property) Consider any key xi in
X where i ≥ 2. xi−1 is then the previous key in the sequence. A binary search
tree have the dynamic finger property if the search of xi takes O(log(|xi−xi−1|+
2)) amortized time.
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Dynamic Optimality

Unified PropertyWorking-set Property Dynamic finger Property

Sequantial access Property

Figure 2.1: The hierarchy of the upper bounds. There is an arrow from one
bound to another, if the first bound implies the second. A dashed
arrow is implications which is not proven.

As an effect of this does a search take amortized O(1) time, if all keys in X are
a constant distance away in key space to their predecessor. There is a "+2" to
make sure that the expression never is zero (you always have to pay a constant
time).
The dynamic finger property thus implies theorem 2.2.

Theorem 2.2 (Sequential access property) A binary search tree have
the sequential access property if each search in the access sequence X = {1, 2, ..., n}
takes amortized O(1) time.

An search tree can also be efficient compared to searches distance in time, in-
stead of space. A data structure with the working-set property is efficient if the
time distance between searches of same keys is small. The working-set is defined
to be the number of distinct searches in X. [Iac01]

Theorem 2.3 (Working-set property) Let t(z) be the number of dis-
tinct searches since last time a node z were accessed. A binary search tree have
then the working-set property if the search of any xi takes amortized O(log(t(xi)+
2)) time.

A challenge is that there is no connection between a working-set and the dynamic
finger property. John Iacono did in 2001 introduce a new bound which combines
both bounds [Iac01].

Theorem 2.4 (Unified property) Let t(z) be the number of distinct
nodes accessed since last time the node z were accessed. A binary search tree
have then the unified property if a search of any node xi ∈ X takes amortized:

O

(
log min

z∈X
(t(z) + |xi − z|+ 2)

)
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This property assures that a search on xi is fast if there exists a node in X
for which their position in X is close and their keys are close. Notice that the
property equals the dynamic finger property if t(z) = 1. In similar way does it
equal the working-set property if xi = z. The unified property does thus imply
both.

For the time being, no existing binary search tree has proved to have the uni-
fied property. There have even not been proved that this is a upper bound of
OPT (X). There is however made several pointer-based data structures which
achieve the property. There will in chapter 5 be considered a binary search tree
which is conjectured to have the property.
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Chapter 3

Lower Bound

We want to be able to analyze how efficient a data structure is compared to an
optimal offline binary search tree.

There will in this section be examined the known lower bounds for such a binary
search tree. The lower bounds are interesting to consider, because any online
binary search tree which is asymptotic as fast as the lower bound is dynamically
optimal by definition 1.1. They can as well give a understand of what is not
possible to achieve using the binary search tree model.

3.1 Wilbert’s First Bound

Robert Wilbert did in 1989 prove the first lower bound for binary search tree
[Wil89]. There will be analyzed a binary search tree, T , with the keys S. A
lower bound tree of T is then a complete binary tree with leaves that each have
a key in S (see figure 3.1). The nodes are ordered symmetrically.

This tree is only used in the purpose of the analyzing T . The tree is static, and
its structure will thus not change over time.

For an internal node with a key y, there will be considered the subsequence
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r

1 2 3 4

Figure 3.1: For Wilbert’s first bound where n = 4. Consider the node r. For
the access sequence X = {2, 3, 4, 1} will λ(r) then be 2.

X ′ = {x′1, x′2, ..., x′h} of X for which a node in the subtree’s of y is accessed. An
access x′i in X ′ is defined as a transition of y if x′i−1 < key(y) ∧ x′i ≥ key(y)
or x′i−1 ≥ key(y) ∧ x′i < key(y). This means that the access sequence alters
between searching for a node in the left or right subtree of y.

Finally we denote the total number of transitions for an internal node y as
λ(y) = |x′i ∈ X : x′i is a transition of y |.

Wilbert’s first lower bound is then the sum of transitions for all internal nodes
added to the size of access sequences, m.

Theorem 3.1 (Wilbert’s first bound) For a given binary search tree
T , there is a lower bound tree with the internal nodes Y . Consider a access
sequence X of size m which is executed on T . A lower bound of the optimal
execution of X on T is then:

m +
∑
y∈Y

λ(y)

Using this lower bound, it can be observed that it is always possible to make a
search for which there is a transition at all nodes on the root-to-node path of
the searched node. It’s search cost is thus worst-case no less than O(log n) time.

3.2 Interleave Bound

One variant of Wilbert’s first bound was introduced in 2004 for the purpose of
easier application in the analysis of data structures[DHIP07].

The difference is that there is used an alternative lower bound tree, P , which is
complete and of the same size as T . (see figure 3.2). A key of T , S = {1, 2, ..., n},
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is now stored at each of the nodes, and not only at the leaves. The lower bound
tree is still static.

left region right region

4

y

2

1 3

6

5 7

Figure 3.2: Lower bound tree P for the interleave bound. The left and right
region is shown for a node y.

We define transitions and λ(y) as described in section 3.1. Denote the set of
internal nodes as Y . The interleave of an access sequence X is then defined to
be:

IB(X) =
∑
y∈Y

λ(y)

The interleave lower bound is then:

Theorem 3.2 (Interleave lower bound) A lower bound of the exe-
cution of an access sequence X on any binary search tree T of size n is:

IB(X)/2− n

Regrettably, it becomes rather clear that this lower bound is far from optimal.
Consider the root-to-leaf path of the lower bound tree, which contains the child
which was last touched. A search of any nodes on this path would not result in
any transitions. By the lower bound it should cost at least O(1) time. However,
as the path contains log n nodes, its is obvious that more that constant time
must be used.

Now a proof will be given for the lower bound.
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Proof of Interleave Bound

The following lines considers a node y in P and define its left region to be all
nodes in its left subtree plus y itself (see figure 3.2). It similarly defines y’s right
region to be all nodes in its right subtree.

Let then the transition point of y be the node in T with the lowest depth for
which its node-to-root path contains a node from both the left and right region.

Now it will be shown that such a node exists for all nodes in P at any time.

Lemma 3.3 A transition point exists for any node y at any time.

Proof. Define l to be the lowest common ancestor of all nodes of the left
region of y in T (see figure 3.3). The keys of the nodes in the left region covers
a subinterval of the key space spanned by T . l must thus be a node in the left
region as a lowest common ancestor must be in the interval.
In a similar way can r be defined as the lowest common ancestor of all nodes of
the right region. It follows by the same argument that works for l that r is a
node in the right region. The nodes l and r is interesting to consider, as they
must be visited when there is gonna be accessed a node in its corresponding
region.

Lets consider the lowest common ancestor of all nodes in both the left and right
region, q. Such a node must be a node in one of the regions, as the union of the
keys in the regions covers a subinterval of all keys in the tree. As q is defined
to be the node with the lowest depth, it must either be l and r.

2
l

1 4

3 6
r

5 8

7

transition
point of y

Figure 3.3: T at a certain time for P shown in figure 3.2.
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The node which is not the lowest common ancestor of the nodes in both regions
must then be the transition point of y. An access of the transition point must
visit q and itself, which is nodes in different regions. �

There will for the rest of this section be continued to use the definition of l, r
and q.
The transition point of y will not change in a sequence of accesses where the
transition point is not touched. This is obvious as no modifications can be done
at the transition point or on its subtrees, without accessing it (by definition of
the model 1.0.1).
No nodes can thus enter or leave the subtrees of the transition node.

Lemma 3.4 Let X be a sequence of accesses for which the transition point of
a node y is not touched. Then is the transition point of y the same node during
the execution of X.

Finally it will be proved that nodes have a unique transition point. This implies
that only one transition can happen when the transition point is touched.

Lemma 3.5 A node in T is a transition point for at most a single node in P
at any time.

Proof. Let y1 and y2 be any nodes in P . It will now be shown that these
elements can not have the same transition point in T by considering two cases.
The first case is that y2 is in the subtrees of y1. The transition point of y1 can
then be a node in the regions of y1 or not. If it is not then l and r is distinct
nodes. If it is, then we would have that the transition point of y1 is the lowest
common ancestor of all nodes in the regions of y2. But this is the same as q of
y2 and their transition points are thus different. By symmetry can it be shown
that their transition points are different for the case there y1 is in the subtree
of y2.
The second case is that neither y2 and y1 is in the subtree’s of each other. In
this case their regions is distinct and thus the transition point is not the same
node. �

The interleave bound (theorem 3.2) can now be proved by the use of three
lemmas above:

Proof of Theorem 3.2. We proof this by counting the transitions points
which the sequence must touch.
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Consider the subsequence X ′ = {x′1, x′2, ..., x′λ(y)} of X for which a transition
happens on a node y. Every second search in X ′ must access a node in the
left region of y, and thus touch l. Similarly, every second search must access a
node in right region and thus touch r. The transition point of y is either l or
r. The point may change between being l and r but this requires touching the
transition point (lemma 3.4). It follows that the transition point of y must be
touched at least λ(y)/2− 1 times.
There can now be summed over the number of touches for transition point in P .
This is okay, as lemma 3.5 proves that the transition points is unique for each
node in P . Let Y be the set of nodes in P . The interleave bound then follows:∑

y∈Y
λ(y)/2− 1 = IB(X)/2− n

�

3.3 Other Bounds

A second lower bound was also given by Wilbert [Wil89]. The bound has not yet
been found usable in practice. However, it have several benefits, for instance it
does not depend on a lower bound tree. Furthermore, it is closer to the optimal
running time, but it have never proved to be more than a constant factor better
that his first bound (which we just have considered) [CD09].

Two other lower bounds exist which are closely related to each other, The In-
dependent Rectangle Lower Bound [DHI+09] and The Rectangle Cover Lower
bound [DDS+05]. Both uses a geometric view of tree’s and is conjectured to be
a constant factor from each other [CD09]. Both is proven to be at most as high
as Wilbert’s second lower bound.



Chapter 4

Tango Tree

This chapter will consider a binary search tree which is the first to be proved
O(log log n) factor from O(OPT (X)). It is also called O(log log n)-competitive.
This is an analytical improvement as regular trees are only known to be O(logn)-
competitive.

Tango trees were proposed in 2004 [DHIP07] and use the interleave bound (see
section 3.2) to achieve their result. The main idea is keeping track of the state
of the lower bound tree, P .

Consider a P where each node is augmented to know which child was previously
accessed (see figure 4.1). We denote this child as its preferred child. By conven-
tion a node have a left preferred child if it was the node which their previously
was searched for. A child that has not previously been accessed is called the
non-preferred child. Initially no nodes are preferred.

The preferred children may change in order to be up-to-date on what nodes
were previous access. There is an important connection between the changes of
preferred children and the interleave IB(X) (as defined in section 3.2). Let us
now consider lemma 4.1.

Lemma 4.1 The number of times a node alternate between having a left or
right preferred child is equal to the interleave, IB(X), for the access sequence.
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Proof. A preferred child is the left child given that the previous access was
in the left region. Similarly, if the previous access was in a node in the right
region, the preferred child is also right. A node can only have one preferred
child. So a change in which region was previously accessed implies a change of
the preferred child and the other way around. The lemma then follows. �

Figure 4.1: Lower bound tree, P . A node have a thick edge to its preferred
child, and a dashed edge to its non-preferred child.

Let the preferred paths be the paths for which you start at a non-preferred node
and move by edges to preferred children. A preferred path have O(log n) nodes
as P is balanced.

For tango trees to be O(log log n)-competitive the following is required:

Search on preferred path A search which only accesses nodes on a single
preferred path would not make any transitions (see section 3.1). It then
follows, by the definition of the interleave bound (theorem 3.2), that tango
tree’s may use worst-case O(log log n) time.

Access non-preferred child A transition is made for each non-preferred child
which is accessed. Thus, the addition of O(log log n) time is allowed in
order to access nodes in the preferred path of which the non-preferred
child is in.

Please note that tango trees do not support insertion and deletion of nodes.
This is due to the limitation that the interleave bound requires the lower bound
tree to be static.
Also, a tango tree is a self-adjustable tree. There is therefore no guarantee that
a tango tree is balanced.
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4.1 Auxiliary Tree

There is an exact correspondence between the nodes in the lower bound tree and
the tango tree. Tango trees store each preferred path of the lower bound tree in
an augmented red-black tree, which is denoted Auxiliary tree. The augmentation
will be described later on.

In P , an edge between a node and its non-preferred child corresponds to an edge
between two preferred paths. Such an edge is in T represented by a pointer
(stored as an edge) that connects the auxiliary trees which describes the two
preferred paths.

Let A1 and A2 be the preferred paths representing the auxiliary trees mentioned
above. A2 will then be inserted into A1, without rebalancing the tree. By doing
this A2 is stored at a leaf of A1. The connections to all the auxiliary trees make
up a single tree T (the tango tree) as shown in figure 4.2.
The root of the tango tree is the root of the auxiliary tree which contains the
root of the lower bound tree.

A2A1 A3 A4 A5 A6 A7 A8

A5

A2

A1 A3

A4

A6 A8

A7

Figure 4.2: On the left: Lower bound tree with highlighted preferred paths.
On the right: The Tango tree with its auxiliary trees shown.

Each auxiliary tree will still be treated as an individual tree. It is thus necessary
to be aware where the auxiliary trees are. In order to do so, an additional bit
is stored on each node which decides if it is a root of an auxiliary tree or not.
Note that a tango tree complies with the binary search tree model though it
actually has several trees in it.
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Additional Data on Nodes

The auxiliary trees are augmented to store additional information about the
lower bound tree for T . The data is used by the search algorithm.

First, let each node, vi in T store the depth of its corresponding node in P . This
depth will be denoted dP (vi). Each vi is then augmented to know the maximum
and minimum depth (in P ) of all nodes in its subtree of the auxiliary tree.

These values must be updated each time a node in T is modified (such as rotated)
so that they are always up-to-date. This is simply done without changing of the
asymptotic running time as only the nodes on the node-to-root path need to be
updated [CLRS09].

4.2 Tango Search Algorithm

The search algorithm for tango trees will now be considered. The algorithm
starts by having a pointer at the root and moves the pointer like a classic
binary search tree.

The pointer may meet the node u, which is characterised by having an edge to
an other auxiliary tree, and it is possible that the pointer moves by the edge
into the new auxiliary tree. Such an access will change the preferred path in
the corresponding lower bound tree of T . The change of the preferred child in
P can be described as in figure 4.3: Firstly, the path cuts into two: One with
depth more than dP (u), and one for the rest. Secondly, the path of the lowest
depth is joined with the path which contains the non-preferred child.

The auxiliary trees are intended to always represent a preferred path regardless
of the changes that are made during searches. Thus, there will be made changes
to the auxiliary trees that are similar to what is done to the preferred paths
of the lower bound tree. The cut- and join- step will be described in the next
sections.

Finally, the root and the node you search for is in the same auxiliary tree. The
search thus ends by finding the wanted node by a regular binary search.

The next sections will consider a transition at a node u. The segment of the
preferred path with greater depth than d is denoted D. The preferred path
which contains the non-preferred child of u is denoted D′.
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u

Cut
u

Join
u

Figure 4.3: The steps of how the preferred path is changed by the transition
at u. Notice that the non-preferred children is not shown, except
for u.

Cutting Auxiliary Trees

The cut operation turns the auxiliary tree, which contain u, into two trees. The
first auxiliary tree A contains all nodes which have a depth in P that is less
or equal to dP (u). The rest of the nodes, D, is in a separate auxiliary tree
underneath. The cut operation correspond to turning a preferred child in P
into a non-preferred.

To do so the cut operation uses the split and concatenate function:

split(A, k): The algorithm takes a tree A and a key k in A. Split then modifies
the tree so that the root have the key k. Its left subtree contains all nodes
with smaller keys and its right contains the nodes with bigger keys.

concat(vk, A1, A2): The concatenation takes a node with key k, and a tree A1

whose nodes have keys less than k and another tree A2 whose nodes have
keys higher than k. The algorithm then returns a single tree containing
all nodes of A1, A2 and vk.

Robert Tarjan proves that such an algorithm exists for Red-Black Tree with
worst-case running time of O(log n′) where n′ is the number of nodes in the
tree [Tar83].

Now consider how these operations can be used to do a cut operation. Let l′
be the node with the biggest key smaller than all keys in D. Similarly, r′ is the
node with the smallest key which is bigger than all keys in D. All keys between
these adjacent keys are in D as a path covers all keys in a interval of the key
space. It is later shown how to find these nodes.
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Assuming these nodes can be found we are able to do the cut operation as follow
(see figure 4.4):

A

l’ r’

split(A,l’)
l’

B C
r’

split(C,r’)
l’

r’
B

D E

Mark D as its
own auxiliary
tree

l’

r’
B

D E

concat(r’,D,E)l’

D

B E
r’

concat(l,B,E)

D

F

l’ r’

Figure 4.4: Cutting a tree A′ into two trees: A and B. The figure is based
on a figure from the original paper [DHIP07].

Let the tree be split on the key of l′. Then let the right subtree of the root be
split on the key of r′. The left subtree of r′ now contains all nodes between l′
and r′ and must therefore have a depth in P lower than dP (u). It is thus D.
Let the subtree be its own auxiliary tree by changing the bit of its root so that
it represents the root of a new auxiliary tree.
Let r′ and its subtrees be concatenated and let thereafter l′ and its subtrees be
concatenated. This will result in an auxiliary tree with D in another auxiliary
tree underneath.

Finding l′ and r′

In order to find l′ and r′ fast a classic search can not be used as the nodes
are ordered by their key and not depth. It will now be considered how to find
l′. The approach is to find the left most node in D, denoted l. l′ is then its
predecessor.

First, let d be the lowest depth of the nodes in D. D and D′ are both subtrees
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of u, and the value of d can therefore easily be found as it is equivalent to the
lowest depth of D′. Let v be the root of the auxiliary tree to join. d is then
either the depth of v or lowest depth in the subtrees of v. Both values are stored
on v, and d can be found as by identifying the lesser value.

Knowing d we can find l by following the left most path from the root for which
the nodes or their subtrees have depth greater or equal to d.

r′ can be found by a similar method by symmetry.

Joining Auxiliary Trees

When two auxiliary tree are joined it turns into a single auxiliary tree containing
all the nodes. This is done the same way as cut is done. Once again there can be
found an value l′ and r′ which is adjacent to D′. It requires two split operations
in order to have D′ in its own subtree of T . The bit on root of D′ is then changed
so that it is not the root of an auxiliary tree. Finally, two concatenations can
turn it into a single balanced tree again.

Figure 4.5 shows the keys of D and D′ on a number line. It is obvious that u
is either l′ and r′ during a join as D′ is a subtree of u. By symmetry must u
either be l′ and r′ for the cut operation.

This means that there can be one split and one concatenation less if cutting and
joining is done at the same time. This means that a join and cut operation can
be done by three splits and three concatenations in total.

4.3 Analysis

This section analyzes how tango trees performs. Initially it will consider tango
trees worst-case running time as a function of the changes between nodes pre-
ferred child.

Theorem 4.2 The worst-case running time of a tango tree with n nodes is
O((k+1)(log log n)) where k is the number of times a node changes its preferred
child.

Proof. By design there is a exact correspondence between a preferred path and
an auxiliary tree. A search must thus access nodes from k + 1 auxiliary trees.
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︷ ︸︸
︷

D

︷ ︸︸ ︷D′
u

l′cut

r′join

Lower bound tree, P

Keys on number lineu︷ ︸︸ ︷D ︷ ︸︸ ︷D′l′cut r′join

Figure 4.5: Transition of u shown in the lower bound tree, P . The keys are
plotted on a number line beneath.

The "+1" is added because there always are accessed nodes in the auxiliary tree
containing the root.
A search in an auxiliary tree takes O(log log n) time as it is an balanced tree
with O(log n) nodes.

Furthermore, time is spent on updating the trees k times such that they con-
tinues to represent the preferred paths. Each update contains a cut and a join
operation. This is a constant number of split and concatenation operations and
the flip of a bit on two nodes (one to indicate that its a root, and one to indi-
cate that another node is not a root anymore). The auxiliary trees are of size
O(log n). Hence this takes O(log log n) time.
Finally, time is spent locating l′ and r′ which will be used for the cut and join
operations. For each of them a simple search is done (where depth is taken into
count) and one operation of respectively finding a predecessor or a successor.
This is of O(log log n) time.
The running time must hence be O((k + 1) · log log n). �

In the worst-case scenario can a search execution be touching O(log n) non-
preferred children. Thus, there exist sequences where each search takesO((log n)·
(log log n)). This is larger than the most known self-balancing data structures.

Let us now prove tango trees competitive running time.
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Theorem 4.3 Let it be assumed that m = Ω(n). The execution of a search
sequence X takes at most O(OPT (X) · (log log n)) for tango trees.

Proof. It takes at most n accesses to let all nodes (which is not leaves) have
a preferred child. By theorem 3.2 the running time of X is then:

O((k + n+m) · (log log n)

By lemma 4.1 it is known that k = IB(X). The expression can thus be rewritten
as:

O((IB(X) + n+m) · (log log n)

It can now be deducted that the interleave bound states that IB(X)/2 − n ≤
OPT (X). m is always less than OPT (X) (as the node search for must be
touched) so the execution takes at least:

O((OPT (X) + n) · (log log n)

The theorem then follows when the assumption is applied that m = Ω(n). �

4.3.1 Performance against Upper Bound Properties

Tango trees are closer to optimal than most. But unfortunately, tango trees
still do not perform well against the upper bounds described in section 2. This
thesis applies the properties to the data structure and finds that tango trees
have neither of the properties.

Lemma 4.4 The execution of the sequential access sequence X = {1, 2, ..., n}
take O((n+ 1)(log log n)) time for tango trees.

Proof. The strategy is to count the number of alternations between nodes
the preferred child when all n nodes is accessed. For every internal nodes must
there be one access in the left region and one in the right region. In total are
there O(n) changes of preferred children. A sequential access does then use
((n+ 1)(log log n) time. �

This is log log n of the results for the sequential access sequence. The result
does also show that tango trees do not have the dynamic finger property as it
is a generalization of the sequential access property.
Lets us consider the working-set property.



24 Tango Tree

Lemma 4.5 Tango trees does not have the working-set property.

Proof. The result is found by a disproof. Consider an access sequence with
a constant sized working-set. Let every access be on a key of a leaf in the top
auxiliary tree. Each search is then equal to a regular search in a red-black tree.
Every search then takes (log log n) time. �

A tango tree does also not have the unified property as it would require that a
tango tree also have the working-set and dynamic finger property.

4.4 Tango Inspired Trees

It is a challenge for tango trees that the auxiliary trees use red-black trees where
nodes keep a fixed depth. Section 4.3.1 shows that tango trees does not have
the working-set property by searching for nodes at Ω(log log n) depth.

One idea would be to replace red-black trees with a self-adjusting binary search
tree This is possible to do as long as the search, split and concatenation operation
is supported.

This is done by for instance multi-splay trees which use splay trees instead
[WDS06]. The search algorithm is nearly the same but achieves some better
results: Each search takes O(log n) amortized time and it is proved to have the
working-set property [DSCW09].
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Splay Tree

A splay tree is a self-adjusting binary search tree which is proved to have very
good results in respect to the upper bounds of the optimal offline binary search
trees (see chapter 2). The data structure was introduced by R. E. Tarjan and
D. D. Seator [ST85].
It has proven to have the working-set property, dynamic finger property and
sequantial access. It is even suspected to have the unified property. Its running
time is amortized O(log n).

Most interesting is that it is conjectured to be dynamic optimal. However, it is
still not proven being any better than a O(log n) factor from optimal.

The data structure and search algorithm is very simple however its analysis i
very complicated. There will in this chapter first be described the data structure
and afterward there will be analyzed its asymptotic running time.

5.1 The Data Structure

The data structure is a clean binary search tree. This means that no additional
data is stored at the nodes.
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5.2 Search Algorithm for Splay Trees

A search on a key xi uses a regular binary search in order to find the node.
When the node is found, an algorithm called splay is applied in order to move
the node to the root.

The idea is to keep nodes which have recently been accessed close to the root
and in the mean time reduce the depth. Doing this will make future searches
on these nodes faster.

Splay

The splay algorithm uses rotations in order to move xi to root. For every step
the node, its parent and grandparent (if existing) is considered. This gives us
three cases (and three mirrored cases which is handled similarly). The cases are
named zig, zig-zig and zig-zag, and they are shown in figure 5.1.

Each of the steps described above reduce the depth of the subtrees of xi. Notice
that the splay-operation is simply rotating xi besides for the zig-zig case. This
is because the constantly rotating of xi will not reduce the depth of the subtrees
of xi in this particular case. The steps is conducted repeatedly until x is the
root (see figure 5.2).

The zig-case (see figure 5.1a) happens no more than once per splay. This is if
xi is a child of the root and therefore do not have a grandparent.

Each step takes O(1) time as they contain no more than two rotation and each
of these changes a constant number of pointers.

5.3 Analysis

In order to analyze its amortized running the potential function is used. Every
node, v, will thus be given a potential which is denoted as its rank, r(v).

Consider figure 5.3. The weight w(v) of a node v is defined as an arbitrary
number. It is equal for all nodes and will not change through time for this
specific analysis. The size s(v) of v is then the total weight of all nodes in v’s
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Figure 5.1: The three cases for splaying xi. The figure is based on an illustra-
tion from the original splay tree paper [ST85].

subtrees and v itself. The rank is then equal to:

r(v) = blog(s(x))c

Rank Rules

This section will clarify two minor lemmas about nodes rank which are called the
Rank Rules [Sle02]. These will later on be used for the prove of the amortized
running time.

Lemma 5.1 (Rank Rule 1) If two siblings have the equal rank r then their
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Figure 5.3: The weight, size and rank of nodes in a tree. All nodes in this
example have a weight equal to 1.

parent must have a rank higher than r.

Proof. The two siblings must each have a size of minimum 2r (by definition of
size). Their total sizes are therefore at least 2r + 2r = 2r+1, and their parents
must thus have a rank of r + 1 or higher. �

Lemma 5.2 (Rank Rule 2) Consider a node v′ with the two children v1
and v2. If v′ and v1 have the equal rank r then v2 must have a rank lower than
r.

Proof. v′ can have a size no larger than 2r+1− 1. On the other hand, the size
of v1 is at least 2r. The largest size which v2 can have is thus 2r − 1. The rank
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is therefore lower than r. �

Running Time Analysis

Let there now be considered the running time of the splay tree. The access
lemma describes splay trees’ amortized running time by applying the rank func-
tion.

Lemma 5.3 (Access Lemma) A splay tree with root t has the amortized
running time 3(r(t)− r(x)) + 1 for splaying a node x.

Proof. The approach is to consider each step of the splay-algorithm (see figure
5.1) one by one. Let r′(x) be the rank of the node to splay after the step. The
prove is then to show that each step costs at most 3(r′(x)− r(x)) beside for the
zig-case where an additional constant may be used. The total costs of all steps
is 3(r(t)− r(x)) + 1. Notice that the "+1" is from the zig-case which occur only
once or not at all.

Let there now be considered the 3 steps. The parent and grandparent of x is
denoted respectively as y and z.
Notice that the rank of these nodes changes during a step, as other nodes’
subtrees stay the same. These nodes are therefore only considered. The nodes
never have a rank higher than r′(x) during the execution of a step as x is the
node with the highest level. It is thus enough to assure that there are r′(x)
tokens for each node which increases its rank.

Zig Case
There is paid 1 for the actual cost of the step. The new rank of x is covered by
r(y) as they are of equal value. r′(y) is covered by the tokens of r(x) and by
letting additional r′(x)− r(x) be paid. This is enough tokens as r(x) + r′(x)−
r(x) = r′(x).
The total cost is r′(x)− r(x) + 1 which is less that 3(r(t)− r(x)) + 1.

Zig-zig case
Two situations are considered for for this step: Either the step changes the rank
of x or not.
The first situation (the rank does not change) can be illustrated as in figure 5.4.

The rank of a node is written above the node on the figure as a variable. After
the first rotation is z a child of y and a sibling of x. By lemma 5.2 the rank
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Figure 5.4: Zig-zig case when the rank of x does not change. Based on a figure
from [Sle02].

of d must have decreased. The subtrees of z does not change during the next
rotation so their rank stays decreased.
So there is release at least 1 token from potential (as r′(z)− r(z) ≤ 1), and this
can be used for paying the actual cost.

The second case (the rank does change) can be seen in figure 5.5.
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Figure 5.5: The zig-zig case when the rank of x changes. Based on figure from
[Sle02].

The increase of x’s rank can be covered by the rank of z as r(z) = r′(x).
To cover y and z’s rank are there paid for additional r′(x)−r(x) tokens for each
to increase r(x) and for r(y) to be equal to r′(x).
Additional r′(x)− r(x) (which is at least 1) is spent for doing the actual job.
The total cost is 3(r′(x)− r(x)).

Zig-zag Case
Once again, two situations are considered: The rank of x changes during the
step or it does not.
The first case (the rank does not change) is illustrated in figure 5.6. In this
situation is y and z children of x after executing the (zig-zag) step. Rank Rule
2 says that they cannot both have the same rank as x (lemma 5.2). Therefore,
at least one token is released which is used for doing the job.

For the second situation (where x changes its rank) the rank of the nodes can
increase.
r′(x) is covered by the tokens of r(z) as they have the same value. Similarly,
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Figure 5.6: Zig-zag case where the rank of x do not change. Based on figure
from [Sle02].

r(y) ≥ r′(y), so the rank of y can be covered by them.
r′(x)−r(x) is paid in order to increase r(x) enough to cover the tokens for r′(z).
Additionally r′(x) − r(x) is paid (which is at least 1) for the actual cost. The
total cost is 2(r′(x)− r(x)).

The zig-case has now been proven to cost no more than 3(r′(x)− r(x)) + 1 and
3(r′(x)−r(x)) for the two other cases 3(r′(x)−r(x)+1. The prove is thus done.
�

If the weight of all nodes is set to be 1 then the root has a rank of r(t) = log n.
A leaf has a rank of 0. The asymptotic running time is thus worst-case:

3(r(t)− r(x)) + 1 = 3(log n− 0) + 1 = O(log n)
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Chapter 6

Experimental Comparison

In this chapter tango, splay and red-black trees are compared experimentally
with different access sequences.

These accesses sequences are among other reasons chosen in order to show their
performance against the upper bounds described in section 2.

The trees are implemented in Java and are constructed in such a way that the
code is reused between the data structures. Figure 6.1 shows a class diagram
of the model representing the nodes. The class BSTNode represent the basic
model of binary search trees as defined in section 1.0.1.

The splay tree does not use any additional data and is thus using BSTNode as
its model.

Red-black trees store an additional bit on the nodes to represent their color.
The class RedBlackNode inherits the BSTNode class and adds the additional
information to the model.

Tango trees extend red-black trees to store additional augmented data. Their
model therefore inherit from the model of red-black trees. Other trees do exist
that are inspired by the tango trees and use other data structures than red-black
trees (see section 4.4). Therefore, this project use an interface, so that the tango
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«Interface»
TangoNodeInterface

RBTangoNode

isRootOfAuxTree: bool
depthInP: int
minDepthInP: int
maxDepthInP: int

RedBlackNode

color: Color

BSTNode

key: int
parent: BSTNode
left: BSTNode
right: BSTNode

Figure 6.1: Classes representing nodes of the data structures.

tree model can easily be exchanged to other models with the same interface.

The classes representing the trees that are structured in a similar way (see figure
6.2). An abstract class named BST is used to describe the public interface and
the operations that are shared between the data structures (such as rotation).

Tangotree

RBTree Splaytree

BST

Figure 6.2: Classes representing the trees.
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How the Trees are Compared

The experimental execution are conducted by the class TimeTest which use the
class SequenceGen to generate the access sequences.

All trees have their n nodes inserted {1, 2, ..., n} in random order. Notice that
there might be minor changes in performance if the nodes are inserted in a differ-
ent order. For instance will the splay tree initially be an unbalanced chain if the
nodes are inserted in sequential order. However, the difference in performance
should be small as long access sequences are applied.

For tango trees a search on each node of the tree is made prior to the experiment.
By doing this does all internal nodes in the corresponding lower bound tree have
a preferred child. At this point should the tree perform a O(log log n) factor
from optimal, OPT (X).

The trees are compared by two parameters: The time to execute the access
sequence and the number of nodes which are touched during this execution.

A data table with the experimental results can be found in the appendix.

6.1 Dynamic Finger

In order to compare the data structures performance against the dynamic finger
property (see section 2) are the following access sequence applied:

{1, 1 + 1i, 1 + 2i, ..., n, (n− 1i) + 1, ...}

This is an access sequence where the previous search always is the distance i
away. An exception is when the sequence reaches n for which a search of distance
i− 1 is taken. This is done in order to assure a working-set of size O(n).

A data structure which have the dynamic finger property should be able to
execute each step in amortized O(log i) time.

Figure 6.3 plots the result with different key distances, i. A tree is applied which
have the size n = 2500000, and the length of the access sequence ism = 5000000.

The graphs show that the running time of the red-black tree is about constant
when i change. This is expected as its running time is independent on i (the
depth of the tree is never changed).
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Splay trees are proved to have the dynamic finger property. It is thus expected
that the running time is increased logarithmically when the key distance grows.
The experimental results confirm this.
Notice that the experiment has found that splay trees are the best performing
data structures when the key distances is small.

In the experiment, tango trees perform significantly worser than the other data
structures. However its performance improves when the key distace grows. We
have made following hypotheses for why this happens:
When a search are made will the next accessed nodes be the distance i away.
This means that preferred children are unchanged in a large subtree which grows
with i. The preferred paths will stay the same in this subtree. At a certain point
will the sequence again access nodes in this tree. These searches should thus
only follow few non-preferred children in order to succeed.
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Figure 6.3: Dynamic finger experiment. The upper plot shows the time used
for executing the sequence. The lower plots show the touched
nodes. For the experiment are n = 2500000 and m = 5000000.
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6.2 Sequential Access

A data structure with sequential access property should be able to visit all n
nodes in O(n) time. Figure 6.4 compares the performance when the sequential
access sequence {1, 2, 3, ..., n} is executed with different values of n.
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Figure 6.4: Sequential Access experiment. The time usage (upper plot) and
the touched nodes (lower plot) for the experiment is shown.

The following is an explanation of the result. Splay trees does have the sequential
access property which the experiment also shows as the time increases linearly.

Red-black trees are expected to grow by O(n log(n)) as m equals n. Our
observations confirms this (examine data table in the appendix A.2 for better
examination).
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Tango trees time usage expected to grow by O((n+ 1)(log log n)) (see prove for
lemma 4.4). This is also the case for the experimental results.

Notice that red-black trees are found to be the best to perform when n is small.
This can be explained by the fact that red-black trees don’t pay a high cost for
adjusting the tree when searching. But when the number of nodes increases are
this cost less dominating and splay trees therefore perform best. In none of the
cases the tango tree appear to be the best.

6.3 Working-set

This section describes an experimenting comparison of the data structures for
variating sizes of the working-set, t (see section 2). This is done by executing an
access sequence in which a search for the same key is conducted with a frequency
of t.

Figure 6.5 plots the performance for red-black trees and splay trees. For the
experiment a tree is used which has 3, 000, 000 nodes and an access sequence of
length: 10, 000, 000. The plots show the data series RB and Splay which are
the execution where random keys are chosen for the working-set.
In addition the best and worst-case scenario shown for red-black trees. This
best-case situation is for red-black tree to have a working-set where the keys are
of the nodes closest to the root. The worst-case situation is that the working-set
contains keys which are all stored on the leafs.

The number of touched nodes can easily be explained by the theory. The time
usage for the worst-case situation stays constant as it is bound by its worst-case
running time of O(log n) where n stays constant. For the best-case situation the
time usage grows logarithmically by the size of the working-set. This is because
the accessed nodes have a maximum depth of O(log t).

Splay trees are proven to have the working-set property and should touch
O(log t) nodes. This seems to be the case for the experiment.

Notice that the plot of the time usage does not clearly reflect the number of
touched nodes. It is suspected by us to be caused by the caching of the operating
system. It seems likely that cache could have a large impact on the running time
when several searches frequently are conducted on the same nodes.

The experimental results for tango trees can be seen in figure 6.6. The experi-
ment uses the same value of n and m as for the other data structures.
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The data-serie called Tango are execution where a random chosen working-set
are used. A search can access no more than t non-preferred children during
a search. This is because a search can only switch a single preferred child in
respect to a path of interest. We therefore expect the search time to grow with
t but stagnates as which nodes is preferred converges toward being random.

The best- and worst-case situation for tango trees are furthermore executed.
The best-case scenario is that a search is made for each node on the preferred
path. Then the pointer is repeatedly moved by to one non-preferred child.
Searches is then made for the new nodes on the preferred path.

The worst-case scenario is to search for nodes for which the pointer only moves
by non-preferred children until it is in the auxiliary tree with highest depth.
The running time for each search should then be O(log n · log log n) (by the use
of theorem 4.2). The only exception for this is the first search in the round of
searches as we do not know the state of the lower bound tree. In this case the
search time can be less. We suspect this to be the reason for the search time
increases as found in the results of the experiment.



6.3 Working-set 41

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

seconds

Working set

T
im

e

RB
RB worst-case
RB best-case

Splay

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0

0.0

0.2

0.4

0.6

0.8

billion

Working set

T
ou

ch
ed

no
de
s RB

RB worst-case
RB best-case

Splay

Figure 6.5: Working-set experiment for red-black trees and splay trees. The
upper plot shows the time usage and lower plot shows the number
of touched nodes. For the experiment is n = 3000000 and m =
10000000.
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Figure 6.6: Working set experiment results. The upper plot shows the time
usage and the lower plot shows the number of touched nodes. For
the experiment is n = 3000000 and m = 10000000.
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6.4 Unified Property

In order to consider the data structures performance against the unified property
are the following access sequence used:

{1, n
2

+ 1, 2,
n

2
+ 2, ..., n}

This sequence has the property that every second search is a constant distance
away in key-space. A data structure with the unified property should by theorem
2.4 be able to execute the sequence in O(m log(1)) = O(m) time. If a data
structure has the working-set or dynamic finger property, the running time is
O(m log n).

Figure 6.7 shows the results when executing the access sequence on red-black
tree and splay tree. n is changed through the experiment while m = 100000000
stays constant.

Once again, red-black trees grow by O(log n) because of its worst-case running
time.

Splay trees is conjectured to have the unified property, but it is not proven yet.
If this is the case the running time should stay constant as it only depends on
m. The experimental results justifies this conjecture as the running time is close
to constant (it stagnate when higher m was chosen).

Figure 6.8 shows the experimental results for tango trees. The length of the
access sequence is the same as for the experiment on the other data structures.
The reason it has its own figure is that its time consumption was found to be
significantly larger. Its time usage grows slowly. Our hypothesis is that this
is caused by every second search being close in key space. The access between
the searches can at most change one node from the previous preferred path.
Therefore does the searches only need to visit few non preferred children.
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Figure 6.7: Unified property experiment for red-black trees and splay trees.
The upper plot shows the time usage and the lower plot shows the
number of touched nodes. For the experiment is m = 100000000.
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Figure 6.8: Unified property experiment for tango trees. The upper plot shows
the time usage and the lower plot shows the number of touched
nodes. For the experiment is m = 100000000.
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6.5 Random Access Sequence

The final experiment compares the data structures when an access sequence
is used where keys are chosen randomly. Figure 6.9 shows the results of the
execution with different size of n while m = 10000000 stays constant.

Red-black trees are expected to always be best for random access sequences.
This is because it will not help adjusting the tree. All you can do is to minimize
the depth of all nodes and this is what self-balancing binary search trees do.

This experiment shows that self-adjusting trees are only interesting to consider
if you know that accesses will come in a systematic order.
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Figure 6.9: Random access sequence experiment with m = 10000000. The
time usage and the number of touched nodes are plotted as a
function of n.
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Chapter 7

Conclusion

Tango trees are proved to be O(log log n)-competitive. However, this thesis
shows that tango trees do not perform well against the upper bounds of the
optimal offline binary search tree. Our results prove that a tango tree uses
(n log log n) time to execute the sequential access sequence and does not have
the working-set property.

Splay trees, on the other hand, are known to have the dynamic finger, sequential
access and working-set property, however it is never proved to be more than
O(log n)-competitive.

The thesis has made an experimental comparison of the two data structures and
red-black trees. The results show that red-black trees are the best data structure
if the access sequences consist of random chosen keys (in random order).

However, splay trees may be the best if the access sequence contains searches
in a systematic order and the tree stores a large number of keys. Splay trees
are found to be good if searches in the access sequence are close in times or key
space.

It was not possible to find any case where tango trees performed better than
the other data structures. Often the time usage was significantly higher than
the other. We do therefore not recommend the data structure to be used in
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practice. However, tango trees’ theoretically results are important in respect to
the analysis as it shows that O(log log n)-competitiveness is possible.

Splay trees are conjectured to have the unified property. The experimental
results are in line with this conjecture.

7.1 Future work

This thesis have argued that the tango-inspired trees have many benefits com-
pared to the original tango trees. Some of these have good results against the
upper bounds of OPT (X), and these may be considered in future work.
However, these trees should never be expected to be found any better than
O(log log n)-competitive. This is because the interleave bound is not a tight
bound and possibly O(log log n) time away in certain cases.
To find better data structures is it worth considering other lower bounds and
design binary search trees which uses these.
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Experiment data

A.1 Dynamic Finger Data

Table A.1: Data for figure 6.3. Time usage.

Time (ms)
Key distance Red-black Tango Splay

1 724 8079 453
401 2204 35938 1413
801 1038 34951 1079

1201 1432 35211 1055
1601 1413 33634 1141
2001 1414 33290 1032
2401 1411 32081 1104
2801 1417 32067 1104
3201 1433 32600 1069
3601 1336 30881 1073
4001 1457 31320 1052
4401 1054 30928 1057
4801 1455 31039 988
5201 1207 30581 1043
5601 1458 30618 962
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6001 1454 30642 1017
6401 1468 30372 959
6801 1256 30091 1018
7201 1191 30304 1019
7601 1212 30363 1081
8001 1271 30362 987
8401 1349 30316 1000
8801 1467 30388 994
9201 1479 30802 835
9601 1480 30070 982

Table A.2: Data for figure 6.3. Touched nodes.

Touched nodes
Key distance Red-black Tango Splay

1 103377362 1328346740 71159766
401 103656302 4679327709 229245142
801 104072776 4634806378 230347852
1201 103604390 4651237747 230795438
1601 103808294 4603912627 230962082
2001 103997590 4579796046 231138166
2401 103693323 4595115937 231227882
2801 103722655 4559108434 231341190
3201 103525429 4567953697 231322784
3601 103527953 4565643805 231371196
4001 103579184 4551716630 231380532
4401 103593000 4522558167 231422102
4801 103838708 4552251635 231449342
5201 103579815 4560256446 231452970
5601 103675383 4528246186 231444062
6001 103949264 4550972523 231501372
6401 103570504 4520640259 231503780
6801 103688620 4498516582 231490734
7201 103643904 4543631018 231425828
7601 103412006 4529948398 231421160
8001 103696563 4492463259 231527814
8401 103493357 4503583978 231489990
8801 103514686 4522278650 231430688
9201 103597917 4509736983 231425346
9601 103671020 4489571353 231470836
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A.2 Sequential Access Data

Table A.3: Data for figure 6.4. Time usage.

Time (ms)
Nodes, n Red-black Tango Splay

10000 5 76 3
1510000 216 3184 142
3010000 446 6357 319
4510000 415 9672 482
6010000 912 12953 629
7510000 961 16197 437
9010000 708 19519 576
10510000 1092 22766 1003
12010000 897 26290 596
13510000 1553 29745 1090
15010000 1184 32694 789
16510000 1631 36216 1538
18010000 1858 39708 858
19510000 1827 42874 1407
21010000 2023 46255 1795
22510000 1944 49575 1771
24010000 2050 53047 1138
25510000 2164 56307 1793
27010000 2856 59772 1683
28510000 2458 63346 1347

Table A.4: Data for figure 6.4. Touched Nodes

Touched nodes
Nodes, n Red-black Tango Splay

10000 126337 2832396 194542
1510000 30149097 529336039 29392966
3010000 63136788 1065996371 58577302
4510000 97468485 1621644810 87769656
6010000 132148197 2186807035 116979392
7510000 167861711 2734610344 146146332
9010000 203340313 3294242048 175376990
10510000 240199711 3854656282 204552360
12010000 277019115 4427131882 233741464
13510000 313341594 4982750390 262936758
15010000 350362077 5531759620 292152410
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16510000 388042405 6142761651 321310234
18010000 425079245 6698602255 350493926
19510000 464071918 7264427849 379743504
21010000 500885990 7850947624 408887300
22510000 538398533 8411049330 438141292
24010000 576711485 8994116534 467283176
25510000 615118348 9555608731 496488048
27010000 655639248 10149213626 525699012
28510000 692302780 10726049690 554861544
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A.3 Working-set Data

Table A.5: Data for figure 6.5. Time usage.

Time (ms)
Working-set Red-black Splay

Random Worst-case Best-case Random
1 413 421 27 91
29 677 778 76 742
57 963 1025 96 1148
85 1006 845 105 1530
113 1002 1106 111 1763
141 1153 1016 115 1863
169 1353 1411 127 2018
197 1517 1619 128 2124
225 1612 1731 132 2225
253 1740 1874 139 2270
281 1754 1971 143 2432
309 1732 2076 152 2484
337 1925 2056 173 2512
365 2046 2194 193 2685
393 2089 2188 214 2671
421 2124 2273 234 2737
449 2086 2281 252 2749
477 2149 2264 277 2816
505 2176 2331 304 2774
533 2102 2365 323 2876
561 2050 2320 328 2906
589 2187 2461 337 2941
617 2210 2364 351 2827
645 2256 2428 364 3001
673 2186 2380 378 3122
701 2158 2389 388 3103
729 1846 2430 405 3046
757 2277 2437 419 3146
785 2233 2473 413 3148

Table A.6: Data for figure 6.5. Touched nodes.

Touched nodes
Working-set Red-black Splay

Random Worst-case Best-case Random



56 Experiment data

1 210000000 220000000 10000000 10000000
29 204482762 219999995 41034476 408280428
57 209473673 219473680 49999982 485590370
85 213294124 219529415 55882338 595692242
113 210707950 221858408 59380486 616941566
141 209858153 220212765 62482273 643925054
169 209467450 221065078 65384548 670924808
197 212791892 220253825 67461836 684562014
225 209288895 219377780 69022118 717543736
253 210711460 220909098 70237085 722199912
281 211281140 221814944 72135115 750341510
309 208446624 221229778 73753894 761704538
337 208872393 220267043 75103715 773240660
365 209013707 220931509 76246402 787017612
393 209007585 220661583 77226266 796049676
421 210760086 221615209 78076002 815337818
449 210556800 221135841 78819464 819269820
477 210020947 221215939 79475660 839992640
505 210217821 220712872 80059404 835620050
533 209193263 220487804 80994226 845059318
561 210106954 221782528 81942685 859979076
589 209728355 220780981 82801295 864367424
617 210988681 221620737 83581534 864945492
645 209643413 220790701 84294457 870945814
673 209583951 221471042 84947842 886399562
701 208573464 220813107 85548845 880841152
729 209986270 220864195 86103878 892193644
757 210951129 221096430 86618098 897954716
785 209770730 220573255 87095402 901601250

Table A.7: Data for figure 6.6. Time usage.

Time (ms)
Working-set Tango

Random Worst-case Best-case
1 146 198 174
29 59591 71118 32066
57 67996 86645 36453
85 76261 94896 40796
113 82929 103250 40374
141 85333 107593 40782
169 92702 114474 42674



A.3 Working-set Data 57

197 91672 117270 41510
225 94043 124481 41082
253 96072 121657 43733
281 99355 125297 42498
309 102330 126523 43826
337 101858 133026 44684
365 102498 138496 45603
393 104255 140909 44059
421 109622 140252 44223
449 104834 137482 45972
477 111126 144874 46317
505 109726 146005 44420
533 111673 138669 45180
561 114383 144193 44913
589 112720 141410 46110
617 114793 149294 45993
645 116321 148310 46287
673 114234 149576 44956
701 115129 154528 45369
729 116818 156997 47021
757 115761 156950 46442
785 117307 155594 46267

Table A.8: Data for figure 6.6. Touched nodes.

Touched nodes
Working-set Tango

Random Worst-case Best-case
1 40000000 60000000 50000000
29 9222829730 11458691345 5284362214
57 10173728188 13200476400 5533674908
85 11186337920 14163190287 6028954718
113 12094792247 15436037714 6035018091
141 12492656696 16129805324 6031779487
169 13480141486 16866067025 6334964992
197 13334016384 17470228867 6071927858
225 13683992882 18062536811 6019864026
253 13955236326 17793579961 6453331278
281 14533447179 18522116666 6257025482
309 14571158641 18803809744 6457194342
337 14721431162 19537345147 6590930461
365 14767994543 20247230490 6697915302
393 15160478444 20149360029 6495616768
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421 15791412585 20430197031 6500474408
449 15248652834 20304138684 6771880438
477 15915586886 21143507784 6803182322
505 15687249008 21349081932 6567516435
533 16220039363 20554006036 6669273405
561 16306234718 21025832938 6670189443
589 16043024365 20674045168 6717930128
617 16370999386 21863972285 6744407324
645 16921170920 21807630805 6819743803
673 16493951788 21879280152 6663013318
701 16687796063 22568504182 6724258801
729 16773372842 22867281957 6830562879
757 16647345501 22537285219 6727450938
785 16930064054 22948893537 6862210163
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A.4 Unified Property Data

Table A.9: Data for figure 6.7 and 6.8. Time usage.

Time (ms)
Nodes, n Red-black Splay Tango

850000 15140 20871 307282
1530000 14123 30591 306209
2210000 16886 28636 307951
2890000 10531 33053 303924
3570000 17423 33755 309409
4250000 13003 28544 315133
4930000 18191 26503 313279
5610000 7591 12464 308576
6290000 8656 33737 308971
6970000 11387 34031 310698
7650000 15294 35569 314437
8330000 14098 35551 310822
9010000 11102 31605 313809
9690000 13827 35364 314736
10370000 12265 34932 311224
11050000 12700 33815 316212
11730000 13296 35352 313592
12410000 15186 23045 315246
13090000 12871 26262 311237
13770000 13380 27058 316120
14450000 11612 24605 313127
15130000 12359 23596 315552
15810000 10523 27544 316364
16490000 12824 34086 316826

Table A.10: Data for figure 6.7 and 6.8. Touched nodes.

Touched nodes
Nodes, n Red-black Splay Tango

850000 1918090463 4686592640 48182788855
1530000 2003160404 4685772902 48342391636
2210000 2051632031 4684664786 48720725751
2890000 2096683626 4675164988 48182332671
3570000 2128394167 4686081564 49142518737
4250000 2150224450 4669388498 49993289575
4930000 2172401752 4674225440 49626589420
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5610000 2188464008 4650427182 49281242940
6290000 2211148457 4642321152 49323903504
6970000 2221368255 4663646426 49549071414
7650000 2234630907 4675703328 50372932221
8330000 2251714903 4678115340 49658875981
9010000 2265516024 4671036074 50253158836
9690000 2272453445 4654367814 50283734582
10370000 2282124147 4628171422 49632788714
11050000 2289611784 4669862588 50784765965
11730000 2297008153 4629340056 50158372383
12410000 2307109087 4666184222 50470408258
13090000 2312789561 4611486108 49840078571
13770000 2328203155 4643507326 50588786497
14450000 2328729362 4574454580 50138563472
15130000 2336879684 4601671846 50532262122
15810000 2343181387 4629034038 50597218110
16490000 2350395894 4656306072 50731442887
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A.5 Random Access Sequence Data

Table A.11: Data for figure 6.9. Time usage.

Time (ms)
Nodes, n Red-black Splay Tango

650000 4106 10369 209668
1170000 5343 12322 226032
1690000 3884 14166 232418
2210000 6411 14861 245551
2730000 6081 16278 245528
3250000 6938 16768 251739
3770000 4379 17341 258458
4290000 6050 17878 265991
4810000 4786 18947 264494
5330000 5421 19018 269957
5850000 7291 19349 273987
6370000 6608 19574 275811
6890000 5679 19999 276038
7410000 5539 17012 278461
7930000 5381 17422 279807
8450000 5413 18061 281732
8970000 5260 19262 283359
9490000 5870 21686 288371
10010000 6438 19134 289835
10530000 6160 20320 292818
11050000 6106 21802 291367
11570000 6836 22229 292796
12090000 6394 21807 293071
12610000 7098 21532 297973

Table A.12: Data for figure 6.9. Touched nodes.

Touched nodes
Nodes, n Red-black Splay Tango

650000 187346801 1763251374 28154680161
1170000 196059883 1849591382 30098905342
1690000 201452977 1903416668 31350020091
2210000 205296148 1942895706 32186983964
2730000 208237793 1974107896 32854118485
3250000 211354826 1999830998 33414742783
3770000 214241046 2021480370 34017174045
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4290000 215238555 2040514210 34962670976
4810000 217066267 2057382312 34944690139
5330000 218384858 2072266974 35206046650
5850000 219853967 2086119308 35785858141
6370000 221054415 2098685836 35952127523
6890000 222309451 2110258358 36196095678
7410000 223493873 2120947204 36517168574
7930000 225143824 2131129230 36862287906
8450000 225085344 2140502214 36863646446
8970000 225830943 2149197854 37200943288
9490000 226875554 2157510384 37439184394
10010000 227270111 2165460900 37605813302
10530000 228661937 2172806670 37590122554
11050000 229043490 2180005392 37824506960
11570000 229641833 2186920770 38043326958
12090000 230115224 2193264674 38111027675
12610000 231497776 2199477524 38212212271
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