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Summary (English)

Given uncertainty of oil reservoir properties, such as the permeability �eld,
the net present value (NPV) received from oil reservoir production becomes
stochastic. This encourages optimization strategies that focuses on maximizing
the expected NPV while minimizing the risk of low outcomes.

The goal of this thesis is to investigate the potential of utilizing such optimization
strategies. Especially the focus is on the performance achieved when using
Robust Optimization (RO) over an ensemble of 100 reservoir models with a bi-
criterion objective function including both Conditional Value at Risk (CVaR)
as the risk measure and NPV as the pro�tability measure. This is compared
to more conventional reactive strategies where producers are shut when they
are no longer pro�table and Certainty Equivalence (CE) optimization that only
optimize over the expected reservoir model parameters. In the Mean-CVaR
optimization the focus can be shifted between the parameters and create an
e�cient frontier that shows the level of risk associated with a given NPV which
gives more options for a satisfying solution.

For the simulation we will use a oil reservoir with 3 injection wells on one side
and 3 producer wells on the other side of the reservoir and simulate over 8 years.
The simulations will be done in Matlab using the Reservoir Simulation Toolbox
MRST.

The Mean-CVaR optimization greatly outperformed the CE optimization both
in terms of expected NPV and CVaR. Compared to the the Reactive Strategy
we generated an e�cient frontier with up to 2.3% higher average NPV. The
CVaR of the Reactive Strategy could however not be fully matched.
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Summary (Danish)

Grundet usikkerheder ved oliereservoir egenskaber, som f.eks. permeabiliteten,
er den genererede Net Present Value (NPV) fra oliereservoirproduktion sto-
kastisk. Dette betyder at optimeringsstrategier der maksimerer den forventede
NPV mens risikoen for lave NPV minimeres.

Målet for denne afhandling er at undersøge potentialet af sådanne optime-
ringsstrategier. Der fokuseres specielt på e�ekten opnået ved brug af Robust
Optimization (RO) over 100 permeabilitetsfelter med en objektfunktion både
indeholdende risiko i form af Conditional Value at Risk (CVaR) og pro�ta-
bilitet i form af forventet NPV. Denne metode kaldes Mean-CVaR optimering.
Mean-CVaR optimering er sammenlignet med mere konventionelle metoder som
Reactive Strategy hvor produktionsbrønde er lukket når de ikke længere er pro-
�table. Der undersøges også Certainty Equivalence (CE) optimering hvor der
kun optimeres over det forventede oliereservoir. I Mean-CVaR optimeringen er
der mulighed for at rykke fokus mellem pro�tabilitet og risiko og dermed skabe
den e�cient frontier. Dette giver mulighed for at vælge en injektions pro�l med
den pro�tabilitet/risiko der er mest fordelagtig.

Til simuleringen bruger vi et oliereservoir med 3 injektionsbrønde på den ene side
og 3 produktionsbrønde på den anden side af reservoiret. Produktionen er simu-
leret over 8 år ved brug af MATLAB Reservoir Simulaiton Toolbox (MRST).

Vi fandt at Mean-CVaR optimering giver langt bedre resultater end CE i forhold
til både NPV og CVaR over de 100 permeabilitetsfelter. Sammenlignet med den
Reactive Strategy var vi i stand til at opnå 2,3% højere NPV. Vi kunne dog med
med Mean-CVaR optimeringen ikke fuldt nå CVaR'en fra Reactive Strategy.
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Chapter 1

Introduction

In the water �ooding phase of an oil �eld it is of high interest to have water
injection schemes that maximizes the pro�tability of the oil �eld. Conventionally
the industry use Reactive Strategies where producers are closed when the water
separation cost exceeds the value of the oil recovered. It has been suggested that
Optimal control technology and Nonlinear Model Predictive Control (NMPC)
can be used to control the injection rates and generate higher pro�tability, often
measured as net present value (NPV) [JBVdH08].

In such closed-loop applications an optimization scheme solves the nonlinear
constrained optimal control problem in order to �nd injection pro�les that max-
imizes a given objective function over the available reservoir models. These
injection pro�les are then used for the real oil reservoir. Whenever new data
about the oil reservoir becomes available (e.g. from oil production or seismic
surveys) the measurements are used in a data assimilation process to update
the reservoir models and the process starts over again with the updated mod-
els. Such procedures are also refereed to as closed-loop reservoir management
(CLRM). The process is illustrated in Figure 1.1
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Figure 1.1: Illustration of closed loop reservoir management (CLRM)

In this thesis the focus is on the optimization problem and especially how risk
is handled in the objective function. It is an important part of any NMPC
application to have an e�ective optimization routine that chooses appropriate
control input based on the available models and since the optimization takes
place on a �xed set of models it can be studied independently of data assimilation
and real oil reservoirs tests. For this reason there will not be looked into any
data assimilation and feedback e�ects other than that of the Reactive Strategy.
Thus the problem investigated can be viewed as an open-loop optimal control
problem which can be used as the optimization part of any CLRM application.
Furthermore it perfectly resembles the situation when the production of an oil
�eld has not yet begun and no feedback data is available yet.

When modelling physical systems it is always important to account for uncer-
tainness and noise in the available data the model is build upon. This is espe-
cially true when modelling oil reservoirs since the data from seismic surveys, core
samples and borehole logs are often very sparse and associated with signi�cant
noise. This leaves a large range of models that might satisfy the data available.
For simplicity in the optimization it is common to use deterministic reservoir
models that approximates the uncertainty. One way this can be achieved is by
having the reservoir model as the expected parameter data and then maximizing
the NPV of that single realization. This method is known as Certainty Equiva-
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lence optimization (CE). This however could lead to signi�cant errors compared
to the real reservoir and no clear way of handling the risk of low outcomes.
Another approach is to have a large ensemble of models that all satisfy the data
and optimize the expected NPV over all of them [VEZVdH+09],[CSFJ14]. This
method is known as Robust Optimization (RO). The RO approach encourages
a more direct way of addressing the risk since a chosen injection scheme gives an
ensemble of NPV outcomes and measures could be taken to for example reduce
variance or increase minimum outcome. The drawback however is the added
computational burden of running multiple simulations.

In this thesis both CE and RO are compared to the Reactive Strategy where
an ensemble of 100 reservoir models with varying permeability �elds are used
for the RO and the average permeability �eld is used for CE. Finally a Mean-
CVaR bi-criteria objective function is introduced where the Conditional Value
at Risk (CVaR) serves as a risk measure so that the risk is directly addressed
in the objective function. This approach is similar to the Mean-Variance bi-
criteria objective function introduced in [CSFJ14] but CVaR is chosen instead
of Variance due to its better properties as a risk measure as described in [CFJ14].
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Chapter 2

Oil Reservoir Model

We model the oil reservoir in secondary recovery phase where the oil is pushed
to the surface by the pressure of injected water. Modelling oil reservoirs is of-
ten associated with signi�cant uncertainty due to the noisy and sparse nature
of data obtained through seismic surveys, core samples and borehole logs. We
therefore have a large number of uncertain model parameters θu which compli-
cates simulation of the reservoir. However for our optimal control problem it
is desirable to have a deterministic reservoir model since we then have a scalar
output for the objective function. The simplest way of achieving this is to
have the deterministic model parameters as the expected value of the uncertain
model parameters, E(θu). By choosing such a model we can however be vul-
nerable to the uncertainties regarding the parameters because we only look at
the expected value. A more robust way of handling the uncertainty would be
to discretize the uncertainty space giving a �nite set of deterministic parameter
values θ = {θ1, θ2, ...θn}. The NPV of a given injection scheme can then be
found for each realization and we get the possibility of shaping the injections
to also optimize risk measures such as variance or Conditional Value at Risk
(CVaR). We will be using both approaches and compare how their performance
compared to the model free Reactive Strategy over θ (see Chapter 3).

For simplicity we assume that the only uncertain parameters are the perme-
ability �eld of the reservoir and all other variables are known and �xed for all
models. The initial water saturation is 0.15 leaving the initial oil saturation
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throughout the reservoir of 0.85. Other known reservoir parameters can be
found in Table 2.1.

Symbol Description Value Unit
φ Porosity 0.3 -
cr Rock compressibility 3.0 · 10−5 Pa−1

cw Water compressibility 4.28 · 10−5 Pa−1

co Oil compressibility 6.65 · 10−5 Pa−1

Pinit Initial reservoir pressure 234 atm
Sinit Initial water saturation 0.15 -
MaxInj Maximum well injection 800 m3/day
MinInj Minimum well injection 0 m3/day

Table 2.1: Table of reservoir parameters

For the permeability �elds we use an ensemble of 100 realizations of a 2D reser-
voir in a �uvial depositional environment with a known vertical main-�ow di-
rection and permeability values in the range 6 mD to 23452 mD. It is assumed
that this ensemble represents the range of possible geological uncertainties. The
reservoir size is set to 620 m × 620 m × 50 m which is divided into 31× 31× 1
equal sized grid blocks. The 100 permeability �elds are illustrated in Figure 2.1.
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Figure 2.1: Logaritmic plot of the 100 permability �elds used. The permeabil-
ity values are in the range 6 mD to 23452 mD.

For the expected model parameters we use the average of the 100 permeability
�elds E(θ) as shown in Figure 2.2. Note that the expected permeability �eld
looks very di�erent from any of the 100 realisations and only has permeability
values in the range 53 mD to 406 mD.
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Figure 2.2: Logaritmic plot of the average permability �eld. Note that the
permeability values are only in the range 53 mD to 406 mD.

We use a simple well setup with 3 injection wells and 3 producer wells (denoted
I1, I2, I3 and P1, P2 and P3). Due to the vertical main-�ow direction they are
placed with the injectors along the button boundary and the produces at the
top boundary as shown in Figure 2.3. It should be noted that in the model �ow
rates from the injectors are set positive while �ow rates from the producers are
negative.

Figure 2.3: Illustration of the well setup, shown in logaritmic plot of perma-
bility �eld 1.

The reservoir production is modelled over a time period of 8 years divided into
100 time steps of 30 days each (except in the �rst 4 time steps where smaller
steps are taken to adjust the system to the added pressure from the injection).
The manipulated variables are the injection rates over the life of the reservoir
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where the maximum water injection is set to 800 m3/day and the minimum of
0 m3/day.

We use the MATLAB Reservoir Simulation Toolbox (MRST) for the simulation
of the reservoir. For an description of how this is done see Section 2.1, note it
is not necessary to read this section to understand the following chapters. It is
only given as a guidance to how the system is setup in MATLAB and how to
replicate our results using MRST.

2.1 MATLAB Reservoir Simulation Toolbox
(MRST)

We use MATLAB Reservoir Simulation Toolbox (MRST) to simulate the reser-
voir over the 8 years. In order to use MRST we �rst need to activate the toolbox
which is done by running the startup script

1 run ../mrst−2014a/startup

We are then ready to load our reservoir model form the an Eclipse �le. For
info on how to format the Eclipse �le see [Pet06]. We use the MRST function
loadEclipseModel to load the reservoir model.

1 current_dir = �leparts (m�lename('fullpath')) ;
2 fn = full�le (current_dir, 'my_simple31x31x1.data');
3 [G, rock, �uid , scheduleEclipse, p0] = loadEclipseModel(fn);

Then we setup the system by calculating the geometry , the initial state and
the permeability �elds of the reservoir by using the MRST functions compute-
Geometry and initResSol and by specifying the permeability in rock.perm.

1 %% Compute constants
2 % Once we are happy with the grid and rock setup, we compute
3 % transmissibilities . For this we �rst need the centroids .
4 G = computeGeometry(G);
5

6 %% Set up reservoir
7 % We turn on gravity and set up reservoir and scaling factors .
8 gravity on
9

10 state = initResSol(G, p0, [.15, .85]) ;
11
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12 %% load permeability �eld
13 load permEns
14 rock.perm = permEns(:,p);

The wells are setup using the MRST function processWellsLocal and we then
set their injections rate and the time periods of the simulation according to the
given injection pro�le.

1 %% convert Eclipse schedule to MRST
2 W = processWellsLocal(G, rock, scheduleEclipse.control(1) );
3

4 % store max well capacity (given from eclipse �le )
5 maxInje = vertcat(W.val);
6

7 % Get pore volume
8 [OilInPlace, WaterInPlace, poreVol] = GetPoreAndOil(state, G, rock);
9

10 % Update well injects
11 numControl = size(x0,2);
12 schedule. control = [];
13 for i = 1:numControl
14 schedule. control( i ) .W = W;
15 for j=1:3
16 schedule. control( i ) .W(j).val = x0(j, i ) ;
17 end
18 end
19

20 % Set time steps
21 numStep = 100;
22 schedule.step.val = ones(numStep,1)∗30∗day; % timestep: 30∗day
23 schedule.step.val (1:4) = [1 ; 4 ; 9 ; 16]∗day;
24

25 schedule.step. control = ones(numStep,1);%[1:numControl]';
26 for i = 1:numControl
27 for j = �oor(( i−1)∗numStep/numControl+1) : �oor(i∗numStep/

numControl)
28 schedule.step. control(j)=i;
29 end
30 end

Now the oil/water system is setup using the function initADIsystem and the
�ow and pressure equations are solved implicitly using runScheduleADI.
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1 %% Run the whole schedule
2 system = initADISystem({'Oil', 'Water'}, G, rock, �uid ) ;
3

4 %% Use the schedule based on MRST wells
5 timer = tic;
6 [ wellSols , states , scheduleOUT, iter, convergence] = ...
7 runScheduleADI(state, G, rock, system, schedule, 'verbose' , false ) ;
8 t_forward = toc(timer)

The simulation takes approximately 35 seconds to run with the given speci�ca-
tions. After the simulation we can use the MRST function runAdjointADI to
compute the adjoint gradients for the schedule. This is done using the MRST
fully implicit AD solvers and takes approximately 15 seconds to run with our
settings. This gives a total simulation time of a single reservoir including calcu-
lation of the gradients of approximately 50 seconds.

1 %% set Prices
2 prices = {'OilPrice' , 126.0 , ...
3 'WaterProductionCost', 19.0 , ...
4 'WaterInjectionCost', 6.0, ...
5 'DiscountFactor', 0.0 };
6

7 %% Adjoint Gradient
8 objective_adjoint = @(tstep)NPVOW(G, wellSols, schedule, ...
9 'ComputePartials', true, 'tStep' , tstep , prices {:}) ;

10

11 timer = tic;
12 [adjointGradient] = runAdjointADI(G, rock, �uid, schedule,

objective_adjoint, ...
13 system, 'Verbose', verbose, 'ForwardStates', states ) ;
14 t_adjoint = toc(timer)
15

16 gradAdj = horzcat(adjointGradient{:});
17 gradAdj = −gradAdj(1:3,:);
18 gradAdj = gradAdj(:);

And �nally we calulate di�erent KPIs

1 %% Calulate KPIs
2 [KPI] = CalKPIs(wellSols, scheduleOUT, states, G, rock);
3 obj = −KPI.NPV.stepCum(end);
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This is all wrapped in a function [obj, gradAdj] = SimMRST(x0, p) that takes
as input the the injection scheme x0 and the permeability �eld number which
are to be used and gives as output the total NPV generated by the simulation
and the adjoint gradient associated with the injection scheme.

2.1.1 Parallel Implementation

In order to optimize over the 100 permeability �elds we need a function that
simulates the 100 reservoirs in parallel. We do this by creating a new function
[obj, gradAdj] = ParSimMRST(x0, Lambda, numP) that uses Matlabs spmd to
run the simulations in parallel with the number of cores speci�ed by numP. It
gives as output the MCVaR objective function and gradient with the λ value
speci�ed by Lambda. The function is shown in the following listing.

1 function [obj, gradAdj] = ParSimMRST(x0, Lambda, numP)
2

3 iterPrCPU = 100/numP;
4 spmd
5 objP = zeros(1,iterPrCPU);
6 gradAdjP = zeros(length(x0(:)),iterPrCPU);
7

8 for i = 1:iterPrCPU;
9 p = (labindex()−1)∗iterPrCPU + i

10 [objP(i), gradAdjP(:,i) ] = SimMRST(x0, p);
11 end
12 end
13

14 NPV = [];
15 gradAdjL = [];
16 for i = 1:numP
17 NPV = [NPV objP{i}];
18 gradAdjL = [gradAdjL gradAdjP{i}];
19 end
20

21 AvgNPV = mean(NPV);
22 AvgNPVGrad = mean(gradAdjL,2);
23

24 q = 5;
25 [B,I] = sort(NPV);
26 I = I(end−(q−1):end);
27

28 CVAR = mean(NPV(I));
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29 CVARGrad = mean(gradAdjL(:,I),2);
30

31 obj = Lambda ∗ AvgNPV + (1−Lambda) ∗ CVAR;
32 gradAdj = Lambda ∗ AvgNPVGrad + (1−Lambda) ∗ CVARGrad;
33

34 gradAdj = reshape(gradAdj,size(x0));
35 end

This function can then be used by fmincon using anonymous functions to specify
Lambda and numP. We use the HPC cluster at DTU to run the optimization
but it could be done on any parallel machine. We use 50 cores which we get
access to by editing the DTUcluster.settings1 to 50 workers. We can then run
the simulation over ThinLinc to the DTU server and use the DTUcluster pro�le.
The fmincon call along with the options we use are shown in following listing.

1 s = 100;
2

3 lb = zeros(3,s) ;
4 ub = 0.0093∗ones(3,s);
5 x0 = ub;
6

7 Lambda = 1;
8

9 numP = 50; %% Has to be multible of 100!!! So 2, 4, 10, 20, 25 or 50
10 %c = parcluster('local ') % alternative to the DTUcluster
11 c = parcluster('DTUcluster')
12 poolobj = parpool(c,numP)
13

14 options = optimoptions('fmincon','GradObj','on' ...
15 , 'MaxFunEvals',1500,'TolFun',1e−3,'TolX',1e−5, ...
16 'PlotFcns',{@optimplotx,@optimplotfval,@optimplotfunccount,...
17 @optimplotstepsize,@optimplot�rstorderopt});
18

19

20 MCVAR_fun = @(inject)SPMD_Opt_simple(inject, Lambda, numP);
21

22 [x, fval , exit�ag ,output,lambda,grad] = ...
23 fmincon(MCVAR_fun, x0, [], [], [], [], lb , ub, [], options) ;

1the �le can be downloaded at: http://www.hpc.dtu.dk/?page_id=1284

http://www.hpc.dtu.dk/?page_id=1284
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2.2 Test Case

In this section we investigate the results obtained when using MRST to simulate
the oil reservoir. For this simulation we use the �rst of the 100 permeability
�elds (the permeability �eld, with wells, are shown in Figure 2.3). It should
be noted that the permeability �eld has a channel towards the top left where
the �uids can �ow easier than in the rest of the reservoir, hence we expect the
water to reach P1 quicker than P2 and P3. The 3 injection wells are all set
to constantly inject water at maximum capacity (800 m3/day) over the 8 years
and the prices used for oil revenue r0 is 126 $/m3, water separation cost rw is
19 $/m3 and water injection cost ri is 6 $/m3

In Figure 2.4 we start by investigating the water injection and oil and water
production. As expected we see that a lot of the �ow goes to P1, and it doesn't
take more than 6 month before we see a substantial rise in the water production
from P1. While the oil production decreases from all producers after approxi-
mately 6 month the water production continues to rise throughout the period.
By looking at the cumulative injections and productions in Figure 2.5 we can
see that P1 ends up producing twice as much water than one of the injectors
inject. This means that all the water from 2/3 of the injection has gone straight
through to P1 and been pulled up again. Also P1 has produced 5 times as much
water as oil.

Figure 2.4: Illustration of injection, production and well preassures in the oil
reservoir over 8 year
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Figure 2.5: Illustration of cumulative injection and production in the oil reser-
voir over 8 year

When looking at the total oil and water in the reservoir in Figure 2.6 we see that
the oil saturation in the oil �eld has gone from 0.85 to 0.51 giving a production
of 40% of the available oil. But it is clear that the production was largest in the
�rst years and then slowly decreasing which we also found from Figure 2.4.

Figure 2.6: Oil and water saturation in the oil reservoir over time and avearge
pressure throughout the oid �eld.

Finally we look at how pro�table the production has been in terms of the Net
Present Value (NPV) generated by the reservoir (see section 3.1 for calculation of
NPV). In Figure 2.7 we see that just as the oil production the NPV is increased
a lot in the �rst 6-12 month after which the rate starts declining rapidly. P2
and P3 does manage to stay pro�table throughout the time period while P1
actually starts loosing NPV after 2.7 years. After the 4 year the negative NPV
generated by P1 is so large that it outweighs the positive NPV from P2 and P3
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combined and we see a drop in the cumulative NPV. Here it becomes clear how
the Reactive Strategy could improve this scenario by cutting o� the produces
when they are no longer pro�table. We will look more at this in Section 3.3.

Figure 2.7: Illustration of NPV obtained from the reservoir.

To fully understand how the water is water is moving through the reservoir we
can plot the oil saturation for di�erent time steps as done in Figure 2.8. Here
we clearly see how the water is moving through the channel in the left side and
quickly �nding its way to P1. Actually already after 9 month the oil saturation
near P1 has dropped to around 0.6 while it is still at 0.85 near P2, P3 and the
whole top right quarter of the reservoir. We do however see the water starting
to break through on the right side but in a much slower rate. At the last time
step we see that a lot of the oil has been extracted. The remaining oil is mainly
at the left boundary of the reservoir, in the top right and in a small pocket near
P2. The oil on the left side and top right would properly be very di�cult to
extract with the current well setup. The pocket next to P2 however is more
reasonable to get a hold o�. By closing P1 and P3 more water would have to
go to P2 and help extracting some more of the remaining oil.
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Figure 2.8: Oil saturation in the reservoir for di�erent time steps.

We have now shown how the oil reservoir model is set up and how an example
simulation could run. In the next chapter we will look into the optimization
strategies and how to improve the pro�tability of the oil reservoir.
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Chapter 3

Optimization Strategies

In this chapter we look into di�erent strategies to improve the reservoir produc-
tion both in terms of increasing pro�tability and minimizing risk and compare
how they perform next to the Reactive Strategy.

3.1 Pro�tability Measure (NPV)

When speaking about the pro�tability of a reservoir it is common to use the
Net Present Value (NPV) as the pro�tability measure [BJ04],[VEZVdH+09],
[CSFJ14]. This is intuitive since it does not only account for the amount of oil
produced but also the cost of injecting water and separating water from oil after
production. The generated NPV at any given time t can be expressed in the
following way

NPV
(
u(t), x(t)

)
=
−
∑
j∈P

(
roqo,j − rwpqwp,j

)
−
∑
l∈I rwiqwi,l

(1 + d)
τ(t)
365

(3.1.1)

Where the oil price, water separation cost and water injection cost are given by
ro, rwp and rwi respectively. qo,j and qwp,j are the volumetric oil and water �ow
rate at producer j and qwi,l is the volumetric water �ow rate at injector l. qo,j
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and qwp,j and qwi,l are all functions of the state vector x(t) and the control input
u(t). Finally we have the yearly discount factor d and the time in days τ(t).

The discount factor (1 + d)
−τ(t)
365 accounts for a daily compounded value of the

capital. Recall that in our model producer �ow rates are negative and injection
�ow rates are positive. This is the reason for the minus in front of the producer
sum. In the special case where there are no discounting and no water injection
or separation cost (d = rwp = rwi = 0) we have that the NPV is equivalent to
the quantity of produced oil. For our test we will have water separation and
injection costs but we do not account for discounting. Thus (3.1.1) simpli�es to
the term shown in (3.1.2).

NPV
(
u(t), x(t)

)
= −

∑
j∈P

(
roqo,j − rwpqwp,j

)
−
∑
l∈I

rwiqwi,l (3.1.2)

In table 3.1 are shown the parameters used in this study.

Symbol Description Value Unit
d Discount factor 0 -
ro Oil Price 126 $/m3

rwp water separation cost 19 $/m3

rwi water injection cost 6 $/m3

Table 3.1: Table of economic parameters

When optimizing the production we are interested in maximizing the total NPV
generated by the reservoir. The NPV of a given oil reservoir is a function of
the control input {uk}N−1k=0 , the reservoir starting conditions x0 and the used
permeability �eld γ. For simplicity throughout the report we will use following
notation when referring to the total NPV of a simulation

NPVγ = NPV
(
{uk}N−1k=0 , x0, γ

)
(3.1.3)

Hence NPVθ1 is a scalar value representing the total NPV generated when
using the �rst of the 100 permeability �elds θ, NPVE(θ) is a scalar representing
the total NPV generated when using the average of the 100 permeability �elds
and NPVθ is a vector containing the total NPV generated for each of the 100
permeability �elds.

3.2 Risk Measure: CVaR

Due to the high uncertainty of the model parameters in oil reservoirs it is highly
relevant to look at methods that reduces the risk. In classical Markovitz portfolio
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optimization the variance of the portfolio return is used as a measure of the risk
of the investment. In a similar way [CSFJ14] introduces a Mean-Variance bi-
criterion objective function to �nd injections that reduce the risk of low NPV
outcomes from the oil reservoir. In [CFJ14] it is however shown that the variance
of the NPV is not the most appropriate measure of the risk associated with an
injection scheme for the reservoir.

For the oil reservoir we are only concerned about the risk of getting low NPVs.
The variance however evaluates both tails of the NPV distribution equally. So
when minimizing the variance it might as well be the possibility of getting high
NPVs that are reduced. Also if our only objective is to minimize the variance a
very simple solution come to mind: do not inject any water and do not produce
any oil. In that way there will be generated 0$ NPV independently of the
uncertainty parameters and the variance will always be 0. This is of course not
an attractive solution. In [CFJ14] they instead �nd the Conditional Value at
Risk (CVaR) to be the most attractive risk measure.

CVaR is also know as Mean Shortfall, Tail VaR and expected tail loss. The
CVaR at α% (CV ARα%) is calculated as the the expected return in the α%
worst cases. This means only the lower tail of the distribution is addressed
which is exactly what we want. Note by this de�nition CV aR100% is simply the
average of the portfolio. Formally CVaR is calculated as

CV aRα(NPV ) =
1

α

∫ α

0

V aRs(NPV ) ds, α ∈ [0, 1] (3.2.1)

Where

V aRα = inf(z|P (NPV > z) ≤ 1− α) (3.2.2)

In the special case where we use the α as a integer fraction of the ensemble
realizations, i.e. α = m

N with m = 5, N = 100 our calculation of CV aR5%

simpli�es into the average of the 5 lowest performing realizations. Let ˆNPV =
{ ˆNPV1, ˆNPV2, ..., ˆNPV100} be the NPV of the 100 realizations sorted from
smallest to largest then we can calculate the CV aR5% by

CV aR5%(NPV ) =
1

5

5∑
i=1

ˆNPVi (3.2.3)

For the reasons described above we will use CVaR as a risk measure with α = 5.
Do however note this method also di�ers from the variance in that we are
interested in maximizing the CVaR in order to reduce the risk of low outcomes.



22 Optimization Strategies

3.3 Reactive Strategy

The Reactive Strategy is very intuitive and di�ers substantially from the other
strategies in this thesis. The principle is that with no prior information about
the reservoir, a simple injection scheme is chosen and then producers are shut
when they are no longer pro�table. This means whenever the water separation
cost exceeds the oil revenue of a producer, it is shut and production contin-
ues from the remaining producers until they become unpro�table or the time
limit is reached. This method has two strong bene�ts compared to Certainty
Equivalence Optimization and Robust Optimization:

1) It doses not require any mathematical model or optimization to be imple-
mented

2) It uses feedback to ensure positive NPV e�ects

The drawback however is that there are no clever way of picking an injection
scheme to optimize the production. For the comparison to the other strategies
we have chosen a constant injection scheme where water corresponding to the
entire volume of the reservoir is injected over the 8 years. This corresponds to
658 m3/day pr. injector which is 82% of the total capacity. To illustrate how
this strategy a�ects the production we have in the following replicated the Test
Case from Section 2.2.

3.3.1 Test Case

For this test we use exactly the same parameters and injections as in Section
2.2, the only di�erence is that we now use the Reactive Strategy. The results
obtained are shown in Figure 3.1 to 3.6.

Immediately we see a big di�erence in the productions. P1 is no longer allowed
to have a negative NPV rate and is shut o� after only 2.7 years. This in turn
increases the oil and water production from P2 and P3 and increases the pressure
in the system and after only 4.3 years all producers are shut. Looking at the
cumulative injections we now see that the oil production are spread a lot more
homogeneously between the producers compared to before. Also a lot less water
is produced.

From Figure 3.3 we can see that with the Reactive Strategy more oil are left
behind in the reservoir. Now the end average oil saturation is 54% in the
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reservoir compared to 51% without the reactive strategy. The rate at which
the oil is extracted is however substantially higher since after 4.3 years the oil
saturation was at 58%

From Figure 3.4 the positive e�ect of the Reactive Strategy becomes immediately
clear. Up until 2.7 years they are exactly the same but now when P1 is shut we
actually get a substantial increase in NPV. In total we now generate an NPV
of 868 M$ compared to 598 M$ before. That is an increase of 45%! This is in
part due to the non reactive simulation loosing a lot of NPV at the end of the
simulation, but even at it highest it only achieved 744 M$. This means that the
Reactive Strategy yields 16% higher NPV than the non reactive at its highest.

Figure 3.1: Illustration of injection, production and well preassures in the oil
reservoir over 8 year for the Reactive Strategy
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Figure 3.2: Illustration of cumulative injection and production in the oil reser-
voir over 8 year for the Reactive Strategy

Figure 3.3: Oil and water saturation in the oil reservoir over time and avearge
pressure throughout the oid �eld for the Reactive Strategy.
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Figure 3.4: Illustration of NPV obtained from the reservoir for the Reactive
Strategy.

To illustrate how the Reactive Strategy in�uences the �ow through the reservoir
we look closer at how the Oil saturation in the reservoir changes whit and
without the Reactive Strategy. This is illustrated in Figure 3.5 and 3.6. We
start from month 30 (2.5 years) since this is about when the �rst producer is
shut and we therefore begin to see di�erences. It is clear that with the Reactive
Strategy the right side of the reservoir is �ooded a lot quicker and the oil pocket
next to P2 gets drained more. However we notice that since the production
is shut after 4.3 years (52 month) and a lot less water is injected we are left
with a higher oil saturation near the injectors. This is the reason that less oil is
produced with the Reactive Strategy.
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Figure 3.5: Oil saturation in the reservoir for di�erent time steps without the
Reactive Strategy.

Figure 3.6: Oil saturation in the reservoir for di�erent time steps for the Re-
active Strategy.
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We have now shown the clear bene�ts of the Reactive Strategy compared to a
simple injection scheme. It does however not give a way to �nd a more pro�table
injection scheme. This is what we will look at in the following sections.

3.4 Certainty Equivalence Optimization

The Certainty Equivalence (CE) optimization aim to maximise the the NPV
over the expected value of the uncertain parameters where the control input is
the well injections. The expected permeability �eld, E[θ], used in this thesis is
shown in Figure 2.2. The CE objective function therefore becomes

ψCE = NPVE[θ] (3.4.1)

and the optimization problem

max
{uk}N−1

k=0

ψCE (3.4.2)

s.t. MinInj ≤ {uk}N−1k=0 ≤MaxInj (3.4.3)

This problem is a nonlinear constrained optimal control problem and it should
be noted that due to this nonlinearity we have

NPVE[θ] 6= E[NPVθ] (3.4.4)

This means we have no grantee that a control input that increases the value
of the objective function also increases the average NPV over the ensemble of
permeability �elds. Compared to the Mean-CVaR optimization (see Section 3.5)
it does however have the advantage that only a single reservoir simulation has
to be made to evaluate the objective function.

To solve the optimization problem we use the MATLAB function fmincon with
a user supplied gradient, maximum 1500 function evaluations, function value
tolerance of 10−3 and a step size tolerance of 10−5. The gradient is obtained
using the MRST function runAdjointADI which computes the adjoint gradients
for a schedule using the fully implicit AD solvers. Since fmincon �nds the
minimum of a function we are technically solving the problem

min
{uk}N−1

k=0

− ψCE (3.4.5)

s.t. MinInj ≤ {uk}N−1k=0 ≤MaxInj (3.4.6)

Which is equivalent to (3.4.2).
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3.4.1 Test Case

For testing the CE strategy we solve the optimal control problem (3.4.5) to �nd
the optimal control input {uk}N−1k=0 . We do this multiple times with di�erent N
values to show how more freedom in changing the injection over time increases
pro�tability. This is also done to slowly increase the complexity of the opti-
mization problem, since for N = 1 the injection from each injector is constant
over the 8 years resulting in only 3 variables, while when N = 100 the injec-
tion rate can change every 30 days giving 300 variables. We solve (3.4.5) for
N = 1, 2, 4, 8, 16, 32, 50 and 100. Each control input is then used for each of the
100 permeability �elds (θ) to see how the found injection schemes performs com-
pared to each other. We use maximum constant injection as our starting guess
for the optimization. In Figure 3.7 the resulting objective values NPVE[θ] for
each N is plotted against their average performance over the 100 permeability
�elds E[NPVθ].

Figure 3.7: Illustration of the resulting objective values NPVE[θ] for the CE
optimization plotted against their average performance over the
100 permeability �elds E[NPVθ]. The values of N used are
1, 2, 4, 8, 16, 32, 50 and 100. The right plot is a zoom of the 4
best performing realizations..

We see that the CE optimization does manage to increase the E[NPVθ] as it
�nds better solutions to the objective function. It should however be noted
that the objective function value NPVE[θ] generated far surpasses what the
schemes can perform over the 100 permeability �elds. In fact an interesting
observation is that the data falls on a straight line indicating that there could
be a linear relationship between NPVE[θ] and E[NPVθ], this does however seem
very unlikely due to the nonlinearity of the problem and it has therefore not
been investigated further. Also we clearly see how increasing the freedom of the
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injectors gives higher E[NPVθ]. As might be expected the bene�ts are greatest
when increasing from small values of N and becomes less and less signi�cant to
the point where the result for N = 50 and N = 100 are almost identical.

We now look at the injection schemes found in the optimizations. They are
shown for each N in Figure 3.8.

Figure 3.8: Optimal injections found using CE optimization.

We see how the injections get more detailed as N increases and that all solu-
tions look very much alike and that all solution therefore have found the same
optimum.

Finally we look at the computational e�ort the optimization required. Table 3.2
shows the amount of function evaluations and time taken for each optimization.
In total more than 16 hours where needed for all the optimizations.
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Function Time NPVE[θ]
evaluations taken E[NPVθ]

CE 1 38 0.55 h 1.328
CE 2 34 0.47 h 1.305
CE 4 167 2.36 h 1.304
CE 8 62 0.88 h 1.304
CE 16 190 2.68 h 1.302
CE 32 153 2.19 h 1.302
CE 50 189 2.73 h 1.302
CE 100 332 4.80 h 1.302
Total 1165 16.71 h -

Table 3.2: Table of computational e�ort needed for the CE optimizations.

3.5 Mean-CVaR Optimization

We now introduce the Mean-CVaR (MCVaR) optimization. MCVAR works
similar to the Mean-Variance optimization introduced in [CSFJ14] but instead
of using variance we use CV aR as the risk measure as described in Section 3.2.
The fundamental idea is to have a bi-criterion objective function containing both
risk and pro�tability and then have a scalar λ to switch the emphasis on each
term. By doing this we can obtain an e�cient frontier of pro�tability vs. risk
and have a better foundation for choosing an injection scheme. The objective
function for the MCVaR optimization is shown in (3.5.1)

ψMCVaR = λ · E[NPVθ] + (1− λ) · CVaR5%[NPVθ] , λ ∈ [0, 1] (3.5.1)

And the optimization problem becomes

min
{uk}N−1

k=0

− ψMCVaR (3.5.2)

s.t. MinInj ≤ {uk}N−1k=0 ≤MaxInj (3.5.3)

Note that for λ = 1 only the average portfolio NPV is maximized (known as
robust optimization) and for λ = 0 only the CVaR is maximized.

The biggest complication arising using this method is the substantial compu-
tational power needed for the optimization. Since we are optimizing over all
100 realizations of the permeability �eld we have to make 100 simulations for
each objective function evaluation. Combining this with multiple optimizations
for varying λ (we use 9 di�erent λ values) the problem requires 900 times as
much computational power compared to the CE optimization although for only
a single λ value the factor is only 100. The good thing however is that the 100
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reservoir simulations required in each function call is completely independent
and thus can be performed in parallel. For our simulations we therefore utilize
the High Performance Computing Cluster at DTU1. We run our code in par-
allel using MATLABs smpd functions on the HPC cluster with 50 CPU cores
available.

As was the case with the CE optimization we again use the MATLAB function
fmincon with a user supplied gradient, maximum 1500 function evaluations,
function value tolerance of 10−3 and a step size tolerance of 10−5. The gradient
is obtained by a linear combination of the gradients for the 100 realizations.
More accurately, if we let ∇ukNPVθ be the ensemble of gradients for each of

the 100 realizations and let ˆNPV = { ˆNPV1, ˆNPV2, ..., ˆNPV100} be the NPV of
the 100 realizations sorted from smallest to largest, we can calculate the gradient
of ψMCVaR by

∇ukψMCVaR =
λ

100

100∑
i=1

[∇ukNPVθi ] +
(1− λ)

5

5∑
i=1

[∇uk ˆNPVj ] , λ ∈ [0, 1]

(3.5.4)

In MATLAB we perform this by

1 AvgNPV = mean(NPV);
2 AvgNPVGrad = mean(gradAdjL,2);
3

4 q = 5;
5 [B,I] = sort(NPV);
6 I = I(end−(q−1):end);
7

8 CVAR = mean(NPV(I));
9 CVARGrad = mean(gradAdjL(:,I),2);

10

11 obj = Lambda ∗ AvgNPV + (1−Lambda) ∗ CVAR;
12 gradAdj = Lambda ∗ AvgNPVGrad + (1−Lambda) ∗ CVARGrad;

In the case where we use the α = 5% and have 100 NPV realizations CV aR5%

simpli�es into the average of the 5 lowest performing realizations. Let ˆNPV =
{ ˆNPV1, ˆNPV2, ..., ˆNPV100} be the NPV of the 100 realizations sorted from
smallest to largest then we can calculate the CV aR5% by

CV aR5%(NPV ) =
1

5

5∑
i=1

ˆNPVi (3.5.5)

1For more information on how to access the cluster go to http://www.cc.dtu.dk/

http://www.cc.dtu.dk/
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3.5.1 Test Case

To test the MCVaR optimization we solve the optimal control problem (3.5.2) to
�nd the optimal control input {uk}N−1k=0 . As for the CE optimization we do this
for varying N in order to see the e�ect of more precise control trough the period.
We use N values 1,2,4,8,16,32,50 and 100. Now we also solve the problem for
9 equally spaced λ values between 0 and 1 (0.0, 0.125, 0.25, 0.375, 0.5, 0.625,
0.75, 0.875 and 1.0). We start using maximum constant injection as our starting
guess. For N = 1 we get the e�cient frontier shown in Figure 3.9.

Figure 3.9: E�cient frontier found using MCVaR optimization for N = 1.

The plot shows the tradeo� between risk (CVaR) and return (expected NPV).
We see that is possible for the optimization to �nd injection schemes that max-
imises each term. By choosing λ = 1 we achieve 2.8% higher E[NPVθ] than
λ = 0 while λ = 0 has 2.2% higher CV aR5%. The frontier looks really smooth
except when it comes to the point for λ = 0.25. We know that this solutions is
not optimal since many of the other found injection schemes would have yielded
a higher objective value also for λ = 0.25 since they have both higher NPV and
CVaR. That the solver was not able to �nd a better solution is because we are
dealing with a highly non-linear problem and thus we cannot be guaranteed to
�nd the global optimum but only a local one.
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Not being able to �nd good optimums also happens when trying to increase N
while keeping the start guess at maximum constant injection. This is illustrated
in Figure 3.10.

Figure 3.10: Solutions found using MCVaR optimization for λ =0.125, 0.375,
0.625 and 0.875 for di�erent N values. The optimization was
stopped due to the bad results that is why there are only few λ
values.

The solutions found does not seem to make much sense. For instance MCVaR
16 performs worse than MCVaR 1 when λ = 0.625 and MCVaR 50 performs
worse than MCVaR 32 for all λ. This is again due to the optimizer �nding local
minimums. This is very undesirable so instead we switch strategy for the start
guesses. Instead of a start guess on maximum capacity we use the previously
obtained solutions as start guess for the next optimization. This means the
injections schemes found by MCVaR 1 is used as start guess for MCVaR 2 and
so on. By doing this we obtain the results shown in Figure 3.11.
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Figure 3.11: E�cient frontier found using MCVaR optimization for di�erent
N values.

As shown this greatly helped the optimizer �nding appropriate solutions and
the frontier improves as N is increased. There are still occasionally some not so
optimal solutions found like for MCVaR 4, λ = 0.75 that has improved almost
nothing compared to MCVaR 1 and 2. An example convergence plot for the
optimization are shown in Figure 3.12

Figure 3.12: Example convergence plots for λ = 0.0 and N = 50.
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The computations get heavier and heavier as N increases so we want to make
sure we have a good starting guess before solving with N = 100. In Figure 3.13
we take a closer look at the frontier for N = 50.

Figure 3.13: E�cient frontier found using MCVaR optimization for N = 50.

It becomes immediately clear that some of the solutions are not optimal. For
instance λ = 0.75 has higher E[NPVθ] than λ = 0.875 and 1.0 and λ = 0.375
has higher CV aR5%[NPVθ] than λ = 0.375. We get more insight by looking at
the actual injection schemes as shown in Figure 3.14
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Figure 3.14: Injection scheme for MCVaR 50 for each λ value.

It can be seen that there are some solutions that clearly di�er from the others.
The injection schemes for λ = 1.0, 0.875, 0.625 and 0.5 lies very close to each
other while for λ = 0.75 it is a signi�cantly di�erent solution. This indicates
that there are several minimums found where we saw from Figure 3.13 that the
one for λ = 0.75 seems to be the better one. In order to see which injections
schemes are good for which λ value we evaluate each injection scheme in the
objective function for each λ to see where the highest objective value is found.
This is done in Figure 3.15.
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Figure 3.15: Objective function values for di�erent λ using the di�erent MC-
VaR 50 solutions.

Here we see that for λ ≥ 0.625 the solution found using λ = 0.75 is the best
solution and for λ ≤ 0.375 the solution found using λ = 0.0 is best. By solving
MCVaR 50 again using these injection schemes as start guess we can improve
on the solution as shown in Figure 3.16.
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Figure 3.16: E�cient frontier found using MCVaR optimization for N = 50
and the improved MCVaR 50 frontier with better start guesses.

We see that the improved start guesses greatly improved the shape of the frontier
and gives better performance. Furthermore the e�cient frontier for MCVaR 100,
which is found by again using the injection scheme from the improved MCVaR 50
as starting guess, keeps the shape we would expect while increasing performance
a little bit. In Figure 3.17 we show the resulting injection schemes for MCVaR
100.
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Figure 3.17: Injection scheme for MCVaR 100 for each λ value.

The injection schemes lie very close to each other for λ ≥ 0.625 and for λ ≤ 0.5.
As mentioned earlier this is non-linear optimization so we cannot be certain
that the solutions found are globally optimal, but only that it is the best local
minimum we have seen so far.

Finally we look at the computational e�ort required to perform these simula-
tions. The number of function evalutations and time taken is shown in Table
3.3
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Function Time
evaluations taken

Average MCVaR 1 28.1 0.76 h
Average MCVaR 2 36.3 1.02 h
Average MCVaR 4 32.0 0.97 h
Average MCVaR 8 44.3 1.29 h
Average MCVaR 16 50.1 1.55 h
Average MCVaR 32 29.2 0.91 h
Average MCVaR 50 55.3 1.58 h
Average MCVaR 100 72.1 2.09 h
Average Total 347.6 10.21 h
Total for all λ 3128 91.89 h

Table 3.3: Table of computational e�ort needed for the MCVaR optimizations.

It can be seen that the average function evaluations needed for a given N is
signi�cantly lower than for the CE optimization. This might be due to the
more intelligently chosen starting points. The time pr. function evaluations is
however doubled since we simulate 100 reservoirs using 50 cores instead of 1
reservoir using 1 core. In total the simulation time used to get the results for
all λ values are almost 92 hours or equivalent to 3.8 days. Note however that
this is when utilizing 50 parallel cores. Without the parallelization the time
spent would have been more than 6 months! Hence it can be concluded that
performing operations in parallel is crucial for the optimization to be performed.

3.6 Comparing Optimization Performance

In this section we look into how the di�erent strategies perform compared to
each other. In Figure 3.18 is shown CE 1, CE 100, MCVaR 1, MCVaR 100 and
the Reactive Strategy in a return vs. risk plot.
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Figure 3.18: Resulting optimal starategies plottet as a function of E[NPVθ]
and CV aR5%[NPVθ].

Here we see that the MCVaR optimization strongly outperforms CE optimiza-
tion. Even the MCVaR 1 is able to generate both higher E[NPVθ] and CVaR
than CE 100. CE 100 does however mange to achieve a 0.6% higher E[NPVθ]
than the Reactive Strategy although it comes at the cost of 8.3% lower CVaR.
For λ = 1.0 MCVaR 100 manages to achieves a 2.3% higher E[NPVθ] than the
Reactive Strategy while loosing 6.4% CVaR. As expected the MCVaR 100 with
λ = 0.0 achieves higher CVaR values than for other λ values but it is not enough
to reach the Reactive Strategy.

We have shown for this test case that MCVaR optimization is an e�ective way
to improve the average NPV performance while attaining lower risk than CE
optimization. We where however not able to reduce the risk as e�ciently as the
Reactive Strategy.

In practice however it would be very unlikely that this type of reservoir pro-
duction would be performed without any feedback at all (hence keeping unpro-
ductive wells open) as was the case for our MCVaR and CE optimizations. We
therefore also investigate what happens if the injection schemes for CE 100 and
MCVaR 100 are run with a Reactive Strategy (close wells when not pro�table)
as shown in Figure 3.19.
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Figure 3.19: Resulting optimal starategies plottet as a function of E[NPVθ]
and CV aR5%[NPVθ] with added reative runs for CE 100 and
MCVaR 100.

We see that the Reactive Strategy greatly improves the performance of both
CE 100 and MCVaR 100. Interestingly the MCVaR for λ = 1.0 is by far the
superior compared to all other strategies both in terms of E[NPVθ] and CVaR.
In fact it increases E[NPVθ] by 5.5% and CVaR with 6.2% compared to the
normal Reactive Strategy!

It is expected that even better results could be achieved had we optimized for
the best injection scheme while using a Reactive Strategy and not just taking the
scheme found and implementing it with a Reactive Strategy. This has however
not been further investigated.



Chapter 4

Conclusion

In this Thesis, we investigated a Mean-CVaR approach for risk mitigation in an
open-loop optimal control problem for oil reservoir production. To our knowl-
edge this has not previously been done in an oil reservoir setting. The control
input was chosen as the injection schemes for the wells.

By using MATLAB Reservoir Simulation Toolbox (MRST) and the MATLAB
optimization function fmincon we where able to demonstrate the e�ect of the
Mean-CVaR approach compared to Certainty Equivalence (CE) optimization
and a Reactive Strategy. We found that the Mean-CVaR optimization could
signi�cantly reduce the risk compared to CE optimization while also increasing
the mean NPV over an ensemble of 100 permeability �elds. Compared to the
Reactive Strategy we where able �nd solutions with as high as 2.3% higher
average NPV but at the cost of 6.4% lower CVaR.

Finally we implemented the found control input using a Reactive Strategy and
was able to achieve 5.5% higher NPV and 6.2% higher CVaR compared to
the Reactive Strategy with a constant injection scheme. These results show
the importance of feedback for the performance and encourages future studies
to the Mean-CVaR performance in a closed-loop setting with moving horizon.
Future studies should also investigate Mean-CVaR optimization for di�erent
permeability �elds ensembles and di�erent well location and setups in order to
have a broader base for validating the approach.
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