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Summary

This thesis provides the theoretical background for analysing the ill-posedness of
X-ray tomography problems and uses this to analyse the special case of laminar
tomography problems.

The �rst part of the thesis is devoted to describing the ill-posed characteristics of
X-ray tomography problems. For this purpose we show that the deconvolution
problem is ill-posed. In particular we show that small high frequent pertur-
bations in the values of the convolution can give arbitrarily large changes in
solutions to the deconvolution problem. We then relate the standard mathe-
matical model of X-ray tomography, the Radon transform, to the deconvolution
problem and show that the ill-posed properties are likely to carry over. More-
over, we show that the discretised mathematical model of X-ray tomography
also exhibit the same ill-posed properties.

In the second part of the thesis, we develop a method of analysing the solv-
ability of an X-ray tomography problem by considering how ill-posed it is. In
particular we use the method to describe the ill-posed characteristics of several
�toy� problems. Finally the work culminates by considering two cases of lami-
nar tomography. Here it is shown, that the characteristics from some of the toy
problems carry over to the laminar tomography problems.
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Resumé

Dette eksamensprojekt beskriver den teoretiske baggrund tilhørende den anal-
yse, der beskriver hvor ill-posed X-ray tomogra� problemer er og benytter denne
til at undersøge laminar tomogra� problemer.

Den første del af projektet er dedikeret til, at beskrive de ill-posed karaktertræk
af X-ray tomogra� problemer. For at gøre dette viser vi, at den inverse oper-
ation af en foldning er ill-posed. Mere speci�kt viser vi, at små forskydninger
i foldningens værdier kan give arbitrært store ændringer til løsningen af den
inverse operation. Vi relaterer da Radon transformationen til foldingen og viser
at de ill-posed karaktertræk sansynligvis kan overføres. Ud over dette viser vi at
den diskretiserede version of X-ray tomogra� problemet også udviser de samme
ill-posed karaktertræk.

I den anden del af projektet udvikler vi en analyse metode til at undersøge hvor
nemt det er at løse et et X-ray tomogra� problem, ved at undersøge hvor ill-posed
det er. Mere speci�kt bruger vi metoden til at beskrive de ill-posed karaktertræk
af nogle �legetøjsproblemer�. Rapporten kulminerer da med en undersøgelse af
two cases af laminar tomogra� problemer hvor vi viser, at karaktertrækkene i
legetøjsproblemerne kan overføres til disse problemer.
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List of Symbols

The following is a list of symbols used in the thesis. It is not a complete list
of all symbols used in the thesis, but rather a list of the most commonly used
ones. However, if a symbol is not on the list it will be clearly de�ned before
being used in the thesis.

Symbol Description Space

A The transformation matrix A ∈ Rm×n
ai A row vector designating the ith row

in the transformation matrix, A. R1×n

aij The jth element of ai R
b The discrete measurements / sinogram Rm×1
bε The measurements with perturbations Rm×1
bi The ith element of b R
CA The condition number of the matrix, A. R
d The detector size R
f The model parameter describing some

property of the object L2

F The Fourier transform operator L1 → L1

f̂ The Fourier transformation of f ∈ L1 L1

f0 The true continuous model parameters L2

fε The solution to the inverse problem
with perturbed measurements L2

g The continuous measurements. L2

gε The continuous measurements with perturbations L2

ı̂ The imaginary unit, ı̂ =
√
−1
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Symbol Description Space

I0 The initial intensity of an X-ray beam R
I The damped intensity of an X-ray beam R
K The kernel of the �rst-kind Fredholm integral equation L2

K The integral transformation de�ned by the
�rst-kind Fredholm integral equation L2 → L2

K̂ The Fourier transformation of K L1

L The collection of points on a line R2

m The number of projections R
n The number of elements in the object, x R
p The projection of a beam R
R The Radon transformation
r The rank of the transformation matrix, A. R
s The distance from the origin to a line L(s, θ) R
ui Left singular function from the SVE L2

ui The ith left singular vector of the SVD Rm×1
U Matrix containing left singular vectors Rm×m
vi Right singular functions from the SVE L2

vi The ith right singular vector of the SVD Rn×1
V Matrix containing right singular vectors Rn×n
x The object/image Rn×1
xexact The exact object Rn×1
xi The ith element of the object R
xε The object from the system with perturbation

in the measurements Rn×1
α Scaling parameter used for rectangular

and laminar domains R
γ The variable in frequency domain R
δ The Dirac delta function
ε Pertubation in continuous measurements L2

ε The discrete perturbation Rm×1
η The relative noise level R
θ An angle [0, π[
κ Translation parameter used for laminar object R
µi Singular value from the SVE R
σi The singular values of the SVD R
σ
(n)
i The singular values using from the SVD

using n pixels in the discretisation. R
φ, ψ Arbitrary functions used to describe notation. L2

〈·, ·〉 The inner product
‖ · ‖ The norm
K ∗ f The convolution of K and f
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Chapter 1

Introduction

Tomoraphy, the method of describing an image from a set of projections, was
independently developed among several researchers in the early 20th century [1].
Computed tomography (CT) is a mathematical method of tomography, where
an object or image is reconstructed from measurements of its projections. The
application of CT is used in many �elds today, such as medical imaging, due to
its non destructive examination properties. In this thesis we will focus on the
speci�c case of X-ray CT, or X-ray tomography, where the goal is to recover the
interior of a body using external measurements of X-rays having passed through
the body.

The goal of this thesis is to study the solvability of both general and speci�c
X-ray tomography problems. The goal is carried out, in part, by studying a
continuous mathematical model of X-ray tomography, and showing that some
properties, determining the solvability of the model carry, over to a discretised
version. From this knowledge a method of analysis is de�ned, to determine the
solvability of speci�c tomography problems. This �nally leads to the investiga-
tion of laminar tomography.

It will become clear, in Chapter 2, what is meant by solvability, and what
properties are considered to determine the solvability of an X-ray tomography
problem.



2 Introduction

1.1 Structure of The Thesis

To satisfy the goal we have divided the thesis into two parts; the �rst part sets
the stage and provides the reader with relevant background knowledge required
in the thesis. In particular the �rst part shows that X-ray tomography prob-
lems are ill-posed, and it provides tools for analysing ill-posedness in both the
continuous and discretised cases of these problems. The second part consists of
a systematic analysis of speci�c X-ray tomography problems based on a method
of analysis derived from the relevant theory in the �rst part.

The thesis is organised as follows:

� Chapter 2, Sections 2.1-2.3: Introduces the term ill-posed as a method
of determining solvability and shows that the �rst-kind Fredholm integral
equation is ill-posed.

� Chapter 2, Sections 2.4-2.5: Introduces the Picard condition as a method
of determining how the solution to a speci�c problem is a�ected by its
ill-posedness.

� Chapter 2, Sections 2.6-2.7: Introduces a mathematical way of modelling
CT and relates it to the �rst-kind Fredholm integral equation.

� Chapter 2, Sections 2.8-2.9: Introduces the discretised version of CT and
shows the ill-posed characteristics of the continuous version carries over.

� Chapter 3, Section 3.1: De�nes the analysis method used in the second
part of the thesis.

� Chapter 3, Sections 3.2-3.5: Contains the analysis applied to a number of
�toy� problems.

� Chapter 4: Contains the analysis applied to two cases of laminar tomog-
raphy.

� Chapter 5: Contains the conclusion of the thesis and a discussion of future
work.



Chapter 2

Background Theory

The goal of this chapter is to describe the relevant background theory required
to perform an analysis of the solvability of X-ray tomography problems. The
chapter will start o� by de�ning inverse problems and some general theory
for problems that can be modelled by the Fredholm integral equation of the
�rst kind. Later the theory of X-ray tomography will be introduced and the
theory from the �rst sections of the chapter will be applied to this. The latter
part of the chapter will cover the methods and challenges of performing X-ray
tomography on a computer. In this chapter the reader is expected to have a
profound understanding of linear algebra and be familiar with the basic concepts
of real analysis including Lp-spaces and Fourier analysis.

2.1 Inverse Problems

The term inverse problem generally tends to describe the framework used in
mathematics to gain information about an object or system, that we cannot
directly observe. The information is gained by processing measurements of
some physical property a�ected by the object. The goal of solving the inverse
problem is then, to �nd the approximation of the object that best matches the
measured property.



4 Background Theory

A general mathematical statement of an inverse problem is to �nd the model
parameters, f , such that,

A(f) = g. (2.1)

Here A is an operator that describes the relation between the model parameters,
f , of the object and some measurements, g. To clarify this; we call the process
of constructing g given f the forward problem and �nding f given g the inverse
problem. We note that, an X-ray tomography problem can be considered as an
inverse problem.

In general, it turns out that these kinds of problems are ill-posed [2], [3]. To un-
derstand what is meant by ill-posed, we look to the de�nition given by Hadamard
in 1902 [4].

Definition 2.1 A mathematical problem is well-posed if it has the following
properties

� Existence: A solution to the problem exists.

� Uniqueness: The solution is unique.

� Stability: The solution's behaviour changes continuously with initial con-
ditions.

If any of these conditions are not satis�ed, the problem is said to be ill-posed.

As it turns out ill-posed problems are generally hard to solve, and as we will see
in Section 2.3, the question of determining the solvability of X-ray tomography
problems demands a closer look at the stability criterion. In this thesis we will
therefore focus on analysing this criterion for general and speci�c X-ray tomog-
raphy problems. For further detail on the uniqueness and existence criterion
see, e.g., [2].
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2.2 Notation

Here we de�ne some notation commonly used in the following sections.

We make use of the domain space:

Ω ≡ {x ∈ R2 | ‖x‖2 ≤ 1} (Unit disc in R2).

Where ‖ · ‖2 is the usual Euclidean norm in R2.

We will consider functions on Lp(R)-space where p = 2 unless stated otherwise.
We de�ne the Lp-space for real functions by

Lp(R) ≡

{
f : R→ R

∣∣∣∣∣
(∫ ∞
−∞
|f(t)|p dt

)1/p

<∞

}
.

We de�ne the inner product of the functions φ, ψ : R→ R on L2(R) by

〈φ, ψ〉 ≡
∫ ∞
−∞

φ(t)ψ(t) dt,

and the norm of φ on L2(R) by

‖φ‖ ≡ 〈φ, φ〉1/2 =

(∫ ∞
−∞

φ(t)2 dt

)1/2

.

Remark. Note that any function, f ∈ L2, is also a function in L1. Thus any
theorems pertaining to functions in L1 will also hold for functions in L2.

Additionally, we de�ne F : L1 → L1 as the operator given by the Fourier
transform of f ∈ L1(R). We let f̂ : R→ C be the function associated with the
Fourier transform such that

(Ff)(γ) = f̂(γ) ≡
∫ ∞
−∞

f(x)e−2πı̂xγ dx, γ ∈ R, (2.2)

where ı̂ =
√
−1. The inversion formula of the Fourier transform is de�ned as

f(x) =

∫ ∞
−∞

f̂(γ)e2πı̂xγ dγ for almost all x ∈ R,

where f ∈ L2(R) and f̂ ∈ L1(R).

We also de�ne K ∗ f : R→ C as the convolution of K, f ∈ L1(R) by

(K ∗ f)(y) ≡
∫ ∞
−∞

K(y − x)f(x) dx, y ∈ R. (2.3)
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2.3 Ill-Posedness of The First-Kind

Fredholm Integral Equation

X-ray tomography belongs to the class of linear inverse problems that can be
modelled by the Fredholm integral equation of the �rst kind. In Section 2.6, we
give an intuitive explanation, based on the theory, as to why this is the case.
But for now, we will consider some properties found for this integral equation.
The �rst-kind Fredholm integral equation is de�ned as:∫ ∞

−∞
K(s, t)f(t) dt = g(s), s ∈ R. (2.4)

In the inverse problem the kernel, K ∈ L2(R2), and the right-hand side, g ∈
L2(R), are known quantities, and f ∈ L2(R) is unknown. From Equation (2.1)
we recognise the operator as applying the integral and kernel to the object, f ,
and likewise g as the measurements. We denote this operator as K : L2(R) →
L2(R) and de�ne it by

(Kf)(s) ≡
∫ ∞
−∞

K(s, t)f(t) dt = g(s).

An important special case of this integral equation is when the kernel is a func-
tion of the di�erence between s and t such that K(s, t) = K(s− t). In this case
we recognise that the right hand side g is the convolution of f and K, such that;

(f ∗K)(s) =

∫ ∞
−∞

K(s− t)f(t) dt = g(s). (2.5)

When solving for f , this version of the integral equation is called a deconvolution
problem. Going further it will prove su�cient to focus on this speci�c type of
problem. To gain further insight into the nature of the deconvolution problem,
we will explain why it is ill-posed. To do this, we must introduce two relevant
theorems.

Theorem 2.2 (Riemann-Lebesgue's Lemma) For f ∈ L1(R), f̂ is a

continuous function which tends to zero as γ → ±∞.

The proof of the Riemann-Lebesgue's lemma is omitted in the thesis. The inter-
ested reader can seek out [5] (proof starts on page 138). The second theorem will
show a useful relation between the convolution operator (2.3) and the Fourier
transform (2.2).

Theorem 2.3 (Fourier Transform and Convolution) If K, f ∈
L1(R), then K̂ ∗ f(γ) = K̂(γ)f̂(γ) , ∀γ ∈ R.
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Proof. First we note, that for K, f ∈ L1(R) the convolution (K ∗ f) : R→ C
is well de�ned and de�nes a function in L1(R) by Lemma 7.3.2 in [5]. Indeed
the Fourier transform of (K ∗ f)(y) is then well de�ned and given by

K̂ ∗ f(γ) =

∫ ∞
−∞

(K ∗ f)(y)e−2πı̂yγ dy

=

∫ ∞
−∞

(∫ ∞
−∞

K(y − x)f(x) dx

)
e−2πı̂yγ dy.

Using Fubini's Theorem, Theorem 5.3.10 in [5], we can switch the order of
integration, and using the fact that e−2πı̂yγ = e−2πı̂(y−x)γe−2πı̂xγ we get

K̂ ∗ f(γ) =

∫ ∞
−∞

(∫ ∞
−∞

K(y − x)e−2πı̂yγ dy

)
f(x) dx

=

∫ ∞
−∞

(∫ ∞
−∞

K(y − x)e−2πı̂(y−x)γ dy

)
f(x)e−2πı̂xγ dx.

Now we see by a simple change of variable, z = y − x such that dz = dx, the
desired result;

K̂ ∗ f(γ) =

∫ ∞
−∞

(∫ ∞
−∞

K(z)e−2πı̂zγ dz

)
f(x)e−2πı̂xγ dx

=

(∫ ∞
−∞

K(z)e−2πı̂zγ dz

)(∫ ∞
−∞

f(x)e−2πı̂xγ dx

)
= K̂(γ)f̂(γ).

�

Now, to show that the deconvolution problem is ill-posed; we recall that, the
stability condition of De�nition 2.1 is satis�ed if the solutions behaviour changes
continuously with initial conditions. Thus the deconvolution problem is ill-posed
if a small perturbation, say ε ∈ L2(R), in the measurements, g, can lead to an
arbitrarily large change in the model parameters, f .

We denote the true model parameters of the object as, f0 ∈ L2(R), and the
perturbed measurements as gε(s) = g(s) + ε(s). We can then study the e�ect
on the inverse problem caused by perturbing the measurements.

Using the true model parameters, f0, we can write the perturbed measurements
as

gε(s) = (K ∗ f0)(s) + ε(s), (2.6)
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and from the model parameters, fε ∈ L2(R), found by solving the inverse prob-
lem with perturbed measurements as

gε(s) = (K ∗ fε)(s). (2.7)

Now using Theorem 2.3 we can then write the Fourier transformation of gε(s)
in terms of Equations (2.6) and (2.7) by

ĝε(γ) = K̂(γ)f̂ε(γ) = K̂(γ)f̂0(γ) + ε̂(γ).

Rearranging the equation we �nd the relation between the Fourier transforma-
tion of the true model parameters and the Fourier transformation of fε as

f̂ε(γ) = f̂0(γ) +
ε̂(γ)

K̂(γ)
. (2.8)

If we then take the inverse Fourier transformation of Equation (2.8) we get

fε(x) =

∫ ∞
−∞

f̂ε(γ)e2πı̂xγ dγ

=

∫ ∞
−∞

f̂0(γ)e2πı̂xγ dγ +

∫ ∞
−∞

ε̂(γ)

K̂(γ)
e2πı̂xγ dγ

= f0(x) +

∫ ∞
−∞

ε̂(γ)

K̂(γ)
e2πı̂xγ dγ.

We recognise the second part of the equation as the change in the model pa-
rameters caused by the perturbations in the measurements. Thus, given small
but su�ciently high frequent perturbations (read: noise) in the measurements,
we can get arbitrarily large changes in the model parameters. See pages 8-9 in
[2] for examples of this behaviour on a few simple problems.

The consequence of this, is that inverse problems on the form in Equation (2.5),
do not satisfy the third condition of De�nition 2.1, and are therefore ill-posed.
But is it possible to identify those elements of the deconvolution problem that
contribute to this behaviour? If so; we could perhaps, by treating these, end up
with reasonable estimates of model parameters even with noise in measurements.
A tool to quantify this behaviour is the singular value expansion.
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2.4 Singular Value Expansion

The singular value expansion (SVE) provides a method for describing the be-
haviour of inverse problems by considering the frequency components of the
transformation. This will indeed prove useful for identifying components of the
deconvolution problem that contribute to its ill-posedness. Before we get ahead
of ourselves, we must �rst state the de�nition of the SVE.

Definition 2.4 (Singular Value Expansion) Let K ∈ L2(R2) be a
square integrable function and let ui : R → R and vi : R → R be orthonormal
functions in L2(R) such that

〈ui, uj〉 = 〈vi, vj〉 = δij for i, j ∈ N,

and {µi}∞i=1 be a non-increasing sequence such that µ1 ≥ µ2 ≥ · · · ≥ 0. Then
the singular value expansion of K are the functions, ui, vi, and values, µi, that
satisfy

K(s, t) ≡
∞∑
i=1

µiui(s)vi(t).

Here the functions ui and vi are called the left and right singular functions
respectively, and µi are called the singular values of K.

Remark. It is relevant to note that the singular functions, ui and vi, form an
orthonormal basis in L2(R). This is clear from the de�nition of an orthonormal
system � see, e.g., De�nition 4.3.1 and 4.7.1 in [5].

It will become clear later, how to use the SVE for identifying the ill-posed

parts of the deconvolution problem. However, �rst we describe an important
relation that the singular functions and values satisfy. In fact it is named �the
fundamental relation�.

Theorem 2.5 (The Fundamental Relation of the SVE) Let ui
and vi be the singular functions of some kernel K ∈ L2(R2), and let µi be the

singular values of the same kernel such that they satisfy De�nition 2.4. Then

we have the fundamental relation∫ ∞
−∞

K(s, t)vi(t) dt = µiui(s), i = 1, 2, . . . .
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Proof. By the de�nition of an inner product in L2 and from the SVE of K
we have that ∫ ∞

−∞
K(s, t)vi(t) dt = 〈K(s, t), vi(t)〉

=

〈 ∞∑
j=1

µjuj(s)vj(t), vi(t)

〉

=

∞∑
j=1

µjuj(s) 〈vj(t), vi(t)〉 .

Since v is an orthonormal basis for L2(R) such that 〈vj , vi〉 = 1 only for i = j
and zero otherwise, we get the desired result;∫ ∞

−∞
K(s, t)vi(t) dt = µiui(s).

�

From this relation one can �nd a number of properties for the SVE of K. We
will focus on one of these properties, namely the Picard condition, which is the
�nal ingredient we need to distinguish the components that are dominated by
high frequent perturbations in measurements, from those that are not.

2.5 The Picard Condition

Before stating the Picard condition, we recall that ui and vi form bases for square
integrable functions in L2(R), and thus, by the characterisation of orthonormal
bases � see, e.g., Theorem 4.7.2 b in [5] � we can expand both f and g in terms
of these basis functions:

f(t) =

∞∑
i=1

〈vi, f〉 vi(t), g(s) =

∞∑
i=1

〈ui, g〉ui(s). (2.9)

Using the above expansions, we can write the �rst-kind Fredholm integral equa-
tion (2.4) as ∫ ∞

−∞
K(s, t)

∞∑
i=1

〈vi, f〉 vi(t) dt =

∞∑
i=1

〈ui, g〉ui(s), (2.10)
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and then applying the fundamental relation of the SVE, in Theorem 2.5, we are
able to write the left-hand side as∫ ∞

−∞
K(s, t)

∞∑
i=1

〈vi, f〉 vi(t) dt =

〈
K(s, t)

∞∑
i=1

〈vi, f〉 , vi(t)

〉

=

∞∑
i=1

〈vi, f〉 〈K(s, t), vi(t)〉

=

∞∑
i=1

〈vi, f〉µiui(s).

and applying this in Equation (2.10) and dividing by µi, we get that

∞∑
i=1

〈vi, f〉ui(s) =

∞∑
i=1

〈ui, g〉
µi

ui(s). (2.11)

We will use this result in the proof of the Picard condition.

Theorem 2.6 (The Picard condition) Let ui be the left singular func-
tions and µi the singular values from the SVE of K in De�nition 2.4. Then the

solution, f , to the inverse problem of Equation (2.4) is square integrable if

∞∑
i=1

(
〈ui, g〉
µi

)2

<∞.

Proof. For f to be square integrable we require ‖f‖2 =
∫∞
−∞ f(t)2 dt < ∞.

But since
∫∞
−∞ f(t)2 dt = 〈f, f〉 by de�nition, we can use the expansion of f ,

in Equation (2.9), and the �rst property of the inner product space (see, e.g.,
De�nition 4.1.1 in [5]) to write

〈f, f〉 =

〈 ∞∑
i=1

〈vi, f〉 vi, f

〉
=

∞∑
i=1

〈vi, f〉2 .

Then by realising that, the expansion coe�cients for ui, in Equation (2.11),
must be equal in each term, we �nd 〈vi, f〉 = 〈ui,g〉

µi
, which yields the desired

result that the solution is square integrable if

‖f‖22 =

∞∑
i=1

〈vi, f〉2 =

∞∑
i=1

(
〈ui, g〉
µi

)2

<∞.

�
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The Picard condition gives us a tool to check, if our deconvolution problem
is dominated by high frequent perturbations in measurements, such that the
model parameters are no longer square integrable. A general assumption on real
world data is that, it is square integrable. Hence, we cannot expect solutions
to be meaningful, if the Picard condition is not satis�ed. We note that the
ill-posedness depend on the size of the singular values µi, since

〈ui,g〉
µi
→ ∞ for

µi → 0.

Remark. (Spectral Characterization of the Singular Functions) The
singular functions, ui and vi, are similar to the Fourier functions in the sense that
for large singular values the corresponding singular functions are low frequent
and for small singular values the corresponding functions are high frequent. See
pages 17-20 in [2] for a justi�cation of this.

2.6 Computed Tomography

Returning to X-ray tomography problems: It is in this section, we justify that
they can be modelled by the deconvolution problem, in Equation (2.5). Because
of this, we can use the results from the previous theory on X-ray tomography
problems. To start with, a proper introduction of the problem is in its place.

In X-ray tomography, we measure the intensity loss of an X-ray beam going
through an object. The beam originates from a source with initial intensity,
I0, and �nishes at a detector with damped intensity, I. The loss of intensity is
due to the energy absorption by the object, which depend on its structure. The
beam goes through the object in a straight line, L, with an intensity at each
point, I(x), for x ∈ L.

We can describe the loss of the beams intensity on a in�nitesimally small part of
the line, dl, from how the structure of the object, described by the true model
parameters, f0, absorbs this intensity. We can write this as

dI(x) = −f0(x)I(x) dl,

which can be rewritten as

1

I(x)

dI(x)

dl
= −f0(x)∫

L

1

I(x)

dI

dl
dl =

∫
L
−f0(x) dl

− ln

(
I

I0

)
=

∫
L
f0(x) dl.
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From this, we are now able to describe the integral of f0 over the line, L, by
measuring the initial and damped intensity. In further notation, we will call
this integral a projection, p(L), given by

p(L) =

∫
L
f0(x) dl. (2.12)

We can recognise the above equation as a �rst-kind Fredholm integral equation
� see Equation (2.4) � if the kernel K describes how we integrate over the line,
L. If this kernel can be written as a function of the di�erence between its
arguments, we discover the deconvolution problem. In the next section we will
study the most common way of further formulating Equation (2.12).

2.7 The Radon Transform in Two Dimensions

The Radon transform, R, due to Johann Radon in 1917 [6], is a central example
of formulating X-ray tomography on the form in Equation (2.12). We note that,
in two dimensions f is now a function of two variables. The variables describe
the position of a point, (x1, x2), in a two dimensional image. We will later give
an intuitive explanation of how to understand this two dimensional problem in
terms of the earlier theory.

By writing the line, L, as a function of the angle, θ, and the distance, s, as shown
in Figure 2.1, we �nd, the set of points that make up L can be characterized as

L(s, θ) = {(x1, x2) ∈ R2 | x1 cos θ + x2 sin θ = s}. (2.13)

Where θ ∈ [0, π[ is the slope of the line going through the origin orthogonal to
L and s ∈ R is the distance between the origin and the line, L, see Figure 2.1.

If we plug this into Equation (2.12), using a Dirac delta function to integrate
over the line, L, we �nd what is known as the Radon transform.

Definition 2.7 (The Radon Transform) Let f0 : R2 → R be a square
integrable and compactly supported function describing the model parameters
of an object and let L be the line given by Equation (2.13), then the Radon
transform, R, of f0 is de�ned as:

(Rf0)(s, θ) ≡
∫ ∞
−∞

∫ ∞
−∞

f0(x1, x2)δ(x1 cos θ + x2 sin θ − s)dx1dx2. (2.14)
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Figure 2.1: Illustration of the line L(s, θ).

Remark. The complete set of projections, for all θ, of the Radon transform
is referred to as the sinogram of f0.

By change of variable x1 = x
cos θ , such that dx1 = dx

cos θ , and using the property
of the delta function we can write the Radon transform as

(Rf0)(s, θ) =

∫ ∞
−∞

∫ ∞
−∞

f0(
x

cos θ
, x2)δ(x+ x2 sin θ − s) 1

cos θ
dxdx2

=

∫ ∞
−∞

f0(
−x2 sin θ + s

cos θ
, x2)

1

cos θ
dx2.

Changing variable x2 = s sin θ + l cos θ, such that dx2 = cos θdl, we get

(Rf0)(s, θ) =

∫ ∞
−∞

f0
(
−(s sin θ + l cos θ) sin θ + s

cos θ
, s sin θ + l cos θ

)
dl

=

∫ ∞
−∞

f0
(
s(− sin θ2 + 1)

cos θ
− l sin θ, s sin θ + l cos θ

)
dl

=

∫ ∞
−∞

f0 (s cos θ − l sin θ, s sin θ + l cos θ) dl.

We now recognise the values of (Rf0) for �xed θ as the projection de�ned in
Equation (2.12). We denote this projection as pθ(s) and write it as

pθ(s) =

∫
L(s,θ)

f0(x) dl.

As we saw in the last part of the previous section, the projection, p(L), could
be written as a �rst-kind Fredholm integral equation. We expect the same to
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be true of the Radon transform for �xed θ, since pθ(s) has the same form as
p(L), in Equation (2.12).

We note that the kernel, K, describes the nature of the integral transform for
the �rst-kind Fredholm integral equation (2.4). Since the Dirac delta function,
δ /∈ L2(R2), has the same property for the Radon transform as seen, in Equation
(2.14), we can with slight abuse of notation compare the two.

When doing this comparison, we see that the delta function acts like the kernel
for the deconvolution problem, in Equation (2.5), and thus we expect the theory
of ill-posedness to hold true for the Radon transform. A more rigorous analysis
of this proposition could be an interesting future project.

It turns out that the operator for the Radon transform is unbounded on L2(Rn),
but is bounded for some weighted L2-spaces, by Theorem 2.9 in [7], as well as for
L1-spaces. To further justify the theory of ill-posedness for the Radon transform,
we can consider the singular values from the SVE of the Radon transform on
a unit disc, R(Ω), which Bertero [3] and Frikel [7] explains, now maps to a
weighted L2-space.

Theorem 2.8 The singular values of the Radon transform, R(Ω), is given by

µm =

(
4π

m+ 1

)1/2

,

where µm has multiplicity m and is ordered in a non-increasing fashion such

that the set of singular values is {µ1, µ2, µ2, µ3, µ3, µ3, . . .}.

The proof of this theorem can be found in [3].
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2.8 Discretisation

For the inverse problem we have in Section 2.7 assumed in�nitely many projec-
tions available for the reconstruction of the model parameters from the object.
However, this is not the case in computed X-ray tomography where a detector
can only measure a �nite number of projections. Additionally, computers are
not well equipped to solve problems on continuous domains, so in practice one
will have to discretise the domain, such that the reconstruction can be calcu-
lated and stored on a computer. Hence, we are motivated to investigate the
properties of the discretised X-ray tomography problems.

When considering X-ray tomography problems the object is almost always rep-
resented as an image. The model parameters then describes the intensity of
each point in the image. By the assumption that, in the continuous version
of the object, points in a neighbourhood of each other will be closely related,
we can approximate the object by discretisation. Then we will have a vector,
x ∈ R1×n, describing the object, where n is the number of pixels. An example
of a discretised object with a single projection going through can be seen in
Figure 2.2.
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x1 x21
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x19
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x24
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x23
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Figure 2.2: Discretised object with n = 25 pixels
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By discretising, we are able to represent each line going through the object by
the length it travels through each pixel. We store these lengths for each line,
Li, in a row vector, ai ∈ Rn, where i is the index distinguishing between the
di�erent lines. By doing this, we are able to approximate the projection over
the ith line as

p(Li) =

∫
Li

f0(x) dx ≈
n∑
j=1

aijxj ,

where ai,j is the jth element of ai and xj is the jth pixel value of the object x.
By collecting all the lines expressed as row vectors into one matrix we get

A =


a1
a2
...

am

 ,

where m is the number of lines and A ∈ Rm×n. We are now able to compute
the approximated sinogram, b, of the linear system as

Ax = b. (2.15)

Using a computer, this approximated sinogram is easily computed compared to
the continuous sinogram, e.g., for the Radon transform in Equation (2.14). If we
are looking at the inverse problem, we solve Equation (2.15) for x. To investigate
this problem further, we �rst consider what changes due to the discretisation.
The object, x, is now in Rn and the measurements or sinogram, b, is in Rm.
Then we have the transformation matrix A : Rn → Rm, which represents the
forward problem.

Remark. The bright reader might ask if A is well de�ned without a weighting
on the discrete sinogram space, since R was unbounded mapping into L2(R).
This is a very good question and it is studied in [3], where Bertero explains
that a change of variables, based on the Choleski factorization of the weighting
matrices allows one to transform a problem formulated in weighted spaces into
a problem formulated in canonical vector spaces. The explanation of why this
is true is out of the scope of this thesis.



18 Background Theory

In the discretised spaces, we will use the commonly used norms:

‖x‖ =

(
n∑
i=1

x2i

)1/2

for x ∈ Rn

‖b‖ =

(
m∑
i=1

b2i

)1/2

for b ∈ Rm.

Now that the normed spaces are de�ned, we investigate the properties of the
system, in Equation (2.15). From Section 2.7 we know that the inverse problem
of the Radon transformation does not satisfy the third condition of De�nition
2.1, and is thus ill-posed. However, in the discrete case, checking continuity
is useless since every map from a discrete domain is continuous. The discrete
inverse problem of Equation (2.15) is hence well-posed if Rank(A) = n = m.
This is true since there exist one unique solution and the solution depends
continuously on the data. So the stability condition from De�nition 2.1 is not
a good way of describing stability of linear systems on the form 2.15.

Instead we must consider if the system is ill-conditioned. Ill-conditioned means
small perturbations in the data will re�ect dramatically on the reconstruction of
the object. We describe ill-conditionedness by how the perturbations propagate
through to the solution in the inverse problem.

If bε = b + ε is the sinogram with perturbation ε ∈ Rm, then let xε be the
solution to the system Axε = bε. We can then investigate the error propagation
from the measurements to the solution. The re�ection made by this perturbation
can be described by the following relation:

‖xε‖
‖x‖

≤ CA
‖bε‖
‖b‖

.

Here CA is the condition number as de�ned below.

Definition 2.9 The condition number, CA, of a given transformation matrix
A, satisfying equation (2.15), is given by

CA = ‖A−1‖‖A‖.

Here the norm of the matrix, A, is de�ned as ‖A‖ ≡ max
x6=0

{
‖Ax‖
‖x‖

}
.

It should be mentioned that this restriction is pessimistic and in many cases,
the re�ection is much smaller than this relation. It gives us an upper bound
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for the in�uence on the reconstruction due to the perturbation of the sinogram.
For large matrices, it is easily seen that the condition number can be very large
and the system in Equation (2.15) will then be ill-conditioned. Since the upper
bound given by the condition number is a weak restriction and De�nition 2.9
requires the inverse of A, we are in dire need of more robust tools to study the
�ill-posedness� of the discretised problem. We obtain these tools by generalising
the analysis of the SVE to the discrete case.

Remark. Perturbation in the measurements, b, for real life X-ray tomography
problems is caused by noise from two main sources; either, small obstacles not
included in the object or measurement errors caused by the uncertainty of mea-
suring equipment. In this thesis we will consider the perturbation as stochastic
and it will be approximated by a Gaussian distribution.

2.9 Singular Value Decomposition and

The Discrete Picard Condition

Previously in this chapter, the SVE proved to be a very useful tool for analysing
the properties of the �rst-kind Fredholm integral equation and by Section 2.7
also for the Radon transform. We have a similar tool for the problems described
in the discrete space and we will see that most the previously described prop-
erties carry over. This tool is called the singular value decomposition (SVD).

Definition 2.10 Let A ∈ Rm×n, satisfy Equation (2.15), then there exist
a diagonal matrix, Σ ∈ Rm×n, with non negative diagonal elements, and two
square orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = UΣV T =

r∑
i=1

uiσiv
T
i ,

where V T ∈ Rn×n is the transposed V and r = Rank(A).

Remark. For complex matrices we would have to use V ∗, the adjoint of V ,
instead of V T .

The matrices U and V consist of what is known as the singular vectors ui ∈ Rm
and vi ∈ Rn, such that

U = (u1,u2,u3,u4, . . . ,um), V = (v1,v2,v3,v4, . . . ,vn),
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and since they are orthogonal,

UTU = UUT = I and V TV = V V T = I,

where I is the identity matrix.

The diagonal elements of Σ are known as the singular values and are denoted
as Σi,i = σi for i = 1 . . .min(m,n). For r = Rank(A) the order of the elements
in Σ is as follows σ1 ≥ σ2 ≥ ... ≥ σr > 0 = σr+1 = · · · = σmin(m,n).

We use the SVD from De�nition 2.10 to express the norm of the transformation
matrix, A, by its largest singular value:

‖A‖ = σ1.

The derivation of this result is omitted in the thesis.

Remark. We recognise the range, and null space of A as

Range(A) ≡ {y ∈ Rm | y = Ax, x ∈ Rn}
= span{ui | i = 1, 2, . . . , r}

Nullspace(A) ≡ {x ∈ Rn | Ax = 0}
= span{vi | i = r + 1, r + 2, . . . ,min(n,m)}.

Using De�nition 2.10, we can write the solution, x, to the inverse problem of
Equation (2.15) as

x = A−1b = V Σ−1UTb,

realising that the inverse of A can be written as

A−1 = V Σ−1UT .

Hence, we observe that the norm of the inverse transformation matrix is given
by ‖A−1‖ = σ−1min{m,n}. With this remark we are able to express the condition
number of A, from De�nition 2.9, with help from the SVD by

CA = ‖A−1‖‖A‖ =
σ1

σmin{n,m}
.

This illustrates that the ill-conditionedness of the transformation matrix, A,
depends on its singular values, σi, like we observed for the ill-posedness of the
kernel, K, in Section 2.4.
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The singular values from the SVD have a lot of relations which are similar to
those from the SVE. We have, e.g., the fundamental relation:

Avi = σiui, i = 1, . . . ,min{n,m},

and if Rank(A) = m then

A−1ui = σ−1i vi, i = 1, . . . ,min{n,m}.

Like we did for the continuous analysis, we can approximate x in terms of its
right singular vectors, vi, by

x = VVTx =

n∑
i=1

(vTi x)vi (2.16)

and the measurements, b, in terms of the left singular vectors, ui, by

b =

r∑
i=1

(uTi b)ui. (2.17)

The limit, in Equation (2.17), is r = Rank(A), since we from, Remark 2.9, have
that b ∈ Range(A), which is only spanned by the �rst r left singular vectors.

From the SVD of A and Equation (2.16), we then obtain that

Ax =

r∑
i=1

uiσiv
T
i (vTi x)vi =

r∑
j=1

σi(v
T
i x)ui, (2.18)

Equating Equation (2.18) and (2.17), we �nd what is often called the naive

solution to the inverse problem, of the system in Equation (2.15), as

x = A−1b =

r∑
i=1

uTi b

σi
vi. (2.19)

Following the same token as for the continuous analysis we want to identify
which elements of the transformation matrix, A, will be dominated by noise
in the measurements, b, when solving the inverse problem. It is clear from
Equation (2.19) that singular values close to zero can have a big impact on
the solution from small perturbations in the measurements. Thus, we want to
exclude the parts of the sum where the singular values are too small. This leads
us to the discrete Picard condition.

Theorem 2.11 (The Discrete Picard Condition - DPC) Let τ
denote the level at which the computed singular values, σi, level o� due to round-

ing errors. The DPC is satis�ed if, for all singular values larger than τ , the
correspondence coe�cients, ‖uTi b‖, on average, decay faster than the σi.
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The relation between the discrete Picard condition and continuous Picard con-
dition is described in detail both in [8] and [2]. We have decided not to include
the details of the explanation. However, the important point is that both the
singular values and vectors of the SVD can approximate those from the SVE
given a su�ciently �ne discretisation. For the singular values, σi, of the SVD
and singular values, µi, of the SVE we have the following relation:

σ
(n)
i ≤ σ(n+1)

i ≤ µi, i = 1, . . . , n.

where n is the number of elements in the discretised object x.

In practical terms the DPC tells us for which index of the singular values the
naive solution, in Equation (2.19), start to become dominated by noise in mea-
surements. Thus, to get a better reconstruction than that of the naive solution,
we only want to include parts of the sum up until, the index for which the
DPC is no longer satis�ed. This leads us to de�ne a reconstruction method
from truncating the naive solution. This is the well known truncated singular

value decomposition (TSVD) method. The method is de�ned in Appendix A
together with the Landweber iterative method, and both are used to consider
reconstructions in the following chapters.



Chapter 3

SVD Analysis of Interesting

Cases

In this Chapter we develop a method for analysing discretised inverse problems.
In real world scenarios you often come across problems with data which is not
ideal. By ideal data we mean su�ciently many, equally distributed, sets of
projections from angles all around an object, as shown on �gure 3.1.

Figure 3.1: Ideal data where we have sets of projections from angles all around
the object.
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Remark. We note that the word angles can be used interchangably with the
phrase �sets of projections�, since only one set of projections is collected per
angle.

For not ideal data, we are then lacking su�ciently many projections or the
angles (sets of projections) are not equally distributed around the object. To
illuminate what these kind of problems could be like, here are some examples
from real world problems: An example could be neutrino tomography, where the
projections are collected from random angles. This leads to missing order in the
structure of the data, which might lead to complications for the reconstruction.
Another example, which we later will investigate closely, could be found in
the industrial setting, where we examine objects too long to collect sets of
projections from a full angular range, [0, 179] degrees. This leads to a collection
of di�erent problems involving missing data and �di�cult� discretisation. To
study the di�culties of these problems, we will need a method to analyse them
with our earlier gathered knowledge from Chapter 2.

3.1 The Analysis Method

The goal of this section is to describe an analysis method in such a way that
a person without much knowledge of the theoretical background explained in
Chapter 2 can apply it for analysing tomographic problems in practise. From
Section 2.4 we saw that the ill-posedness of the inverse problem is dependent
on the decay of the singular values from the SVE. Since tomographic problems
are usually dealt with on a computer, the SVD is easier computed. Luckily, we
know from Section 2.9 that the behaviour of the SVD is a re�ection of the one of
the SVE. Therefore in further analysis, we will look at the discretised problem.

From Equation 2.16 we know that the object/image x can be constructed as
a linear combination of the right singular vectors vi. In our analysis we will
therefore take a look at what the structure of these vectors can tell us about the
reconstructions. To �nd the singular vectors that are dominated by a realistic
noise level, we will use the discrete Picard condition (DPC), de�ned in Theorem
2.11. We then have the elements of our analysis:
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Analysis Method 3.1 Given a transformation matrix A ∈ Rm×n and a

sinogram b ∈ Rm s.t. the system is given by Ax = b where x ∈ Rn is the

unknown object we want to reconstruct. We can analyse the system as follows

� Calculate the SVD of the transformation matrix A. Then check the decay

of the singular values by plotting σi

σ1
compared to the index i.

� Check how many of the singular values, σi, and corresponding left singular

vectors, ui, satisfy the discrete Picard condition from 2.11.

� Analyse the structure of right singular vectors, vi, of A and check whether

it is possible to make a prediction about the reconstruction.

Additionally, given some supposed representation of x ∈ Rn

� Consider which elements of x are in the range of A. This gives an idea of

what is possible to reconstruct. Likewise considering the null space gives

an idea of which elements are not possible to reconstruct.

So in summary, this analysis method will provide us with insight into how the
system is a�ected by measurement noise, and how the structure of the system
can a�ect the reconstruction. To con�rm the assessment in our analysis, we
will consider two well known reconstruction techniques, TSVD and Landweber.
Throughout the thesis, we will use the well known Shepp-Logan Phantom, shown
in Figure 3.2.

Figure 3.2: A 100× 100 Shepp-Logan phantom
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When investigating the discrete Picard condition, we will add a relative noise
level of η = 5%, such that

b = bexact + η‖bexact‖e,

where e is a 1 ×m vector with normed Gaussian noise such that ‖e‖ = 1. It
can be used for other objects and noise levels, but we will throughout this thesis
consider these choices.

Throughout this thesis, we use Matlab to perform the numerical computations.
The script main.m consist of all the di�erent set-ups treated in this thesis. The
�le can be found here [9]. In all of them, we use analysisSVD.m to perform
the analysis above. The function is described in the list of Matlab functions
in the Appendix. Now that we have a method of analysis, we can use it on
di�erent tomographic problems. We will start by using our method to motivate
a general way to construct the transformation matrix. while motivating the
matrix generator, we will show how to use our analysis in more details. Hence,
to get a feeling for using the analysis, the reader should go through the next
section, even if the subject of consideration is not of particular interest.

3.2 Motivated Choice of Transformation Matrix

Generator

To simulate the process of tomographic imaging, one must generate a transfor-
mation matrix A, that, together with a test image x, can generate a sinogram
or measurements, b. The goal is to �nd a transformation with a �nite number
of angles that matches the analytic Radon transform as closely as possible. Two
obvious choices come to mind: One extracted from Matlabs own radon.m and
the one constructed by paralleltomo.m from the toolbox AIR Tools [10]. We
know the singular values for the analytical Radon transform, R(Ω), by Theo-
rem 2.8. Hence, an obvious test of the two transformation matrices would be to
see how well they mimic R(Ω). We will use our analysis method to study the
relation of the two discrete transformations with R(Ω).

Before doing so, we note that the transformation matrices from paralleltomo.m

and radon.m correspond to systems in square N × N domains, such that the
objects are vectors in RN2

. Since the singular values from R(Ω) are obtained
on a unit disc, we must change the domain of these methods into a circular do-
main and then scale it to a unit circle. We can do this by creating a mask and
multiplying it element-wise with the transformation matrices. We construct the
mask ∈ RN2

with ones inside and zeros outside a disc with diameter N , see Fig-
ure 3.3. If we element wise multiply mask with each row of the transformation
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Figure 3.3: Reshaped mask with axes of size
√
n = N , where the value in the

blue pixels is zero and one in the red pixels.

matrix, A, we get the transformation matrix for the masked domain. Since the
diameter of the discrete domain is N times bigger than the continuous domain,
we will multiply the masked transformation matrix with 1/N before calculating
the SVD. The script changeDomain_unitcircle.m makes this change from a
square domain into a unit sized circular one.

Throughout this section, we will use N = 100 and sets of projections of size√
2N . The angular range will be [0, 179] with sets of projections sent from ev-

ery third degree and for paralleltomo.m a detector of size d =
√

2N . radon.m
chooses its own detector size su�cient to compute the projection at unit inter-
vals, even along the diagonal.

Since we have the luxury of actually knowing the true singular values for R(Ω),
we can test if the singular values from the transformation matrices above satisfy
Equation 2.9. In Figure 3.4, we observe that both the matrices' singular values
satisfy Equation 2.9 for this example of size and the same is applicable for all
other sizes we have tested. Now we want to use our analysis method to conclude
which generator is preferable for our further investigation.

3.2.1 Decay of Singular Values

The �rst step is to investigate the decay of the singular values computed by
analysisSVD.m in Matlab. Recall, we want the singular values of the transfor-
mation matrices to decay as the ones from R(Ω). Additionally, we note that
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Figure 3.4: Singular values R(Ω), the transformation matrix from Matlab's
radon.m and the transformation matrix from paralleltomo.m

(of the same size).

from now on, when comparing the decay of the singular values, we normalize
them with respect to their largest values. In Figure 3.5 we observe that the decay
of the singular values from paralleltomo.m and R(Ω) are similar until around
the 4000th singular value. However, the decay of radon.m is much steeper in the
beginning which could indicate that it does not mimic the analytic Radon trans-
formation that well. For this example it looks like paralleltomo.m's transfor-
mation matrix gives a better approximation for R(Ω), and the same behaviour
is present for di�erent sizes of A.

Remark. The steep decay of the singular values for radon.m might be ex-
plained by how it gathers the projection data. Unlike paralleltomo.m the
method takes the average of four sub-projections when creating a normal projec-
tion, as described in the documentation of radon.m. This method of gathering
projections might better simulate real CT measurements, but it is out of the
scope of this thesis to investigate this proposition.

Indeed the decay of the singular values gives us an idea of how well we can ex-
pect a reconstruction to be. As expected, the singular values for the discretised
problem decay much faster than the analytical one. The important insight is
gained by considering the rate of decay. A slower decay means more information
of the object can be reconstructed, since the range of the transformation matrix
will increase, as explained in Remark 2.9. In this case, we could then expect
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Figure 3.5: Decay of singular values for radon.m, paralletomo.m and R(Ω).

that reconstructions of paralleltomo projections to be better than projections
obtained from radon.m. Continuing with the analysis, we will see further justi-
�cation of this statement.

3.2.2 Discrete Picard Condition

We recall that if the DPC is not satis�ed the norm of the solution will become too
large in practice. Thus, we only want to include the singular values, σi, and left
singular vectors, ui, that satisfy the DPC when considering practical problems.
To begin with, we note that the DPC will be stricter than just choosing all sin-
gular values below the rank of the transformation matrix, A. This is due to the
fact that the DPC includes information about the measurements, b, which for
this case have an added relative noise level of η = 5%. In this step, we will then
investigate how the index, i, satisfying the DPC, compare for the two transfor-
mation matrices. To clarify this: The one with the highest index will likely have
a better reconstruction when the system contains noisy measurements. Recall
that the DPC (Theorem 2.11) is satis�ed when the coe�cients |uTi b| (red) decay
faster than the corresponding singular values (blue) on average. The ratio of
the decay is shown as the black dots in the plots, and we denote these as the
Picard values. In Figure 3.6 we see that the �rst time the DPC is not satis�ed
for radon.m is around the 3000th singular value. For paralleltomo.m we �nd
this index to be around the 5000th singular value. Thus, only considering this,
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Figure 3.6: Picard plot for radon.m and paralleltomo.m with relative noise
level η = 5%. The Picard values (black), singular values (blue)
and coe�cients |uTi b| (red) of the DPC are shown together.

we can conclude that matrices generated from paralleltomo.m should be able
to get better reconstructions for systems with noisy measurements. We do note,
however, this is only true when both systems model the method of generating
the measurements equally well. As we mentioned, radon.m might model the
physics of a CT scanner better. But since the purpose of this thesis is to study
how changes in structural parameters, such as angular range and domain size,
in�uence reconstructions, we prefer a simple mathematical model.

3.2.3 Structure of Singular Vectors

The third step is to investigate the right singular vectors vi. These form a
basis for the space containing the object x. By investigating the basis, we
are able to predict what kind of structure we can expect the reconstructing to
contain. AnalysisSVD.m gives us the �rst 12 singular vectors and the �rst six
not satisfying the DPC. It �nds the index for when the DPC is not satis�ed by
simple linear regression. The method keeps including singular vectors up until
the linear �t of the Picard values is an increasing function. This is a simple
approximation to how one would visually determine the index for which the
DPC is not longer satis�ed.

In Figure 3.7 we have the singular vectors from the two di�erent transformation
matrices. The colour scheme we apply is the standard one used by Matlab,
where shades of blue represents low values and shades of red are high. The
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(a) Singular vectors from radon.m
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(b) Singular vectors from paralleltomo.m

Figure 3.7: The �rst 12 singular vectors and the �rst 6 not to satisfy the DPC.
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colour indexing is done individually for each singular vector to highlight as
much structure as possible. The �rst thing to notice is that we have a lot
of di�erent basis vectors available for the reconstruction. Even with a linear
combination of a small amount of singular vectors we can expect to reconstruct
fairly complex structures. As expected the singular vectors increase in frequency
in all directions along with the index number. The last six singular vectors look
very high frequent, hence they are not useful basis functions for the overall
structure of the object. From our theory we know that these high frequency
components will be dominated by noise in the inverse problem and thus we
can expect some details to disappear from reconstructions, while the overall
structure should be intact.

3.2.4 Reconstructions

Since we have the true object xexact, we are with the theory from Equation
2.9 able to determine the elements of xexact that are in the range and the null
space of the transformation matrix, A. Figure 3.8 shows that the range of A
contains nearly all of xexact and hence it should be possible to make a proper
reconstruction of the image, which is just as we expected from the earlier steps
in our analysis.

analysisSVD.m ends with trying two di�erent reconstruction methods on the
problems. Figure 3.9 shows that the reconstructions from the Landweber method
are more or less alike and as we expected, the reconstructions contain the overall
structure of the object, however, some details are missing. The reconstruction
from paralleltomo.m contains more of these details: We are able to observe the
small light dots in the bottom of the outer circle. The reconstructions from the
truncated singular value decomposition are very similar, and we can not favour
one transformation matrix over the other by the naked eye. To probe further,
we can calculate the relative error ε by

ε =
‖xexact − x‖
‖xexact‖

(3.1)

analysisSVD.m outputs this in the command window when running the analysis.
We �nd the relative errors as follows:

Radon: TSVD relative error = 0.419465

Paralleltomo: TSVD relative error = 0.361925

Radon: Landweber relative error = 0.286777

Paralleltomo: Landweber relative error = 0.219639
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(a) Range

X_0 for Radon

X_0 for Paralleltomo

(b) Null space

Figure 3.8: Elements of x in the range and null space of A.

So by this estimate of the error, we can conclude that the reconstructions from
paralleltomo.m are slightly better (≈ 6%).

3.2.5 Summary

We have now used the analysis method to motivate the choice of a transfor-
mation matrix that, in terms of its SVD, is similar to our mathematical model
for X-ray tomography, the Radon Transform. We saw, surprisingly, that the
paralleltomo.m method was more similar, in term of its singular values, to
the analytical Radon transform than Matlabs own Radon.m. We argued this
could be due to how Radon.m gathers the projection data. The �nal conclusion
was, that since paralleltomo.m also performed better for the simulated test
problems with the standard TSVD and Landweber reconstruction methods, it
was chosen as transformation matrix generator for the rest of the thesis.
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TSVD on Radon 

 Truncate index: 3704

TSVD on Paralleltomo 

 Truncate index: 6112

(a)

Landweber on Radon 

 Iterate: 300

Landweber on Paralleltomo 

 Iterate: 227

(b)

Figure 3.9: Reconstructions using the TSVD and Landweber methods.

3.3 Tomography on Di�erent Domains

So far, we have considered objects on circular domains, since our theory is built
on this basis. However, in real life problems, this is not always the case; e.g.
in the airport security system where hand luggage is scanned. Here suitcases,
computers, ect. are scanned on a rectangular domain. Hence, we are motivated
to investigate tomographic on various domains. Throughout this section, we
will compare the tomographic systems for three di�erent domains, namely

� Circular domain

� Square domain

� Rectangular domain
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Figure 3.10: Changing a object from a square, xs ∈ R6×6, into a rectangle
one, xre ∈ R2×6, for α = 2.

In the previous section we decided to consider only the transformation matrix
from paralleltomo.m, since we concluded that it was a better approximation
to the analytic Radon transformation.

To test these set-ups, we need to create appropriate transformation matrices
for the systems on the di�erent domains. The transformation matrix from
paralleltomo.m is square, we call this As ∈ Rm×N2

. For the circular do-
main we will use the mask as in the previous section but without changing to
unit size. This transformation in domain is done by changeDomains_circle.m.
Using the mask we �remove� pixels and hereby decrease the amount of useful
data. To o�set this decrease, we �rst �nd the ratio of the area between the
square and circular domain as N2

(N/2)2π = 4
π . To get the area of the circle 4

π

times bigger, we need to multiply the diameter by 2/
√
π. We therefore denote

the transformation matrix of the circular domain as Ac ∈ Rm×(d2N/
√
πe)2 .

Remark. To get rays through the corner pixels from all angles of a N × N
square object, one have to use a detector of size

√
2N . But when working with

a circular domain with diameter N , one does not have this issue and can prefer-
ably use a detector of size N . This is taking into consideration in main.m when
calling paralleltomo.m for the circular domain.

To create a rectangular object for which we can simulate tomographic mea-
surements, we will squeeze the square object by averaging sets of its rows. To
do this, we divide each column into a certain number of blocks, α, with N/α
elements in each block. We then squeeze each of these blocks into one pixel,
such that the pixel value is the average of the block, as illustrated in Figure
3.10. By doing this, we have reduced the number of rows in the object by α,
and thus to compensate for this reduction in pixels, we will have to use a α times
bigger object initially. The rectangular object is then N/α × Nα in size. We
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Figure 3.11: The Shepp-Logan phantom in di�erent domains for N = 100 and
α = 2.

denote the transformation matrix for the rectangular domain as Are ∈ Rm×N2

.
The rectangular object is created in myphantom_rect.m and the correspond-
ing transformation matrix, Are in the script paralleltomo_rect.m, which is a
modi�cation of paralleltomo.m that works with rectangular domains.

The three objects, all with about N2 pixels inside the domain, are illustrated in
Figure 3.11, where the number of rows and columns are shown. In this section
we will for the square and rectangular domain use projection sets of size d

√
2Ne

and a detector of size d = d
√

2Ne. For the circular domain we will use the
detector size d2N/

√
πe, since this is the domain width from every angle. In all

the examples we use an angular range of [0, 179] with sets of projections sent
from every third degree. Now we have the three set-ups namely

� Acxc = bc, where Ac ∈ Rm×(2N/
√
π)2 ,xc ∈ R(2N/

√
π)2 , bc ∈ Rm

� Asxs = bs, where As ∈ Rm×N2

, xs ∈ RN2

, bs ∈ Rm

� Arexre = bre, where Are ∈ Rm×N2

, xre ∈ RN2

, bre ∈ Rm

Remark. Even though xc and the corresponding Ac is larger than the other
objects and transformation matrices, it does not carry more information, since
the excess number of elements are set to be zero.
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3.3.1 Decay of Singular Values

This step is to analyse the decay of the singular values for the three di�erent
transformation matrices. In Figure 3.12, we observe that the singular values
from the square domain has a characteristic decay: First a short steep decay,
then a long gradual slope, and in the end a short steep one which phases out
slowly until a sudden drop under 10−5. Throughout the thesis, we consider all
singular values under 10−5 too small to use in practise. The square domain
follows the decay from the circular domain right up until the short steep decay
at the end. The decay from the circular domain is the least steep of the three
and have the most singular values above 10−5. An explanation for this, could
be that some rays in the square domain do not go through any pixels when the
detector size is larger than one of the sides of the domain. This could lead to
fewer linearly independent rows in the transformation matrix for the square and
rectangular domain. When we look at the decay from the rectangular domain,
we observe the same steep start as the two others. After the start it has a
steady slope, just slightly steeper than the two others, and then it crosses the
slope from the square at its �nal drop. The fact that the rectangular domain has
more singular values above 10−5 compared to the square domain might indicate
that it has fewer rays not going through any pixels in the domain. This makes
sense since it only happens for projections sent from either the left or right
side for the rectangular domain, whereas it happens for every side of the square
domain.
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Figure 3.12: Decay of singular values for square, circular and rectangular do-
mains
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3.3.2 Discrete Picard Condition

In this step, we will check how many of the singular values, σi and their cor-
responding left singular vectors, ui satisfy the DPC if the measurements bs,bc
and bre has a relative noise level of η = 0.5%.

Figure 3.13a shows the decay of the singular values, σi, the decay of |uTi b| and
the Picard values, |uTi b|/σi, for the square domain. Here we see that the DPC
is satis�ed up until around the 5000th singular value, when the singular values
decay faster than the average of |uTi b|.

In Figure 3.13b, we observe for the circular domain that the DPC is satis�ed
up until the 6500th singular value. We can expect to use more high frequent
singular vectors for the reconstruction and hence get more details. This might
not be noticeable by the naked eye since it is very high frequent.

In Figure 3.13c, we observe that the DPC is met up until the 4000th singular
value for the rectangular domain. The rectangular domain has the lowest index
satisfying the DPC. Thus, for these systems with measurements containing a
relative noise level of η = 5%, we expect the best reconstruction from the
circular and square domain. Here the reconstruction from circular domain will
be slightly better than the one from the square. The worst reconstruction of
the three would be from the rectangular domain.

3.3.3 Structure of Singular Vectors

The next step is to analyse the singular vectors of the three di�erent domains. In
Figure 3.14a, we have the singular vectors of the square transformation matrix,
As. We observe a nice symmetry, and the structure is present all around the do-
main. If we look at the �rst singular vectors with index not satisfying the DPC,
we realise that it is very high frequent and is not useful for the overall structure,
only for small details. Since we know high frequency will be dominated by noise,
it makes sense not to include these.

In Figure 3.14b we have the singular vectors of the transformation matrix on for
the circular domain, Ac. These singular vectors carry the same nice structure
as the ones from the square, and again the information seems to be distributed
all around the domain. It is noticeable that the singular vectors obviously does
not carry information outside the circular domain.

In Figure 3.14, we have the singular vectors of the transformation matrix from
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(b) Circular domain
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(c) Rectangular domain

Figure 3.13: Picard plot of di�erent domains with relative noise level η = 5%.
The Picard values (black), singular values (blue) and coe�cients
|uTi b| (red) of the DPC are shown together.
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the rectangular domain, Are. In general, it looks like there is a nice structure
in the centre of the singular vectors. There is a lot of di�erent formations in
the middle. This is consistent with the fact that there is a higher density of
rays going through the centre of the domain compared to the left and right side.
The concern is the lack of structure outside the centre where the few elements
all are close to horizontal in structure. The lack of elements in the sides of the
basis vectors could make it di�cult to reconstruct the corresponding sides of
the object.

From this step we expect proper reconstructions of the objects in the square
and circular domains. The reconstruction of the rectangular domain could lack
structure in the left and right sides. This is likely caused by the lack of rays going
through the right and left region of the object. We would like to investigate how
many rays actually go through all regions of the rectangular domain. To do this
we have created a spy matrix Aspy, such that Aspy(i, j) = 1 ⇐⇒ ARe(i, j) 6= 0
and otherwise zero. Then, if we sum every column of Aspy, we get a vector,
xspy, with elements xspy(i) consisting of the number of rays going through the
ith pixel.

This xspy is created in main.m and can be seen in Figure 3.15. Here we observe
that the intensity of rays are much higher in the centre of the object than in the
outer regions as we expected. This could be the cause of the lack of structure
in the singular vectors for the rectangular domain.

3.3.4 Reconstructions

Since we have the privilege of knowing the true underlying objects xexact
s , xexact

c

and xexact
re , we are able to construct the elements of these objects that are

in the range and null space of the transformation matrices As, Ac and Are
respectively. Figure 3.16 shows the elements of the objects in the null spaces
of the transformation matrices. Here we are able to see what we cannot hope
to reconstruct. Both in the square and the circular domain, we recognise our
expectations, namely that there is not that much structure lost. It looks like the
reconstructions will lose some intensity in the outer circle but otherwise the null
space only contain high frequency structure. For the rectangular domain we see
that the null space contain the left and right side of the outer circle, which we
expected from the earlier steps.

Figure 3.17 shows the elements of the objects in the range of the di�erent trans-
formation matrices; in other words, the elements of the object we can hope to
reconstruct. In the �gure, we observe that the range from the circular domain
is close to indistinguishable from the true object. The range from the square
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Figure 3.14: Right singular vectors, vi, for the di�erent domains
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Figure 3.15: Illustration of how many rays are going through each pixel of the
object.
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Figure 3.16: Elements of the objects in the null space of the di�erent trans-
formation matrices

domain does not contain all of the object but maintains the same structure. For
the rectangular case we see that the range is missing the left and right outer
ellipse, which we hence do not expect to be able to reconstruct.

In Figure 3.18, we observe that the reconstructions, for the circular and square
domain, are equally good representations of the objects by the naked eye. How-
ever, for the rectangular domain, we observe the expected missing structure of
the left and right side of the outer ellipse. Calculating the relative error by
Equation 3.1, we �nd the following,
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Figure 3.17: Elements of the objects in the range of the di�erent transforma-
tion matrices

Square: TSVD relative error = 0.375218

Circle: TSVD relative error = 0.323993

Rectangle: TSVD relative error = 0.573137

Square: Landweber relative error = 0.225089

Circle: Landweber relative error = 0.229073

Rectangle: Landweber relative error = 0.441144

which con�rms our visual observations.

3.3.5 Summary

In this section, we saw that if we used the fact that our object, the Shepp-
Logan phantom, was circular, we could get better reconstructions than on a
square domain with the same number of pixels. However, since the object one
wishes to reconstruct is not always circular, and since the behaviour of the
singular vectors on the square domain was similar to the circular one it is not a
feasible general solution.

On the other hand, we saw that on the rectangular domain the reconstructions
lose some information, even when taking projections all around the object on
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Figure 3.18: Reconstructions using the TSVD and Landweber methods.
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equally distributed intervals. In particular, the left and right boundary of the
Shepp-Logan phantom is stretched in the reconstructions. Interestingly when
considering the elements of the object in the range of the transformation matrix
for this domain, we see the left and right boundary is much more pronounced.
Furthermore, we can see from the discrete Picard condition that the rectangular
domain is more sensitive to noise.

3.4 Random Angle Tomography

As mentioned earlier an interesting area of tomography could be neutrino tomog-
raphy, often used to detect the density distribution of the Earth [11]. However,
in principle one could use neutrinos to image much smaller objects as well. We
will not spend any time explaining how this process could work, except for the
fact that the neutrinos will go through the object from random angles. This is
due to the neutrinos arriving from radioactive decaying sources, such as suns and
supernovae around the universe [12]. In this section, we will use our method
of analysis to determine what e�ect projections arriving from random angles
has on a tomographic problem compared to the normal structure we have seen
throughout this thesis, namely that projections are equally distributed around
the object.

To test this problem, we �rst have to �nd a way to simulate projections coming
from random angles. An easy way to do this, and the one we have used in this
section, is to create many projections from a large number of equally distributed
angles and then pick out one at random. This projection would then be our
projection from a random angle. This is done a su�cient number of times so
that we has as many random angle projections as the total number of projections
in the normal set-up. The code for this section is included in the main.m �le.
The �le can be found here [9].

In this section, we work on a 100 × 100 domain with an object x ∈ RN2

.
We use d

√
2Ne projections with a detector of size d = d

√
2Ne. Normal is

denoted to mean the matrix with equally distributed angles that is normally used
in our tomographic simulations. For the normal problem we send projections
from angles [0, 179] degrees equally distributed each third degree. This yields
transformation matrices, for both the normal and random method, of size 8460×
10000.
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3.4.1 Decay of Singular Values

Again using analysisSVD.m based on our analysis method 3.1 we start out
by considering the decay of the singular values. In Figure 3.19, we see the
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Figure 3.19: Decay of singular values for the normally structured problem and
random angle problem.

decay of both the random and normal tomographic problem. Surprisingly, the
singular values from the random angle matrix decay slower to start of with, but
after the 2000th index it decays faster than the singular values for the normally
structured matrix. However, on average the random angle singular values decay
faster than the normal ones, and thus we can expect reconstructions from noise
free measurements to be better for the normally structured problem.

Remark. It is worth noting that the singular values from the random angle
problem decay more smoothly, than those of the normally structured problem.
By smoothly we mean, that it does not have the long almost �at plateau we
see from the 2000th to 5000th singular value for the normal matrix, and then a
quick jump down around the 5500th singular value. Instead we see a smoother
curve, although decaying faster on average.
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(a) Random angle problem
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(b) Equally distributed angle problem

Figure 3.20: Picard plot for the Random and normally structured problem
with relative noise level η = 5%. The Picard values (black),
singular values (blue) and coe�cients |uTi b| (red) of the DPC
are shown together.

3.4.2 Discrete Picard Condition

Before going through the results for the DPC, we remind the reader that there
has been added a relative noise level of η = 5% to the measurements b. This
is the default noise level chosen by analysisSVD.m. In Figure 3.20, we see the
Picard plots for both the random angle and equally distributed angle problems.
For the random angle problem (Figure 3.20a), we see that the DPC is satis�ed
up until around the 4500th index. After this the singular values decay much
faster than the corresponding coe�cients |uTi b|. Likewise in Figure 3.20b, we
see for the equally distributed angles that the DPC is satis�ed up until around
the 5000th index. Thus, we �nd no discernible di�erence in terms of the DPC
alone for the two problems.

3.4.3 Structure of Singular Vectors

The next step in the analysis method is to consider the singular vectors. As
shown in Figure 3.21a, we see the �rst 12 singular vectors of the random angle
tomography problem, together with the �rst six singular vectors not satisfying
the DPC. Interestingly, these are quite di�erent from those of the normally
structured transformation matrix as shown in Figure 3.21b. We notice the lack
of smoothness on each singular vector. From this alone, we can expect, since
the singular vectors are basis functions for the object x, that reconstructions
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from the random angles will appear less smooth and perhaps more jagged than
reconstructions from the normally structured problem. On the same note, we
see that the singular vectors that do not satisfy the DPC are very high frequent
for both problems. We do note, however, a pattern in the singular vectors for
the normally structured problem. When considering possible reconstructions in
the next step of the analysis, we will look at the linear combination of these
singular vectors to see if we can get any insight from this.

3.4.4 Reconstructions

Once again, since we know the true image, we can consider which elements of
the object xexact are in the range and null space of the transformation matri-
ces. From Figure 3.22 we see that the null spaces for both problems look very
similar. However, if we look at the range of the transformation matrix with
random angles, we observe straight lines going through the domain. It is hard
to speculate from where these artefacts originate, but we might see them in the
reconstructions.

The reconstructions for the TSVD and Landweber methods are shown in Figures
3.23a and 3.23b respectively. We recognise the aforementioned lines on the
reconstruction from the TSVD method, but on the one from the Landweber
method they are gone. This suggests that the lines might be caused by the
structure of the singular vectors since the TSVD method uses these for the
reconstruction. However, further investigation into this particular subject has
not been done. Instead, we consider only the di�erence in reconstructions from
the Landweber method. We notice that, by the naked eye, there is no discernible
di�erence between the two reconstructions. Calculating the relative error by
Equation (3.1), we �nd:

Random: TSVD relative error = 0.476963

Normal: TSVD relative error = 0.370754

Random: Landweber relative error = 0.283099

Normal: Landweber relative error = 0.222167

We see that the normally structured problem have a lower relative error even
for reconstruction from the Landweber method.
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V_1 V_2 V_3 V_4 V_5 V_6

V_7 V_8 V_9 V_10 V_11 V_12

log10(|V_5376|) log10(|V_5377|) log10(|V_5378|) log10(|V_5379|) log10(|V_5380|) log10(|V_5381|)

(a) Singular vectors of random angle transformation matrix

V_1 V_2 V_3 V_4 V_5 V_6

V_7 V_8 V_9 V_10 V_11 V_12

log10(|V_5412|) log10(|V_5413|) log10(|V_5414|) log10(|V_5415|) log10(|V_5416|) log10(|V_5417|)

(b) Singular vectors of normally structured transformation matrix

Figure 3.21: The �rst 12 singular vectors and �rst six singular vectors not
satisfying the DPC for the normally structured and random angle
problems.
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X_r for Random

X_r for Normal

(a) Range

X_0 for Random

X_0 for Normal

(b) Null space

Figure 3.22: Elements of the object, xexact, in the range, Xr, and null space,
X0, of the transformation matrices.

3.4.5 Summary

In this section, we investigated the e�ects of randomly collecting projections
rather than getting them in a structured manner. We saw that the singular
vectors of the randomly collected projections were signi�cantly di�erent than
those from the structured problem. However, when using the Landweber itera-
tive method for reconstructions, we were only able to detect a small di�erence
between the methods. We note that for su�ciently many projections there is
no di�erence between collecting them randomly or equally distributed around
an object.
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TSVD on Random 

 Truncate index: 5376

TSVD on Normal 

 Truncate index: 5412

(a)

Landweber on Random 

 Iterate: 300

Landweber on Normal 

 Iterate: 300

(b)

Figure 3.23: The reconstructions from the TSVD and Landweber methods for
the normally structured and random angle problem.

3.5 Limited Angle Tomography

As we have learned throughout this thesis, it is not possible, in practise, to gather
projection data from an in�nite number of angles. We called the measurements
gathered from a �nite number of angles incomplete. However, in many practical
applications, we run into another type of incomplete data, namely projection
data from a limited angular range. In terms of CT, we call this limited angle

tomography. For this type of tomography we have, in addition to the incomplete-
ness of a �nite number of angles, an incomplete angular range for the projection
data. That is, projections may only be gathered from, say, 0 to 90 degrees,
instead of from the whole 180 degrees of the half circle we have seen in earlier
sections.
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To test this, we have created six di�erent transformation matrices. All act on
a 100× 100 domain, but each matrix has a di�erent angular range. We denote
Aφ to be the transformation matrix with angular range from 0 to φ degrees. The
transformation matrices are created for the values of φ = {179, 139, 99, 59, 39, 19}.
To compare the methods in a meaningful way the number of projections col-
lected per angle is kept the same, but the number of angles, in which we collect
projections, is increased. This is done, such that, for smaller φ, there will be
a smaller interval between the angles in which sets of projections are collected.
The goal is to keep to total number of projections as close as possible so that
each problem has the same amount of measurement data. Thus, all transforma-
tion matrices have ≈ 8460 rows and 10000 columns. The code for this section
is included in the main.m �le. The �le can be found here in [9].

3.5.1 Decay of Singular Values

Like the previous set-ups, we can utilize analysisSVD.m. We start by consider-
ing the decay of the singular values. In Figure 3.24, we see the singular values of
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Figure 3.24: Decay of singular values for the six transformation matrices of
di�erent angular ranges.

all six angular ranges. Interestingly, when the angular range decreases so does
the point at which the decay drops drastically to a steeper curve before decaying
below 10−5. Note that we have changed the limits of the axis in order to better
show this di�erence in decay. It is clear that in this particular test problem, we
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might be able to detect something about the angular range from the singular
values of the corresponding transformation matrix. However, if we considered
only the singular values, we would not expect reconstructions to be much dif-
ferent, since for all six transformation matrices the singular values decay below
10−5 at roughly the same index. In fact, if we were to do a TSVD reconstruction
by truncating at the rank of the transformation matrix, we would expect this
index to be very similar for all six problems. Unfortunately, as we have learned,
truncating at the rank of the transformation matrix is not very useful when you
have noisy measurement data. Thus we must consider the DPC.

Remark. We hypothesised that the point at which the decay of the singular
values drastically drop, could be explained by the redundancy of the gathered
projections. To test this, we limited the test problem to a smaller number of
projections, say, only �ve from each angle, making the transformation matrix
of size ≈ 300 × 10000 in the process. The result is shown in �gure 3.25. Here
we see that, even for a low total number of projections, the singular values still
decay faster for the lower angular range problems. The singular values still
have the same index when they hit the value 10−4. Testing this for both lower
(very under determined) and higher (very over determined) total number of
projections gives the same results. Even changing the domain to a disc does not
in�uence this behaviour. Thus, the faster decay of the singular values seem to
be caused by gathering the projections from a limited angular range.
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Figure 3.25: Decay of singular values for the six very under determined trans-
formation matrices of di�erent angular ranges.
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3.5.2 Picard Condition

In Figure 3.26 we see the Picard plots for all six angular ranges. Again we
recall that the DPC (Theorem 2.11) is satis�ed when the coe�cients |uTi b|
(red) decay faster than the corresponding singular values (blue) on average.
The ratio, Picard values, of the decay is shown as the black dots in the plots.

For the full angular range problem, shown in Figure 3.26a, we see that the DPC
is satis�ed up until around the 5000th index. After this the singular values
decay much faster than the corresponding coe�cients, |uTi b|. For the angular
ranges [0, 139] and [0, 99] degrees, we see, in Figure 3.26b and 3.26c, that the
DPC is satis�ed up until the 4500th index. However, after this we see the index
decreases drastically to the 3000, 2000 and 1500 for the transformation matrices
with angular ranges [0, 59], [0, 39] and [0, 19] degrees, respectively, as shown in
Figures 3.26d, 3.26e and 3.26f. Thus, when the measurement data is noisy, we
can expect the reconstructions to be far worse for the problems with limited
angular ranges.

3.5.3 Structure of Singular Vectors

The next step in the analysis method is to consider the singular vectors. Figure
3.27 shows the �rst 12 singular vectors of the di�erent angular ranges, together
with the �rst six singular vectors with index not satisfying the DPC. We have
removed the subtitles of these plots to better utilize the space they take up.
The bottom six singular vectors, vi, are still shown by plotting log10(|vi|).

It is clear from the �gure that, the structure of the singular vectors changes
when we limit the angular range of the problem. The singular vectors become
more and more vertical as the angular range decreases. Indeed, we could expect
reconstructions for this particular choice of limited angles to be lacking any
horizontal structure. For the Shepp-Logan phantom, we expect some of its
boundary to vanish in reconstructions, due to the lack of circular structure
singular vectors.

3.5.4 Reconstructions

Since we know the true image, we can consider what components of the object
xexact are in the range and null space of the transformation matrices. From
Figure 3.28 we see that, as the angular range decreases, more and more elements



3.5 Limited Angle Tomography 55

0 2000 4000 6000 8000 10000
10

−4

10
−3

10
−2

10
−1

10
0

i

V
a
lu

e

 

 

|uT
i
b|

σi

σi

|uT

i
b|

(a) Transformation matrix in angular

range [0, 179] degrees
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(b) Transformation matrix in angular

range [0, 139] degrees
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(c) Transformation matrix in angular

range [0, 99] degrees
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(d) Transformation matrix in angular

range [0, 59] degrees
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(e) Transformation matrix in angular

range [0, 39] degrees
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(f) Transformation matrix in angular

range [0, 19] degrees

Figure 3.26: Picard plot for the di�erent angular range problems with rel-
ative noise level η = 5%. The Picard values (black), singular
values (blue) and coe�cients |uTi b| (red) of the DPC are shown
together.
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(a) Singular vectors from [0, 179] de-
grees

(b) Singular vectors from [0, 139] de-
grees

(c) Singular vectors from [0, 99] de-

grees

(d) Singular vectors from [0, 59] de-

grees

(e) Singular vectors from [0, 39] de-

grees

(f) Singular vectors from [0, 19] de-

grees

Figure 3.27: The �rst 12 singular vectors and �rst six singular vectors with
index not satisfying the DPC for all the six angular ranges.
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go from being in the range to being in the null space of the transformation
matrices.

When considering the reconstructions from the TSVD method, we recall that
analysisSVD.m calculates the truncate index by linear regression with respect
to the Picard values. Noting that the truncate index �ts fairly well with our
visual observations, we see exactly what we expected from considering the range
of the transformation matrices. Both for the TSVD method, shown in Figure
3.29a, and Landweber method, shown in Figure 3.29b, the reconstructions lose
more and more of their boundary when the angular range decreases. When the
angular range is [0, 19] degrees the reconstructions become almost unrecognis-
able.

3.5.5 Summary

In this section we saw that for problems with limited angular range the recon-
structions become more susceptible to noise in measurements. However, for such
problems there are still many elements in the range of the transformation ma-
trix, which means that reconstructions from noise free measurements are much
more similar. We noted that we seemed to be able to detect limited angular
range by only considering the singular values or singular vectors.
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X_r for A179 X_r for A139 X_r for A99

X_r for A59 X_r for A39 X_r for A19

(a) Range

X_0 for A179 X_0 for A139 X_0 for A99

X_0 for A59 X_0 for A39 X_0 for A19

(b) Null space

Figure 3.28: Elements of the object, xexact, in the range, Xr, and null space,
X0, of the transformation matrices, Aφ
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TSVD on A179 

 Truncate index: 5447

TSVD on A139 

 Truncate index: 5373

TSVD on A99 

 Truncate index: 5048

TSVD on A59 

 Truncate index: 4680

TSVD on A39 

 Truncate index: 4210

TSVD on A19 

 Truncate index: 2189

(a)

Landweber on A179 

 Iterate: 300

Landweber on A139 

 Iterate: 300

Landweber on A99 

 Iterate: 300

Landweber on A59 

 Iterate: 300

Landweber on A39 

 Iterate: 300

Landweber on A19 

 Iterate: 300

(b)

Figure 3.29: Reconstructions for all six angular ranges by the TSVD and
Landweber method.
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Chapter 4

Laminar Tomography

In this chapter we will investigate a type of tomography problems called laminar

tomography. Laminar tomography is when we collect projections from a limited
angular range as we saw in Section 3.5 and work on a rectangular domain as
we saw in Section 3.3. Such problems arise naturally in practical applications
like mammography, dental tomography, electron microscopy and in previously
mentioned industry scenarios. In these types of problems, we will encounter
most of the di�culties from the last chapter in one single problem.

We will use our analysis method to investigate the solvability of these problems.
In this thesis we consider two laminar tomography problems. The goal of our
analysis is to understand the inherent di�culties of general laminar tomogra-
phy problems, where the purpose of these problems is to �nd anomalies in an
otherwise homogeneous object.

We look at problems with a rectangular domain of size N/α×Nα. We will inves-
tigate an object with a repeating structural background and an alien structure
inside the object. This alien structure is what we in this section will be searching
for and trying to reconstruct. We will look at two di�erent scenarios:

� In the �rst scenario the goal is to reconstruct an object with an alien
structure of size N/α × N/α, in the centre of the rectangular object, as
shown in Figure 4.1.
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� In the second scenario the goal is to reconstruct an object with an alien
structure of size κ × κ for κ < N/α, placed a distance, h, to the right of
the centre as shown in Figure 4.2.

The background used in this section is created in binarytomo.m from AirTools
[10]. This illustrates some horizontal structure which we know, from Section
3.5, is di�cult to reconstruct with a limited angular range. We use the Shepp-
Logan phantom as the alien structure. For our problem we have N = 100,
α = 5, h = 50 and κ = 30 which gives alien structures of sizes 50 × 50 and
30× 30 for the two scenarios. The rectangular object is of size 200× 50. The

x_exact of Centred

Figure 4.1: Laminar object with centred alien structure

x_exact of Shifted

Figure 4.2: Laminar object with shifted smaller alien structure

transformation matrix for the systems is created by the previously mentioned
function paralleltomo_rect.m, where we use

√
2N/α projections with detec-

tor size d =
√

2N/α. The angular range is [−50, 50] with sets of projections sent
from every �fth degree, giving us a total number of projections m = 1491, so
that we have the transformation matrix AL ∈ R1491×10000.

Remark. Note that the two scenarios have the same transformation matrix,
since they are on the same domain with the same sets of projections. Hence,
step 1 and 3 of our method coincide for the two scenarios.
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4.1 Decay of Singular Values

Again the �rst step is to study the decay of the singular values. This analysis
will di�er from the previous ones since we do not compare two transformation
matrices but rather analyse one. In Figure 4.3, we observe the same structure of
decay as the one from the square domain in Section 3.2. We observe that, in the
laminar problem, the drop below 10−5 appears around the 1500th index of the
singular values. This means that nearly all projections are linearly independent
since Rank(A) ≤ min(n,m) = m = 1491. This makes sense since almost all
projections go through some pixels that no other projection does. It is a bit
misleading that the transformation matrix has such a high rank. This is because
some pixels are represented only in one projection, and hence the rows in the
transformation matrix are linearly independent.
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Figure 4.3: The decay of singular values for the laminar tomography problem

4.2 Discrete Picard Condition

The second step is to check for which index the singular values and vectors
from the transformation matrix ceases to satisfy the DPC for both problems.
Figure 4.4 shows us the decay of the coe�cients, |uTi b|, the singular values,
σi and the Picard values. We see that both scenarios are satisfying the DPC
until around the 1200th index. For our TSVD reconstruction we then have 1200
right singular vectors to use as a basis. We notice that even with noise we can
include almost all singular vectors up until around the rank of the transformation
matrix. It seems like, for this small amount of projections, the systems might
not be a�ected much by noise, even though they have a limited angular range.
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(a) Centred alien structure
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(b) Shifted alien structure

Figure 4.4: Picard plots of the Laminar tomography problems with relative
noise level η = 5%. The Picard values (black), singular values
(blue) and coe�cients |uTi b| (red) of the DPC are shown together.

4.3 Structure of Singular Vectors

Now that we know how many singular vectors we actually can use for the recon-
struction, we will look at the structure of them. Recall that vi are basis vectors
for the domain containing the object. Figure 4.5 shows that our transformation
matrix has a nice structure in the centre of its singular vectors. Since we do
not have many rays going through the left and right area of the object, we see
that we do not have any structure in the corresponding areas of the singular
vectors. From this we expect the centre of the reconstruction to be much better
than the left and right sides. We notice that this is the same behaviour as for
the rectangular domain without limited angles. Since we in our second scenario
have placed the alien structure h = 50 pixels from the centre, we expect it would
be di�cult to recognise it in our reconstruction.

Remark. In Section 3.3 we investigated the number of rays going through
each pixel in the rectangular domain. We have done the same for our laminar
problem. This gives us a vector, xspy, consisting of the number of rays going
through each pixel in the domain. Figure 4.6 shows xspy. We observe, as
expected, that the disc in the middle is the region with the highest density of
rays. However, the number of rays in each pixel is signi�cantly less than for the
rectangular domain in Section 3.3. This might motivate us to use increase the
number of projections, to see if we can provoke the behaviour, we saw for the
limited angle problems in Section 3.5. This has been studied in Section 4.5.
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Figure 4.5: Singular vectors for the laminar tomography problem.
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Figure 4.6: Number of rays going through each element of the domain

4.4 Reconstructions

Since we know the true objects, we are able to study which parts of them are
in the range and null space of transformation matrix AL. Figure 4.7a shows the
elements of the objects in the range of AL. For the �rst scenario, we are able to
recognise some alien structure in the centre with the outline of the Shepp-Logan
phantom. In the range of the second scenario we can locate the alien structure,
but we are not able to determine any of its details. In Figure 4.7b, we see that
the null space re�ect these observations since most of the alien structure is in
the null space.

We have reconstructed the two di�erent scenarios, each by using both the TSVD
and Landweber method. The reconstructions are shown in Figure 4.8. As we
expected from studying the range of AL, the reconstructions of the laminar
problems do not contain the entire object. However, we are able to locate the
alien structure for both scenarios using the Landweber method. They do not
carry all of the details, but it is obvious where it is. For reconstructions using
the TSVD method, especially for the second scenario, one has to know where
to look, to �nd the alien structure.
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Figure 4.7: The elements of the objects in the range and null space of AL

4.5 Increased Number of Projections

From what we have learned in Section 4.3, we are motivated to repeat our
laminar analysis with a larger total number of projections. We will not convey
the full analysis but rather go through its key di�erences.

We increase the total number of projections by changing the interval of which
we take sets of projections, similar to what we did in Section 3.4. We are
now taking sets of projections at every degree, rather than every �fth. The
transformation matrix is now of size 7171× 10000. The rest of the parameters
are left unchanged.

For the increased number of projections, we found the same behaviour for the
singular values and vectors, and thus we felt no need to include these �gures.
Worthy of a note is that the decay of the singular values again dropped under
10−5 around the total number of projections, now 7171. The real di�erence
occurs when we consider how the system is a�ected by noise.

In Figure 4.9, we observe that our range contains nearly all of the structure in the
object. It actually seems possible to make a good reconstruction in our laminar
tomography problem given su�ciently many noise-free projections. But as we
have seen, the DPC tells a completely di�erent story for noisy projections in
limited angle problems. In Figure 4.10, we see the Picard plot for the problems.
The index for which the DPC is no longer satis�ed, around the 2000th index,
is now much smaller than the rank of the transformation matrix. We note this
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TSVD on Centred 

 Truncate index: 1234

TSVD on Shifted 

 Truncate index: 1261

(a) TSVD method

Landweber on Centred 

 Iterate: 300

Landweber on Shifted 

 Iterate: 300

(b) Landweber method

Figure 4.8: Reconstructions made by the TSVD and Landweber method.

index is not much higher than for the previous problems with lower total number
of projections.

In Figure 4.11, we observe that the reconstructions for both methods are very
similar to the reconstructions for the problems with fewer projections. So it
seems that laminar problems, as limited angle problems, are greatly a�ected
by noise in measurements. Even increasing the number of projections do not
increase the quality of the reconstructions by much.

4.6 Summary

From this chapter we learned from our SVD analysis that laminar tomography
problems experience the same kind of di�culties as the limited angle and rect-
angular domain problems, we saw in Chapter 3. Indeed the lower the angular
range is, the more the problem is dominated by noise in measurements. Addi-
tionally, we saw that, due to the low density of projections outside the centre of
the domain, we cannot expect good reconstructions outside the centre.

We could not �nd additional characteristics, speci�c only to laminar tomog-
raphy, since the results of the analysis was dominated by the aforementioned
di�culties.
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Figure 4.9: The elements of the objects in the range and null space of AL
using more projections
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(a) Centred alien structure
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(b) Shifted alien structure

Figure 4.10: Picard plots of the Laminar tomography problems with increased
total number of projections and relative noise level η = 5%.
The Picard values (black), singular values (blue) and coe�cients
|uTi b| (red) of the DPC are shown together.
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TSVD on Centred 

 Truncate index: 2818

TSVD on Shifted 
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(a) TSVD method

Landweber on Centred 
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Landweber on Shifted 

 Iterate: 300

(b) Landweber method

Figure 4.11: Reconstructions of the laminar tomography problem with more
projections
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Chapter 5

Conclusion

In this thesis the goal was to study the solvability of speci�c X-ray tomography
problems. Chapter 2 of the thesis laid the groundwork for how the analysis
would be performed. The �rst part of the chapter considered these problems
on continuous domains. Here we showed that small high frequent perturbations
(read: noise), in the gathered measurements could dominate calculated solutions
to the inverse problem, making it an ill-posed problem. By introducing the
Picard condition, we showed that we could determine whether a speci�c problem
would show this behaviour.

In the next part of the chapter it was shown that the ill-posed properties of
the continuous domains could be carried over to the discretised versions of the
problem. Here we showed that the discrete Picard condition could determine,
not only if the problem would be dominated by noise, but also which speci�c
components of the transformation would be dominated by the noise in the mea-
surements, b. This then gave us the desired tools to analyse the solvability of
CT set-ups as described in Section 3.1. The results obtained from this method
of analysis, on several problems, is listed below.

In Section 3.2, we concluded that the transformation matrix generated from
paralleltomo.m � found in AIR Tools [10] � was a better approximation to the
analytical Radon transform than the transformation matrix generated, from
Matlab's own Radon.m function in terms of its SVD. Thus, it was used for the
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remainder of the thesis to generate test problems that were more consistent with
the theory from Chapter 2.

In Section 3.3, we concluded that the shape of the discretised domain could
have an impact on the SVD and quality of reconstructions. More speci�cally,
we saw that in a rectangular domain the area, in which we can expect good
reconstructions, is limited by the total number of projections and how we send
them through the object. For equally distributed angles all around the domain,
with a detector of the mean of sizes of the domain sides, and a total number
of projections, such that the transformation matrix of the system was slightly
under determined, we saw that the quality of the reconstruction was only good
in the centre of the domain.

In Section 3.4, we concluded that measurements gathered from random angles,
in the contest of this thesis, had a negative impact on the quality of the TSVD
reconstructions. However, we saw that for su�ciently many measurements the
order and direction of the measurements was insigni�cant as long as they had
the possibility of entering all around the object. We concluded that for problems
where the number of projections is large enough, such that the transformation
matrix is only slightly under determined, the di�erence in quality of reconstruc-
tion was negligible when using iterative reconstruction techniques, such as the
Landweber method.

In Section 3.5, we concluded that limiting the angular range of measurements,
severely impacted the quality of reconstructions when there was noise in the
measurements. We also saw that without noise, the impact of limiting the
angular range was less pronounced. We noted that it looked like the impact of
limiting the angular range was independent of the total number of measurements
done used in the problem.

Chapter 4 of the thesis consisted of applying the method of analysis and re-
sults from Chapter 3 to analyse laminar tomography problems. In the Sections
4.1-4.4, we concluded that the problem of laminar tomography exhibited the
same properties noted for general rectangular domains. However, the impact
of noise in measurements to the quality of reconstructions was not clear. Only
in Section 4.5, could we conclude that, given enough projections, the laminar
tomography problems also exhibited the properties of limited angle problems.
Thus we concluded that reconstructions from laminar tomography problems,
with su�ciently many projections, can be severely impacted by noise in mea-
surements on top of the di�culties noted for rectangular domains.

All in all we have seen that an SVD based analysis can give valuable insight
into the di�culties of complex tomography problems, such as that of laminar
tomography.
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5.1 Future Work

Here we list the areas of the thesis that we, due to the time limitation of a 15
ECTS B.Sc thesis, did not consider in detail even though they were of interest
in relation to the subject of the thesis.

In Section 2.7, we argued that the Radon transform would have the same ill-
posed properties as the deconvolution problem. The explanation, given in this
thesis, was an intuitive way of comparing the two integral equations. In a
future project, it could be bene�cial to perform a rigorous comparison such
that one might precisely de�ne how the ill-posed properties carry over from the
deconvolution problem to the Radon transform.

In Section 3.2, we saw that the transformation matrix generated from radon.m

had singular values which decayed much faster than those of the analytical
Radon transform. We argued that this could be due to how the method gath-
ered its projections, namely by averaging over four sub-projections. In a future
projection it could be interesting to see whether this method of gathering pro-
jections better model the physics of a CT-scanner, compared to the approach
of modelling X-rays by a single line in the analytical Radon transform.

In Chapter 4, we studied two speci�c laminar tomography problems and con-
cluded, from our method of analysis, that they exhibit some of the same charac-
teristics as we saw in rectangular domains and limited angle problems. Another
interesting method of analysis could be microlocal analysis, which is used to
detect singularities in the sinogram for an X-ray tomography problem. In a
future project it could be interesting to study how microlocal analysis can be
used to gain further insight into the nature of limited angle problems, such as
laminar tomography.
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Appendix A

Reconstruction Methods

Used in The SVD Analysis

Here we de�ne the two methods used to create reconstructions from simulated
measurements in analysisSVD.m.

A.1 Truncated Singular Value Decomposition

The truncated singular value decoposition (TSVD) method is de�ned in terms
of the SVD, in De�nition 2.10, of the transformation matrix A for the system
Ax = b by

x =

k∑
i=1

uTi b

σi
vi.

Where k is the truncation index and x is the reconstructed solution. In this
thesis the TSVD method used is implemented in analysisSVD.m.
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A.2 Landweber Method

The Landweber method is a subclass of the simultaneous iterative reconstruction

techniques (SIRT), where each iteration is de�ned for the system Ax = b by

x[k+1] = x[k] + λkTA
TM(b−Ax[k]).

Where k is the iteration number and T , M are symmetric positive de�nite
matrices. The relaxation parameter λk describes the step size for each iteration.

The Landweber method is then the simple case for which T = M = I, where I
is the identity matrix.

This thesis uses the Landweber method implemented in AIR Tools [10].
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List of Matlab Functions

In the following is a list of the Matlab functions created for the thesis. The
thesis also uses functions from the package AIR Tools [10].

All the functions listed below can be found here [9].

main.m - The main script used to run the analysis of Chapters 3 and 4.

analysisSVD(data,varargin) - Runs the analysis described in Analysis Method
3.1. Consult documentation in the function for an explanation of the input ar-
guments.

x = myphantom_rect(N,M) - Creates an N ×M Shepp-Logan phantom x.

x = LaminarPhantom(N,M) - Creates a laminar phantom x of size N ×M as
used in Chapter 4.

A = changeDomain_circle(A,N) - Changes the square N × N domain of a
transformation matrix A to a circular one.

A = changeDomain_Unitcircle(A,N) - Changes the square N ×N domain of
a transformation matrix A to a unit circular one.
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A = createARadon(N,theta,p) - Creates the transformation matrixA of radon.m
on a N ×N domain for a set of angles theta with p projections per angle.

The following functions are required to use some of the functionality of analysisSVD.
The functions are not created by the authors of this thesis, but nevertheless can
they be found here [9].

suptitle.m - Used to de�ne a header for a group of subplots.

distinguishable_colors.m - Used to de�ne distinguishable colours for each
function in a plot.

legendmarkeradjust.m - Used to adjust the legend markers sizes.

x = myphantom(N) - Creates an N ×N Shepp-Logan phantom x.

x = binaryphantom(N) - Creates a binary phantom x of size N ×N .
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