
Environmental Sensor Monitoring
tablet application designed using
cross-platform design patterns

and frameworks

Tomasz Cielecki - s083134

Kongens Lyngby 2015

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk

Summary

Applications for mobile devices, including smart phones and tablets have be-
come widely popular. The respective market places each contain hundreds of
thousands of apps, the major ones contain millions of applications and each
day these numbers increase. There are several ways to create these applica-
tions, either using the native development kits or using one of the several other
methodologies which allow to target more than one operating system at once.

There are several problems and paradigms to address when creating applications
using a cross-platform development kit, which this thesis will address. One of
the important paradigms, is how to reuse code across different platforms, an
often difficult task, due to reasons such as differences in programming languages,
differences in how to construct User Interface code, differences in how to interact
with hardware on the individual platforms.

This thesis focuses on how to create cross-platform applications using design
patterns, which enable a great amount of code to be shared across platforms.
This is shown by implementing a couple of tablet applications, used for envi-
ronmental sensor monitoring, for Windows 8.1 and Android.

ii Summary

Resumè

Applikationer til mobile enheder, inklusive smart phones og tablets er fakta
at de er blevet meget populære. De respektive markeder indeholder hver især
hundrede af tusinder af apps, mens de største markeder indeholder millioner af
applikation, hvor hver dag øges antallet. Der findes forskellige måder at lave
disse application, enten ved at benytte sig af native udviklings værktøjer eller
ved at benytte sig af en af de mange andre metoder, som muligør at målrette
en application til mere end et operativsystem ad gangen.

Der er mange problemer og paradigmer at addressere, når man laver applika-
tioner som benytter sig af disse cross-platform udviklings værktøjer, hvilket
denne afhandling vil addressere. Et af de vigtigste paradigmer er, hvordan
kode kan genbruges på tværs af forskellige platform, en ofte besværlig opgave
at udføre på grund af forskelligheder i udviklingssprog, forskelligheder i bruger-
grænseflade kode og forskelligheder i hvordan interaktion foregår med hardware
på de enkelte platforme.

Denne afhandling fokuserer på, hvordan cross-platforms applikationer kan ud-
vikles, ved brug af design patterns, som mulliggør at en stor del af kode kan
deles på tværs af platforme. Dette bliver vist ved at implementere nogle tablet
applikationer, til brug til at overvåge milø-sensorer, til platformene Windows
8.1 og Android.

iv Resumè

Preface

This thesis is completed at DTU Compute in partial fulfillment of the require-
ments for acquiring the Master of Science degree in Digital Media Engineering.

The thesis addresses design patterns, in a cross-platform context, such that a
larger part of a code base can be shared across applications.

The thesis is composed of a product, in form of several mobile device applications
and a report to document them.

Lyngby, 19-January-2015

Tomasz Cielecki

vi Preface

Acknowledgements

This thesis would not have been possible without Brüel & Kjær Enivronmental
Management Solutions (EMS). Hence, I would like to thank my supervisors
Niels Bruun Svendsen and the Christian Bækdorf, for invaluable advice during
the project and guidance towards understanding the subject. I would likewise
thank Stig Høgh my supervisor from Technical University of Denmark (DTU)
for guidance and supervision.

Additionally I would like to thank Brüel & Kjær EMS for providing office space,
work computer and a Windows 8 Tablet, software licenses; time and knowledge.

I would also like to thank my family and friends, for understanding my dedica-
tion of time and supporting me during completion of this thesis.

viii Contents

Contents

Summary i

Resumè iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Brüel & Kjær Sound & Vibration Measurement A/S 1

1.1.1 Environment Management Solutions 2
1.1.2 Noise Sentinel . 2

1.2 Prior work . 5
1.2.1 Cross-platform mobile notification system for noise mon-

itoring system . 5
1.2.2 Internship & Bachelor project 6

1.3 Device Fragmentation . 7
1.4 The Problem . 7
1.5 Thesis Definition . 8
1.6 Report structure . 8
1.7 Methodology . 9

2 Analysis 11
2.1 Prior Work . 11

2.1.1 Tablet Interface For Environment Monitoring 11
2.1.2 Cross-platform mobile notification system for noise mon-

itoring system . 13
2.2 Domain Analysis . 14
2.3 Requirements Specification . 16

x CONTENTS

2.3.1 Functional Requirements 17
2.3.2 Non-Functional Requirements 18
2.3.3 Use Cases . 19

2.4 Chapter Summary . 25

3 Technology Analysis 27
3.1 Xamarin . 27

3.1.1 Xamarin in Comparison 28
3.2 Portable Class Libraries . 31
3.3 Inversion of Control . 32

3.3.1 Dependency Injection . 32
3.3.2 Service Locator . 34
3.3.3 IoC Summary . 36

3.4 Model-View-ViewModel . 36
3.5 Frameworks . 38

3.5.1 ReactiveUI . 38
3.5.2 MvvmLight . 38
3.5.3 MvvmCross . 39
3.5.4 Xamarin.Forms . 39
3.5.5 Frameworks Comparison 39

3.6 Chapter Summary . 40

4 Design 41
4.1 Mobile Applications . 42

4.1.1 Core . 43
4.1.2 Application Projects . 46
4.1.3 Plugins . 48

4.2 OpenAPI . 50
4.3 Chapter Summary . 50

5 Implementation 53
5.1 BaseView . 54
5.2 Constants . 55
5.3 AppClientService . 55
5.4 RtcService . 57

5.4.1 Inventory Reloading . 58
5.4.2 Real-time Data . 58
5.4.3 Historical Data . 59
5.4.4 Alerts . 59

5.5 Plugins . 60
5.5.1 Windows Azure Storage 60
5.5.2 Authentication . 61

5.6 ViewModels . 62
5.7 Custom Views . 63

CONTENTS xi

5.7.1 Map View . 63
5.7.2 Graphs . 64

5.8 Custom Bindings . 65
5.9 Chapter Summary . 66

6 Testing 67
6.1 Mocking . 68
6.2 Service Tests . 68
6.3 ViewModel Tests . 70
6.4 Chapter summary . 71

7 Metrics 73
7.1 Chapter summary . 77

8 Conclusion 79
8.1 Findings . 79
8.2 Conclusion . 80
8.3 Future Work . 81

Appendix 82

A Screenshots from Tablet Interface For Environment Monitor-
ing 83

B Noise Sentinel screenshots 89

C Windows 8.1 Client Screenshots 95

D Android Client Screenshots 103

E Dashboard Mockup 111

F Touchable MapFragment 113

G Custom Binding for MapView 115

H ReSharper rules 121

I Line counting script 123

Bibliography 131

xii CONTENTS

Abbreviations

Abbreviation Explanation
EMS Brüel & Kjær Environmental Management Solutions
NMT A Noise Monitoring Terminal or a location
RTNC Real-Time Noise Control

NS Noise Sentinel
UI User Interface

OOP Object Oriented Programming
SDK Software Development Kit
IoC Inversion of Control
DI Dependency Injection

MVVM Model-View-ViewModel
PCL Portable Class Library
ACS Azure Access Control
LOC Lines of Code

IL Intermediate Language
IDE Integrated Development Environment

Chapter 1

Introduction

This chapter will focus on the background and history of Brüel & Kjær. This
chapter will describe prior work done on similar projects to this dissertation.
This chapter will describe the problems with device fragmentation and differ-
ences in platforms. It will then proceeded to the problem and thesis definition
and the motivation behind it. Finally it will describe the delimitations and
the methods, which are used in this thesis as well as an outline of this report’s
structure.

1.1 Brüel & Kjær Sound & Vibration Measure-
ment A/S

"Brüel & Kjær Sound & Vibration Measurement A/S supplies in-
tegrated solutions for the measurement and analysis of sound and
vibration. As a world-leader in sound and vibration measurement
and analysis, we use our core competences to help industry and
governments solve their sound and vibration challenges so they can
concentrate on their primary task: efficiency in commerce and ad-
ministration." [Kjæ14a]

2 Introduction

The company was founded in 1942 by Per Villhelm Brüel and Viggo Kjær and
has since then developed and created over 3000 devices and solutions, which
the company can offer to its customers [Kjæ14b]. It was acquired by Spectris
in 1992 due to economical difficulties and the company was split into several
separate companies.

• Brüel & Kjær Sound and Vibration Measurement A/S (the core sound
and vibration market)

• Brüel & Kjær Vibro (machinery condition monitoring)

• B-K Medical (ultrasonic medical diagnostic instruments)

• Innova Air Tech Instruments A/S (gas analysis instrumentation)

• Danish Pro Audio (studio microphones)

1.1.1 Environment Management Solutions

In 2009 Brüel & Kjær acquired Lochard Ltd.[in09], this has since become the
department Environment Management Solutions (EMS) [Kjæ14c]. EMS spe-
cializes EMS is where this thesis was made in collaboration with, specializes in
Urban and Industrial environment management along with Airport environment
management.

1.1.2 Noise Sentinel

One of the products they provide is called Noise Sentinel [Kjæ14d], which is a
solution where Noise Monitoring Terminals (NMT) are deployed on a site, where
the customer (tenant) needs it. It then monitors that site 24/7 and records noise
and weather conditions. Other sensors can also be mixed in, for vibration and
dust particles.

The tenant gets several web interfaces, to control and manage their purchased
product.

1.1.2.1 Noise Sentinel client

One of the interfaces is called Noise Sentinel client. This interface allows the
tenant to set up rules for each individual NMT. These rules dictate when an

1.1 Brüel & Kjær Sound & Vibration Measurement A/S 3

Figure 1.1: Screenshot of the Noise Sentinel client

alarm in the system is triggered for that location/NMT. Subsequently the alarms
are used to notify the tenant, if set up in the rule, about this through e-mail
and/or SMS. Additionally it is used in the reports the tenant generates from
the system, which can be handed to the authorities, which require these.

Apart from being able to set up NMT’s in through the Noise Sentinel client, it
is also possible to see the NMT’s current location, data and historical data as
well.

A screenshot of said client can be seen in Figure 1.1, where it is possible to see
a map with several locations, historical data at the bottom and current data at
the upper left part. For a bigger version see Appendix B.

1.1.2.2 Real-Time Noise Control client

When a location is exceeding the limits defined in the rules, they can be seen and
managed in another web interface called the Real-Time Noise Control (RTNC)
client. This client can be seen in Figure 1.2. The interface allows for looking at
all the NMT’s and the alerts for them. NMT’s are shown on the map just like in
the Noise Sentinel client, clicking on a NMT on the map, will draw a line to the
name and current value inside of the associated blue box on the left hand side

4 Introduction

Figure 1.2: Screenshot of the Real-Time Noise Control client

see Figure 1.3. Clicking one of the red boxes on the right, which are alerts, will
do the a similar thing, just by drawing a line to the NMT with the exceedance,
see Figure 1.4 (for bigger versions of figures see Appendix B).

If an Alert has a sound clip associated, the person using the interface, has the
ability to listen to said clip and further inspect, whether the cause of the ex-
ceedance, was indeed related to noise generated by the subject being monitored.
If that was not the case, a comment can be added to the Alert, which will be
added to the reports generated by the system.

Figure 1.3: Screenshot of NMT information

1.2 Prior work 5

Figure 1.4: Screenshot of an Alert

1.1.2.3 OpenAPI

Recently EMS have been developing an API, which allows for developers to
easier make applications, which communicate with parts of Noise Sentinel. This
API provides several interfaces to i.e. identify clients, getting information about
access to a tenants sites and locations, information to access resources such
as Alerts, Real-Time data etc. This is an attempt to reuse parts of previous
applications for internal use in EMS and other departments interested in using
parts of Noise Sentinel in their applications.

1.2 Prior work

This section describes projects previously made at EMS, which this thesis will
use as an underlying basis.

1.2.1 Cross-platform mobile notification system for noise
monitoring system

The first project is "Tablet Interface For Environment Monitoring" by Jonas
Lund [Lun13], which is about finding a suitable user interface for Tablet devices
for Environment Monitoring with resulting in a product in form of a Mock-up,
which can be seen in Figure 1.5. This was done with an emphasis on usability
and user experience, and all the tests were made on mocked up data. So no

6 Introduction

Figure 1.5: Screenshots of Jonas’s Tablet Interface

Figure 1.6: Screenshots of RTNC mobile App (Windows 7)

actual functionality was made for this project in terms of communicating with
Noise Sentinel to get real data.

1.2.2 Internship & Bachelor project

The other project is the one made during my internship at EMS, which was a
study on making a cross-platform applications across Windows Phone 7, An-
droid and iOS. Taking a web application called Noise Sentinel and cramming
it down into a series of native applications. The applications featured real-
time data in form of the current dB level, from Noise Monitoring Terminals
along with historical data for the last hour, day, week and month. This project
was expanded on in my bachelor, "Cross-platform mobile notification system for
noise monitoring system" [Cie12], project where these Apps were extended with
RTNC functionality, which allowed them to receive notifications when a NMT
had rule was broken. Additionally you could see details about the alerts, listen
to the associated sound clips and comment on them. Screenshots of this App
can be seen in Figure 1.6.

1.3 Device Fragmentation 7

1.3 Device Fragmentation

There is a big variety of smart phone and tablet devices on the market, which
have different screen sizes, performance, operating systems, market places, hard-
ware features and software development kits (SDK), along with a multitude of
other parameters. Additionally the amount of devices and features are ever
increasing, with new and better hardware and design improvements, in both
their hardware and software implementations. As an example one can look at
a report OpenSignal has conducted on Android fragmentation [Rob12], where
one can see that already back in 2012, there were 3997 distinct Android device
models from 599 distinct brands. That number is increasing.

Since there is such a big device fragmentation along with different operating
systems, there are several problems to address, when developing applications
for those devices.

The main problems from a developers perspective are as follows.

• Difference in SDK’s between the major platforms. Due to this fact, when
accessing device specific features on one platform, the code is in fact not
the same on the other platform.

• Difference in programming languages between the major platforms. Apple
uses Objective-C and Swift, Google uses Java and Microsoft uses C#
for their devices. This increases the difficulty in creating an application
targeting all platforms as it has to be written one time for each platform.

There has been attempts to solve these problems, which each have their own
unique solution. Among them are Cordova [Cor14] (formerly know as Phone-
Gap), RhoMobile [Rho14] and Xamarin [Xam14a], which are the most popular
ways of solving these problems. These frameworks will be discussed more in
depth in Chapter 3.

1.4 The Problem

The problem, for Brüel & Kjær, reveal itself through the following sub prob-
lems. Firstly Brüel & Kjær, wishes to allow their customers to access their
products from everywhere and on most devices. As it is right now Noise Sen-
tinel is only accessible through modern Desktop browsers and not on mobile

8 Introduction

devices. Some things work works on a mobile devices, however, only partially.
The second problem is that, Brüel & Kjær wishes to be effective in creating
mobile applications and create code, such that parts can be reused in future
applications.

1.5 Thesis Definition

The idea for this thesis is to take the two projects described in Sections 1.2.1
and 1.2.2 and combine them into a working application. The idea is to make
this application work on at least two platforms. The aim will be to focus on
design patterns and attempt to reuse as much code as possible between the
two platforms. Then the idea is to measure the code to see how much of it
was possible to be reused, how much was UI code and how much was platform
specific code.

1.6 Report structure

The report will be structured as a application development report and will
contain the following sections.

• Introduction - an introduction of the problem and project structure

• Analysis - an analysis of the project, use cases, requirement specification

• Design - an analysis of various design patterns and proposal of which to
use and how the overall architecture of the Apps will look

• Implementation - details about the actual implementation, code snip-
pets, actual implementation of design patterns

• Tests - description of tests made on the code and how it was achieved

• Metrics - code is measured to identify how much code was platform code,
reusable code and view code

• Discussion - discussion of the findings

• Conclusion - evaluation of the project

1.7 Methodology 9

1.7 Methodology

An agile approach will be used in the process of making this project. Daily
scrum meetings were held with the development team in EMS, integrating with
their agile process, allowing me to discuss problems, explain my progress and
plan tasks.

The agile iterative model consisted of the following stages:

• Analysis - analysis of the component

• Design - design of the component

• Implementation - implementation of the design

• Tests - code tests: black box and integration tests

This was done in several stages of the project, attempting to not use excessive
amounts of time for each part of the project, and not getting stuck on something;
attempting to follow the agile manifesto [agi01].

10 Introduction

Chapter 2

Analysis

This chapter prior work, which lead up to this project will be analyzed. Func-
tional and non-functional requirements will be defined and the project will be
delimited to that set of requirements. A domain analysis will be conducted to
identify the key concepts which are relevant to this project.

2.1 Prior Work

As introduced in Chapter 1 this project is using two previous projects as a
reference point. This section will analyze them and describe them in more
detail, to clear up what they each do and not do.

2.1.1 Tablet Interface For Environment Monitoring

Briefly introduced in Section 1.2.1, Jonas Lund designed a Tablet Interface for
the Windows RT platform. All data was mocked up. However, a lot of excellent
thoughts and decisions were made during that project, which will be very useful
and considered during this project.

12 Analysis

The Windows RT platform, has matured since Jonas made his project and is
now Windows 8.1 Modern Apps. Some of the guidelines have been changed,
new visual controls have been added to the platform etc. Hence, some of the
things designed might be different in this project.

To get an overview of the features mocked-up in his project see the following
list:

1. Map with locations (NMTs) and Alerts to right of it, also described as
overview mode (see Figure A.1)

2. Investigation mode, with Alerts to the left, graphs and legends on the
right (see Figure A.2)

3. In Investigation mode, switch to a real-time graph

4. Switching mode on NMTs on the map between different environmental
sensors. Noise, vibration and dust, indicated by different icons.

5. Context driven buttons in the bottom App bar (see Figure A.3 and (see
Figure A.4))

(a) When an Alert is selected:

i. Pick a predefined comment
ii. Write your own comment
iii. Listen to associated sound clip
iv. Show Alert on graph in Investigation mode

(b) When no Alert is selected:

i. Control map
A. Lock map
B. Center map
C. Change map type

ii. Sorting Alerts according to Location, Type and Time

Looking at Figure A.4 from Appendix A, the flow of commenting a selected Alert
can be seen. The visual representation of commented Alerts in the bottom right
corner of the screen, seem off compared to all other visual elements and is in
fact not part of any guidelines how to overlay the map. Chapter 4 will discuss
how this will be implemented differently.

2.1 Prior Work 13

2.1.2 Cross-platform mobile notification system for noise
monitoring system

Also briefly mention in Section 1.2.2, this thesis is based on the project, "Cross-
platform mobile notification system for noise monitoring system" [Cie12], which
implements some of the RTNC functionality on top of the product I made dur-
ing my internship at EMS. The main focus in that project was to create the
infrastructure required to push notifications from Noise Sentinel to Android,
iOS and Windows Phone 7 devices notifying the user about Alerts happening
on their site. The RTNC functionality of the project was built on top of what
was made in my internship project.

The application featured the following for a single hard coded site.

1. Displaying a map with NMTs and their real-time noise value

2. Details for a selected location, displaying

(a) Name

(b) Image

(c) Current noise level using a gauge visualization

(d) Historic data

3. Page with graphs displaying historic data for all the locations stacked for
comparison

4. Login with Azure Access Control

5. Subscription to Push Notifications

6. Displaying an unordered list of Alerts

7. Displaying details for an Alert including

(a) Comments

(b) Sound clip

Looking at the feature set in Section 2.1.1, they are very similar to the ones
above. However, none of them are capable of logging a user into Noise Sentinel,
none are able to get the tenants sites which they have access to.

The project is also not made with design patterns in mind. Nor was the code
structured in ways to help it being shareable between platforms. The code itself

14 Analysis

uses file linking to include it in each project. UI behavior is duplicated between
platforms along with the UI itself. Overall the code is far from optimal from
both a architectural and code sharing perspective.

2.2 Domain Analysis

This section will concern the process of making a domain analysis. Which is
described as follows.

"The process of identifying, collecting, organizing, and representing
the relevant information in a domain based on the study of existing
systems and their development histories, knowledge captured from
domain experts, underlying theory, and emerging technology within
the domain"[KCH+90]

Brüel & Kjær EMS seeks to create an application they can offer to their cus-
tomers. The purpose of the application is an application, which they can use
when they are out in the field or in the office to monitor NMTs, to see whether
they are inside the allowed levels dictated by the government for noise, vibration
and dust pollution.

2.2.0.1 General Knowledge of the Domain

Tenant

• A tenant is one customer

• A tenant can have multiple users

• A tenant can have multiple sites

Site

• A site is associated with one tenant

• A site is associated to one or multiple NMTs

2.2 Domain Analysis 15

NMT

• A NMT contains the environmental sensors, which continuously monitor
the environment

• The NMT is associated with a geographical location, which is also why it
is called a location sometimes.

• A NMT is normally connected to the Internet, which allows it to send
data to Noise Sentinel

Alert

• Generally most Alerts, when regulations are broken, are when construction
is made, blasts are made in a mine or whatever the NMTs are monitoring.
So during work hours.

• An Alert is associated to a Location/NMT

• Alerts can be associated multiple Alert Rules

Alert Rule

• A Alert Rule is a decision tree

• I.e. a rule could be the noise level cannot exceed 70dB during 8am to 5pm

• A Alert Rule decides to generate a sound clip for the alert or not

• It decides the length of the sound clip

• It can collapse Alerts

• and much more...

2.2.0.2 Users and Clients

The users of Noise Sentinel are managers who are responsible for keeping the
site within the allowed values. Lets call them Site Managers. They are not the
only users of the system. The Noise Sentinel support staff is also a user of the
system, as they are providing support to customers to get them set up.

Noise Sentinel also allows for a public web site, which is the Noise Sentinel client
mentioned in Section 1.1.2.1. However, it is stripped of its administration pages.

16 Analysis

2.2.0.3 Environment

The environment Noise Sentinel is usually run in, is on modern browsers such as
Chrome, Firefox and Internet Explorer. The Noise Sentinel Client requires Sil-
verlight to run, which is available for Windows based systems. The RTNC client
is a HTML5 web site, which runs in most modern desktop browsers without any
additional plugins required.

Brüel & Kjær EMS wishes to support Windows 8.1 tablets, Android and iOS
as well, covering a larger part allowing the customer to bring their own device
and run Noise Sentinel anywhere they want. This also makes it easier for the
site manager to inspect sites when out in the field, not having to lug around a
laptop, checking the status on a smaller and lighter device.

2.2.0.4 Tasks and Procedures

When an Alert occurs, the site manager investigates whether or not it was the
site that produced the exceedance, or whether it was exceedance coming from
outside. This can be done by listening to the sound clip associated with the
Alert, if the Alert Rule permits. The site manager can comment on the Alert
either through a set of pre-defined comments or a new one. Other tasks include
active surveillance of the site monitoring the RTNC client or passively by waiting
for an SMS or e-mail.

2.3 Requirements Specification

The main problem in this thesis is to create applications using design patterns
well suited for cross-platform applications to maximize code sharing. Hence, the
non-functional requirements will reflect this.

The project will also be scoped in this specification and limited to a set of
requirements, which is deemed fit to be able to implement during the time
frame associated to the project.

2.3 Requirements Specification 17

2.3.1 Functional Requirements

The functional requirements will be split into two parts, as there will be imple-
mentation both on a server and an implementation client side.

2.3.1.1 Mobile Client

MFR1
The mobile client must identify itself with Noise Sentinel, such that a
pairing between Noise Sentinel and the client is made, so each client can
be uniquely identify itself.

MFR2
Client should have the possibility of presenting a collection of the sites the
tenant has access to.

MFR3
If the user has an elevated role, he should have access to all the tenants
and associated sites accessible for their role.

MFR4
The client should be able to give the user an overview of the geographical
location of each NMT associated with a site.

MFR5
The client should be able to present details about a NMT, in form of
name, current noise level, image and description. If a weather station is
attached additional details should be available in form of wind direction,
wind speed, temperature and current pressure.

MFR6
The client should be able to fetch real-time data for the NMTs associated
to a site and feed it back to the user.

MFR7
The client should be able to fetch Alerts for a site and display them to the
user.

MFR8
The client should be able to display details about an Alert in the form of
noise level, rule, comments and description.

MFR9
The client should be able to play a sound clip associated to an Alert.

18 Analysis

MFR10
Historical data should be accessible for a site in the form of last hour, last
day, last week and last month historical data

2.3.1.2 Server

SFR1
An interface for allowing callbacks from Azure Access Control Service
should be implemented, to allow devices to identify themselves and receive
a token for future calls to the server

SFR2
The server should allow the client to get a collection of tenants accessible
to the user

SFR3
The server should allow the client to access a collection of sites available
to the user

SFR4
The server should implement an interface, to get a collection of tokens and
information, which allow the client to access Azure services, which provide
Alerts and Real-time data

2.3.2 Non-Functional Requirements

NR1
Tools are Windows 8.1 SDK, Visual Studio, Xamarin.Android and Xam-
arin.iOS. Due to EMS have heavily invested in this technology, switching
to something else is not desired.

NR2
Programming language because of NR1 is C#

NR3
The design of the application has to made with good programming prin-
ciples and design patterns

NR4
The priority of implementing the application is: Windows 8.1, Android
then iOS in that order

2.3 Requirements Specification 19

2.3.3 Use Cases

Use cases provide a list of steps an Actor can do in a system. They can provide
a short summary of what the system will offer and not offer, depending on the
granularity in the use case. The following uses cases serve to provide an overview
of the offered features of the system in this project.

Figure 2.1: Use Case Diagram 1: Authentication

The first use case is concerning itself with Authentication. As OpenAPI requires
all requests to contain a special token to communicate with it, the mobile client
must be authenticated. Figure 2.1 describes how Authentication happens and
is also described in Use Case 1.

20 Analysis

Use Case 1 Authentication

Primary Actors: • User

• Azure ACS

• OpenAPI

Preconditions: None.

Postconditions: User is authenticated.

Main Success Scenario:

1. Azure ACS provides a collection of Identity Providers

2. User picks an Identity Provider to authenticate with

3. The user is presented with a form to input their credentials

4. Credentials are verified with Azure ACS

5. The application is redirected to a Callback URL pointing at OpenAPI

6. The URL again redirects to a schema containing a token

7. Token is saved and user is now authenticated

Extensions:
3.a Invalid credentials:

1. System shows failure message

2.3 Requirements Specification 21

Figure 2.2: Use Case Diagram 2: Dashboard

Use case 2, is when the user is logged in, then they should be presented with sites
they have access to. Additionally help links should be presented as well. If the
user is an admin or have access to multiple tenants, they should be presented
with the accessible tenants, before they are able to select a site. As seen in
Figure 2.2 all the data is fetched from OpenAPI and is based on who the user
is.

Use Case 2 Dashboard

Primary Actors: • User

• OpenAPI

Preconditions: User is authenticated.

Postconditions: • Site is selected

or

• Help URL is selected

Main Success Scenario:

22 Analysis

1. OpenAPI provides data for sites, tenants and help URLs

2. User selects a Site

Extensions:
2.a User is an admin or has access to multiple tenants:

1. User needs to select a tenant

Figure 2.3: Use Case Diagram 3: Locations and historical data

After the user has selected a site, as seen in Jonas’s mockup, the user will be
presented with the locations on a map. If there is real-time data available this
is loaded. Location details can be shown along with historical data for that
location. As seen in Figure 2.3 the responsibility of the Cloud Service is to
provide the historical data, locations and real-time data.

Use Case 3 Locations and historical data

2.3 Requirements Specification 23

Primary Actors: • User

• Cloud Service

Preconditions: • User is authenticated.

• Site is selected.

Postconditions: None.

Main Success Scenario:

1. OpenAPI provides data for associated locations to the selected site

2. User sees locations

Extensions:
2.a If real-time data is available:

1. Real-time data is continuously fetched for each location and displayed

2.b User shows details for location:

1. If historical data is present for the location, it is displayed to the user

24 Analysis

Figure 2.4: Use Case Diagram 4: Alerts

Use Case 4 Alerts

Primary Actors: • User

• OpenAPI

• Cloud Service

Preconditions: • User is authenticated.

• Site is selected.

Postconditions: Alert has been commented.

Main Success Scenario:

1. Cloud Service provides Alerts for the site

2. User shows an Alert

3. User writes a Comment on an Alert

(a) Comment is sent to OpenAPI where it is registered

2.4 Chapter Summary 25

Extensions:
2.a If sound clip is available:

1. User can play sound clip associated with Alert

2.4 Chapter Summary

To sum up this chapter it can be told that prior work was described in more
depth. A brief domain analysis was conducted, followed by a requirements
specification. Finally uses cases were presented to describe the desired behavior.

26 Analysis

Chapter 3

Technology Analysis

In this chapter the technologies used in this project will be analyzed. They are
an integral part of the solution and the design. Xamarin’s approach to cross-
platform programming will be explained. Along, with some very useful design
patterns, which help decouple code along with providing a framework to easily
share code between different platforms. Among them is Inversion of Control
(IoC).

3.1 Xamarin

Ximian was founded in 2000, back when Microsoft announced their .NET frame-
work [ZDN00], to create an Open Source counterpart, Mono [dI03]. Since then
it was bought by Novell and in 2009 the first version of MonoTouch was re-
leased [ZDN09]. MonoTouch, was the forerunner for Xamarin.iOS and allowed
writing native applications using C# for iOS. In 2011 Novell was bought by
Attachmate [MW10], which later proceeded to lay off over 800 employees, in-
cluding majority of the Mono team as it did not believe in the future of Mono-
Touch [GC11]. Later that year Xamarin was founded [dI11] continuing where
it left off at Novell with the MonoTouch and Mono for Android project, which
since have become Xamarin.iOS and Xamarin.Android and more products have

28 Technology Analysis

been added to the lineup.

What Xamarin.iOS and Xamarin.Android offer is to write the same language
across two platforms, where applications normally are written in Objective-
C/Swift for iOS and Java for Android. This language is C# and builds on
top of Mono. Without thinking much about it, it is easy to see that opens up
for a lot of code that can be shared across platforms, which was not as easy
to do before. What is unique about this the solutions they provide is that all
the code, which is written is turned into native applications, using the native
visual controls on each of the two platforms and providing access to the native
API’s and last but not least, provides apps with native performance. Since the
Windows platform also uses C# as language it opens up for the possibility to
target a lot of different platforms with the same piece of code.

Additionally Xamarin also offers plugins for Visual Studio, such that C# and
.NET developers, which are used to that integrated development environment
(IDE), will feel at home when creating applications using Xamarin.

3.1.1 Xamarin in Comparison

There are three approaches to develop mobile applications. Either writing a
mobile web-page, which runs in the browser of the mobile device; writing a
hybrid application, a run "write once, run everywhere" approach, which in short
terms is a web-page wrapped in a native application. Making it possible to
leverage more of the built in capabilities of the devices. Lastly there is the
native approach, using the native SDK for the respective platforms. The latter
approach is where Xamarin rests, with an abstraction on top.

3.1.1.1 Mobile Web-pages And Hybrid Applications

Writing mobile and responsive web-pages, which work on all mobile devices and
their different browsers can be quite some work. You also get a limited subset
of available features you can access on the phone. Browsers are also fragmented
and have different feature sets they support and some require different CSS tricks
to make applications look the same across these different browsers. This is also
a problem in Hybrid Applications, most of the time the Hybrid Application
frameworks such as the ones mentioned in Section 1.3, mitigate this and make
these tricks and tweaks for the developer, such that they should not handle these
situations. However, there are several other problems, which can be listed in
the following pros and cons.

3.1 Xamarin 29

Pros:

• The library takes care of the platform specific differences and the same
language is used across all platforms. You write code once and it works
on all devices.

• Many frameworks use JavaScript or some other well known language,
which many developers are already familiar with. Makes for less of a
learning curve.

• The interface of the application can be debugged in a web browser.

Cons:

• Apps are dependent on the web browser component the SDK provides,
which can vary in performance.

• Interface look and feel are not the same as in the native applications.

• Only a subset of device specific functionality is available and depends on
the framework, which features are available.

3.1.1.2 Native Applications

Writing native applications using the respective SDK’s gives a lot more power to
the developer, compared to the web-app or hybrid application approach. This
is due to the developer has access to the full API the SDK provides. However,
these SDK’s have different languages. Hence, there are inherit problems with
writing native applications. Such as if you want to cover all major platforms, it
will require developers to know each of these platforms or having multiple teams
doing one platform each. Due to differences in languages there will be multiple
code bases. So the pros and cons for this approach is as follows.

Pros:

• The developer has access to the entire Native API for the respective plat-
form.

• The developed apps will have native performance.

• Applications will inherently have native look and feel.

30 Technology Analysis

Cons:

• Applications will have to be built multiple times, as code cannot be shared
between platforms.

• There is a potential need for multiple teams handling their own platform.

• Tools differ from platform to platform.

3.1.1.3 Xamarin Applications

Writing applications using Xamarin, does not mean that you get a black magic
box, like when writing hybrid apps that spits out applications for each platform.
The developers still have to know each platform and their API’s, as Xamarin is
a wrapper around the native API, such that the developer can write C# code.
However, as mentioned before this greatly increases the amount of sharable code,
while having full access to the native API keeping most of the pros from the
native approach, while eliminating a lot of the cons.

Pros:

• Same pros as for Native Applications 3.1.1.2.

• Same language across all supported platforms, which means more potential
code sharing between them.

• Modern language features, such as language-level asynchronous program-
ming, which eliminates bookkeeping, callbacks and frameworks for doing
asynchronous tasks. Support for lambda expressions and much more.

• Use the same tools to create Windows, iOS and Android applications.

Cons:

• Additional yearly cost to allow develop with Xamarin tools.

• Not as big community as the native counterparts, but it is growing.

• Added size of applications, due to the overhead of Mono libraries.

3.2 Portable Class Libraries 31

Figure 3.1: Creating a new Portable Class Library project

3.2 Portable Class Libraries

Portable Class Libraries (PCL) have been a part of C# and .NET since 2011 [Mic11]
and allow developers to create assemblies, which work on more than one .NET
platform. It was officially added to Xamarin late 2013 in version 4.10.1 and
Mono 3.2.3. What this means is that when you create a new project of the
PCL type, you get the choice of which platforms you want to support as seen
in Figure 3.1. No additional configuration or tweaks are needed to reference the
PCL into another project being one of the targeted platforms.

Depending on which platforms the developer targets in the PCL project, it
unlocks a subset of the .NET framework, which the developer can use in the
code written in the PCL. This in turn means that platform specific code in
the PCL is not supported. Although only a subset of the .NET framework is
supported, it gives the developer a chance to create a lot of the model code
used through the various applications and platforms referencing this library.
Meaning, a larger part of the code can be shared between them. Using design
patterns such as described in Section 3.3, it is possible to use platform specific
code inside of the PCL through an abstraction.

32 Technology Analysis

3.3 Inversion of Control

Inversion of Control (IoC) is a characteristic of a framework and not a design
pattern or a specific implementation. Inversion of Control comes in various
forms of which Dependency Injection and Service Locator will be described
in this section. What Inversion of Control is great for and used for in many
frameworks is to look up an implementation of an interface in a plugin. It is a
way of removing dependencies from a class.

When not using the principle of IoC, it is very common to hard code the classes
and objects that you want to interact with inside a class. The objective of IoC
is to remove that responsibility from the class and instead provide it a way to
get these objects and classes, either through Dependency Injection or using a
Service Locator.

The objectives of IoC are as follows.

• Decoupling of the usage of a class from the actual implementation.

• Focusing a class on a specific task.

• Remove assumptions on what classes do and how they do it; instead rely
on contracts.

• Minimizing side effects of replacing a class with something else.

IoC is also often referred to as the "Hollywood Principle: Don’t call us, we’ll
call you", which in a nutshell describes what Ioc is all about.

3.3.1 Dependency Injection

Dependency Injection is a design pattern, where dependencies are injected or
passed as reference to a dependent object or class. It separates dependencies
from their own behavior.

Listing 3.1: Class without dependency injection
1 public class Lamp {
2 private LightBulb _lightSource ;
3

4 // Constructor
5 public Lamp() {
6 _lightSource = new LightBulb() ;

3.3 Inversion of Control 33

7 }
8

9 public void TurnOn() { _lightSource.TurnOn() ; }
10 }

Listing 3.1 describes how code would look like when no Dependency Injection
is used. The Lamp class itself hard codes which light source it uses and needs
to know that the LightBulb class has a method TurnOn() in order to interact
with it. In other words, this class only knows how to use LightBulb instances
and swapping that out with another light source, such as a LED or a candle is
not possible.

Listing 3.2: Class with dependency injection
1 public interface ILightSource {
2 void TurnOn() ;
3 }
4

5 public class Lamp {
6 private ILightSource _lightSource ;
7

8 // Constructor
9 public Lamp(ILightSource lightSource) {

10 _lightSource = lightSource ;
11 }
12

13 public void TurnOn() { _lightSource.TurnOn() ; }
14 }

Listing 3.2 shows how Dependency Injection through constructor injection works.
Here the Lamp class has no knowledge about what light source it gets, the re-
sponsibility is up to the framework to pass in an instance implementing the
ILightSource interface. This makes the Lamp class free of knowledge about its
surroundings and in turn leaves it a clean class.

There are also other types of Dependency Injection, where code is injected
through either a setter method, where a method that the injector uses is exposed
by the client. There is also interface injection, where the dependency defines
an interface, which needs to be implemented by the dependent class, where just
like in setter injection, a setter method needs to be implemented and exposed.

It is apparent that using Dependency Injection requires a component where
instances of dependencies are created and where instances of dependent classes
are created. These are often referred to as IoC containers and are either stand
alone libraries or part of a framework [Cla13, p. 28].

The pros and cons of Dependency Injection are as follows.

34 Technology Analysis

Pros:

• Can be introduced as refactoring as it does not require change in behavior.

• Classes are easier to test as they are more independent. Because of this,
objects can easily be mocked or stubbed.

• Knowledge about concrete implementations of dependencies can be re-
moved entirely from dependent classes, as all they need to know is the
interface they implement.

• System configuration can be externalized, and depending on the situation
different implementations of the interface can be injected.

Cons:

• Code can be harder to read because behavior is moved away from con-
struction of dependent classes. More files need to be referred to, to find
out what the system does.

• Decreases encapsulation as the developer needs to know how it works and
not just what it does [Mar11].

• Increases coupling to the IoC container or framework and can create pain
when wanting to change the way injection works.

3.3.2 Service Locator

Just like Dependency Injection the Service Locator design pattern’s objective is
to remove the dependency of a dependent class. This is done by having a single
object knowing how to get hold of all the dependencies. So that object will have
a method, which helps to return an instance of a dependency when it is needed.

One approach to the Service Locator could be a singleton which holds instances
of dependency classes, like in Listing 3.3. This of course needs to be created
somewhere and populated with actual instances of the dependencies. Whether
this is done through a configuration file or through code is up to the developer
and the ServiceLocator implementation.

Listing 3.3: Singleton Service Locator
1 public class ServiceLocator {
2 public static ILightSource LightSource() {

3.3 Inversion of Control 35

3 return Instance._lightSource ;
4 }
5

6 private static ServiceLocator Instance ;
7 private ILightSource _lightSource ;
8 }

A more dynamic approach to the ServiceLocator class would be to define a
generic method, which takes the interface type as argument and returns an
instance of that. This would have an internal collection of all the instances of
dependencies as seen in Listing 3.4.

Listing 3.4: Generic Service Locator
1 public class ServiceLocator {
2 public static T Resolve<T>() {
3 return (T)_instances[typeof(T)] ;
4 }
5

6 private static ServiceLocator Instance ;
7 private Dictionary<Type , object> _instances ;
8 }

Either way there is a setup process where these instances need to be registered
which could look as seen in Listing 3.5, which also shows an example of the
usage of the ServiceLocator.

Listing 3.5: Service Locator Setup and Usage
1 public class ServiceLocator {
2 public static void Register<T>(T instance) {
3 _instances[typeof(T)] = instance ;
4 }
5 }
6

7 // Registering
8 public void SetupServiceLocator {
9 ServiceLocator.Register<ILightSource>(new LightBulb()) ;

10 }
11

12 public class Lamp {
13 private ILightSource _lightSource ;
14

15 public Lamp() {
16 // Usage of ServiceLocator
17 _lightSource = ServiceLocator.Resolve<ILightSource>() ;
18 // or
19 _lightSource = ServiceLocator.LightSource() ;
20 }
21

22 public void TurnOn() { _lightSource.TurnOn() ; }
23 }

36 Technology Analysis

The pros and cons of using the Service Locator design pattern is as follows.

Pros:

• Code can be added without needing to re-compile the application.

• Large parts of code can be separated and the only link between them is
the Service Locator.

Cons:

• Hides dependencies of dependent classes as compared to Dependency In-
jection it does not expose its dependencies.

• Harder to maintain code, because it is unclear when breaking changes are
introduced due to the hidden dependencies.

• All tests need to interact with the global service locator needing to register
mocked dependencies under test, opposed to Dependency Injection where
dependent classes can be tested in isolation.

• Can potentially become a bottleneck in concurrent applications.

3.3.3 IoC Summary

If a generic approach to IoC is used such as shown in Listing 3.5 or an equivalent
to Dependency Injection, it makes it possible to load platform specific code,
which implements the interface defined for the dependent class, into a PCL. As
long as the dependency class implements the defined interface, any piece of code
can be registered at run-time which makes it very flexible.

3.4 Model-View-ViewModel

Model-View-ViewModel (MVVM) is a popular design pattern, used and loved
by many .NET developers. It was first presented as the Presentation Model
(PM) by Martin Fowler back in 2004 [Fow04]. Fowler, presented a pattern
where an abstraction of the a view was represented in a Presentation Model.
This PM updates the view and stays in sync with it. In late 2005 John Gross-
man presented the MVVM pattern [Gro05], which is identical to Fowler’s PM.

3.4 Model-View-ViewModel 37

Figure 3.2: Illustration of the MVVM design pattern

Although, being identical, it was still a generalization and specialization of PM
intended for WPF. Compared to PM, where the synchronization logic, which
updates the UI is contained in the PM, MVVM relies on a binding engine. This
binding engine comes with WPF for free and allows the developer to create ex-
pressions to for example bind a Label and its text property to a property in a
ViewModel. So in short terms the ViewModel does not need to know about the
view itself. Creating ViewModels with Dependency Injection can make them
entirely platform independent and be put into a PCL, which in turn can be
used across different platforms.

Figure 3.2 describes the flow and dependencies of the MVVM design pattern.
Left most is the View, which receives input from the user and displays values
from the ViewModel. In Windows applications normally the XAML provides the
glue or binding engine. In Xamarin projects, the developer has to provide this
themselves or through a 3rd party framework. The binding engine’s responsibil-
ity is to marshal bound properties from the View to the ViewModel. ViewModels
in turn must implement an interface, INotifyPropertyChanged, which is used to
trigger updates on the View. Hence, it is also the binding engine’s responsibility
to listen to these triggers and update the View accordingly.

When the ViewModel has its properties modified by user interaction, it can
in turn can update one or several Models which it uses as data source. User
interaction on buttons and alike, happens through the ICommand interface,
which the binding engine also knows of. This ICommand implementation can
update properties on the ViewModel, interact with Models etc.

In other terms the ViewModel is an abstraction of the View, its purpose is to
format the necessary data in a way so it is suited for presentation, as a Model
is not always representative of how the values in it should be shown in a visual
representation.

38 Technology Analysis

3.5 Frameworks

There are several frameworks which work for both Xamarin and Windows 8.1
as are the target platforms of this project. These framworks include MVVM
implementations, UI abstractions, IoC in various forms and much more. This
section will describe what they each do and in the end it will compare the
frameworks to each other.

3.5.1 ReactiveUI

"A MVVM framework that integrates with the Reactive Exten-
sions for .NET to create elegant, testable User Interfaces that run
on any mobile or desktop platform. Supports Xamarin.iOS, Xam-
arin.Android, Xamarin.Mac, WPF,Windows Forms, Windows Phone
8 and Windows Store apps." [tea14]

ReactiveUI was started by Paul Betts back in 2010 and is a MVVM framework.
What makes it unique compared to other solutions, is that it builds on top of
Reactive Extensions [Mic12] (Rx). Rx makes it very easy to create applications
which are event based, as Rx handles this very elegantly for the developer. Addi-
tionally, Rx provides a simple binding engine to wire up Views with ViewModels.
Lastly, it also provides a way to navigate the application from a ViewModel and
a simple implementation of the Service Locator design pattern.

3.5.2 MvvmLight

"The main purpose of the toolkit is to accelerate the creation and
development of MVVM applications in WPF, Silverlight, Windows
Store (RT) and for Windows Phone." [Bug09]

MvvmLight was created by Laurent Bugnion in 2009. As the name indicates is
also a MVVM framework. Not only does it work for the platforms mentioned,
it recently also got support for Xamarin projects.

MvvmLight does more than just being an MVVM framework. It is a frame-
work, which encourages the usage of MVVM and design patterns. This includes
Dependency Injection, Service Locator and Publisher Subscriber messaging pat-
tern. It also provides ViewModel navigation and a simple binding engine like
Rx.

3.5 Frameworks 39

3.5.3 MvvmCross

Another very popular MVVM framework is MvvmCross [Lod10], which was
started by Stuart Lodge in 2011. It was specially developed for the Xamarin
platform and implements many of the same features as MvvmLight does along
with some extra very useful things.

In addition to MvvmLight, it also provides a Plugin framework which builds
around the built in IoC functionality. It provides a more advanced binding
engine, which allows for creating bindings in the AXML markup used on Xa-
marin.Android similar to what you do with bindings in XAML. The language
used for these bindings is advanced an allows for composite bindings, inline value
conversion, if statements and more. This can be useful if the developer wishes to
move some of the behavior out of a ViewModel and into a View. It also provides
a large amount of plugins for various functionality such as GPS, sound effects,
getting accelerometer data, file system interaction and many more. There is
also a big community which creates plugins for MvvmCross.

3.5.4 Xamarin.Forms

Xamarin.Forms [Xam14b] is a new addition to the product lineup from Xamarin.
It is a framework which abstracts creation of UI, such that it can be written
once and create native UI on the supported platforms. The supported plat-
forms are Xamarin.Android, Xamarin.iOS and Windows Phone 8. While not
supporting Windows 8.1 tablet applications it is still a very interesting frame-
work, because of its ability to write UI in a PCL and have it working on the
supported platforms.

Xamarin.Forms also has a binding engine allowing MVVM frameworks to have
their ViewModels bound to the Forms UI. While only having a limited default
UI control types so far, it is still possible to extend that repertoire by adding
your own and wrapping them in classes that Xamarin.Forms can interpret. This
potentially will grow a community creating more UI controls for Xamarin.Forms.
Xamarin.Forms also implements IoC through the Service Locator pattern.

3.5.5 Frameworks Comparison

To compare each framework a matrix, which can be seen in Table 3.1, has been
made. Features, each framework implement are listed and marked with 3if

40 Technology Analysis

present in the framework and marked with 8if not present.

R
ea
ct
iv
eU

I

M
vv

m
L
ig
ht

M
vv

m
C
ro
ss

X
am

ar
in
.F
or
m
s

Service Locator 3 3 3 3
Dependency Injection 8 3 3 8
Subscriber/Publisher
Messages 3 3 3 3

INotifyPropertyChanged 3 3 3 8
ICommand 3 3 3 8
ValueConverters 3 3 3 8
Navigation Service 3 3 3 3
Simple Bindings 3 3 3 3
Advanced Bindings 8 8 3 8
Plugins 8 8 3 8
View Abstractions 8 8 8 3

Table 3.1: Framework feature comparison

At a glance it can be seen that the MVVM frameworks are very similar in
features implemented with few features not being implemented by ReactiveUI
and MvvmLight.

3.6 Chapter Summary

This chapter covered what Xamarin is and compared it to other approaches to
mobile development. It covered Portable Class Libraries, which is a means to
create Library projects which target multiple platforms. It covered the Inversion
of Control principle with specific design patterns, which use this covering Depen-
dency Injection and Service Locator. This chapter also covered the Model-View-
ViewModel design pattern, which is a means to decouple Views from behavior
and Model code using an abstraction and a binding engine. Lastly this chap-
ter covered some MVVM frameworks including ReactiveUI, MvvmLight and
MvvmCross, but also Xamarin.Forms, which is not a MVVM framework, but
rather an UI abstraction.

Chapter 4

Design

This chapter covers the general design of the applications made in this thesis.
It describes how components interact with each other and how the structural
design of the applications are.

The design decisions of this chapter are all based on the design patterns de-
scribed in the Chapter 3 and the attempt is to maximize the amount of code
that goes into the Portable Class Library projects, such that code is shareable
between the mobile platforms.

Figure 4.1 describes the overall architecture of how Noise Sentinel works from
the Mobile Client’s point of view. Starting from the left, NMT’s connect to a
streamer service in the cloud, which processes all the sound data. This data
is sent to an alert processing component, which applies rules to the data the
NMT’s provided. Alerts and data is then saved to databases. Sound files gen-
erated from Alerts are stored in Azure Blob Storage and Alerts themselves are
stored in Azure Table Storage. Several Web Services and Web Roles are hosted
in the same environment, which serve Web Clients such as RTNC, administra-
tion tools, Noise Sentinel client and OpenAPI and many more. On the rightmost
side of the figure, Azure Access Control can be seen. It provides the ability to
allow customers to use their preferred Identity Provider, being either Google,
Facebook, Yahoo or others. The association with OpenAPI, which is also de-
scribed in Figure 2.1, is due to a callback, which also helps pair a device to

42 Design

Figure 4.1: Overview of Noise Sentinel architecture

Noise Sentinel. It will be described in more depth in Section 4.1.3.1.

4.1 Mobile Applications

The overall structure of the mobile applications can be seen in Figure 4.2. It
has been chosen to split the project up such that all platform specific code
is isolated from code that is cross-platform. Hence, in this case there is a
Windows Universal project containing a Windows Phone 8.1 project along with
a Windows 8.1 project. They both share code through a Shared Project. This
shared project contains the UI, the setup process for registering services and
platform specific code in the IoC container along with native value converters
for formatting values in ViewModel bindings. The same goes for the Android
project. The iOS project is there to validate that the code also builds on that
platform as well and validates that the referenced code from the PCL is in fact
cross-platform.

4.1 Mobile Applications 43

Figure 4.2: Overall Structure of Applications

4.1.1 Core

The Core library is a Portable Class Library, which contains most of the appli-
cation logic, including ViewModels, Interfaces, Services which implement these
Interfaces, Models and Converters. The choice of using a PCL instead of a
Shared Project is due to the fact that, Shared Projects do not compile to a DLL
file, which means that distribution of a Shared Project is more cumbersome as
you will have to distribute a project with several files instead of a single DLL.

4.1.1.1 ViewModels

There are several ViewModels contained inside the Core PCL. Each ViewModel
represent an abstraction of a View and as described in Chapter 3 dependency
injection is used where applicable through constructor injection. This makes it
a lot easier to take a ViewModel and test it in isolation as when instantiating
it will make it clear to the tester what dependencies it needs. A class diagram
describing the associations between the ViewModels can be seen in Figure 4.3.

44 Design

Figure 4.3: ViewModel Class Diagram

AccountSettingsViewModel - The responsibility of this ViewModel is to
help authenticate a user. It uses the plugin described later in Section 4.1.3.1,
to load the available Identity Providers to be displayed in the associated View.
Additionally when the user is logged in it presents the ability to log the user out.
This ViewModel is in fact only used in the Windows 8.1 project as the navigation
flow differs from what is possible and available on the other platforms. The
equivalent ViewModel on the other platforms is the LoginViewModel.

This ViewModel is highly dependent on the HomeViewModel, which will be
described later. This is due to how it is visually represented on Windows 8.1,
using a Flyout in the right side, meaning that the HomeViewModel is still loaded,
while the AccountSettingsViewModel is presented. When a Identity Provider is
selected from the list, the HomeViewModel is notified and calls the Authen-
tication plugin described in Section 4.1.3.1, which in turn presents a modal
web browser. This is the reason of the dependency, because the Flyout cannot
present the modal web browser.

AlertDataViewModel - This ViewModel is simply prepares values for vi-
sual representations from an Alert. This is done from the two models Alert-
Data which contains all the necessary information about the Alert, but also
SoundRequestData which contains information about the sound clip associated
to the Alert, if any.

4.1 Mobile Applications 45

ClientDashboardItemViewModel - This ViewModel is a representation of
the ClientDashboardItemV1, which is a contract used in communication with
OpenAPI. ClientDashboardItemV1 contains an internal collection of itself, mak-
ing it recursive. The ClientDashboardItemV1, which the name also hints is used
to describe an item in a Dashboard. This model is used to give the mobile client
a list of Tenants, which each has a collection of accessible Sites. It is also used
to give the mobile client a collection of URL’s for help documents.

ClientDashboardViewModel - This ViewModel orders the ClientDashboard-
ItemViewModels such that they are divided into lists of Tenants, Sites and Links
to make it easier to represent these lists visually on the different platforms. This
ViewModel also helps searching through Tenants, as in cases where an admin
is using the (see Use Case 2, extension 2.a) application several Tenants will be
displayed.

HomeViewModel - This ViewModel is what the application starts with vis-
iting. If the user is not logged in a welcome message is presented it contains
a Command for directing the app to the LoginViewModel or on Windows 8.1
to the AccountSettingsViewModel. If logged in a ClientDashboardViewModel is
fetched using the AppClientService described in Section 4.1.1.2. When it is
fetched the bound view presents the ClientDashboardViewModel.

LocationViewModel - This is a representation of an NMT, and it contains
properties to display the values it can display. It also contains historical data
for graphs.

LoginViewModel - Similar to the AccountSettingsViewModel this ViewModel
is simply used on the non-Windows platforms to allow the user to log in their
selected Identity Provider.

RtcViewModel - or Real-time control ViewModel has most of the core func-
tionality in this project besides HomeViewModel. This ViewModel interacts
with all the services described in Section 4.1.1.2 to fetch NMT’s, their real-time
data, historic data and alerts for each NMT or location.

4.1.1.2 Services

There are two interfaces in the core, which are shown in Figure 4.4, one for each
Service. These are used for the dependency injection. As already described,
each dependency each ViewModel holds are injected through the constructor,
hence there is a need to have a contract for each dependency in order to inject
it. This also means the ViewModels don’t know which exact implementation

46 Design

Figure 4.4: Services class diagram

they get.

The two services in this project areAppClientService which is a helper service
to communicate with OpenAPI. It’s job is to facilitate Use Case 2 shown in
Figure 2.2 in Chapter 2. It helps fetching a ClientDashboardSetV1 model and
serve it to the interested ViewModels. It also fetches access information for
the Noise Sentinel Real-Time Data service and fetches Alerts from Azure Table
Storage and Sound data from Azure Blob Storage.

The other service is the RtcService, which has the responsibility of fetching all
the locations from the Real-Time Data Service, it fetches Real-Time data for
the locations along with historical data.

How the two services interact the RtcViewModel can be seen in Figure 4.5,
which is a sequence diagram. The RtcViewModel calls the asynchronous Start()
method, which makes the RtcService start fetching data for the Site that was
selected on the dashboard. First it figures out whether it has the access data to
the web services it needs to call. If not, this information is fetched from OpenAPI
using the token from the authentication process described in Section 4.1.3.1.
When it has all the access information, it can proceed fetching the inventory for
the site from the Real-Time Data Service. This inventory is a collection of all the
locations that are associated with the Site. Afterwards it starts fetching real-
time data, which it keeps looping over and over again until the RtcViewModel
calls the Stop() method on the RtcService.

4.1.2 Application Projects

As seen in Figure 4.2 there are three application projects, two for each of the
Windows platforms, which is a Windows Universal project containing a project
for both Windows Phone 8.1 and Windows 8.1, along with a shared project.

4.1 Mobile Applications 47

Then one project for Android and iOS each. Since the Windows Universal
projects contain the same API for both the phone and non-phone platform, it
uses Shared projects to share platform specific code between the two project.

Each of the platforms are responsible for their own UI code, set up of the IoC
container mapping the interface to the actual implementation and lastly for
special platform specific converters to use to convert properties in ViewModels
which need to be converted to platform specific models. For instance when
wanting to present colors on the different platforms, a converter must be made
for that platform to be able to bind it to the model the View expects to see.

4.1.2.1 User Interface

Figure 4.6: Mock up of the Dashboard

The mock-up from introduced in Chapter 1 and discussed in Chapter 2, which
Jonas made had a couple of design elements, overlayed the map with menus.
There are no official guidelines telling that this is prohibited or bad practice.
However, looking at many of the other apps that have been made since back
when Jonas made his mock-ups, there is a general trend showing that this is
not something that is practiced a lot. However, there is a general trend where
Windows 8.1 applications which use Hub controls, expand in sections which are
also used to display details about items there. Hence, a decision was made to
reflect these trends and move the UI a bit around. Looking at Appendix C, it
can be seen in Figure C.5 how it has been chosen to add a detail section for a
location, when it is selected on the map. It expands between the map and the
Alert section. More important is moving away from the proposal of having the
overlay menu with comments for Alerts that was in Jonas’s mock-up, which has

48 Design

been made into a section which expands on the right of the Alerts, when an
Alert is selected. This can be seen in Appendix C Figure C.6. This provides a
UI more true to the trends and is what a Windows 8 user would expect when
using the application.

Additionally a mock-up was made for Use Case 2, which describes the action
of selecting a Tenant and Site. This can be seen in Figure 4.6, see Appendix E
for a larger version. Leftmost is a list of Tenants, when the user is an admin,
as they normally have access to all the Tenants created in the system. A search
box above has been made to be able to filter through them. When selecting
a Tenant it reveals the Sites that Tenant has access to. If the user is not an
admin, the sites are simply shifted to the left simply showing the Sites the user
has access to.

4.1.3 Plugins

Figure 4.7: Plugin Structure

Unlike the core library where most of the code is application specific, plugins
are a place where you can put in code, which you want to share across different
applications. In this project several of 3rd party plugins were used, for things
such as handling persistent storage for settings, generating application ID’s by
getting information about the hardware, better HttpClient handler implemen-
tation and more. However, one plugin was created for this project, which is
an Authentication plugin, which helps with the workflow of how Azure Access
Control handles authentication. What is common about these plugins how they
are generally structured. All plugins start with a PCL library containing all
the interfaces describing what the plugin does. Cross-platform implementations
also go in this PCL. However, the as seen in Figure 4.7, it is not uncommon
to have a project for each platform you want to support with a platform spe-
cific implementation. This way in the setup process in the different application

4.1 Mobile Applications 49

projects the actual implementations can be registered in the IoC container for
use through the application.

4.1.3.1 Authentication

Figure 4.8: Azure Access Control Sequence Diagram

Authentication using Azure Access Control (ACS) works by using the OAuth
protocol. The sequence diagram in Figure 4.8 describes how it works along with
Noise Sentinel using the OpenAPI. The Mobile application requests the available
Identity Providers it has access to from ACS. This information is gathered from a
Realm and Name Space value generated in the ACS control panel. The user can
now pick either of the Identity Providers return in the list. Upon doing so a web
browser needs to be opened to authenticate with the Identity Provider. After
the user is logged into the Identity Provider, the web browser is redirected to a
callback URL, which in this case is an URL for the OpenAPI along with a unique
application identifier, such that a device can be paired to the authenticated user.
This information is stored by OpenAPI and a token is generated for that user
to use OpenAPI in future API calls. Which is retrieved by the client when the
web browser again is redirected to a URL, which the web browser component
knows is the end of the process and the URL is parsed to retrieve the token and
it is then usable by the client.

50 Design

4.2 OpenAPI

OpenAPI is a ASP.NET MVC project which follows a RESTful [Fie00, p. 76]
approach to designing the web service. This means it follows a set of guidelines
on the architecture used to design the web service. Applied to OpenAPI, this
means that there is a uniform interface for identification of resources. Meaning,
that the URLs and methods to access resources are descriptive of what you get
and how you get it.

There are two methods needed for the application in the OpenAPI. The ability
to retrieve a Dashboard and also very important, the ability to retrieve access
information, for how and which signature to use when calling various services in
Noise Sentinel and when fetching Alerts from Azure Table storage and Sound
clips from Azure Blob storage.

All communication between OpenAPI and clients calling it is designed to use
contracts which are serialized at the OpenAPI to be transferred to the client.
These can in turn be deserialized by the client into an C# class instance.

All requests to OpenAPI need to have the correct header, which contains a
Simple Web Token (SWT), which is generated from the token retrieved from
the Authentication process described in Section 4.1.3.1. If it is not present the
OpenAPI will return with a Unauthorized HTTP status, not delivering any
data. By using this header with the token, the user can be identified and the
correct resources can be fetched for that user

4.3 Chapter Summary

This chapter described the overall architecture of the project. It described how
the applications are split into a core part and several application projects, which
are designed to split shareable code from platform specific code. The services
in the core PCL were described along with their roles and their behavior. User
interface was described using mock ups and a change to Jonas’s proposal was
decided to follow trends of applications already released in the market. Plugin
structure and design of the Authentication plugin was described. Lastly the
RESTful OpenAPI web-service was described and which calls can be made and
how a user identifies himself with it.

4.3 Chapter Summary 51

Figure 4.5: Services Sequence diagram

52 Design

Chapter 5

Implementation

This chapter will concern itself with the implementation of the applications
described in the previous Chapter 4. It describes how generic constructs are
used to conveniently help the developer do less casting of types. It describes how
services are using asynchronous programming with the async/await keywords.

Looking at Table 3.1 in Chapter 3 it shows that MvvmLight and MvvmCross
are both very feature rich frameworks with features that can be useful when
creating cross-platform applications. However MvvmCross has an edge as it
supports bindings in the Android markup and has a plugin architecture, which
enhances breaking out code into smaller tasks, which can be generalized and used
across different applications. Hence, the choice has been made to implement the
applications using this framework.

54 Implementation

5.1 BaseView

Figure 5.1: Class Diagram showing BaseView and usage

MvvmCross did not have generic View implementations at the time of writing
the code, for the Windows platforms. Hence, instead a BaseView implementa-
tion was made to accommodate this. BaseView is a convenience class, which
helps casting the ViewModel property of the View to the type passed into the
generic implementation. This removes the need to cast it manually every time
the property is accessed. Looking at Figure 5.1 it can be seen how the Base-
View class is inherited all the way down to the actual view implementation, in
this case the HomeView. Although, a bit hard to see from the class diagram,
the HomeView depends on the HomeViewModel, but not the other way around.
This is a general characteristic of ViewModels, as they never know anything
about a View in the MVVM pattern. Listing 5.1 shows the generic implemen-
tation of BaseView, which is marked abstract such that an instance of it can
never be instantiated directly.

Listing 5.1: BaseView implementation
1 public abstract class BaseView<TViewModel>
2 : MvxWindowsPage where TViewModel : MvxViewModel
3 {
4 public new TViewModel ViewModel
5 {
6 get { return (TViewModel) base.ViewModel ; }
7 set { base.ViewModel = value ; }
8 }
9

10 // other code here
11 }

5.2 Constants 55

5.2 Constants

Figure 5.2: Class Diagram showing
the Constants class

The applications need to know how to
contact the various services involved.
There are also several environments,
which Noise Sentinel uses for devel-
opment, test, reference and produc-
tion, which are deployed in that order.
Hence, a class Constants, which is de-
picted in Figure 5.2, has been made
which handles all the URL’s for these
systems. As the name indicates it has
been chosen to hard code these into
the application.

The class has a single Dictionary
where the keys are the mentioned en-
vironments above. When needing the
information for the development envi-
ronment, they key is simply dev, and
returns an object with all the neces-
sary information to contact that en-
vironment, but also the necessary in-
formation on which Realm and Name
Space values to use for Azure Access
Control in order to get the correct list
of Identity Providers. Additionally it
has a method BuildUrl which takes a
host name, and one of the defined API
names also defined in the class, which
builds the exact URL to communicate
with an API.

5.3 AppClientService

AppClientService’s responsibility is to fetch access information, which provides
signatures and URLs for the services containing real-time data and alerts. It
also has the responsibility of fetching a dashboard set from OpenAPI. Seen
in Figure 5.3 it inherits from BaseService which is a common class for App-
ClientService and RtcService as both the services communicate with OpenAPI.

56 Implementation

Figure 5.3: Class Diagram of AppClientService

In short BaseService serves the purpose of creating an instance of HttpClient
which has all the correct headers set, such that when calling OpenAPI, it will
not get a Unauthorized return message.

The two methods GetDashboardSetAsync and GetSystemAccessInformationSe-
tAsync are using the async/await keywords, which were added in a recent C#
version. This allows for easily executing code asynchronously without using call-
backs. All awaited methods in the core library are using ConfigureAwait(false)
as this prevent switching of context when the asynchronous operation has fin-
ished. Normally this is set to true, and what happens is that before executing an
async method, the code normally remembers which context it was running on
before the execution of the code. Then when the operation finishes it switches
back to that context. Since the method is contained inside a library which does
not have a notion of main threads etc. switching context is not important. When
doing many small async operation the switching of context can also impose an
overhead on the application since it needs to switch the context every time,
unless using ConfigureAwait(false). This also solves the problem of deadlocks
when calling the asynchronous methods in a synchronous fashion by requesting
the Result property of a Task.

The way the two methods work is that they each call OpenAPI with the authen-
ticated HttpClients they get from BaseService. The response data by OpenAPI
is simply deserialized into models described in the Noise Sentinel contracts,
which are shown in Figure 4.2 in Chapter 4. After the deserialization of the
response the objects can now be used throughout the application just like any

5.4 RtcService 57

other C# class instance.

5.4 RtcService

Figure 5.4: Class Diagram showing
the RtcService

Exactly like the AppClientService,
RtcService also inherits from BaseSer-
vice in order to get an authenticated
HttpClient. It also takes the IApp-
ClientSerivce as one of its arguments
in the constructor as it needs the Sys-
temAccessInformationSet which App-
ClientService helps fetching. This de-
pendency is resolved by the Depen-
dency Injection MvvmCross provides.

RtcService is slightly more complex
than the AppClientService. Its pur-
pose is to do the heavy lifting of
fetching Real-time data and Alerts
for the RtcViewModel and the associ-
ated LocationViewModels. It contains
two methods which starts and stops
the fetching of Real-time data for a
specific site. Namely StartAsync()
and Stop(). As the first method
indicates, it starts something asyn-
chronously. What it exactly does is
to set up a CancellationTokenSource
for when Stop() is called to shut down
gracefully. It also awaits the private
method DoWorkAsync, which can be
seen in Listing 5.2. This method, runs
every half second to fetch Real-time
data and historical data. The Stop()
method calls Cancel() on the Cancel-
lationToken, which has been passed
into DoWorkAsync and all the meth-
ods it awaits.

TheGetLastSystemAccessInformation-
SetAsync() method checks whether a

58 Implementation

System Information Set has been fetched and that it has been less than 20
minutes since last time it fetched it from the server. This is due to the keys
contained in the set are regenerated and only give temporary access to the ap-
plication to access the resource. If this is the case, it asks the AppClientService
to fetch a new set.

Listing 5.2: BaseView implementation
1 private async Task DoWorkAsync(CancellationToken token)
2 {
3 _isReading = true ;
4 _forcedReloadOfInventory = true ;
5

6 while (_isReading)
7 {
8 await GetLastSystemAccessInformationSetAsync(token)
9 .ConfigureAwait(false) ;

10 await ReloadInventoryAndFireIfReloadedAsync(token)
11 .ConfigureAwait(false) ;
12 await GetRealtimeDataAsync(token)
13 .ConfigureAwait(false) ;
14 await GetHistoryDataAsync(HistoryDataKind.Hour , token)
15 .ConfigureAwait(false) ;
16 await GetHistoryDataAsync(HistoryDataKind.Day , token)
17 .ConfigureAwait(false) ;
18 await GetHistoryDataAsync(HistoryDataKind.Week , token)
19 .ConfigureAwait(false) ;
20 await GetHistoryDataAsync(HistoryDataKind.Month , token)
21 .ConfigureAwait(false) ;
22 await Task.Delay(500, token).ConfigureAwait(false) ;
23 token.ThrowIfCancellationRequested() ;
24 }
25 }

5.4.1 Inventory Reloading

ReloadInventoryAndFireIfReloadedAsync(), like the name indicates reloads the
inventory of Locations. This only happens if there is no current inventory or the
boolean _forceReloadOfInventory is set to true. If the inventory was reloaded
the event InventoryReloaded is fired to notify the RtcViewModel about this
change.

5.4.2 Real-time Data

GetRealtimeDataAsync(), is where the most of the magic happens. What it
does is to download an XML file which on the web service is updated every half

5.4 RtcService 59

second. This XML file contains all the real-time data information for the past
2 minutes, just to make sure that if a hiccup occurs in the system somehow,
the past 2 minutes can be recovered and still be displayed in the application.
The available data from this XML file is the current noise level, pressure, wind
speed, temperature and wind direction. It also contains notifications from the
web service about reloading the Inventory of location, this is in cases where
locations are added or removed from the site that is currently monitored.

The RtcService has an ObservableCollection of LocationViewModels which is
where all real-time data is populated and inventory changes are made to. This
is used by the RtcViewModel as source for its locations, and it keeps a reference
it. The smart thing about ObservableCollections is that MVVM implementa-
tions understand how they are updated as they implement the INotifyCollection-
Changed and INotifyPropertyChanged interfaces, which are integral to MVVM.
So when the reference to the ObservableCollection is bound in a View and the
collection is modified. The MVVM binding engine knows that it needs to change
or update the visual representation.

5.4.3 Historical Data

RtcService also handles fetching historical data, which is primarily used to dis-
play in graphs. Historical data is simply a key/value collection of time stamps
and noise values. Similarly to the Real-time service historical data is an XML
file which is deserialized and merged into the corresponding LocationViewModel,
when there are changes to the data. A method ShouldUpdateLastHistoryData
was made to handle when the historical data should be updated. Historical data
is divided into hourly, daily, weekly and monthly data. Hourly data is updated
every minute and should only be fetched every minute, daily data is updated
every 10 minutes, and weekly and monthly data is updated every 12 hours and
hence, should only be re-fetched using that interval.

5.4.4 Alerts

Alerts and sound clips are fetched using the two methods GetAlertDataAsync()
and GetSoundRequestDataAsync() both create their own queries to Azure Table
storage to get data for a specific location within a specific interval. These queries
are executed through the Windows Azure Storage plugin made for this project,
see Section 5.5.1 for more information about that.

60 Implementation

5.5 Plugins

5.5.1 Windows Azure Storage

Figure 5.5: Class Diagram of the return types from Azure Storage

Since the Windows Azure Storage library cannot be used in a Portable Class
Library, a plugin had to be made to enable the usage. However, the library is not
even made for the Xamarin.Android and Xamarin.iOS platforms to begin with,
so this had to be done first. Two new library projects for the two platforms were
created and in a similar fashion as in the WindowsPhone project the same files
were linked into the project and compiled. This resulted in class libraries for each
platform. However, since the type of result you get from Azure Table storage is
of type StorageRow which has platform specific code inside of the class, it cannot
be used inside of a Portable Class Library. Therefore the classes inheriting from
the StorageRow class were duplicated inside of the PCL, and Interfaces were
made for them, which the classes needing to implement StorageRow also had to
implement, such that translation between the platform specific and the portable
types was easy due to the contract they both implement, this can be seen in

5.5 Plugins 61

Figure 5.5. Methods in all three class libraries for the plugins (refer to Figure 4.7
in Chapter 4 for a refresh of the structure of plugins), were made to translate
from one type to the other and for queries to the Azure Storage was made in
the plugins. This makes the Azure Storage Plugin very specific to the return
data types the plugin supports. In this case for Alerts and Sound Request Data
(sound clips). However, all other clients needing this information would be able
to reuse the plugin as the task of contacting the Azure Storage is encapsulated.

5.5.2 Authentication

Figure 5.6: Class Diagram of the Identity Provider Client

The authentication plugin consists of two parts. The first is a means of acquir-
ing a collection of Identity Providers. Seen in Figure 5.6 a couple of interfaces
and an implementation specifically for Azure Access Control has been made.
IIdentityProviderClient is an interface, which defines a couple of methods for
getting an IEnumerable<IdentityProviderInformation>. IdentityProviderInfor-
mation is simply a class with a name and a couple of URL’s on how to log in
and log out of an identity provider. The IAzureAccessControlIdentityProvider-
Client is a specialization of the previous interface, which is suited for Azure
Access Control, as ACS requires a couple of values in order to identify which
account and which identity providers it needs to return to the requesting client.
The actual fetching happens using an instance of HttpClient which gets a JSON
document in the response which in turn is deserialized to the return type of the
methods defined in the interfaces. All this happens in the PCL and no platform
specific code is needed for this.

As for the login process in it self, showing up the platform specific web browser
component, the implementation is in the platform specific library of the plugin.
Looking at Figure 5.7, on the left hand side is the Windows 8.1 implementa-
tion, which internally uses the WebAuthenticationBroker class, which already
implements everything needed. This is not the case on Android, as this class is

62 Implementation

Figure 5.7: Class Diagram of the Login Tasks

not present on that platform. Instead it implements an Android Activity, which
displays a WebView and implements a custom WebViewClient which handles
the redirection until the token is received as described in the sequence diagram
in Figure 4.8 in Chapter 4.

5.6 ViewModels

Most of the implemented ViewModels are very trivial apart from the couple of
ViewModels handling the authentication flow on Windows 8.1. What is com-
mon for all of the ViewModels is that every dependency is injected through the
constructor. Every value that needs to be bound to a view is a public property
implementing the INotifyPropertyChanged pattern. All user interaction hap-
pens through ICommand implementations, which are bound to Click events or
Command properties views.

The relationship between HomeViewModel and AccountSettingsViewModel can
be seen in Figure 5.8. HomeViewModel instantiates an instance of AccountSet-
tingsViewModel for use when used in an Flyout on Windows 8.1. This be-
havior is previously described in Section 4.1.1.1. The problem in this case is
that the Flyout is not able to launch the modal WebAuthenticationBroker de-
scribed in Section 5.5.2. This must be done through the HomeViewModel. The
way this is achieved, is to use the Subscriber/Publisher pattern, which is im-
plemented in MvvmCross also called Messaging. This allows any part of the
system to subscribe or listen to specific method of a specific type. Hence a
class LoginIdentityProviderMessage, which simply has a property for the selected
Identity Provider, which is chosen in the Flyout from the displayed collection of
Identity Providers. This message with the Identity Provider is published by the
AccountSettingsViewModel. In turn HomeViewModel subscribes to get these
messages, and when such one is received, the LoginIdentityProviderTask from
the authentication plugin is invoked with the selected IdentityProvider and the

5.7 Custom Views 63

Figure 5.8: Class Diagram of HomeViewModel and AccountSettingsView-
Model

modal view is displayed correctly.

5.7 Custom Views

A couple of custom view implementations were necessary in this project. The
first one is a wrapper of the MapFragment at is has issues when contained in a
ScrollView, the second is a Graph view component to display historical data.

5.7.1 Map View

On Android, to mimic the navigation of the Windows 8.1 application, in the
RtcView, a special implementation had to be made for the MapView to al-
low scrolling the map when it is inside a ScrollView or in this case a Hori-

64 Implementation

zontalScrollView. This is due to the ScrollView intercepting all the touches
made, and thinking the touches are made on itself, rather than letting them
pass to the MapView. The solution here is to call RequestDisallowIntercept-
TouchEvent(true) on the ScrollView whenever you want to pan around the
MapView, hence a wrapper is needed to be made around the MapView. The
actual implementation of this can be seen in Listing F.1 in Appendix F. The
essence of this is to create a View around the MapFragment, lets call it Touch-
ableWrapper, which is a FrameLayout which in its most basic form listens for
touch events. It then exposes two actions, which it is possible to attach a method
which needs to be executed when touch down or up is detected. This is used
in a class inheriting from MapFragment, where in the OnCreateView method,
the inflated View is wrapped in the created TouchableWrapper. This in turn
also exposes two events, corresponding to the ones of the TouchableWrapper.
Now when using the Fragment the two events that it exposes can be used to
call the RequestDisallowInterceptTouchEvent(true), when touches down are de-
tected, and the same call, with a false argument when touch up is detected. An
example of the usage of this wrapped TouchableMapFragment can be seen in
Listing 5.3.

Listing 5.3: Usage of TouchableMapFragment
1 var frag = FragmentManager
2 .FindFragmentById<TouchableMapFragment>(Resource.Id.map) ;
3 frag.TouchUp += (sender , args) =>
4 _hsv.RequestDisallowInterceptTouchEvent(false) ;
5 frag.TouchDown += (sender , args) =>
6 _hsv.RequestDisallowInterceptTouchEvent(true) ;

5.7.2 Graphs

The Open Source library OxyPlot was investigated to begin with to help dis-
playing graphs in the applications. The great thing about OxyPlot is that it
already has implementations for all the platforms covered by this project. For
some reason, the performance of the OxyPlot View was very bad on all the
platforms, which in many cases made the application freeze for 2 or more sec-
onds. Hence, it was decided to fall back on an implementation made during the
Internship Project described in in Section 1.2.2 in Chapter 1. It is a simple im-
plementation where line and bar graphs were implemented for Windows Phone
7, Android and iOS. This implementation was made with file linking in mind
and a lot of compiler directives were used to swap out platform specific meth-
ods. This project was cleaned up and made into a set of libraries, not plugins
as there is no need for Dependency Injection with the views in this case. The
libraries consists of a core PCL with all the classes that can be shared, and one
for each platform, very similar to how a plugin is structured. Referencing these

5.8 Custom Bindings 65

libraries from each project, it is not possible to use these graphs. The views are
called MiniChart. A screenshot of a MiniChart can be seen in Figure 5.9.

Figure 5.9: Screenshot of a MiniChart

5.8 Custom Bindings

There are some views that do not support creating bindings from it out of the
box on Android. Hence, there is a need to create some custom implementations
to make that work. The entire code for this can be seen in Listing G.1 in
Appendix G.

The idea for this custom binding is to be able to give it an ObservableCollection
of LocationViewModels, which are then bound to the MapView appearing as
circles with a value inside indicating the current noise level.

The steps for creating bindings to a collection are as follows.

1. Assign the ObservableCollection to the ItemsSource property of the bind-
ing. In this case it is called LocationMarkerSet, which provides the binding
capabilities.

2. When the ObservableCollection is assigned, remove the previous Weak-
Subscription to handle changes in the collection, if present. Otherwise
continue with subscribing to the INotifyCollectionChanged implementa-
tion in ObservableCollection.

3. When ItemsSource is assigned remove all items on the map, then re-add
the new items from ItemsSource to the map, and then center the map
around the items.

66 Implementation

The process of adding a new item from the ItemsSource to the MapView are as
follows.

1. Create a new Marker from the coordinates in the LocationViewModel.

2. Create a new instance of LocationViewModelWrapper, which is a helper
class to handle changes in the LocationViewModel and reflect them on the
Marker.

3. The LocationViewModelWrapper creates a initial Bitmap for the circle and
assigns it to the Marker.

4. Then the LocationViewModelWrapper creates a weak subscription to the
INotifyPropertyChanged implementation of the LocationViewMode to lis-
ten for changes in the properties for the Coordinate and the CurrentNoise-
Level. When the Coordinate property is updated, the handler for the weak
subscription reflects the changes by setting a new Position for the Marker.
If the CurrentNoiseLevel changes, a new Bitmap is created reflecting those
changes and assigned to the Marker.

5.9 Chapter Summary

This chapter covered a BaseView implementation. How URLs are stored in
a Constants class. How the two services AppClientService and RtcService are
implemented. It covers the implemented plugins for this project for using Azure
Storage and Authentication. It covers the general implementation of ViewMod-
els and a special case for the AccountSettingsViewModel on Windows 8.1. It
covers a custom wrapper around the MapFragment on Android and what was
used for displaying graphs in the applications. Lastly it covers how custom
bindings were used to bind items on the Android MapView to a collection of
LocationViewModels

Chapter 6

Testing

This chapter concerns itself on how the Apps were tested using a Unit Test
framework. The code in this project is designed with design patterns, which
decouple and encapsulate code, into smaller pieces orienting a certain task or
functionality and additionally split application logic away from UI code. It
makes the code more testable. This will be demonstrated in this section.

To carry out these tests, a Unit Test framework called NUnit [NUn14] is used.
This runs as a .NET 4.5 library project, where any Unit Test runner that sup-
ports NUnit can run the tests. Even though the framework is a Unit Testing
framework, it is chosen not to be used to carry out unit tests in their intended
fashion, where normally code is divided into small units of code, to be able to
test them in isolation. Data and services are also usually mocked up to gain
greater control over the flow and the actual testing cases. This way you can
for instance force errors occurring in the code and test error cases. This is ob-
viously more difficult with a live system. However, mocking up all aspects of
the system also takes a lot of time as there are several API’s this Application
connects to, with several methods each to get data. Hence, in this the tests
carried out, would be better described as integration tests. Using a Unit Test
framework is still very useful for this and it also shows that the code can run
on an entirely other platform than the mobile devices, which strengthens the
portability aspect of it.

68 Testing

6.1 Mocking

Several aspects of the system were mocked up, as it is difficult to automate
log-in flows in a web browser etc. Mocking also allows for greater control in the
code that was mocked up.

In this case the following things were mocked up:

• Application Identification - The Application Client requires the Appli-
cation to identify itself with a unique identifier. This identification comes
from a plugin. However, this plugin was not made for unit tests, so a very
simple mock was made identifying the test as UnitTest and a unique Guid.

• Application Settings - Another plugin provides persistent storage for
the application. Since this is also not available for Unit Tests either, this
was also mocked up, using a Dictionary<string, object> as the backing
storage.

• Log in - Opening up a browser and automating a log in procedure is not
a part of the NUnit testing framework, although there might be some im-
plementations doing so. This was also mocked up hard coding two tokens,
that would normally have been returned in the callback URL when logging
in. These were issued for two dedicated Unit Test users in EMS’s develop-
ment environment. These have access to data recorded for a specific time
span, which can be validated against.

• View Dispatcher - MvvmCross provides a View Dispatcher for each
platform, which uses the platform specific ways of loading visual elements
on the screen. These are obviously not implemented for Unit Tests, and
these are mocked up. The mock View Dispatcher simply stores all the
requests, such that navigation can be tested against those collections.

6.2 Service Tests

Using the mocked classes, it is possible to test the Services made for the appli-
cation. A class BaseServiceTests has been created to handle the set up process
of instantiating all the mocked up classes and creating instances of the services
with all the necessary parameters. BaseServiceTests also implements methods
generally used throughout the tests, to provide instances of the Application ID
generator and a authenticated instance of the AppClientService. All the test

6.2 Service Tests 69

classes related to the Service Tests inherit from BaseServiceTests. These tests
are split into two classes. One which tests the AppClientSerivice and another
testing the RtcService.

Test Case Test Data Result

#1 Receive InformationSet First Call
tenantKey: tomasz00
userGuid: b9fec904(..)
siteGuid: 752c1ebc(..)

OK

#2 Receive InformationSet First Call
tenantKey: tomasz01
userGuid: c9fec904(..)
siteGuid: 1a3429fd(..)

OK

#3 Receive InformationSet Two Calls
tenantKey: tomasz00
userGuid: b9fec904(..)
siteGuid: 752c1ebc(..)

OK

#4 Receive InformationSet Two Calls
tenantKey: tomasz01
userGuid: c9fec904(..)
siteGuid: 1a3429fd(..)

OK

#5 Receive DashboardSet First Call

tenantKey: tomasz00
userGuid: b9fec904(..)
siteNames: {
"DTU Kemitorvet",
"DTU Kollegiebakken"
}

OK

#6 Receive DashboardSet First Call

tenantKey: tomasz01
userGuid: c9fec904(..)
siteNames: {
"Microsoft byggeri"
}

OK

Table 6.1: Test cases, data and results for AppClientService

Tests, test cases and results can be seen in Table 6.1, for tests of the App-
ClientService. Looking at the tests, they each require certain information to
carry out their task. In most cases, they require a tenantKey, which identi-
fies the owner of the site. A userGuid, which identifies the actual user logging
in to the system and invoking the API. Lastly for the InformationSet tests, a
siteGuid, which is used to check if that particular siteGuid is contained in the
InformationSet returned from the API. All tests are only testing for positive
scenarios, which is OK in this case, as these are not Unit Tests, but rather
integration tests with a live API. Similarly tests for fetching the DashboardSet,
which contains information about which sites are accessible to the APP are
made, which are validated against the siteNames, to see if the result returns the
expected values.

For the RtcService tests, cases and results can be seen in Table 6.2. Similar

70 Testing

test values for the test cases are used as for fetching the InformationSet in the
AppClientService tests. However instead of validating against the siteGuid, the
returning result it checked for whether it contains locations inside of the inven-
tory. If it does it passes. The Real Time Data test which fails is due to issues
when running asynchronous code in the testing environment. When stepping
into the code using the debugger the correct values are received. However, for
some reason the event, which normally fires when the collection of ViewModels
is updated, does not fire on the thread the tests run. So the subscription to
that event never gets notified about the change and eventually the test times
out and fails.

Test Case Test Data Result

#1 Load Inventory
tenantKey: tomasz00
userGuid: b9fec904(..)
siteGuid: 752c1ebc(..)

OK

#2 Load Inventory
tenantKey: tomasz00
userGuid: b9fec904(..)
siteGuid: c2ee5b91(..)

OK

#3 Load Inventory
tenantKey: tomasz01
userGuid: c9fec904(..)
siteGuid: 1a3429fd(..)

OK

#4 Real Time Data
tenantKey: tomasz00
userGuid: b9fec904(..)
siteGuid: 752c1ebc(..)

FAIL

#5 Alert Data
tenantKey: tomasz00
userGuid: b9fec904(..)
siteGuid: 752c1ebc(..)

OK

Table 6.2: Test cases, data and results for RtcService

6.3 ViewModel Tests

The testing done for the ViewModels is mainly testing navigation between the
ViewModels. The only navigation in done in this application is between the
HomeViewModel and RtcViewModel. Both of them use AppClientService, which
has already been tested, while the latter RtcViewModel also uses RtcService,
which also has been tested.

In a similar fashion a base class ViewModelTestBase, has been created for these
tests, setting up all necessary classes and IoC to allow the ViewModels to func-
tion properly.

6.4 Chapter summary 71

6.4 Chapter summary

This shows that the ViewModels and Services used in the Application are truly
platform independent. It also shows that they are testable using a Unit Test
framework. It is obvious that several more tests could be made, and the code
would most likely increase in quality with additional testing. It also shows
that development of Applications can be done using Test Driven Development
method, as most of the Application logic is contained and separated from UI and
platform specific code. Even with platform specific code, Unit Test frameworks
such as XUnit could also be deployed to test platform specific code contained
in the main Applications and in plugins to strengthen the quality of the code.

72 Testing

Chapter 7

Metrics

This chapter concerns itself with metrics about how much code was reused
and shared between the Apps. How much code was platform specific, but also
estimations about how much time was spent developing the Apps.

To measure how much code was shared between the two Applications, some
code metrics are deployed. Visual Studio, which is the Integrated Development
Environment (IDE) used to write the Apps, has measures built in to create
code metrics. However, these are based on Intermediate Language (IL), which
is compiled and optimized code. What is interesting here is how much code the
developer ends up writing, hence IL metrics are not a good measure. Another
problem is that the IL the .NET compiler and Mono compiler is potentially
different and not comparable. Hence, a script was made to create some metrics
about the code written in the project, which is based on Lines of Code (LOC)
instead.

74 Metrics

Figure 7.1: Code metrics for Android

Using LOC instead of IL is simple, although a bit problematic. This is due to
the contents of the files can potentially differ in style. This is especially true if
multiple developers work on the project. In this case there has only been one
developer, but to be able to compare the files, it is good practice to normalize
them - rather format them according to some rules. In order to do that a tool
called ReSharper [Jet14], which is a plug-in for Visual Studio has been used to
clean code according to the rules found in Appendix H and the default rule set
that comes with it. That makes sure that compiled C# code gets formatted
correctly. Windows 8 and Android both makes use of XML type of files, with
different schema to describe the UI. These files have been formatted according
to the following rules and an example can be see in Listing 7.1.

• Each element starts on its own line

• Each element ends on

1. Its own line if it contains nested children

2. In line with itself or an attribute if it has no children

• Each attribute and value starts and ends on its own line

75

Listing 7.1: Example of XML code formatting
1 <LinearLayout
2 android:orientation="vertical"
3 android:id="@+id/locationcontainer"
4 android:layout_width="300dp"
5 android:layout_height="match_parent">
6 <TextView
7 android:layout_width="match_parent"
8 android:layout_height="wrap_content"
9 android:textAppearance="?android:attr/textAppearanceMedium"

10 android:text="Location Details"
11 android:layout_margin="10dp"/>
12 </LinearLayout>

Figure 7.2: Code metrics for Windows 8

The script takes advantage of the .csproj files, Visual Studio creates, when
creating a new project. These files are MSBuild [Mic13] project files, containing
information about targets, tasks, but more important properties and items. The
latter provides information about, which items are compiled with the project,
which files are in the project. The files themselves are XML files, which means
they can easily be parsed.

Files such as the Resource.Designer.cs, App.xml and App.xaml.cs are filtered
out before lines are counted, as they are not representative of code written by
the developer. The former file is auto generated, and can contain thousands of

76 Metrics

lines of code, which are auto generated ID’s for Views in Android. App.xml and
App.xml.cs. Images or any other non-code files are not line counted either.

Looking at Figure 7.1, showing the results from gathered from the script for
the Android project. It can be seen that 66.9% of the code written comes from
shared code. That shared code is what is contained in the core PCL of the
project along with common model code in the Model PCL and Custom View
code for the MiniChart View. The rest of the code is made out of 18.4% view
code and 14.6% unique, which amounts to approximate third of the code which
is specific to that platform.

Looking at Figure 7.2, which similarly shows results gathered for Windows 8, it
has slightly more platform specific code, which amounts to 43% of the code. The
reason for this is most likely the sharing functionality, which is not implemented
on Android, which takes up some of those lines of code.

Figure 7.3: Estimated development days spent on Native vs. Xamarin

Taking a look at commits in the Git repository used throughout the project, it
can be gathered that amount of days used developing the Windows 8 App was 84
days while the Android took 23 days. The Windows 8 App was developed first,
and it was also when all the ViewModels, Services and all the other application
logic was defined. If assumed that the development of the platform specific part
of the Windows 8 App took approximately as long as the Android App, it can
be approximated that it took 60 days to write the Application logic. Taking
it further and assuming a third implementation for iOS, would take as long

7.1 Chapter summary 77

as it took for Android. Also assuming that writing the applications using the
native SDK would then take 84 days for each platform, as none of the code
can be shared. Then a conclusion can be drawn that as soon as you reach the
third platform, you have spent 50% less time on those 3 Apps writing them
with Xamarin, than you would have writing them natively. This can be seen in
Figure 7.3.

7.1 Chapter summary

The metrics show that applications made with the traditional native approach
described in Chapter 3, take longer time to create as you have to create a
significant bigger amount of code to achieve the same as when creating native
applications using a single language and sharing a lot of code. The metrics also
show that depending on the platform more approximately 60% of the code can
be shared between all platforms.

78 Metrics

Chapter 8

Conclusion

This chapter concerns itself with the discoveries made during the project, an
overall conclusion and lastly the project is put into perspective by discussing
the future work needed in order to make a release of it on the different app
markets.

8.1 Findings

In Chapter 1 several problems were discovered with how developers see devel-
oping for several platforms. These problems manifest themselves as follows.

• Differences in SDK’s between platforms.

• Differences in languages between platforms.

• Increase in difficulty and time required to cover several platforms

The problems from Brüel & Kjær’s perspective is to allow their customers to
access their products from any device from anywhere. They also want their
developers to be effective in creating applications targeting multiple platforms.

80 Conclusion

Chapter 2 went into further detail on which existing solutions were already
made. It detailed the domain of the project and found the functional and
non-functional requirements. Lastly it described several use cases to cover the
requirements.

Chapter 3 went into detail with various design patterns and frameworks along
with different ways to develop applications and described the pros and cons of
each of them. Based on the analysis MvvmCross was chosen along with heavy
use of Dependency Injection to help encapsulate code into smaller task and due
to the DI promote the ease of testing the encapsulated code in isolation.

Chapter 4 described the architecture and structure of the applications, along
with descriptions on behavior of the important components in the system.

Chapter 5 went into details, describing how the most important parts of the
applications were implemented, it discussed obstacles encountered and how they
were solved with specific solutions and examples.

Chapter 6 described how the NUnit unit testing framework was used to create
integration tests of the project, showing the ease of testing parts of code in
isolation and describing how parts of the application could be mocked up to
stimulate certain values and states.

Chapter 7 discussed how code was measured to find out how much code was
shared across platforms, how much of it was UI code and how much of it was
unique platform specific code.

8.2 Conclusion

The overall conclusion based on the findings is that it is possible to create cross-
platform applications with great amount of shared code. It was discovered that
for the applications developed in this project the average shared code was 61.9%.
When approximated in time used to develop, using the cross-platform tools and
design patterns, compared to traditional native development, the amount of
time saved in comparison was approximately 50%, and linearly increasing for
each additional platform added to the equation. The resulting applications
can be seen in Appendix C and Appendix D. It can also be concluded that
the two applications made both cover all of the functional and non-functional
requirements and the tests prove that the design patterns used, provide a greater
amount of testablity of the code produced.

8.3 Future Work 81

8.3 Future Work

While the Android application served to prove that the code created during
the project indeed was cross-platform compatible. Only minor things would be
needed to be done in order to bring the UI and functionality up on the same
level as the Windows 8.1 application. Additional work on the navigation flow
also needs to be made as a bug was discovered when logging in the Android
application, sometimes it does not recognize the log-in before the application
has been closed and opened again. Back navigation away from the RtcView is
also broken.

If a future release of Xamarin.Forms will support Windows 8.1 and tablet idioms,
it will could prove to be a very good tool to increase the amount of shared code,
as it then could be abstracted away into the portable class library.

The custom bindings made for the Android MapView, should be investigated
more to see if it would be possible to generalize it and adapt it into being able to
be used with arbitrary ViewModels and push it upstream to MvvmCross. This
would greatly decrease the platform specific code on the Android platform and
the need to create a new implementation every time you need to show something
different on a map.

82 Conclusion

Appendix A

Screenshots from Tablet
Interface For Environment

Monitoring

84 Screenshots from Tablet Interface For Environment Monitoring

F
igu

re
A
.1:

Screenshot
of

the
M
ap

Interface

85

F
ig
u
re

A
.2
:
Sc
re
en
sh
ot

of
th
e
In
ve
st
ig
at
io
n
In
te
rf
ac
e

86 Screenshots from Tablet Interface For Environment Monitoring

F
igu

re
A
.3:

Screenshot
of

the
C
ontextualA

pp
B
ar

87

Figure A.4: Screenshot of commenting flow (upon Alert selection)

88 Screenshots from Tablet Interface For Environment Monitoring

Appendix B

Noise Sentinel screenshots

90 Noise Sentinel screenshots

F
igu

re
B
.1:

Screenshot
of

the
N
oise

Sentinelclient

91
F
ig
u
re

B
.2
:
Sc
re
en
sh
ot

of
th
e
R
T
N
C

cl
ie
nt

92 Noise Sentinel screenshots

Figure B.3: Screenshot of NMT details

93

Figure B.4: Screenshot of Alert details

94 Noise Sentinel screenshots

Appendix C

Windows 8.1 Client
Screenshots

96 Windows 8.1 Client Screenshots

F
igu

re
C
.1:

W
elcom

e
screen

w
hen

opening
the

application
(H

om
eV

iew
+

H
om

eV
iew

M
odel)

97
F
ig
u
re

C
.2
:
A
cc
ou

nt
Se
tt
in
gs
F
ly
ou

t
on

th
e
ri
gh

t
si
de

w
he
n
pr
es
si
ng

th
e
lo
gi
n
bu

tt
on

98 Windows 8.1 Client Screenshots

F
igu

re
C
.3:

W
ebA

uthenticationB
roker

show
ing

up
m
odally

to
allow

logging
in

user

99
F
ig
u
re

C
.4
:
V
ie
w

of
m
ap

w
it
h
lo
ca
ti
on

s
an

d
A
le
rt
s
on

ri
gh

tm
os
t
si
de

100 Windows 8.1 Client Screenshots

F
igu

re
C
.5:

Location
selected,show

ing
details

about
it

101
F
ig
u
re

C
.6
:
A
le
rt

se
le
ct
ed

,s
ho

w
in
g
de
ta
ils

ab
ou

t
A
le
rt

an
d
so
un

d
cl
ip

pl
ay
in
g

102 Windows 8.1 Client Screenshots

F
igu

re
C
.7:

H
istoricaldata

about
selected

location,drop
dow

n
lets

the
user

select
different

view
s

Appendix D

Android Client Screenshots

104 Android Client Screenshots

F
igu

re
D
.1:

W
elcom

e
screen

w
hen

opening
the

application

105
F
ig
u
re

D
.2
:
D
ia
lo
g
ap

pe
ar
in
g
w
it
h
th
e
lis
t
of

Id
en
ti
ty

P
ro
vi
de
rs

106 Android Client Screenshots

F
igu

re
D
.3:

W
ebV

iew
show

ing
up

in
a
dialog

to
allow

logging
in

user

107
F
ig
u
re

D
.4
:
V
ie
w

of
m
ap

w
it
h
lo
ca
ti
on

s
an

d
A
le
rt
s
on

ri
gh

tm
os
t
si
de

108 Android Client Screenshots

F
igu

re
D
.5:

Location
selected,show

ing
details

about
it

109
F
ig
u
re

D
.6
:
A
le
rt

se
le
ct
ed

,s
ho

w
in
g
de
ta
ils

ab
ou

t
A
le
rt

an
d
so
un

d
cl
ip

pl
ay
in
g

110 Android Client Screenshots

F
igu

re
D
.7:

H
istoricaldata

about
selected

location,drop
dow

n
lets

the
user

select
different

view
s

Appendix E

Dashboard Mockup

112 Dashboard Mockup

F
igu

re
E
.1:

M
ock

up
of

the
D
ashboard

Appendix F

Touchable MapFragment

Listing F.1: Touchable MapFragment implementation
1 public class TouchableMapFragment : MvxMapFragment
2 {
3 public event EventHandler TouchDown ;
4 public event EventHandler TouchUp ;
5

6 public override View OnCreateView(LayoutInflater inflater , ViewGroup container ,
Bundle savedInstanceState)

7 {
8 var root = base.OnCreateView(inflater , container , savedInstanceState) ;
9 var wrapper = new TouchableWrapper(Activity) ;

10 wrapper.SetBackgroundColor(
11 Resources.GetColor(Android.Resource.Color.Transparent)) ;
12 ((ViewGroup) root).AddView(wrapper ,
13 new ViewGroup.LayoutParams(
14 ViewGroup.LayoutParams.MatchParent ,
15 ViewGroup.LayoutParams.MatchParent)) ;
16

17 wrapper.TouchUp = () =>
18 {
19 if (TouchUp != null)
20 TouchUp(this , EventArgs.Empty) ;
21 } ;
22 wrapper.TouchDown = () =>
23 {
24 if (TouchDown != null)
25 TouchDown(this , EventArgs.Empty) ;

114 Touchable MapFragment

26 } ;
27

28 return root ;
29 }
30

31 private class TouchableWrapper : FrameLayout
32 {
33 public Action TouchDown ;
34 public Action TouchUp ;
35

36 #region ctors
37

38 protected TouchableWrapper(IntPtr javaReference , JniHandleOwnership transfer)
39 : base(javaReference , transfer) {}
40

41 public TouchableWrapper(Context context)
42 : this(context , null) {}
43

44 public TouchableWrapper(Context context , IAttributeSet attrs)
45 : this(context , attrs , 0) {}
46

47 public TouchableWrapper(Context context , IAttributeSet attrs , int defStyle)
48 : base(context , attrs , defStyle) {}
49

50 #endregion
51

52 public override bool DispatchTouchEvent(MotionEvent e)
53 {
54 switch (e.Action)
55 {
56 case MotionEventActions.Down:
57 if (TouchDown != null)
58 TouchDown() ;
59 break ;
60 case MotionEventActions.Cancel:
61 case MotionEventActions.Up:
62 if (TouchUp != null)
63 TouchUp() ;
64 break ;
65 }
66

67 return base.DispatchTouchEvent(e) ;
68 }
69 }
70 }

Appendix G

Custom Binding for
MapView

Listing G.1: Custom Binding for MapView
1 public class LocationMarkerSet
2 {
3 private readonly GoogleMap _map ;
4 private readonly int _mapWidth ;
5 private readonly int _markerSize ;
6 private readonly int _textSize ;
7 private readonly List<LocationViewModelWrapper> _wrappers
8 = new List<LocationViewModelWrapper>() ;
9 private IEnumerable _itemsSource ;

10 private IDisposable _token ;
11

12 public LocationMarkerSet(GoogleMap map , int markerSize , int textSize , int mapWidth)
13 {
14 _map = map ;
15 _markerSize = markerSize ;
16 _textSize = textSize ;
17 _mapWidth = mapWidth ;
18 }
19

20 public IEnumerable ItemsSource
21 {
22 get { return _itemsSource ; }
23 set
24 {

116 Custom Binding for MapView

25 if (_itemsSource == value)
26 return ;
27 if (_token != null)
28 {
29 _token.Dispose() ;
30 _token = null ;
31 }
32 _itemsSource = value ;
33 var notify = _itemsSource as INotifyCollectionChanged ;
34 if (notify != null)
35 _token = notify.WeakSubscribe(HandleChangedMessage) ;
36 ReloadAll() ;
37 }
38 }
39

40 public IList<LocationViewModelWrapper> Wrappers
41 {
42 get { return _wrappers ; }
43 }
44

45 private void ReloadAll()
46 {
47 RemoveAll() ;
48 AddAll() ;
49

50 CenterMap() ;
51 }
52

53 private void AddAll()
54 {
55 if (_itemsSource == null)
56 return ;
57 foreach (var loc in _itemsSource.Cast<LocationViewModel>())
58 {
59 AddLocation(loc) ;
60 }
61 }
62

63 private void AddLocation(LocationViewModel loc)
64 {
65 var options = new MarkerOptions() ;
66 options.SetPosition(new LatLng(loc.Coordinate.Latitude ,
67 loc.Coordinate.Longitude)) ;
68 options.SetTitle(loc.Name) ;
69 var marker = _map.AddMarker(options) ;
70 var markerWrapper = new LocationViewModelWrapper(
71 loc , marker , _markerSize , _textSize) ;
72 _wrappers.Add(markerWrapper) ;
73 }
74

75 private void RemoveAll()
76 {
77 foreach (var wrap in _wrappers)
78 {
79 wrap.Remove() ;

117

80 wrap.Dispose() ;
81 }
82 _wrappers.Clear() ;
83 }
84

85 private void RemoveLocation(LocationViewModel loc)
86 {
87 var wrap = _wrappers.FirstOrDefault(mw => mw.Location == loc) ;
88 if (wrap == null)
89 throw new MvxException("Zombie not found") ;
90 _wrappers.Remove(wrap) ;
91 wrap.Dispose() ;
92 }
93

94 private void HandleChangedMessage(object sender ,
95 NotifyCollectionChangedEventArgs e)
96 {
97 switch (e.Action)
98 {
99 case NotifyCollectionChangedAction.Add:
100 foreach (var loc in e.NewItems.Cast<LocationViewModel>())
101 {
102 AddLocation(loc) ;
103 }
104 break ;
105 case NotifyCollectionChangedAction.Remove:
106 foreach (var loc in e.OldItems.Cast<LocationViewModel>())
107 {
108 RemoveLocation(loc) ;
109 }
110 break ;
111 case NotifyCollectionChangedAction.Replace:
112 case NotifyCollectionChangedAction.Move:
113 throw new MvxException("Zombies should not be moved") ;
114 case NotifyCollectionChangedAction.Reset:
115 ReloadAll() ;
116 break ;
117 default:
118 throw new ArgumentOutOfRangeException() ;
119 }
120 }
121

122 private void CenterMap()
123 {
124 var builder = new LatLngBounds.Builder() ;
125 foreach (var wrap in _wrappers)
126 {
127 builder.Include(wrap.Marker.Position) ;
128 }
129 var bounds = builder.Build() ;
130 var padding = ((_mapWidth*10)/100) ;
131

132 var cu = CameraUpdateFactory.NewLatLngBounds(bounds , padding) ;
133 _map.AnimateCamera(cu) ;
134 }

118 Custom Binding for MapView

135 }
136

137 public sealed class LocationViewModelWrapper
138 : IDisposable
139 {
140 private readonly LocationViewModel _location ;
141 private readonly Marker _marker ;
142 private readonly int _markerSize ;
143 private readonly int _textSize ;
144 private readonly IDisposable _token ;
145

146 public LocationViewModelWrapper(
147 LocationViewModel location , Marker marker , int markerSize , int textSize)
148 {
149 _location = location ;
150 _marker = marker ;
151 _markerSize = markerSize ;
152 _textSize = textSize ;
153

154 using (var bitmap = CreateMarkerView())
155 _marker.SetIcon(BitmapDescriptorFactory.FromBitmap(bitmap)) ;
156

157 _token = _location.WeakSubscribe(OnLocationChanged) ;
158 }
159

160 public Marker Marker
161 {
162 get { return _marker ; }
163 }
164

165 public LatLng Position
166 {
167 get { return _marker.Position ; }
168 set { _marker.Position = value ; }
169 }
170

171 public LocationViewModel Location
172 {
173 get { return _location ; }
174 }
175

176 public void Dispose()
177 {
178 _token.Dispose() ;
179 }
180

181 private void OnLocationChanged(object sender , PropertyChangedEventArgs e)
182 {
183 if (e.PropertyName == "Coordinate")
184 Position = new LatLng(
185 _location.Coordinate.Latitude , _location.Coordinate.Longitude) ;
186 if (e.PropertyName == "CurrentNoiseLevel")
187 {
188 using (var bitmap = CreateMarkerView())
189 _marker.SetIcon(BitmapDescriptorFactory.FromBitmap(bitmap)) ;

119

190 }
191 }
192

193 public void Remove()
194 {
195 _marker.Remove() ;
196 }
197

198 private Bitmap CreateMarkerView()
199 {
200 var currentNoiseLevel = Location.CurrentNoiseLevel ;
201 var backgroundColor = Color.Gray ;
202 var foregroundColor = Color.Black ;
203 if (currentNoiseLevel > 1 && currentNoiseLevel <= 40) // green
204 {
205 backgroundColor = Color.Argb(210, 146, 185, 56) ;
206 foregroundColor = Color.White ;
207 }
208 else if (currentNoiseLevel > 40 && currentNoiseLevel <= 55)
209 {
210 backgroundColor = Color.Argb(210, 242, 230, 0) ;
211 foregroundColor = Color.Black ;
212 }
213 else if (currentNoiseLevel > 55)
214 {
215 backgroundColor = Color.Argb(210, 188, 0, 20) ;
216 foregroundColor = Color.White ;
217 }
218

219 var px = _markerSize ;
220 var bitmap = Bitmap.CreateBitmap(px , px , Bitmap.Config.Argb8888) ;
221 using (var canvas = new Canvas(bitmap))
222 {
223 using (var paint = new Paint(PaintFlags.AntiAlias)
224 {Color = backgroundColor})
225 {
226 var centerXy = px/2f ;
227 canvas.DrawCircle(centerXy , centerXy , centerXy , paint) ;
228 paint.Color = foregroundColor ;
229 paint.TextAlign = Paint.Align.Center ;
230 paint.TextSize = _textSize ;
231 canvas.DrawText(string.Format("{0}", Location.CurrentNoiseLevel),

centerXy ,
232 centerXy + _textSize/2f, paint) ;
233 }
234 }
235 return bitmap ;
236 }
237 }

120 Custom Binding for MapView

Appendix H

ReSharper rules

Figure H.1: ReSharper Clean Code settings

122 ReSharper rules

Appendix I

Line counting script

1 // based on https :// gist.github.com/praeclarum/1608597
2

3 void Main()
4 {
5 var projects = new List<Solution> {
6 new Solution {
7 Name = "Windows 8",
8 ProjectFiles = new List<string> {
9 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp.Store\\

NoiseSentinelApp.Store.Windows \\ NoiseSentinelApp.Store.Windows.csproj",
10 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp.Store\\

NoiseSentinelApp.Store.Shared \\ NoiseSentinelApp.Store.Shared.projitems",
11 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp.Models \\

NoiseSentinelApp.Models.csproj",
12 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp \\

NoiseSentinelApp.csproj",
13

14 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ Custom Views \\ MiniChart.
WindowsCommon \\ MiniChart.WindowsCommon.csproj",

15 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ Custom Views \\ MiniChart.Core\\
MiniChart.Core.csproj",

16 },
17 },
18

19 new Solution {
20 Name = "Android",
21 ProjectFiles = new List<string> {
22 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp.Droid\\

NoiseSentinelApp.Droid.csproj",

124 Line counting script

23 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp.Models \\
NoiseSentinelApp.Models.csproj",

24 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp \\
NoiseSentinelApp.csproj",

25

26 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ Custom Views \\ MiniChart.Droid\\
MiniChart.Droid.csproj",

27 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ Custom Views \\ MiniChart.Core\\
MiniChart.Core.csproj"

28 },
29 },
30

31 new Solution {
32 Name = "Core",
33 ProjectFiles = new List<string> {
34 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp.Models \\

NoiseSentinelApp.Models.csproj",
35 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ NoiseSentinelApp \\

NoiseSentinelApp.csproj",
36 "C:\\ vcs\\git\\ MastersThesis \\ NoiseSentinelApp \\ Custom Views \\ MiniChart.Core\\

MiniChart.Core.csproj"
37 },
38 },
39 } ;
40

41 var excludedFiles = new[] { "App.xaml", "NoiseSentinelTheme.xaml", "OxyplotStyles.xaml"
, "Resource.Designer.cs",

42 "AssemblyInfo.cs", } ;
43

44 new CodeShareReport().Run(projects , excludedFiles) ;
45 }
46

47 class CodeShareReport
48 {
49 Dictionary<string , FileInfo> _files = new Dictionary<string , FileInfo>() ;
50

51 void AddCodeRef (string path , Solution sln)
52 {
53 if (_files.ContainsKey(path))
54 {
55 _files[path]. Solutions.Add(sln) ;
56 sln.CodeFiles.Add(_files[path]) ;
57 }
58 else
59 {
60 var info = new FileInfo { Path = path , } ;
61 info.Solutions.Add(sln) ;
62 _files[path] = info ;
63 sln.CodeFiles.Add(info) ;
64 }
65 }
66

67 void AddViewRef (string path , Solution sln)
68 {
69 if (_files.ContainsKey(path))

125

70 {
71 _files[path]. Solutions.Add(sln) ;
72 sln.ViewFiles.Add(_files[path]) ;
73 }
74 else
75 {
76 var info = new FileInfo { Path = path } ;
77 info.Solutions.Add(sln) ;
78 _files[path] = info ;
79 sln.ViewFiles.Add(info) ;
80 }
81 }
82

83 const string SharedProjectPrefix = "$(MSBuildThisFileDirectory)" ;
84 static string [] AndroidViewFileEndings = new[] { ".axml", ".xml" } ;
85 static string [] ViewCodeBehindFileEndings = new [] { "Fragment.cs", ".xaml.cs", "View.

cs" } ;
86 public void Run (List<Solution> solutions , IEnumerable<string> excludedFiles)
87 {
88 //
89 // Find all the files
90 //
91 foreach (var sln in solutions)
92 {
93 foreach (var projectFile in sln.ProjectFiles)
94 {
95 var dir = Path.GetDirectoryName(projectFile) ;
96 var projectName = Path.GetFileNameWithoutExtension(projectFile) ;
97 var doc = XDocument.Load(projectFile) ;
98

99 var q = GetPaths(doc , "Compile", excludedFiles: excludedFiles) ;
100 foreach (var inc in q)
101 {
102 var inc1 = inc ;
103 if (inc.StartsWith(SharedProjectPrefix)) {
104 inc1 = inc.Remove(0, SharedProjectPrefix.Length) ;
105 }
106 var path = Path.GetFullPath(Path.Combine(dir , inc1)) ;
107

108 if (ViewCodeBehindFileEndings.Any(x => path.ToLowerInvariant().Contains(x.
ToLowerInvariant())))

109 AddViewRef(path , sln) ;
110 else
111 AddCodeRef(path , sln) ;
112 }
113

114 // xaml (very naive implementation)
115 q = GetPaths(doc , "Page", excludedFiles: excludedFiles) ;
116 foreach(var inc in q)
117 {
118 var inc1 = inc ;
119 if (inc.StartsWith(SharedProjectPrefix)) {
120 inc1 = inc.Remove(0, SharedProjectPrefix.Length) ;
121 }
122 var path = Path.GetFullPath(Path.Combine(dir , inc1)) ;

126 Line counting script

123 AddViewRef(path , sln) ;
124 }
125

126 //axml
127 q = GetPaths(doc , "AndroidResource",
128 allowedFileEndings: AndroidViewFileEndings , excludedFiles: excludedFiles) ;
129 foreach(var inc in q)
130 {
131 var path = Path.GetFullPath(Path.Combine(dir , inc)) ;
132 AddViewRef(path , sln) ;
133 }
134 }
135 }
136

137 //
138 // Get the lines of code
139 //
140 foreach (var f in _files.Values)
141 {
142 try
143 {
144 f.LinesOfCode = File.ReadAllLines(f.Path).Length ;
145 }
146 catch (Exception) { }
147 }
148

149 //
150 // Output
151 //
152 var table = new ConsoleTable("Sln", "Total [l]", "Unique [l]", "Shared [l]", "View [l

]", "Unique [%]", "Shared [%]", "View [%]") ;
153 foreach (var sln in solutions)
154 {
155 table.AddRow(
156 sln.Name ,
157 sln.TotalLinesOfCode ,
158 sln.UniqueLinesOfCode ,
159 sln.SharedLinesOfCode ,
160 sln.ViewLinesOfCode ,
161 string.Format("{0:p}", sln.UniqueLinesOfCode / (double)sln.TotalLinesOfCode),
162 string.Format("{0:p}", sln.SharedLinesOfCode / (double)sln.TotalLinesOfCode),
163 string.Format("{0:p}", sln.ViewLinesOfCode / (double)sln.TotalLinesOfCode)) ;
164 }
165

166 Console.WriteLine(table.ToString()) ;
167 Console.WriteLine("\tLegend :\r\n\t\tl = lines") ;
168 }
169

170 private IEnumerable<string> GetPaths(XDocument doc , string elementName , string
attribute = "Include", IEnumerable<string> allowedFileEndings = null ,

171 IEnumerable<string> excludedFiles = null)
172 {
173 if (allowedFileEndings == null)
174 allowedFileEndings = new[] {".cs", ".xaml", ".xaml.cs", ".axml", ".xml"} ;
175

127

176 if (excludedFiles == null)
177 excludedFiles = new[] { "App.xaml", "Resource.Designer.cs" } ;
178

179 var items = from x in doc.Descendants()
180 let e = x as XElement
181 where e != null
182 where e.Name.LocalName == elementName
183 where e.Attributes().Any(a => a.Name.LocalName == attribute)
184 where allowedFileEndings.Any(a => e.Attribute(attribute).Value.ToLowerInvariant().

Contains(a.ToLowerInvariant()))
185 where !excludedFiles.Any(a => e.Attribute(attribute).Value.ToLowerInvariant().

Contains(a.ToLowerInvariant()))
186 select e.Attribute(attribute).Value ;
187 return items ;
188 }
189 }
190

191 class FileInfo
192 {
193 public string Path = "" ;
194 public HashSet<Solution> Solutions = new HashSet<Solution>() ;
195 public int LinesOfCode = 0 ;
196

197 public override string ToString ()
198 {
199 return Path ;
200 }
201 }
202

203 class Solution
204 {
205 public string Name = "" ;
206 public List<string> ProjectFiles = new List<string>() ;
207 public List<FileInfo> CodeFiles = new List<FileInfo>() ;
208 public List<FileInfo> ViewFiles = new List<FileInfo>() ;
209

210 public override string ToString ()
211 {
212 return Name ;
213 }
214

215 public int UniqueLinesOfCode
216 {
217 get
218 {
219 return (from f in CodeFiles
220 where f.Solutions.Count == 1
221 select f.LinesOfCode).Sum() ;
222 }
223 }
224

225 public int SharedLinesOfCode
226 {
227 get
228 {

128 Line counting script

229 return (from f in CodeFiles
230 where f.Solutions.Count > 1
231 select f.LinesOfCode).Sum() ;
232 }
233 }
234

235 public int LinesOfCode
236 {
237 get
238 {
239 return (from f in CodeFiles
240 select f.LinesOfCode).Sum() ;
241 }
242 }
243

244 public int ViewLinesOfCode
245 {
246 get
247 {
248 return (from f in ViewFiles
249 select f.LinesOfCode).Sum() ;
250 }
251 }
252

253 public int TotalLinesOfCode
254 {
255 get { return LinesOfCode + ViewLinesOfCode ; }
256 }
257 }
258

259 #region ConsoleTable
260 // https :// github.com/khalidabuhakmeh/ConsoleTables/blob/master/ConsoleTables.Core/

ConsoleTable.cs
261 public class ConsoleTable
262 {
263 public IList<string> Columns { get ; protected set ; }
264 public IList<object []> Rows { get ; protected set ; }
265

266 public ConsoleTable(params string [] columns)
267 {
268 Columns = new List<string>(columns) ;
269 Rows = new List<object []>() ;
270 }
271

272 public ConsoleTable AddColumn(string [] names)
273 {
274 foreach (var name in names)
275 Columns.Add(name) ;
276

277 return this ;
278 }
279

280 public ConsoleTable AddRow(params object [] values)
281 {
282 if (values == null)

129

283 throw new ArgumentNullException("values") ;
284

285 if (!Columns.Any())
286 throw new Exception("Please set the columns first") ;
287

288 if (Columns.Count != values.Length)
289 throw new Exception(string.Format("The number columns in the row ({0}) does not

match the values ({1}",
290 Columns.Count , values.Length)) ;
291

292 Rows.Add(values) ;
293 return this ;
294 }
295

296 public static ConsoleTable From<T>(IEnumerable<T> values)
297 {
298 var table = new ConsoleTable() ;
299

300 var columns = typeof(T).GetProperties().Select(x => x.Name).ToArray() ;
301 table.AddColumn(columns) ;
302

303 foreach (var propertyValues in values.Select(value => columns.Select(column => typeof
(T).GetProperty(column).GetValue(value , null))))

304 table.AddRow(propertyValues.ToArray()) ;
305

306 return table ;
307 }
308

309 public override string ToString()
310 {
311 var builder = new StringBuilder() ;
312

313 // find the longest column by searching each row
314 var columnLengths = Columns
315 .Select((t, i) => Rows.Select(x => x[i])
316 .Union(Columns)
317 .Where(x => x != null)
318 .Select(x => x.ToString().Length).Max())
319 .ToList() ;
320

321 // create the string format with padding
322 var format = Enumerable.Range(0, Columns.Count)
323 .Select(i => " | {" + i + ", -" + columnLengths[i] + " }")
324 .Aggregate((s, a) => s + a) + " |" ;
325

326 var longestLine = 0 ;
327 var results = new List<string>() ;
328

329 // find the longest formatted line
330 foreach (var result in Rows.Select(row => string.Format(format , row)))
331 {
332 longestLine = Math.Max(longestLine , result.Length) ;
333 results.Add(result) ;
334 }
335

130 Line counting script

336 // create the divider
337 var line = " " + string.Join("", Enumerable.Repeat("-", longestLine - 1)) + " " ;
338

339 builder.AppendLine(line) ;
340 builder.AppendLine(string.Format(format , Columns.ToArray())) ;
341

342 foreach (var row in results)
343 {
344 builder.AppendLine(line) ;
345 builder.AppendLine(row) ;
346 }
347

348 builder.AppendLine(line) ;
349 builder.AppendLine("") ;
350

351 return builder.ToString() ;
352 }
353

354 public void Write() { Console.WriteLine(ToString()) ; }
355 }
356 #endregion

Bibliography

[agi01] The agile manifesto. http://www.agilemanifesto.org/
principles.html, 2001. [Online; Last seen 1-19-2015].

[Bug09] Laurent Bugnion. Mvvmlight. http://www.mvvmlight.net/, 2009.
[Online; Last seen 1-19-2015].

[Cie12] Tomasz Cielecki. Cross-platform mobile notification system for noise
monitoring system. diploma thesis, Technical University of Denmark
(DTU), 2012. IMM-B.Eng-2012-1.

[Cla13] Jeremy Clark. Dependency injection: A practical in-
troduction. http://www.jeremybytes.com/downloads/
dependencyinjection.pdf, 2013. [Online; Last seen 1-19-2015].

[Cor14] Cordova. http://cordova.apache.org/, 2014. [Online; Last seen
1-19-2015].

[dI03] Miguel de Icaza. Mono early history. http://lists.ximian.com/
pipermail/mono-list/2003-October/016345.html, 2003. [On-
line; Last seen 1-19-2015].

[dI11] Miguel de Icaza. Announcing xamarin. http://tirania.org/blog/
archive/2011/May-16.html, 2011. [Online; Last seen 1-19-2015].

[Fie00] Roy Thomas Fielding. Architectural styles and the design of
network-based software architectures. Master’s thesis, University Of
California, Irvine, 2000.

[Fow04] Martin Fowler. Presentation model. http://martinfowler.com/
eaaDev/PresentationModel.html, 2004. [Online; Last seen 1-19-
2015].

http://www.agilemanifesto.org/principles.html
http://www.agilemanifesto.org/principles.html
http://www.mvvmlight.net/
http://www.jeremybytes.com/downloads/dependencyinjection.pdf
http://www.jeremybytes.com/downloads/dependencyinjection.pdf
http://cordova.apache.org/
http://lists.ximian.com/pipermail/mono-list/2003-October/016345.html
http://lists.ximian.com/pipermail/mono-list/2003-October/016345.html
http://tirania.org/blog/archive/2011/May-16.html
http://tirania.org/blog/archive/2011/May-16.html
http://martinfowler.com/eaaDev/PresentationModel.html
http://martinfowler.com/eaaDev/PresentationModel.html

132 BIBLIOGRAPHY

[GC11] The Register Gavin Clarke. Novell mono layoffs. http:
//www.theregister.co.uk/2011/05/03/novell_mono_layoffs/,
2011. [Online; Last seen 1-19-2015].

[Gro05] John Grossman. Introduction to model/view/viewmodel pattern
for building wpf apps. http://blogs.msdn.com/b/johngossman/
archive/2005/10/08/478683.aspx, 2005. [Online; Last seen 1-19-
2015].

[in09] i newswire. Brüel & kjær and lochard join forces. http://
www.i-newswire.com/br-el-kj-r-and-lochard-join-forces/
a252100, 2009. [Online; Last seen 1-19-2015].

[Jet14] JetBrains. Resharper::the most intelligent extension for visual stu-
dio. https://www.jetbrains.com/resharper/, 2014. [Online; Last
seen 1-19-2015].

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical Report CMU/SEI-90-TR-21, ESD-90-
TR-222, November 1990.

[Kjæ14a] Brüel & Kjær. About brüel & kjær. http://bksv.com/AboutUs/
AboutBruelAndKjaer, 2014. [Online; Last seen 1-19-2015].

[Kjæ14b] Brüel & Kjær. Brüel & kjær company presentation video. http://
bksv.com/video/CompanyPresentation/bn0455.wmv, 2014. [On-
line; Last seen 1-19-2015].

[Kjæ14c] Brüel & Kjær. Environment management solutions. http:
//bksv.com/Products/EnvironmentManagementSolutions.aspx,
2014. [Online; Last seen 1-19-2015].

[Kjæ14d] Brüel & Kjær. Noise sentinel. http://www.bksv.
com/Products/EnvironmentManagementSolutions/
UrbanEnvironmentManagement/Type7871NoiseSentinel, 2014.
[Online; Last seen 1-19-2015].

[Lod10] Stuart Lodge. Mvvmcross. https://github.com/MvvmCross/
MvvmCross, 2010. [Online; Last seen 1-19-2015].

[Lun13] Jonas Lund. Tablet interface for environment monitoring. diploma
thesis, Technical University of Denmark (DTU), 2013. IMM-B.Eng-
2013-12.

[Mar11] Tony Marston. Dependency injection is evil. http://www.
tonymarston.net/php-mysql/dependency-injection-is-evil.
html, 2011. [Online; Last seen 1-19-2015].

http://www.theregister.co.uk/2011/05/03/novell_mono_layoffs/
http://www.theregister.co.uk/2011/05/03/novell_mono_layoffs/
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
http://www.i-newswire.com/br-el-kj-r-and-lochard-join-forces/a252100
http://www.i-newswire.com/br-el-kj-r-and-lochard-join-forces/a252100
http://www.i-newswire.com/br-el-kj-r-and-lochard-join-forces/a252100
https://www.jetbrains.com/resharper/
http://bksv.com/AboutUs/AboutBruelAndKjaer
http://bksv.com/AboutUs/AboutBruelAndKjaer
http://bksv.com/video/CompanyPresentation/bn0455.wmv
http://bksv.com/video/CompanyPresentation/bn0455.wmv
http://bksv.com/Products/EnvironmentManagementSolutions.aspx
http://bksv.com/Products/EnvironmentManagementSolutions.aspx
http://www.bksv.com/Products/EnvironmentManagementSolutions/UrbanEnvironmentManagement/Type7871NoiseSentinel
http://www.bksv.com/Products/EnvironmentManagementSolutions/UrbanEnvironmentManagement/Type7871NoiseSentinel
http://www.bksv.com/Products/EnvironmentManagementSolutions/UrbanEnvironmentManagement/Type7871NoiseSentinel
https://github.com/MvvmCross/MvvmCross
https://github.com/MvvmCross/MvvmCross
http://www.tonymarston.net/php-mysql/dependency-injection-is-evil.html
http://www.tonymarston.net/php-mysql/dependency-injection-is-evil.html
http://www.tonymarston.net/php-mysql/dependency-injection-is-evil.html

BIBLIOGRAPHY 133

[Mic11] Microsoft. Portable class libraries. http://msdn.microsoft.com/
en-us/library/vstudio/gg597391(v=vs.100).aspx, 2011. [On-
line; Last seen 1-19-2015].

[Mic12] Microsoft. Reactive extensions. https://rx.codeplex.com/, 2012.
[Online; Last seen 1-19-2015].

[Mic13] Microsoft. Msbuild. http://msdn.microsoft.com/en-us/
library/dd393574.aspx, 2013. [Online; Last seen 1-19-2015].

[MW10] Novell Mass Waltham. Novell agrees to be acquired by attachmate
corporation. https://www.novell.com/news/press/2010/11/
novell-agrees-to-be-acquired-by-attachmate-corporation.
html, 2010. [Online; Last seen 1-19-2015].

[NUn14] NUnit. Nunit is a unit-testing framework for all .net languages.
http://www.nunit.org/, 2014. [Online; Last seen 1-19-2015].

[Rho14] RhoMobile. http://rhomobile.com/, 2014. [Online; Last seen 1-
19-2015].

[Rob12] James Robinson. http://opensignal.com/reports/
fragmentation.php, 2012. [Online; Last seen 1-19-2015].

[tea14] ReactiveUI team. Reactiveui. http://reactiveui.net/, 2014. [On-
line; Last seen 1-19-2015].

[Xam14a] Xamarin. http://xamarin.com/, 2014. [Online; Last seen 1-19-
2015].

[Xam14b] Xamarin. Xamarin forms. http://xamarin.com/forms, 2014. [On-
line; Last seen 1-19-2015].

[ZDN00] Steven Bonisteel ZDNet. Microsoft sees noth-
ing but .net ahead. https://web.archive.org/
web/20111105195731/http://www.zdnetasia.com/
microsoft-sees-nothing-but-net-ahead-10028684.htm, 2000.
[Online; Last seen 3-29-2012 (archive.org)].

[ZDN09] Rupert Goodwins ZDNet. Monotouch lets .net coders
build iphone apps. http://www.zdnet.com/article/
monotouch-lets-net-coders-build-iphone-apps, 2009. [Online;
Last seen 1-19-2015].

http://msdn.microsoft.com/en-us/library/vstudio/gg597391(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/gg597391(v=vs.100).aspx
https://rx.codeplex.com/
http://msdn.microsoft.com/en-us/library/dd393574.aspx
http://msdn.microsoft.com/en-us/library/dd393574.aspx
https://www.novell.com/news/press/2010/11/novell-agrees-to-be-acquired-by-attachmate-corporation.html
https://www.novell.com/news/press/2010/11/novell-agrees-to-be-acquired-by-attachmate-corporation.html
https://www.novell.com/news/press/2010/11/novell-agrees-to-be-acquired-by-attachmate-corporation.html
http://www.nunit.org/
http://rhomobile.com/
http://opensignal.com/reports/fragmentation.php
http://opensignal.com/reports/fragmentation.php
http://reactiveui.net/
http://xamarin.com/
http://xamarin.com/forms
https://web.archive.org/web/20111105195731/http://www.zdnetasia.com/microsoft-sees-nothing-but-net-ahead-10028684.htm
https://web.archive.org/web/20111105195731/http://www.zdnetasia.com/microsoft-sees-nothing-but-net-ahead-10028684.htm
https://web.archive.org/web/20111105195731/http://www.zdnetasia.com/microsoft-sees-nothing-but-net-ahead-10028684.htm
http://www.zdnet.com/article/monotouch-lets-net-coders-build-iphone-apps
http://www.zdnet.com/article/monotouch-lets-net-coders-build-iphone-apps

	Summary
	Resumè
	Preface
	Acknowledgements
	1 Introduction
	1.1 Brüel & Kjær Sound & Vibration Measurement A/S
	1.1.1 Environment Management Solutions
	1.1.2 Noise Sentinel

	1.2 Prior work
	1.2.1 Cross-platform mobile notification system for noise monitoring system
	1.2.2 Internship & Bachelor project

	1.3 Device Fragmentation
	1.4 The Problem
	1.5 Thesis Definition
	1.6 Report structure
	1.7 Methodology

	2 Analysis
	2.1 Prior Work
	2.1.1 Tablet Interface For Environment Monitoring
	2.1.2 Cross-platform mobile notification system for noise monitoring system

	2.2 Domain Analysis
	2.3 Requirements Specification
	2.3.1 Functional Requirements
	2.3.2 Non-Functional Requirements
	2.3.3 Use Cases

	2.4 Chapter Summary

	3 Technology Analysis
	3.1 Xamarin
	3.1.1 Xamarin in Comparison

	3.2 Portable Class Libraries
	3.3 Inversion of Control
	3.3.1 Dependency Injection
	3.3.2 Service Locator
	3.3.3 IoC Summary

	3.4 Model-View-ViewModel
	3.5 Frameworks
	3.5.1 ReactiveUI
	3.5.2 MvvmLight
	3.5.3 MvvmCross
	3.5.4 Xamarin.Forms
	3.5.5 Frameworks Comparison

	3.6 Chapter Summary

	4 Design
	4.1 Mobile Applications
	4.1.1 Core
	4.1.2 Application Projects
	4.1.3 Plugins

	4.2 OpenAPI
	4.3 Chapter Summary

	5 Implementation
	5.1 BaseView
	5.2 Constants
	5.3 AppClientService
	5.4 RtcService
	5.4.1 Inventory Reloading
	5.4.2 Real-time Data
	5.4.3 Historical Data
	5.4.4 Alerts

	5.5 Plugins
	5.5.1 Windows Azure Storage
	5.5.2 Authentication

	5.6 ViewModels
	5.7 Custom Views
	5.7.1 Map View
	5.7.2 Graphs

	5.8 Custom Bindings
	5.9 Chapter Summary

	6 Testing
	6.1 Mocking
	6.2 Service Tests
	6.3 ViewModel Tests
	6.4 Chapter summary

	7 Metrics
	7.1 Chapter summary

	8 Conclusion
	8.1 Findings
	8.2 Conclusion
	8.3 Future Work

	Appendix
	A Screenshots from Tablet Interface For Environment Monitoring
	B Noise Sentinel screenshots
	C Windows 8.1 Client Screenshots
	D Android Client Screenshots
	E Dashboard Mockup
	F Touchable MapFragment
	G Custom Binding for MapView
	H ReSharper rules
	I Line counting script
	Bibliography

